Sample records for computer adaptive system

  1. Fault recovery for real-time, multi-tasking computer system

    NASA Technical Reports Server (NTRS)

    Hess, Richard (Inventor); Kelly, Gerald B. (Inventor); Rogers, Randy (Inventor); Stange, Kent A. (Inventor)

    2011-01-01

    System and methods for providing a recoverable real time multi-tasking computer system are disclosed. In one embodiment, a system comprises a real time computing environment, wherein the real time computing environment is adapted to execute one or more applications and wherein each application is time and space partitioned. The system further comprises a fault detection system adapted to detect one or more faults affecting the real time computing environment and a fault recovery system, wherein upon the detection of a fault the fault recovery system is adapted to restore a backup set of state variables.

  2. Application of Adaptive Decision Aiding Systems to Computer-Assisted Instruction. Final Report, January-December 1974.

    ERIC Educational Resources Information Center

    May, Donald M.; And Others

    The minicomputer-based Computerized Diagnostic and Decision Training (CDDT) system described combines the principles of artificial intelligence, decision theory, and adaptive computer assisted instruction for training in electronic troubleshooting. The system incorporates an adaptive computer program which learns the student's diagnostic and…

  3. Adaptive voting computer system

    NASA Technical Reports Server (NTRS)

    Koczela, L. J.; Wilgus, D. S. (Inventor)

    1974-01-01

    A computer system is reported that uses adaptive voting to tolerate failures and operates in a fail-operational, fail-safe manner. Each of four computers is individually connected to one of four external input/output (I/O) busses which interface with external subsystems. Each computer is connected to receive input data and commands from the other three computers and to furnish output data commands to the other three computers. An adaptive control apparatus including a voter-comparator-switch (VCS) is provided for each computer to receive signals from each of the computers and permits adaptive voting among the computers to permit the fail-operational, fail-safe operation.

  4. RASCAL: A Rudimentary Adaptive System for Computer-Aided Learning.

    ERIC Educational Resources Information Center

    Stewart, John Christopher

    Both the background of computer-assisted instruction (CAI) systems in general and the requirements of a computer-aided learning system which would be a reasonable assistant to a teacher are discussed. RASCAL (Rudimentary Adaptive System for Computer-Aided Learning) is a first attempt at defining a CAI system which would individualize the learning…

  5. Adaptive Decision Aiding in Computer-Assisted Instruction: Adaptive Computerized Training System (ACTS).

    ERIC Educational Resources Information Center

    Hopf-Weichel, Rosemarie; And Others

    This report describes results of the first year of a three-year program to develop and evaluate a new Adaptive Computerized Training System (ACTS) for electronics maintenance training. (ACTS incorporates an adaptive computer program that learns the student's diagnostic and decision value structure, compares it to that of an expert, and adapts the…

  6. Water System Adaptation To Hydrological Changes: Module 11, Methods and Tools: Computational Models

    EPA Science Inventory

    This course will introduce students to the fundamental principles of water system adaptation to hydrological changes, with emphasis on data analysis and interpretation, technical planning, and computational modeling. Starting with real-world scenarios and adaptation needs, the co...

  7. QPSO-Based Adaptive DNA Computing Algorithm

    PubMed Central

    Karakose, Mehmet; Cigdem, Ugur

    2013-01-01

    DNA (deoxyribonucleic acid) computing that is a new computation model based on DNA molecules for information storage has been increasingly used for optimization and data analysis in recent years. However, DNA computing algorithm has some limitations in terms of convergence speed, adaptability, and effectiveness. In this paper, a new approach for improvement of DNA computing is proposed. This new approach aims to perform DNA computing algorithm with adaptive parameters towards the desired goal using quantum-behaved particle swarm optimization (QPSO). Some contributions provided by the proposed QPSO based on adaptive DNA computing algorithm are as follows: (1) parameters of population size, crossover rate, maximum number of operations, enzyme and virus mutation rate, and fitness function of DNA computing algorithm are simultaneously tuned for adaptive process, (2) adaptive algorithm is performed using QPSO algorithm for goal-driven progress, faster operation, and flexibility in data, and (3) numerical realization of DNA computing algorithm with proposed approach is implemented in system identification. Two experiments with different systems were carried out to evaluate the performance of the proposed approach with comparative results. Experimental results obtained with Matlab and FPGA demonstrate ability to provide effective optimization, considerable convergence speed, and high accuracy according to DNA computing algorithm. PMID:23935409

  8. STAR adaptation of QR algorithm. [program for solving over-determined systems of linear equations

    NASA Technical Reports Server (NTRS)

    Shah, S. N.

    1981-01-01

    The QR algorithm used on a serial computer and executed on the Control Data Corporation 6000 Computer was adapted to execute efficiently on the Control Data STAR-100 computer. How the scalar program was adapted for the STAR-100 and why these adaptations yielded an efficient STAR program is described. Program listings of the old scalar version and the vectorized SL/1 version are presented in the appendices. Execution times for the two versions applied to the same system of linear equations, are compared.

  9. An adaptive brain actuated system for augmenting rehabilitation

    PubMed Central

    Roset, Scott A.; Gant, Katie; Prasad, Abhishek; Sanchez, Justin C.

    2014-01-01

    For people living with paralysis, restoration of hand function remains the top priority because it leads to independence and improvement in quality of life. In approaches to restore hand and arm function, a goal is to better engage voluntary control and counteract maladaptive brain reorganization that results from non-use. Standard rehabilitation augmented with developments from the study of brain-computer interfaces could provide a combined therapy approach for motor cortex rehabilitation and to alleviate motor impairments. In this paper, an adaptive brain-computer interface system intended for application to control a functional electrical stimulation (FES) device is developed as an experimental test bed for augmenting rehabilitation with a brain-computer interface. The system's performance is improved throughout rehabilitation by passive user feedback and reinforcement learning. By continuously adapting to the user's brain activity, similar adaptive systems could be used to support clinical brain-computer interface neurorehabilitation over multiple days. PMID:25565945

  10. Artificial Intelligence Methods in Computer-Based Instructional Design. The Minnesota Adaptive Instructional System.

    ERIC Educational Resources Information Center

    Tennyson, Robert

    1984-01-01

    Reviews educational applications of artificial intelligence and presents empirically-based design variables for developing a computer-based instruction management system. Taken from a programmatic research effort based on the Minnesota Adaptive Instructional System, variables include amount and sequence of instruction, display time, advisement,…

  11. Encoder-Decoder Optimization for Brain-Computer Interfaces

    PubMed Central

    Merel, Josh; Pianto, Donald M.; Cunningham, John P.; Paninski, Liam

    2015-01-01

    Neuroprosthetic brain-computer interfaces are systems that decode neural activity into useful control signals for effectors, such as a cursor on a computer screen. It has long been recognized that both the user and decoding system can adapt to increase the accuracy of the end effector. Co-adaptation is the process whereby a user learns to control the system in conjunction with the decoder adapting to learn the user's neural patterns. We provide a mathematical framework for co-adaptation and relate co-adaptation to the joint optimization of the user's control scheme ("encoding model") and the decoding algorithm's parameters. When the assumptions of that framework are respected, co-adaptation cannot yield better performance than that obtainable by an optimal initial choice of fixed decoder, coupled with optimal user learning. For a specific case, we provide numerical methods to obtain such an optimized decoder. We demonstrate our approach in a model brain-computer interface system using an online prosthesis simulator, a simple human-in-the-loop pyschophysics setup which provides a non-invasive simulation of the BCI setting. These experiments support two claims: that users can learn encoders matched to fixed, optimal decoders and that, once learned, our approach yields expected performance advantages. PMID:26029919

  12. Encoder-decoder optimization for brain-computer interfaces.

    PubMed

    Merel, Josh; Pianto, Donald M; Cunningham, John P; Paninski, Liam

    2015-06-01

    Neuroprosthetic brain-computer interfaces are systems that decode neural activity into useful control signals for effectors, such as a cursor on a computer screen. It has long been recognized that both the user and decoding system can adapt to increase the accuracy of the end effector. Co-adaptation is the process whereby a user learns to control the system in conjunction with the decoder adapting to learn the user's neural patterns. We provide a mathematical framework for co-adaptation and relate co-adaptation to the joint optimization of the user's control scheme ("encoding model") and the decoding algorithm's parameters. When the assumptions of that framework are respected, co-adaptation cannot yield better performance than that obtainable by an optimal initial choice of fixed decoder, coupled with optimal user learning. For a specific case, we provide numerical methods to obtain such an optimized decoder. We demonstrate our approach in a model brain-computer interface system using an online prosthesis simulator, a simple human-in-the-loop pyschophysics setup which provides a non-invasive simulation of the BCI setting. These experiments support two claims: that users can learn encoders matched to fixed, optimal decoders and that, once learned, our approach yields expected performance advantages.

  13. Computer image generation: Reconfigurability as a strategy in high fidelity space applications

    NASA Technical Reports Server (NTRS)

    Bartholomew, Michael J.

    1989-01-01

    The demand for realistic, high fidelity, computer image generation systems to support space simulation is well established. However, as the number and diversity of space applications increase, the complexity and cost of computer image generation systems also increase. One strategy used to harmonize cost with varied requirements is establishment of a reconfigurable image generation system that can be adapted rapidly and easily to meet new and changing requirements. The reconfigurability strategy through the life cycle of system conception, specification, design, implementation, operation, and support for high fidelity computer image generation systems are discussed. The discussion is limited to those issues directly associated with reconfigurability and adaptability of a specialized scene generation system in a multi-faceted space applications environment. Examples and insights gained through the recent development and installation of the Improved Multi-function Scene Generation System at Johnson Space Center, Systems Engineering Simulator are reviewed and compared with current simulator industry practices. The results are clear; the strategy of reconfigurability applied to space simulation requirements provides a viable path to supporting diverse applications with an adaptable computer image generation system.

  14. Water System Adaptation To Hydrological Changes: Module 12, Models and Tools for Stormwater and Wastewater System Adaptation

    EPA Science Inventory

    This course will introduce students to the fundamental principles of water system adaptation to hydrological changes, with emphasis on data analysis and interpretation, technical planning, and computational modeling. Starting with real-world scenarios and adaptation needs, the co...

  15. Water System Adaptation To Hydrological Changes: Module 14, Life Cycle Analysis (LCA) and Prioritization Tools in Water System Adaptation

    EPA Science Inventory

    This course will introduce students to the fundamental principles of water system adaptation to hydrological changes, with emphasis on data analysis and interpretation, technical planning, and computational modeling. Starting with real-world scenarios and adaptation needs, the co...

  16. How to Represent Adaptation in e-Learning with IMS Learning Design

    ERIC Educational Resources Information Center

    Burgos, Daniel; Tattersall, Colin; Koper, Rob

    2007-01-01

    Adaptation in e-learning has been an important research topic for the last few decades in computer-based education. In adaptivity the behaviour of the user triggers some actions in the system that guides the learning process. In adaptability, the user makes changes and takes decisions. Progressing from computer-based training and adaptive…

  17. Advances in Adaptive Control Methods

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan

    2009-01-01

    This poster presentation describes recent advances in adaptive control technology developed by NASA. Optimal Control Modification is a novel adaptive law that can improve performance and robustness of adaptive control systems. A new technique has been developed to provide an analytical method for computing time delay stability margin for adaptive control systems.

  18. Adaptive CFD schemes for aerospace propulsion

    NASA Astrophysics Data System (ADS)

    Ferrero, A.; Larocca, F.

    2017-05-01

    The flow fields which can be observed inside several components of aerospace propulsion systems are characterised by the presence of very localised phenomena (boundary layers, shock waves,...) which can deeply influence the performances of the system. In order to accurately evaluate these effects by means of Computational Fluid Dynamics (CFD) simulations, it is necessary to locally refine the computational mesh. In this way the degrees of freedom related to the discretisation are focused in the most interesting regions and the computational cost of the simulation remains acceptable. In the present work, a discontinuous Galerkin (DG) discretisation is used to numerically solve the equations which describe the flow field. The local nature of the DG reconstruction makes it possible to efficiently exploit several adaptive schemes in which the size of the elements (h-adaptivity) and the order of reconstruction (p-adaptivity) are locally changed. After a review of the main adaptation criteria, some examples related to compressible flows in turbomachinery are presented. An hybrid hp-adaptive algorithm is also proposed and compared with a standard h-adaptive scheme in terms of computational efficiency.

  19. Water System Adaptation To Hydrological Changes: Module 7, Adaptation Principles and Considerations

    EPA Science Inventory

    This course will introduce students to the fundamental principles of water system adaptation to hydrological changes, with emphasis on data analysis and interpretation, technical planning, and computational modeling. Starting with real-world scenarios and adaptation needs, the co...

  20. MOLAR: Modular Linux and Adaptive Runtime Support for HEC OS/R Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank Mueller

    2009-02-05

    MOLAR is a multi-institution research effort that concentrates on adaptive, reliable,and efficient operating and runtime system solutions for ultra-scale high-end scientific computing on the next generation of supercomputers. This research addresses the challenges outlined by the FAST-OS - forum to address scalable technology for runtime and operating systems --- and HECRTF --- high-end computing revitalization task force --- activities by providing a modular Linux and adaptable runtime support for high-end computing operating and runtime systems. The MOLAR research has the following goals to address these issues. (1) Create a modular and configurable Linux system that allows customized changes based onmore » the requirements of the applications, runtime systems, and cluster management software. (2) Build runtime systems that leverage the OS modularity and configurability to improve efficiency, reliability, scalability, ease-of-use, and provide support to legacy and promising programming models. (3) Advance computer reliability, availability and serviceability (RAS) management systems to work cooperatively with the OS/R to identify and preemptively resolve system issues. (4) Explore the use of advanced monitoring and adaptation to improve application performance and predictability of system interruptions. The overall goal of the research conducted at NCSU is to develop scalable algorithms for high-availability without single points of failure and without single points of control.« less

  1. High-speed on-chip windowed centroiding using photodiode-based CMOS imager

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor); Sun, Chao (Inventor); Yang, Guang (Inventor); Cunningham, Thomas J. (Inventor); Hancock, Bruce (Inventor)

    2003-01-01

    A centroid computation system is disclosed. The system has an imager array, a switching network, computation elements, and a divider circuit. The imager array has columns and rows of pixels. The switching network is adapted to receive pixel signals from the image array. The plurality of computation elements operates to compute inner products for at least x and y centroids. The plurality of computation elements has only passive elements to provide inner products of pixel signals the switching network. The divider circuit is adapted to receive the inner products and compute the x and y centroids.

  2. High-speed on-chip windowed centroiding using photodiode-based CMOS imager

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor); Sun, Chao (Inventor); Yang, Guang (Inventor); Cunningham, Thomas J. (Inventor); Hancock, Bruce (Inventor)

    2004-01-01

    A centroid computation system is disclosed. The system has an imager array, a switching network, computation elements, and a divider circuit. The imager array has columns and rows of pixels. The switching network is adapted to receive pixel signals from the image array. The plurality of computation elements operates to compute inner products for at least x and y centroids. The plurality of computation elements has only passive elements to provide inner products of pixel signals the switching network. The divider circuit is adapted to receive the inner products and compute the x and y centroids.

  3. Promoting Contextual Vocabulary Learning through an Adaptive Computer-Assisted EFL Reading System

    ERIC Educational Resources Information Center

    Wang, Y.-H.

    2016-01-01

    The study developed an adaptive computer-assisted reading system and investigated its effect on promoting English as a foreign language learner-readers' contextual vocabulary learning performance. Seventy Taiwanese college students were assigned to two reading groups. Participants in the customised reading group read online English texts, each of…

  4. Implementation of Multispectral Image Classification on a Remote Adaptive Computer

    NASA Technical Reports Server (NTRS)

    Figueiredo, Marco A.; Gloster, Clay S.; Stephens, Mark; Graves, Corey A.; Nakkar, Mouna

    1999-01-01

    As the demand for higher performance computers for the processing of remote sensing science algorithms increases, the need to investigate new computing paradigms its justified. Field Programmable Gate Arrays enable the implementation of algorithms at the hardware gate level, leading to orders of m a,gnitude performance increase over microprocessor based systems. The automatic classification of spaceborne multispectral images is an example of a computation intensive application, that, can benefit from implementation on an FPGA - based custom computing machine (adaptive or reconfigurable computer). A probabilistic neural network is used here to classify pixels of of a multispectral LANDSAT-2 image. The implementation described utilizes Java client/server application programs to access the adaptive computer from a remote site. Results verify that a remote hardware version of the algorithm (implemented on an adaptive computer) is significantly faster than a local software version of the same algorithm implemented on a typical general - purpose computer).

  5. Water System Adaptation to Hydrological Changes: Module 10, Basic Principles of Incorporating Adaptation Science into Hydrologic Planning and Design

    EPA Science Inventory

    This course will introduce students to the fundamental principles of water system adaptation to hydrological changes, with emphasis on data analysis and interpretation, technical planning, and computational modeling. Starting with real-world scenarios and adaptation needs, the co...

  6. Water System Adaptation To Hydrological Changes: Module 5, Water Quality and Infrastructure Response to Rapid Urbanization: Adaptation Case Study in China

    EPA Science Inventory

    This course will introduce students to the fundamental principles of water system adaptation to hydrological changes, with emphasis on data analysis and interpretation, technical planning, and computational modeling. Starting with real-world scenarios and adaptation needs, the co...

  7. Water System Adaptation To Hydrological Changes: Module 9, Water System Resilience and Security under Hydrologic Variability and Uncertainty

    EPA Science Inventory

    This course will introduce students to the fundamental principles of water system adaptation to hydrological changes, with emphasis on data analysis and interpretation, technical planning, and computational modeling. Starting with real-world scenarios and adaptation needs, the co...

  8. Do You Think You Can? The Influence of Student Self-Efficacy on the Effectiveness of Tutorial Dialogue for Computer Science

    ERIC Educational Resources Information Center

    Wiggins, Joseph B.; Grafsgaard, Joseph F.; Boyer, Kristy Elizabeth; Wiebe, Eric N.; Lester, James C.

    2017-01-01

    In recent years, significant advances have been made in intelligent tutoring systems, and these advances hold great promise for adaptively supporting computer science (CS) learning. In particular, tutorial dialogue systems that engage students in natural language dialogue can create rich, adaptive interactions. A promising approach to increasing…

  9. An Adaptive Testing System for Supporting Versatile Educational Assessment

    ERIC Educational Resources Information Center

    Huang, Yueh-Min; Lin, Yen-Ting; Cheng, Shu-Chen

    2009-01-01

    With the rapid growth of computer and mobile technology, it is a challenge to integrate computer based test (CBT) with mobile learning (m-learning) especially for formative assessment and self-assessment. In terms of self-assessment, computer adaptive test (CAT) is a proper way to enable students to evaluate themselves. In CAT, students are…

  10. A Weibull distribution accrual failure detector for cloud computing.

    PubMed

    Liu, Jiaxi; Wu, Zhibo; Wu, Jin; Dong, Jian; Zhao, Yao; Wen, Dongxin

    2017-01-01

    Failure detectors are used to build high availability distributed systems as the fundamental component. To meet the requirement of a complicated large-scale distributed system, accrual failure detectors that can adapt to multiple applications have been studied extensively. However, several implementations of accrual failure detectors do not adapt well to the cloud service environment. To solve this problem, a new accrual failure detector based on Weibull Distribution, called the Weibull Distribution Failure Detector, has been proposed specifically for cloud computing. It can adapt to the dynamic and unexpected network conditions in cloud computing. The performance of the Weibull Distribution Failure Detector is evaluated and compared based on public classical experiment data and cloud computing experiment data. The results show that the Weibull Distribution Failure Detector has better performance in terms of speed and accuracy in unstable scenarios, especially in cloud computing.

  11. A Guide to Computer Simulations of Three Adaptive Instructional Models for the Advanced Instructional System Phases II and III. Final Report.

    ERIC Educational Resources Information Center

    Hansen, Duncan N.; And Others

    Computer simulations of three individualized adaptive instructional models (AIM) were undertaken to determine if these models function as prescribed in Air Force technical training programs. In addition, the project sought to develop a user's guide for effective understanding of adaptive models during field implementation. Successful simulations…

  12. FPGA-Based High-Performance Embedded Systems for Adaptive Edge Computing in Cyber-Physical Systems: The ARTICo³ Framework.

    PubMed

    Rodríguez, Alfonso; Valverde, Juan; Portilla, Jorge; Otero, Andrés; Riesgo, Teresa; de la Torre, Eduardo

    2018-06-08

    Cyber-Physical Systems are experiencing a paradigm shift in which processing has been relocated to the distributed sensing layer and is no longer performed in a centralized manner. This approach, usually referred to as Edge Computing, demands the use of hardware platforms that are able to manage the steadily increasing requirements in computing performance, while keeping energy efficiency and the adaptability imposed by the interaction with the physical world. In this context, SRAM-based FPGAs and their inherent run-time reconfigurability, when coupled with smart power management strategies, are a suitable solution. However, they usually fail in user accessibility and ease of development. In this paper, an integrated framework to develop FPGA-based high-performance embedded systems for Edge Computing in Cyber-Physical Systems is presented. This framework provides a hardware-based processing architecture, an automated toolchain, and a runtime to transparently generate and manage reconfigurable systems from high-level system descriptions without additional user intervention. Moreover, it provides users with support for dynamically adapting the available computing resources to switch the working point of the architecture in a solution space defined by computing performance, energy consumption and fault tolerance. Results show that it is indeed possible to explore this solution space at run time and prove that the proposed framework is a competitive alternative to software-based edge computing platforms, being able to provide not only faster solutions, but also higher energy efficiency for computing-intensive algorithms with significant levels of data-level parallelism.

  13. Method and system for environmentally adaptive fault tolerant computing

    NASA Technical Reports Server (NTRS)

    Copenhaver, Jason L. (Inventor); Jeremy, Ramos (Inventor); Wolfe, Jeffrey M. (Inventor); Brenner, Dean (Inventor)

    2010-01-01

    A method and system for adapting fault tolerant computing. The method includes the steps of measuring an environmental condition representative of an environment. An on-board processing system's sensitivity to the measured environmental condition is measured. It is determined whether to reconfigure a fault tolerance of the on-board processing system based in part on the measured environmental condition. The fault tolerance of the on-board processing system may be reconfigured based in part on the measured environmental condition.

  14. Water System Adaptation To Hydrological Changes: Module 15, Course Summary and Project Presentation

    EPA Science Inventory

    This course will introduce students to the fundamental principles of water system adaptation to hydrological changes, with emphasis on data analysis and interpretation, technical planning, and computational modeling. Starting with real-world scenarios and adaptation needs, the co...

  15. Real-time control system for adaptive resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flath, L; An, J; Brase, J

    2000-07-24

    Sustained operation of high average power solid-state lasers currently requires an adaptive resonator to produce the optimal beam quality. We describe the architecture of a real-time adaptive control system for correcting intra-cavity aberrations in a heat capacity laser. Image data collected from a wavefront sensor are processed and used to control phase with a high-spatial-resolution deformable mirror. Our controller takes advantage of recent developments in low-cost, high-performance processor technology. A desktop-based computational engine and object-oriented software architecture replaces the high-cost rack-mount embedded computers of previous systems.

  16. A comparative study of the Unified System for Orbit Computation and the Flight Design System. [computer programs for mission planning tasks associated with space shuttle

    NASA Technical Reports Server (NTRS)

    Maag, W.

    1977-01-01

    The Flight Design System (FDS) and the Unified System for Orbit Computation (USOC) are compared and described in relation to mission planning for the shuttle transportation system (STS). The FDS is designed to meet the requirements of a standardized production tool and the USOC is designed for rapid generation of particular application programs. The main emphasis in USOC is put on adaptability to new types of missions. It is concluded that a software system having a USOC-like structure, adapted to the specific needs of MPAD, would be appropriate to support planning tasks in the area unique to STS missions.

  17. Water System Adaptation To Hydrological Changes: Module 8, Regulatory Framework Intersections: Past, Present, and Future

    EPA Science Inventory

    This course will introduce students to the fundamental principles of water system adaptation to hydrological changes, with emphasis on data analysis and interpretation, technical planning, and computational modeling. Starting with real-world scenarios and adaptation needs, the co...

  18. Architecture for an artificial immune system.

    PubMed

    Hofmeyr, S A; Forrest, S

    2000-01-01

    An artificial immune system (ARTIS) is described which incorporates many properties of natural immune systems, including diversity, distributed computation, error tolerance, dynamic learning and adaptation, and self-monitoring. ARTIS is a general framework for a distributed adaptive system and could, in principle, be applied to many domains. In this paper, ARTIS is applied to computer security in the form of a network intrusion detection system called LISYS. LISYS is described and shown to be effective at detecting intrusions, while maintaining low false positive rates. Finally, similarities and differences between ARTIS and Holland's classifier systems are discussed.

  19. A Weibull distribution accrual failure detector for cloud computing

    PubMed Central

    Wu, Zhibo; Wu, Jin; Zhao, Yao; Wen, Dongxin

    2017-01-01

    Failure detectors are used to build high availability distributed systems as the fundamental component. To meet the requirement of a complicated large-scale distributed system, accrual failure detectors that can adapt to multiple applications have been studied extensively. However, several implementations of accrual failure detectors do not adapt well to the cloud service environment. To solve this problem, a new accrual failure detector based on Weibull Distribution, called the Weibull Distribution Failure Detector, has been proposed specifically for cloud computing. It can adapt to the dynamic and unexpected network conditions in cloud computing. The performance of the Weibull Distribution Failure Detector is evaluated and compared based on public classical experiment data and cloud computing experiment data. The results show that the Weibull Distribution Failure Detector has better performance in terms of speed and accuracy in unstable scenarios, especially in cloud computing. PMID:28278229

  20. Adaptations in Electronic Structure Calculations in Heterogeneous Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talamudupula, Sai

    Modern quantum chemistry deals with electronic structure calculations of unprecedented complexity and accuracy. They demand full power of high-performance computing and must be in tune with the given architecture for superior e ciency. To make such applications resourceaware, it is desirable to enable their static and dynamic adaptations using some external software (middleware), which may monitor both system availability and application needs, rather than mix science with system-related calls inside the application. The present work investigates scienti c application interlinking with middleware based on the example of the computational chemistry package GAMESS and middleware NICAN. The existing synchronous model ismore » limited by the possible delays due to the middleware processing time under the sustainable runtime system conditions. Proposed asynchronous and hybrid models aim at overcoming this limitation. When linked with NICAN, the fragment molecular orbital (FMO) method is capable of adapting statically and dynamically its fragment scheduling policy based on the computing platform conditions. Signi cant execution time and throughput gains have been obtained due to such static adaptations when the compute nodes have very di erent core counts. Dynamic adaptations are based on the main memory availability at run time. NICAN prompts FMO to postpone scheduling certain fragments, if there is not enough memory for their immediate execution. Hence, FMO may be able to complete the calculations whereas without such adaptations it aborts.« less

  1. Validating the ACE Model for Evaluating Student Performance Using a Teaching-Learning Process Based on Computational Modeling Systems

    ERIC Educational Resources Information Center

    Louzada, Alexandre Neves; Elia, Marcos da Fonseca; Sampaio, Fábio Ferrentini; Vidal, Andre Luiz Pestana

    2014-01-01

    The aim of this work is to adapt and test, in a Brazilian public school, the ACE model proposed by Borkulo for evaluating student performance as a teaching-learning process based on computational modeling systems. The ACE model is based on different types of reasoning involving three dimensions. In addition to adapting the model and introducing…

  2. Incremental update of electrostatic interactions in adaptively restrained particle simulations.

    PubMed

    Edorh, Semeho Prince A; Redon, Stéphane

    2018-04-06

    The computation of long-range potentials is one of the demanding tasks in Molecular Dynamics. During the last decades, an inventive panoply of methods was developed to reduce the CPU time of this task. In this work, we propose a fast method dedicated to the computation of the electrostatic potential in adaptively restrained systems. We exploit the fact that, in such systems, only some particles are allowed to move at each timestep. We developed an incremental algorithm derived from a multigrid-based alternative to traditional Fourier-based methods. Our algorithm was implemented inside LAMMPS, a popular molecular dynamics simulation package. We evaluated the method on different systems. We showed that the new algorithm's computational complexity scales with the number of active particles in the simulated system, and is able to outperform the well-established Particle Particle Particle Mesh (P3M) for adaptively restrained simulations. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  3. The Feasibility of Adaptive Unstructured Computations On Petaflops Systems

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Oliker, Leonid; Heber, Gerd; Gao, Guang; Saini, Subhash (Technical Monitor)

    1999-01-01

    This viewgraph presentation covers the advantages of mesh adaptation, unstructured grids, and dynamic load balancing. It illustrates parallel adaptive communications, and explains PLUM (Parallel dynamic load balancing for adaptive unstructured meshes), and PSAW (Proper Self Avoiding Walks).

  4. Flexible binding simulation by a novel and improved version of virtual-system coupled adaptive umbrella sampling

    NASA Astrophysics Data System (ADS)

    Dasgupta, Bhaskar; Nakamura, Haruki; Higo, Junichi

    2016-10-01

    Virtual-system coupled adaptive umbrella sampling (VAUS) enhances sampling along a reaction coordinate by using a virtual degree of freedom. However, VAUS and regular adaptive umbrella sampling (AUS) methods are yet computationally expensive. To decrease the computational burden further, improvements of VAUS for all-atom explicit solvent simulation are presented here. The improvements include probability distribution calculation by a Markov approximation; parameterization of biasing forces by iterative polynomial fitting; and force scaling. These when applied to study Ala-pentapeptide dimerization in explicit solvent showed advantage over regular AUS. By using improved VAUS larger biological systems are amenable.

  5. Adaptive parallel logic networks

    NASA Technical Reports Server (NTRS)

    Martinez, Tony R.; Vidal, Jacques J.

    1988-01-01

    Adaptive, self-organizing concurrent systems (ASOCS) that combine self-organization with massive parallelism for such applications as adaptive logic devices, robotics, process control, and system malfunction management, are presently discussed. In ASOCS, an adaptive network composed of many simple computing elements operating in combinational and asynchronous fashion is used and problems are specified by presenting if-then rules to the system in the form of Boolean conjunctions. During data processing, which is a different operational phase from adaptation, the network acts as a parallel hardware circuit.

  6. A Bayesian framework for adaptive selection, calibration, and validation of coarse-grained models of atomistic systems

    NASA Astrophysics Data System (ADS)

    Farrell, Kathryn; Oden, J. Tinsley; Faghihi, Danial

    2015-08-01

    A general adaptive modeling algorithm for selection and validation of coarse-grained models of atomistic systems is presented. A Bayesian framework is developed to address uncertainties in parameters, data, and model selection. Algorithms for computing output sensitivities to parameter variances, model evidence and posterior model plausibilities for given data, and for computing what are referred to as Occam Categories in reference to a rough measure of model simplicity, make up components of the overall approach. Computational results are provided for representative applications.

  7. Design of a Computer-Adaptive Test to Measure English Literacy and Numeracy in the Singapore Workforce: Considerations, Benefits, and Implications

    ERIC Educational Resources Information Center

    Jacobsen, Jared; Ackermann, Richard; Eguez, Jane; Ganguli, Debalina; Rickard, Patricia; Taylor, Linda

    2011-01-01

    A computer adaptive test (CAT) is a delivery methodology that serves the larger goals of the assessment system in which it is embedded. A thorough analysis of the assessment system for which a CAT is being designed is critical to ensure that the delivery platform is appropriate and addresses all relevant complexities. As such, a CAT engine must be…

  8. Development of Intelligent Computer-Assisted Instruction Systems to Facilitate Reading Skills of Learning-Disabled Children

    DTIC Science & Technology

    1993-12-01

    Unclassified/Unlimited 13. ABSTRACT ~Maximum 2W0 worr*J The purpose of this thesis is to develop a high-level model to create seli"adapting software which...Department of Computer Science ABSTRACT The purpose of this thesis is to develop a high-level model to create self-adapting software which teaches learning...stimulating and demanding. The power of the system model described herein is that it can vary as needed by the individual student. The system will

  9. System integration of pattern recognition, adaptive aided, upper limb prostheses

    NASA Technical Reports Server (NTRS)

    Lyman, J.; Freedy, A.; Solomonow, M.

    1975-01-01

    The requirements for successful integration of a computer aided control system for multi degree of freedom artificial arms are discussed. Specifications are established for a system which shares control between a human amputee and an automatic control subsystem. The approach integrates the following subsystems: (1) myoelectric pattern recognition, (2) adaptive computer aiding; (3) local reflex control; (4) prosthetic sensory feedback; and (5) externally energized arm with the functions of prehension, wrist rotation, elbow extension and flexion and humeral rotation.

  10. Continuing challenges for computer-based neuropsychological tests.

    PubMed

    Letz, Richard

    2003-08-01

    A number of issues critical to the development of computer-based neuropsychological testing systems that remain continuing challenges to their widespread use in occupational and environmental health are reviewed. Several computer-based neuropsychological testing systems have been developed over the last 20 years, and they have contributed substantially to the study of neurologic effects of a number of environmental exposures. However, many are no longer supported and do not run on contemporary personal computer operating systems. Issues that are continuing challenges for development of computer-based neuropsychological tests in environmental and occupational health are discussed: (1) some current technological trends that generally make test development more difficult; (2) lack of availability of usable speech recognition of the type required for computer-based testing systems; (3) implementing computer-based procedures and tasks that are improvements over, not just adaptations of, their manually-administered predecessors; (4) implementing tests of a wider range of memory functions than the limited range now available; (5) paying more attention to motivational influences that affect the reliability and validity of computer-based measurements; and (6) increasing the usability of and audience for computer-based systems. Partial solutions to some of these challenges are offered. The challenges posed by current technological trends are substantial and generally beyond the control of testing system developers. Widespread acceptance of the "tablet PC" and implementation of accurate small vocabulary, discrete, speaker-independent speech recognition would enable revolutionary improvements to computer-based testing systems, particularly for testing memory functions not covered in existing systems. Dynamic, adaptive procedures, particularly ones based on item-response theory (IRT) and computerized-adaptive testing (CAT) methods, will be implemented in new tests that will be more efficient, reliable, and valid than existing test procedures. These additional developments, along with implementation of innovative reporting formats, are necessary for more widespread acceptance of the testing systems.

  11. 3D Viewer Platform of Cloud Clustering Management System: Google Map 3D

    NASA Astrophysics Data System (ADS)

    Choi, Sung-Ja; Lee, Gang-Soo

    The new management system of framework for cloud envrionemnt is needed by the platfrom of convergence according to computing environments of changes. A ISV and small business model is hard to adapt management system of platform which is offered from super business. This article suggest the clustering management system of cloud computing envirionments for ISV and a man of enterprise in small business model. It applies the 3D viewer adapt from map3D & earth of google. It is called 3DV_CCMS as expand the CCMS[1].

  12. Adaptive tight frame based medical image reconstruction: a proof-of-concept study for computed tomography

    NASA Astrophysics Data System (ADS)

    Zhou, Weifeng; Cai, Jian-Feng; Gao, Hao

    2013-12-01

    A popular approach for medical image reconstruction has been through the sparsity regularization, assuming the targeted image can be well approximated by sparse coefficients under some properly designed system. The wavelet tight frame is such a widely used system due to its capability for sparsely approximating piecewise-smooth functions, such as medical images. However, using a fixed system may not always be optimal for reconstructing a variety of diversified images. Recently, the method based on the adaptive over-complete dictionary that is specific to structures of the targeted images has demonstrated its superiority for image processing. This work is to develop the adaptive wavelet tight frame method image reconstruction. The proposed scheme first constructs the adaptive wavelet tight frame that is task specific, and then reconstructs the image of interest by solving an l1-regularized minimization problem using the constructed adaptive tight frame system. The proof-of-concept study is performed for computed tomography (CT), and the simulation results suggest that the adaptive tight frame method improves the reconstructed CT image quality from the traditional tight frame method.

  13. Efficient computation of the Grünwald-Letnikov fractional diffusion derivative using adaptive time step memory

    NASA Astrophysics Data System (ADS)

    MacDonald, Christopher L.; Bhattacharya, Nirupama; Sprouse, Brian P.; Silva, Gabriel A.

    2015-09-01

    Computing numerical solutions to fractional differential equations can be computationally intensive due to the effect of non-local derivatives in which all previous time points contribute to the current iteration. In general, numerical approaches that depend on truncating part of the system history while efficient, can suffer from high degrees of error and inaccuracy. Here we present an adaptive time step memory method for smooth functions applied to the Grünwald-Letnikov fractional diffusion derivative. This method is computationally efficient and results in smaller errors during numerical simulations. Sampled points along the system's history at progressively longer intervals are assumed to reflect the values of neighboring time points. By including progressively fewer points backward in time, a temporally 'weighted' history is computed that includes contributions from the entire past of the system, maintaining accuracy, but with fewer points actually calculated, greatly improving computational efficiency.

  14. Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems.

    PubMed

    Downie, J D; Goodman, J W

    1989-10-15

    A ground-based adaptive optics imaging telescope system attempts to improve image quality by measuring and correcting for atmospherically induced wavefront aberrations. The necessary control computations during each cycle will take a finite amount of time, which adds to the residual error variance since the atmosphere continues to change during that time. Thus an optical processor may be well-suited for this task. This paper investigates this possibility by studying the accuracy requirements in a general optical processor that will make it competitive with, or superior to, a conventional digital computer for adaptive optics use.

  15. Design for Run-Time Monitor on Cloud Computing

    NASA Astrophysics Data System (ADS)

    Kang, Mikyung; Kang, Dong-In; Yun, Mira; Park, Gyung-Leen; Lee, Junghoon

    Cloud computing is a new information technology trend that moves computing and data away from desktops and portable PCs into large data centers. The basic principle of cloud computing is to deliver applications as services over the Internet as well as infrastructure. A cloud is the type of a parallel and distributed system consisting of a collection of inter-connected and virtualized computers that are dynamically provisioned and presented as one or more unified computing resources. The large-scale distributed applications on a cloud require adaptive service-based software, which has the capability of monitoring the system status change, analyzing the monitored information, and adapting its service configuration while considering tradeoffs among multiple QoS features simultaneously. In this paper, we design Run-Time Monitor (RTM) which is a system software to monitor the application behavior at run-time, analyze the collected information, and optimize resources on cloud computing. RTM monitors application software through library instrumentation as well as underlying hardware through performance counter optimizing its computing configuration based on the analyzed data.

  16. COMET-AR User's Manual: COmputational MEchanics Testbed with Adaptive Refinement

    NASA Technical Reports Server (NTRS)

    Moas, E. (Editor)

    1997-01-01

    The COMET-AR User's Manual provides a reference manual for the Computational Structural Mechanics Testbed with Adaptive Refinement (COMET-AR), a software system developed jointly by Lockheed Palo Alto Research Laboratory and NASA Langley Research Center under contract NAS1-18444. The COMET-AR system is an extended version of an earlier finite element based structural analysis system called COMET, also developed by Lockheed and NASA. The primary extensions are the adaptive mesh refinement capabilities and a new "object-like" database interface that makes COMET-AR easier to extend further. This User's Manual provides a detailed description of the user interface to COMET-AR from the viewpoint of a structural analyst.

  17. Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems

    NASA Technical Reports Server (NTRS)

    Downie, John D.; Goodman, Joseph W.

    1989-01-01

    The accuracy requirements of optical processors in adaptive optics systems are determined by estimating the required accuracy in a general optical linear algebra processor (OLAP) that results in a smaller average residual aberration than that achieved with a conventional electronic digital processor with some specific computation speed. Special attention is given to an error analysis of a general OLAP with regard to the residual aberration that is created in an adaptive mirror system by the inaccuracies of the processor, and to the effect of computational speed of an electronic processor on the correction. Results are presented on the ability of an OLAP to compete with a digital processor in various situations.

  18. Algorithms for adaptive stochastic control for a class of linear systems

    NASA Technical Reports Server (NTRS)

    Toda, M.; Patel, R. V.

    1977-01-01

    Control of linear, discrete time, stochastic systems with unknown control gain parameters is discussed. Two suboptimal adaptive control schemes are derived: one is based on underestimating future control and the other is based on overestimating future control. Both schemes require little on-line computation and incorporate in their control laws some information on estimation errors. The performance of these laws is studied by Monte Carlo simulations on a computer. Two single input, third order systems are considered, one stable and the other unstable, and the performance of the two adaptive control schemes is compared with that of the scheme based on enforced certainty equivalence and the scheme where the control gain parameters are known.

  19. Understanding System of Systems Development Using an Agent-Based Wave Model

    DTIC Science & Technology

    2012-01-01

    Procedia Computer Science Procedia Computer Science 00 (2012) 000–000 www.elsevier.com/locate/ procedia Complex Adaptive Systems...integration of technical systems as well as cognitive and social processes, which alter system behavior [6]. As mentioned before * Corresponding...Prescribed by ANSI Std Z39-18 Acheson/ Procedia Computer Science 00 (2012) 000–000 most system architects assume that SoS participants exhibit

  20. Service Mediation and Negotiation Bootstrapping as First Achievements Towards Self-adaptable Cloud Services

    NASA Astrophysics Data System (ADS)

    Brandic, Ivona; Music, Dejan; Dustdar, Schahram

    Nowadays, novel computing paradigms as for example Cloud Computing are gaining more and more on importance. In case of Cloud Computing users pay for the usage of the computing power provided as a service. Beforehand they can negotiate specific functional and non-functional requirements relevant for the application execution. However, providing computing power as a service bears different research challenges. On one hand dynamic, versatile, and adaptable services are required, which can cope with system failures and environmental changes. On the other hand, human interaction with the system should be minimized. In this chapter we present the first results in establishing adaptable, versatile, and dynamic services considering negotiation bootstrapping and service mediation achieved in context of the Foundations of Self-Governing ICT Infrastructures (FoSII) project. We discuss novel meta-negotiation and SLA mapping solutions for Cloud services bridging the gap between current QoS models and Cloud middleware and representing important prerequisites for the establishment of autonomic Cloud services.

  1. Water System Adaptation To Hydrological Changes: Module 6, Synchronous Management of Storm Surge, Sea Level Rise, and Salt Water Intrusion: Case Study in Mattapoisett, Massachusetts, U.S.A.

    EPA Science Inventory

    This course will introduce students to the fundamental principles of water system adaptation to hydrological changes, with emphasis on data analysis and interpretation, technical planning, and computational modeling. Starting with real-world scenarios and adaptation needs, the co...

  2. Computer aided segmentation of kidneys using locally shape constrained deformable models on CT images

    NASA Astrophysics Data System (ADS)

    Erdt, Marius; Sakas, Georgios

    2010-03-01

    This work presents a novel approach for model based segmentation of the kidney in images acquired by Computed Tomography (CT). The developed computer aided segmentation system is expected to support computer aided diagnosis and operation planning. We have developed a deformable model based approach based on local shape constraints that prevents the model from deforming into neighboring structures while allowing the global shape to adapt freely to the data. Those local constraints are derived from the anatomical structure of the kidney and the presence and appearance of neighboring organs. The adaptation process is guided by a rule-based deformation logic in order to improve the robustness of the segmentation in areas of diffuse organ boundaries. Our work flow consists of two steps: 1.) a user guided positioning and 2.) an automatic model adaptation using affine and free form deformation in order to robustly extract the kidney. In cases which show pronounced pathologies, the system also offers real time mesh editing tools for a quick refinement of the segmentation result. Evaluation results based on 30 clinical cases using CT data sets show an average dice correlation coefficient of 93% compared to the ground truth. The results are therefore in most cases comparable to manual delineation. Computation times of the automatic adaptation step are lower than 6 seconds which makes the proposed system suitable for an application in clinical practice.

  3. Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems

    NASA Technical Reports Server (NTRS)

    Downie, John D.

    1990-01-01

    A ground-based adaptive optics imaging telescope system attempts to improve image quality by detecting and correcting for atmospherically induced wavefront aberrations. The required control computations during each cycle will take a finite amount of time. Longer time delays result in larger values of residual wavefront error variance since the atmosphere continues to change during that time. Thus an optical processor may be well-suited for this task. This paper presents a study of the accuracy requirements in a general optical processor that will make it competitive with, or superior to, a conventional digital computer for the adaptive optics application. An optimization of the adaptive optics correction algorithm with respect to an optical processor's degree of accuracy is also briefly discussed.

  4. Innovations: clinical computing: an audio computer-assisted self-interviewing system for research and screening in public mental health settings.

    PubMed

    Bertollo, David N; Alexander, Mary Jane; Shinn, Marybeth; Aybar, Jalila B

    2007-06-01

    This column describes the nonproprietary software Talker, used to adapt screening instruments to audio computer-assisted self-interviewing (ACASI) systems for low-literacy populations and other populations. Talker supports ease of programming, multiple languages, on-site scoring, and the ability to update a central research database. Key features include highly readable text display, audio presentation of questions and audio prompting of answers, and optional touch screen input. The scripting language for adapting instruments is briefly described as well as two studies in which respondents provided positive feedback on its use.

  5. 3-D Signal Processing in a Computer Vision System

    Treesearch

    Dongping Zhu; Richard W. Conners; Philip A. Araman

    1991-01-01

    This paper discusses the problem of 3-dimensional image filtering in a computer vision system that would locate and identify internal structural failure. In particular, a 2-dimensional adaptive filter proposed by Unser has been extended to 3-dimension. In conjunction with segmentation and labeling, the new filter has been used in the computer vision system to...

  6. PERSO: Towards an Adaptive e-Learning System

    ERIC Educational Resources Information Center

    Chorfi, Henda; Jemni, Mohamed

    2004-01-01

    In today's information technology society, members are increasingly required to be up to date on new technologies, particularly for computers, regardless of their background social situation. In this context, our aim is to design and develop an adaptive hypermedia e-learning system, called PERSO (PERSOnalizing e-learning system), where learners…

  7. Global Load Balancing with Parallel Mesh Adaption on Distributed-Memory Systems

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Oliker, Leonid; Sohn, Andrew

    1996-01-01

    Dynamic mesh adaption on unstructured grids is a powerful tool for efficiently computing unsteady problems to resolve solution features of interest. Unfortunately, this causes load imbalance among processors on a parallel machine. This paper describes the parallel implementation of a tetrahedral mesh adaption scheme and a new global load balancing method. A heuristic remapping algorithm is presented that assigns partitions to processors such that the redistribution cost is minimized. Results indicate that the parallel performance of the mesh adaption code depends on the nature of the adaption region and show a 35.5X speedup on 64 processors of an SP2 when 35% of the mesh is randomly adapted. For large-scale scientific computations, our load balancing strategy gives almost a sixfold reduction in solver execution times over non-balanced loads. Furthermore, our heuristic remapper yields processor assignments that are less than 3% off the optimal solutions but requires only 1% of the computational time.

  8. Adaptive control for eye-gaze input system

    NASA Astrophysics Data System (ADS)

    Zhao, Qijie; Tu, Dawei; Yin, Hairong

    2004-01-01

    The characteristics of the vision-based human-computer interaction system have been analyzed, and the practical application and its limited factors at present time have also been mentioned. The information process methods have been put forward. In order to make the communication flexible and spontaneous, the algorithms to adaptive control of user"s head movement has been designed, and the events-based methods and object-oriented computer language is used to develop the system software, by experiment testing, we found that under given condition, these methods and algorithms can meet the need of the HCI.

  9. ENFIN--A European network for integrative systems biology.

    PubMed

    Kahlem, Pascal; Clegg, Andrew; Reisinger, Florian; Xenarios, Ioannis; Hermjakob, Henning; Orengo, Christine; Birney, Ewan

    2009-11-01

    Integration of biological data of various types and the development of adapted bioinformatics tools represent critical objectives to enable research at the systems level. The European Network of Excellence ENFIN is engaged in developing an adapted infrastructure to connect databases, and platforms to enable both the generation of new bioinformatics tools and the experimental validation of computational predictions. With the aim of bridging the gap existing between standard wet laboratories and bioinformatics, the ENFIN Network runs integrative research projects to bring the latest computational techniques to bear directly on questions dedicated to systems biology in the wet laboratory environment. The Network maintains internally close collaboration between experimental and computational research, enabling a permanent cycling of experimental validation and improvement of computational prediction methods. The computational work includes the development of a database infrastructure (EnCORE), bioinformatics analysis methods and a novel platform for protein function analysis FuncNet.

  10. Adaptive modeling, identification, and control of dynamic structural systems. I. Theory

    USGS Publications Warehouse

    Safak, Erdal

    1989-01-01

    A concise review of the theory of adaptive modeling, identification, and control of dynamic structural systems based on discrete-time recordings is presented. Adaptive methods have four major advantages over the classical methods: (1) Removal of the noise from the signal is done over the whole frequency band; (2) time-varying characteristics of systems can be tracked; (3) systems with unknown characteristics can be controlled; and (4) a small segment of the data is needed during the computations. Included in the paper are the discrete-time representation of single-input single-output (SISO) systems, models for SISO systems with noise, the concept of stochastic approximation, recursive prediction error method (RPEM) for system identification, and the adaptive control. Guidelines for model selection and model validation and the computational aspects of the method are also discussed in the paper. The present paper is the first of two companion papers. The theory given in the paper is limited to that which is necessary to follow the examples for applications in structural dynamics presented in the second paper.

  11. ICC '86; Proceedings of the International Conference on Communications, Toronto, Canada, June 22-25, 1986, Conference Record. Volumes 1, 2, & 3

    NASA Astrophysics Data System (ADS)

    Papers are presented on ISDN, mobile radio systems and techniques for digital connectivity, centralized and distributed algorithms in computer networks, communications networks, quality assurance and impact on cost, adaptive filters in communications, the spread spectrum, signal processing, video communication techniques, and digital satellite services. Topics discussed include performance evaluation issues for integrated protocols, packet network operations, the computer network theory and multiple-access, microwave single sideband systems, switching architectures, fiber optic systems, wireless local communications, modulation, coding, and synchronization, remote switching, software quality, transmission, and expert systems in network operations. Consideration is given to wide area networks, image and speech processing, office communications application protocols, multimedia systems, customer-controlled network operations, digital radio systems, channel modeling and signal processing in digital communications, earth station/on-board modems, computer communications system performance evaluation, source encoding, compression, and quantization, and adaptive communications systems.

  12. Technical Adequacy of Growth Estimates from a Computer Adaptive Test: Implications for Progress Monitoring

    ERIC Educational Resources Information Center

    Van Norman, Ethan R.; Nelson, Peter M.; Parker, David C.

    2017-01-01

    Computer adaptive tests (CATs) hold promise to monitor student progress within multitiered systems of support. However, the relationship between how long and how often data are collected and the technical adequacy of growth estimates from CATs has not been explored. Given CAT administration times, it is important to identify optimal data…

  13. An on-line equivalent system identification scheme for adaptive control. Ph.D. Thesis - Stanford Univ.

    NASA Technical Reports Server (NTRS)

    Sliwa, S. M.

    1984-01-01

    A prime obstacle to the widespread use of adaptive control is the degradation of performance and possible instability resulting from the presence of unmodeled dynamics. The approach taken is to explicitly include the unstructured model uncertainty in the output error identification algorithm. The order of the compensator is successively increased by including identified modes. During this model building stage, heuristic rules are used to test for convergence prior to designing compensators. Additionally, the recursive identification algorithm as extended to multi-input, multi-output systems. Enhancements were also made to reduce the computational burden of an algorithm for obtaining minimal state space realizations from the inexact, multivariate transfer functions which result from the identification process. A number of potential adaptive control applications for this approach are illustrated using computer simulations. Results indicated that when speed of adaptation and plant stability are not critical, the proposed schemes converge to enhance system performance.

  14. Adaptation disrupts motion integration in the primate dorsal stream

    PubMed Central

    Patterson, Carlyn A.; Wissig, Stephanie C.; Kohn, Adam

    2014-01-01

    Summary Sensory systems adjust continuously to the environment. The effects of recent sensory experience—or adaptation—are typically assayed by recording in a relevant subcortical or cortical network. However, adaptation effects cannot be localized to a single, local network. Adjustments in one circuit or area will alter the input provided to others, with unclear consequences for computations implemented in the downstream circuit. Here we show that prolonged adaptation with drifting gratings, which alters responses in the early visual system, impedes the ability of area MT neurons to integrate motion signals in plaid stimuli. Perceptual experiments reveal a corresponding loss of plaid coherence. A simple computational model shows how the altered representation of motion signals in early cortex can derail integration in MT. Our results suggest that the effects of adaptation cascade through the visual system, derailing the downstream representation of distinct stimulus attributes. PMID:24507198

  15. EXSPRT: An Expert Systems Approach to Computer-Based Adaptive Testing.

    ERIC Educational Resources Information Center

    Frick, Theodore W.; And Others

    Expert systems can be used to aid decision making. A computerized adaptive test (CAT) is one kind of expert system, although it is not commonly recognized as such. A new approach, termed EXSPRT, was devised that combines expert systems reasoning and sequential probability ratio test stopping rules. EXSPRT-R uses random selection of test items,…

  16. Design and Development of a Run-Time Monitor for Multi-Core Architectures in Cloud Computing

    PubMed Central

    Kang, Mikyung; Kang, Dong-In; Crago, Stephen P.; Park, Gyung-Leen; Lee, Junghoon

    2011-01-01

    Cloud computing is a new information technology trend that moves computing and data away from desktops and portable PCs into large data centers. The basic principle of cloud computing is to deliver applications as services over the Internet as well as infrastructure. A cloud is a type of parallel and distributed system consisting of a collection of inter-connected and virtualized computers that are dynamically provisioned and presented as one or more unified computing resources. The large-scale distributed applications on a cloud require adaptive service-based software, which has the capability of monitoring system status changes, analyzing the monitored information, and adapting its service configuration while considering tradeoffs among multiple QoS features simultaneously. In this paper, we design and develop a Run-Time Monitor (RTM) which is a system software to monitor the application behavior at run-time, analyze the collected information, and optimize cloud computing resources for multi-core architectures. RTM monitors application software through library instrumentation as well as underlying hardware through a performance counter optimizing its computing configuration based on the analyzed data. PMID:22163811

  17. Design and development of a run-time monitor for multi-core architectures in cloud computing.

    PubMed

    Kang, Mikyung; Kang, Dong-In; Crago, Stephen P; Park, Gyung-Leen; Lee, Junghoon

    2011-01-01

    Cloud computing is a new information technology trend that moves computing and data away from desktops and portable PCs into large data centers. The basic principle of cloud computing is to deliver applications as services over the Internet as well as infrastructure. A cloud is a type of parallel and distributed system consisting of a collection of inter-connected and virtualized computers that are dynamically provisioned and presented as one or more unified computing resources. The large-scale distributed applications on a cloud require adaptive service-based software, which has the capability of monitoring system status changes, analyzing the monitored information, and adapting its service configuration while considering tradeoffs among multiple QoS features simultaneously. In this paper, we design and develop a Run-Time Monitor (RTM) which is a system software to monitor the application behavior at run-time, analyze the collected information, and optimize cloud computing resources for multi-core architectures. RTM monitors application software through library instrumentation as well as underlying hardware through a performance counter optimizing its computing configuration based on the analyzed data.

  18. Simple adaptive sparse representation based classification schemes for EEG based brain-computer interface applications.

    PubMed

    Shin, Younghak; Lee, Seungchan; Ahn, Minkyu; Cho, Hohyun; Jun, Sung Chan; Lee, Heung-No

    2015-11-01

    One of the main problems related to electroencephalogram (EEG) based brain-computer interface (BCI) systems is the non-stationarity of the underlying EEG signals. This results in the deterioration of the classification performance during experimental sessions. Therefore, adaptive classification techniques are required for EEG based BCI applications. In this paper, we propose simple adaptive sparse representation based classification (SRC) schemes. Supervised and unsupervised dictionary update techniques for new test data and a dictionary modification method by using the incoherence measure of the training data are investigated. The proposed methods are very simple and additional computation for the re-training of the classifier is not needed. The proposed adaptive SRC schemes are evaluated using two BCI experimental datasets. The proposed methods are assessed by comparing classification results with the conventional SRC and other adaptive classification methods. On the basis of the results, we find that the proposed adaptive schemes show relatively improved classification accuracy as compared to conventional methods without requiring additional computation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Adaptivity in Educational Systems for Language Learning: A Review

    ERIC Educational Resources Information Center

    Slavuj, Vanja; Meštrovic, Ana; Kovacic, Božidar

    2017-01-01

    Adaptive and intelligent instructional systems are used to deal with the issue of learning personalisation in contexts where human instructors are not immediately available, so their role is transferred entirely or in part onto the computer. Even though such systems are mostly developed for well-defined domains that have a rather straightforward…

  20. Adapting Instruction to Individual Learner Differences: A Research Paradigm for Computer-Based Instruction.

    ERIC Educational Resources Information Center

    Mills, Steven C.; Ragan, Tillman J.

    This paper examines a research paradigm that is particularly suited to experimentation-related computer-based instruction and integrated learning systems. The main assumption of the model is that one of the most powerful capabilities of computer-based instruction, and specifically of integrated learning systems, is the capacity to adapt…

  1. Computation of free energy profiles with parallel adaptive dynamics

    NASA Astrophysics Data System (ADS)

    Lelièvre, Tony; Rousset, Mathias; Stoltz, Gabriel

    2007-04-01

    We propose a formulation of an adaptive computation of free energy differences, in the adaptive biasing force or nonequilibrium metadynamics spirit, using conditional distributions of samples of configurations which evolve in time. This allows us to present a truly unifying framework for these methods, and to prove convergence results for certain classes of algorithms. From a numerical viewpoint, a parallel implementation of these methods is very natural, the replicas interacting through the reconstructed free energy. We demonstrate how to improve this parallel implementation by resorting to some selection mechanism on the replicas. This is illustrated by computations on a model system of conformational changes.

  2. Software For Monitoring A Computer Network

    NASA Technical Reports Server (NTRS)

    Lee, Young H.

    1992-01-01

    SNMAT is rule-based expert-system computer program designed to assist personnel in monitoring status of computer network and identifying defective computers, workstations, and other components of network. Also assists in training network operators. Network for SNMAT located at Space Flight Operations Center (SFOC) at NASA's Jet Propulsion Laboratory. Intended to serve as data-reduction system providing windows, menus, and graphs, enabling users to focus on relevant information. SNMAT expected to be adaptable to other computer networks; for example in management of repair, maintenance, and security, or in administration of planning systems, billing systems, or archives.

  3. A fast adaptive convex hull algorithm on two-dimensional processor arrays with a reconfigurable BUS system

    NASA Technical Reports Server (NTRS)

    Olariu, S.; Schwing, J.; Zhang, J.

    1991-01-01

    A bus system that can change dynamically to suit computational needs is referred to as reconfigurable. We present a fast adaptive convex hull algorithm on a two-dimensional processor array with a reconfigurable bus system (2-D PARBS, for short). Specifically, we show that computing the convex hull of a planar set of n points taken O(log n/log m) time on a 2-D PARBS of size mn x n with 3 less than or equal to m less than or equal to n. Our result implies that the convex hull of n points in the plane can be computed in O(1) time in a 2-D PARBS of size n(exp 1.5) x n.

  4. Identifying Students at Risk: An Examination of Computer-Adaptive Measures and Latent Class Growth Analysis

    ERIC Educational Resources Information Center

    Keller-Margulis, Milena; McQuillin, Samuel D.; Castañeda, Juan Javier; Ochs, Sarah; Jones, John H.

    2018-01-01

    Multitiered systems of support depend on screening technology to identify students at risk. The purpose of this study was to examine the use of a computer-adaptive test and latent class growth analysis (LCGA) to identify students at risk in reading with focus on the use of this methodology to characterize student performance in screening.…

  5. Computational 3-D Model of the Human Respiratory System

    EPA Science Inventory

    We are developing a comprehensive, morphologically-realistic computational model of the human respiratory system that can be used to study the inhalation, deposition, and clearance of contaminants, while being adaptable for age, race, gender, and health/disease status. The model ...

  6. CP/M: A Family of 8- and 16-Bit Computer Operating Systems.

    ERIC Educational Resources Information Center

    Kildall, Gary

    1982-01-01

    Traces the development of the computer CP/M (Control Program for Microcomputers) and MP/M (Multiprogramming Monitor Microcomputers) operating system by Gary Kildall of Digital Research Company. Discusses the adaptation of these operating systems to the newly emerging 16 and 32 bit microprocessors. (Author/LC)

  7. Higher-Order Adaptive Finite-Element Methods for Kohn-Sham Density Functional Theory

    DTIC Science & Technology

    2012-07-03

    systems studied, we observe diminishing returns in computational savings beyond the sixth-order for accuracies commensurate with chemi- cal accuracy...calculations. Further, we demonstrate the capability of the proposed approach to compute the electronic structure of materials systems contain- ing a...benchmark systems studied, we observe diminishing returns in computational savings beyond the sixth-order for accuracies commensurate with chemical accuracy

  8. An Adaptive Sensor Mining Framework for Pervasive Computing Applications

    NASA Astrophysics Data System (ADS)

    Rashidi, Parisa; Cook, Diane J.

    Analyzing sensor data in pervasive computing applications brings unique challenges to the KDD community. The challenge is heightened when the underlying data source is dynamic and the patterns change. We introduce a new adaptive mining framework that detects patterns in sensor data, and more importantly, adapts to the changes in the underlying model. In our framework, the frequent and periodic patterns of data are first discovered by the Frequent and Periodic Pattern Miner (FPPM) algorithm; and then any changes in the discovered patterns over the lifetime of the system are discovered by the Pattern Adaptation Miner (PAM) algorithm, in order to adapt to the changing environment. This framework also captures vital context information present in pervasive computing applications, such as the startup triggers and temporal information. In this paper, we present a description of our mining framework and validate the approach using data collected in the CASAS smart home testbed.

  9. Analyzing Pulse-Code Modulation On A Small Computer

    NASA Technical Reports Server (NTRS)

    Massey, David E.

    1988-01-01

    System for analysis pulse-code modulation (PCM) comprises personal computer, computer program, and peripheral interface adapter on circuit board that plugs into expansion bus of computer. Functions essentially as "snapshot" PCM decommutator, which accepts and stores thousands of frames of PCM data, sifts through them repeatedly to process according to routines specified by operator. Enables faster testing and involves less equipment than older testing systems.

  10. Undecidability and Irreducibility Conditions for Open-Ended Evolution and Emergence.

    PubMed

    Hernández-Orozco, Santiago; Hernández-Quiroz, Francisco; Zenil, Hector

    2018-01-01

    Is undecidability a requirement for open-ended evolution (OEE)? Using methods derived from algorithmic complexity theory, we propose robust computational definitions of open-ended evolution and the adaptability of computable dynamical systems. Within this framework, we show that decidability imposes absolute limits on the stable growth of complexity in computable dynamical systems. Conversely, systems that exhibit (strong) open-ended evolution must be undecidable, establishing undecidability as a requirement for such systems. Complexity is assessed in terms of three measures: sophistication, coarse sophistication, and busy beaver logical depth. These three complexity measures assign low complexity values to random (incompressible) objects. As time grows, the stated complexity measures allow for the existence of complex states during the evolution of a computable dynamical system. We show, however, that finding these states involves undecidable computations. We conjecture that for similar complexity measures that assign low complexity values, decidability imposes comparable limits on the stable growth of complexity, and that such behavior is necessary for nontrivial evolutionary systems. We show that the undecidability of adapted states imposes novel and unpredictable behavior on the individuals or populations being modeled. Such behavior is irreducible. Finally, we offer an example of a system, first proposed by Chaitin, that exhibits strong OEE.

  11. Towards feasible and effective predictive wavefront control for adaptive optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poyneer, L A; Veran, J

    We have recently proposed Predictive Fourier Control, a computationally efficient and adaptive algorithm for predictive wavefront control that assumes frozen flow turbulence. We summarize refinements to the state-space model that allow operation with arbitrary computational delays and reduce the computational cost of solving for new control. We present initial atmospheric characterization using observations with Gemini North's Altair AO system. These observations, taken over 1 year, indicate that frozen flow is exists, contains substantial power, and is strongly detected 94% of the time.

  12. Particle systems for adaptive, isotropic meshing of CAD models

    PubMed Central

    Levine, Joshua A.; Whitaker, Ross T.

    2012-01-01

    We present a particle-based approach for generating adaptive triangular surface and tetrahedral volume meshes from computer-aided design models. Input shapes are treated as a collection of smooth, parametric surface patches that can meet non-smoothly on boundaries. Our approach uses a hierarchical sampling scheme that places particles on features in order of increasing dimensionality. These particles reach a good distribution by minimizing an energy computed in 3D world space, with movements occurring in the parametric space of each surface patch. Rather than using a pre-computed measure of feature size, our system automatically adapts to both curvature as well as a notion of topological separation. It also enforces a measure of smoothness on these constraints to construct a sizing field that acts as a proxy to piecewise-smooth feature size. We evaluate our technique with comparisons against other popular triangular meshing techniques for this domain. PMID:23162181

  13. The Transfer of Abstract Principles Governing Complex Adaptive Systems

    ERIC Educational Resources Information Center

    Goldstone, Robert L.; Sakamoto, Yasuaki

    2003-01-01

    Four experiments explored participants' understanding of the abstract principles governing computer simulations of complex adaptive systems. Experiments 1, 2, and 3 showed better transfer of abstract principles across simulations that were relatively dissimilar, and that this effect was due to participants who performed relatively poorly on the…

  14. Adaptive Control Of Remote Manipulator

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun

    1989-01-01

    Robotic control system causes remote manipulator to follow closely reference trajectory in Cartesian reference frame in work space, without resort to computationally intensive mathematical model of robot dynamics and without knowledge of robot and load parameters. System, derived from linear multivariable theory, uses relatively simple feedforward and feedback controllers with model-reference adaptive control.

  15. Global Load Balancing with Parallel Mesh Adaption on Distributed-Memory Systems

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Oliker, Leonid; Sohn, Andrew

    1996-01-01

    Dynamic mesh adaptation on unstructured grids is a powerful tool for efficiently computing unsteady problems to resolve solution features of interest. Unfortunately, this causes load inbalances among processors on a parallel machine. This paper described the parallel implementation of a tetrahedral mesh adaption scheme and a new global load balancing method. A heuristic remapping algorithm is presented that assigns partitions to processors such that the redistribution coast is minimized. Results indicate that the parallel performance of the mesh adaption code depends on the nature of the adaption region and show a 35.5X speedup on 64 processors of an SP2 when 35 percent of the mesh is randomly adapted. For large scale scientific computations, our load balancing strategy gives an almost sixfold reduction in solver execution times over non-balanced loads. Furthermore, our heuristic remappier yields processor assignments that are less than 3 percent of the optimal solutions, but requires only 1 percent of the computational time.

  16. Psychological Issues in Online Adaptive Task Allocation

    NASA Technical Reports Server (NTRS)

    Morris, N. M.; Rouse, W. B.; Ward, S. L.; Frey, P. R.

    1984-01-01

    Adaptive aiding is an idea that offers potential for improvement over many current approaches to aiding in human-computer systems. The expected return of tailoring the system to fit the user could be in the form of improved system performance and/or increased user satisfaction. Issues such as the manner in which information is shared between human and computer, the appropriate division of labor between them, and the level of autonomy of the aid are explored. A simulated visual search task was developed. Subjects are required to identify targets in a moving display while performing a compensatory sub-critical tracking task. By manipulating characteristics of the situation such as imposed task-related workload and effort required to communicate with the computer, it is possible to create conditions in which interaction with the computer would be more or less desirable. The results of preliminary research using this experimental scenario are presented, and future directions for this research effort are discussed.

  17. Using adaptive grid in modeling rocket nozzle flow

    NASA Technical Reports Server (NTRS)

    Chow, Alan S.; Jin, Kang-Ren

    1992-01-01

    The mechanical behavior of a rocket motor internal flow field results in a system of nonlinear partial differential equations which cannot be solved analytically. However, this system of equations called the Navier-Stokes equations can be solved numerically. The accuracy and the convergence of the solution of the system of equations will depend largely on how precisely the sharp gradients in the domain of interest can be resolved. With the advances in computer technology, more sophisticated algorithms are available to improve the accuracy and convergence of the solutions. An adaptive grid generation is one of the schemes which can be incorporated into the algorithm to enhance the capability of numerical modeling. It is equivalent to putting intelligence into the algorithm to optimize the use of computer memory. With this scheme, the finite difference domain of the flow field called the grid does neither have to be very fine nor strategically placed at the location of sharp gradients. The grid is self adapting as the solution evolves. This scheme significantly improves the methodology of solving flow problems in rocket nozzles by taking the refinement part of grid generation out of the hands of computational fluid dynamics (CFD) specialists and place it into the computer algorithm itself.

  18. A novel composite adaptive flap controller design by a high-efficient modified differential evolution identification approach.

    PubMed

    Li, Nailu; Mu, Anle; Yang, Xiyun; Magar, Kaman T; Liu, Chao

    2018-05-01

    The optimal tuning of adaptive flap controller can improve adaptive flap control performance on uncertain operating environments, but the optimization process is usually time-consuming and it is difficult to design proper optimal tuning strategy for the flap control system (FCS). To solve this problem, a novel adaptive flap controller is designed based on a high-efficient differential evolution (DE) identification technique and composite adaptive internal model control (CAIMC) strategy. The optimal tuning can be easily obtained by DE identified inverse of the FCS via CAIMC structure. To achieve fast tuning, a high-efficient modified adaptive DE algorithm is proposed with new mutant operator and varying range adaptive mechanism for the FCS identification. A tradeoff between optimized adaptive flap control and low computation cost is successfully achieved by proposed controller. Simulation results show the robustness of proposed method and its superiority to conventional adaptive IMC (AIMC) flap controller and the CAIMC flap controllers using other DE algorithms on various uncertain operating conditions. The high computation efficiency of proposed controller is also verified based on the computation time on those operating cases. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Documentation and User's Guide to the Computer Management System for the Clinical Teacher Curriculum.

    ERIC Educational Resources Information Center

    Dia, Ahmed

    The guide to the computer management system for individualized instructional strategy associated with the clinical teacher curriculum at Florida State University is presented. The system is described in terms of 27 Cobol programs and the Multiple Access and Retrieval System (MARS VI), which were adapted to requirements of the clinical teacher…

  20. Designing Adaptive Instruction for Teams: A Meta-Analysis

    ERIC Educational Resources Information Center

    Sottilare, Robert A.; Shawn Burke, C.; Salas, Eduardo; Sinatra, Anne M.; Johnston, Joan H.; Gilbert, Stephen B.

    2018-01-01

    The goal of this research was the development of a practical architecture for the computer-based tutoring of teams. This article examines the relationship of team behaviors as antecedents to successful team performance and learning during adaptive instruction guided by Intelligent Tutoring Systems (ITSs). Adaptive instruction is a training or…

  1. Application of Soft Computing in Coherent Communications Phase Synchronization

    NASA Technical Reports Server (NTRS)

    Drake, Jeffrey T.; Prasad, Nadipuram R.

    2000-01-01

    The use of soft computing techniques in coherent communications phase synchronization provides an alternative to analytical or hard computing methods. This paper discusses a novel use of Adaptive Neuro-Fuzzy Inference Systems (ANFIS) for phase synchronization in coherent communications systems utilizing Multiple Phase Shift Keying (MPSK) modulation. A brief overview of the M-PSK digital communications bandpass modulation technique is presented and it's requisite need for phase synchronization is discussed. We briefly describe the hybrid platform developed by Jang that incorporates fuzzy/neural structures namely the, Adaptive Neuro-Fuzzy Interference Systems (ANFIS). We then discuss application of ANFIS to phase estimation for M-PSK. The modeling of both explicit, and implicit phase estimation schemes for M-PSK symbols with unknown structure are discussed. Performance results from simulation of the above scheme is presented.

  2. Information management system study results. Volume 2: IMS study results appendixes

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Computer systems program specifications are presented for the modular space station information management system. These are the computer program contract end item, data bus system, data bus breadboard, and display interface adapter specifications. The performance, design, tests, and qualification requirements are established for the implementation of the information management system. For Vol. 1, see N72-19972.

  3. Information Science Research: The Search for the Nature of Information.

    ERIC Educational Resources Information Center

    Kochen, Manfred

    1984-01-01

    High-level scientific research in the information sciences is illustrated by sampling of recent discoveries involving adaptive information processing strategies, computer and information systems, centroid scaling, economic growth of computer and communication industries, and information flow in biological systems. Relationship of information…

  4. CAGI: Computer Aided Grid Interface. A work in progress

    NASA Technical Reports Server (NTRS)

    Soni, Bharat K.; Yu, Tzu-Yi; Vaughn, David

    1992-01-01

    Progress realized in the development of a Computer Aided Grid Interface (CAGI) software system in integrating CAD/CAM geometric system output and/or Interactive Graphics Exchange Standard (IGES) files, geometry manipulations associated with grid generation, and robust grid generation methodologies is presented. CAGI is being developed in a modular fashion and will offer fast, efficient and economical response to geometry/grid preparation, allowing the ability to upgrade basic geometry in a step-by-step fashion interactively and under permanent visual control along with minimizing the differences between the actual hardware surface descriptions and corresponding numerical analog. The computer code GENIE is used as a basis. The Non-Uniform Rational B-Splines (NURBS) representation of sculptured surfaces is utilized for surface grid redistribution. The computer aided analysis system, PATRAN, is adapted as a CAD/CAM system. The progress realized in NURBS surface grid generation, the development of IGES transformer, and geometry adaption using PATRAN will be presented along with their applicability to grid generation associated with rocket propulsion applications.

  5. DualTrust: A Trust Management Model for Swarm-Based Autonomic Computing Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maiden, Wendy M.

    Trust management techniques must be adapted to the unique needs of the application architectures and problem domains to which they are applied. For autonomic computing systems that utilize mobile agents and ant colony algorithms for their sensor layer, certain characteristics of the mobile agent ant swarm -- their lightweight, ephemeral nature and indirect communication -- make this adaptation especially challenging. This thesis looks at the trust issues and opportunities in swarm-based autonomic computing systems and finds that by monitoring the trustworthiness of the autonomic managers rather than the swarming sensors, the trust management problem becomes much more scalable and stillmore » serves to protect the swarm. After analyzing the applicability of trust management research as it has been applied to architectures with similar characteristics, this thesis specifies the required characteristics for trust management mechanisms used to monitor the trustworthiness of entities in a swarm-based autonomic computing system and describes a trust model that meets these requirements.« less

  6. Am I Extravert or Introvert? Considering the Personality Effect toward e-Learning System

    ERIC Educational Resources Information Center

    Al-Dujaily, Amal; Kim, Jieun; Ryu, Hokyoung

    2013-01-01

    A concern of computer-based learning system design is how to accommodate learners' individual differences during learning activities. Previous research suggests that adaptive e-learning systems can effectively address such individual differences and, consequently, they enable more directed tutoring via computer-assisted instruction. In this paper,…

  7. Adopting best practices: "Agility" moves from software development to healthcare project management.

    PubMed

    Kitzmiller, Rebecca; Hunt, Eleanor; Sproat, Sara Breckenridge

    2006-01-01

    It is time for a change in mindset in how nurses operationalize system implementations and manage projects. Computers and systems have evolved over time from unwieldy mysterious machines of the past to ubiquitous computer use in every aspect of daily lives and work sites. Yet, disconcertingly, the process used to implement these systems has not evolved. Technology implementation does not need to be a struggle. It is time to adapt traditional plan-driven implementation methods to incorporate agile techniques. Agility is a concept borrowed from software development and is presented here because it encourages flexibility, adaptation, and continuous learning as part of the implementation process. Agility values communication and harnesses change to an advantage, which facilitates the natural evolution of an adaptable implementation process. Specific examples of agility in an implementation are described, and plan-driven implementation stages are adapted to incorporate relevant agile techniques. This comparison demonstrates how an agile approach enhances traditional implementation techniques to meet the demands of today's complex healthcare environments.

  8. Microprogramming Handbook. Second Edition.

    ERIC Educational Resources Information Center

    Microdata Corp., Santa Ana, CA.

    Instead of instructions residing in the main memory as in a fixed instruction computer, a micro-programable computer has a separete read-only memory which is alterable so that the system can be efficiently adapted to the application at hand. Microprogramable computers are faster than fixed instruction computers for several reasons: instruction…

  9. Agile Development of Various Computational Power Adaptive Web-Based Mobile-Learning Software Using Mobile Cloud Computing

    ERIC Educational Resources Information Center

    Zadahmad, Manouchehr; Yousefzadehfard, Parisa

    2016-01-01

    Mobile Cloud Computing (MCC) aims to improve all mobile applications such as m-learning systems. This study presents an innovative method to use web technology and software engineering's best practices to provide m-learning functionalities hosted in a MCC-learning system as service. Components hosted by MCC are used to empower developers to create…

  10. ADAPT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, John; Jankovsky, Zachary; Metzroth, Kyle G

    2018-04-04

    The purpose of the ADAPT code is to generate Dynamic Event Trees (DET) using a user specified set of simulators. ADAPT can utilize any simulation tool which meets a minimal set of requirements. ADAPT is based on the concept of DET which uses explicit modeling of the deterministic dynamic processes that take place during a nuclear reactor plant system (or other complex system) evolution along with stochastic modeling. When DET are used to model various aspects of Probabilistic Risk Assessment (PRA), all accident progression scenarios starting from an initiating event are considered simultaneously. The DET branching occurs at user specifiedmore » times and/or when an action is required by the system and/or the operator. These outcomes then decide how the dynamic system variables will evolve in time for each DET branch. Since two different outcomes at a DET branching may lead to completely different paths for system evolution, the next branching for these paths may occur not only at separate times, but can be based on different branching criteria. The computational infrastructure allows for flexibility in ADAPT to link with different system simulation codes, parallel processing of the scenarios under consideration, on-line scenario management (initiation as well as termination), analysis of results, and user friendly graphical capabilities. The ADAPT system is designed for a distributed computing environment; the scheduler can track multiple concurrent branches simultaneously. The scheduler is modularized so that the DET branching strategy can be modified (e.g. biasing towards the worst-case scenario/event). Independent database systems store data from the simulation tasks and the DET structure so that the event tree can be constructed and analyzed later. ADAPT is provided with a user-friendly client which can easily sort through and display the results of an experiment, precluding the need for the user to manually inspect individual simulator runs.« less

  11. Adaptive function allocation reduces performance costs of static automation

    NASA Technical Reports Server (NTRS)

    Parasuraman, Raja; Mouloua, Mustapha; Molloy, Robert; Hilburn, Brian

    1993-01-01

    Adaptive automation offers the option of flexible function allocation between the pilot and on-board computer systems. One of the important claims for the superiority of adaptive over static automation is that such systems do not suffer from some of the drawbacks associated with conventional function allocation. Several experiments designed to test this claim are reported in this article. The efficacy of adaptive function allocation was examined using a laboratory flight-simulation task involving multiple functions of tracking, fuel-management, and systems monitoring. The results show that monitoring inefficiency represents one of the performance costs of static automation. Adaptive function allocation can reduce the performance cost associated with long-term static automation.

  12. Adaptive Instrument Module: Space Instrument Controller "Brain" through Programmable Logic Devices

    NASA Technical Reports Server (NTRS)

    Darrin, Ann Garrison; Conde, Richard; Chern, Bobbie; Luers, Phil; Jurczyk, Steve; Mills, Carl; Day, John H. (Technical Monitor)

    2001-01-01

    The Adaptive Instrument Module (AIM) will be the first true demonstration of reconfigurable computing with field-programmable gate arrays (FPGAs) in space, enabling the 'brain' of the system to evolve or adapt to changing requirements. In partnership with NASA Goddard Space Flight Center and the Australian Cooperative Research Centre for Satellite Systems (CRC-SS), APL has built the flight version to be flown on the Australian university-class satellite FEDSAT. The AIM provides satellites the flexibility to adapt to changing mission requirements by reconfiguring standardized processing hardware rather than incurring the large costs associated with new builds. This ability to reconfigure the processing in response to changing mission needs leads to true evolveable computing, wherein the instrument 'brain' can learn from new science data in order to perform state-of-the-art data processing. The development of the AIM is significant in its enormous potential to reduce total life-cycle costs for future space exploration missions. The advent of RAM-based FPGAs whose configuration can be changed at any time has enabled the development of the AIM for processing tasks that could not be performed in software. The use of the AIM enables reconfiguration of the FPGA circuitry while the spacecraft is in flight, with many accompanying advantages. The AIM demonstrates the practicalities of using reconfigurable computing hardware devices by conducting a series of designed experiments. These include the demonstration of implementing data compression, data filtering, and communication message processing and inter-experiment data computation. The second generation is the Adaptive Processing Template (ADAPT) which is further described in this paper. The next step forward is to make the hardware itself adaptable and the ADAPT pursues this challenge by developing a reconfigurable module that will be capable of functioning efficiently in various applications. ADAPT will take advantage of radiation tolerant RAM-based field programmable gate array (FPGA) technology to develop a reconfigurable processor that combines the flexibility of a general purpose processor running software with the performance of application specific processing hardware for a variety of high performance computing applications.

  13. An Automated Slide Classification System at Georgia Tech

    ERIC Educational Resources Information Center

    LoPresti, Maryellen

    1973-01-01

    The Georgia Tech Architecture Library slide collection is being revolutionized by adapting the Santa Cruz Slide Classification System. The slide catalog record is being transferred inexpensively to tapes and updated by the computer. Computer programs print out indexes in any of fifteen different sort fields. (Author)

  14. DANoC: An Efficient Algorithm and Hardware Codesign of Deep Neural Networks on Chip.

    PubMed

    Zhou, Xichuan; Li, Shengli; Tang, Fang; Hu, Shengdong; Lin, Zhi; Zhang, Lei

    2017-07-18

    Deep neural networks (NNs) are the state-of-the-art models for understanding the content of images and videos. However, implementing deep NNs in embedded systems is a challenging task, e.g., a typical deep belief network could exhaust gigabytes of memory and result in bandwidth and computational bottlenecks. To address this challenge, this paper presents an algorithm and hardware codesign for efficient deep neural computation. A hardware-oriented deep learning algorithm, named the deep adaptive network, is proposed to explore the sparsity of neural connections. By adaptively removing the majority of neural connections and robustly representing the reserved connections using binary integers, the proposed algorithm could save up to 99.9% memory utility and computational resources without undermining classification accuracy. An efficient sparse-mapping-memory-based hardware architecture is proposed to fully take advantage of the algorithmic optimization. Different from traditional Von Neumann architecture, the deep-adaptive network on chip (DANoC) brings communication and computation in close proximity to avoid power-hungry parameter transfers between on-board memory and on-chip computational units. Experiments over different image classification benchmarks show that the DANoC system achieves competitively high accuracy and efficiency comparing with the state-of-the-art approaches.

  15. Bacterial computing: a form of natural computing and its applications.

    PubMed

    Lahoz-Beltra, Rafael; Navarro, Jorge; Marijuán, Pedro C

    2014-01-01

    The capability to establish adaptive relationships with the environment is an essential characteristic of living cells. Both bacterial computing and bacterial intelligence are two general traits manifested along adaptive behaviors that respond to surrounding environmental conditions. These two traits have generated a variety of theoretical and applied approaches. Since the different systems of bacterial signaling and the different ways of genetic change are better known and more carefully explored, the whole adaptive possibilities of bacteria may be studied under new angles. For instance, there appear instances of molecular "learning" along the mechanisms of evolution. More in concrete, and looking specifically at the time dimension, the bacterial mechanisms of learning and evolution appear as two different and related mechanisms for adaptation to the environment; in somatic time the former and in evolutionary time the latter. In the present chapter it will be reviewed the possible application of both kinds of mechanisms to prokaryotic molecular computing schemes as well as to the solution of real world problems.

  16. Bacterial computing: a form of natural computing and its applications

    PubMed Central

    Lahoz-Beltra, Rafael; Navarro, Jorge; Marijuán, Pedro C.

    2014-01-01

    The capability to establish adaptive relationships with the environment is an essential characteristic of living cells. Both bacterial computing and bacterial intelligence are two general traits manifested along adaptive behaviors that respond to surrounding environmental conditions. These two traits have generated a variety of theoretical and applied approaches. Since the different systems of bacterial signaling and the different ways of genetic change are better known and more carefully explored, the whole adaptive possibilities of bacteria may be studied under new angles. For instance, there appear instances of molecular “learning” along the mechanisms of evolution. More in concrete, and looking specifically at the time dimension, the bacterial mechanisms of learning and evolution appear as two different and related mechanisms for adaptation to the environment; in somatic time the former and in evolutionary time the latter. In the present chapter it will be reviewed the possible application of both kinds of mechanisms to prokaryotic molecular computing schemes as well as to the solution of real world problems. PMID:24723912

  17. Adaptable radiation monitoring system and method

    DOEpatents

    Archer, Daniel E [Livermore, CA; Beauchamp, Brock R [San Ramon, CA; Mauger, G Joseph [Livermore, CA; Nelson, Karl E [Livermore, CA; Mercer, Michael B [Manteca, CA; Pletcher, David C [Sacramento, CA; Riot, Vincent J [Berkeley, CA; Schek, James L [Tracy, CA; Knapp, David A [Livermore, CA

    2006-06-20

    A portable radioactive-material detection system capable of detecting radioactive sources moving at high speeds. The system has at least one radiation detector capable of detecting gamma-radiation and coupled to an MCA capable of collecting spectral data in very small time bins of less than about 150 msec. A computer processor is connected to the MCA for determining from the spectral data if a triggering event has occurred. Spectral data is stored on a data storage device, and a power source supplies power to the detection system. Various configurations of the detection system may be adaptably arranged for various radiation detection scenarios. In a preferred embodiment, the computer processor operates as a server which receives spectral data from other networked detection systems, and communicates the collected data to a central data reporting system.

  18. Adaptive control and noise suppression by a variable-gain gradient algorithm

    NASA Technical Reports Server (NTRS)

    Merhav, S. J.; Mehta, R. S.

    1987-01-01

    An adaptive control system based on normalized LMS filters is investigated. The finite impulse response of the nonparametric controller is adaptively estimated using a given reference model. Specifically, the following issues are addressed: The stability of the closed loop system is analyzed and heuristically established. Next, the adaptation process is studied for piecewise constant plant parameters. It is shown that by introducing a variable-gain in the gradient algorithm, a substantial reduction in the LMS adaptation rate can be achieved. Finally, process noise at the plant output generally causes a biased estimate of the controller. By introducing a noise suppression scheme, this bias can be substantially reduced and the response of the adapted system becomes very close to that of the reference model. Extensive computer simulations validate these and demonstrate assertions that the system can rapidly adapt to random jumps in plant parameters.

  19. Digital and biological computing in organizations.

    PubMed

    Kampfner, Roberto R

    2002-01-01

    Michael Conrad unveiled many of the fundamental characteristics of biological computing. Underlying the behavioral variability and the adaptability of biological systems are these characteristics, including the ability of biological information processing to exploit quantum features at the atomic level, the powerful 3-D pattern recognition capabilities of macromolecules, the computational efficiency, and the ability to support biological function. Among many other things, Conrad formalized and explicated the underlying principles of biological adaptability, characterized the differences between biological and digital computing in terms of a fundamental tradeoff between adaptability and programmability of information processing, and discussed the challenges of interfacing digital computers and human society. This paper is about the encounter of biological and digital computing. The focus is on the nature of the biological information processing infrastructure of organizations and how it can be extended effectively with digital computing. In order to achieve this goal effectively, however, we need to embed properly digital computing into the information processing aspects of human and social behavior and intelligence, which are fundamentally biological. Conrad's legacy provides a firm, strong, and inspiring foundation for this endeavor.

  20. Performance of a Block Structured, Hierarchical Adaptive MeshRefinement Code on the 64k Node IBM BlueGene/L Computer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenough, Jeffrey A.; de Supinski, Bronis R.; Yates, Robert K.

    2005-04-25

    We describe the performance of the block-structured Adaptive Mesh Refinement (AMR) code Raptor on the 32k node IBM BlueGene/L computer. This machine represents a significant step forward towards petascale computing. As such, it presents Raptor with many challenges for utilizing the hardware efficiently. In terms of performance, Raptor shows excellent weak and strong scaling when running in single level mode (no adaptivity). Hardware performance monitors show Raptor achieves an aggregate performance of 3:0 Tflops in the main integration kernel on the 32k system. Results from preliminary AMR runs on a prototype astrophysical problem demonstrate the efficiency of the current softwaremore » when running at large scale. The BG/L system is enabling a physics problem to be considered that represents a factor of 64 increase in overall size compared to the largest ones of this type computed to date. Finally, we provide a description of the development work currently underway to address our inefficiencies.« less

  1. Naval Open Architecture Machinery Control Systems for Next Generation Integrated Power Systems

    DTIC Science & Technology

    2012-05-01

    PORTABLE) OS / RTOS ADAPTATION MIDDLEWARE (FOR OS PORTABILITY) MACHINERY CONTROLLER FRAMEWORK MACHINERY CONTROL SYSTEM SERVICES POWER CONTROL SYSTEM...SERVICES SHIP SYSTEM SERVICES TTY 0 TTY N … OPERATING SYSTEM ( OS / RTOS ) COMPUTER HARDWARE UDP IP TCP RAW DEV 0 DEV N … POWER MANAGEMENT CONTROLLER...operating systems (DOS, Windows, Linux, OS /2, QNX, SCO Unix ...) COMPUTERS: ISA compatible motherboards, workstations and portables (Compaq, Dell

  2. Click! 101 Computer Activities and Art Projects for Kids and Grown-Ups.

    ERIC Educational Resources Information Center

    Bundesen, Lynne; And Others

    This book presents 101 computer activities and projects geared toward children and adults. The activities for both personal computers (PCs) and Macintosh were developed on the Windows 95 computer operating system, but they are adaptable to non-Windows personal computers as well. The book is divided into two parts. The first part provides an…

  3. Auto-Generated Semantic Processing Services

    NASA Technical Reports Server (NTRS)

    Davis, Rodney; Hupf, Greg

    2009-01-01

    Auto-Generated Semantic Processing (AGSP) Services is a suite of software tools for automated generation of other computer programs, denoted cross-platform semantic adapters, that support interoperability of computer-based communication systems that utilize a variety of both new and legacy communication software running in a variety of operating- system/computer-hardware combinations. AGSP has numerous potential uses in military, space-exploration, and other government applications as well as in commercial telecommunications. The cross-platform semantic adapters take advantage of common features of computer- based communication systems to enforce semantics, messaging protocols, and standards of processing of streams of binary data to ensure integrity of data and consistency of meaning among interoperating systems. The auto-generation aspect of AGSP Services reduces development time and effort by emphasizing specification and minimizing implementation: In effect, the design, building, and debugging of software for effecting conversions among complex communication protocols, custom device mappings, and unique data-manipulation algorithms is replaced with metadata specifications that map to an abstract platform-independent communications model. AGSP Services is modular and has been shown to be easily integrable into new and legacy NASA flight and ground communication systems.

  4. Daubechies wavelets for linear scaling density functional theory.

    PubMed

    Mohr, Stephan; Ratcliff, Laura E; Boulanger, Paul; Genovese, Luigi; Caliste, Damien; Deutsch, Thierry; Goedecker, Stefan

    2014-05-28

    We demonstrate that Daubechies wavelets can be used to construct a minimal set of optimized localized adaptively contracted basis functions in which the Kohn-Sham orbitals can be represented with an arbitrarily high, controllable precision. Ground state energies and the forces acting on the ions can be calculated in this basis with the same accuracy as if they were calculated directly in a Daubechies wavelets basis, provided that the amplitude of these adaptively contracted basis functions is sufficiently small on the surface of the localization region, which is guaranteed by the optimization procedure described in this work. This approach reduces the computational costs of density functional theory calculations, and can be combined with sparse matrix algebra to obtain linear scaling with respect to the number of electrons in the system. Calculations on systems of 10,000 atoms or more thus become feasible in a systematic basis set with moderate computational resources. Further computational savings can be achieved by exploiting the similarity of the adaptively contracted basis functions for closely related environments, e.g., in geometry optimizations or combined calculations of neutral and charged systems.

  5. Online adaptation of a c-VEP Brain-computer Interface(BCI) based on error-related potentials and unsupervised learning.

    PubMed

    Spüler, Martin; Rosenstiel, Wolfgang; Bogdan, Martin

    2012-01-01

    The goal of a Brain-Computer Interface (BCI) is to control a computer by pure brain activity. Recently, BCIs based on code-modulated visual evoked potentials (c-VEPs) have shown great potential to establish high-performance communication. In this paper we present a c-VEP BCI that uses online adaptation of the classifier to reduce calibration time and increase performance. We compare two different approaches for online adaptation of the system: an unsupervised method and a method that uses the detection of error-related potentials. Both approaches were tested in an online study, in which an average accuracy of 96% was achieved with adaptation based on error-related potentials. This accuracy corresponds to an average information transfer rate of 144 bit/min, which is the highest bitrate reported so far for a non-invasive BCI. In a free-spelling mode, the subjects were able to write with an average of 21.3 error-free letters per minute, which shows the feasibility of the BCI system in a normal-use scenario. In addition we show that a calibration of the BCI system solely based on the detection of error-related potentials is possible, without knowing the true class labels.

  6. Behavioral personal digital assistants: The seventh generation of computing

    PubMed Central

    Stephens, Kenneth R.; Hutchison, William R.

    1992-01-01

    Skinner (1985) described two divergent approaches to developing computer systems that would behave with some approximation to intelligence. The first approach, which corresponds to the mainstream of artificial intelligence and expert systems, models intelligence as a set of production rules that incorporate knowledge and a set of heuristics for inference and symbol manipulation. The alternative is a system that models the behavioral repertoire as a network of associations between antecedent stimuli and operants, and adapts when supplied with reinforcement. The latter approach is consistent with developments in the field of “neural networks.” The authors describe how an existing adaptive network software system, based on behavior analysis and developed since 1983, can be extended to provide a new generation of software systems capable of acquiring verbal behavior. This effort will require the collaboration of the academic and commercial sectors of the behavioral community, but the end result will enable a generational change in computer systems and support for behavior analytic concepts. PMID:22477053

  7. Research Summary 3-D Computational Fluid Dynamics (CFD) Model Of The Human Respiratory System

    EPA Science Inventory

    The U.S. EPA’s Office of Research and Development (ORD) has developed a 3-D computational fluid dynamics (CFD) model of the human respiratory system that allows for the simulation of particulate based contaminant deposition and clearance, while being adaptable for age, ethnicity,...

  8. Computational Systems Toxicology: recapitulating the logistical dynamics of cellular response networks in virtual tissue models (Eurotox_2017)

    EPA Science Inventory

    Translating in vitro data and biological information into a predictive model for human toxicity poses a significant challenge. This is especially true for complex adaptive systems such as the embryo where cellular dynamics are precisely orchestrated in space and time. Computer ce...

  9. Developing Expert Systems for the Analysis of Syntactic and Semantic Patterns.

    ERIC Educational Resources Information Center

    Hellwig, Harold H.

    Noting that expert computer systems respond to various contexts in terms of knowledge representation, this paper explains that heuristic rules of production, procedural representation, and frame representation have been adapted to such areas as medical diagnosis, signal interpretation, design and planning of electrical circuits and computer system…

  10. Adaptive Device Context Based Mobile Learning Systems

    ERIC Educational Resources Information Center

    Pu, Haitao; Lin, Jinjiao; Song, Yanwei; Liu, Fasheng

    2011-01-01

    Mobile learning is e-learning delivered through mobile computing devices, which represents the next stage of computer-aided, multi-media based learning. Therefore, mobile learning is transforming the way of traditional education. However, as most current e-learning systems and their contents are not suitable for mobile devices, an approach for…

  11. Structural system reliability calculation using a probabilistic fault tree analysis method

    NASA Technical Reports Server (NTRS)

    Torng, T. Y.; Wu, Y.-T.; Millwater, H. R.

    1992-01-01

    The development of a new probabilistic fault tree analysis (PFTA) method for calculating structural system reliability is summarized. The proposed PFTA procedure includes: developing a fault tree to represent the complex structural system, constructing an approximation function for each bottom event, determining a dominant sampling sequence for all bottom events, and calculating the system reliability using an adaptive importance sampling method. PFTA is suitable for complicated structural problems that require computer-intensive computer calculations. A computer program has been developed to implement the PFTA.

  12. Live interactive computer music performance practice

    NASA Astrophysics Data System (ADS)

    Wessel, David

    2002-05-01

    A live-performance musical instrument can be assembled around current lap-top computer technology. One adds a controller such as a keyboard or other gestural input device, a sound diffusion system, some form of connectivity processor(s) providing for audio I/O and gestural controller input, and reactive real-time native signal processing software. A system consisting of a hand gesture controller; software for gesture analysis and mapping, machine listening, composition, and sound synthesis; and a controllable radiation pattern loudspeaker are described. Interactivity begins in the set up wherein the speaker-room combination is tuned with an LMS procedure. This system was designed for improvisation. It is argued that software suitable for carrying out an improvised musical dialog with another performer poses special challenges. The processes underlying the generation of musical material must be very adaptable, capable of rapid changes in musical direction. Machine listening techniques are used to help the performer adapt to new contexts. Machine learning can play an important role in the development of such systems. In the end, as with any musical instrument, human skill is essential. Practice is required not only for the development of musically appropriate human motor programs but for the adaptation of the computer-based instrument as well.

  13. Adaptive Wavelet Coding Applied in a Wireless Control System.

    PubMed

    Gama, Felipe O S; Silveira, Luiz F Q; Salazar, Andrés O

    2017-12-13

    Wireless control systems can sense, control and act on the information exchanged between the wireless sensor nodes in a control loop. However, the exchanged information becomes susceptible to the degenerative effects produced by the multipath propagation. In order to minimize the destructive effects characteristic of wireless channels, several techniques have been investigated recently. Among them, wavelet coding is a good alternative for wireless communications for its robustness to the effects of multipath and its low computational complexity. This work proposes an adaptive wavelet coding whose parameters of code rate and signal constellation can vary according to the fading level and evaluates the use of this transmission system in a control loop implemented by wireless sensor nodes. The performance of the adaptive system was evaluated in terms of bit error rate (BER) versus E b / N 0 and spectral efficiency, considering a time-varying channel with flat Rayleigh fading, and in terms of processing overhead on a control system with wireless communication. The results obtained through computational simulations and experimental tests show performance gains obtained by insertion of the adaptive wavelet coding in a control loop with nodes interconnected by wireless link. These results enable the use of this technique in a wireless link control loop.

  14. Binocular Multispectral Adaptive Imaging System (BMAIS)

    DTIC Science & Technology

    2010-07-26

    system for pilots that adaptively integrates shortwave infrared (SWIR), visible, near ‐IR (NIR), off‐head thermal, and computer symbology/imagery into...respective areas. BMAIS is a binocular helmet mounted imaging system that features dual shortwave infrared (SWIR) cameras, embedded image processors and...algorithms and fusion of other sensor sites such as forward looking infrared (FLIR) and other aircraft subsystems. BMAIS is attached to the helmet

  15. Real time computer controlled weld skate

    NASA Technical Reports Server (NTRS)

    Wall, W. A., Jr.

    1977-01-01

    A real time, adaptive control, automatic welding system was developed. This system utilizes the general case geometrical relationships between a weldment and a weld skate to precisely maintain constant weld speed and torch angle along a contoured workplace. The system is compatible with the gas tungsten arc weld process or can be adapted to other weld processes. Heli-arc cutting and machine tool routing operations are possible applications.

  16. Adaptive neural control for a class of nonlinear time-varying delay systems with unknown hysteresis.

    PubMed

    Liu, Zhi; Lai, Guanyu; Zhang, Yun; Chen, Xin; Chen, Chun Lung Philip

    2014-12-01

    This paper investigates the fusion of unknown direction hysteresis model with adaptive neural control techniques in face of time-delayed continuous time nonlinear systems without strict-feedback form. Compared with previous works on the hysteresis phenomenon, the direction of the modified Bouc-Wen hysteresis model investigated in the literature is unknown. To reduce the computation burden in adaptation mechanism, an optimized adaptation method is successfully applied to the control design. Based on the Lyapunov-Krasovskii method, two neural-network-based adaptive control algorithms are constructed to guarantee that all the system states and adaptive parameters remain bounded, and the tracking error converges to an adjustable neighborhood of the origin. In final, some numerical examples are provided to validate the effectiveness of the proposed control methods.

  17. Adaptive hyperspectral imager: design, modeling, and control

    NASA Astrophysics Data System (ADS)

    McGregor, Scot; Lacroix, Simon; Monmayrant, Antoine

    2015-08-01

    An adaptive, hyperspectral imager is presented. We propose a system with easily adaptable spectral resolution, adjustable acquisition time, and high spatial resolution which is independent of spectral resolution. The system yields the possibility to define a variety of acquisition schemes, and in particular near snapshot acquisitions that may be used to measure the spectral content of given or automatically detected regions of interest. The proposed system is modelled and simulated, and tests on a first prototype validate the approach to achieve near snapshot spectral acquisitions without resorting to any computationally heavy post-processing, nor cumbersome calibration

  18. Studying the Global Bifurcation Involving Wada Boundary Metamorphosis by a Method of Generalized Cell Mapping with Sampling-Adaptive Interpolation

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Ming; Jiang, Jun; Hong, Ling; Tang, Dafeng

    In this paper, a new method of Generalized Cell Mapping with Sampling-Adaptive Interpolation (GCMSAI) is presented in order to enhance the efficiency of the computation of one-step probability transition matrix of the Generalized Cell Mapping method (GCM). Integrations with one mapping step are replaced by sampling-adaptive interpolations of third order. An explicit formula of interpolation error is derived for a sampling-adaptive control to switch on integrations for the accuracy of computations with GCMSAI. By applying the proposed method to a two-dimensional forced damped pendulum system, global bifurcations are investigated with observations of boundary metamorphoses including full to partial and partial to partial as well as the birth of fully Wada boundary. Moreover GCMSAI requires a computational time of one thirtieth up to one fiftieth compared to that of the previous GCM.

  19. Multigrid preconditioned conjugate-gradient method for large-scale wave-front reconstruction.

    PubMed

    Gilles, Luc; Vogel, Curtis R; Ellerbroek, Brent L

    2002-09-01

    We introduce a multigrid preconditioned conjugate-gradient (MGCG) iterative scheme for computing open-loop wave-front reconstructors for extreme adaptive optics systems. We present numerical simulations for a 17-m class telescope with n = 48756 sensor measurement grid points within the aperture, which indicate that our MGCG method has a rapid convergence rate for a wide range of subaperture average slope measurement signal-to-noise ratios. The total computational cost is of order n log n. Hence our scheme provides for fast wave-front simulation and control in large-scale adaptive optics systems.

  20. An Interactive Computer-Aided Instructional Strategy and Assessment Methods for System Identification and Adaptive Control Laboratory

    ERIC Educational Resources Information Center

    Özbek, Necdet Sinan; Eker, Ilyas

    2015-01-01

    This study describes a set of real-time interactive experiments that address system identification and model reference adaptive control (MRAC) techniques. In constructing laboratory experiments that contribute to efficient teaching, experimental design and instructional strategy are crucial, but a process for doing this has yet to be defined. This…

  1. A single network adaptive critic (SNAC) architecture for optimal control synthesis for a class of nonlinear systems.

    PubMed

    Padhi, Radhakant; Unnikrishnan, Nishant; Wang, Xiaohua; Balakrishnan, S N

    2006-12-01

    Even though dynamic programming offers an optimal control solution in a state feedback form, the method is overwhelmed by computational and storage requirements. Approximate dynamic programming implemented with an Adaptive Critic (AC) neural network structure has evolved as a powerful alternative technique that obviates the need for excessive computations and storage requirements in solving optimal control problems. In this paper, an improvement to the AC architecture, called the "Single Network Adaptive Critic (SNAC)" is presented. This approach is applicable to a wide class of nonlinear systems where the optimal control (stationary) equation can be explicitly expressed in terms of the state and costate variables. The selection of this terminology is guided by the fact that it eliminates the use of one neural network (namely the action network) that is part of a typical dual network AC setup. As a consequence, the SNAC architecture offers three potential advantages: a simpler architecture, lesser computational load and elimination of the approximation error associated with the eliminated network. In order to demonstrate these benefits and the control synthesis technique using SNAC, two problems have been solved with the AC and SNAC approaches and their computational performances are compared. One of these problems is a real-life Micro-Electro-Mechanical-system (MEMS) problem, which demonstrates that the SNAC technique is applicable to complex engineering systems.

  2. A Decision Analysis Tool for Climate Impacts, Adaptations, and Vulnerabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omitaomu, Olufemi A; Parish, Esther S; Nugent, Philip J

    Climate change related extreme events (such as flooding, storms, and drought) are already impacting millions of people globally at a cost of billions of dollars annually. Hence, there are urgent needs for urban areas to develop adaptation strategies that will alleviate the impacts of these extreme events. However, lack of appropriate decision support tools that match local applications is limiting local planning efforts. In this paper, we present a quantitative analysis and optimization system with customized decision support modules built on geographic information system (GIS) platform to bridge this gap. This platform is called Urban Climate Adaptation Tool (Urban-CAT). Formore » all Urban-CAT models, we divide a city into a grid with tens of thousands of cells; then compute a list of metrics for each cell from the GIS data. These metrics are used as independent variables to predict climate impacts, compute vulnerability score, and evaluate adaptation options. Overall, the Urban-CAT system has three layers: data layer (that contains spatial data, socio-economic and environmental data, and analytic data), middle layer (that handles data processing, model management, and GIS operation), and application layer (that provides climate impacts forecast, adaptation optimization, and site evaluation). The Urban-CAT platform can guide city and county governments in identifying and planning for effective climate change adaptation strategies.« less

  3. Adaptive Management of Computing and Network Resources for Spacecraft Systems

    NASA Technical Reports Server (NTRS)

    Pfarr, Barbara; Welch, Lonnie R.; Detter, Ryan; Tjaden, Brett; Huh, Eui-Nam; Szczur, Martha R. (Technical Monitor)

    2000-01-01

    It is likely that NASA's future spacecraft systems will consist of distributed processes which will handle dynamically varying workloads in response to perceived scientific events, the spacecraft environment, spacecraft anomalies and user commands. Since all situations and possible uses of sensors cannot be anticipated during pre-deployment phases, an approach for dynamically adapting the allocation of distributed computational and communication resources is needed. To address this, we are evolving the DeSiDeRaTa adaptive resource management approach to enable reconfigurable ground and space information systems. The DeSiDeRaTa approach embodies a set of middleware mechanisms for adapting resource allocations, and a framework for reasoning about the real-time performance of distributed application systems. The framework and middleware will be extended to accommodate (1) the dynamic aspects of intra-constellation network topologies, and (2) the complete real-time path from the instrument to the user. We are developing a ground-based testbed that will enable NASA to perform early evaluation of adaptive resource management techniques without the expense of first deploying them in space. The benefits of the proposed effort are numerous, including the ability to use sensors in new ways not anticipated at design time; the production of information technology that ties the sensor web together; the accommodation of greater numbers of missions with fewer resources; and the opportunity to leverage the DeSiDeRaTa project's expertise, infrastructure and models for adaptive resource management for distributed real-time systems.

  4. The Construction of Knowledge through Social Interaction via Computer-Mediated Communication

    ERIC Educational Resources Information Center

    Saritas, Tuncay

    2008-01-01

    With the advance in information and communication technologies, computer-mediated communication--more specifically computer conferencing systems (CCS)--has captured the interest of educators as an ideal tool to create a learning environment featuring active, participative, and reflective learning. Educators are increasingly adapting the features…

  5. Scheduling quality of precise form sets which consist of tasks of circular type in GRID systems

    NASA Astrophysics Data System (ADS)

    Saak, A. E.; Kureichik, V. V.; Kravchenko, Y. A.

    2018-05-01

    Users’ demand in computer power and rise of technology favour the arrival of Grid systems. The quality of Grid systems’ performance depends on computer and time resources scheduling. Grid systems with a centralized structure of the scheduling system and user’s task are modeled by resource quadrant and re-source rectangle accordingly. A Non-Euclidean heuristic measure, which takes into consideration both the area and the form of an occupied resource region, is used to estimate scheduling quality of heuristic algorithms. The authors use sets, which are induced by the elements of square squaring, as an example of studying the adapt-ability of a level polynomial algorithm with an excess and the one with minimal deviation.

  6. GLOBECOM '86 - Global Telecommunications Conference, Houston, TX, Dec. 1-4, 1986, Conference Record. Volumes 1, 2, & 3

    NASA Astrophysics Data System (ADS)

    Papers are presented on local area networks; formal methods for communication protocols; computer simulation of communication systems; spread spectrum and coded communications; tropical radio propagation; VLSI for communications; strategies for increasing software productivity; multiple access communications; advanced communication satellite technologies; and spread spectrum systems. Topics discussed include Space Station communication and tracking development and design; transmission networks; modulation; data communications; computer network protocols and performance; and coding and synchronization. Consideration is given to free space optical communications systems; VSAT communication networks; network topology design; advances in adaptive filtering echo cancellation and adaptive equalization; advanced signal processing for satellite communications; the elements, design, and analysis of fiber-optic networks; and advances in digital microwave systems.

  7. Massively parallel algorithms for real-time wavefront control of a dense adaptive optics system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fijany, A.; Milman, M.; Redding, D.

    1994-12-31

    In this paper massively parallel algorithms and architectures for real-time wavefront control of a dense adaptive optic system (SELENE) are presented. The authors have already shown that the computation of a near optimal control algorithm for SELENE can be reduced to the solution of a discrete Poisson equation on a regular domain. Although, this represents an optimal computation, due the large size of the system and the high sampling rate requirement, the implementation of this control algorithm poses a computationally challenging problem since it demands a sustained computational throughput of the order of 10 GFlops. They develop a novel algorithm,more » designated as Fast Invariant Imbedding algorithm, which offers a massive degree of parallelism with simple communication and synchronization requirements. Due to these features, this algorithm is significantly more efficient than other Fast Poisson Solvers for implementation on massively parallel architectures. The authors also discuss two massively parallel, algorithmically specialized, architectures for low-cost and optimal implementation of the Fast Invariant Imbedding algorithm.« less

  8. An SDR-Based Real-Time Testbed for GNSS Adaptive Array Anti-Jamming Algorithms Accelerated by GPU

    PubMed Central

    Xu, Hailong; Cui, Xiaowei; Lu, Mingquan

    2016-01-01

    Nowadays, software-defined radio (SDR) has become a common approach to evaluate new algorithms. However, in the field of Global Navigation Satellite System (GNSS) adaptive array anti-jamming, previous work has been limited due to the high computational power demanded by adaptive algorithms, and often lack flexibility and configurability. In this paper, the design and implementation of an SDR-based real-time testbed for GNSS adaptive array anti-jamming accelerated by a Graphics Processing Unit (GPU) are documented. This testbed highlights itself as a feature-rich and extendible platform with great flexibility and configurability, as well as high computational performance. Both Space-Time Adaptive Processing (STAP) and Space-Frequency Adaptive Processing (SFAP) are implemented with a wide range of parameters. Raw data from as many as eight antenna elements can be processed in real-time in either an adaptive nulling or beamforming mode. To fully take advantage of the parallelism resource provided by the GPU, a batched method in programming is proposed. Tests and experiments are conducted to evaluate both the computational and anti-jamming performance. This platform can be used for research and prototyping, as well as a real product in certain applications. PMID:26978363

  9. An SDR-Based Real-Time Testbed for GNSS Adaptive Array Anti-Jamming Algorithms Accelerated by GPU.

    PubMed

    Xu, Hailong; Cui, Xiaowei; Lu, Mingquan

    2016-03-11

    Nowadays, software-defined radio (SDR) has become a common approach to evaluate new algorithms. However, in the field of Global Navigation Satellite System (GNSS) adaptive array anti-jamming, previous work has been limited due to the high computational power demanded by adaptive algorithms, and often lack flexibility and configurability. In this paper, the design and implementation of an SDR-based real-time testbed for GNSS adaptive array anti-jamming accelerated by a Graphics Processing Unit (GPU) are documented. This testbed highlights itself as a feature-rich and extendible platform with great flexibility and configurability, as well as high computational performance. Both Space-Time Adaptive Processing (STAP) and Space-Frequency Adaptive Processing (SFAP) are implemented with a wide range of parameters. Raw data from as many as eight antenna elements can be processed in real-time in either an adaptive nulling or beamforming mode. To fully take advantage of the parallelism resource provided by the GPU, a batched method in programming is proposed. Tests and experiments are conducted to evaluate both the computational and anti-jamming performance. This platform can be used for research and prototyping, as well as a real product in certain applications.

  10. Odor-Specific Habituation Arises from Interaction of Afferent Synaptic Adaptation and Intrinsic Synaptic Potentiation in Olfactory Cortex

    ERIC Educational Resources Information Center

    Linster, Christiane; Menon, Alka V.; Singh, Christopher Y.; Wilson, Donald A.

    2009-01-01

    Segmentation of target odorants from background odorants is a fundamental computational requirement for the olfactory system and is thought to be behaviorally mediated by olfactory habituation memory. Data from our laboratory have shown that odor-specific adaptation in piriform neurons, mediated at least partially by synaptic adaptation between…

  11. Three-camera stereo vision for intelligent transportation systems

    NASA Astrophysics Data System (ADS)

    Bergendahl, Jason; Masaki, Ichiro; Horn, Berthold K. P.

    1997-02-01

    A major obstacle in the application of stereo vision to intelligent transportation system is high computational cost. In this paper, a PC based three-camera stereo vision system constructed with off-the-shelf components is described. The system serves as a tool for developing and testing robust algorithms which approach real-time performance. We present an edge based, subpixel stereo algorithm which is adapted to permit accurate distance measurements to objects in the field of view using a compact camera assembly. Once computed, the 3D scene information may be directly applied to a number of in-vehicle applications, such as adaptive cruise control, obstacle detection, and lane tracking. Moreover, since the largest computational costs is incurred in generating the 3D scene information, multiple applications that leverage this information can be implemented in a single system with minimal cost. On-road applications, such as vehicle counting and incident detection, are also possible. Preliminary in-vehicle road trial results are presented.

  12. Simulation of DKIST solar adaptive optics system

    NASA Astrophysics Data System (ADS)

    Marino, Jose; Carlisle, Elizabeth; Schmidt, Dirk

    2016-07-01

    Solar adaptive optics (AO) simulations are a valuable tool to guide the design and optimization process of current and future solar AO and multi-conjugate AO (MCAO) systems. Solar AO and MCAO systems rely on extended object cross-correlating Shack-Hartmann wavefront sensors to measure the wavefront. Accurate solar AO simulations require computationally intensive operations, which have until recently presented a prohibitive computational cost. We present an update on the status of a solar AO and MCAO simulation tool being developed at the National Solar Observatory. The simulation tool is a multi-threaded application written in the C++ language that takes advantage of current large multi-core CPU computer systems and fast ethernet connections to provide accurate full simulation of solar AO and MCAO systems. It interfaces with KAOS, a state of the art solar AO control software developed by the Kiepenheuer-Institut fuer Sonnenphysik, that provides reliable AO control. We report on the latest results produced by the solar AO simulation tool.

  13. An adaptive replacement algorithm for paged-memory computer systems.

    NASA Technical Reports Server (NTRS)

    Thorington, J. M., Jr.; Irwin, J. D.

    1972-01-01

    A general class of adaptive replacement schemes for use in paged memories is developed. One such algorithm, called SIM, is simulated using a probability model that generates memory traces, and the results of the simulation of this adaptive scheme are compared with those obtained using the best nonlookahead algorithms. A technique for implementing this type of adaptive replacement algorithm with state of the art digital hardware is also presented.

  14. Evolution, learning, and cognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Y.C.

    1988-01-01

    The book comprises more than fifteen articles in the areas of neural networks and connectionist systems, classifier systems, adaptive network systems, genetic algorithm, cellular automata, artificial immune systems, evolutionary genetics, cognitive science, optical computing, combinatorial optimization, and cybernetics.

  15. An Architecture for Cross-Cloud System Management

    NASA Astrophysics Data System (ADS)

    Dodda, Ravi Teja; Smith, Chris; van Moorsel, Aad

    The emergence of the cloud computing paradigm promises flexibility and adaptability through on-demand provisioning of compute resources. As the utilization of cloud resources extends beyond a single provider, for business as well as technical reasons, the issue of effectively managing such resources comes to the fore. Different providers expose different interfaces to their compute resources utilizing varied architectures and implementation technologies. This heterogeneity poses a significant system management problem, and can limit the extent to which the benefits of cross-cloud resource utilization can be realized. We address this problem through the definition of an architecture to facilitate the management of compute resources from different cloud providers in an homogenous manner. This preserves the flexibility and adaptability promised by the cloud computing paradigm, whilst enabling the benefits of cross-cloud resource utilization to be realized. The practical efficacy of the architecture is demonstrated through an implementation utilizing compute resources managed through different interfaces on the Amazon Elastic Compute Cloud (EC2) service. Additionally, we provide empirical results highlighting the performance differential of these different interfaces, and discuss the impact of this performance differential on efficiency and profitability.

  16. Military Curricula for Vocational & Technical Education. Computer System Operation, 4-3.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This program on instruction and programmed student texts for a secondary-postsecondary-level computer system operator course are one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. Purpose stated for the ten-lesson course is to provide the…

  17. A Pilot-Scale Heat Recovery System for Computer Process Control Teaching and Research.

    ERIC Educational Resources Information Center

    Callaghan, P. J.; And Others

    1988-01-01

    Describes the experimental system and equipment including an interface box for displaying variables. Discusses features which make the circuit suitable for teaching and research in computing. Feedforward, decoupling, and adaptive control, examination of digital filtering, and a cascade loop are teaching experiments utilizing this rig. Diagrams and…

  18. A Computer Application for Severely Handicapped Children.

    ERIC Educational Resources Information Center

    Huenergard, Cliff; Albertson, Greg

    A severely physically disabled (quadriplegic) third grade student with high average intellectual abilities was fitted with a computer system adapted for maximum student independence. A scanner, the face of which is an integrated circuit board, was constructed to allow accessibility to the computer by a single switch operated by the student's…

  19. Advanced processing for high-bandwidth sensor systems

    NASA Astrophysics Data System (ADS)

    Szymanski, John J.; Blain, Phil C.; Bloch, Jeffrey J.; Brislawn, Christopher M.; Brumby, Steven P.; Cafferty, Maureen M.; Dunham, Mark E.; Frigo, Janette R.; Gokhale, Maya; Harvey, Neal R.; Kenyon, Garrett; Kim, Won-Ha; Layne, J.; Lavenier, Dominique D.; McCabe, Kevin P.; Mitchell, Melanie; Moore, Kurt R.; Perkins, Simon J.; Porter, Reid B.; Robinson, S.; Salazar, Alfonso; Theiler, James P.; Young, Aaron C.

    2000-11-01

    Compute performance and algorithm design are key problems of image processing and scientific computing in general. For example, imaging spectrometers are capable of producing data in hundreds of spectral bands with millions of pixels. These data sets show great promise for remote sensing applications, but require new and computationally intensive processing. The goal of the Deployable Adaptive Processing Systems (DAPS) project at Los Alamos National Laboratory is to develop advanced processing hardware and algorithms for high-bandwidth sensor applications. The project has produced electronics for processing multi- and hyper-spectral sensor data, as well as LIDAR data, while employing processing elements using a variety of technologies. The project team is currently working on reconfigurable computing technology and advanced feature extraction techniques, with an emphasis on their application to image and RF signal processing. This paper presents reconfigurable computing technology and advanced feature extraction algorithm work and their application to multi- and hyperspectral image processing. Related projects on genetic algorithms as applied to image processing will be introduced, as will the collaboration between the DAPS project and the DARPA Adaptive Computing Systems program. Further details are presented in other talks during this conference and in other conferences taking place during this symposium.

  20. A tale of three bio-inspired computational approaches

    NASA Astrophysics Data System (ADS)

    Schaffer, J. David

    2014-05-01

    I will provide a high level walk-through for three computational approaches derived from Nature. First, evolutionary computation implements what we may call the "mother of all adaptive processes." Some variants on the basic algorithms will be sketched and some lessons I have gleaned from three decades of working with EC will be covered. Then neural networks, computational approaches that have long been studied as possible ways to make "thinking machines", an old dream of man's, and based upon the only known existing example of intelligence. Then, a little overview of attempts to combine these two approaches that some hope will allow us to evolve machines we could never hand-craft. Finally, I will touch on artificial immune systems, Nature's highly sophisticated defense mechanism, that has emerged in two major stages, the innate and the adaptive immune systems. This technology is finding applications in the cyber security world.

  1. Learning by statistical cooperation of self-interested neuron-like computing elements.

    PubMed

    Barto, A G

    1985-01-01

    Since the usual approaches to cooperative computation in networks of neuron-like computating elements do not assume that network components have any "preferences", they do not make substantive contact with game theoretic concepts, despite their use of some of the same terminology. In the approach presented here, however, each network component, or adaptive element, is a self-interested agent that prefers some inputs over others and "works" toward obtaining the most highly preferred inputs. Here we describe an adaptive element that is robust enough to learn to cooperate with other elements like itself in order to further its self-interests. It is argued that some of the longstanding problems concerning adaptation and learning by networks might be solvable by this form of cooperativity, and computer simulation experiments are described that show how networks of self-interested components that are sufficiently robust can solve rather difficult learning problems. We then place the approach in its proper historical and theoretical perspective through comparison with a number of related algorithms. A secondary aim of this article is to suggest that beyond what is explicitly illustrated here, there is a wealth of ideas from game theory and allied disciplines such as mathematical economics that can be of use in thinking about cooperative computation in both nervous systems and man-made systems.

  2. Efficient method for computing the electronic transport properties of a multiterminal system

    NASA Astrophysics Data System (ADS)

    Lima, Leandro R. F.; Dusko, Amintor; Lewenkopf, Caio

    2018-04-01

    We present a multiprobe recursive Green's function method to compute the transport properties of mesoscopic systems using the Landauer-Büttiker approach. By introducing an adaptive partition scheme, we map the multiprobe problem into the standard two-probe recursive Green's function method. We apply the method to compute the longitudinal and Hall resistances of a disordered graphene sample, a system of current interest. We show that the performance and accuracy of our method compares very well with other state-of-the-art schemes.

  3. Adaptive optics for the ESO-VLT

    NASA Astrophysics Data System (ADS)

    Merkle, Fritz

    1989-04-01

    This paper discusses adaptive optics, its performance, and its requirements for applications in astronomy to overcome limitations due to atmospheric turbulence. Guidelines for the implementation of these devices in telescopes are given, in particular for the Very Large Telescope (VLT) at ESO. It is intended to equip each one of the four 8-m telescopes of the VLT, which are arranged in a linear array with an independent adaptive optical system. These systems will serve the individual and the combined coude foci. A small-scale prototype adaptive system is under development. It is equipped with a 19-piezoelectric-actuator deformable mirror, a Shack-Hartmann-type wavefront sensor, and a dedicated wavefront computer for closing the feedback loop. This system is based on a polychromatic approach; i.e., it senses the wavefront in the visible, but the adaptive correction loop works at 3-5 microns.

  4. A Stochastic Total Least Squares Solution of Adaptive Filtering Problem

    PubMed Central

    Ahmad, Noor Atinah

    2014-01-01

    An efficient and computationally linear algorithm is derived for total least squares solution of adaptive filtering problem, when both input and output signals are contaminated by noise. The proposed total least mean squares (TLMS) algorithm is designed by recursively computing an optimal solution of adaptive TLS problem by minimizing instantaneous value of weighted cost function. Convergence analysis of the algorithm is given to show the global convergence of the proposed algorithm, provided that the stepsize parameter is appropriately chosen. The TLMS algorithm is computationally simpler than the other TLS algorithms and demonstrates a better performance as compared with the least mean square (LMS) and normalized least mean square (NLMS) algorithms. It provides minimum mean square deviation by exhibiting better convergence in misalignment for unknown system identification under noisy inputs. PMID:24688412

  5. Rapid solution of large-scale systems of equations

    NASA Technical Reports Server (NTRS)

    Storaasli, Olaf O.

    1994-01-01

    The analysis and design of complex aerospace structures requires the rapid solution of large systems of linear and nonlinear equations, eigenvalue extraction for buckling, vibration and flutter modes, structural optimization and design sensitivity calculation. Computers with multiple processors and vector capabilities can offer substantial computational advantages over traditional scalar computer for these analyses. These computers fall into two categories: shared memory computers and distributed memory computers. This presentation covers general-purpose, highly efficient algorithms for generation/assembly or element matrices, solution of systems of linear and nonlinear equations, eigenvalue and design sensitivity analysis and optimization. All algorithms are coded in FORTRAN for shared memory computers and many are adapted to distributed memory computers. The capability and numerical performance of these algorithms will be addressed.

  6. Multi-petascale highly efficient parallel supercomputer

    DOEpatents

    Asaad, Sameh; Bellofatto, Ralph E.; Blocksome, Michael A.; Blumrich, Matthias A.; Boyle, Peter; Brunheroto, Jose R.; Chen, Dong; Cher, Chen -Yong; Chiu, George L.; Christ, Norman; Coteus, Paul W.; Davis, Kristan D.; Dozsa, Gabor J.; Eichenberger, Alexandre E.; Eisley, Noel A.; Ellavsky, Matthew R.; Evans, Kahn C.; Fleischer, Bruce M.; Fox, Thomas W.; Gara, Alan; Giampapa, Mark E.; Gooding, Thomas M.; Gschwind, Michael K.; Gunnels, John A.; Hall, Shawn A.; Haring, Rudolf A.; Heidelberger, Philip; Inglett, Todd A.; Knudson, Brant L.; Kopcsay, Gerard V.; Kumar, Sameer; Mamidala, Amith R.; Marcella, James A.; Megerian, Mark G.; Miller, Douglas R.; Miller, Samuel J.; Muff, Adam J.; Mundy, Michael B.; O'Brien, John K.; O'Brien, Kathryn M.; Ohmacht, Martin; Parker, Jeffrey J.; Poole, Ruth J.; Ratterman, Joseph D.; Salapura, Valentina; Satterfield, David L.; Senger, Robert M.; Smith, Brian; Steinmacher-Burow, Burkhard; Stockdell, William M.; Stunkel, Craig B.; Sugavanam, Krishnan; Sugawara, Yutaka; Takken, Todd E.; Trager, Barry M.; Van Oosten, James L.; Wait, Charles D.; Walkup, Robert E.; Watson, Alfred T.; Wisniewski, Robert W.; Wu, Peng

    2015-07-14

    A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaOPS-scale computing, at decreased cost, power and footprint, and that allows for a maximum packaging density of processing nodes from an interconnect point of view. The Supercomputer exploits technological advances in VLSI that enables a computing model where many processors can be integrated into a single Application Specific Integrated Circuit (ASIC). Each ASIC computing node comprises a system-on-chip ASIC utilizing four or more processors integrated into one die, with each having full access to all system resources and enabling adaptive partitioning of the processors to functions such as compute or messaging I/O on an application by application basis, and preferably, enable adaptive partitioning of functions in accordance with various algorithmic phases within an application, or if I/O or other processors are underutilized, then can participate in computation or communication nodes are interconnected by a five dimensional torus network with DMA that optimally maximize the throughput of packet communications between nodes and minimize latency.

  7. Texture-adaptive hyperspectral video acquisition system with a spatial light modulator

    NASA Astrophysics Data System (ADS)

    Fang, Xiaojing; Feng, Jiao; Wang, Yongjin

    2014-10-01

    We present a new hybrid camera system based on spatial light modulator (SLM) to capture texture-adaptive high-resolution hyperspectral video. The hybrid camera system records a hyperspectral video with low spatial resolution using a gray camera and a high-spatial resolution video using a RGB camera. The hyperspectral video is subsampled by the SLM. The subsampled points can be adaptively selected according to the texture characteristic of the scene by combining with digital imaging analysis and computational processing. In this paper, we propose an adaptive sampling method utilizing texture segmentation and wavelet transform (WT). We also demonstrate the effectiveness of the sampled pattern on the SLM with the proposed method.

  8. System and method for controlling power consumption in a computer system based on user satisfaction

    DOEpatents

    Yang, Lei; Dick, Robert P; Chen, Xi; Memik, Gokhan; Dinda, Peter A; Shy, Alex; Ozisikyilmaz, Berkin; Mallik, Arindam; Choudhary, Alok

    2014-04-22

    Systems and methods for controlling power consumption in a computer system. For each of a plurality of interactive applications, the method changes a frequency at which a processor of the computer system runs, receives an indication of user satisfaction, determines a relationship between the changed frequency and the user satisfaction of the interactive application, and stores the determined relationship information. The determined relationship can distinguish between different users and different interactive applications. A frequency may be selected from the discrete frequencies at which the processor of the computer system runs based on the determined relationship information for a particular user and a particular interactive application running on the processor of the computer system. The processor may be adapted to run at the selected frequency.

  9. Development and application of the dynamic system doctor to nuclear reactor probabilistic risk assessments.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunsman, David Marvin; Aldemir, Tunc; Rutt, Benjamin

    2008-05-01

    This LDRD project has produced a tool that makes probabilistic risk assessments (PRAs) of nuclear reactors - analyses which are very resource intensive - more efficient. PRAs of nuclear reactors are being increasingly relied on by the United States Nuclear Regulatory Commission (U.S.N.R.C.) for licensing decisions for current and advanced reactors. Yet, PRAs are produced much as they were 20 years ago. The work here applied a modern systems analysis technique to the accident progression analysis portion of the PRA; the technique was a system-independent multi-task computer driver routine. Initially, the objective of the work was to fuse the accidentmore » progression event tree (APET) portion of a PRA to the dynamic system doctor (DSD) created by Ohio State University. Instead, during the initial efforts, it was found that the DSD could be linked directly to a detailed accident progression phenomenological simulation code - the type on which APET construction and analysis relies, albeit indirectly - and thereby directly create and analyze the APET. The expanded DSD computational architecture and infrastructure that was created during this effort is called ADAPT (Analysis of Dynamic Accident Progression Trees). ADAPT is a system software infrastructure that supports execution and analysis of multiple dynamic event-tree simulations on distributed environments. A simulator abstraction layer was developed, and a generic driver was implemented for executing simulators on a distributed environment. As a demonstration of the use of the methodological tool, ADAPT was applied to quantify the likelihood of competing accident progression pathways occurring for a particular accident scenario in a particular reactor type using MELCOR, an integrated severe accident analysis code developed at Sandia. (ADAPT was intentionally created with flexibility, however, and is not limited to interacting with only one code. With minor coding changes to input files, ADAPT can be linked to other such codes.) The results of this demonstration indicate that the approach can significantly reduce the resources required for Level 2 PRAs. From the phenomenological viewpoint, ADAPT can also treat the associated epistemic and aleatory uncertainties. This methodology can also be used for analyses of other complex systems. Any complex system can be analyzed using ADAPT if the workings of that system can be displayed as an event tree, there is a computer code that simulates how those events could progress, and that simulator code has switches to turn on and off system events, phenomena, etc. Using and applying ADAPT to particular problems is not human independent. While the human resources for the creation and analysis of the accident progression are significantly decreased, knowledgeable analysts are still necessary for a given project to apply ADAPT successfully. This research and development effort has met its original goals and then exceeded them.« less

  10. A chimera grid scheme. [multiple overset body-conforming mesh system for finite difference adaptation to complex aircraft configurations

    NASA Technical Reports Server (NTRS)

    Steger, J. L.; Dougherty, F. C.; Benek, J. A.

    1983-01-01

    A mesh system composed of multiple overset body-conforming grids is described for adapting finite-difference procedures to complex aircraft configurations. In this so-called 'chimera mesh,' a major grid is generated about a main component of the configuration and overset minor grids are used to resolve all other features. Methods for connecting overset multiple grids and modifications of flow-simulation algorithms are discussed. Computational tests in two dimensions indicate that the use of multiple overset grids can simplify the task of grid generation without an adverse effect on flow-field algorithms and computer code complexity.

  11. Individualized Special Education with Cognitive Skill Assessment.

    ERIC Educational Resources Information Center

    Kurhila, Jaakko; Laine, Tei

    2000-01-01

    Describes AHMED (Adaptive and Assistive Hypermedia in Education), a computer learning environment which supports the evaluation of disabled children's cognitive skills in addition to supporting openness in learning materials and adaptivity in learning events. Discusses cognitive modeling and compares it to previous intelligent tutoring systems.…

  12. Multiple-block grid adaption for an airplane geometry

    NASA Technical Reports Server (NTRS)

    Abolhassani, Jamshid Samareh; Smith, Robert E.

    1988-01-01

    Grid-adaption methods are developed with the capability of moving grid points in accordance with several variables for a three-dimensional multiple-block grid system. These methods are algebraic, and they are implemented for the computation of high-speed flow over an airplane configuration.

  13. Adaptive Strategies for Controls of Flexible Arms. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Yuan, Bau-San

    1989-01-01

    An adaptive controller for a modern manipulator has been designed based on asymptotical stability via the Lyapunov criterion with the output error between the system and a reference model used as the actuating control signal. Computer simulations were carried out to test the design. The combination of the adaptive controller and a system vibration and mode shape estimator show that the flexible arm should move along a pre-defined trajectory with high-speed motion and fast vibration setting time. An existing computer-controlled prototype two link manipulator, RALF (Robotic Arm, Large Flexible), with a parallel mechanism driven by hydraulic actuators was used to verify the mathematical analysis. The experimental results illustrate that assumed modes found from finite element techniques can be used to derive the equations of motion with acceptable accuracy. The robust adaptive (modal) control is implemented to compensate for unmodelled modes and nonlinearities and is compared with the joint feedback control in additional experiments. Preliminary results show promise for the experimental control algorithm.

  14. SWAT system performance predictions

    NASA Astrophysics Data System (ADS)

    Parenti, Ronald R.; Sasiela, Richard J.

    1993-03-01

    In the next phase of Lincoln Laboratory's SWAT (Short-Wavelength Adaptive Techniques) program, the performance of a 241-actuator adaptive-optics system will be measured using a variety of synthetic-beacon geometries. As an aid in this experimental investigation, a detailed set of theoretical predictions has also been assembled. The computational tools that have been applied in this study include a numerical approach in which Monte-Carlo ray-trace simulations of accumulated phase error are developed, and an analytical analysis of the expected system behavior. This report describes the basis of these two computational techniques and compares their estimates of overall system performance. Although their regions of applicability tend to be complementary rather than redundant, good agreement is usually obtained when both sets of results can be derived for the same engagement scenario.

  15. An incremental database access method for autonomous interoperable databases

    NASA Technical Reports Server (NTRS)

    Roussopoulos, Nicholas; Sellis, Timos

    1994-01-01

    We investigated a number of design and performance issues of interoperable database management systems (DBMS's). The major results of our investigation were obtained in the areas of client-server database architectures for heterogeneous DBMS's, incremental computation models, buffer management techniques, and query optimization. We finished a prototype of an advanced client-server workstation-based DBMS which allows access to multiple heterogeneous commercial DBMS's. Experiments and simulations were then run to compare its performance with the standard client-server architectures. The focus of this research was on adaptive optimization methods of heterogeneous database systems. Adaptive buffer management accounts for the random and object-oriented access methods for which no known characterization of the access patterns exists. Adaptive query optimization means that value distributions and selectives, which play the most significant role in query plan evaluation, are continuously refined to reflect the actual values as opposed to static ones that are computed off-line. Query feedback is a concept that was first introduced to the literature by our group. We employed query feedback for both adaptive buffer management and for computing value distributions and selectivities. For adaptive buffer management, we use the page faults of prior executions to achieve more 'informed' management decisions. For the estimation of the distributions of the selectivities, we use curve-fitting techniques, such as least squares and splines, for regressing on these values.

  16. The Concept of Energy in Psychological Theory. Cognitive Science Program, Technical Report No. 86-2.

    ERIC Educational Resources Information Center

    Posner, Michael I.; Rothbart, Mary Klevjord

    This paper describes a basic framework for integration of computational and energetic concepts in psychological theory. The framework is adapted from a general effort to understand the neural systems underlying cognition. The element of the cognitive system that provides the best basis for attempting to relate energetic and computational ideas is…

  17. Using Adaptive Automation to Increase Operator Performance and Decrease Stress in a Satellite Operations Environment

    ERIC Educational Resources Information Center

    Klein, David C.

    2014-01-01

    As advancements in automation continue to alter the systemic behavior of computer systems in a wide variety of industrial applications, human-machine interactions are increasingly becoming supervisory in nature, with less hands-on human involvement. This maturing of the human role within the human-computer relationship is relegating operations…

  18. A Self-Synthesis Approach to Perceptual Learning for Multisensory Fusion in Robotics

    PubMed Central

    Axenie, Cristian; Richter, Christoph; Conradt, Jörg

    2016-01-01

    Biological and technical systems operate in a rich multimodal environment. Due to the diversity of incoming sensory streams a system perceives and the variety of motor capabilities a system exhibits there is no single representation and no singular unambiguous interpretation of such a complex scene. In this work we propose a novel sensory processing architecture, inspired by the distributed macro-architecture of the mammalian cortex. The underlying computation is performed by a network of computational maps, each representing a different sensory quantity. All the different sensory streams enter the system through multiple parallel channels. The system autonomously associates and combines them into a coherent representation, given incoming observations. These processes are adaptive and involve learning. The proposed framework introduces mechanisms for self-creation and learning of the functional relations between the computational maps, encoding sensorimotor streams, directly from the data. Its intrinsic scalability, parallelisation, and automatic adaptation to unforeseen sensory perturbations make our approach a promising candidate for robust multisensory fusion in robotic systems. We demonstrate this by applying our model to a 3D motion estimation on a quadrotor. PMID:27775621

  19. Adaptive Allocation of Decision Making Responsibility Between Human and Computer in Multi-Task Situations. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Chu, Y. Y.

    1978-01-01

    A unified formulation of computer-aided, multi-task, decision making is presented. Strategy for the allocation of decision making responsibility between human and computer is developed. The plans of a flight management systems are studied. A model based on the queueing theory was implemented.

  20. Modified Method of Adaptive Artificial Viscosity for Solution of Gas Dynamics Problems on Parallel Computer Systems

    NASA Astrophysics Data System (ADS)

    Popov, Igor; Sukov, Sergey

    2018-02-01

    A modification of the adaptive artificial viscosity (AAV) method is considered. This modification is based on one stage time approximation and is adopted to calculation of gasdynamics problems on unstructured grids with an arbitrary type of grid elements. The proposed numerical method has simplified logic, better performance and parallel efficiency compared to the implementation of the original AAV method. Computer experiments evidence the robustness and convergence of the method to difference solution.

  1. The GEMPAK Barnes objective analysis scheme

    NASA Technical Reports Server (NTRS)

    Koch, S. E.; Desjardins, M.; Kocin, P. J.

    1981-01-01

    GEMPAK, an interactive computer software system developed for the purpose of assimilating, analyzing, and displaying various conventional and satellite meteorological data types is discussed. The objective map analysis scheme possesses certain characteristics that allowed it to be adapted to meet the analysis needs GEMPAK. Those characteristics and the specific adaptation of the scheme to GEMPAK are described. A step-by-step guide for using the GEMPAK Barnes scheme on an interactive computer (in real time) to analyze various types of meteorological datasets is also presented.

  2. Adaptive Filtering to Enhance Noise Immunity of Impedance and Admittance Spectroscopy: Comparison with Fourier Transformation

    NASA Astrophysics Data System (ADS)

    Stupin, Daniil D.; Koniakhin, Sergei V.; Verlov, Nikolay A.; Dubina, Michael V.

    2017-05-01

    The time-domain technique for impedance spectroscopy consists of computing the excitation voltage and current response Fourier images by fast or discrete Fourier transformation and calculating their relation. Here we propose an alternative method for excitation voltage and current response processing for deriving a system impedance spectrum based on a fast and flexible adaptive filtering method. We show the equivalence between the problem of adaptive filter learning and deriving the system impedance spectrum. To be specific, we express the impedance via the adaptive filter weight coefficients. The noise-canceling property of adaptive filtering is also justified. Using the RLC circuit as a model system, we experimentally show that adaptive filtering yields correct admittance spectra and elements ratings in the high-noise conditions when the Fourier-transform technique fails. Providing the additional sensitivity of impedance spectroscopy, adaptive filtering can be applied to otherwise impossible-to-interpret time-domain impedance data. The advantages of adaptive filtering are justified with practical living-cell impedance measurements.

  3. Using an Adaptive Expertise Lens to Understand the Quality of Teachers' Classroom Implementation of Computer-Supported Complex Systems Curricula in High School Science

    ERIC Educational Resources Information Center

    Yoon, Susan A.; Koehler-Yom, Jessica; Anderson, Emma; Lin, Joyce; Klopfer, Eric

    2015-01-01

    Background: This exploratory study is part of a larger-scale research project aimed at building theoretical and practical knowledge of complex systems in students and teachers with the goal of improving high school biology learning through professional development and a classroom intervention. Purpose: We propose a model of adaptive expertise to…

  4. An adaptive proper orthogonal decomposition method for model order reduction of multi-disc rotor system

    NASA Astrophysics Data System (ADS)

    Jin, Yulin; Lu, Kuan; Hou, Lei; Chen, Yushu

    2017-12-01

    The proper orthogonal decomposition (POD) method is a main and efficient tool for order reduction of high-dimensional complex systems in many research fields. However, the robustness problem of this method is always unsolved, although there are some modified POD methods which were proposed to solve this problem. In this paper, a new adaptive POD method called the interpolation Grassmann manifold (IGM) method is proposed to address the weakness of local property of the interpolation tangent-space of Grassmann manifold (ITGM) method in a wider parametric region. This method is demonstrated here by a nonlinear rotor system of 33-degrees of freedom (DOFs) with a pair of liquid-film bearings and a pedestal looseness fault. The motion region of the rotor system is divided into two parts: simple motion region and complex motion region. The adaptive POD method is compared with the ITGM method for the large and small spans of parameter in the two parametric regions to present the advantage of this method and disadvantage of the ITGM method. The comparisons of the responses are applied to verify the accuracy and robustness of the adaptive POD method, as well as the computational efficiency is also analyzed. As a result, the new adaptive POD method has a strong robustness and high computational efficiency and accuracy in a wide scope of parameter.

  5. Dynamic Reconfiguration of a RGBD Sensor Based on QoS and QoC Requirements in Distributed Systems.

    PubMed

    Munera, Eduardo; Poza-Lujan, Jose-Luis; Posadas-Yagüe, Juan-Luis; Simó-Ten, José-Enrique; Noguera, Juan Fco Blanes

    2015-07-24

    The inclusion of embedded sensors into a networked system provides useful information for many applications. A Distributed Control System (DCS) is one of the clearest examples where processing and communications are constrained by the client's requirements and the capacity of the system. An embedded sensor with advanced processing and communications capabilities supplies high level information, abstracting from the data acquisition process and objects recognition mechanisms. The implementation of an embedded sensor/actuator as a Smart Resource permits clients to access sensor information through distributed network services. Smart resources can offer sensor services as well as computing, communications and peripheral access by implementing a self-aware based adaptation mechanism which adapts the execution profile to the context. On the other hand, information integrity must be ensured when computing processes are dynamically adapted. Therefore, the processing must be adapted to perform tasks in a certain lapse of time but always ensuring a minimum process quality. In the same way, communications must try to reduce the data traffic without excluding relevant information. The main objective of the paper is to present a dynamic configuration mechanism to adapt the sensor processing and communication to the client's requirements in the DCS. This paper describes an implementation of a smart resource based on a Red, Green, Blue, and Depth (RGBD) sensor in order to test the dynamic configuration mechanism presented.

  6. NASA software specification and evaluation system: Software verification/validation techniques

    NASA Technical Reports Server (NTRS)

    1977-01-01

    NASA software requirement specifications were used in the development of a system for validating and verifying computer programs. The software specification and evaluation system (SSES) provides for the effective and efficient specification, implementation, and testing of computer software programs. The system as implemented will produce structured FORTRAN or ANSI FORTRAN programs, but the principles upon which SSES is designed allow it to be easily adapted to other high order languages.

  7. Adaptive surrogate model based multi-objective transfer trajectory optimization between different libration points

    NASA Astrophysics Data System (ADS)

    Peng, Haijun; Wang, Wei

    2016-10-01

    An adaptive surrogate model-based multi-objective optimization strategy that combines the benefits of invariant manifolds and low-thrust control toward developing a low-computational-cost transfer trajectory between libration orbits around the L1 and L2 libration points in the Sun-Earth system has been proposed in this paper. A new structure for a multi-objective transfer trajectory optimization model that divides the transfer trajectory into several segments and gives the dominations for invariant manifolds and low-thrust control in different segments has been established. To reduce the computational cost of multi-objective transfer trajectory optimization, a mixed sampling strategy-based adaptive surrogate model has been proposed. Numerical simulations show that the results obtained from the adaptive surrogate-based multi-objective optimization are in agreement with the results obtained using direct multi-objective optimization methods, and the computational workload of the adaptive surrogate-based multi-objective optimization is only approximately 10% of that of direct multi-objective optimization. Furthermore, the generating efficiency of the Pareto points of the adaptive surrogate-based multi-objective optimization is approximately 8 times that of the direct multi-objective optimization. Therefore, the proposed adaptive surrogate-based multi-objective optimization provides obvious advantages over direct multi-objective optimization methods.

  8. Comparison between iterative wavefront control algorithm and direct gradient wavefront control algorithm for adaptive optics system

    NASA Astrophysics Data System (ADS)

    Cheng, Sheng-Yi; Liu, Wen-Jin; Chen, Shan-Qiu; Dong, Li-Zhi; Yang, Ping; Xu, Bing

    2015-08-01

    Among all kinds of wavefront control algorithms in adaptive optics systems, the direct gradient wavefront control algorithm is the most widespread and common method. This control algorithm obtains the actuator voltages directly from wavefront slopes through pre-measuring the relational matrix between deformable mirror actuators and Hartmann wavefront sensor with perfect real-time characteristic and stability. However, with increasing the number of sub-apertures in wavefront sensor and deformable mirror actuators of adaptive optics systems, the matrix operation in direct gradient algorithm takes too much time, which becomes a major factor influencing control effect of adaptive optics systems. In this paper we apply an iterative wavefront control algorithm to high-resolution adaptive optics systems, in which the voltages of each actuator are obtained through iteration arithmetic, which gains great advantage in calculation and storage. For AO system with thousands of actuators, the computational complexity estimate is about O(n2) ˜ O(n3) in direct gradient wavefront control algorithm, while the computational complexity estimate in iterative wavefront control algorithm is about O(n) ˜ (O(n)3/2), in which n is the number of actuators of AO system. And the more the numbers of sub-apertures and deformable mirror actuators, the more significant advantage the iterative wavefront control algorithm exhibits. Project supported by the National Key Scientific and Research Equipment Development Project of China (Grant No. ZDYZ2013-2), the National Natural Science Foundation of China (Grant No. 11173008), and the Sichuan Provincial Outstanding Youth Academic Technology Leaders Program, China (Grant No. 2012JQ0012).

  9. Bounded Linear Stability Analysis - A Time Delay Margin Estimation Approach for Adaptive Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Ishihara, Abraham K.; Krishnakumar, Kalmanje Srinlvas; Bakhtiari-Nejad, Maryam

    2009-01-01

    This paper presents a method for estimating time delay margin for model-reference adaptive control of systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to represent the conventional model-reference adaptive law by a locally bounded linear approximation within a small time window using the comparison lemma. The locally bounded linear approximation of the combined adaptive system is cast in a form of an input-time-delay differential equation over a small time window. The time delay margin of this system represents a local stability measure and is computed analytically by a matrix measure method, which provides a simple analytical technique for estimating an upper bound of time delay margin. Based on simulation results for a scalar model-reference adaptive control system, both the bounded linear stability method and the matrix measure method are seen to provide a reasonably accurate and yet not too conservative time delay margin estimation.

  10. Learning-Based Adaptive Optimal Tracking Control of Strict-Feedback Nonlinear Systems.

    PubMed

    Gao, Weinan; Jiang, Zhong-Ping; Weinan Gao; Zhong-Ping Jiang; Gao, Weinan; Jiang, Zhong-Ping

    2018-06-01

    This paper proposes a novel data-driven control approach to address the problem of adaptive optimal tracking for a class of nonlinear systems taking the strict-feedback form. Adaptive dynamic programming (ADP) and nonlinear output regulation theories are integrated for the first time to compute an adaptive near-optimal tracker without any a priori knowledge of the system dynamics. Fundamentally different from adaptive optimal stabilization problems, the solution to a Hamilton-Jacobi-Bellman (HJB) equation, not necessarily a positive definite function, cannot be approximated through the existing iterative methods. This paper proposes a novel policy iteration technique for solving positive semidefinite HJB equations with rigorous convergence analysis. A two-phase data-driven learning method is developed and implemented online by ADP. The efficacy of the proposed adaptive optimal tracking control methodology is demonstrated via a Van der Pol oscillator with time-varying exogenous signals.

  11. An adaptive angle-doppler compensation method for airborne bistatic radar based on PAST

    NASA Astrophysics Data System (ADS)

    Hang, Xu; Jun, Zhao

    2018-05-01

    Adaptive angle-Doppler compensation method extract the requisite information based on the data itself adaptively, thus avoiding the problem of performance degradation caused by inertia system error. However, this method requires estimation and egiendecomposition of sample covariance matrix, which has a high computational complexity and limits its real-time application. In this paper, an adaptive angle Doppler compensation method based on projection approximation subspace tracking (PAST) is studied. The method uses cyclic iterative processing to quickly estimate the positions of the spectral center of the maximum eigenvector of each range cell, and the computational burden of matrix estimation and eigen-decompositon is avoided, and then the spectral centers of all range cells is overlapped by two dimensional compensation. Simulation results show the proposed method can effectively reduce the no homogeneity of airborne bistatic radar, and its performance is similar to that of egien-decomposition algorithms, but the computation load is obviously reduced and easy to be realized.

  12. An adaptive mesh-moving and refinement procedure for one-dimensional conservation laws

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Flaherty, Joseph E.; Arney, David C.

    1993-01-01

    We examine the performance of an adaptive mesh-moving and /or local mesh refinement procedure for the finite difference solution of one-dimensional hyperbolic systems of conservation laws. Adaptive motion of a base mesh is designed to isolate spatially distinct phenomena, and recursive local refinement of the time step and cells of the stationary or moving base mesh is performed in regions where a refinement indicator exceeds a prescribed tolerance. These adaptive procedures are incorporated into a computer code that includes a MacCormack finite difference scheme wih Davis' artificial viscosity model and a discretization error estimate based on Richardson's extrapolation. Experiments are conducted on three problems in order to qualify the advantages of adaptive techniques relative to uniform mesh computations and the relative benefits of mesh moving and refinement. Key results indicate that local mesh refinement, with and without mesh moving, can provide reliable solutions at much lower computational cost than possible on uniform meshes; that mesh motion can be used to improve the results of uniform mesh solutions for a modest computational effort; that the cost of managing the tree data structure associated with refinement is small; and that a combination of mesh motion and refinement reliably produces solutions for the least cost per unit accuracy.

  13. Co-Adaptive Aiding and Automation Enhance Operator Performance

    DTIC Science & Technology

    2013-03-01

    activation system. There is a close relation between physiologically activated adaptive aiding and brain- computer interfaces ( BCI ). BCI here refers...classification of EEG signals (Farwell & Donchin, 1988). Physiologically activated adaptive aiding is, in a sense, a special case of BCI wherein the...as passive BCI , e.g. Zander, Kothe, Jatzev, & 3 Distribution A: Approved for public release; distribution unlimited. 88 ABW Cleared 05/13/2013

  14. The AdaptiSPECT Imaging Aperture

    PubMed Central

    Chaix, Cécile; Moore, Jared W.; Van Holen, Roel; Barrett, Harrison H.; Furenlid, Lars R.

    2015-01-01

    In this paper, we present the imaging aperture of an adaptive SPECT imaging system being developed at the Center for Gamma Ray Imaging (AdaptiSPECT). AdaptiSPECT is designed to automatically change its configuration in response to preliminary data, in order to improve image quality for a particular task. In a traditional pinhole SPECT imaging system, the characteristics (magnification, resolution, field of view) are set by the geometry of the system, and any modification can be accomplished only by manually changing the collimator and the distance of the detector to the center of the field of view. Optimization of the imaging system for a specific task on a specific individual is therefore difficult. In an adaptive SPECT imaging system, on the other hand, the configuration can be conveniently changed under computer control. A key component of an adaptive SPECT system is its aperture. In this paper, we present the design, specifications, and fabrication of the adaptive pinhole aperture that will be used for AdaptiSPECT, as well as the controls that enable autonomous adaptation. PMID:27019577

  15. Introducing Enabling Computational Tools to the Climate Sciences: Multi-Resolution Climate Modeling with Adaptive Cubed-Sphere Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jablonowski, Christiane

    The research investigates and advances strategies how to bridge the scale discrepancies between local, regional and global phenomena in climate models without the prohibitive computational costs of global cloud-resolving simulations. In particular, the research explores new frontiers in computational geoscience by introducing high-order Adaptive Mesh Refinement (AMR) techniques into climate research. AMR and statically-adapted variable-resolution approaches represent an emerging trend for atmospheric models and are likely to become the new norm in future-generation weather and climate models. The research advances the understanding of multi-scale interactions in the climate system and showcases a pathway how to model these interactions effectively withmore » advanced computational tools, like the Chombo AMR library developed at the Lawrence Berkeley National Laboratory. The research is interdisciplinary and combines applied mathematics, scientific computing and the atmospheric sciences. In this research project, a hierarchy of high-order atmospheric models on cubed-sphere computational grids have been developed that serve as an algorithmic prototype for the finite-volume solution-adaptive Chombo-AMR approach. The foci of the investigations have lied on the characteristics of both static mesh adaptations and dynamically-adaptive grids that can capture flow fields of interest like tropical cyclones. Six research themes have been chosen. These are (1) the introduction of adaptive mesh refinement techniques into the climate sciences, (2) advanced algorithms for nonhydrostatic atmospheric dynamical cores, (3) an assessment of the interplay between resolved-scale dynamical motions and subgrid-scale physical parameterizations, (4) evaluation techniques for atmospheric model hierarchies, (5) the comparison of AMR refinement strategies and (6) tropical cyclone studies with a focus on multi-scale interactions and variable-resolution modeling. The results of this research project demonstrate significant advances in all six research areas. The major conclusions are that statically-adaptive variable-resolution modeling is currently becoming mature in the climate sciences, and that AMR holds outstanding promise for future-generation weather and climate models on high-performance computing architectures.« less

  16. A novel joint-processing adaptive nonlinear equalizer using a modular recurrent neural network for chaotic communication systems.

    PubMed

    Zhao, Haiquan; Zeng, Xiangping; Zhang, Jiashu; Liu, Yangguang; Wang, Xiaomin; Li, Tianrui

    2011-01-01

    To eliminate nonlinear channel distortion in chaotic communication systems, a novel joint-processing adaptive nonlinear equalizer based on a pipelined recurrent neural network (JPRNN) is proposed, using a modified real-time recurrent learning (RTRL) algorithm. Furthermore, an adaptive amplitude RTRL algorithm is adopted to overcome the deteriorating effect introduced by the nesting process. Computer simulations illustrate that the proposed equalizer outperforms the pipelined recurrent neural network (PRNN) and recurrent neural network (RNN) equalizers. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Development of a prototype automatic controller for liquid cooling garment inlet temperature

    NASA Technical Reports Server (NTRS)

    Weaver, C. S.; Webbon, B. W.; Montgomery, L. D.

    1982-01-01

    The development of a computer control of a liquid cooled garment (LCG) inlet temperature is descirbed. An adaptive model of the LCG is used to predict the heat-removal rates for various inlet temperatures. An experimental system that contains a microcomputer was constructed. The LCG inlet and outlet temperatures and the heat exchanger outlet temperature form the inputs to the computer. The adaptive model prediction method of control is successful during tests where the inlet temperature is automatically chosen by the computer. It is concluded that the program can be implemented in a microprocessor of a size that is practical for a life support back-pack.

  18. Sky coverage modeling for the whole sky for laser guide star multiconjugate adaptive optics.

    PubMed

    Wang, Lianqi; Andersen, David; Ellerbroek, Brent

    2012-06-01

    The scientific productivity of laser guide star adaptive optics systems strongly depends on the sky coverage, which describes the probability of finding natural guide stars for the tip/tilt wavefront sensor(s) to achieve a certain performance. Knowledge of the sky coverage is also important for astronomers planning their observations. In this paper, we present an efficient method to compute the sky coverage for the laser guide star multiconjugate adaptive optics system, the Narrow Field Infrared Adaptive Optics System (NFIRAOS), being designed for the Thirty Meter Telescope project. We show that NFIRAOS can achieve more than 70% sky coverage over most of the accessible sky with the requirement of 191 nm total rms wavefront.

  19. Real time computer data system for the 40 x 80 ft wind tunnel facility at Ames Research Center

    NASA Technical Reports Server (NTRS)

    Cambra, J. M.; Tolari, G. P.

    1974-01-01

    The wind tunnel realtime computer system is a distributed data gathering system that features a master computer subsystem, a high speed data gathering subsystem, a quick look dynamic analysis and vibration control subsystem, an analog recording back-up subsystem, a pulse code modulation (PCM) on-board subsystem, a communications subsystem, and a transducer excitation and calibration subsystem. The subsystems are married to the master computer through an executive software system and standard hardware and FORTRAN software interfaces. The executive software system has four basic software routines. These are the playback, setup, record, and monitor routines. The standard hardware interfaces along with the software interfaces provide the system with the capability of adapting to new environments.

  20. Probabilistic methods for rotordynamics analysis

    NASA Technical Reports Server (NTRS)

    Wu, Y.-T.; Torng, T. Y.; Millwater, H. R.; Fossum, A. F.; Rheinfurth, M. H.

    1991-01-01

    This paper summarizes the development of the methods and a computer program to compute the probability of instability of dynamic systems that can be represented by a system of second-order ordinary linear differential equations. Two instability criteria based upon the eigenvalues or Routh-Hurwitz test functions are investigated. Computational methods based on a fast probability integration concept and an efficient adaptive importance sampling method are proposed to perform efficient probabilistic analysis. A numerical example is provided to demonstrate the methods.

  1. Modular chassis simplifies packaging and interconnecting of circuit boards

    NASA Technical Reports Server (NTRS)

    Arens, W. E.; Boline, K. G.

    1964-01-01

    A system of modular chassis structures has simplified the design for mounting a number of printed circuit boards. This design is structurally adaptable to computer and industrial control system applications.

  2. Genetic algorithms in adaptive fuzzy control

    NASA Technical Reports Server (NTRS)

    Karr, C. Lucas; Harper, Tony R.

    1992-01-01

    Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust fuzzy membership functions in response to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific computer-simulated chemical system is used to demonstrate the ideas presented.

  3. An adaptive importance sampling algorithm for Bayesian inversion with multimodal distributions

    DOE PAGES

    Li, Weixuan; Lin, Guang

    2015-03-21

    Parametric uncertainties are encountered in the simulations of many physical systems, and may be reduced by an inverse modeling procedure that calibrates the simulation results to observations on the real system being simulated. Following Bayes’ rule, a general approach for inverse modeling problems is to sample from the posterior distribution of the uncertain model parameters given the observations. However, the large number of repetitive forward simulations required in the sampling process could pose a prohibitive computational burden. This difficulty is particularly challenging when the posterior is multimodal. We present in this paper an adaptive importance sampling algorithm to tackle thesemore » challenges. Two essential ingredients of the algorithm are: 1) a Gaussian mixture (GM) model adaptively constructed as the proposal distribution to approximate the possibly multimodal target posterior, and 2) a mixture of polynomial chaos (PC) expansions, built according to the GM proposal, as a surrogate model to alleviate the computational burden caused by computational-demanding forward model evaluations. In three illustrative examples, the proposed adaptive importance sampling algorithm demonstrates its capabilities of automatically finding a GM proposal with an appropriate number of modes for the specific problem under study, and obtaining a sample accurately and efficiently representing the posterior with limited number of forward simulations.« less

  4. An adaptive importance sampling algorithm for Bayesian inversion with multimodal distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Weixuan; Lin, Guang, E-mail: guanglin@purdue.edu

    2015-08-01

    Parametric uncertainties are encountered in the simulations of many physical systems, and may be reduced by an inverse modeling procedure that calibrates the simulation results to observations on the real system being simulated. Following Bayes' rule, a general approach for inverse modeling problems is to sample from the posterior distribution of the uncertain model parameters given the observations. However, the large number of repetitive forward simulations required in the sampling process could pose a prohibitive computational burden. This difficulty is particularly challenging when the posterior is multimodal. We present in this paper an adaptive importance sampling algorithm to tackle thesemore » challenges. Two essential ingredients of the algorithm are: 1) a Gaussian mixture (GM) model adaptively constructed as the proposal distribution to approximate the possibly multimodal target posterior, and 2) a mixture of polynomial chaos (PC) expansions, built according to the GM proposal, as a surrogate model to alleviate the computational burden caused by computational-demanding forward model evaluations. In three illustrative examples, the proposed adaptive importance sampling algorithm demonstrates its capabilities of automatically finding a GM proposal with an appropriate number of modes for the specific problem under study, and obtaining a sample accurately and efficiently representing the posterior with limited number of forward simulations.« less

  5. Computer interfaces for the visually impaired

    NASA Technical Reports Server (NTRS)

    Higgins, Gerry

    1991-01-01

    Information access via computer terminals extends to blind and low vision persons employed in many technical and nontechnical disciplines. Two aspects are detailed of providing computer technology for persons with a vision related handicap. First, research into the most effective means of integrating existing adaptive technologies into information systems was made. This was conducted to integrate off the shelf products with adaptive equipment for cohesive integrated information processing systems. Details are included that describe the type of functionality required in software to facilitate its incorporation into a speech and/or braille system. The second aspect is research into providing audible and tactile interfaces to graphics based interfaces. Parameters are included for the design and development of the Mercator Project. The project will develop a prototype system for audible access to graphics based interfaces. The system is being built within the public domain architecture of X windows to show that it is possible to provide access to text based applications within a graphical environment. This information will be valuable to suppliers to ADP equipment since new legislation requires manufacturers to provide electronic access to the visually impaired.

  6. VMEbus based computer and real-time UNIX as infrastructure of DAQ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasu, Y.; Fujii, H.; Nomachi, M.

    1994-12-31

    This paper describes what the authors have constructed as the infrastructure of data acquisition system (DAQ). The paper reports recent developments concerned with HP VME board computer with LynxOS (HP742rt/HP-RT) and Alpha/OSF1 with VMEbus adapter. The paper also reports current status of developing a Benchmark Suite for Data Acquisition (DAQBENCH) for measuring not only the performance of VME/CAMAC access but also that of the context switching, the inter-process communications and so on, for various computers including Workstation-based systems and VME board computers.

  7. A brain-computer interface controlled mail client.

    PubMed

    Yu, Tianyou; Li, Yuanqing; Long, Jinyi; Wang, Cong

    2013-01-01

    In this paper, we propose a brain-computer interface (BCI) based mail client. This system is controlled by hybrid features extracted from scalp-recorded electroencephalographic (EEG). We emulate the computer mouse by the motor imagery-based mu rhythm and the P300 potential. Furthermore, an adaptive P300 speller is included to provide text input function. With this BCI mail client, users can receive, read, write mails, as well as attach files in mail writing. The system has been tested on 3 subjects. Experimental results show that mail communication with this system is feasible.

  8. Adaptive oxide electronics: A review

    NASA Astrophysics Data System (ADS)

    Ha, Sieu D.; Ramanathan, Shriram

    2011-10-01

    Novel information processing techniques are being actively explored to overcome fundamental limitations associated with CMOS scaling. A new paradigm of adaptive electronic devices is emerging that may reshape the frontiers of electronics and enable new modalities. Creating systems that can learn and adapt to various inputs has generally been a complex algorithm problem in information science, albeit with wide-ranging and powerful applications from medical diagnosis to control systems. Recent work in oxide electronics suggests that it may be plausible to implement such systems at the device level, thereby drastically increasing computational density and power efficiency and expanding the potential for electronics beyond Boolean computation. Intriguing possibilities of adaptive electronics include fabrication of devices that mimic human brain functionality: the strengthening and weakening of synapses emulated by electrically, magnetically, thermally, or optically tunable properties of materials.In this review, we detail materials and device physics studies on functional metal oxides that may be utilized for adaptive electronics. It has been shown that properties, such as resistivity, polarization, and magnetization, of many oxides can be modified electrically in a non-volatile manner, suggesting that these materials respond to electrical stimulus similarly as a neural synapse. We discuss what device characteristics will likely be relevant for integration into adaptive platforms and then survey a variety of oxides with respect to these properties, such as, but not limited to, TaOx, SrTiO3, and Bi4-xLaxTi3O12. The physical mechanisms in each case are detailed and analyzed within the framework of adaptive electronics. We then review theoretically formulated and current experimentally realized adaptive devices with functional oxides, such as self-programmable logic and neuromorphic circuits. Finally, we speculate on what advances in materials physics and engineering may be needed to realize the full potential of adaptive oxide electronics.

  9. Adaptive Social Learning Based on Crowdsourcing

    ERIC Educational Resources Information Center

    Karataev, Evgeny; Zadorozhny, Vladimir

    2017-01-01

    Many techniques have been developed to enhance learning experience with computer technology. A particularly great influence of technology on learning came with the emergence of the web and adaptive educational hypermedia systems. While the web enables users to interact and collaborate with each other to create, organize, and share knowledge via…

  10. Adaptive Feedback Improving Learningful Conversations at Workplace

    ERIC Educational Resources Information Center

    Gaeta, Matteo; Mangione, Giuseppina Rita; Miranda, Sergio; Orciuoli, Francesco

    2013-01-01

    This work proposes the definition of an Adaptive Conversation-based Learning System (ACLS) able to foster computer-mediated tutorial dialogues at the workplace in order to increase the probability to generate meaningful learning during conversations. ACLS provides a virtual assistant selecting the best partner to involve in the conversation and…

  11. An application of modern control theory to jet propulsion systems. [considering onboard computer

    NASA Technical Reports Server (NTRS)

    Merrill, W. C.

    1975-01-01

    The control of an airbreathing turbojet engine by an onboard digital computer is studied. The approach taken is to model the turbojet engine as a linear, multivariable system whose parameters vary with engine operating environment. From this model adaptive closed-loop or feedback control laws are designed and applied to the acceleration of the turbojet engine.

  12. Biomorphic Multi-Agent Architecture for Persistent Computing

    NASA Technical Reports Server (NTRS)

    Lodding, Kenneth N.; Brewster, Paul

    2009-01-01

    A multi-agent software/hardware architecture, inspired by the multicellular nature of living organisms, has been proposed as the basis of design of a robust, reliable, persistent computing system. Just as a multicellular organism can adapt to changing environmental conditions and can survive despite the failure of individual cells, a multi-agent computing system, as envisioned, could adapt to changing hardware, software, and environmental conditions. In particular, the computing system could continue to function (perhaps at a reduced but still reasonable level of performance) if one or more component( s) of the system were to fail. One of the defining characteristics of a multicellular organism is unity of purpose. In biology, the purpose is survival of the organism. The purpose of the proposed multi-agent architecture is to provide a persistent computing environment in harsh conditions in which repair is difficult or impossible. A multi-agent, organism-like computing system would be a single entity built from agents or cells. Each agent or cell would be a discrete hardware processing unit that would include a data processor with local memory, an internal clock, and a suite of communication equipment capable of both local line-of-sight communications and global broadcast communications. Some cells, denoted specialist cells, could contain such additional hardware as sensors and emitters. Each cell would be independent in the sense that there would be no global clock, no global (shared) memory, no pre-assigned cell identifiers, no pre-defined network topology, and no centralized brain or control structure. Like each cell in a living organism, each agent or cell of the computing system would contain a full description of the system encoded as genes, but in this case, the genes would be components of a software genome.

  13. A New Socio-technical Model for Studying Health Information Technology in Complex Adaptive Healthcare Systems

    PubMed Central

    Sittig, Dean F.; Singh, Hardeep

    2011-01-01

    Conceptual models have been developed to address challenges inherent in studying health information technology (HIT). This manuscript introduces an 8-dimensional model specifically designed to address the socio-technical challenges involved in design, development, implementation, use, and evaluation of HIT within complex adaptive healthcare systems. The 8 dimensions are not independent, sequential, or hierarchical, but rather are interdependent and interrelated concepts similar to compositions of other complex adaptive systems. Hardware and software computing infrastructure refers to equipment and software used to power, support, and operate clinical applications and devices. Clinical content refers to textual or numeric data and images that constitute the “language” of clinical applications. The human computer interface includes all aspects of the computer that users can see, touch, or hear as they interact with it. People refers to everyone who interacts in some way with the system, from developer to end-user, including potential patient-users. Workflow and communication are the processes or steps involved in assuring that patient care tasks are carried out effectively. Two additional dimensions of the model are internal organizational features (e.g., policies, procedures, and culture) and external rules and regulations, both of which may facilitate or constrain many aspects of the preceding dimensions. The final dimension is measurement and monitoring, which refers to the process of measuring and evaluating both intended and unintended consequences of HIT implementation and use. We illustrate how our model has been successfully applied in real-world complex adaptive settings to understand and improve HIT applications at various stages of development and implementation. PMID:20959322

  14. A new sociotechnical model for studying health information technology in complex adaptive healthcare systems.

    PubMed

    Sittig, Dean F; Singh, Hardeep

    2010-10-01

    Conceptual models have been developed to address challenges inherent in studying health information technology (HIT). This manuscript introduces an eight-dimensional model specifically designed to address the sociotechnical challenges involved in design, development, implementation, use and evaluation of HIT within complex adaptive healthcare systems. The eight dimensions are not independent, sequential or hierarchical, but rather are interdependent and inter-related concepts similar to compositions of other complex adaptive systems. Hardware and software computing infrastructure refers to equipment and software used to power, support and operate clinical applications and devices. Clinical content refers to textual or numeric data and images that constitute the 'language' of clinical applications. The human--computer interface includes all aspects of the computer that users can see, touch or hear as they interact with it. People refers to everyone who interacts in some way with the system, from developer to end user, including potential patient-users. Workflow and communication are the processes or steps involved in ensuring that patient care tasks are carried out effectively. Two additional dimensions of the model are internal organisational features (eg, policies, procedures and culture) and external rules and regulations, both of which may facilitate or constrain many aspects of the preceding dimensions. The final dimension is measurement and monitoring, which refers to the process of measuring and evaluating both intended and unintended consequences of HIT implementation and use. We illustrate how our model has been successfully applied in real-world complex adaptive settings to understand and improve HIT applications at various stages of development and implementation.

  15. Evolutionary psychology: new perspectives on cognition and motivation.

    PubMed

    Cosmides, Leda; Tooby, John

    2013-01-01

    Evolutionary psychology is the second wave of the cognitive revolution. The first wave focused on computational processes that generate knowledge about the world: perception, attention, categorization, reasoning, learning, and memory. The second wave views the brain as composed of evolved computational systems, engineered by natural selection to use information to adaptively regulate physiology and behavior. This shift in focus--from knowledge acquisition to the adaptive regulation of behavior--provides new ways of thinking about every topic in psychology. It suggests a mind populated by a large number of adaptive specializations, each equipped with content-rich representations, concepts, inference systems, and regulatory variables, which are functionally organized to solve the complex problems of survival and reproduction encountered by the ancestral hunter-gatherers from whom we are descended. We present recent empirical examples that illustrate how this approach has been used to discover new features of attention, categorization, reasoning, learning, emotion, and motivation.

  16. Some Useful Cost-Benefit Criteria for Evaluating Computer-Based Test Delivery Models and Systems

    ERIC Educational Resources Information Center

    Luecht, Richard M.

    2005-01-01

    Computer-based testing (CBT) is typically implemented using one of three general test delivery models: (1) multiple fixed testing (MFT); (2) computer-adaptive testing (CAT); or (3) multistage testing (MSTs). This article reviews some of the real cost drivers associated with CBT implementation--focusing on item production costs, the costs…

  17. Distributed computing environments for future space control systems

    NASA Technical Reports Server (NTRS)

    Viallefont, Pierre

    1993-01-01

    The aim of this paper is to present the results of a CNES research project on distributed computing systems. The purpose of this research was to study the impact of the use of new computer technologies in the design and development of future space applications. The first part of this study was a state-of-the-art review of distributed computing systems. One of the interesting ideas arising from this review is the concept of a 'virtual computer' allowing the distributed hardware architecture to be hidden from a software application. The 'virtual computer' can improve system performance by adapting the best architecture (addition of computers) to the software application without having to modify its source code. This concept can also decrease the cost and obsolescence of the hardware architecture. In order to verify the feasibility of the 'virtual computer' concept, a prototype representative of a distributed space application is being developed independently of the hardware architecture.

  18. Contrast adaptation in the Limulus lateral eye.

    PubMed

    Valtcheva, Tchoudomira M; Passaglia, Christopher L

    2015-12-01

    Luminance and contrast adaptation are neuronal mechanisms employed by the visual system to adjust our sensitivity to light. They are mediated by an assortment of cellular and network processes distributed across the retina and visual cortex. Both have been demonstrated in the eyes of many vertebrates, but only luminance adaptation has been shown in invertebrate eyes to date. Since the computational benefits of contrast adaptation should apply to all visual systems, we investigated whether this mechanism operates in horseshoe crab eyes, one of the best-understood neural networks in the animal kingdom. The spike trains of optic nerve fibers were recorded in response to light stimuli modulated randomly in time and delivered to single ommatidia or the whole eye. We found that the retina adapts to both the mean luminance and contrast of a white-noise stimulus, that luminance- and contrast-adaptive processes are largely independent, and that they originate within an ommatidium. Network interactions are not involved. A published computer model that simulates existing knowledge of the horseshoe crab eye did not show contrast adaptation, suggesting that a heretofore unknown mechanism may underlie the phenomenon. This mechanism does not appear to reside in photoreceptors because white-noise analysis of electroretinogram recordings did not show contrast adaptation. The likely site of origin is therefore the spike discharge mechanism of optic nerve fibers. The finding of contrast adaption in a retinal network as simple as the horseshoe crab eye underscores the broader importance of this image processing strategy to vision. Copyright © 2015 the American Physiological Society.

  19. Contrast adaptation in the Limulus lateral eye

    PubMed Central

    Valtcheva, Tchoudomira M.

    2015-01-01

    Luminance and contrast adaptation are neuronal mechanisms employed by the visual system to adjust our sensitivity to light. They are mediated by an assortment of cellular and network processes distributed across the retina and visual cortex. Both have been demonstrated in the eyes of many vertebrates, but only luminance adaptation has been shown in invertebrate eyes to date. Since the computational benefits of contrast adaptation should apply to all visual systems, we investigated whether this mechanism operates in horseshoe crab eyes, one of the best-understood neural networks in the animal kingdom. The spike trains of optic nerve fibers were recorded in response to light stimuli modulated randomly in time and delivered to single ommatidia or the whole eye. We found that the retina adapts to both the mean luminance and contrast of a white-noise stimulus, that luminance- and contrast-adaptive processes are largely independent, and that they originate within an ommatidium. Network interactions are not involved. A published computer model that simulates existing knowledge of the horseshoe crab eye did not show contrast adaptation, suggesting that a heretofore unknown mechanism may underlie the phenomenon. This mechanism does not appear to reside in photoreceptors because white-noise analysis of electroretinogram recordings did not show contrast adaptation. The likely site of origin is therefore the spike discharge mechanism of optic nerve fibers. The finding of contrast adaption in a retinal network as simple as the horseshoe crab eye underscores the broader importance of this image processing strategy to vision. PMID:26445869

  20. INS/GNSS Tightly-Coupled Integration Using Quaternion-Based AUPF for USV.

    PubMed

    Xia, Guoqing; Wang, Guoqing

    2016-08-02

    This paper addresses the problem of integration of Inertial Navigation System (INS) and Global Navigation Satellite System (GNSS) for the purpose of developing a low-cost, robust and highly accurate navigation system for unmanned surface vehicles (USVs). A tightly-coupled integration approach is one of the most promising architectures to fuse the GNSS data with INS measurements. However, the resulting system and measurement models turn out to be nonlinear, and the sensor stochastic measurement errors are non-Gaussian and distributed in a practical system. Particle filter (PF), one of the most theoretical attractive non-linear/non-Gaussian estimation methods, is becoming more and more attractive in navigation applications. However, the large computation burden limits its practical usage. For the purpose of reducing the computational burden without degrading the system estimation accuracy, a quaternion-based adaptive unscented particle filter (AUPF), which combines the adaptive unscented Kalman filter (AUKF) with PF, has been proposed in this paper. The unscented Kalman filter (UKF) is used in the algorithm to improve the proposal distribution and generate a posterior estimates, which specify the PF importance density function for generating particles more intelligently. In addition, the computational complexity of the filter is reduced with the avoidance of the re-sampling step. Furthermore, a residual-based covariance matching technique is used to adapt the measurement error covariance. A trajectory simulator based on a dynamic model of USV is used to test the proposed algorithm. Results show that quaternion-based AUPF can significantly improve the overall navigation accuracy and reliability.

  1. Principles of Adaptive Array Processing

    DTIC Science & Technology

    2006-09-01

    ACE with and without tapering (homogeneous case). These analytical results are less suited to predict the detection performance of a real system ...Nickel: Adaptive Beamforming for Phased Array Radars. Proc. Int. Radar Symposium IRS’98 (Munich, Sept. 1998), DGON and VDE /ITG, pp. 897-906.(Reprint also...strategies for airborne radar. Asilomar Conf. on Signals, Systems and Computers, Pacific Grove, CA, 1998, IEEE Cat.Nr. 0-7803-5148-7/98, pp. 1327-1331. [17

  2. Evolvable social agents for bacterial systems modeling.

    PubMed

    Paton, Ray; Gregory, Richard; Vlachos, Costas; Saunders, Jon; Wu, Henry

    2004-09-01

    We present two approaches to the individual-based modeling (IbM) of bacterial ecologies and evolution using computational tools. The IbM approach is introduced, and its important complementary role to biosystems modeling is discussed. A fine-grained model of bacterial evolution is then presented that is based on networks of interactivity between computational objects representing genes and proteins. This is followed by a coarser grained agent-based model, which is designed to explore the evolvability of adaptive behavioral strategies in artificial bacteria represented by learning classifier systems. The structure and implementation of the two proposed individual-based bacterial models are discussed, and some results from simulation experiments are presented, illustrating their adaptive properties.

  3. A Framework for the Development of Context-Adaptable User Interfaces for Ubiquitous Computing Systems.

    PubMed

    Varela, Gervasio; Paz-Lopez, Alejandro; Becerra, Jose A; Duro, Richard

    2016-07-07

    This paper addresses the problem of developing user interfaces for Ubiquitous Computing (UC) and Ambient Intelligence (AmI) systems. These kind of systems are expected to provide a natural user experience, considering interaction modalities adapted to the user abilities and preferences and using whatever interaction devices are present in the environment. These interaction devices are not necessarily known at design time. The task is quite complicated due to the variety of devices and technologies, and the diversity of scenarios, and it usually burdens the developer with the need to create many different UIs in order to consider the foreseeable user-environment combinations. Here, we propose an UI abstraction framework for UC and AmI systems that effectively improves the portability of those systems between different environments and for different users. It allows developers to design and implement a single UI capable of being deployed with different devices and modalities regardless the physical location.

  4. MESO-Adaptation Based on Model Oriented Reengineering Process for Human-Computer Interface (MESOMORPH)

    DTIC Science & Technology

    2004-02-01

    Publishing Company , Addison- Wesley Systems Programming Series, 1990. [5] E. Stroulia and T. Systa. Dynamic analysis for reverse engineering and program...understanding, Applied Computing Reviews, Spring 2002, ACM Press. [6] El- Ramly , Mohammad; Stroulia, Eleni; Sorenson, Paul. “Recovering software

  5. Benchmarking hardware architecture candidates for the NFIRAOS real-time controller

    NASA Astrophysics Data System (ADS)

    Smith, Malcolm; Kerley, Dan; Herriot, Glen; Véran, Jean-Pierre

    2014-07-01

    As a part of the trade study for the Narrow Field Infrared Adaptive Optics System, the adaptive optics system for the Thirty Meter Telescope, we investigated the feasibility of performing real-time control computation using a Linux operating system and Intel Xeon E5 CPUs. We also investigated a Xeon Phi based architecture which allows higher levels of parallelism. This paper summarizes both the CPU based real-time controller architecture and the Xeon Phi based RTC. The Intel Xeon E5 CPU solution meets the requirements and performs the computation for one AO cycle in an average of 767 microseconds. The Xeon Phi solution did not meet the 1200 microsecond time requirement and also suffered from unpredictable execution times. More detailed benchmark results are reported for both architectures.

  6. A survey to identify the clinical coding and classification systems currently in use across Europe.

    PubMed

    de Lusignan, S; Minmagh, C; Kennedy, J; Zeimet, M; Bommezijn, H; Bryant, J

    2001-01-01

    This is a survey to identify what clinical coding systems are currently in use across the European Union, and the states seeking membership to it. We sought to identify what systems are currently used and to what extent they were subject to local adaptation. Clinical coding should facilitate identifying key medical events in a computerised medical record, and aggregating information across groups of records. The emerging new driver is as the enabler of the life-long computerised medical record. A prerequisite for this level of functionality is the transfer of information between different computer systems. This transfer can be facilitated either by working on the interoperability problems between disparate systems or by harmonising the underlying data. This paper examines the extent to which the latter has occurred across Europe. Literature and Internet search. Requests for information via electronic mail to pan-European mailing lists of health informatics professionals. Coding systems are now a de facto part of health information systems across Europe. There are relatively few coding systems in existence across Europe. ICD9 and ICD 10, ICPC and Read were the most established. However the local adaptation of these classification systems either on a by country or by computer software manufacturer basis; significantly reduces the ability for the meaning coded with patients computer records to be easily transferred from one medical record system to another. There is no longer any debate as to whether a coding or classification system should be used. Convergence of different classifications systems should be encouraged. Countries and computer manufacturers within the EU should be encouraged to stop making local modifications to coding and classification systems, as this practice risks significantly slowing progress towards easy transfer of records between computer systems.

  7. Image statistics and the perception of surface gloss and lightness.

    PubMed

    Kim, Juno; Anderson, Barton L

    2010-07-01

    Despite previous data demonstrating the critical importance of 3D surface geometry in the perception of gloss and lightness, I. Motoyoshi, S. Nishida, L. Sharan, and E. H. Adelson (2007) recently proposed that a simple image statistic--histogram or sub-band skew--is computed by the visual system to infer the gloss and albedo of surfaces. One key source of evidence used to support this claim was an experiment in which adaptation to skewed image statistics resulted in opponent aftereffects in observers' judgments of gloss and lightness. We report a series of adaptation experiments that were designed to assess the cause of these aftereffects. We replicated their original aftereffects in gloss but found no consistent aftereffect in lightness. We report that adaptation to zero-skew adaptors produced similar aftereffects as positively skewed adaptors, and that negatively skewed adaptors induced no reliable aftereffects. We further find that the adaptation effect observed with positively skewed adaptors is not robust to changes in mean luminance that diminish the intensity of the luminance extrema. Finally, we show that adaptation to positive skew reduces (rather than increases) the apparent lightness of light pigmentation on non-uniform albedo surfaces. These results challenge the view that the adaptation results reported by Motoyoshi et al. (2007) provide evidence that skew is explicitly computed by the visual system.

  8. Adaptive local basis set for Kohn–Sham density functional theory in a discontinuous Galerkin framework II: Force, vibration, and molecular dynamics calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Gaigong; Lin, Lin, E-mail: linlin@math.berkeley.edu; Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

    Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynmanmore » forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Since the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H{sub 2} and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.« less

  9. Adaptive local basis set for Kohn–Sham density functional theory in a discontinuous Galerkin framework II: Force, vibration, and molecular dynamics calculations

    DOE PAGES

    Zhang, Gaigong; Lin, Lin; Hu, Wei; ...

    2017-01-27

    Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynmanmore » forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Sin ce the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H 2 and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.« less

  10. Adaptive local basis set for Kohn–Sham density functional theory in a discontinuous Galerkin framework II: Force, vibration, and molecular dynamics calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Gaigong; Lin, Lin; Hu, Wei

    Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynmanmore » forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Sin ce the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H 2 and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.« less

  11. Adaptive local basis set for Kohn-Sham density functional theory in a discontinuous Galerkin framework II: Force, vibration, and molecular dynamics calculations

    NASA Astrophysics Data System (ADS)

    Zhang, Gaigong; Lin, Lin; Hu, Wei; Yang, Chao; Pask, John E.

    2017-04-01

    Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn-Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann-Feynman forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Since the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann-Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H2 and liquid Al-Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.

  12. Fast computation of an optimal controller for large-scale adaptive optics.

    PubMed

    Massioni, Paolo; Kulcsár, Caroline; Raynaud, Henri-François; Conan, Jean-Marc

    2011-11-01

    The linear quadratic Gaussian regulator provides the minimum-variance control solution for a linear time-invariant system. For adaptive optics (AO) applications, under the hypothesis of a deformable mirror with instantaneous response, such a controller boils down to a minimum-variance phase estimator (a Kalman filter) and a projection onto the mirror space. The Kalman filter gain can be computed by solving an algebraic Riccati matrix equation, whose computational complexity grows very quickly with the size of the telescope aperture. This "curse of dimensionality" makes the standard solvers for Riccati equations very slow in the case of extremely large telescopes. In this article, we propose a way of computing the Kalman gain for AO systems by means of an approximation that considers the turbulence phase screen as the cropped version of an infinite-size screen. We demonstrate the advantages of the methods for both off- and on-line computational time, and we evaluate its performance for classical AO as well as for wide-field tomographic AO with multiple natural guide stars. Simulation results are reported.

  13. An Adaptive Priority Tuning System for Optimized Local CPU Scheduling using BOINC Clients

    NASA Astrophysics Data System (ADS)

    Mnaouer, Adel B.; Ragoonath, Colin

    2010-11-01

    Volunteer Computing (VC) is a Distributed Computing model which utilizes idle CPU cycles from computing resources donated by volunteers who are connected through the Internet to form a very large-scale, loosely coupled High Performance Computing environment. Distributed Volunteer Computing environments such as the BOINC framework is concerned mainly with the efficient scheduling of the available resources to the applications which require them. The BOINC framework thus contains a number of scheduling policies/algorithms both on the server-side and on the client which work together to maximize the available resources and to provide a degree of QoS in an environment which is highly volatile. This paper focuses on the BOINC client and introduces an adaptive priority tuning client side middleware application which improves the execution times of Work Units (WUs) while maintaining an acceptable Maximum Response Time (MRT) for the end user. We have conducted extensive experimentation of the proposed system and the results show clear speedup of BOINC applications using our optimized middleware as opposed to running using the original BOINC client.

  14. ENFIN a network to enhance integrative systems biology.

    PubMed

    Kahlem, Pascal; Birney, Ewan

    2007-12-01

    Integration of biological data of various types and development of adapted bioinformatics tools represent critical objectives to enable research at the systems level. The European Network of Excellence ENFIN is engaged in developing both an adapted infrastructure to connect databases and platforms to enable the generation of new bioinformatics tools as well as the experimental validation of computational predictions. We will give an overview of the projects tackled within ENFIN and discuss the challenges associated with integration for systems biology.

  15. Towards Contextualized Learning Services

    NASA Astrophysics Data System (ADS)

    Specht, Marcus

    Personalization of feedback and instruction has often been considered as a key feature in learning support. The adaptations of the instructional process to the individual and its different aspects have been investigated from different research perspectives as learner modelling, intelligent tutoring systems, adaptive hypermedia, adaptive instruction and others. Already in the 1950s first commercial systems for adaptive instruction for trainings of keyboard skills have been developed utilizing adaptive configuration of feedback based on user performance and interaction footprints (Pask 1964). Around adaptive instruction there is a variety of research issues bringing together interdisciplinary research from computer science, engineering, psychology, psychotherapy, cybernetics, system dynamics, instructional design, and empirical research on technology enhanced learning. When classifying best practices of adaptive instruction different parameters of the instructional process have been identified which are adapted to the learner, as: sequence and size of task difficulty, time of feedback, pace of learning speed, reinforcement plan and others these are often referred to the adaptation target. Furthermore Aptitude Treatment Interaction studies explored the effect of adapting instructional parameters to different characteristics of the learner (Tennyson and Christensen 1988) as task performance, personality characteristics, or cognitive abilities, this is information is referred to as adaptation mean.

  16. Fuzzy Adaptive Control Design and Discretization for a Class of Nonlinear Uncertain Systems.

    PubMed

    Zhao, Xudong; Shi, Peng; Zheng, Xiaolong

    2016-06-01

    In this paper, tracking control problems are investigated for a class of uncertain nonlinear systems in lower triangular form. First, a state-feedback controller is designed by using adaptive backstepping technique and the universal approximation ability of fuzzy logic systems. During the design procedure, a developed method with less computation is proposed by constructing one maximum adaptive parameter. Furthermore, adaptive controllers with nonsymmetric dead-zone are also designed for the systems. Then, a sampled-data control scheme is presented to discretize the obtained continuous-time controller by using the forward Euler method. It is shown that both proposed continuous and discrete controllers can ensure that the system output tracks the target signal with a small bounded error and the other closed-loop signals remain bounded. Two simulation examples are presented to verify the effectiveness and applicability of the proposed new design techniques.

  17. VLSI implementation of a new LMS-based algorithm for noise removal in ECG signal

    NASA Astrophysics Data System (ADS)

    Satheeskumaran, S.; Sabrigiriraj, M.

    2016-06-01

    Least mean square (LMS)-based adaptive filters are widely deployed for removing artefacts in electrocardiogram (ECG) due to less number of computations. But they posses high mean square error (MSE) under noisy environment. The transform domain variable step-size LMS algorithm reduces the MSE at the cost of computational complexity. In this paper, a variable step-size delayed LMS adaptive filter is used to remove the artefacts from the ECG signal for improved feature extraction. The dedicated digital Signal processors provide fast processing, but they are not flexible. By using field programmable gate arrays, the pipelined architectures can be used to enhance the system performance. The pipelined architecture can enhance the operation efficiency of the adaptive filter and save the power consumption. This technique provides high signal-to-noise ratio and low MSE with reduced computational complexity; hence, it is a useful method for monitoring patients with heart-related problem.

  18. Adaptive elimination of optical fiber transmission noise in fiber ocean bottom seismic system

    NASA Astrophysics Data System (ADS)

    Zhong, Qiuwen; Hu, Zhengliang; Cao, Chunyan; Dong, Hongsheng

    2017-10-01

    In this paper, a pressure and acceleration insensitive reference Interferometer is used to obtain laser and public noise introduced by transmission fiber and laser. By using direct subtraction and adaptive filtering, this paper attempts to eliminate and estimation the transmission noise of sensing probe. This paper compares the noise suppression effect of four methods, including the direct subtraction (DS), the least mean square error adaptive elimination (LMS), the normalized least mean square error adaptive elimination (NLMS) and the least square (RLS) adaptive filtering. The experimental results show that the noise reduction effect of RLS and NLMS are almost the same, better than LMS and DS, which can reach 8dB (@100Hz). But considering the workload, RLS is not conducive to the real-time operating system. When it comes to the same treatment effect, the practicability of NLMS is higher than RLS. The noise reduction effect of LMS is slightly worse than that of RLS and NLMS, about 6dB (@100Hz), but its computational complexity is small, which is beneficial to the real time system implementation. It can also be seen that the DS method has the least amount of computational complexity, but the noise suppression effect is worse than that of the adaptive filter due to the difference of the noise amplitude between the RI and the SI, only 4dB (@100Hz) can be reached. The adaptive filter can basically eliminate the influence of the transmission noise, and the simulation signal of the sensor is kept intact.

  19. An Application Development Platform for Neuromorphic Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dean, Mark; Chan, Jason; Daffron, Christopher

    2016-01-01

    Dynamic Adaptive Neural Network Arrays (DANNAs) are neuromorphic computing systems developed as a hardware based approach to the implementation of neural networks. They feature highly adaptive and programmable structural elements, which model arti cial neural networks with spiking behavior. We design them to solve problems using evolutionary optimization. In this paper, we highlight the current hardware and software implementations of DANNA, including their features, functionalities and performance. We then describe the development of an Application Development Platform (ADP) to support efficient application implementation and testing of DANNA based solutions. We conclude with future directions.

  20. Near-Body Grid Adaption for Overset Grids

    NASA Technical Reports Server (NTRS)

    Buning, Pieter G.; Pulliam, Thomas H.

    2016-01-01

    A solution adaption capability for curvilinear near-body grids has been implemented in the OVERFLOW overset grid computational fluid dynamics code. The approach follows closely that used for the Cartesian off-body grids, but inserts refined grids in the computational space of original near-body grids. Refined curvilinear grids are generated using parametric cubic interpolation, with one-sided biasing based on curvature and stretching ratio of the original grid. Sensor functions, grid marking, and solution interpolation tasks are implemented in the same fashion as for off-body grids. A goal-oriented procedure, based on largest error first, is included for controlling growth rate and maximum size of the adapted grid system. The adaption process is almost entirely parallelized using MPI, resulting in a capability suitable for viscous, moving body simulations. Two- and three-dimensional examples are presented.

  1. Efficient Characterization of Parametric Uncertainty of Complex (Bio)chemical Networks.

    PubMed

    Schillings, Claudia; Sunnåker, Mikael; Stelling, Jörg; Schwab, Christoph

    2015-08-01

    Parametric uncertainty is a particularly challenging and relevant aspect of systems analysis in domains such as systems biology where, both for inference and for assessing prediction uncertainties, it is essential to characterize the system behavior globally in the parameter space. However, current methods based on local approximations or on Monte-Carlo sampling cope only insufficiently with high-dimensional parameter spaces associated with complex network models. Here, we propose an alternative deterministic methodology that relies on sparse polynomial approximations. We propose a deterministic computational interpolation scheme which identifies most significant expansion coefficients adaptively. We present its performance in kinetic model equations from computational systems biology with several hundred parameters and state variables, leading to numerical approximations of the parametric solution on the entire parameter space. The scheme is based on adaptive Smolyak interpolation of the parametric solution at judiciously and adaptively chosen points in parameter space. As Monte-Carlo sampling, it is "non-intrusive" and well-suited for massively parallel implementation, but affords higher convergence rates. This opens up new avenues for large-scale dynamic network analysis by enabling scaling for many applications, including parameter estimation, uncertainty quantification, and systems design.

  2. Efficient Characterization of Parametric Uncertainty of Complex (Bio)chemical Networks

    PubMed Central

    Schillings, Claudia; Sunnåker, Mikael; Stelling, Jörg; Schwab, Christoph

    2015-01-01

    Parametric uncertainty is a particularly challenging and relevant aspect of systems analysis in domains such as systems biology where, both for inference and for assessing prediction uncertainties, it is essential to characterize the system behavior globally in the parameter space. However, current methods based on local approximations or on Monte-Carlo sampling cope only insufficiently with high-dimensional parameter spaces associated with complex network models. Here, we propose an alternative deterministic methodology that relies on sparse polynomial approximations. We propose a deterministic computational interpolation scheme which identifies most significant expansion coefficients adaptively. We present its performance in kinetic model equations from computational systems biology with several hundred parameters and state variables, leading to numerical approximations of the parametric solution on the entire parameter space. The scheme is based on adaptive Smolyak interpolation of the parametric solution at judiciously and adaptively chosen points in parameter space. As Monte-Carlo sampling, it is “non-intrusive” and well-suited for massively parallel implementation, but affords higher convergence rates. This opens up new avenues for large-scale dynamic network analysis by enabling scaling for many applications, including parameter estimation, uncertainty quantification, and systems design. PMID:26317784

  3. Potential application of artificial concepts to aerodynamic simulation

    NASA Technical Reports Server (NTRS)

    Kutler, P.; Mehta, U. B.; Andrews, A.

    1984-01-01

    The concept of artificial intelligence as it applies to computational fluid dynamics simulation is investigated. How expert systems can be adapted to speed the numerical aerodynamic simulation process is also examined. A proposed expert grid generation system is briefly described which, given flow parameters, configuration geometry, and simulation constraints, uses knowledge about the discretization process to determine grid point coordinates, computational surface information, and zonal interface parameters.

  4. NASTRAN computer system level 12.1

    NASA Technical Reports Server (NTRS)

    Butler, T. G.

    1971-01-01

    Program uses finite element displacement method for solving linear response of large, three-dimensional structures subject to static, dynamic, thermal, and random loadings. Program adapts to computers of different manufacture, permits up-dating and extention, allows interchange of output and input information between users, and is extensively documented.

  5. Algebraic grid adaptation method using non-uniform rational B-spline surface modeling

    NASA Technical Reports Server (NTRS)

    Yang, Jiann-Cherng; Soni, B. K.

    1992-01-01

    An algebraic adaptive grid system based on equidistribution law and utilized by the Non-Uniform Rational B-Spline (NURBS) surface for redistribution is presented. A weight function, utilizing a properly weighted boolean sum of various flow field characteristics is developed. Computational examples are presented to demonstrate the success of this technique.

  6. Identifying Reading Problems with Computer-Adaptive Assessments

    ERIC Educational Resources Information Center

    Merrell, C.; Tymms, P.

    2007-01-01

    This paper describes the development of an adaptive assessment called Interactive Computerised Assessment System (InCAS) that is aimed at children of a wide age and ability range to identify specific reading problems. Rasch measurement has been used to create the equal interval scales that form each part of the assessment. The rationale for the…

  7. A Guide to Computer Adaptive Testing Systems

    ERIC Educational Resources Information Center

    Davey, Tim

    2011-01-01

    Some brand names are used generically to describe an entire class of products that perform the same function. "Kleenex," "Xerox," "Thermos," and "Band-Aid" are good examples. The term "computerized adaptive testing" (CAT) is similar in that it is often applied uniformly across a diverse family of testing methods. Although the various members of…

  8. A perspective of adaptation in healthcare.

    PubMed

    Mezghani, Emna; Da Silveira, Marcos; Pruski, Cédric; Exposito, Ernesto; Drira, Khalil

    2014-01-01

    Emerging new technologies in healthcare has proven great promises for managing patient care. In recent years, the evolution of Information and Communication Technologies pushes many research studies to think about treatment plan adaptation in this area. The main goal is to accelerate the decision making by dynamically generating new treatment due to unexpected situations. This paper portrays the treatment adaptation from a new perspective inspired from the human nervous system named autonomic computing. Thus, the selected potential studies are classified according to the maturity levels of this paradigm. To guarantee optimal and accurate treatment adaptation, challenges related to medical knowledge and data are identified and future directions to be explored in healthcare systems are discussed.

  9. Software Quality Measurement for Distributed Systems. Volume 3. Distributed Computing Systems: Impact on Software Quality.

    DTIC Science & Technology

    1983-07-01

    Distributed Computing Systems impact DrnwrR - aehR on Sotwar Quaity. PERFORMING 010. REPORT NUMBER 7. AUTNOW) S. CONTRACT OR GRANT "UMBER(*)IS ThomasY...C31 Application", "Space Systems Network", "Need for Distributed Database Management", and "Adaptive Routing". This is discussed in the last para ...data reduction, buffering, encryption, and error detection and correction functions. Examples of such data streams include imagery data, video

  10. Parallel 3D Mortar Element Method for Adaptive Nonconforming Meshes

    NASA Technical Reports Server (NTRS)

    Feng, Huiyu; Mavriplis, Catherine; VanderWijngaart, Rob; Biswas, Rupak

    2004-01-01

    High order methods are frequently used in computational simulation for their high accuracy. An efficient way to avoid unnecessary computation in smooth regions of the solution is to use adaptive meshes which employ fine grids only in areas where they are needed. Nonconforming spectral elements allow the grid to be flexibly adjusted to satisfy the computational accuracy requirements. The method is suitable for computational simulations of unsteady problems with very disparate length scales or unsteady moving features, such as heat transfer, fluid dynamics or flame combustion. In this work, we select the Mark Element Method (MEM) to handle the non-conforming interfaces between elements. A new technique is introduced to efficiently implement MEM in 3-D nonconforming meshes. By introducing an "intermediate mortar", the proposed method decomposes the projection between 3-D elements and mortars into two steps. In each step, projection matrices derived in 2-D are used. The two-step method avoids explicitly forming/deriving large projection matrices for 3-D meshes, and also helps to simplify the implementation. This new technique can be used for both h- and p-type adaptation. This method is applied to an unsteady 3-D moving heat source problem. With our new MEM implementation, mesh adaptation is able to efficiently refine the grid near the heat source and coarsen the grid once the heat source passes. The savings in computational work resulting from the dynamic mesh adaptation is demonstrated by the reduction of the the number of elements used and CPU time spent. MEM and mesh adaptation, respectively, bring irregularity and dynamics to the computer memory access pattern. Hence, they provide a good way to gauge the performance of computer systems when running scientific applications whose memory access patterns are irregular and unpredictable. We select a 3-D moving heat source problem as the Unstructured Adaptive (UA) grid benchmark, a new component of the NAS Parallel Benchmarks (NPB). In this paper, we present some interesting performance results of ow OpenMP parallel implementation on different architectures such as the SGI Origin2000, SGI Altix, and Cray MTA-2.

  11. An overview of adaptive model theory: solving the problems of redundancy, resources, and nonlinear interactions in human movement control.

    PubMed

    Neilson, Peter D; Neilson, Megan D

    2005-09-01

    Adaptive model theory (AMT) is a computational theory that addresses the difficult control problem posed by the musculoskeletal system in interaction with the environment. It proposes that the nervous system creates motor maps and task-dependent synergies to solve the problems of redundancy and limited central resources. These lead to the adaptive formation of task-dependent feedback/feedforward controllers able to generate stable, noninteractive control and render nonlinear interactions unobservable in sensory-motor relationships. AMT offers a unified account of how the nervous system might achieve these solutions by forming internal models. This is presented as the design of a simulator consisting of neural adaptive filters based on cerebellar circuitry. It incorporates a new network module that adaptively models (in real time) nonlinear relationships between inputs with changing and uncertain spectral and amplitude probability density functions as is the case for sensory and motor signals.

  12. Multicore Architecture-aware Scientific Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srinivasa, Avinash

    Modern high performance systems are becoming increasingly complex and powerful due to advancements in processor and memory architecture. In order to keep up with this increasing complexity, applications have to be augmented with certain capabilities to fully exploit such systems. These may be at the application level, such as static or dynamic adaptations or at the system level, like having strategies in place to override some of the default operating system polices, the main objective being to improve computational performance of the application. The current work proposes two such capabilites with respect to multi-threaded scientific applications, in particular a largemore » scale physics application computing ab-initio nuclear structure. The first involves using a middleware tool to invoke dynamic adaptations in the application, so as to be able to adjust to the changing computational resource availability at run-time. The second involves a strategy for effective placement of data in main memory, to optimize memory access latencies and bandwidth. These capabilties when included were found to have a significant impact on the application performance, resulting in average speedups of as much as two to four times.« less

  13. Hydrologic data-verification management program plan

    USGS Publications Warehouse

    Alexander, C.W.

    1982-01-01

    Data verification refers to the performance of quality control on hydrologic data that have been retrieved from the field and are being prepared for dissemination to water-data users. Water-data users now have access to computerized data files containing unpublished, unverified hydrologic data. Therefore, it is necessary to develop techniques and systems whereby the computer can perform some data-verification functions before the data are stored in user-accessible files. Computerized data-verification routines can be developed for this purpose. A single, unified concept describing master data-verification program using multiple special-purpose subroutines, and a screen file containing verification criteria, can probably be adapted to any type and size of computer-processing system. Some traditional manual-verification procedures can be adapted for computerized verification, but new procedures can also be developed that would take advantage of the powerful statistical tools and data-handling procedures available to the computer. Prototype data-verification systems should be developed for all three data-processing environments as soon as possible. The WATSTORE system probably affords the greatest opportunity for long-range research and testing of new verification subroutines. (USGS)

  14. Brain-controlled body movement assistance devices and methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leuthardt, Eric C.; Love, Lonnie J.; Coker, Rob

    Methods, devices, systems, and apparatus, including computer programs encoded on a computer storage medium, for brain-controlled body movement assistance devices. In one aspect, a device includes a brain-controlled body movement assistance device with a brain-computer interface (BCI) component adapted to be mounted to a user, a body movement assistance component operably connected to the BCI component and adapted to be worn by the user, and a feedback mechanism provided in connection with at least one of the BCI component and the body movement assistance component, the feedback mechanism being configured to output information relating to a usage session of themore » brain-controlled body movement assistance device.« less

  15. Thermodynamic Costs of Information Processing in Sensory Adaptation

    PubMed Central

    Sartori, Pablo; Granger, Léo; Lee, Chiu Fan; Horowitz, Jordan M.

    2014-01-01

    Biological sensory systems react to changes in their surroundings. They are characterized by fast response and slow adaptation to varying environmental cues. Insofar as sensory adaptive systems map environmental changes to changes of their internal degrees of freedom, they can be regarded as computational devices manipulating information. Landauer established that information is ultimately physical, and its manipulation subject to the entropic and energetic bounds of thermodynamics. Thus the fundamental costs of biological sensory adaptation can be elucidated by tracking how the information the system has about its environment is altered. These bounds are particularly relevant for small organisms, which unlike everyday computers, operate at very low energies. In this paper, we establish a general framework for the thermodynamics of information processing in sensing. With it, we quantify how during sensory adaptation information about the past is erased, while information about the present is gathered. This process produces entropy larger than the amount of old information erased and has an energetic cost bounded by the amount of new information written to memory. We apply these principles to the E. coli's chemotaxis pathway during binary ligand concentration changes. In this regime, we quantify the amount of information stored by each methyl group and show that receptors consume energy in the range of the information-theoretic minimum. Our work provides a basis for further inquiries into more complex phenomena, such as gradient sensing and frequency response. PMID:25503948

  16. Three-dimensional geoelectric modelling with optimal work/accuracy rate using an adaptive wavelet algorithm

    NASA Astrophysics Data System (ADS)

    Plattner, A.; Maurer, H. R.; Vorloeper, J.; Dahmen, W.

    2010-08-01

    Despite the ever-increasing power of modern computers, realistic modelling of complex 3-D earth models is still a challenging task and requires substantial computing resources. The overwhelming majority of current geophysical modelling approaches includes either finite difference or non-adaptive finite element algorithms and variants thereof. These numerical methods usually require the subsurface to be discretized with a fine mesh to accurately capture the behaviour of the physical fields. However, this may result in excessive memory consumption and computing times. A common feature of most of these algorithms is that the modelled data discretizations are independent of the model complexity, which may be wasteful when there are only minor to moderate spatial variations in the subsurface parameters. Recent developments in the theory of adaptive numerical solvers have the potential to overcome this problem. Here, we consider an adaptive wavelet-based approach that is applicable to a large range of problems, also including nonlinear problems. In comparison with earlier applications of adaptive solvers to geophysical problems we employ here a new adaptive scheme whose core ingredients arose from a rigorous analysis of the overall asymptotically optimal computational complexity, including in particular, an optimal work/accuracy rate. Our adaptive wavelet algorithm offers several attractive features: (i) for a given subsurface model, it allows the forward modelling domain to be discretized with a quasi minimal number of degrees of freedom, (ii) sparsity of the associated system matrices is guaranteed, which makes the algorithm memory efficient and (iii) the modelling accuracy scales linearly with computing time. We have implemented the adaptive wavelet algorithm for solving 3-D geoelectric problems. To test its performance, numerical experiments were conducted with a series of conductivity models exhibiting varying degrees of structural complexity. Results were compared with a non-adaptive finite element algorithm, which incorporates an unstructured mesh to best-fitting subsurface boundaries. Such algorithms represent the current state-of-the-art in geoelectric modelling. An analysis of the numerical accuracy as a function of the number of degrees of freedom revealed that the adaptive wavelet algorithm outperforms the finite element solver for simple and moderately complex models, whereas the results become comparable for models with high spatial variability of electrical conductivities. The linear dependence of the modelling error and the computing time proved to be model-independent. This feature will allow very efficient computations using large-scale models as soon as our experimental code is optimized in terms of its implementation.

  17. On Time Delay Margin Estimation for Adaptive Control and Optimal Control Modification

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2011-01-01

    This paper presents methods for estimating time delay margin for adaptive control of input delay systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to represent an adaptive law by a locally bounded linear approximation within a small time window. The time delay margin of this input delay system represents a local stability measure and is computed analytically by three methods: Pade approximation, Lyapunov-Krasovskii method, and the matrix measure method. These methods are applied to the standard model-reference adaptive control, s-modification adaptive law, and optimal control modification adaptive law. The windowing analysis results in non-unique estimates of the time delay margin since it is dependent on the length of a time window and parameters which vary from one time window to the next. The optimal control modification adaptive law overcomes this limitation in that, as the adaptive gain tends to infinity and if the matched uncertainty is linear, then the closed-loop input delay system tends to a LTI system. A lower bound of the time delay margin of this system can then be estimated uniquely without the need for the windowing analysis. Simulation results demonstrates the feasibility of the bounded linear stability method for time delay margin estimation.

  18. An adaptable multiple power source for mass spectrometry and other scientific instruments.

    PubMed

    Lin, T-Y; Anderson, G A; Norheim, R V; Prost, S A; LaMarche, B L; Leach, F E; Auberry, K J; Smith, R D; Koppenaal, D W; Robinson, E W; Paša-Tolić, L

    2015-09-01

    An Adaptable Multiple Power Source (AMPS) system has been designed and constructed. The AMPS system can provide up to 16 direct current (DC) (±400 V; 5 mA), 4 radio frequency (RF) (two 500 VPP sinusoidal signals each, 0.5-5 MHz) channels, 2 high voltage sources (±6 kV), and one ∼40 W, 250 °C temperature-regulated heater. The system is controlled by a microcontroller, capable of communicating with its front panel or a computer. It can assign not only pre-saved fixed DC and RF signals but also profiled DC voltages. The AMPS system is capable of driving many mass spectrometry components and ancillary devices and can be adapted to other instrumentation/engineering projects.

  19. Indirect adaptive soft computing based wavelet-embedded control paradigms for WT/PV/SOFC in a grid/charging station connected hybrid power system.

    PubMed

    Mumtaz, Sidra; Khan, Laiq; Ahmed, Saghir; Bader, Rabiah

    2017-01-01

    This paper focuses on the indirect adaptive tracking control of renewable energy sources in a grid-connected hybrid power system. The renewable energy systems have low efficiency and intermittent nature due to unpredictable meteorological conditions. The domestic load and the conventional charging stations behave in an uncertain manner. To operate the renewable energy sources efficiently for harvesting maximum power, instantaneous nonlinear dynamics should be captured online. A Chebyshev-wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control paradigm is proposed for variable speed wind turbine-permanent synchronous generator (VSWT-PMSG). A Hermite-wavelet incorporated NeuroFuzzy indirect adaptive MPPT control strategy for photovoltaic (PV) system to extract maximum power and indirect adaptive tracking control scheme for Solid Oxide Fuel Cell (SOFC) is developed. A comprehensive simulation test-bed for a grid-connected hybrid power system is developed in Matlab/Simulink. The robustness of the suggested indirect adaptive control paradigms are evaluated through simulation results in a grid-connected hybrid power system test-bed by comparison with conventional and intelligent control techniques. The simulation results validate the effectiveness of the proposed control paradigms.

  20. Indirect adaptive soft computing based wavelet-embedded control paradigms for WT/PV/SOFC in a grid/charging station connected hybrid power system

    PubMed Central

    Khan, Laiq; Ahmed, Saghir; Bader, Rabiah

    2017-01-01

    This paper focuses on the indirect adaptive tracking control of renewable energy sources in a grid-connected hybrid power system. The renewable energy systems have low efficiency and intermittent nature due to unpredictable meteorological conditions. The domestic load and the conventional charging stations behave in an uncertain manner. To operate the renewable energy sources efficiently for harvesting maximum power, instantaneous nonlinear dynamics should be captured online. A Chebyshev-wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control paradigm is proposed for variable speed wind turbine-permanent synchronous generator (VSWT-PMSG). A Hermite-wavelet incorporated NeuroFuzzy indirect adaptive MPPT control strategy for photovoltaic (PV) system to extract maximum power and indirect adaptive tracking control scheme for Solid Oxide Fuel Cell (SOFC) is developed. A comprehensive simulation test-bed for a grid-connected hybrid power system is developed in Matlab/Simulink. The robustness of the suggested indirect adaptive control paradigms are evaluated through simulation results in a grid-connected hybrid power system test-bed by comparison with conventional and intelligent control techniques. The simulation results validate the effectiveness of the proposed control paradigms. PMID:28877191

  1. Policy Gradient Adaptive Dynamic Programming for Data-Based Optimal Control.

    PubMed

    Luo, Biao; Liu, Derong; Wu, Huai-Ning; Wang, Ding; Lewis, Frank L

    2017-10-01

    The model-free optimal control problem of general discrete-time nonlinear systems is considered in this paper, and a data-based policy gradient adaptive dynamic programming (PGADP) algorithm is developed to design an adaptive optimal controller method. By using offline and online data rather than the mathematical system model, the PGADP algorithm improves control policy with a gradient descent scheme. The convergence of the PGADP algorithm is proved by demonstrating that the constructed Q -function sequence converges to the optimal Q -function. Based on the PGADP algorithm, the adaptive control method is developed with an actor-critic structure and the method of weighted residuals. Its convergence properties are analyzed, where the approximate Q -function converges to its optimum. Computer simulation results demonstrate the effectiveness of the PGADP-based adaptive control method.

  2. Adaptive allocation of decisionmaking responsibility between human and computer in multitask situations

    NASA Technical Reports Server (NTRS)

    Chu, Y.-Y.; Rouse, W. B.

    1979-01-01

    As human and computer come to have overlapping decisionmaking abilities, a dynamic or adaptive allocation of responsibilities may be the best mode of human-computer interaction. It is suggested that the computer serve as a backup decisionmaker, accepting responsibility when human workload becomes excessive and relinquishing responsibility when workload becomes acceptable. A queueing theory formulation of multitask decisionmaking is used and a threshold policy for turning the computer on/off is proposed. This policy minimizes event-waiting cost subject to human workload constraints. An experiment was conducted with a balanced design of several subject runs within a computer-aided multitask flight management situation with different task demand levels. It was found that computer aiding enhanced subsystem performance as well as subjective ratings. The queueing model appears to be an adequate representation of the multitask decisionmaking situation, and to be capable of predicting system performance in terms of average waiting time and server occupancy. Server occupancy was further found to correlate highly with the subjective effort ratings.

  3. Adaptive System Modeling for Spacecraft Simulation

    NASA Technical Reports Server (NTRS)

    Thomas, Justin

    2011-01-01

    This invention introduces a methodology and associated software tools for automatically learning spacecraft system models without any assumptions regarding system behavior. Data stream mining techniques were used to learn models for critical portions of the International Space Station (ISS) Electrical Power System (EPS). Evaluation on historical ISS telemetry data shows that adaptive system modeling reduces simulation error anywhere from 50 to 90 percent over existing approaches. The purpose of the methodology is to outline how someone can create accurate system models from sensor (telemetry) data. The purpose of the software is to support the methodology. The software provides analysis tools to design the adaptive models. The software also provides the algorithms to initially build system models and continuously update them from the latest streaming sensor data. The main strengths are as follows: Creates accurate spacecraft system models without in-depth system knowledge or any assumptions about system behavior. Automatically updates/calibrates system models using the latest streaming sensor data. Creates device specific models that capture the exact behavior of devices of the same type. Adapts to evolving systems. Can reduce computational complexity (faster simulations).

  4. KAPEAN: Understanding Affective States of Children with ADHD

    ERIC Educational Resources Information Center

    Martínez, Fernando; Barraza, Claudia; González, Nimrod; González, Juan

    2016-01-01

    Affective computing seeks to create computational systems that adapt content and resources according to the affective states of the users. However, the detection of the user's affection such as motivation and emotion is challenging especially when an attention problem is present. An approach to convey learning resources to children with learning…

  5. Dynamic electronic institutions in agent oriented cloud robotic systems.

    PubMed

    Nagrath, Vineet; Morel, Olivier; Malik, Aamir; Saad, Naufal; Meriaudeau, Fabrice

    2015-01-01

    The dot-com bubble bursted in the year 2000 followed by a swift movement towards resource virtualization and cloud computing business model. Cloud computing emerged not as new form of computing or network technology but a mere remoulding of existing technologies to suit a new business model. Cloud robotics is understood as adaptation of cloud computing ideas for robotic applications. Current efforts in cloud robotics stress upon developing robots that utilize computing and service infrastructure of the cloud, without debating on the underlying business model. HTM5 is an OMG's MDA based Meta-model for agent oriented development of cloud robotic systems. The trade-view of HTM5 promotes peer-to-peer trade amongst software agents. HTM5 agents represent various cloud entities and implement their business logic on cloud interactions. Trade in a peer-to-peer cloud robotic system is based on relationships and contracts amongst several agent subsets. Electronic Institutions are associations of heterogeneous intelligent agents which interact with each other following predefined norms. In Dynamic Electronic Institutions, the process of formation, reformation and dissolution of institutions is automated leading to run time adaptations in groups of agents. DEIs in agent oriented cloud robotic ecosystems bring order and group intellect. This article presents DEI implementations through HTM5 methodology.

  6. A Neural Network Approach to Intention Modeling for User-Adapted Conversational Agents

    PubMed Central

    Griol, David

    2016-01-01

    Spoken dialogue systems have been proposed to enable a more natural and intuitive interaction with the environment and human-computer interfaces. In this contribution, we present a framework based on neural networks that allows modeling of the user's intention during the dialogue and uses this prediction to dynamically adapt the dialogue model of the system taking into consideration the user's needs and preferences. We have evaluated our proposal to develop a user-adapted spoken dialogue system that facilitates tourist information and services and provide a detailed discussion of the positive influence of our proposal in the success of the interaction, the information and services provided, and the quality perceived by the users. PMID:26819592

  7. Exploring the bases for a mixed reality stroke rehabilitation system, Part II: design of interactive feedback for upper limb rehabilitation.

    PubMed

    Lehrer, Nicole; Chen, Yinpeng; Duff, Margaret; L Wolf, Steven; Rikakis, Thanassis

    2011-09-08

    Few existing interactive rehabilitation systems can effectively communicate multiple aspects of movement performance simultaneously, in a manner that appropriately adapts across various training scenarios. In order to address the need for such systems within stroke rehabilitation training, a unified approach for designing interactive systems for upper limb rehabilitation of stroke survivors has been developed and applied for the implementation of an Adaptive Mixed Reality Rehabilitation (AMRR) System. The AMRR system provides computational evaluation and multimedia feedback for the upper limb rehabilitation of stroke survivors. A participant's movements are tracked by motion capture technology and evaluated by computational means. The resulting data are used to generate interactive media-based feedback that communicates to the participant detailed, intuitive evaluations of his performance. This article describes how the AMRR system's interactive feedback is designed to address specific movement challenges faced by stroke survivors. Multimedia examples are provided to illustrate each feedback component. Supportive data are provided for three participants of varying impairment levels to demonstrate the system's ability to train both targeted and integrated aspects of movement. The AMRR system supports training of multiple movement aspects together or in isolation, within adaptable sequences, through cohesive feedback that is based on formalized compositional design principles. From preliminary analysis of the data, we infer that the system's ability to train multiple foci together or in isolation in adaptable sequences, utilizing appropriately designed feedback, can lead to functional improvement. The evaluation and feedback frameworks established within the AMRR system will be applied to the development of a novel home-based system to provide an engaging yet low-cost extension of training for longer periods of time.

  8. Exploring the bases for a mixed reality stroke rehabilitation system, Part II: Design of Interactive Feedback for upper limb rehabilitation

    PubMed Central

    2011-01-01

    Background Few existing interactive rehabilitation systems can effectively communicate multiple aspects of movement performance simultaneously, in a manner that appropriately adapts across various training scenarios. In order to address the need for such systems within stroke rehabilitation training, a unified approach for designing interactive systems for upper limb rehabilitation of stroke survivors has been developed and applied for the implementation of an Adaptive Mixed Reality Rehabilitation (AMRR) System. Results The AMRR system provides computational evaluation and multimedia feedback for the upper limb rehabilitation of stroke survivors. A participant's movements are tracked by motion capture technology and evaluated by computational means. The resulting data are used to generate interactive media-based feedback that communicates to the participant detailed, intuitive evaluations of his performance. This article describes how the AMRR system's interactive feedback is designed to address specific movement challenges faced by stroke survivors. Multimedia examples are provided to illustrate each feedback component. Supportive data are provided for three participants of varying impairment levels to demonstrate the system's ability to train both targeted and integrated aspects of movement. Conclusions The AMRR system supports training of multiple movement aspects together or in isolation, within adaptable sequences, through cohesive feedback that is based on formalized compositional design principles. From preliminary analysis of the data, we infer that the system's ability to train multiple foci together or in isolation in adaptable sequences, utilizing appropriately designed feedback, can lead to functional improvement. The evaluation and feedback frameworks established within the AMRR system will be applied to the development of a novel home-based system to provide an engaging yet low-cost extension of training for longer periods of time. PMID:21899779

  9. CoreTSAR: Core Task-Size Adapting Runtime

    DOE PAGES

    Scogland, Thomas R. W.; Feng, Wu-chun; Rountree, Barry; ...

    2014-10-27

    Heterogeneity continues to increase at all levels of computing, with the rise of accelerators such as GPUs, FPGAs, and other co-processors into everything from desktops to supercomputers. As a consequence, efficiently managing such disparate resources has become increasingly complex. CoreTSAR seeks to reduce this complexity by adaptively worksharing parallel-loop regions across compute resources without requiring any transformation of the code within the loop. Lastly, our results show performance improvements of up to three-fold over a current state-of-the-art heterogeneous task scheduler as well as linear performance scaling from a single GPU to four GPUs for many codes. In addition, CoreTSAR demonstratesmore » a robust ability to adapt to both a variety of workloads and underlying system configurations.« less

  10. Holographic Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Andersen, G.

    For the last two decades adaptive optics has been used as a technique for correcting imaging applications and directed energy/laser targeting and laser communications systems affected by atmospheric turbulence. Typically these systems are bulky and limited to <10 kHz due to large computing overhead and limited photon efficiencies. Moreover most use zonal wavefront sensors which cannot easily handle extreme scintillation or unexpected obscuration of a pre-set aperture. Here we present a compact, lightweight adaptive optics system with the potential to operate at speeds of MHz. The system utilizes a hologram to perform an all-optical wavefront analysis that removes the need for any computer. Finally, the sensing is made on a modal basis so it is largely insensitive to scintillation and obscuration. We have constructed a prototype device and will present experimental results from our research. The holographic adaptive optics system begins with the creation of a multiplexed hologram. This hologram is created by recording the maximum and minimum response functions of every actuator in the deformable mirror against a unique focused reference beam. When a wavefront of some arbitrary phase is incident on the processed hologram, a number of focal spots are created -- one pair for each actuator in the DM. The absolute phase error at each particular actuator location is simply related to the ratio of the intensity of each pair of spots. In this way we can use an array of photodetectors to give a direct readout of phase error without the need for any calculations. The advantages of holographic adaptive optics are many. To begin with, the measurement of phase error is made all optically, so the wavefront sensor directly controls the actuators in the DM without any computers. Using fast, photon counting photodetectors allows for closed loop correction limited only by the speed of the deformable mirror which in the case of MEMS devices can be 100 kHz or more. All this can be achieved in an extremely compact and lightweight package making it perfectly suited to applications such as UAV surveillance imagery and free space optical communications systems. Lastly, since the correction is made on a modal basis instead of zonal, it is virtually insensitive to scintillation and obscuration.

  11. Evaluating the Appropriateness of a New Computer-Administered Measure of Adaptive Function for Children and Youth with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Coster, Wendy J.; Kramer, Jessica M.; Tian, Feng; Dooley, Meghan; Liljenquist, Kendra; Kao, Ying-Chia; Ni, Pengsheng

    2016-01-01

    The Pediatric Evaluation of Disability Inventory-Computer Adaptive Test is an alternative method for describing the adaptive function of children and youth with disabilities using a computer-administered assessment. This study evaluated the performance of the Pediatric Evaluation of Disability Inventory-Computer Adaptive Test with a national…

  12. The development of a computer-assisted instruction system for clinical nursing skills with virtual instruments concepts: A case study for intra-aortic balloon pumping.

    PubMed

    Chang, Ching-I; Yan, Huey-Yeu; Sung, Wen-Hsu; Shen, Shu-Cheng; Chuang, Pao-Yu

    2006-01-01

    The purpose of this research was to develop a computer-aided instruction system for intra-aortic balloon pumping (IABP) skills in clinical nursing with virtual instrument (VI) concepts. Computer graphic technologies were incorporated to provide not only static clinical nursing education, but also the simulated function of operating an expensive medical instrument with VI techniques. The content of nursing knowledge was adapted from current well-accepted clinical training materials. The VI functions were developed using computer graphic technology with photos of real medical instruments taken by digital camera. We wish the system could provide beginners of nursing education important teaching assistance.

  13. Slow adaptation of ventricular repolarization as a cause of arrhythmia?

    PubMed

    Bueno-Orovio, A; Hanson, B M; Gill, J S; Taggart, P; Rodriguez, B

    2014-01-01

    This article is part of the Focus Theme of Methods of Information in Medicine on "Biosignal Interpretation: Advanced Methods for Studying Cardiovascular and Respiratory Systems". Adaptation of the QT-interval to changes in heart rate reflects on the body-surface electrocardiogram the adaptation of action potential duration (APD) at the cellular level. The initial fast phase of APD adaptation has been shown to modulate the arrhythmia substrate. Whether the slow phase is potentially proarrhythmic remains unclear. To analyze in-vivo human data and use computer simulations to examine effects of the slow APD adaptation phase on dispersion of repolarization and reentry in the human ventricle. Electrograms were acquired from 10 left and 10 right ventricle (LV/RV) endocardial sites in 15 patients with normal ventricles during RV pacing. Activation-recovery intervals, as a surrogate for APD, were measured during a sustained increase in heart rate. Observed dynamics were studied using computer simulations of human tissue electrophysiology. Spatial heterogeneity of rate adaptation was observed in all patients. Inhomogeneity in slow APD adaptation time constants (Δτ(s)) was greater in LV than RV (Δτ(s)(LV) = 31.8 ± 13.2, Δτ(s)(RV) = 19.0 ± 12.8 s , P< 0.01). Simulations showed that altering local slow time constants of adaptation was sufficient to convert partial wavefront block to block with successful reentry. Using electrophysiological data acquired in-vivo in human and computer simulations, we identify heterogeneity in the slow phase of APD adaptation as an important component of arrhythmogenesis.

  14. Regression-based adaptive sparse polynomial dimensional decomposition for sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Tang, Kunkun; Congedo, Pietro; Abgrall, Remi

    2014-11-01

    Polynomial dimensional decomposition (PDD) is employed in this work for global sensitivity analysis and uncertainty quantification of stochastic systems subject to a large number of random input variables. Due to the intimate structure between PDD and Analysis-of-Variance, PDD is able to provide simpler and more direct evaluation of the Sobol' sensitivity indices, when compared to polynomial chaos (PC). Unfortunately, the number of PDD terms grows exponentially with respect to the size of the input random vector, which makes the computational cost of the standard method unaffordable for real engineering applications. In order to address this problem of curse of dimensionality, this work proposes a variance-based adaptive strategy aiming to build a cheap meta-model by sparse-PDD with PDD coefficients computed by regression. During this adaptive procedure, the model representation by PDD only contains few terms, so that the cost to resolve repeatedly the linear system of the least-square regression problem is negligible. The size of the final sparse-PDD representation is much smaller than the full PDD, since only significant terms are eventually retained. Consequently, a much less number of calls to the deterministic model is required to compute the final PDD coefficients.

  15. 77 FR 59941 - Prospective Grant of Exclusive License: Terahertz Scanning Systems for Cancer Pathology

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-01

    ... Computer-Controlled Adaptive Near Field Imaging of Biological Systems'' Patent application No. Territory... licensure describe and claim a terahertz (THz) imaging system that may overcome the limitations of existing.... Additionally, the THz imaging system describes a sensor head geometry that eliminates the requirement to...

  16. AHaH computing-from metastable switches to attractors to machine learning.

    PubMed

    Nugent, Michael Alexander; Molter, Timothy Wesley

    2014-01-01

    Modern computing architecture based on the separation of memory and processing leads to a well known problem called the von Neumann bottleneck, a restrictive limit on the data bandwidth between CPU and RAM. This paper introduces a new approach to computing we call AHaH computing where memory and processing are combined. The idea is based on the attractor dynamics of volatile dissipative electronics inspired by biological systems, presenting an attractive alternative architecture that is able to adapt, self-repair, and learn from interactions with the environment. We envision that both von Neumann and AHaH computing architectures will operate together on the same machine, but that the AHaH computing processor may reduce the power consumption and processing time for certain adaptive learning tasks by orders of magnitude. The paper begins by drawing a connection between the properties of volatility, thermodynamics, and Anti-Hebbian and Hebbian (AHaH) plasticity. We show how AHaH synaptic plasticity leads to attractor states that extract the independent components of applied data streams and how they form a computationally complete set of logic functions. After introducing a general memristive device model based on collections of metastable switches, we show how adaptive synaptic weights can be formed from differential pairs of incremental memristors. We also disclose how arrays of synaptic weights can be used to build a neural node circuit operating AHaH plasticity. By configuring the attractor states of the AHaH node in different ways, high level machine learning functions are demonstrated. This includes unsupervised clustering, supervised and unsupervised classification, complex signal prediction, unsupervised robotic actuation and combinatorial optimization of procedures-all key capabilities of biological nervous systems and modern machine learning algorithms with real world application.

  17. Hypersonic entry vehicle state estimation using nonlinearity-based adaptive cubature Kalman filters

    NASA Astrophysics Data System (ADS)

    Sun, Tao; Xin, Ming

    2017-05-01

    Guidance, navigation, and control of a hypersonic vehicle landing on the Mars rely on precise state feedback information, which is obtained from state estimation. The high uncertainty and nonlinearity of the entry dynamics make the estimation a very challenging problem. In this paper, a new adaptive cubature Kalman filter is proposed for state trajectory estimation of a hypersonic entry vehicle. This new adaptive estimation strategy is based on the measure of nonlinearity of the stochastic system. According to the severity of nonlinearity along the trajectory, the high degree cubature rule or the conventional third degree cubature rule is adaptively used in the cubature Kalman filter. This strategy has the benefit of attaining higher estimation accuracy only when necessary without causing excessive computation load. The simulation results demonstrate that the proposed adaptive filter exhibits better performance than the conventional third-degree cubature Kalman filter while maintaining the same performance as the uniform high degree cubature Kalman filter but with lower computation complexity.

  18. FRIEND: a brain-monitoring agent for adaptive and assistive systems.

    PubMed

    Morris, Alexis; Ulieru, Mihaela

    2012-01-01

    This paper presents an architectural design for adaptive-systems agents (FRIEND) that use brain state information to make more effective decisions on behalf of a user; measuring brain context versus situational demands. These systems could be useful for alerting users to cognitive workload levels or fatigue, and could attempt to compensate for higher cognitive activity by filtering noise information. In some cases such systems could also share control of devices, such as pulling over in an automated vehicle. These aim to assist people in everyday systems to perform tasks better and be more aware of internal states. Achieving a functioning system of this sort is a challenge, involving a unification of brain- computer-interfaces, human-computer-interaction, soft-computin deliberative multi-agent systems disciplines. Until recently, these were not able to be combined into a usable platform due largely to technological limitations (e.g., size, cost, and processing speed), insufficient research on extracting behavioral states from EEG signals, and lack of low-cost wireless sensing headsets. We aim to surpass these limitations and develop control architectures for making sense of brain state in applications by realizing an agent architecture for adaptive (human-aware) technology. In this paper we present an early, high-level design towards implementing a multi-purpose brain-monitoring agent system to improve user quality of life through the assistive applications of psycho-physiological monitoring, noise-filtering, and shared system control.

  19. User's manual for a two-dimensional, ground-water flow code on the Octopus computer network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naymik, T.G.

    1978-08-30

    A ground-water hydrology computer code, programmed by R.L. Taylor (in Proc. American Society of Civil Engineers, Journal of Hydraulics Division, 93(HY2), pp. 25-33 (1967)), has been adapted to the Octopus computer system at Lawrence Livermore Laboratory. Using an example problem, this manual details the input, output, and execution options of the code.

  20. Adapting to life: ocean biogeochemical modelling and adaptive remeshing

    NASA Astrophysics Data System (ADS)

    Hill, J.; Popova, E. E.; Ham, D. A.; Piggott, M. D.; Srokosz, M.

    2013-11-01

    An outstanding problem in biogeochemical modelling of the ocean is that many of the key processes occur intermittently at small scales, such as the sub-mesoscale, that are not well represented in global ocean models. As an example, state-of-the-art models give values of primary production approximately two orders of magnitude lower than those observed in the ocean's oligotrophic gyres, which cover a third of the Earth's surface. This is partly due to their failure to resolve sub-mesoscale phenomena, which play a significant role in nutrient supply. Simply increasing the resolution of the models may be an inefficient computational solution to this problem. An approach based on recent advances in adaptive mesh computational techniques may offer an alternative. Here the first steps in such an approach are described, using the example of a~simple vertical column (quasi 1-D) ocean biogeochemical model. We present a novel method of simulating ocean biogeochemical behaviour on a vertically adaptive computational mesh, where the mesh changes in response to the biogeochemical and physical state of the system throughout the simulation. We show that the model reproduces the general physical and biological behaviour at three ocean stations (India, Papa and Bermuda) as compared to a high-resolution fixed mesh simulation and to observations. The simulations capture both the seasonal and inter-annual variations. The use of an adaptive mesh does not increase the computational error, but reduces the number of mesh elements by a factor of 2-3, so reducing computational overhead. We then show the potential of this method in two case studies where we change the metric used to determine the varying mesh sizes in order to capture the dynamics of chlorophyll at Bermuda and sinking detritus at Papa. We therefore demonstrate adaptive meshes may provide a~suitable numerical technique for simulating seasonal or transient biogeochemical behaviour at high spatial resolution whilst minimising computational cost.

  1. Probabilistic co-adaptive brain-computer interfacing

    NASA Astrophysics Data System (ADS)

    Bryan, Matthew J.; Martin, Stefan A.; Cheung, Willy; Rao, Rajesh P. N.

    2013-12-01

    Objective. Brain-computer interfaces (BCIs) are confronted with two fundamental challenges: (a) the uncertainty associated with decoding noisy brain signals, and (b) the need for co-adaptation between the brain and the interface so as to cooperatively achieve a common goal in a task. We seek to mitigate these challenges. Approach. We introduce a new approach to brain-computer interfacing based on partially observable Markov decision processes (POMDPs). POMDPs provide a principled approach to handling uncertainty and achieving co-adaptation in the following manner: (1) Bayesian inference is used to compute posterior probability distributions (‘beliefs’) over brain and environment state, and (2) actions are selected based on entire belief distributions in order to maximize total expected reward; by employing methods from reinforcement learning, the POMDP’s reward function can be updated over time to allow for co-adaptive behaviour. Main results. We illustrate our approach using a simple non-invasive BCI which optimizes the speed-accuracy trade-off for individual subjects based on the signal-to-noise characteristics of their brain signals. We additionally demonstrate that the POMDP BCI can automatically detect changes in the user’s control strategy and can co-adaptively switch control strategies on-the-fly to maximize expected reward. Significance. Our results suggest that the framework of POMDPs offers a promising approach for designing BCIs that can handle uncertainty in neural signals and co-adapt with the user on an ongoing basis. The fact that the POMDP BCI maintains a probability distribution over the user’s brain state allows a much more powerful form of decision making than traditional BCI approaches, which have typically been based on the output of classifiers or regression techniques. Furthermore, the co-adaptation of the system allows the BCI to make online improvements to its behaviour, adjusting itself automatically to the user’s changing circumstances.

  2. Progress in Computational Simulation of Earthquakes

    NASA Technical Reports Server (NTRS)

    Donnellan, Andrea; Parker, Jay; Lyzenga, Gregory; Judd, Michele; Li, P. Peggy; Norton, Charles; Tisdale, Edwin; Granat, Robert

    2006-01-01

    GeoFEST(P) is a computer program written for use in the QuakeSim project, which is devoted to development and improvement of means of computational simulation of earthquakes. GeoFEST(P) models interacting earthquake fault systems from the fault-nucleation to the tectonic scale. The development of GeoFEST( P) has involved coupling of two programs: GeoFEST and the Pyramid Adaptive Mesh Refinement Library. GeoFEST is a message-passing-interface-parallel code that utilizes a finite-element technique to simulate evolution of stress, fault slip, and plastic/elastic deformation in realistic materials like those of faulted regions of the crust of the Earth. The products of such simulations are synthetic observable time-dependent surface deformations on time scales from days to decades. Pyramid Adaptive Mesh Refinement Library is a software library that facilitates the generation of computational meshes for solving physical problems. In an application of GeoFEST(P), a computational grid can be dynamically adapted as stress grows on a fault. Simulations on workstations using a few tens of thousands of stress and displacement finite elements can now be expanded to multiple millions of elements with greater than 98-percent scaled efficiency on over many hundreds of parallel processors (see figure).

  3. Unstructured Adaptive (UA) NAS Parallel Benchmark. Version 1.0

    NASA Technical Reports Server (NTRS)

    Feng, Huiyu; VanderWijngaart, Rob; Biswas, Rupak; Mavriplis, Catherine

    2004-01-01

    We present a complete specification of a new benchmark for measuring the performance of modern computer systems when solving scientific problems featuring irregular, dynamic memory accesses. It complements the existing NAS Parallel Benchmark suite. The benchmark involves the solution of a stylized heat transfer problem in a cubic domain, discretized on an adaptively refined, unstructured mesh.

  4. Assessment of a User's Time Pressure and Cognitive Load on the Basis of Features of Speech

    NASA Astrophysics Data System (ADS)

    Jameson, Anthony; Kiefer, Juergen; Müller, Christian; Großmann-Hutter, Barbara; Wittig, Frank; Rummer, Ralf

    The project READY (1996-2004) approached the topic of resource-adaptive cognitive processes from a different angle than most of the other projects represented in this volume: The resources in question were the cognitive resources of computer users; the adaptation was done by the system that they were using.

  5. SOLVE: a computer program for determining the maximum value of hardwood sawlogs

    Treesearch

    Edward L. Adams; Edward L. Adams

    1972-01-01

    This paper presents the SOLVE system in detail as an aid to users who might want to make changes in the program. These changes might include: (1) adapting the program to a softwood sawmill; (2) consideration of products other than chips, lumber, and sawed timber; and (3) adapting the program to new data and procedures.

  6. Design and Flight Tests of an Adaptive Control System Employing Normal-Acceleration Command

    NASA Technical Reports Server (NTRS)

    McNeill, Water E.; McLean, John D.; Hegarty, Daniel M.; Heinle, Donovan R.

    1961-01-01

    An adaptive control system employing normal-acceleration command has been designed with the aid of an analog computer and has been flight tested. The design of the system was based on the concept of using a mathematical model in combination with a high gain and a limiter. The study was undertaken to investigate the application of a system of this type to the task of maintaining nearly constant dynamic longitudinal response of a piloted airplane over the flight envelope without relying on air data measurements for gain adjustment. The range of flight conditions investigated was between Mach numbers of 0.36 and 1.15 and altitudes of 10,000 and 40,000 feet. The final adaptive system configuration was derived from analog computer tests, in which the physical airplane control system and much of the control circuitry were included in the loop. The method employed to generate the feedback signals resulted in a model whose characteristics varied somewhat with changes in flight condition. Flight results showed that the system limited the variation in longitudinal natural frequency of the adaptive airplane to about half that of the basic airplane and that, for the subsonic cases, the damping ratio was maintained between 0.56 and 0.69. The system also automatically compensated for the transonic trim change. Objectionable features of the system were an exaggerated sensitivity of pitch attitude to gust disturbances, abnormally large pitch attitude response for a given pilot input at low speeds, and an initial delay in normal-acceleration response to pilot control at all flight conditions. The adaptive system chatter of +/-0.05 to +/-0.10 of elevon at about 9 cycles per second (resulting in a maximum airplane normal-acceleration response of from +/-0.025 g to +/- 0.035 g) was considered by the pilots to be mildly objectionable but tolerable.

  7. A family of variable step-size affine projection adaptive filter algorithms using statistics of channel impulse response

    NASA Astrophysics Data System (ADS)

    Shams Esfand Abadi, Mohammad; AbbasZadeh Arani, Seyed Ali Asghar

    2011-12-01

    This paper extends the recently introduced variable step-size (VSS) approach to the family of adaptive filter algorithms. This method uses prior knowledge of the channel impulse response statistic. Accordingly, optimal step-size vector is obtained by minimizing the mean-square deviation (MSD). The presented algorithms are the VSS affine projection algorithm (VSS-APA), the VSS selective partial update NLMS (VSS-SPU-NLMS), the VSS-SPU-APA, and the VSS selective regressor APA (VSS-SR-APA). In VSS-SPU adaptive algorithms the filter coefficients are partially updated which reduce the computational complexity. In VSS-SR-APA, the optimal selection of input regressors is performed during the adaptation. The presented algorithms have good convergence speed, low steady state mean square error (MSE), and low computational complexity features. We demonstrate the good performance of the proposed algorithms through several simulations in system identification scenario.

  8. Theoretical modeling and evaluation of the axial resolution of the adaptive optics scanning laser ophthalmoscope.

    PubMed

    Venkateswaran, Krishnakumar; Roorda, Austin; Romero-Borja, Fernando

    2004-01-01

    We present axial resolution calculated using a mathematical model of the adaptive optics scanning laser ophthalmoscope (AOSLO). The peak intensity and the width of the axial intensity response are computed with the residual Zernike coefficients after the aberrations are corrected using adaptive optics for eight subjects and compared with the axial resolution of a diffraction-limited eye. The AOSLO currently uses a confocal pinhole that is 80 microm, or 3.48 times the width of the Airy disk radius of the collection optics, and projects to 7.41 microm on the retina. For this pinhole, the axial resolution of a diffraction-limited system is 114 microm and the computed axial resolution varies between 120 and 146 microm for the human subjects included in this study. The results of this analysis indicate that to improve axial resolution, it is best to reduce the pinhole size. The resulting reduction in detected light may demand, however, a more sophisticated adaptive optics system. The study also shows that imaging systems with large pinholes are relatively insensitive to misalignment in the lateral positioning of the confocal pinhole. However, when small pinholes are used to maximize resolution, alignment becomes critical. ( c) 2004 Society of Photo-Optical Instrumentation Engineers.

  9. A Closed-loop Brain Computer Interface to a Virtual Reality Avatar: Gait Adaptation to Visual Kinematic Perturbations

    PubMed Central

    Luu, Trieu Phat; He, Yongtian; Brown, Samuel; Nakagome, Sho; Contreras-Vidal, Jose L.

    2016-01-01

    The control of human bipedal locomotion is of great interest to the field of lower-body brain computer interfaces (BCIs) for rehabilitation of gait. While the feasibility of a closed-loop BCI system for the control of a lower body exoskeleton has been recently shown, multi-day closed-loop neural decoding of human gait in a virtual reality (BCI-VR) environment has yet to be demonstrated. In this study, we propose a real-time closed-loop BCI that decodes lower limb joint angles from scalp electroencephalography (EEG) during treadmill walking to control the walking movements of a virtual avatar. Moreover, virtual kinematic perturbations resulting in asymmetric walking gait patterns of the avatar were also introduced to investigate gait adaptation using the closed-loop BCI-VR system over a period of eight days. Our results demonstrate the feasibility of using a closed-loop BCI to learn to control a walking avatar under normal and altered visuomotor perturbations, which involved cortical adaptations. These findings have implications for the development of BCI-VR systems for gait rehabilitation after stroke and for understanding cortical plasticity induced by a closed-loop BCI system. PMID:27713915

  10. Adaptive Identification and Control of Flow-Induced Cavity Oscillations

    NASA Technical Reports Server (NTRS)

    Kegerise, M. A.; Cattafesta, L. N.; Ha, C.

    2002-01-01

    Progress towards an adaptive self-tuning regulator (STR) for the cavity tone problem is discussed in this paper. Adaptive system identification algorithms were applied to an experimental cavity-flow tested as a prerequisite to control. In addition, a simple digital controller and a piezoelectric bimorph actuator were used to demonstrate multiple tone suppression. The control tests at Mach numbers of 0.275, 0.40, and 0.60 indicated approx. = 7dB tone reductions at multiple frequencies. Several different adaptive system identification algorithms were applied at a single freestream Mach number of 0.275. Adaptive finite-impulse response (FIR) filters of orders up to N = 100 were found to be unsuitable for modeling the cavity flow dynamics. Adaptive infinite-impulse response (IIR) filters of comparable order better captured the system dynamics. Two recursive algorithms, the least-mean square (LMS) and the recursive-least square (RLS), were utilized to update the adaptive filter coefficients. Given the sample-time requirements imposed by the cavity flow dynamics, the computational simplicity of the least mean squares (LMS) algorithm is advantageous for real-time control.

  11. Adapting to life: ocean biogeochemical modelling and adaptive remeshing

    NASA Astrophysics Data System (ADS)

    Hill, J.; Popova, E. E.; Ham, D. A.; Piggott, M. D.; Srokosz, M.

    2014-05-01

    An outstanding problem in biogeochemical modelling of the ocean is that many of the key processes occur intermittently at small scales, such as the sub-mesoscale, that are not well represented in global ocean models. This is partly due to their failure to resolve sub-mesoscale phenomena, which play a significant role in vertical nutrient supply. Simply increasing the resolution of the models may be an inefficient computational solution to this problem. An approach based on recent advances in adaptive mesh computational techniques may offer an alternative. Here the first steps in such an approach are described, using the example of a simple vertical column (quasi-1-D) ocean biogeochemical model. We present a novel method of simulating ocean biogeochemical behaviour on a vertically adaptive computational mesh, where the mesh changes in response to the biogeochemical and physical state of the system throughout the simulation. We show that the model reproduces the general physical and biological behaviour at three ocean stations (India, Papa and Bermuda) as compared to a high-resolution fixed mesh simulation and to observations. The use of an adaptive mesh does not increase the computational error, but reduces the number of mesh elements by a factor of 2-3. Unlike previous work the adaptivity metric used is flexible and we show that capturing the physical behaviour of the model is paramount to achieving a reasonable solution. Adding biological quantities to the adaptivity metric further refines the solution. We then show the potential of this method in two case studies where we change the adaptivity metric used to determine the varying mesh sizes in order to capture the dynamics of chlorophyll at Bermuda and sinking detritus at Papa. We therefore demonstrate that adaptive meshes may provide a suitable numerical technique for simulating seasonal or transient biogeochemical behaviour at high vertical resolution whilst minimising the number of elements in the mesh. More work is required to move this to fully 3-D simulations.

  12. RAD-ADAPT: Software for modelling clonogenic assay data in radiation biology.

    PubMed

    Zhang, Yaping; Hu, Kaiqiang; Beumer, Jan H; Bakkenist, Christopher J; D'Argenio, David Z

    2017-04-01

    We present a comprehensive software program, RAD-ADAPT, for the quantitative analysis of clonogenic assays in radiation biology. Two commonly used models for clonogenic assay analysis, the linear-quadratic model and single-hit multi-target model, are included in the software. RAD-ADAPT uses maximum likelihood estimation method to obtain parameter estimates with the assumption that cell colony count data follow a Poisson distribution. The program has an intuitive interface, generates model prediction plots, tabulates model parameter estimates, and allows automatic statistical comparison of parameters between different groups. The RAD-ADAPT interface is written using the statistical software R and the underlying computations are accomplished by the ADAPT software system for pharmacokinetic/pharmacodynamic systems analysis. The use of RAD-ADAPT is demonstrated using an example that examines the impact of pharmacologic ATM and ATR kinase inhibition on human lung cancer cell line A549 after ionizing radiation. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Robustness of critical points in a complex adaptive system: Effects of hedge behavior

    NASA Astrophysics Data System (ADS)

    Liang, Yuan; Huang, Ji-Ping

    2013-08-01

    In our recent papers, we have identified a class of phase transitions in the market-directed resource-allocation game, and found that there exists a critical point at which the phase transitions occur. The critical point is given by a certain resource ratio. Here, by performing computer simulations and theoretical analysis, we report that the critical point is robust against various kinds of human hedge behavior where the numbers of herds and contrarians can be varied widely. This means that the critical point can be independent of the total number of participants composed of normal agents, herds and contrarians, under some conditions. This finding means that the critical points we identified in this complex adaptive system (with adaptive agents) may also be an intensive quantity, similar to those revealed in traditional physical systems (with non-adaptive units).

  14. Adaptive Time Stepping for Transient Network Flow Simulation in Rocket Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok K.; Ravindran, S. S.

    2017-01-01

    Fluid and thermal transients found in rocket propulsion systems such as propellant feedline system is a complex process involving fast phases followed by slow phases. Therefore their time accurate computation requires use of short time step initially followed by the use of much larger time step. Yet there are instances that involve fast-slow-fast phases. In this paper, we present a feedback control based adaptive time stepping algorithm, and discuss its use in network flow simulation of fluid and thermal transients. The time step is automatically controlled during the simulation by monitoring changes in certain key variables and by feedback. In order to demonstrate the viability of time adaptivity for engineering problems, we applied it to simulate water hammer and cryogenic chill down in pipelines. Our comparison and validation demonstrate the accuracy and efficiency of this adaptive strategy.

  15. An adaptive structure data acquisition system using a graphical-based programming language

    NASA Technical Reports Server (NTRS)

    Baroth, Edmund C.; Clark, Douglas J.; Losey, Robert W.

    1992-01-01

    An example of the implementation of data fusion using a PC and a graphical programming language is discussed. A schematic of the data acquisition system and user interface panel for an adaptive structure test are presented. The computer programs (a series of icons 'wired' together) are also discussed. The way in which using graphical-based programming software to control a data acquisition system can simplify analysis of data, promote multidisciplinary interaction, and provide users a more visual key to understanding their data are shown.

  16. A Gaussian mixture model based adaptive classifier for fNIRS brain-computer interfaces and its testing via simulation

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Jiang, Yi-han; Duan, Lian; Zhu, Chao-zhe

    2017-08-01

    Objective. Functional near infra-red spectroscopy (fNIRS) is a promising brain imaging technology for brain-computer interfaces (BCI). Future clinical uses of fNIRS will likely require operation over long time spans, during which neural activation patterns may change. However, current decoders for fNIRS signals are not designed to handle changing activation patterns. The objective of this study is to test via simulations a new adaptive decoder for fNIRS signals, the Gaussian mixture model adaptive classifier (GMMAC). Approach. GMMAC can simultaneously classify and track activation pattern changes without the need for ground-truth labels. This adaptive classifier uses computationally efficient variational Bayesian inference to label new data points and update mixture model parameters, using the previous model parameters as priors. We test GMMAC in simulations in which neural activation patterns change over time and compare to static decoders and unsupervised adaptive linear discriminant analysis classifiers. Main results. Our simulation experiments show GMMAC can accurately decode under time-varying activation patterns: shifts of activation region, expansions of activation region, and combined contractions and shifts of activation region. Furthermore, the experiments show the proposed method can track the changing shape of the activation region. Compared to prior work, GMMAC performed significantly better than the other unsupervised adaptive classifiers on a difficult activation pattern change simulation: 99% versus  <54% in two-choice classification accuracy. Significance. We believe GMMAC will be useful for clinical fNIRS-based brain-computer interfaces, including neurofeedback training systems, where operation over long time spans is required.

  17. Digital data storage systems, computers, and data verification methods

    DOEpatents

    Groeneveld, Bennett J.; Austad, Wayne E.; Walsh, Stuart C.; Herring, Catherine A.

    2005-12-27

    Digital data storage systems, computers, and data verification methods are provided. According to a first aspect of the invention, a computer includes an interface adapted to couple with a dynamic database; and processing circuitry configured to provide a first hash from digital data stored within a portion of the dynamic database at an initial moment in time, to provide a second hash from digital data stored within the portion of the dynamic database at a subsequent moment in time, and to compare the first hash and the second hash.

  18. Complex adaptive systems: A new approach for understanding health practices.

    PubMed

    Gomersall, Tim

    2018-06-22

    This article explores the potential of complex adaptive systems theory to inform behaviour change research. A complex adaptive system describes a collection of heterogeneous agents interacting within a particular context, adapting to each other's actions. In practical terms, this implies that behaviour change is 1) socially and culturally situated; 2) highly sensitive to small baseline differences in individuals, groups, and intervention components; and 3) determined by multiple components interacting "chaotically". Two approaches to studying complex adaptive systems are briefly reviewed. Agent-based modelling is a computer simulation technique that allows researchers to investigate "what if" questions in a virtual environment. Applied qualitative research techniques, on the other hand, offer a way to examine what happens when an intervention is pursued in real-time, and to identify the sorts of rules and assumptions governing social action. Although these represent very different approaches to complexity, there may be scope for mixing these methods - for example, by grounding models in insights derived from qualitative fieldwork. Finally, I will argue that the concept of complex adaptive systems offers one opportunity to gain a deepened understanding of health-related practices, and to examine the social psychological processes that produce health-promoting or damaging actions.

  19. A robust high-order lattice adaptive notch filter and its application to narrowband noise cancellation

    NASA Astrophysics Data System (ADS)

    Kim, Seong-woo; Park, Young-cheol; Seo, Young-soo; Youn, Dae Hee

    2014-12-01

    In this paper, we propose a high-order lattice adaptive notch filter (LANF) that can robustly track multiple sinusoids. Unlike the conventional cascade structure, the proposed high-order LANF has robust tracking characteristics regardless of the frequencies of reference sinusoids and initial notch frequencies. The proposed high-order LANF is applied to a narrowband adaptive noise cancellation (ANC) to mitigate the effect of the broadband disturbance in the reference signal. By utilizing the gradient adaptive lattice (GAL) ANC algorithm and approximately combining it with the proposed high-order LANF, a computationally efficient narrowband ANC system is obtained. Experimental results demonstrate the robustness of the proposed high-order LANF and the effectiveness of the obtained narrowband ANC system.

  20. Inside marginal adaptation of crowns by X-ray micro-computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dos Santos, T. M.; Lima, I.; Lopes, R. T.

    The objective of this work was to access dental arcade by using X-ray micro-computed tomography. For this purpose high resolution system was used and three groups were studied: Zirkonzahn CAD-CAM system, IPS e.max Press, and metal ceramic. The three systems assessed in this study showed results of marginal and discrepancy gaps clinically accepted. The great result of 2D and 3D evaluations showed that the used technique is a powerful method to investigate quantitative characteristics of dental arcade. (authors)

  1. Some queuing network models of computer systems

    NASA Technical Reports Server (NTRS)

    Herndon, E. S.

    1980-01-01

    Queuing network models of a computer system operating with a single workload type are presented. Program algorithms are adapted for use on the Texas Instruments SR-52 programmable calculator. By slightly altering the algorithm to process the G and H matrices row by row instead of column by column, six devices and an unlimited job/terminal population could be handled on the SR-52. Techniques are also introduced for handling a simple load dependent server and for studying interactive systems with fixed multiprogramming limits.

  2. Using an adaptive expertise lens to understand the quality of teachers' classroom implementation of computer-supported complex systems curricula in high school science

    NASA Astrophysics Data System (ADS)

    Yoon, Susan A.; Koehler-Yom, Jessica; Anderson, Emma; Lin, Joyce; Klopfer, Eric

    2015-05-01

    Background: This exploratory study is part of a larger-scale research project aimed at building theoretical and practical knowledge of complex systems in students and teachers with the goal of improving high school biology learning through professional development and a classroom intervention. Purpose: We propose a model of adaptive expertise to better understand teachers' classroom practices as they attempt to navigate myriad variables in the implementation of biology units that include working with computer simulations, and learning about and teaching through complex systems ideas. Sample: Research participants were three high school biology teachers, two females and one male, ranging in teaching experience from six to 16 years. Their teaching contexts also ranged in student achievement from 14-47% advanced science proficiency. Design and methods: We used a holistic multiple case study methodology and collected data during the 2011-2012 school year. Data sources include classroom observations, teacher and student surveys, and interviews. Data analyses and trustworthiness measures were conducted through qualitative mining of data sources and triangulation of findings. Results: We illustrate the characteristics of adaptive expertise of more or less successful teaching and learning when implementing complex systems curricula. We also demonstrate differences between case study teachers in terms of particular variables associated with adaptive expertise. Conclusions: This research contributes to scholarship on practices and professional development needed to better support teachers to teach through a complex systems pedagogical and curricular approach.

  3. Qualitative analysis of a discrete thermostatted kinetic framework modeling complex adaptive systems

    NASA Astrophysics Data System (ADS)

    Bianca, Carlo; Mogno, Caterina

    2018-01-01

    This paper deals with the derivation of a new discrete thermostatted kinetic framework for the modeling of complex adaptive systems subjected to external force fields (nonequilibrium system). Specifically, in order to model nonequilibrium stationary states of the system, the external force field is coupled to a dissipative term (thermostat). The well-posedness of the related Cauchy problem is investigated thus allowing the new discrete thermostatted framework to be suitable for the derivation of specific models and the related computational analysis. Applications to crowd dynamics and future research directions are also discussed within the paper.

  4. FUN3D and CFL3D Computations for the First High Lift Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Lee-Rausch, Elizabeth M.; Rumsey, Christopher L.

    2011-01-01

    Two Reynolds-averaged Navier-Stokes codes were used to compute flow over the NASA Trapezoidal Wing at high lift conditions for the 1st AIAA CFD High Lift Prediction Workshop, held in Chicago in June 2010. The unstructured-grid code FUN3D and the structured-grid code CFL3D were applied to several different grid systems. The effects of code, grid system, turbulence model, viscous term treatment, and brackets were studied. The SST model on this configuration predicted lower lift than the Spalart-Allmaras model at high angles of attack; the Spalart-Allmaras model agreed better with experiment. Neglecting viscous cross-derivative terms caused poorer prediction in the wing tip vortex region. Output-based grid adaptation was applied to the unstructured-grid solutions. The adapted grids better resolved wake structures and reduced flap flow separation, which was also observed in uniform grid refinement studies. Limitations of the adaptation method as well as areas for future improvement were identified.

  5. An adaptive tau-leaping method for stochastic simulations of reaction-diffusion systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padgett, Jill M. A.; Ilie, Silvana, E-mail: silvana@ryerson.ca

    2016-03-15

    Stochastic modelling is critical for studying many biochemical processes in a cell, in particular when some reacting species have low population numbers. For many such cellular processes the spatial distribution of the molecular species plays a key role. The evolution of spatially heterogeneous biochemical systems with some species in low amounts is accurately described by the mesoscopic model of the Reaction-Diffusion Master Equation. The Inhomogeneous Stochastic Simulation Algorithm provides an exact strategy to numerically solve this model, but it is computationally very expensive on realistic applications. We propose a novel adaptive time-stepping scheme for the tau-leaping method for approximating themore » solution of the Reaction-Diffusion Master Equation. This technique combines effective strategies for variable time-stepping with path preservation to reduce the computational cost, while maintaining the desired accuracy. The numerical tests on various examples arising in applications show the improved efficiency achieved by the new adaptive method.« less

  6. Functionally dissociable influences on learning rate in a dynamic environment

    PubMed Central

    McGuire, Joseph T.; Nassar, Matthew R.; Gold, Joshua I.; Kable, Joseph W.

    2015-01-01

    Summary Maintaining accurate beliefs in a changing environment requires dynamically adapting the rate at which one learns from new experiences. Beliefs should be stable in the face of noisy data, but malleable in periods of change or uncertainty. Here we used computational modeling, psychophysics and fMRI to show that adaptive learning is not a unitary phenomenon in the brain. Rather, it can be decomposed into three computationally and neuroanatomically distinct factors that were evident in human subjects performing a spatial-prediction task: (1) surprise-driven belief updating, related to BOLD activity in visual cortex; (2) uncertainty-driven belief updating, related to anterior prefrontal and parietal activity; and (3) reward-driven belief updating, a context-inappropriate behavioral tendency related to activity in ventral striatum. These distinct factors converged in a core system governing adaptive learning. This system, which included dorsomedial frontal cortex, responded to all three factors and predicted belief updating both across trials and across individuals. PMID:25459409

  7. Cyber-workstation for computational neuroscience.

    PubMed

    Digiovanna, Jack; Rattanatamrong, Prapaporn; Zhao, Ming; Mahmoudi, Babak; Hermer, Linda; Figueiredo, Renato; Principe, Jose C; Fortes, Jose; Sanchez, Justin C

    2010-01-01

    A Cyber-Workstation (CW) to study in vivo, real-time interactions between computational models and large-scale brain subsystems during behavioral experiments has been designed and implemented. The design philosophy seeks to directly link the in vivo neurophysiology laboratory with scalable computing resources to enable more sophisticated computational neuroscience investigation. The architecture designed here allows scientists to develop new models and integrate them with existing models (e.g. recursive least-squares regressor) by specifying appropriate connections in a block-diagram. Then, adaptive middleware transparently implements these user specifications using the full power of remote grid-computing hardware. In effect, the middleware deploys an on-demand and flexible neuroscience research test-bed to provide the neurophysiology laboratory extensive computational power from an outside source. The CW consolidates distributed software and hardware resources to support time-critical and/or resource-demanding computing during data collection from behaving animals. This power and flexibility is important as experimental and theoretical neuroscience evolves based on insights gained from data-intensive experiments, new technologies and engineering methodologies. This paper describes briefly the computational infrastructure and its most relevant components. Each component is discussed within a systematic process of setting up an in vivo, neuroscience experiment. Furthermore, a co-adaptive brain machine interface is implemented on the CW to illustrate how this integrated computational and experimental platform can be used to study systems neurophysiology and learning in a behavior task. We believe this implementation is also the first remote execution and adaptation of a brain-machine interface.

  8. Cyber-Workstation for Computational Neuroscience

    PubMed Central

    DiGiovanna, Jack; Rattanatamrong, Prapaporn; Zhao, Ming; Mahmoudi, Babak; Hermer, Linda; Figueiredo, Renato; Principe, Jose C.; Fortes, Jose; Sanchez, Justin C.

    2009-01-01

    A Cyber-Workstation (CW) to study in vivo, real-time interactions between computational models and large-scale brain subsystems during behavioral experiments has been designed and implemented. The design philosophy seeks to directly link the in vivo neurophysiology laboratory with scalable computing resources to enable more sophisticated computational neuroscience investigation. The architecture designed here allows scientists to develop new models and integrate them with existing models (e.g. recursive least-squares regressor) by specifying appropriate connections in a block-diagram. Then, adaptive middleware transparently implements these user specifications using the full power of remote grid-computing hardware. In effect, the middleware deploys an on-demand and flexible neuroscience research test-bed to provide the neurophysiology laboratory extensive computational power from an outside source. The CW consolidates distributed software and hardware resources to support time-critical and/or resource-demanding computing during data collection from behaving animals. This power and flexibility is important as experimental and theoretical neuroscience evolves based on insights gained from data-intensive experiments, new technologies and engineering methodologies. This paper describes briefly the computational infrastructure and its most relevant components. Each component is discussed within a systematic process of setting up an in vivo, neuroscience experiment. Furthermore, a co-adaptive brain machine interface is implemented on the CW to illustrate how this integrated computational and experimental platform can be used to study systems neurophysiology and learning in a behavior task. We believe this implementation is also the first remote execution and adaptation of a brain-machine interface. PMID:20126436

  9. The UCLA MEDLARS Computer System *

    PubMed Central

    Garvis, Francis J.

    1966-01-01

    Under a subcontract with UCLA the Planning Research Corporation has changed the MEDLARS system to make it possible to use the IBM 7094/7040 direct-couple computer instead of the Honeywell 800 for demand searches. The major tasks were the rewriting of the programs in COBOL and copying of the stored information on the narrower tapes that IBM computers require. (In the future NLM will copy the tapes for IBM computer users.) The differences in the software required by the two computers are noted. Major and costly revisions would be needed to adapt the large MEDLARS system to the smaller IBM 1401 and 1410 computers. In general, MEDLARS is transferrable to other computers of the IBM 7000 class, the new IBM 360, and those of like size, such as the CDC 1604 or UNIVAC 1108, although additional changes are necessary. Potential future improvements are suggested. PMID:5901355

  10. Sensitivity analysis of dynamic biological systems with time-delays.

    PubMed

    Wu, Wu Hsiung; Wang, Feng Sheng; Chang, Maw Shang

    2010-10-15

    Mathematical modeling has been applied to the study and analysis of complex biological systems for a long time. Some processes in biological systems, such as the gene expression and feedback control in signal transduction networks, involve a time delay. These systems are represented as delay differential equation (DDE) models. Numerical sensitivity analysis of a DDE model by the direct method requires the solutions of model and sensitivity equations with time-delays. The major effort is the computation of Jacobian matrix when computing the solution of sensitivity equations. The computation of partial derivatives of complex equations either by the analytic method or by symbolic manipulation is time consuming, inconvenient, and prone to introduce human errors. To address this problem, an automatic approach to obtain the derivatives of complex functions efficiently and accurately is necessary. We have proposed an efficient algorithm with an adaptive step size control to compute the solution and dynamic sensitivities of biological systems described by ordinal differential equations (ODEs). The adaptive direct-decoupled algorithm is extended to solve the solution and dynamic sensitivities of time-delay systems describing by DDEs. To save the human effort and avoid the human errors in the computation of partial derivatives, an automatic differentiation technique is embedded in the extended algorithm to evaluate the Jacobian matrix. The extended algorithm is implemented and applied to two realistic models with time-delays: the cardiovascular control system and the TNF-α signal transduction network. The results show that the extended algorithm is a good tool for dynamic sensitivity analysis on DDE models with less user intervention. By comparing with direct-coupled methods in theory, the extended algorithm is efficient, accurate, and easy to use for end users without programming background to do dynamic sensitivity analysis on complex biological systems with time-delays.

  11. Just-in-time adaptive classifiers-part II: designing the classifier.

    PubMed

    Alippi, Cesare; Roveri, Manuel

    2008-12-01

    Aging effects, environmental changes, thermal drifts, and soft and hard faults affect physical systems by changing their nature and behavior over time. To cope with a process evolution adaptive solutions must be envisaged to track its dynamics; in this direction, adaptive classifiers are generally designed by assuming the stationary hypothesis for the process generating the data with very few results addressing nonstationary environments. This paper proposes a methodology based on k-nearest neighbor (NN) classifiers for designing adaptive classification systems able to react to changing conditions just-in-time (JIT), i.e., exactly when it is needed. k-NN classifiers have been selected for their computational-free training phase, the possibility to easily estimate the model complexity k and keep under control the computational complexity of the classifier through suitable data reduction mechanisms. A JIT classifier requires a temporal detection of a (possible) process deviation (aspect tackled in a companion paper) followed by an adaptive management of the knowledge base (KB) of the classifier to cope with the process change. The novelty of the proposed approach resides in the general framework supporting the real-time update of the KB of the classification system in response to novel information coming from the process both in stationary conditions (accuracy improvement) and in nonstationary ones (process tracking) and in providing a suitable estimate of k. It is shown that the classification system grants consistency once the change targets the process generating the data in a new stationary state, as it is the case in many real applications.

  12. Field testing of eco-speed control using V2I communication.

    DOT National Transportation Integrated Search

    2016-04-15

    This research focused on the development of an Eco-Cooperative Adaptive Cruise Control (EcoCACC) : System and addressed the implementation issues associated with applying it in the field. : The Eco-CACC system computes and recommends a fuel-efficient...

  13. Recent advances and future prospects for Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Forrest B

    2010-01-01

    The history of Monte Carlo methods is closely linked to that of computers: The first known Monte Carlo program was written in 1947 for the ENIAC; a pre-release of the first Fortran compiler was used for Monte Carlo In 1957; Monte Carlo codes were adapted to vector computers in the 1980s, clusters and parallel computers in the 1990s, and teraflop systems in the 2000s. Recent advances include hierarchical parallelism, combining threaded calculations on multicore processors with message-passing among different nodes. With the advances In computmg, Monte Carlo codes have evolved with new capabilities and new ways of use. Production codesmore » such as MCNP, MVP, MONK, TRIPOLI and SCALE are now 20-30 years old (or more) and are very rich in advanced featUres. The former 'method of last resort' has now become the first choice for many applications. Calculations are now routinely performed on office computers, not just on supercomputers. Current research and development efforts are investigating the use of Monte Carlo methods on FPGAs. GPUs, and many-core processors. Other far-reaching research is exploring ways to adapt Monte Carlo methods to future exaflop systems that may have 1M or more concurrent computational processes.« less

  14. Adaptive Modeling of the International Space Station Electrical Power System

    NASA Technical Reports Server (NTRS)

    Thomas, Justin Ray

    2007-01-01

    Software simulations provide NASA engineers the ability to experiment with spacecraft systems in a computer-imitated environment. Engineers currently develop software models that encapsulate spacecraft system behavior. These models can be inaccurate due to invalid assumptions, erroneous operation, or system evolution. Increasing accuracy requires manual calibration and domain-specific knowledge. This thesis presents a method for automatically learning system models without any assumptions regarding system behavior. Data stream mining techniques are applied to learn models for critical portions of the International Space Station (ISS) Electrical Power System (EPS). We also explore a knowledge fusion approach that uses traditional engineered EPS models to supplement the learned models. We observed that these engineered EPS models provide useful background knowledge to reduce predictive error spikes when confronted with making predictions in situations that are quite different from the training scenarios used when learning the model. Evaluations using ISS sensor data and existing EPS models demonstrate the success of the adaptive approach. Our experimental results show that adaptive modeling provides reductions in model error anywhere from 80% to 96% over these existing models. Final discussions include impending use of adaptive modeling technology for ISS mission operations and the need for adaptive modeling in future NASA lunar and Martian exploration.

  15. Higher-order adaptive finite-element methods for Kohn–Sham density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motamarri, P.; Nowak, M.R.; Leiter, K.

    2013-11-15

    We present an efficient computational approach to perform real-space electronic structure calculations using an adaptive higher-order finite-element discretization of Kohn–Sham density-functional theory (DFT). To this end, we develop an a priori mesh-adaption technique to construct a close to optimal finite-element discretization of the problem. We further propose an efficient solution strategy for solving the discrete eigenvalue problem by using spectral finite-elements in conjunction with Gauss–Lobatto quadrature, and a Chebyshev acceleration technique for computing the occupied eigenspace. The proposed approach has been observed to provide a staggering 100–200-fold computational advantage over the solution of a generalized eigenvalue problem. Using the proposedmore » solution procedure, we investigate the computational efficiency afforded by higher-order finite-element discretizations of the Kohn–Sham DFT problem. Our studies suggest that staggering computational savings—of the order of 1000-fold—relative to linear finite-elements can be realized, for both all-electron and local pseudopotential calculations, by using higher-order finite-element discretizations. On all the benchmark systems studied, we observe diminishing returns in computational savings beyond the sixth-order for accuracies commensurate with chemical accuracy, suggesting that the hexic spectral-element may be an optimal choice for the finite-element discretization of the Kohn–Sham DFT problem. A comparative study of the computational efficiency of the proposed higher-order finite-element discretizations suggests that the performance of finite-element basis is competing with the plane-wave discretization for non-periodic local pseudopotential calculations, and compares to the Gaussian basis for all-electron calculations to within an order of magnitude. Further, we demonstrate the capability of the proposed approach to compute the electronic structure of a metallic system containing 1688 atoms using modest computational resources, and good scalability of the present implementation up to 192 processors.« less

  16. Impact of the Shodan Computer Search Engine on Internet-facing Industrial Control System Devices

    DTIC Science & Technology

    2014-03-27

    bridge implementation. The transparent bridge is designed using a Raspberry Pi configured with Linux IPtables and bridge-utils to bridge the on board...Ethernet card and a second USB Ethernet adapter. A Raspberry Pi is a credit-card-sized single-board computer running a version of Debian Linux. There

  17. User's guide to the SEPHIS computer code for calculating the Thorex solvent extraction system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, S.B.; Rainey, R.H.

    1979-05-01

    The SEPHIS computer program was developed to simulate the countercurrent solvent extraction process. The code has now been adapted to model the Acid Thorex flow sheet. This report represents a practical user's guide to SEPHIS - Thorex containing a program description, user information, program listing, and sample input and output.

  18. USSR Report, Cybernetics, Computers and Automation Technology

    DTIC Science & Technology

    1987-03-31

    version of the system was tested by adapting PAL-11 and MACRO-11 assembly code for the "Elektronika=60" and "Elektronika-60M" computers; ASM -86 for the...GS, "On the Results of Evaluation of Insurance Payments in Collective and State Farms and Private Households," the actuarial analysis tables based

  19. The AcCell series 2000 as a support system for training and evaluation in educational and clinical settings.

    PubMed

    Greening, S E; Grohs, D H; Guidos, B J

    1997-01-01

    Providing effective training, retraining and evaluation programs, including proficiency testing programs, for cytoprofessionals is a challenge shared by many academic and clinical educators internationally. In cytopathology the quality of training has immediately transferable and critically important impacts on satisfactory performance in the clinical setting. Well-designed interactive computer-assisted instruction and testing programs have been shown to enhance initial learning and to reinforce factual and conceptual knowledge. Computer systems designed not only to promote diagnostic accuracy but to integrate and streamline work flow in clinical service settings are candidates for educational adaptation. The AcCell 2000 system, designed as a diagnostic screening support system, offers technology that is adaptable to educational needs during basic and in-service training as well as testing of screening proficiency in both locator and identification skills. We describe the considerations, approaches and applications of the AcCell 2000 system in education programs for both training and evaluation of gynecologic diagnostic screening proficiency.

  20. A Framework for the Development of Context-Adaptable User Interfaces for Ubiquitous Computing Systems

    PubMed Central

    Varela, Gervasio; Paz-Lopez, Alejandro; Becerra, Jose A.; Duro, Richard

    2016-01-01

    This paper addresses the problem of developing user interfaces for Ubiquitous Computing (UC) and Ambient Intelligence (AmI) systems. These kind of systems are expected to provide a natural user experience, considering interaction modalities adapted to the user abilities and preferences and using whatever interaction devices are present in the environment. These interaction devices are not necessarily known at design time. The task is quite complicated due to the variety of devices and technologies, and the diversity of scenarios, and it usually burdens the developer with the need to create many different UIs in order to consider the foreseeable user-environment combinations. Here, we propose an UI abstraction framework for UC and AmI systems that effectively improves the portability of those systems between different environments and for different users. It allows developers to design and implement a single UI capable of being deployed with different devices and modalities regardless the physical location. PMID:27399711

  1. Full Quantum Dynamics Simulation of a Realistic Molecular System Using the Adaptive Time-Dependent Density Matrix Renormalization Group Method.

    PubMed

    Yao, Yao; Sun, Ke-Wei; Luo, Zhen; Ma, Haibo

    2018-01-18

    The accurate theoretical interpretation of ultrafast time-resolved spectroscopy experiments relies on full quantum dynamics simulations for the investigated system, which is nevertheless computationally prohibitive for realistic molecular systems with a large number of electronic and/or vibrational degrees of freedom. In this work, we propose a unitary transformation approach for realistic vibronic Hamiltonians, which can be coped with using the adaptive time-dependent density matrix renormalization group (t-DMRG) method to efficiently evolve the nonadiabatic dynamics of a large molecular system. We demonstrate the accuracy and efficiency of this approach with an example of simulating the exciton dissociation process within an oligothiophene/fullerene heterojunction, indicating that t-DMRG can be a promising method for full quantum dynamics simulation in large chemical systems. Moreover, it is also shown that the proper vibronic features in the ultrafast electronic process can be obtained by simulating the two-dimensional (2D) electronic spectrum by virtue of the high computational efficiency of the t-DMRG method.

  2. Real time AI expert system for robotic applications

    NASA Technical Reports Server (NTRS)

    Follin, John F.

    1987-01-01

    A computer controlled multi-robot process cell to demonstrate advanced technologies for the demilitarization of obsolete chemical munitions was developed. The methods through which the vision system and other sensory inputs were used by the artificial intelligence to provide the information required to direct the robots to complete the desired task are discussed. The mechanisms that the expert system uses to solve problems (goals), the different rule data base, and the methods for adapting this control system to any device that can be controlled or programmed through a high level computer interface are discussed.

  3. Human factors aspects of control room design

    NASA Technical Reports Server (NTRS)

    Jenkins, J. P.

    1983-01-01

    A plan for the design and analysis of a multistation control room is reviewed. It is found that acceptance of the computer based information system by the uses in the control room is mandatory for mission and system success. Criteria to improve computer/user interface include: match of system input/output with user; reliability, compatibility and maintainability; easy to learn and little training needed; self descriptive system; system under user control; transparent language, format and organization; corresponds to user expectations; adaptable to user experience level; fault tolerant; dialog capability user communications needs reflected in flexibility, complexity, power and information load; integrated system; and documentation.

  4. Adaptive Event-Triggered Control Based on Heuristic Dynamic Programming for Nonlinear Discrete-Time Systems.

    PubMed

    Dong, Lu; Zhong, Xiangnan; Sun, Changyin; He, Haibo

    2017-07-01

    This paper presents the design of a novel adaptive event-triggered control method based on the heuristic dynamic programming (HDP) technique for nonlinear discrete-time systems with unknown system dynamics. In the proposed method, the control law is only updated when the event-triggered condition is violated. Compared with the periodic updates in the traditional adaptive dynamic programming (ADP) control, the proposed method can reduce the computation and transmission cost. An actor-critic framework is used to learn the optimal event-triggered control law and the value function. Furthermore, a model network is designed to estimate the system state vector. The main contribution of this paper is to design a new trigger threshold for discrete-time systems. A detailed Lyapunov stability analysis shows that our proposed event-triggered controller can asymptotically stabilize the discrete-time systems. Finally, we test our method on two different discrete-time systems, and the simulation results are included.

  5. Quality based approach for adaptive face recognition

    NASA Astrophysics Data System (ADS)

    Abboud, Ali J.; Sellahewa, Harin; Jassim, Sabah A.

    2009-05-01

    Recent advances in biometric technology have pushed towards more robust and reliable systems. We aim to build systems that have low recognition errors and are less affected by variation in recording conditions. Recognition errors are often attributed to the usage of low quality biometric samples. Hence, there is a need to develop new intelligent techniques and strategies to automatically measure/quantify the quality of biometric image samples and if necessary restore image quality according to the need of the intended application. In this paper, we present no-reference image quality measures in the spatial domain that have impact on face recognition. The first is called symmetrical adaptive local quality index (SALQI) and the second is called middle halve (MH). Also, an adaptive strategy has been developed to select the best way to restore the image quality, called symmetrical adaptive histogram equalization (SAHE). The main benefits of using quality measures for adaptive strategy are: (1) avoidance of excessive unnecessary enhancement procedures that may cause undesired artifacts, and (2) reduced computational complexity which is essential for real time applications. We test the success of the proposed measures and adaptive approach for a wavelet-based face recognition system that uses the nearest neighborhood classifier. We shall demonstrate noticeable improvements in the performance of adaptive face recognition system over the corresponding non-adaptive scheme.

  6. Complete synchronization of uncertain chaotic systems via a single proportional adaptive controller: A comparative study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Israr, E-mail: iak-2000plus@yahoo.com; Saaban, Azizan Bin, E-mail: azizan.s@uum.edu.my; Ibrahim, Adyda Binti, E-mail: adyda@uum.edu.my

    This paper addresses a comparative computational study on the synchronization quality, cost and converging speed for two pairs of identical chaotic and hyperchaotic systems with unknown time-varying parameters. It is assumed that the unknown time-varying parameters are bounded. Based on the Lyapunov stability theory and using the adaptive control method, a single proportional controller is proposed to achieve the goal of complete synchronizations. Accordingly, appropriate adaptive laws are designed to identify the unknown time-varying parameters. The designed control strategy is easy to implement in practice. Numerical simulations results are provided to verify the effectiveness of the proposed synchronization scheme.

  7. Adaptive filtering in biological signal processing.

    PubMed

    Iyer, V K; Ploysongsang, Y; Ramamoorthy, P A

    1990-01-01

    The high dependence of conventional optimal filtering methods on the a priori knowledge of the signal and noise statistics render them ineffective in dealing with signals whose statistics cannot be predetermined accurately. Adaptive filtering methods offer a better alternative, since the a priori knowledge of statistics is less critical, real time processing is possible, and the computations are less expensive for this approach. Adaptive filtering methods compute the filter coefficients "on-line", converging to the optimal values in the least-mean square (LMS) error sense. Adaptive filtering is therefore apt for dealing with the "unknown" statistics situation and has been applied extensively in areas like communication, speech, radar, sonar, seismology, and biological signal processing and analysis for channel equalization, interference and echo canceling, line enhancement, signal detection, system identification, spectral analysis, beamforming, modeling, control, etc. In this review article adaptive filtering in the context of biological signals is reviewed. An intuitive approach to the underlying theory of adaptive filters and its applicability are presented. Applications of the principles in biological signal processing are discussed in a manner that brings out the key ideas involved. Current and potential future directions in adaptive biological signal processing are also discussed.

  8. Active Hearing Mechanisms Inspire Adaptive Amplification in an Acoustic Sensor System.

    PubMed

    Guerreiro, Jose; Reid, Andrew; Jackson, Joseph C; Windmill, James F C

    2018-06-01

    Over many millions of years of evolution, nature has developed some of the most adaptable sensors and sensory systems possible, capable of sensing, conditioning and processing signals in a very power- and size-effective manner. By looking into biological sensors and systems as a source of inspiration, this paper presents the study of a bioinspired concept of signal processing at the sensor level. By exploiting a feedback control mechanism between a front-end acoustic receiver and back-end neuronal based computation, a nonlinear amplification with hysteretic behavior is created. Moreover, the transient response of the front-end acoustic receiver can also be controlled and enhanced. A theoretical model is proposed and the concept is prototyped experimentally through an embedded system setup that can provide dynamic adaptations of a sensory system comprising a MEMS microphone placed in a closed-loop feedback system. It faithfully mimics the mosquito's active hearing response as a function of the input sound intensity. This is an adaptive acoustic sensor system concept that can be exploited by sensor and system designers within acoustics and ultrasonic engineering fields.

  9. Remote control system for high-perfomance computer simulation of crystal growth by the PFC method

    NASA Astrophysics Data System (ADS)

    Pavlyuk, Evgeny; Starodumov, Ilya; Osipov, Sergei

    2017-04-01

    Modeling of crystallization process by the phase field crystal method (PFC) - one of the important directions of modern computational materials science. In this paper, the practical side of the computer simulation of the crystallization process by the PFC method is investigated. To solve problems using this method, it is necessary to use high-performance computing clusters, data storage systems and other often expensive complex computer systems. Access to such resources is often limited, unstable and accompanied by various administrative problems. In addition, the variety of software and settings of different computing clusters sometimes does not allow researchers to use unified program code. There is a need to adapt the program code for each configuration of the computer complex. The practical experience of the authors has shown that the creation of a special control system for computing with the possibility of remote use can greatly simplify the implementation of simulations and increase the performance of scientific research. In current paper we show the principal idea of such a system and justify its efficiency.

  10. FPGA-accelerated adaptive optics wavefront control

    NASA Astrophysics Data System (ADS)

    Mauch, S.; Reger, J.; Reinlein, C.; Appelfelder, M.; Goy, M.; Beckert, E.; Tünnermann, A.

    2014-03-01

    The speed of real-time adaptive optical systems is primarily restricted by the data processing hardware and computational aspects. Furthermore, the application of mirror layouts with increasing numbers of actuators reduces the bandwidth (speed) of the system and, thus, the number of applicable control algorithms. This burden turns out a key-impediment for deformable mirrors with continuous mirror surface and highly coupled actuator influence functions. In this regard, specialized hardware is necessary for high performance real-time control applications. Our approach to overcome this challenge is an adaptive optics system based on a Shack-Hartmann wavefront sensor (SHWFS) with a CameraLink interface. The data processing is based on a high performance Intel Core i7 Quadcore hard real-time Linux system. Employing a Xilinx Kintex-7 FPGA, an own developed PCie card is outlined in order to accelerate the analysis of a Shack-Hartmann Wavefront Sensor. A recently developed real-time capable spot detection algorithm evaluates the wavefront. The main features of the presented system are the reduction of latency and the acceleration of computation For example, matrix multiplications which in general are of complexity O(n3 are accelerated by using the DSP48 slices of the field-programmable gate array (FPGA) as well as a novel hardware implementation of the SHWFS algorithm. Further benefits are the Streaming SIMD Extensions (SSE) which intensively use the parallelization capability of the processor for further reducing the latency and increasing the bandwidth of the closed-loop. Due to this approach, up to 64 actuators of a deformable mirror can be handled and controlled without noticeable restriction from computational burdens.

  11. An adaptive incremental approach to constructing ensemble classifiers: application in an information-theoretic computer-aided decision system for detection of masses in mammograms.

    PubMed

    Mazurowski, Maciej A; Zurada, Jacek M; Tourassi, Georgia D

    2009-07-01

    Ensemble classifiers have been shown efficient in multiple applications. In this article, the authors explore the effectiveness of ensemble classifiers in a case-based computer-aided diagnosis system for detection of masses in mammograms. They evaluate two general ways of constructing subclassifiers by resampling of the available development dataset: Random division and random selection. Furthermore, they discuss the problem of selecting the ensemble size and propose two adaptive incremental techniques that automatically select the size for the problem at hand. All the techniques are evaluated with respect to a previously proposed information-theoretic CAD system (IT-CAD). The experimental results show that the examined ensemble techniques provide a statistically significant improvement (AUC = 0.905 +/- 0.024) in performance as compared to the original IT-CAD system (AUC = 0.865 +/- 0.029). Some of the techniques allow for a notable reduction in the total number of examples stored in the case base (to 1.3% of the original size), which, in turn, results in lower storage requirements and a shorter response time of the system. Among the methods examined in this article, the two proposed adaptive techniques are by far the most effective for this purpose. Furthermore, the authors provide some discussion and guidance for choosing the ensemble parameters.

  12. Holographic Adaptive Laser Optics System

    NASA Astrophysics Data System (ADS)

    Andersen, G.; Ghebremichael, F.

    2011-09-01

    We have created a new adaptive optics system using a holographic modal wavefront sensing method with the autonomous (computer-free) closed-loop control of a MEMS deformable mirror (DM). A multiplexed hologram is recorded using the maximum and minimum actuator positions on the deformable mirror as the “modes”. On reconstruction, an input beam is diffracted into pairs of focal spots and the ratio of the intensities of certain pairs determines the absolute wavefront phase at a particular actuator location. The wavefront measurement is made using fast, sensitive silicon photomultiplier arrays with the parallel outputs directly controlling individual actuators in the MEMS DM. In this talk, we will present the results from an all-optical, ultra-compact system that runs in closed-loop without the need for a computer. The speed is limited only by the response time of any given DM actuator and not the number of actuators. In our case, our 32-actuator prototype device already operates at 10 kHz and our next generation system is being designed for > 100 kHz. As a modal system, it is largely insensitive to scintillation and obscuration and is thus ideal for extreme adaptive optics applications. We will present information on how HALOS can be used for image correction and beam propagation as well as several other novel applications.

  13. Holographic Adaptive Laser Optics System (HALOS): Fast, Autonomous Aberration Correction

    NASA Astrophysics Data System (ADS)

    Andersen, G.; MacDonald, K.; Gelsinger-Austin, P.

    2013-09-01

    We present an adaptive optics system which uses a multiplexed hologram to deconvolve the phase aberrations in an input beam. This wavefront characterization is extremely fast as it is based on simple measurements of the intensity of focal spots and does not require any computations. Furthermore, the system does not require a computer in the loop and is thus much cheaper, less complex and more robust as well. A fully functional, closed-loop prototype incorporating a 32-element MEMS mirror has been constructed. The unit has a footprint no larger than a laptop but runs at a bandwidth of 100kHz over an order of magnitude faster than comparable, conventional systems occupying a significantly larger volume. Additionally, since the sensing is based on parallel, all-optical processing, the speed is independent of actuator number running at the same bandwidth for one actuator as for a million. We are developing the HALOS technology with a view towards next-generation surveillance systems for extreme adaptive optics applications. These include imaging, lidar and free-space optical communications for unmanned aerial vehicles and SSA. The small volume is ideal for UAVs, while the high speed and high resolution will be of great benefit to the ground-based observation of space-based objects.

  14. 77 FR 46749 - Tests Determined To Be Suitable for Use in the National Reporting System for Adult Education

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-06

    ... Student Assessment Systems (CASAS) Life Skills Math Assessments--Application of Mathematics (Secondary... Proficiency Test (MAPT) for Math. This test is approved for use through a computer-adaptive delivery format...) Employability Competency System (ECS) Math Assessments--Workforce Learning Systems (WLS). Forms 11, 12, 13, 14...

  15. Astrometric and photometric measurements of binary stars with adaptive optics: observations from 2001 to 2006

    NASA Astrophysics Data System (ADS)

    Roberts, Lewis C.; Mason, Brian D.

    2018-02-01

    The adaptive optics system at the 3.6 m Advanced Electro-Optical System telescope was used to measure the astrometry and differential magnitude in I band of binary star systems between 2002 and 2006. We report 413 astrometric and photometric measurements of 373 stellar pairs. The astrometric measurements will be of use for future orbital determination, and the photometric measurements will be of use in estimating the spectral types of the component stars. For 21 binaries that had not been observed in decades, we are able to confirm that the systems share common proper motion. Candidate new companions were detected in 24 systems; for these we show the discovery images. Follow-up observations should be able to determine if these systems share common proper motion and are gravitationally bound objects. We computed orbits for nine binaries. Of these, the orbits of five systems are improved compared to prior orbits and four systems have their orbits computed for the first time. In addition, 315 stars were unresolved and the full-width half maxima of the images are presented.

  16. Fault Analysis of Space Station DC Power Systems-Using Neural Network Adaptive Wavelets to Detect Faults

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Wang, Yanchun; Dolce, James L.

    1997-01-01

    This paper describes the application of neural network adaptive wavelets for fault diagnosis of space station power system. The method combines wavelet transform with neural network by incorporating daughter wavelets into weights. Therefore, the wavelet transform and neural network training procedure become one stage, which avoids the complex computation of wavelet parameters and makes the procedure more straightforward. The simulation results show that the proposed method is very efficient for the identification of fault locations.

  17. Adaptive Implicit Non-Equilibrium Radiation Diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Philip, Bobby; Wang, Zhen; Berrill, Mark A

    2013-01-01

    We describe methods for accurate and efficient long term time integra- tion of non-equilibrium radiation diffusion systems: implicit time integration for effi- cient long term time integration of stiff multiphysics systems, local control theory based step size control to minimize the required global number of time steps while control- ling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton-Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence.

  18. Comparing Anisotropic Output-Based Grid Adaptation Methods by Decomposition

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Loseille, Adrien; Krakos, Joshua A.; Michal, Todd

    2015-01-01

    Anisotropic grid adaptation is examined by decomposing the steps of flow solution, ad- joint solution, error estimation, metric construction, and simplex grid adaptation. Multiple implementations of each of these steps are evaluated by comparison to each other and expected analytic results when available. For example, grids are adapted to analytic metric fields and grid measures are computed to illustrate the properties of multiple independent implementations of grid adaptation mechanics. Different implementations of each step in the adaptation process can be evaluated in a system where the other components of the adaptive cycle are fixed. Detailed examination of these properties allows comparison of different methods to identify the current state of the art and where further development should be targeted.

  19. XPRESS: eXascale PRogramming Environment and System Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brightwell, Ron; Sterling, Thomas; Koniges, Alice

    The XPRESS Project is one of four major projects of the DOE Office of Science Advanced Scientific Computing Research X-stack Program initiated in September, 2012. The purpose of XPRESS is to devise an innovative system software stack to enable practical and useful exascale computing around the end of the decade with near-term contributions to efficient and scalable operation of trans-Petaflops performance systems in the next two to three years; both for DOE mission-critical applications. To this end, XPRESS directly addresses critical challenges in computing of efficiency, scalability, and programmability through introspective methods of dynamic adaptive resource management and task scheduling.

  20. Dynamic Learning Style Prediction Method Based on a Pattern Recognition Technique

    ERIC Educational Resources Information Center

    Yang, Juan; Huang, Zhi Xing; Gao, Yue Xiang; Liu, Hong Tao

    2014-01-01

    During the past decade, personalized e-learning systems and adaptive educational hypermedia systems have attracted much attention from researchers in the fields of computer science Aand education. The integration of learning styles into an intelligent system is a possible solution to the problems of "learning deviation" and…

  1. Adaptive Control Strategies for Flexible Robotic Arm

    NASA Technical Reports Server (NTRS)

    Bialasiewicz, Jan T.

    1996-01-01

    The control problem of a flexible robotic arm has been investigated. The control strategies that have been developed have a wide application in approaching the general control problem of flexible space structures. The following control strategies have been developed and evaluated: neural self-tuning control algorithm, neural-network-based fuzzy logic control algorithm, and adaptive pole assignment algorithm. All of the above algorithms have been tested through computer simulation. In addition, the hardware implementation of a computer control system that controls the tip position of a flexible arm clamped on a rigid hub mounted directly on the vertical shaft of a dc motor, has been developed. An adaptive pole assignment algorithm has been applied to suppress vibrations of the described physical model of flexible robotic arm and has been successfully tested using this testbed.

  2. Toward a Dynamically Reconfigurable Computing and Communication System for Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Kifle, Muli; Andro, Monty; Tran, Quang K.; Fujikawa, Gene; Chu, Pong P.

    2003-01-01

    Future science missions will require the use of multiple spacecraft with multiple sensor nodes autonomously responding and adapting to a dynamically changing space environment. The acquisition of random scientific events will require rapidly changing network topologies, distributed processing power, and a dynamic resource management strategy. Optimum utilization and configuration of spacecraft communications and navigation resources will be critical in meeting the demand of these stringent mission requirements. There are two important trends to follow with respect to NASA's (National Aeronautics and Space Administration) future scientific missions: the use of multiple satellite systems and the development of an integrated space communications network. Reconfigurable computing and communication systems may enable versatile adaptation of a spacecraft system's resources by dynamic allocation of the processor hardware to perform new operations or to maintain functionality due to malfunctions or hardware faults. Advancements in FPGA (Field Programmable Gate Array) technology make it possible to incorporate major communication and network functionalities in FPGA chips and provide the basis for a dynamically reconfigurable communication system. Advantages of higher computation speeds and accuracy are envisioned with tremendous hardware flexibility to ensure maximum survivability of future science mission spacecraft. This paper discusses the requirements, enabling technologies, and challenges associated with dynamically reconfigurable space communications systems.

  3. An Adaptive Rear-End Collision Warning System for Drivers That Estimates Driving Phase and Selects Training Data

    NASA Astrophysics Data System (ADS)

    Ikeda, Kazushi; Mima, Hiroki; Inoue, Yuta; Shibata, Tomohiro; Fukaya, Naoki; Hitomi, Kentaro; Bando, Takashi

    The paper proposes a rear-end collision warning system for drivers, where the collision risk is adaptively set from driving signals. The system employs the inverse of the time-to-collision with a constant relative acceleration as the risk and the one-class support vector machine as the anomaly detector. The system also utilizes brake sequences for outliers detection. When a brake sequence has a low likelihood with respect to trained hidden Markov models, the driving data during the sequence are removed from the training dataset. This data selection is confirmed to increase the robustness of the system by computer simulations.

  4. Investigation of Item-Pair Presentation and Construct Validity of the Navy Computer Adaptive Personality Scales (NCAPS)

    DTIC Science & Technology

    2006-10-01

    NCAPS ) Christina M. Underhill, Ph.D. Approved for public release; distribution is unlimited. NPRST-TN-06-9 October 2006...Investigation of Item-Pair Presentation and Construct Validity of the Navy Computer Adaptive Personality Scales ( NCAPS ) Christina M. Underhill, Ph.D...documents one of the steps in our development of the Navy Computer Adaptive Personality Scales ( NCAPS ). NCAPS is a computer adaptive personality measure

  5. Coarse-graining as a downward causation mechanism

    NASA Astrophysics Data System (ADS)

    Flack, Jessica C.

    2017-11-01

    Downward causation is the controversial idea that `higher' levels of organization can causally influence behaviour at `lower' levels of organization. Here I propose that we can gain traction on downward causation by being operational and examining how adaptive systems identify regularities in evolutionary or learning time and use these regularities to guide behaviour. I suggest that in many adaptive systems components collectively compute their macroscopic worlds through coarse-graining. I further suggest we move from simple feedback to downward causation when components tune behaviour in response to estimates of collectively computed macroscopic properties. I introduce a weak and strong notion of downward causation and discuss the role the strong form plays in the origins of new organizational levels. I illustrate these points with examples from the study of biological and social systems and deep neural networks. This article is part of the themed issue 'Reconceptualizing the origins of life'.

  6. Coarse-graining as a downward causation mechanism

    PubMed Central

    2017-01-01

    Downward causation is the controversial idea that ‘higher’ levels of organization can causally influence behaviour at ‘lower’ levels of organization. Here I propose that we can gain traction on downward causation by being operational and examining how adaptive systems identify regularities in evolutionary or learning time and use these regularities to guide behaviour. I suggest that in many adaptive systems components collectively compute their macroscopic worlds through coarse-graining. I further suggest we move from simple feedback to downward causation when components tune behaviour in response to estimates of collectively computed macroscopic properties. I introduce a weak and strong notion of downward causation and discuss the role the strong form plays in the origins of new organizational levels. I illustrate these points with examples from the study of biological and social systems and deep neural networks. This article is part of the themed issue ‘Reconceptualizing the origins of life’. PMID:29133440

  7. Better informed in clinical practice - a brief overview of dental informatics.

    PubMed

    Reynolds, P A; Harper, J; Dunne, S

    2008-03-22

    Uptake of dental informatics has been hampered by technical and user issues. Innovative systems have been developed, but usability issues have affected many. Advances in technology and artificial intelligence are now producing clinically useful systems, although issues still remain with adapting computer interfaces to the dental practice working environment. A dental electronic health record has become a priority in many countries, including the UK. However, experience shows that any dental electronic health record (EHR) system cannot be subordinate to, or a subset of, a medical record. Such a future dental EHR is likely to incorporate integrated care pathways. Future best dental practice will increasingly depend on computer-based support tools, although disagreement remains about the effectiveness of current support tools. Over the longer term, future dental informatics tools will incorporate dynamic, online evidence-based medicine (EBM) tools, and promise more adaptive, patient-focused and efficient dental care with educational advantages in training.

  8. An adaptive model order reduction by proper snapshot selection for nonlinear dynamical problems

    NASA Astrophysics Data System (ADS)

    Nigro, P. S. B.; Anndif, M.; Teixeira, Y.; Pimenta, P. M.; Wriggers, P.

    2016-04-01

    Model Order Reduction (MOR) methods are employed in many fields of Engineering in order to reduce the processing time of complex computational simulations. A usual approach to achieve this is the application of Galerkin projection to generate representative subspaces (reduced spaces). However, when strong nonlinearities in a dynamical system are present and this technique is employed several times along the simulation, it can be very inefficient. This work proposes a new adaptive strategy, which ensures low computational cost and small error to deal with this problem. This work also presents a new method to select snapshots named Proper Snapshot Selection (PSS). The objective of the PSS is to obtain a good balance between accuracy and computational cost by improving the adaptive strategy through a better snapshot selection in real time (online analysis). With this method, it is possible a substantial reduction of the subspace, keeping the quality of the model without the use of the Proper Orthogonal Decomposition (POD).

  9. Metabolic Adaptation to Muscle Ischemia

    NASA Technical Reports Server (NTRS)

    Cabrera, Marco E.; Coon, Jennifer E.; Kalhan, Satish C.; Radhakrishnan, Krishnan; Saidel, Gerald M.; Stanley, William C.

    2000-01-01

    Although all tissues in the body can adapt to varying physiological/pathological conditions, muscle is the most adaptable. To understand the significance of cellular events and their role in controlling metabolic adaptations in complex physiological systems, it is necessary to link cellular and system levels by means of mechanistic computational models. The main objective of this work is to improve understanding of the regulation of energy metabolism during skeletal/cardiac muscle ischemia by combining in vivo experiments and quantitative models of metabolism. Our main focus is to investigate factors affecting lactate metabolism (e.g., NADH/NAD) and the inter-regulation between carbohydrate and fatty acid metabolism during a reduction in regional blood flow. A mechanistic mathematical model of energy metabolism has been developed to link cellular metabolic processes and their control mechanisms to tissue (skeletal muscle) and organ (heart) physiological responses. We applied this model to simulate the relationship between tissue oxygenation, redox state, and lactate metabolism in skeletal muscle. The model was validated using human data from published occlusion studies. Currently, we are investigating the difference in the responses to sudden vs. gradual onset ischemia in swine by combining in vivo experimental studies with computational models of myocardial energy metabolism during normal and ischemic conditions.

  10. Advanced Methodology for Simulation of Complex Flows Using Structured Grid Systems

    NASA Technical Reports Server (NTRS)

    Steinthorsson, Erlendur; Modiano, David

    1995-01-01

    Detailed simulations of viscous flows in complicated geometries pose a significant challenge to current capabilities of Computational Fluid Dynamics (CFD). To enable routine application of CFD to this class of problems, advanced methodologies are required that employ (a) automated grid generation, (b) adaptivity, (c) accurate discretizations and efficient solvers, and (d) advanced software techniques. Each of these ingredients contributes to increased accuracy, efficiency (in terms of human effort and computer time), and/or reliability of CFD software. In the long run, methodologies employing structured grid systems will remain a viable choice for routine simulation of flows in complex geometries only if genuinely automatic grid generation techniques for structured grids can be developed and if adaptivity is employed more routinely. More research in both these areas is urgently needed.

  11. Layer-oriented multigrid wavefront reconstruction algorithms for multi-conjugate adaptive optics

    NASA Astrophysics Data System (ADS)

    Gilles, Luc; Ellerbroek, Brent L.; Vogel, Curtis R.

    2003-02-01

    Multi-conjugate adaptive optics (MCAO) systems with 104-105 degrees of freedom have been proposed for future giant telescopes. Using standard matrix methods to compute, optimize, and implement wavefront control algorithms for these systems is impractical, since the number of calculations required to compute and apply the reconstruction matrix scales respectively with the cube and the square of the number of AO degrees of freedom. In this paper, we develop an iterative sparse matrix implementation of minimum variance wavefront reconstruction for telescope diameters up to 32m with more than 104 actuators. The basic approach is the preconditioned conjugate gradient method, using a multigrid preconditioner incorporating a layer-oriented (block) symmetric Gauss-Seidel iterative smoothing operator. We present open-loop numerical simulation results to illustrate algorithm convergence.

  12. Adaptive Optimal Control Using Frequency Selective Information of the System Uncertainty With Application to Unmanned Aircraft.

    PubMed

    Maity, Arnab; Hocht, Leonhard; Heise, Christian; Holzapfel, Florian

    2018-01-01

    A new efficient adaptive optimal control approach is presented in this paper based on the indirect model reference adaptive control (MRAC) architecture for improvement of adaptation and tracking performance of the uncertain system. The system accounts here for both matched and unmatched unknown uncertainties that can act as plant as well as input effectiveness failures or damages. For adaptation of the unknown parameters of these uncertainties, the frequency selective learning approach is used. Its idea is to compute a filtered expression of the system uncertainty using multiple filters based on online instantaneous information, which is used for augmentation of the update law. It is capable of adjusting a sudden change in system dynamics without depending on high adaptation gains and can satisfy exponential parameter error convergence under certain conditions in the presence of structured matched and unmatched uncertainties as well. Additionally, the controller of the MRAC system is designed using a new optimal control method. This method is a new linear quadratic regulator-based optimal control formulation for both output regulation and command tracking problems. It provides a closed-form control solution. The proposed overall approach is applied in a control of lateral dynamics of an unmanned aircraft problem to show its effectiveness.

  13. On Event-Triggered Adaptive Architectures for Decentralized and Distributed Control of Large-Scale Modular Systems

    PubMed Central

    Albattat, Ali; Gruenwald, Benjamin C.; Yucelen, Tansel

    2016-01-01

    The last decade has witnessed an increased interest in physical systems controlled over wireless networks (networked control systems). These systems allow the computation of control signals via processors that are not attached to the physical systems, and the feedback loops are closed over wireless networks. The contribution of this paper is to design and analyze event-triggered decentralized and distributed adaptive control architectures for uncertain networked large-scale modular systems; that is, systems consist of physically-interconnected modules controlled over wireless networks. Specifically, the proposed adaptive architectures guarantee overall system stability while reducing wireless network utilization and achieving a given system performance in the presence of system uncertainties that can result from modeling and degraded modes of operation of the modules and their interconnections between each other. In addition to the theoretical findings including rigorous system stability and the boundedness analysis of the closed-loop dynamical system, as well as the characterization of the effect of user-defined event-triggering thresholds and the design parameters of the proposed adaptive architectures on the overall system performance, an illustrative numerical example is further provided to demonstrate the efficacy of the proposed decentralized and distributed control approaches. PMID:27537894

  14. On Event-Triggered Adaptive Architectures for Decentralized and Distributed Control of Large-Scale Modular Systems.

    PubMed

    Albattat, Ali; Gruenwald, Benjamin C; Yucelen, Tansel

    2016-08-16

    The last decade has witnessed an increased interest in physical systems controlled over wireless networks (networked control systems). These systems allow the computation of control signals via processors that are not attached to the physical systems, and the feedback loops are closed over wireless networks. The contribution of this paper is to design and analyze event-triggered decentralized and distributed adaptive control architectures for uncertain networked large-scale modular systems; that is, systems consist of physically-interconnected modules controlled over wireless networks. Specifically, the proposed adaptive architectures guarantee overall system stability while reducing wireless network utilization and achieving a given system performance in the presence of system uncertainties that can result from modeling and degraded modes of operation of the modules and their interconnections between each other. In addition to the theoretical findings including rigorous system stability and the boundedness analysis of the closed-loop dynamical system, as well as the characterization of the effect of user-defined event-triggering thresholds and the design parameters of the proposed adaptive architectures on the overall system performance, an illustrative numerical example is further provided to demonstrate the efficacy of the proposed decentralized and distributed control approaches.

  15. Development of Shunt-Type Three-Phase Active Power Filter with Novel Adaptive Control for Wind Generators

    PubMed Central

    2015-01-01

    This paper proposes a new adaptive filter for wind generators that combines instantaneous reactive power compensation technology and current prediction controller, and therefore this system is characterized by low harmonic distortion, high power factor, and small DC-link voltage variations during load disturbances. The performance of the system was first simulated using MATLAB/Simulink, and the possibility of an adaptive digital low-pass filter eliminating current harmonics was confirmed in steady and transient states. Subsequently, a digital signal processor was used to implement an active power filter. The experimental results indicate, that for the rated operation of 2 kVA, the system has a total harmonic distortion of current less than 5.0% and a power factor of 1.0 on the utility side. Thus, the transient performance of the adaptive filter is superior to the traditional digital low-pass filter and is more economical because of its short computation time compared with other types of adaptive filters. PMID:26451391

  16. Development of Shunt-Type Three-Phase Active Power Filter with Novel Adaptive Control for Wind Generators.

    PubMed

    Chen, Ming-Hung

    2015-01-01

    This paper proposes a new adaptive filter for wind generators that combines instantaneous reactive power compensation technology and current prediction controller, and therefore this system is characterized by low harmonic distortion, high power factor, and small DC-link voltage variations during load disturbances. The performance of the system was first simulated using MATLAB/Simulink, and the possibility of an adaptive digital low-pass filter eliminating current harmonics was confirmed in steady and transient states. Subsequently, a digital signal processor was used to implement an active power filter. The experimental results indicate, that for the rated operation of 2 kVA, the system has a total harmonic distortion of current less than 5.0% and a power factor of 1.0 on the utility side. Thus, the transient performance of the adaptive filter is superior to the traditional digital low-pass filter and is more economical because of its short computation time compared with other types of adaptive filters.

  17. AHaH Computing–From Metastable Switches to Attractors to Machine Learning

    PubMed Central

    Nugent, Michael Alexander; Molter, Timothy Wesley

    2014-01-01

    Modern computing architecture based on the separation of memory and processing leads to a well known problem called the von Neumann bottleneck, a restrictive limit on the data bandwidth between CPU and RAM. This paper introduces a new approach to computing we call AHaH computing where memory and processing are combined. The idea is based on the attractor dynamics of volatile dissipative electronics inspired by biological systems, presenting an attractive alternative architecture that is able to adapt, self-repair, and learn from interactions with the environment. We envision that both von Neumann and AHaH computing architectures will operate together on the same machine, but that the AHaH computing processor may reduce the power consumption and processing time for certain adaptive learning tasks by orders of magnitude. The paper begins by drawing a connection between the properties of volatility, thermodynamics, and Anti-Hebbian and Hebbian (AHaH) plasticity. We show how AHaH synaptic plasticity leads to attractor states that extract the independent components of applied data streams and how they form a computationally complete set of logic functions. After introducing a general memristive device model based on collections of metastable switches, we show how adaptive synaptic weights can be formed from differential pairs of incremental memristors. We also disclose how arrays of synaptic weights can be used to build a neural node circuit operating AHaH plasticity. By configuring the attractor states of the AHaH node in different ways, high level machine learning functions are demonstrated. This includes unsupervised clustering, supervised and unsupervised classification, complex signal prediction, unsupervised robotic actuation and combinatorial optimization of procedures–all key capabilities of biological nervous systems and modern machine learning algorithms with real world application. PMID:24520315

  18. Research on elastic resource management for multi-queue under cloud computing environment

    NASA Astrophysics Data System (ADS)

    CHENG, Zhenjing; LI, Haibo; HUANG, Qiulan; Cheng, Yaodong; CHEN, Gang

    2017-10-01

    As a new approach to manage computing resource, virtualization technology is more and more widely applied in the high-energy physics field. A virtual computing cluster based on Openstack was built at IHEP, using HTCondor as the job queue management system. In a traditional static cluster, a fixed number of virtual machines are pre-allocated to the job queue of different experiments. However this method cannot be well adapted to the volatility of computing resource requirements. To solve this problem, an elastic computing resource management system under cloud computing environment has been designed. This system performs unified management of virtual computing nodes on the basis of job queue in HTCondor based on dual resource thresholds as well as the quota service. A two-stage pool is designed to improve the efficiency of resource pool expansion. This paper will present several use cases of the elastic resource management system in IHEPCloud. The practical run shows virtual computing resource dynamically expanded or shrunk while computing requirements change. Additionally, the CPU utilization ratio of computing resource was significantly increased when compared with traditional resource management. The system also has good performance when there are multiple condor schedulers and multiple job queues.

  19. Close-loop performance of a high precision deflectometry controlled deformable mirror (DCDM) unit for wavefront correction in adaptive optics system

    NASA Astrophysics Data System (ADS)

    Huang, Lei; Zhou, Chenlu; Zhao, Wenchuan; Choi, Heejoo; Graves, Logan; Kim, Daewook

    2017-06-01

    We present a high precision deflectometry system (DS) controlled deformable mirror (DM) solution for optical system. Different from wavefront and non-wavefront system, the DS and the DM are set to be an individual integrated DCDM unit and can be installed in one base plate. In the DCDM unit, the DS can directly provide the influence functions and surface shape of the DM to the industrial computer in any adaptive optics system. As an integrated adaptive unit, the DCDM unit could be put into various optical systems to realize aberration compensation. In this paper, the configuration and principle of the DCDM unit is introduced first. Theoretical simulation on the close-loop performance of the DCDM unit is carried out. Finally, a verification experiment is proposed to verify the compensation capability of the DCDM unit.

  20. Adaptive Wavelet Modeling of Geophysical Data

    NASA Astrophysics Data System (ADS)

    Plattner, A.; Maurer, H.; Dahmen, W.; Vorloeper, J.

    2009-12-01

    Despite the ever-increasing power of modern computers, realistic modeling of complex three-dimensional Earth models is still a challenging task and requires substantial computing resources. The overwhelming majority of current geophysical modeling approaches includes either finite difference or non-adaptive finite element algorithms, and variants thereof. These numerical methods usually require the subsurface to be discretized with a fine mesh to accurately capture the behavior of the physical fields. However, this may result in excessive memory consumption and computing times. A common feature of most of these algorithms is that the modeled data discretizations are independent of the model complexity, which may be wasteful when there are only minor to moderate spatial variations in the subsurface parameters. Recent developments in the theory of adaptive numerical solvers have the potential to overcome this problem. Here, we consider an adaptive wavelet based approach that is applicable to a large scope of problems, also including nonlinear problems. To the best of our knowledge such algorithms have not yet been applied in geophysics. Adaptive wavelet algorithms offer several attractive features: (i) for a given subsurface model, they allow the forward modeling domain to be discretized with a quasi minimal number of degrees of freedom, (ii) sparsity of the associated system matrices is guaranteed, which makes the algorithm memory efficient, and (iii) the modeling accuracy scales linearly with computing time. We have implemented the adaptive wavelet algorithm for solving three-dimensional geoelectric problems. To test its performance, numerical experiments were conducted with a series of conductivity models exhibiting varying degrees of structural complexity. Results were compared with a non-adaptive finite element algorithm, which incorporates an unstructured mesh to best fit subsurface boundaries. Such algorithms represent the current state-of-the-art in geoelectrical modeling. An analysis of the numerical accuracy as a function of the number of degrees of freedom revealed that the adaptive wavelet algorithm outperforms the finite element solver for simple and moderately complex models, whereas the results become comparable for models with spatially highly variable electrical conductivities. The linear dependency of the modeling error and the computing time proved to be model-independent. This feature will allow very efficient computations using large-scale models as soon as our experimental code is optimized in terms of its implementation.

  1. Computer hardware and software for robotic control

    NASA Technical Reports Server (NTRS)

    Davis, Virgil Leon

    1987-01-01

    The KSC has implemented an integrated system that coordinates state-of-the-art robotic subsystems. It is a sensor based real-time robotic control system performing operations beyond the capability of an off-the-shelf robot. The integrated system provides real-time closed loop adaptive path control of position and orientation of all six axes of a large robot; enables the implementation of a highly configurable, expandable testbed for sensor system development; and makes several smart distributed control subsystems (robot arm controller, process controller, graphics display, and vision tracking) appear as intelligent peripherals to a supervisory computer coordinating the overall systems.

  2. Facial expression system on video using widrow hoff

    NASA Astrophysics Data System (ADS)

    Jannah, M.; Zarlis, M.; Mawengkang, H.

    2018-03-01

    Facial expressions recognition is one of interesting research. This research contains human feeling to computer application Such as the interaction between human and computer, data compression, facial animation and facial detection from the video. The purpose of this research is to create facial expression system that captures image from the video camera. The system in this research uses Widrow-Hoff learning method in training and testing image with Adaptive Linear Neuron (ADALINE) approach. The system performance is evaluated by two parameters, detection rate and false positive rate. The system accuracy depends on good technique and face position that trained and tested.

  3. Fast digital zooming system using directionally adaptive image interpolation and restoration.

    PubMed

    Kang, Wonseok; Jeon, Jaehwan; Yu, Soohwan; Paik, Joonki

    2014-01-01

    This paper presents a fast digital zooming system for mobile consumer cameras using directionally adaptive image interpolation and restoration methods. The proposed interpolation algorithm performs edge refinement along the initially estimated edge orientation using directionally steerable filters. Either the directionally weighted linear or adaptive cubic-spline interpolation filter is then selectively used according to the refined edge orientation for removing jagged artifacts in the slanted edge region. A novel image restoration algorithm is also presented for removing blurring artifacts caused by the linear or cubic-spline interpolation using the directionally adaptive truncated constrained least squares (TCLS) filter. Both proposed steerable filter-based interpolation and the TCLS-based restoration filters have a finite impulse response (FIR) structure for real time processing in an image signal processing (ISP) chain. Experimental results show that the proposed digital zooming system provides high-quality magnified images with FIR filter-based fast computational structure.

  4. An adaptive trajectory tracking control of four rotor hover vehicle using extended normalized radial basis function network

    NASA Astrophysics Data System (ADS)

    ul Amin, Rooh; Aijun, Li; Khan, Muhammad Umer; Shamshirband, Shahaboddin; Kamsin, Amirrudin

    2017-01-01

    In this paper, an adaptive trajectory tracking controller based on extended normalized radial basis function network (ENRBFN) is proposed for 3-degree-of-freedom four rotor hover vehicle subjected to external disturbance i.e. wind turbulence. Mathematical model of four rotor hover system is developed using equations of motions and a new computational intelligence based technique ENRBFN is introduced to approximate the unmodeled dynamics of the hover vehicle. The adaptive controller based on the Lyapunov stability approach is designed to achieve tracking of the desired attitude angles of four rotor hover vehicle in the presence of wind turbulence. The adaptive weight update based on the Levenberg-Marquardt algorithm is used to avoid weight drift in case the system is exposed to external disturbances. The closed-loop system stability is also analyzed using Lyapunov stability theory. Simulations and experimental results are included to validate the effectiveness of the proposed control scheme.

  5. Unifying Complexity and Information

    NASA Astrophysics Data System (ADS)

    Ke, Da-Guan

    2013-04-01

    Complex systems, arising in many contexts in the computer, life, social, and physical sciences, have not shared a generally-accepted complexity measure playing a fundamental role as the Shannon entropy H in statistical mechanics. Superficially-conflicting criteria of complexity measurement, i.e. complexity-randomness (C-R) relations, have given rise to a special measure intrinsically adaptable to more than one criterion. However, deep causes of the conflict and the adaptability are not much clear. Here I trace the root of each representative or adaptable measure to its particular universal data-generating or -regenerating model (UDGM or UDRM). A representative measure for deterministic dynamical systems is found as a counterpart of the H for random process, clearly redefining the boundary of different criteria. And a specific UDRM achieving the intrinsic adaptability enables a general information measure that ultimately solves all major disputes. This work encourages a single framework coving deterministic systems, statistical mechanics and real-world living organisms.

  6. Granular Flow Graph, Adaptive Rule Generation and Tracking.

    PubMed

    Pal, Sankar Kumar; Chakraborty, Debarati Bhunia

    2017-12-01

    A new method of adaptive rule generation in granular computing framework is described based on rough rule base and granular flow graph, and applied for video tracking. In the process, several new concepts and operations are introduced, and methodologies formulated with superior performance. The flow graph enables in defining an intelligent technique for rule base adaptation where its characteristics in mapping the relevance of attributes and rules in decision-making system are exploited. Two new features, namely, expected flow graph and mutual dependency between flow graphs are defined to make the flow graph applicable in the tasks of both training and validation. All these techniques are performed in neighborhood granular level. A way of forming spatio-temporal 3-D granules of arbitrary shape and size is introduced. The rough flow graph-based adaptive granular rule-based system, thus produced for unsupervised video tracking, is capable of handling the uncertainties and incompleteness in frames, able to overcome the incompleteness in information that arises without initial manual interactions and in providing superior performance and gaining in computation time. The cases of partial overlapping and detecting the unpredictable changes are handled efficiently. It is shown that the neighborhood granulation provides a balanced tradeoff between speed and accuracy as compared to pixel level computation. The quantitative indices used for evaluating the performance of tracking do not require any information on ground truth as in the other methods. Superiority of the algorithm to nonadaptive and other recent ones is demonstrated extensively.

  7. A service based adaptive U-learning system using UX.

    PubMed

    Jeong, Hwa-Young; Yi, Gangman

    2014-01-01

    In recent years, traditional development techniques for e-learning systems have been changing to become more convenient and efficient. One new technology in the development of application systems includes both cloud and ubiquitous computing. Cloud computing can support learning system processes by using services while ubiquitous computing can provide system operation and management via a high performance technical process and network. In the cloud computing environment, a learning service application can provide a business module or process to the user via the internet. This research focuses on providing the learning material and processes of courses by learning units using the services in a ubiquitous computing environment. And we also investigate functions that support users' tailored materials according to their learning style. That is, we analyzed the user's data and their characteristics in accordance with their user experience. We subsequently applied the learning process to fit on their learning performance and preferences. Finally, we demonstrate how the proposed system outperforms learning effects to learners better than existing techniques.

  8. A Service Based Adaptive U-Learning System Using UX

    PubMed Central

    Jeong, Hwa-Young

    2014-01-01

    In recent years, traditional development techniques for e-learning systems have been changing to become more convenient and efficient. One new technology in the development of application systems includes both cloud and ubiquitous computing. Cloud computing can support learning system processes by using services while ubiquitous computing can provide system operation and management via a high performance technical process and network. In the cloud computing environment, a learning service application can provide a business module or process to the user via the internet. This research focuses on providing the learning material and processes of courses by learning units using the services in a ubiquitous computing environment. And we also investigate functions that support users' tailored materials according to their learning style. That is, we analyzed the user's data and their characteristics in accordance with their user experience. We subsequently applied the learning process to fit on their learning performance and preferences. Finally, we demonstrate how the proposed system outperforms learning effects to learners better than existing techniques. PMID:25147832

  9. Efficacy of Twisted File Adaptive, Reciproc and ProTaper Universal Retreatment instruments for root-canal-filling removal: A cone-beam computed tomography study.

    PubMed

    Akbulut, Makbule Bilge; Akman, Melek; Terlemez, Arslan; Magat, Guldane; Sener, Sevgi; Shetty, Heeresh

    2016-01-01

    The aim of this study was to evaluate the efficacy of Twisted File (TF) Adaptive, Reciproc, and ProTaper Universal Retreatment (UR) System instruments for removing root-canal-filling. Sixty single rooted teeth were decoronated, instrumented and obturated. Preoperative CBCT scans were taken and the teeth were retreated with TF Adaptive, Reciproc, ProTaper UR, or hand files (n=15). Then, the teeth were rescanned, and the percentage volume of the residual root-canal-filling material was established. The total time for retreatment was recorded, and the data was statistically analyzed. The statistical ranking of the residual filling material volume was as follows: hand file=TF Adaptive>ProTaper UR=Reciproc. The ProTaper UR and Reciproc systems required shorter periods of time for retreatment. Root canal filling was more efficiently removed by using Reciproc and ProTaper UR instruments than TF Adaptive instruments and hand files. The TF Adaptive system was advantageous over hand files with regard to operating time.

  10. Online adaptive optimal control for continuous-time nonlinear systems with completely unknown dynamics

    NASA Astrophysics Data System (ADS)

    Lv, Yongfeng; Na, Jing; Yang, Qinmin; Wu, Xing; Guo, Yu

    2016-01-01

    An online adaptive optimal control is proposed for continuous-time nonlinear systems with completely unknown dynamics, which is achieved by developing a novel identifier-critic-based approximate dynamic programming algorithm with a dual neural network (NN) approximation structure. First, an adaptive NN identifier is designed to obviate the requirement of complete knowledge of system dynamics, and a critic NN is employed to approximate the optimal value function. Then, the optimal control law is computed based on the information from the identifier NN and the critic NN, so that the actor NN is not needed. In particular, a novel adaptive law design method with the parameter estimation error is proposed to online update the weights of both identifier NN and critic NN simultaneously, which converge to small neighbourhoods around their ideal values. The closed-loop system stability and the convergence to small vicinity around the optimal solution are all proved by means of the Lyapunov theory. The proposed adaptation algorithm is also improved to achieve finite-time convergence of the NN weights. Finally, simulation results are provided to exemplify the efficacy of the proposed methods.

  11. Intelligent Context-Aware and Adaptive Interface for Mobile LBS

    PubMed Central

    Liu, Yanhong

    2015-01-01

    Context-aware user interface plays an important role in many human-computer Interaction tasks of location based services. Although spatial models for context-aware systems have been studied extensively, how to locate specific spatial information for users is still not well resolved, which is important in the mobile environment where location based services users are impeded by device limitations. Better context-aware human-computer interaction models of mobile location based services are needed not just to predict performance outcomes, such as whether people will be able to find the information needed to complete a human-computer interaction task, but to understand human processes that interact in spatial query, which will in turn inform the detailed design of better user interfaces in mobile location based services. In this study, a context-aware adaptive model for mobile location based services interface is proposed, which contains three major sections: purpose, adjustment, and adaptation. Based on this model we try to describe the process of user operation and interface adaptation clearly through the dynamic interaction between users and the interface. Then we show how the model applies users' demands in a complicated environment and suggested the feasibility by the experimental results. PMID:26457077

  12. Ribbon synapses compute temporal contrast and encode luminance in retinal rod bipolar cells

    PubMed Central

    Oesch, Nicholas W.; Diamond, Jeffrey S.

    2011-01-01

    Contrast is computed throughout the nervous system to encode changing inputs efficiently. The retina encodes luminance and contrast over a wide range of visual conditions and so must adapt its responses to maintain sensitivity and avoid saturation. Here we show how one type of adaptation allows individual synapses to compute contrast and encode luminance in biphasic responses to step changes in light levels. Light-evoked depletion of the readily releasable vesicle pool (RRP) at rod bipolar cell (RBC) ribbon synapses in rat retina limits the dynamic range available to encode transient but not sustained responses, thereby allowing the transient and sustained components of release to compute temporal contrast and encode mean light levels, respectively. A release/replenishment model shows that a single, homogeneous pool of synaptic vesicles is sufficient to generate this behavior and reveals that the dominant mechanism shaping the biphasic contrast/luminance response is the partial depletion of the RRP. PMID:22019730

  13. Intelligent Systems For Aerospace Engineering: An Overview

    NASA Technical Reports Server (NTRS)

    KrishnaKumar, K.

    2003-01-01

    Intelligent systems are nature-inspired, mathematically sound, computationally intensive problem solving tools and methodologies that have become extremely important for advancing the current trends in information technology. Artificially intelligent systems currently utilize computers to emulate various faculties of human intelligence and biological metaphors. They use a combination of symbolic and sub-symbolic systems capable of evolving human cognitive skills and intelligence, not just systems capable of doing things humans do not do well. Intelligent systems are ideally suited for tasks such as search and optimization, pattern recognition and matching, planning, uncertainty management, control, and adaptation. In this paper, the intelligent system technologies and their application potential are highlighted via several examples.

  14. Intelligent Systems for Aerospace Engineering: An Overview

    NASA Technical Reports Server (NTRS)

    Krishnakumar, Kalmanje

    2002-01-01

    Intelligent systems are nature-inspired, mathematically sound, computationally intensive problem solving tools and methodologies that have become extremely important for advancing the current trends in information technology. Artificially intelligent systems currently utilize computers to emulate various faculties of human intelligence and biological metaphors. They use a combination of symbolic and sub-symbolic systems capable of evolving human cognitive skills and intelligence, not just systems capable of doing things humans do not do well. Intelligent systems are ideally suited for tasks such as search and optimization, pattern recognition and matching, planning, uncertainty management, control, and adaptation. In this paper, the intelligent system technologies and their application potential are highlighted via several examples.

  15. eXascale PRogramming Environment and System Software (XPRESS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, Barbara; Gabriel, Edgar

    Exascale systems, with a thousand times the compute capacity of today’s leading edge petascale computers, are expected to emerge during the next decade. Their software systems will need to facilitate the exploitation of exceptional amounts of concurrency in applications, and ensure that jobs continue to run despite the occurrence of system failures and other kinds of hard and soft errors. Adapting computations at runtime to cope with changes in the execution environment, as well as to improve power and performance characteristics, is likely to become the norm. As a result, considerable innovation is required to develop system support to meetmore » the needs of future computing platforms. The XPRESS project aims to develop and prototype a revolutionary software system for extreme-­scale computing for both exascale and strong­scaled problems. The XPRESS collaborative research project will advance the state-­of-­the-­art in high performance computing and enable exascale computing for current and future DOE mission-­critical applications and supporting systems. The goals of the XPRESS research project are to: A. enable exascale performance capability for DOE applications, both current and future, B. develop and deliver a practical computing system software X-­stack, OpenX, for future practical DOE exascale computing systems, and C. provide programming methods and environments for effective means of expressing application and system software for portable exascale system execution.« less

  16. Mastering Overdetection and Underdetection in Learner-Answer Processing: Simple Techniques for Analysis and Diagnosis

    ERIC Educational Resources Information Center

    Blanchard, Alexia; Kraif, Olivier; Ponton, Claude

    2009-01-01

    This paper presents a "didactic triangulation" strategy to cope with the problem of reliability of NLP applications for computer-assisted language learning (CALL) systems. It is based on the implementation of basic but well mastered NLP techniques and puts the emphasis on an adapted gearing between computable linguistic clues and didactic features…

  17. On computation of Gröbner bases for linear difference systems

    NASA Astrophysics Data System (ADS)

    Gerdt, Vladimir P.

    2006-04-01

    In this paper, we present an algorithm for computing Gröbner bases of linear ideals in a difference polynomial ring over a ground difference field. The input difference polynomials generating the ideal are also assumed to be linear. The algorithm is an adaptation to difference ideals of our polynomial algorithm based on Janet-like reductions.

  18. Analysis of vertical marginal discrepancy in feldspathic porcelain crowns manufactured with different CAD/CAM systems: Closed and open.

    PubMed

    Kricheldorf, Fabio; Bueno, Cleuber Rodrigo de Souza; Amaral, Wilson da Silva; Junior, Joel Ferreira Santiago; Filho, Hugo Nary

    2018-01-01

    The objective of this study is to compare the marginal adaptation of feldspathic porcelain crowns using two computer-aided design/computer-aided manufacturing systems, one of them is open and the other is closed. Twenty identical titanium abutments were divided into two groups: open system (OS), where ceramic crowns were created using varied equipment and software, and closed system (CS), where ceramic crowns were created using the CEREC system. Through optical microscopy analysis, we assess the marginal adaptation of the prosthetic interfaces. The data were subjected to the distribution of normality and variance. The t -test was used for the analysis of the comparison factor between the groups, and the one-way ANOVA was used to compare the variance of crown analysis regions within the group. A significance level of 5% was considered for the analyses. There was a significant difference between the systems ( P = 0.007), with the CS group having the higher mean (23.75 μm ± 3.05) of marginal discrepancy when compared to the open group (17.94 μm ± 4.77). Furthermore, there were no differences in marginal discrepancy between the different points between the groups ( P ≥ 0.05). The studied groups presented results within the requirements set out in the literature. However, the OS used presented better results in marginal adaptation.

  19. Computationally efficient video restoration for Nyquist sampled imaging sensors combining an affine-motion-based temporal Kalman filter and adaptive Wiener filter.

    PubMed

    Rucci, Michael; Hardie, Russell C; Barnard, Kenneth J

    2014-05-01

    In this paper, we present a computationally efficient video restoration algorithm to address both blur and noise for a Nyquist sampled imaging system. The proposed method utilizes a temporal Kalman filter followed by a correlation-model based spatial adaptive Wiener filter (AWF). The Kalman filter employs an affine background motion model and novel process-noise variance estimate. We also propose and demonstrate a new multidelay temporal Kalman filter designed to more robustly treat local motion. The AWF is a spatial operation that performs deconvolution and adapts to the spatially varying residual noise left in the Kalman filter stage. In image areas where the temporal Kalman filter is able to provide significant noise reduction, the AWF can be aggressive in its deconvolution. In other areas, where less noise reduction is achieved with the Kalman filter, the AWF balances the deconvolution with spatial noise reduction. In this way, the Kalman filter and AWF work together effectively, but without the computational burden of full joint spatiotemporal processing. We also propose a novel hybrid system that combines a temporal Kalman filter and BM3D processing. To illustrate the efficacy of the proposed methods, we test the algorithms on both simulated imagery and video collected with a visible camera.

  20. 3-D Model of the Human Respiratory System

    EPA Science Inventory

    The U.S. EPA’s Office of Research and Development (ORD) has developed a 3-D computational fluid dynamics (CFD) model of the human respiratory system that allows for the simulation of particulate based contaminant deposition and clearance, while being adaptable for age, ethnicity,...

  1. Towards an Hungarian Community College System.

    ERIC Educational Resources Information Center

    Mellander, Gustavo A.; Mellander, Nelly

    This report, based upon the experiences of researchers visiting Hungary in summer 1994, highlights issues of the computability and adaptability of American community colleges to the developing Hungarian postsecondary educational system. The researchers visited with the representatives of the government and universities as well as with private…

  2. Adaptable Computing Environment/Self-Assembling Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osbourn, Gordon C.; Bouchard, Ann M.; Bartholomew, John W.

    Complex software applications are difficult to learn to use and to remember how to use. Further, the user has no control over the functionality available in a given application. The software we use can be created and modified only by a relatively small group of elite, highly skilled artisans known as programmers. "Normal users" are powerless to create and modify software themselves, because the tools for software development, designed by and for programmers, are a barrier to entry. This software, when completed, will be a user-adaptable computing environment in which the user is really in control of his/her own software,more » able to adapt the system, make new parts of the system interactive, and even modify the behavior of the system itself. Som key features of the basic environment that have been implemented are (a) books in bookcases, where all data is stored, (b) context-sensitive compass menus (compass, because the buttons are located in compass directions relative to the mouose cursor position), (c) importing tabular data and displaying it in a book, (d) light-weight table querying/sorting, (e) a Reach&Get capability (sort of a "smart" copy/paste that prevents the user from copying invalid data), and (f) a LogBook that automatically logs all user actions that change data or the system itself. To bootstrap toward full end-user adaptability, we implemented a set of development tools. With the development tools, compass menus can be made and customized.« less

  3. Thermodynamic properties of solvated peptides from selective integrated tempering sampling with a new weighting factor estimation algorithm

    NASA Astrophysics Data System (ADS)

    Shen, Lin; Xie, Liangxu; Yang, Mingjun

    2017-04-01

    Conformational sampling under rugged energy landscape is always a challenge in computer simulations. The recently developed integrated tempering sampling, together with its selective variant (SITS), emerges to be a powerful tool in exploring the free energy landscape or functional motions of various systems. The estimation of weighting factors constitutes a critical step in these methods and requires accurate calculation of partition function ratio between different thermodynamic states. In this work, we propose a new adaptive update algorithm to compute the weighting factors based on the weighted histogram analysis method (WHAM). The adaptive-WHAM algorithm with SITS is then applied to study the thermodynamic properties of several representative peptide systems solvated in an explicit water box. The performance of the new algorithm is validated in simulations of these solvated peptide systems. We anticipate more applications of this coupled optimisation and production algorithm to other complicated systems such as the biochemical reactions in solution.

  4. An integrated science-based methodology to assess potential risks and implications of engineered nanomaterials.

    PubMed

    Tolaymat, Thabet; El Badawy, Amro; Sequeira, Reynold; Genaidy, Ash

    2015-11-15

    There is an urgent need for broad and integrated studies that address the risks of engineered nanomaterials (ENMs) along the different endpoints of the society, environment, and economy (SEE) complex adaptive system. This article presents an integrated science-based methodology to assess the potential risks of engineered nanomaterials. To achieve the study objective, two major tasks are accomplished, knowledge synthesis and algorithmic computational methodology. The knowledge synthesis task is designed to capture "what is known" and to outline the gaps in knowledge from ENMs risk perspective. The algorithmic computational methodology is geared toward the provision of decisions and an understanding of the risks of ENMs along different endpoints for the constituents of the SEE complex adaptive system. The approach presented herein allows for addressing the formidable task of assessing the implications and risks of exposure to ENMs, with the long term goal to build a decision-support system to guide key stakeholders in the SEE system towards building sustainable ENMs and nano-enabled products. Published by Elsevier B.V.

  5. A General Cross-Layer Cloud Scheduling Framework for Multiple IoT Computer Tasks.

    PubMed

    Wu, Guanlin; Bao, Weidong; Zhu, Xiaomin; Zhang, Xiongtao

    2018-05-23

    The diversity of IoT services and applications brings enormous challenges to improving the performance of multiple computer tasks' scheduling in cross-layer cloud computing systems. Unfortunately, the commonly-employed frameworks fail to adapt to the new patterns on the cross-layer cloud. To solve this issue, we design a new computer task scheduling framework for multiple IoT services in cross-layer cloud computing systems. Specifically, we first analyze the features of the cross-layer cloud and computer tasks. Then, we design the scheduling framework based on the analysis and present detailed models to illustrate the procedures of using the framework. With the proposed framework, the IoT services deployed in cross-layer cloud computing systems can dynamically select suitable algorithms and use resources more effectively to finish computer tasks with different objectives. Finally, the algorithms are given based on the framework, and extensive experiments are also given to validate its effectiveness, as well as its superiority.

  6. An adaptive displacement estimation algorithm for improved reconstruction of thermal strain.

    PubMed

    Ding, Xuan; Dutta, Debaditya; Mahmoud, Ahmed M; Tillman, Bryan; Leers, Steven A; Kim, Kang

    2015-01-01

    Thermal strain imaging (TSI) can be used to differentiate between lipid and water-based tissues in atherosclerotic arteries. However, detecting small lipid pools in vivo requires accurate and robust displacement estimation over a wide range of displacement magnitudes. Phase-shift estimators such as Loupas' estimator and time-shift estimators such as normalized cross-correlation (NXcorr) are commonly used to track tissue displacements. However, Loupas' estimator is limited by phase-wrapping and NXcorr performs poorly when the SNR is low. In this paper, we present an adaptive displacement estimation algorithm that combines both Loupas' estimator and NXcorr. We evaluated this algorithm using computer simulations and an ex vivo human tissue sample. Using 1-D simulation studies, we showed that when the displacement magnitude induced by thermal strain was >λ/8 and the electronic system SNR was >25.5 dB, the NXcorr displacement estimate was less biased than the estimate found using Loupas' estimator. On the other hand, when the displacement magnitude was ≤λ/4 and the electronic system SNR was ≤25.5 dB, Loupas' estimator had less variance than NXcorr. We used these findings to design an adaptive displacement estimation algorithm. Computer simulations of TSI showed that the adaptive displacement estimator was less biased than either Loupas' estimator or NXcorr. Strain reconstructed from the adaptive displacement estimates improved the strain SNR by 43.7 to 350% and the spatial accuracy by 1.2 to 23.0% (P < 0.001). An ex vivo human tissue study provided results that were comparable to computer simulations. The results of this study showed that a novel displacement estimation algorithm, which combines two different displacement estimators, yielded improved displacement estimation and resulted in improved strain reconstruction.

  7. An Adaptive Displacement Estimation Algorithm for Improved Reconstruction of Thermal Strain

    PubMed Central

    Ding, Xuan; Dutta, Debaditya; Mahmoud, Ahmed M.; Tillman, Bryan; Leers, Steven A.; Kim, Kang

    2014-01-01

    Thermal strain imaging (TSI) can be used to differentiate between lipid and water-based tissues in atherosclerotic arteries. However, detecting small lipid pools in vivo requires accurate and robust displacement estimation over a wide range of displacement magnitudes. Phase-shift estimators such as Loupas’ estimator and time-shift estimators like normalized cross-correlation (NXcorr) are commonly used to track tissue displacements. However, Loupas’ estimator is limited by phase-wrapping and NXcorr performs poorly when the signal-to-noise ratio (SNR) is low. In this paper, we present an adaptive displacement estimation algorithm that combines both Loupas’ estimator and NXcorr. We evaluated this algorithm using computer simulations and an ex-vivo human tissue sample. Using 1-D simulation studies, we showed that when the displacement magnitude induced by thermal strain was >λ/8 and the electronic system SNR was >25.5 dB, the NXcorr displacement estimate was less biased than the estimate found using Loupas’ estimator. On the other hand, when the displacement magnitude was ≤λ/4 and the electronic system SNR was ≤25.5 dB, Loupas’ estimator had less variance than NXcorr. We used these findings to design an adaptive displacement estimation algorithm. Computer simulations of TSI using Field II showed that the adaptive displacement estimator was less biased than either Loupas’ estimator or NXcorr. Strain reconstructed from the adaptive displacement estimates improved the strain SNR by 43.7–350% and the spatial accuracy by 1.2–23.0% (p < 0.001). An ex-vivo human tissue study provided results that were comparable to computer simulations. The results of this study showed that a novel displacement estimation algorithm, which combines two different displacement estimators, yielded improved displacement estimation and results in improved strain reconstruction. PMID:25585398

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrell, Kathryn, E-mail: kfarrell@ices.utexas.edu; Oden, J. Tinsley, E-mail: oden@ices.utexas.edu; Faghihi, Danial, E-mail: danial@ices.utexas.edu

    A general adaptive modeling algorithm for selection and validation of coarse-grained models of atomistic systems is presented. A Bayesian framework is developed to address uncertainties in parameters, data, and model selection. Algorithms for computing output sensitivities to parameter variances, model evidence and posterior model plausibilities for given data, and for computing what are referred to as Occam Categories in reference to a rough measure of model simplicity, make up components of the overall approach. Computational results are provided for representative applications.

  9. A New Look at NASA: Strategic Research In Information Technology

    NASA Technical Reports Server (NTRS)

    Alfano, David; Tu, Eugene (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on research undertaken by NASA to facilitate the development of information technologies. Specific ideas covered here include: 1) Bio/nano technologies: biomolecular and nanoscale systems and tools for assembly and computing; 2) Evolvable hardware: autonomous self-improving, self-repairing hardware and software for survivable space systems in extreme environments; 3) High Confidence Software Technologies: formal methods, high-assurance software design, and program synthesis; 4) Intelligent Controls and Diagnostics: Next generation machine learning, adaptive control, and health management technologies; 5) Revolutionary computing: New computational models to increase capability and robustness to enable future NASA space missions.

  10. Method and system for rendering and interacting with an adaptable computing environment

    DOEpatents

    Osbourn, Gordon Cecil [Albuquerque, NM; Bouchard, Ann Marie [Albuquerque, NM

    2012-06-12

    An adaptable computing environment is implemented with software entities termed "s-machines", which self-assemble into hierarchical data structures capable of rendering and interacting with the computing environment. A hierarchical data structure includes a first hierarchical s-machine bound to a second hierarchical s-machine. The first hierarchical s-machine is associated with a first layer of a rendering region on a display screen and the second hierarchical s-machine is associated with a second layer of the rendering region overlaying at least a portion of the first layer. A screen element s-machine is linked to the first hierarchical s-machine. The screen element s-machine manages data associated with a screen element rendered to the display screen within the rendering region at the first layer.

  11. Soft computing methods for geoidal height transformation

    NASA Astrophysics Data System (ADS)

    Akyilmaz, O.; Özlüdemir, M. T.; Ayan, T.; Çelik, R. N.

    2009-07-01

    Soft computing techniques, such as fuzzy logic and artificial neural network (ANN) approaches, have enabled researchers to create precise models for use in many scientific and engineering applications. Applications that can be employed in geodetic studies include the estimation of earth rotation parameters and the determination of mean sea level changes. Another important field of geodesy in which these computing techniques can be applied is geoidal height transformation. We report here our use of a conventional polynomial model, the Adaptive Network-based Fuzzy (or in some publications, Adaptive Neuro-Fuzzy) Inference System (ANFIS), an ANN and a modified ANN approach to approximate geoid heights. These approximation models have been tested on a number of test points. The results obtained through the transformation processes from ellipsoidal heights into local levelling heights have also been compared.

  12. Revision and Expansion of Navy Computer Adaptive Personality Scales (NCAPS)

    DTIC Science & Technology

    2007-08-01

    Nav Pesne Reerh Stde, an Technolg y Dii sio Revision and Expansion of Navy Computer Adaptive Personality Scales ( NCAPS ) Robert J. Schneider, Ph.D...TN-o7-12 August 2007 Revision and Expansion of Navy Computer Adaptive Personality Scales ( NCAPS ) Robert J. Schneider, Ph.D. Kerri L. Ferstl, Ph.D...03/31/2006 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Revision and Expansion of Navy Computer Adaptive Personality Scales ( NCAPS ) 5b. GRANT NUMBER 5c

  13. Investigation of Item-Pair Presentation and Construct Validity of the Navy Computer Adaptive Personality Scales (NCAPS)

    DTIC Science & Technology

    2006-10-01

    Investigation of Item-Pair Presentation and Construct Validity of the Navy Computer Adaptive Personality Scales ( NCAPS ) Christina M. Underhill, Ph.D...Construct Validity of the Navy Computer Adaptive Personality Scales ( NCAPS ) Christina M. Underhill, Ph.D. Reviewed and Approved by Jacqueline A. Mottern...and Construct Validity of the Navy Computer Adaptive Personality Scales ( NCAPS ) 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 0602236N and 0603236N 6

  14. Modeling the Internet of Things, Self-Organizing and Other Complex Adaptive Communication Networks: A Cognitive Agent-Based Computing Approach.

    PubMed

    Laghari, Samreen; Niazi, Muaz A

    2016-01-01

    Computer Networks have a tendency to grow at an unprecedented scale. Modern networks involve not only computers but also a wide variety of other interconnected devices ranging from mobile phones to other household items fitted with sensors. This vision of the "Internet of Things" (IoT) implies an inherent difficulty in modeling problems. It is practically impossible to implement and test all scenarios for large-scale and complex adaptive communication networks as part of Complex Adaptive Communication Networks and Environments (CACOONS). The goal of this study is to explore the use of Agent-based Modeling as part of the Cognitive Agent-based Computing (CABC) framework to model a Complex communication network problem. We use Exploratory Agent-based Modeling (EABM), as part of the CABC framework, to develop an autonomous multi-agent architecture for managing carbon footprint in a corporate network. To evaluate the application of complexity in practical scenarios, we have also introduced a company-defined computer usage policy. The conducted experiments demonstrated two important results: Primarily CABC-based modeling approach such as using Agent-based Modeling can be an effective approach to modeling complex problems in the domain of IoT. Secondly, the specific problem of managing the Carbon footprint can be solved using a multiagent system approach.

  15. Electronic processing and control system with programmable hardware

    NASA Technical Reports Server (NTRS)

    Alkalaj, Leon (Inventor); Fang, Wai-Chi (Inventor); Newell, Michael A. (Inventor)

    1998-01-01

    A computer system with reprogrammable hardware allowing dynamically allocating hardware resources for different functions and adaptability for different processors and different operating platforms. All hardware resources are physically partitioned into system-user hardware and application-user hardware depending on the specific operation requirements. A reprogrammable interface preferably interconnects the system-user hardware and application-user hardware.

  16. Real time optimization algorithm for wavefront sensorless adaptive optics OCT (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Verstraete, Hans R. G. W.; Heisler, Morgan; Ju, Myeong Jin; Wahl, Daniel J.; Bliek, Laurens; Kalkman, Jeroen; Bonora, Stefano; Sarunic, Marinko V.; Verhaegen, Michel; Jian, Yifan

    2017-02-01

    Optical Coherence Tomography (OCT) has revolutionized modern ophthalmology, providing depth resolved images of the retinal layers in a system that is suited to a clinical environment. A limitation of the performance and utilization of the OCT systems has been the lateral resolution. Through the combination of wavefront sensorless adaptive optics with dual variable optical elements, we present a compact lens based OCT system that is capable of imaging the photoreceptor mosaic. We utilized a commercially available variable focal length lens to correct for a wide range of defocus commonly found in patient eyes, and a multi-actuator adaptive lens after linearization of the hysteresis in the piezoelectric actuators for aberration correction to obtain near diffraction limited imaging at the retina. A parallel processing computational platform permitted real-time image acquisition and display. The Data-based Online Nonlinear Extremum seeker (DONE) algorithm was used for real time optimization of the wavefront sensorless adaptive optics OCT, and the performance was compared with a coordinate search algorithm. Cross sectional images of the retinal layers and en face images of the cone photoreceptor mosaic acquired in vivo from research volunteers before and after WSAO optimization are presented. Applying the DONE algorithm in vivo for wavefront sensorless AO-OCT demonstrates that the DONE algorithm succeeds in drastically improving the signal while achieving a computational time of 1 ms per iteration, making it applicable for high speed real time applications.

  17. Algebraic and adaptive learning in neural control systems

    NASA Astrophysics Data System (ADS)

    Ferrari, Silvia

    A systematic approach is developed for designing adaptive and reconfigurable nonlinear control systems that are applicable to plants modeled by ordinary differential equations. The nonlinear controller comprising a network of neural networks is taught using a two-phase learning procedure realized through novel techniques for initialization, on-line training, and adaptive critic design. A critical observation is that the gradients of the functions defined by the neural networks must equal corresponding linear gain matrices at chosen operating points. On-line training is based on a dual heuristic adaptive critic architecture that improves control for large, coupled motions by accounting for actual plant dynamics and nonlinear effects. An action network computes the optimal control law; a critic network predicts the derivative of the cost-to-go with respect to the state. Both networks are algebraically initialized based on prior knowledge of satisfactory pointwise linear controllers and continue to adapt on line during full-scale simulations of the plant. On-line training takes place sequentially over discrete periods of time and involves several numerical procedures. A backpropagating algorithm called Resilient Backpropagation is modified and successfully implemented to meet these objectives, without excessive computational expense. This adaptive controller is as conservative as the linear designs and as effective as a global nonlinear controller. The method is successfully implemented for the full-envelope control of a six-degree-of-freedom aircraft simulation. The results show that the on-line adaptation brings about improved performance with respect to the initialization phase during aircraft maneuvers that involve large-angle and coupled dynamics, and parameter variations.

  18. Road sign recognition with fuzzy adaptive pre-processing models.

    PubMed

    Lin, Chien-Chuan; Wang, Ming-Shi

    2012-01-01

    A road sign recognition system based on adaptive image pre-processing models using two fuzzy inference schemes has been proposed. The first fuzzy inference scheme is to check the changes of the light illumination and rich red color of a frame image by the checking areas. The other is to check the variance of vehicle's speed and angle of steering wheel to select an adaptive size and position of the detection area. The Adaboost classifier was employed to detect the road sign candidates from an image and the support vector machine technique was employed to recognize the content of the road sign candidates. The prohibitory and warning road traffic signs are the processing targets in this research. The detection rate in the detection phase is 97.42%. In the recognition phase, the recognition rate is 93.04%. The total accuracy rate of the system is 92.47%. For video sequences, the best accuracy rate is 90.54%, and the average accuracy rate is 80.17%. The average computing time is 51.86 milliseconds per frame. The proposed system can not only overcome low illumination and rich red color around the road sign problems but also offer high detection rates and high computing performance.

  19. Road Sign Recognition with Fuzzy Adaptive Pre-Processing Models

    PubMed Central

    Lin, Chien-Chuan; Wang, Ming-Shi

    2012-01-01

    A road sign recognition system based on adaptive image pre-processing models using two fuzzy inference schemes has been proposed. The first fuzzy inference scheme is to check the changes of the light illumination and rich red color of a frame image by the checking areas. The other is to check the variance of vehicle's speed and angle of steering wheel to select an adaptive size and position of the detection area. The Adaboost classifier was employed to detect the road sign candidates from an image and the support vector machine technique was employed to recognize the content of the road sign candidates. The prohibitory and warning road traffic signs are the processing targets in this research. The detection rate in the detection phase is 97.42%. In the recognition phase, the recognition rate is 93.04%. The total accuracy rate of the system is 92.47%. For video sequences, the best accuracy rate is 90.54%, and the average accuracy rate is 80.17%. The average computing time is 51.86 milliseconds per frame. The proposed system can not only overcome low illumination and rich red color around the road sign problems but also offer high detection rates and high computing performance. PMID:22778650

  20. Oral and maxillofacial surgery with computer-assisted navigation system.

    PubMed

    Kawachi, Homare; Kawachi, Yasuyuki; Ikeda, Chihaya; Takagi, Ryo; Katakura, Akira; Shibahara, Takahiko

    2010-01-01

    Intraoperative computer-assisted navigation has gained acceptance in maxillofacial surgery with applications in an increasing number of indications. We adapted a commercially available wireless passive marker system which allows calibration and tracking of virtually every instrument in maxillofacial surgery. Virtual computer-generated anatomical structures are displayed intraoperatively in a semi-immersive head-up display. Continuous observation of the operating field facilitated by computer assistance enables surgical navigation in accordance with the physician's preoperative plans. This case report documents the potential for augmented visualization concepts in surgical resection of tumors in the oral and maxillofacial region. We report a case of T3N2bM0 carcinoma of the maxillary gingival which was surgically resected with the assistance of the Stryker Navigation Cart System. This system was found to be useful in assisting preoperative planning and intraoperative monitoring.

  1. 76 FR 56188 - Tests Determined To Be Suitable for Use in the National Reporting System for Adult Education

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-12

    ... (CASAS) Life Skills Math Assessments--Application of Mathematics (Secondary Level). We are clarifying... Proficiency Test (MAPT) for Math. We are clarifying that the computer-adaptive test (CAT) is an approved...): (1) Comprehensive Adult Student Assessment Systems (CASAS) Employability Competency System (ECS) Math...

  2. A New Approach to Personalization: Integrating E-Learning and M-Learning

    ERIC Educational Resources Information Center

    Nedungadi, Prema; Raman, Raghu

    2012-01-01

    Most personalized learning systems are designed for either personal computers (e-learning) or mobile devices (m-learning). Our research has resulted in a cloud-based adaptive learning system that incorporates mobile devices into a classroom setting. This system is fully integrated into the formative assessment process and, most importantly,…

  3. Design and Implementation of the PALM-3000 Real-Time Control System

    NASA Technical Reports Server (NTRS)

    Truong, Tuan N.; Bouchez, Antonin H.; Burruss, Rick S.; Dekany, Richard G.; Guiwits, Stephen R.; Roberts, Jennifer E.; Shelton, Jean C.; Troy, Mitchell

    2012-01-01

    This paper reflects, from a computational perspective, on the experience gathered in designing and implementing realtime control of the PALM-3000 adaptive optics system currently in operation at the Palomar Observatory. We review the algorithms that serve as functional requirements driving the architecture developed, and describe key design issues and solutions that contributed to the system's low compute-latency. Additionally, we describe an implementation of dense matrix-vector-multiplication for wavefront reconstruction that exceeds 95% of the maximum sustained achievable bandwidth on NVIDIA Geforce 8800GTX GPU.

  4. A versatile system for the rapid collection, handling and graphics analysis of multidimensional data

    NASA Astrophysics Data System (ADS)

    O'Brien, P. M.; Moloney, G.; O'Connor, A.; Legge, G. J. F.

    1993-05-01

    The aim of this work was to provide a versatile system for handling multiparameter data that may arise from a variety of experiments — nuclear, AMS, microprobe elemental analysis, 3D microtomography etc. Some of the most demanding requirements arise in the application of microprobes to quantitative elemental mapping and to microtomography. A system to handle data from such experiments had been under continuous development and use at MARC for the past 15 years. It has now been made adaptable to the needs of multiparameter (or single parameter) experiments in general. The original system has been rewritten, greatly expanded and made much more powerful and faster, by use of modern computer technology — a VME bus computer with a real time operating system and a RISC workstation running Unix and the X Window system. This provides the necessary (i) power, speed and versatility, (ii) expansion and updating capabilities (iii) standardisation and adaptability, (iv) coherent modular programming structures, (v) ability to interface to other programs and (vi) transparent operation with several levels, involving the use of menus, programmed function keys and powerful macro programming facilities.

  5. A Functional Description of a Digital Flight Test System for Navigation and Guidance Research in the Terminal Area

    NASA Technical Reports Server (NTRS)

    Hegarty, D. M.

    1974-01-01

    A guidance, navigation, and control system, the Simulated Shuttle Flight Test System (SS-FTS), when interfaced with existing aircraft systems, provides a research facility for studying concepts for landing the space shuttle orbiter and conventional jet aircraft. The SS-FTS, which includes a general-purpose computer, performs all computations for precisely following a prescribed approach trajectory while properly managing the vehicle energy to allow safe arrival at the runway and landing within prescribed dispersions. The system contains hardware and software provisions for navigation with several combinations of possible navigation aids that have been suggested for the shuttle. The SS-FTS can be reconfigured to study different guidance and navigation concepts by changing only the computer software, and adapted to receive different radio navigation information through minimum hardware changes. All control laws, logic, and mode interlocks reside solely in the computer software.

  6. 1993 Annual report on scientific programs: A broad research program on the sciences of complexity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1993-12-31

    This report provides a summary of many of the research projects completed by the Santa Fe Institute (SFI) during 1993. These research efforts continue to focus on two general areas: the study of, and search for, underlying scientific principles governing complex adaptive systems, and the exploration of new theories of computation that incorporate natural mechanisms of adaptation (mutation, genetics, evolution).

  7. Using Virtualization and Automatic Evaluation: Adapting Network Services Management Courses to the EHEA

    ERIC Educational Resources Information Center

    Ros, S.; Robles-Gomez, A.; Hernandez, R.; Caminero, A. C.; Pastor, R.

    2012-01-01

    This paper outlines the adaptation of a course on the management of network services in operating systems, called NetServicesOS, to the context of the new European Higher Education Area (EHEA). NetServicesOS is a mandatory course in one of the official graduate programs in the Faculty of Computer Science at the Universidad Nacional de Educacion a…

  8. Identifying Key Features, Cutting Edge Cloud Resources, and Artificial Intelligence Tools to Achieve User-Friendly Water Science in the Cloud

    NASA Astrophysics Data System (ADS)

    Pierce, S. A.

    2017-12-01

    Decision making for groundwater systems is becoming increasingly important, as shifting water demands increasingly impact aquifers. As buffer systems, aquifers provide room for resilient responses and augment the actual timeframe for hydrological response. Yet the pace impacts, climate shifts, and degradation of water resources is accelerating. To meet these new drivers, groundwater science is transitioning toward the emerging field of Integrated Water Resources Management, or IWRM. IWRM incorporates a broad array of dimensions, methods, and tools to address problems that tend to be complex. Computational tools and accessible cyberinfrastructure (CI) are needed to cross the chasm between science and society. Fortunately cloud computing environments, such as the new Jetstream system, are evolving rapidly. While still targeting scientific user groups systems such as, Jetstream, offer configurable cyberinfrastructure to enable interactive computing and data analysis resources on demand. The web-based interfaces allow researchers to rapidly customize virtual machines, modify computing architecture and increase the usability and access for broader audiences to advanced compute environments. The result enables dexterous configurations and opening up opportunities for IWRM modelers to expand the reach of analyses, number of case studies, and quality of engagement with stakeholders and decision makers. The acute need to identify improved IWRM solutions paired with advanced computational resources refocuses the attention of IWRM researchers on applications, workflows, and intelligent systems that are capable of accelerating progress. IWRM must address key drivers of community concern, implement transdisciplinary methodologies, adapt and apply decision support tools in order to effectively support decisions about groundwater resource management. This presentation will provide an overview of advanced computing services in the cloud using integrated groundwater management case studies to highlight how Cloud CI streamlines the process for setting up an interactive decision support system. Moreover, advances in artificial intelligence offer new techniques for old problems from integrating data to adaptive sensing or from interactive dashboards to optimizing multi-attribute problems. The combination of scientific expertise, flexible cloud computing solutions, and intelligent systems opens new research horizons.

  9. Computational adaptive optics for broadband optical interferometric tomography of biological tissue

    NASA Astrophysics Data System (ADS)

    Boppart, Stephen A.

    2015-03-01

    High-resolution real-time tomography of biological tissues is important for many areas of biological investigations and medical applications. Cellular level optical tomography, however, has been challenging because of the compromise between transverse imaging resolution and depth-of-field, the system and sample aberrations that may be present, and the low imaging sensitivity deep in scattering tissues. The use of computed optical imaging techniques has the potential to address several of these long-standing limitations and challenges. Two related techniques are interferometric synthetic aperture microscopy (ISAM) and computational adaptive optics (CAO). Through three-dimensional Fourierdomain resampling, in combination with high-speed OCT, ISAM can be used to achieve high-resolution in vivo tomography with enhanced depth sensitivity over a depth-of-field extended by more than an order-of-magnitude, in realtime. Subsequently, aberration correction with CAO can be performed in a tomogram, rather than to the optical beam of a broadband optical interferometry system. Based on principles of Fourier optics, aberration correction with CAO is performed on a virtual pupil using Zernike polynomials, offering the potential to augment or even replace the more complicated and expensive adaptive optics hardware with algorithms implemented on a standard desktop computer. Interferometric tomographic reconstructions are characterized with tissue phantoms containing sub-resolution scattering particles, and in both ex vivo and in vivo biological tissue. This review will collectively establish the foundation for high-speed volumetric cellular-level optical interferometric tomography in living tissues.

  10. Decentralized adaptive control of robot manipulators with robust stabilization design

    NASA Technical Reports Server (NTRS)

    Yuan, Bau-San; Book, Wayne J.

    1988-01-01

    Due to geometric nonlinearities and complex dynamics, a decentralized technique for adaptive control for multilink robot arms is attractive. Lyapunov-function theory for stability analysis provides an approach to robust stabilization. Each joint of the arm is treated as a component subsystem. The adaptive controller is made locally stable with servo signals including proportional and integral gains. This results in the bound on the dynamical interactions with other subsystems. A nonlinear controller which stabilizes the system with uniform boundedness is used to improve the robustness properties of the overall system. As a result, the robot tracks the reference trajectories with convergence. This strategy makes computation simple and therefore facilitates real-time implementation.

  11. Online Magnetic Resonance Image Guided Adaptive Radiation Therapy: First Clinical Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acharya, Sahaja; Fischer-Valuck, Benjamin W.; Kashani, Rojano

    Purpose: To demonstrate the feasibility of online adaptive magnetic resonance (MR) image guided radiation therapy (MR-IGRT) through reporting of our initial clinical experience and workflow considerations. Methods and Materials: The first clinically deployed online adaptive MR-IGRT system consisted of a split 0.35T MR scanner straddling a ring gantry with 3 multileaf collimator-equipped {sup 60}Co heads. The unit is supported by a Monte Carlo–based treatment planning system that allows real-time adaptive planning with the patient on the table. All patients undergo computed tomography and MR imaging (MRI) simulation for initial treatment planning. A volumetric MRI scan is acquired for each patient atmore » the daily treatment setup. Deformable registration is performed using the planning computed tomography data set, which allows for the transfer of the initial contours and the electron density map to the daily MRI scan. The deformed electron density map is then used to recalculate the original plan on the daily MRI scan for physician evaluation. Recontouring and plan reoptimization are performed when required, and patient-specific quality assurance (QA) is performed using an independent in-house software system. Results: The first online adaptive MR-IGRT treatments consisted of 5 patients with abdominopelvic malignancies. The clinical setting included neoadjuvant colorectal (n=3), unresectable gastric (n=1), and unresectable pheochromocytoma (n=1). Recontouring and reoptimization were deemed necessary for 3 of 5 patients, and the initial plan was deemed sufficient for 2 of the 5 patients. The reasons for plan adaptation included tumor progression or regression and a change in small bowel anatomy. In a subsequently expanded cohort of 170 fractions (20 patients), 52 fractions (30.6%) were reoptimized online, and 92 fractions (54.1%) were treated with an online-adapted or previously adapted plan. The median time for recontouring, reoptimization, and QA was 26 minutes. Conclusion: Online adaptive MR-IGRT has been successfully implemented with planning and QA workflow suitable for routine clinical application. Clinical trials are in development to formally evaluate adaptive treatments for a variety of disease sites.« less

  12. Dynamic Distribution and Layouting of Model-Based User Interfaces in Smart Environments

    NASA Astrophysics Data System (ADS)

    Roscher, Dirk; Lehmann, Grzegorz; Schwartze, Veit; Blumendorf, Marco; Albayrak, Sahin

    The developments in computer technology in the last decade change the ways of computer utilization. The emerging smart environments make it possible to build ubiquitous applications that assist users during their everyday life, at any time, in any context. But the variety of contexts-of-use (user, platform and environment) makes the development of such ubiquitous applications for smart environments and especially its user interfaces a challenging and time-consuming task. We propose a model-based approach, which allows adapting the user interface at runtime to numerous (also unknown) contexts-of-use. Based on a user interface modelling language, defining the fundamentals and constraints of the user interface, a runtime architecture exploits the description to adapt the user interface to the current context-of-use. The architecture provides automatic distribution and layout algorithms for adapting the applications also to contexts unforeseen at design time. Designers do not specify predefined adaptations for each specific situation, but adaptation constraints and guidelines. Furthermore, users are provided with a meta user interface to influence the adaptations according to their needs. A smart home energy management system serves as running example to illustrate the approach.

  13. Performance Analysis and Portability of the PLUM Load Balancing System

    NASA Technical Reports Server (NTRS)

    Oliker, Leonid; Biswas, Rupak; Gabow, Harold N.

    1998-01-01

    The ability to dynamically adapt an unstructured mesh is a powerful tool for solving computational problems with evolving physical features; however, an efficient parallel implementation is rather difficult. To address this problem, we have developed PLUM, an automatic portable framework for performing adaptive numerical computations in a message-passing environment. PLUM requires that all data be globally redistributed after each mesh adaption to achieve load balance. We present an algorithm for minimizing this remapping overhead by guaranteeing an optimal processor reassignment. We also show that the data redistribution cost can be significantly reduced by applying our heuristic processor reassignment algorithm to the default mapping of the parallel partitioner. Portability is examined by comparing performance on a SP2, an Origin2000, and a T3E. Results show that PLUM can be successfully ported to different platforms without any code modifications.

  14. Marginal adaptation and CAD-CAM technology: A systematic review of restorative material and fabrication techniques.

    PubMed

    Papadiochou, Sofia; Pissiotis, Argirios L

    2018-04-01

    The comparative assessment of computer-aided design and computer-aided manufacturing (CAD-CAM) technology and other fabrication techniques pertaining to marginal adaptation should be documented. Limited evidence exists on the effect of restorative material on the performance of a CAD-CAM system relative to marginal adaptation. The purpose of this systematic review was to investigate whether the marginal adaptation of CAD-CAM single crowns, fixed dental prostheses, and implant-retained fixed dental prostheses or their infrastructures differs from that obtained by other fabrication techniques using a similar restorative material and whether it depends on the type of restorative material. An electronic search of English-language literature published between January 1, 2000, and June 30, 2016, was conducted of the Medline/PubMed database. Of the 55 included comparative studies, 28 compared CAD-CAM technology with conventional fabrication techniques, 12 contrasted CAD-CAM technology and copy milling, 4 compared CAD-CAM milling with direct metal laser sintering (DMLS), and 22 investigated the performance of a CAD-CAM system regarding marginal adaptation in restorations/infrastructures produced with different restorative materials. Most of the CAD-CAM restorations/infrastructures were within the clinically acceptable marginal discrepancy (MD) range. The performance of a CAD-CAM system relative to marginal adaptation is influenced by the restorative material. Compared with CAD-CAM, most of the heat-pressed lithium disilicate crowns displayed equal or smaller MD values. Slip-casting crowns exhibited similar or better marginal accuracy than those fabricated with CAD-CAM. Cobalt-chromium and titanium implant infrastructures produced using a CAD-CAM system elicited smaller MD values than zirconia. The majority of cobalt-chromium restorations/infrastructures produced by DMLS displayed better marginal accuracy than those fabricated with the casting technique. Compared with copy milling, the majority of zirconia restorations/infrastructures produced by CAD-CAM milling exhibited better marginal adaptation. No clear conclusions can be drawn about the superiority of CAD-CAM milling over the casting technique and DMLS regarding marginal adaptation. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  15. Hypermatrix scheme for finite element systems on CDC STAR-100 computer

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Voigt, S. J.

    1975-01-01

    A study is made of the adaptation of the hypermatrix (block matrix) scheme for solving large systems of finite element equations to the CDC STAR-100 computer. Discussion is focused on the organization of the hypermatrix computation using Cholesky decomposition and the mode of storage of the different submatrices to take advantage of the STAR pipeline (streaming) capability. Consideration is also given to the associated data handling problems and the means of balancing the I/Q and cpu times in the solution process. Numerical examples are presented showing anticipated gain in cpu speed over the CDC 6600 to be obtained by using the proposed algorithms on the STAR computer.

  16. Enabling Predictive Simulation and UQ of Complex Multiphysics PDE Systems by the Development of Goal-Oriented Variational Sensitivity Analysis and a-Posteriori Error Estimation Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estep, Donald

    2015-11-30

    This project addressed the challenge of predictive computational analysis of strongly coupled, highly nonlinear multiphysics systems characterized by multiple physical phenomena that span a large range of length- and time-scales. Specifically, the project was focused on computational estimation of numerical error and sensitivity analysis of computational solutions with respect to variations in parameters and data. In addition, the project investigated the use of accurate computational estimates to guide efficient adaptive discretization. The project developed, analyzed and evaluated new variational adjoint-based techniques for integration, model, and data error estimation/control and sensitivity analysis, in evolutionary multiphysics multiscale simulations.

  17. Adaptive EAGLE dynamic solution adaptation and grid quality enhancement

    NASA Technical Reports Server (NTRS)

    Luong, Phu Vinh; Thompson, J. F.; Gatlin, B.; Mastin, C. W.; Kim, H. J.

    1992-01-01

    In the effort described here, the elliptic grid generation procedure in the EAGLE grid code was separated from the main code into a subroutine, and a new subroutine which evaluates several grid quality measures at each grid point was added. The elliptic grid routine can now be called, either by a computational fluid dynamics (CFD) code to generate a new adaptive grid based on flow variables and quality measures through multiple adaptation, or by the EAGLE main code to generate a grid based on quality measure variables through static adaptation. Arrays of flow variables can be read into the EAGLE grid code for use in static adaptation as well. These major changes in the EAGLE adaptive grid system make it easier to convert any CFD code that operates on a block-structured grid (or single-block grid) into a multiple adaptive code.

  18. Spreading Sequence System for Full Connectivity Relay Network

    NASA Technical Reports Server (NTRS)

    Kwon, Hyuck M. (Inventor); Pham, Khanh D. (Inventor); Yang, Jie (Inventor)

    2018-01-01

    Fully connected uplink and downlink fully connected relay network systems using pseudo-noise spreading and despreading sequences subjected to maximizing the signal-to-interference-plus-noise ratio. The relay network systems comprise one or more transmitting units, relays, and receiving units connected via a communication network. The transmitting units, relays, and receiving units each may include a computer for performing the methods and steps described herein and transceivers for transmitting and/or receiving signals. The computer encodes and/or decodes communication signals via optimum adaptive PN sequences found by employing Cholesky decompositions and singular value decompositions (SVD). The PN sequences employ channel state information (CSI) to more effectively and more securely computing the optimal sequences.

  19. Methods and systems for seed planting management and control

    DOEpatents

    Svoboda, John M.; Hess, J. Richard; Hoskinson, Reed L.; Harker, David J.

    2002-01-01

    A seed planting system providing optimal seed spacing in an agricultural field. The seed planting system includes a mobile seed planter having one or more planting shoes, or members being adapted for towing by a farm vehicle or being self-propelled. Sensors, disposed proximate to respective planting shoes, detect seed planting events and send corresponding signals to a computer. Contemporaneously, a geospatial locator acquires, and transmits to the computer, the geospatial location of each planted seed. The computer correlates the geospatial location data with the seed deposition data and generates a seed distribution profile indicating the location of each seed planted in a zone of interest to enable the control of speed spacing.

  20. Modelling and Optimizing Mathematics Learning in Children

    ERIC Educational Resources Information Center

    Käser, Tanja; Busetto, Alberto Giovanni; Solenthaler, Barbara; Baschera, Gian-Marco; Kohn, Juliane; Kucian, Karin; von Aster, Michael; Gross, Markus

    2013-01-01

    This study introduces a student model and control algorithm, optimizing mathematics learning in children. The adaptive system is integrated into a computer-based training system for enhancing numerical cognition aimed at children with developmental dyscalculia or difficulties in learning mathematics. The student model consists of a dynamic…

  1. A self-paced brain-computer interface for controlling a robot simulator: an online event labelling paradigm and an extended Kalman filter based algorithm for online training.

    PubMed

    Tsui, Chun Sing Louis; Gan, John Q; Roberts, Stephen J

    2009-03-01

    Due to the non-stationarity of EEG signals, online training and adaptation are essential to EEG based brain-computer interface (BCI) systems. Self-paced BCIs offer more natural human-machine interaction than synchronous BCIs, but it is a great challenge to train and adapt a self-paced BCI online because the user's control intention and timing are usually unknown. This paper proposes a novel motor imagery based self-paced BCI paradigm for controlling a simulated robot in a specifically designed environment which is able to provide user's control intention and timing during online experiments, so that online training and adaptation of the motor imagery based self-paced BCI can be effectively investigated. We demonstrate the usefulness of the proposed paradigm with an extended Kalman filter based method to adapt the BCI classifier parameters, with experimental results of online self-paced BCI training with four subjects.

  2. Adjoint-Based, Three-Dimensional Error Prediction and Grid Adaptation

    NASA Technical Reports Server (NTRS)

    Park, Michael A.

    2002-01-01

    Engineering computational fluid dynamics (CFD) analysis and design applications focus on output functions (e.g., lift, drag). Errors in these output functions are generally unknown and conservatively accurate solutions may be computed. Computable error estimates can offer the possibility to minimize computational work for a prescribed error tolerance. Such an estimate can be computed by solving the flow equations and the linear adjoint problem for the functional of interest. The computational mesh can be modified to minimize the uncertainty of a computed error estimate. This robust mesh-adaptation procedure automatically terminates when the simulation is within a user specified error tolerance. This procedure for estimating and adapting to error in a functional is demonstrated for three-dimensional Euler problems. An adaptive mesh procedure that links to a Computer Aided Design (CAD) surface representation is demonstrated for wing, wing-body, and extruded high lift airfoil configurations. The error estimation and adaptation procedure yielded corrected functions that are as accurate as functions calculated on uniformly refined grids with ten times as many grid points.

  3. Architecture Adaptive Computing Environment

    NASA Technical Reports Server (NTRS)

    Dorband, John E.

    2006-01-01

    Architecture Adaptive Computing Environment (aCe) is a software system that includes a language, compiler, and run-time library for parallel computing. aCe was developed to enable programmers to write programs, more easily than was previously possible, for a variety of parallel computing architectures. Heretofore, it has been perceived to be difficult to write parallel programs for parallel computers and more difficult to port the programs to different parallel computing architectures. In contrast, aCe is supportable on all high-performance computing architectures. Currently, it is supported on LINUX clusters. aCe uses parallel programming constructs that facilitate writing of parallel programs. Such constructs were used in single-instruction/multiple-data (SIMD) programming languages of the 1980s, including Parallel Pascal, Parallel Forth, C*, *LISP, and MasPar MPL. In aCe, these constructs are extended and implemented for both SIMD and multiple- instruction/multiple-data (MIMD) architectures. Two new constructs incorporated in aCe are those of (1) scalar and virtual variables and (2) pre-computed paths. The scalar-and-virtual-variables construct increases flexibility in optimizing memory utilization in various architectures. The pre-computed-paths construct enables the compiler to pre-compute part of a communication operation once, rather than computing it every time the communication operation is performed.

  4. Development of neural network techniques for finger-vein pattern classification

    NASA Astrophysics Data System (ADS)

    Wu, Jian-Da; Liu, Chiung-Tsiung; Tsai, Yi-Jang; Liu, Jun-Ching; Chang, Ya-Wen

    2010-02-01

    A personal identification system using finger-vein patterns and neural network techniques is proposed in the present study. In the proposed system, the finger-vein patterns are captured by a device that can transmit near infrared through the finger and record the patterns for signal analysis and classification. The biometric system for verification consists of a combination of feature extraction using principal component analysis and pattern classification using both back-propagation network and adaptive neuro-fuzzy inference systems. Finger-vein features are first extracted by principal component analysis method to reduce the computational burden and removes noise residing in the discarded dimensions. The features are then used in pattern classification and identification. To verify the effect of the proposed adaptive neuro-fuzzy inference system in the pattern classification, the back-propagation network is compared with the proposed system. The experimental results indicated the proposed system using adaptive neuro-fuzzy inference system demonstrated a better performance than the back-propagation network for personal identification using the finger-vein patterns.

  5. Artificial intelligence: Learning to see and act

    NASA Astrophysics Data System (ADS)

    Schölkopf, Bernhard

    2015-02-01

    An artificial-intelligence system uses machine learning from massive training sets to teach itself to play 49 classic computer games, demonstrating that it can adapt to a variety of tasks. See Letter p.529

  6. Computations of Unsteady Viscous Compressible Flows Using Adaptive Mesh Refinement in Curvilinear Body-fitted Grid Systems

    NASA Technical Reports Server (NTRS)

    Steinthorsson, E.; Modiano, David; Colella, Phillip

    1994-01-01

    A methodology for accurate and efficient simulation of unsteady, compressible flows is presented. The cornerstones of the methodology are a special discretization of the Navier-Stokes equations on structured body-fitted grid systems and an efficient solution-adaptive mesh refinement technique for structured grids. The discretization employs an explicit multidimensional upwind scheme for the inviscid fluxes and an implicit treatment of the viscous terms. The mesh refinement technique is based on the AMR algorithm of Berger and Colella. In this approach, cells on each level of refinement are organized into a small number of topologically rectangular blocks, each containing several thousand cells. The small number of blocks leads to small overhead in managing data, while their size and regular topology means that a high degree of optimization can be achieved on computers with vector processors.

  7. How Complex, Probable, and Predictable is Genetically Driven Red Queen Chaos?

    PubMed

    Duarte, Jorge; Rodrigues, Carla; Januário, Cristina; Martins, Nuno; Sardanyés, Josep

    2015-12-01

    Coevolution between two antagonistic species has been widely studied theoretically for both ecologically- and genetically-driven Red Queen dynamics. A typical outcome of these systems is an oscillatory behavior causing an endless series of one species adaptation and others counter-adaptation. More recently, a mathematical model combining a three-species food chain system with an adaptive dynamics approach revealed genetically driven chaotic Red Queen coevolution. In the present article, we analyze this mathematical model mainly focusing on the impact of species rates of evolution (mutation rates) in the dynamics. Firstly, we analytically proof the boundedness of the trajectories of the chaotic attractor. The complexity of the coupling between the dynamical variables is quantified using observability indices. By using symbolic dynamics theory, we quantify the complexity of genetically driven Red Queen chaos computing the topological entropy of existing one-dimensional iterated maps using Markov partitions. Co-dimensional two bifurcation diagrams are also built from the period ordering of the orbits of the maps. Then, we study the predictability of the Red Queen chaos, found in narrow regions of mutation rates. To extend the previous analyses, we also computed the likeliness of finding chaos in a given region of the parameter space varying other model parameters simultaneously. Such analyses allowed us to compute a mean predictability measure for the system in the explored region of the parameter space. We found that genetically driven Red Queen chaos, although being restricted to small regions of the analyzed parameter space, might be highly unpredictable.

  8. Neural Computations in a Dynamical System with Multiple Time Scales.

    PubMed

    Mi, Yuanyuan; Lin, Xiaohan; Wu, Si

    2016-01-01

    Neural systems display rich short-term dynamics at various levels, e.g., spike-frequency adaptation (SFA) at the single-neuron level, and short-term facilitation (STF) and depression (STD) at the synapse level. These dynamical features typically cover a broad range of time scales and exhibit large diversity in different brain regions. It remains unclear what is the computational benefit for the brain to have such variability in short-term dynamics. In this study, we propose that the brain can exploit such dynamical features to implement multiple seemingly contradictory computations in a single neural circuit. To demonstrate this idea, we use continuous attractor neural network (CANN) as a working model and include STF, SFA and STD with increasing time constants in its dynamics. Three computational tasks are considered, which are persistent activity, adaptation, and anticipative tracking. These tasks require conflicting neural mechanisms, and hence cannot be implemented by a single dynamical feature or any combination with similar time constants. However, with properly coordinated STF, SFA and STD, we show that the network is able to implement the three computational tasks concurrently. We hope this study will shed light on the understanding of how the brain orchestrates its rich dynamics at various levels to realize diverse cognitive functions.

  9. Importance of balanced architectures in the design of high-performance imaging systems

    NASA Astrophysics Data System (ADS)

    Sgro, Joseph A.; Stanton, Paul C.

    1999-03-01

    Imaging systems employed in demanding military and industrial applications, such as automatic target recognition and computer vision, typically require real-time high-performance computing resources. While high- performances computing systems have traditionally relied on proprietary architectures and custom components, recent advances in high performance general-purpose microprocessor technology have produced an abundance of low cost components suitable for use in high-performance computing systems. A common pitfall in the design of high performance imaging system, particularly systems employing scalable multiprocessor architectures, is the failure to balance computational and memory bandwidth. The performance of standard cluster designs, for example, in which several processors share a common memory bus, is typically constrained by memory bandwidth. The symptom characteristic of this problem is failure to the performance of the system to scale as more processors are added. The problem becomes exacerbated if I/O and memory functions share the same bus. The recent introduction of microprocessors with large internal caches and high performance external memory interfaces makes it practical to design high performance imaging system with balanced computational and memory bandwidth. Real word examples of such designs will be presented, along with a discussion of adapting algorithm design to best utilize available memory bandwidth.

  10. Reliability modeling of fault-tolerant computer based systems

    NASA Technical Reports Server (NTRS)

    Bavuso, Salvatore J.

    1987-01-01

    Digital fault-tolerant computer-based systems have become commonplace in military and commercial avionics. These systems hold the promise of increased availability, reliability, and maintainability over conventional analog-based systems through the application of replicated digital computers arranged in fault-tolerant configurations. Three tightly coupled factors of paramount importance, ultimately determining the viability of these systems, are reliability, safety, and profitability. Reliability, the major driver affects virtually every aspect of design, packaging, and field operations, and eventually produces profit for commercial applications or increased national security. However, the utilization of digital computer systems makes the task of producing credible reliability assessment a formidable one for the reliability engineer. The root of the problem lies in the digital computer's unique adaptability to changing requirements, computational power, and ability to test itself efficiently. Addressed here are the nuances of modeling the reliability of systems with large state sizes, in the Markov sense, which result from systems based on replicated redundant hardware and to discuss the modeling of factors which can reduce reliability without concomitant depletion of hardware. Advanced fault-handling models are described and methods of acquiring and measuring parameters for these models are delineated.

  11. Advanced systems requirements for ocean observations via microwave radiometers

    NASA Technical Reports Server (NTRS)

    Blume, H.-J. C.; Swift, C. T.; Kendall, B. M.

    1978-01-01

    A future microwave spectroradiometer operating in several frequency bands will have the capability to step or sweep frequencies on an adaptable or programmable basis. The on-board adaptable frequency shifting can make the systems immune from radio interference. Programmable frequency sweeping with on-board data inversion by high speed computers would provide for instantaneous synoptic measurements or sea surface temperature and salinity, water surface and volume pollution, ice thickness, ocean surface winds, snow depth, and soil moisture. Large structure satellites will allow an order of magnitude improvement in the present radiometric measurement spacial resolution.

  12. An adaptive incremental approach to constructing ensemble classifiers: Application in an information-theoretic computer-aided decision system for detection of masses in mammograms

    PubMed Central

    Mazurowski, Maciej A.; Zurada, Jacek M.; Tourassi, Georgia D.

    2009-01-01

    Ensemble classifiers have been shown efficient in multiple applications. In this article, the authors explore the effectiveness of ensemble classifiers in a case-based computer-aided diagnosis system for detection of masses in mammograms. They evaluate two general ways of constructing subclassifiers by resampling of the available development dataset: Random division and random selection. Furthermore, they discuss the problem of selecting the ensemble size and propose two adaptive incremental techniques that automatically select the size for the problem at hand. All the techniques are evaluated with respect to a previously proposed information-theoretic CAD system (IT-CAD). The experimental results show that the examined ensemble techniques provide a statistically significant improvement (AUC=0.905±0.024) in performance as compared to the original IT-CAD system (AUC=0.865±0.029). Some of the techniques allow for a notable reduction in the total number of examples stored in the case base (to 1.3% of the original size), which, in turn, results in lower storage requirements and a shorter response time of the system. Among the methods examined in this article, the two proposed adaptive techniques are by far the most effective for this purpose. Furthermore, the authors provide some discussion and guidance for choosing the ensemble parameters. PMID:19673196

  13. Star adaptation for two-algorithms used on serial computers

    NASA Technical Reports Server (NTRS)

    Howser, L. M.; Lambiotte, J. J., Jr.

    1974-01-01

    Two representative algorithms used on a serial computer and presently executed on the Control Data Corporation 6000 computer were adapted to execute efficiently on the Control Data STAR-100 computer. Gaussian elimination for the solution of simultaneous linear equations and the Gauss-Legendre quadrature formula for the approximation of an integral are the two algorithms discussed. A description is given of how the programs were adapted for STAR and why these adaptations were necessary to obtain an efficient STAR program. Some points to consider when adapting an algorithm for STAR are discussed. Program listings of the 6000 version coded in 6000 FORTRAN, the adapted STAR version coded in 6000 FORTRAN, and the STAR version coded in STAR FORTRAN are presented in the appendices.

  14. F-8C adaptive control law refinement and software development

    NASA Technical Reports Server (NTRS)

    Hartmann, G. L.; Stein, G.

    1981-01-01

    An explicit adaptive control algorithm based on maximum likelihood estimation of parameters was designed. To avoid iterative calculations, the algorithm uses parallel channels of Kalman filters operating at fixed locations in parameter space. This algorithm was implemented in NASA/DFRC's Remotely Augmented Vehicle (RAV) facility. Real-time sensor outputs (rate gyro, accelerometer, surface position) are telemetered to a ground computer which sends new gain values to an on-board system. Ground test data and flight records were used to establish design values of noise statistics and to verify the ground-based adaptive software.

  15. The Use of a Computer-Controlled Random Access Slide Projector for Rapid Information Display.

    ERIC Educational Resources Information Center

    Muller, Mark T.

    A 35mm random access slide projector operated in conjunction with a computer terminal was adapted to meet the need for a more rapid and complex graphic display mechanism than is currently available with teletypewriter terminals. The model projector can be operated manually to provide for a maintenance checkout of the electromechanical system.…

  16. Designing Smart Artifacts for Adaptive Mediation of Social Viscosity: Triadic Actor-Network Enactments as a Basis for Interaction Design

    ERIC Educational Resources Information Center

    Salamanca, Juan

    2012-01-01

    With the advent of ubiquitous computing, interaction design has broadened its object of inquiry into how smart computational artifacts inconspicuously act in people's everyday lives. Although user-centered design approaches remains useful for exploring how people cope with interactive systems, they cannot explain how this new breed of…

  17. Learners' Perceptions and Illusions of Adaptivity in Computer-Based Learning Environments

    ERIC Educational Resources Information Center

    Vandewaetere, Mieke; Vandercruysse, Sylke; Clarebout, Geraldine

    2012-01-01

    Research on computer-based adaptive learning environments has shown exemplary growth. Although the mechanisms of effective adaptive instruction are unraveled systematically, little is known about the relative effect of learners' perceptions of adaptivity in adaptive learning environments. As previous research has demonstrated that the learners'…

  18. From biological neural networks to thinking machines: Transitioning biological organizational principles to computer technology

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.

    1991-01-01

    The three-dimensional organization of the vestibular macula is under study by computer assisted reconstruction and simulation methods as a model for more complex neural systems. One goal of this research is to transition knowledge of biological neural network architecture and functioning to computer technology, to contribute to the development of thinking computers. Maculas are organized as weighted neural networks for parallel distributed processing of information. The network is characterized by non-linearity of its terminal/receptive fields. Wiring appears to develop through constrained randomness. A further property is the presence of two main circuits, highly channeled and distributed modifying, that are connected through feedforward-feedback collaterals and biasing subcircuit. Computer simulations demonstrate that differences in geometry of the feedback (afferent) collaterals affects the timing and the magnitude of voltage changes delivered to the spike initiation zone. Feedforward (efferent) collaterals act as voltage followers and likely inhibit neurons of the distributed modifying circuit. These results illustrate the importance of feedforward-feedback loops, of timing, and of inhibition in refining neural network output. They also suggest that it is the distributed modifying network that is most involved in adaptation, memory, and learning. Tests of macular adaptation, through hyper- and microgravitational studies, support this hypothesis since synapses in the distributed modifying circuit, but not the channeled circuit, are altered. Transitioning knowledge of biological systems to computer technology, however, remains problematical.

  19. HRV based health&sport markers using video from the face.

    PubMed

    Capdevila, Lluis; Moreno, Jordi; Movellan, Javier; Parrado, Eva; Ramos-Castro, Juan

    2012-01-01

    Heart Rate Variability (HRV) is an indicator of health status in the general population and of adaptation to stress in athletes. In this paper we compare the performance of two systems to measure HRV: (1) A commercial system based on recording the physiological cardiac signal with (2) A computer vision system that uses a standard video images of the face to estimate RR from changes in skin color of the face. We show that the computer vision system performs surprisingly well. It estimates individual RR intervals in a non-invasive manner and with error levels comparable to those achieved by the physiological based system.

  20. Adaptive Fuzzy Systems in Computational Intelligence

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1996-01-01

    In recent years, the interest in computational intelligence techniques, which currently includes neural networks, fuzzy systems, and evolutionary programming, has grown significantly and a number of their applications have been developed in the government and industry. In future, an essential element in these systems will be fuzzy systems that can learn from experience by using neural network in refining their performances. The GARIC architecture, introduced earlier, is an example of a fuzzy reinforcement learning system which has been applied in several control domains such as cart-pole balancing, simulation of to Space Shuttle orbital operations, and tether control. A number of examples from GARIC's applications in these domains will be demonstrated.

  1. Reducing computation in an i-vector speaker recognition system using a tree-structured universal background model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClanahan, Richard; De Leon, Phillip L.

    The majority of state-of-the-art speaker recognition systems (SR) utilize speaker models that are derived from an adapted universal background model (UBM) in the form of a Gaussian mixture model (GMM). This is true for GMM supervector systems, joint factor analysis systems, and most recently i-vector systems. In all of the identified systems, the posterior probabilities and sufficient statistics calculations represent a computational bottleneck in both enrollment and testing. We propose a multi-layered hash system, employing a tree-structured GMM–UBM which uses Runnalls’ Gaussian mixture reduction technique, in order to reduce the number of these calculations. Moreover, with this tree-structured hash, wemore » can trade-off reduction in computation with a corresponding degradation of equal error rate (EER). As an example, we also reduce this computation by a factor of 15× while incurring less than 10% relative degradation of EER (or 0.3% absolute EER) when evaluated with NIST 2010 speaker recognition evaluation (SRE) telephone data.« less

  2. Reducing computation in an i-vector speaker recognition system using a tree-structured universal background model

    DOE PAGES

    McClanahan, Richard; De Leon, Phillip L.

    2014-08-20

    The majority of state-of-the-art speaker recognition systems (SR) utilize speaker models that are derived from an adapted universal background model (UBM) in the form of a Gaussian mixture model (GMM). This is true for GMM supervector systems, joint factor analysis systems, and most recently i-vector systems. In all of the identified systems, the posterior probabilities and sufficient statistics calculations represent a computational bottleneck in both enrollment and testing. We propose a multi-layered hash system, employing a tree-structured GMM–UBM which uses Runnalls’ Gaussian mixture reduction technique, in order to reduce the number of these calculations. Moreover, with this tree-structured hash, wemore » can trade-off reduction in computation with a corresponding degradation of equal error rate (EER). As an example, we also reduce this computation by a factor of 15× while incurring less than 10% relative degradation of EER (or 0.3% absolute EER) when evaluated with NIST 2010 speaker recognition evaluation (SRE) telephone data.« less

  3. Implementation of LSCMA adaptive array terminal for mobile satellite communications

    NASA Astrophysics Data System (ADS)

    Zhou, Shun; Wang, Huali; Xu, Zhijun

    2007-11-01

    This paper considers the application of adaptive array antenna based on the least squares constant modulus algorithm (LSCMA) for interference rejection in mobile SATCOM terminals. A two-element adaptive array scheme is implemented with a combination of ADI TS201S DSP chips and Altera Stratix II FPGA device, which makes a cooperating computation for adaptive beamforming. Its interference suppressing performance is verified via Matlab simulations. Digital hardware system is implemented to execute the operations of LSCMA beamforming algorithm that is represented by an algorithm flowchart. The result of simulations and test indicate that this scheme can improve the anti-jamming performance of terminals.

  4. Machine learning based Intelligent cognitive network using fog computing

    NASA Astrophysics Data System (ADS)

    Lu, Jingyang; Li, Lun; Chen, Genshe; Shen, Dan; Pham, Khanh; Blasch, Erik

    2017-05-01

    In this paper, a Cognitive Radio Network (CRN) based on artificial intelligence is proposed to distribute the limited radio spectrum resources more efficiently. The CRN framework can analyze the time-sensitive signal data close to the signal source using fog computing with different types of machine learning techniques. Depending on the computational capabilities of the fog nodes, different features and machine learning techniques are chosen to optimize spectrum allocation. Also, the computing nodes send the periodic signal summary which is much smaller than the original signal to the cloud so that the overall system spectrum source allocation strategies are dynamically updated. Applying fog computing, the system is more adaptive to the local environment and robust to spectrum changes. As most of the signal data is processed at the fog level, it further strengthens the system security by reducing the communication burden of the communications network.

  5. From Answer Garden to Answer Jungle.

    ERIC Educational Resources Information Center

    Dron, Jon; Mitchell, Richard; Siviter, Phil

    1998-01-01

    The use of Usenet newsgroups in a computing and information systems classroom at the University of Brighton showed how Internet-based learning systems can encourage rapid evolution so that resources adapt to learners' needs. Although not always used as intended, and including off-topic distractions, newsgroups did accommodate learning styles and…

  6. A Genetic Algorithm Approach to Recognise Students' Learning Styles

    ERIC Educational Resources Information Center

    Yannibelli, Virginia; Godoy, Daniela; Amandi, Analia

    2006-01-01

    Learning styles encapsulate the preferences of the students, regarding how they learn. By including information about the student learning style, computer-based educational systems are able to adapt a course according to the individual characteristics of the students. In accomplishing this goal, educational systems have been mostly based on the…

  7. Study of the modifications needed for efficient operation of NASTRAN on the Control Data Corporation STAR-100 computer

    NASA Technical Reports Server (NTRS)

    1975-01-01

    NASA structural analysis (NASTRAN) computer program is operational on three series of third generation computers. The problem and difficulties involved in adapting NASTRAN to a fourth generation computer, namely, the Control Data STAR-100, are discussed. The salient features which distinguish Control Data STAR-100 from third generation computers are hardware vector processing capability and virtual memory. A feasible method is presented for transferring NASTRAN to Control Data STAR-100 system while retaining much of the machine-independent code. Basic matrix operations are noted for optimization for vector processing.

  8. From evolutionary computation to the evolution of things.

    PubMed

    Eiben, Agoston E; Smith, Jim

    2015-05-28

    Evolution has provided a source of inspiration for algorithm designers since the birth of computers. The resulting field, evolutionary computation, has been successful in solving engineering tasks ranging in outlook from the molecular to the astronomical. Today, the field is entering a new phase as evolutionary algorithms that take place in hardware are developed, opening up new avenues towards autonomous machines that can adapt to their environment. We discuss how evolutionary computation compares with natural evolution and what its benefits are relative to other computing approaches, and we introduce the emerging area of artificial evolution in physical systems.

  9. Tensor Arithmetic, Geometric and Mathematic Principles of Fluid Mechanics in Implementation of Direct Computational Experiments

    NASA Astrophysics Data System (ADS)

    Bogdanov, Alexander; Khramushin, Vasily

    2016-02-01

    The architecture of a digital computing system determines the technical foundation of a unified mathematical language for exact arithmetic-logical description of phenomena and laws of continuum mechanics for applications in fluid mechanics and theoretical physics. The deep parallelization of the computing processes results in functional programming at a new technological level, providing traceability of the computing processes with automatic application of multiscale hybrid circuits and adaptive mathematical models for the true reproduction of the fundamental laws of physics and continuum mechanics.

  10. 1 kHz 2D Visual Motion Sensor Using 20 × 20 Silicon Retina Optical Sensor and DSP Microcontroller.

    PubMed

    Liu, Shih-Chii; Yang, MinHao; Steiner, Andreas; Moeckel, Rico; Delbruck, Tobi

    2015-04-01

    Optical flow sensors have been a long running theme in neuromorphic vision sensors which include circuits that implement the local background intensity adaptation mechanism seen in biological retinas. This paper reports a bio-inspired optical motion sensor aimed towards miniature robotic and aerial platforms. It combines a 20 × 20 continuous-time CMOS silicon retina vision sensor with a DSP microcontroller. The retina sensor has pixels that have local gain control and adapt to background lighting. The system allows the user to validate various motion algorithms without building dedicated custom solutions. Measurements are presented to show that the system can compute global 2D translational motion from complex natural scenes using one particular algorithm: the image interpolation algorithm (I2A). With this algorithm, the system can compute global translational motion vectors at a sample rate of 1 kHz, for speeds up to ±1000 pixels/s, using less than 5 k instruction cycles (12 instructions per pixel) per frame. At 1 kHz sample rate the DSP is 12% occupied with motion computation. The sensor is implemented as a 6 g PCB consuming 170 mW of power.

  11. SAGE - MULTIDIMENSIONAL SELF-ADAPTIVE GRID CODE

    NASA Technical Reports Server (NTRS)

    Davies, C. B.

    1994-01-01

    SAGE, Self Adaptive Grid codE, is a flexible tool for adapting and restructuring both 2D and 3D grids. Solution-adaptive grid methods are useful tools for efficient and accurate flow predictions. In supersonic and hypersonic flows, strong gradient regions such as shocks, contact discontinuities, shear layers, etc., require careful distribution of grid points to minimize grid error and produce accurate flow-field predictions. SAGE helps the user obtain more accurate solutions by intelligently redistributing (i.e. adapting) the original grid points based on an initial or interim flow-field solution. The user then computes a new solution using the adapted grid as input to the flow solver. The adaptive-grid methodology poses the problem in an algebraic, unidirectional manner for multi-dimensional adaptations. The procedure is analogous to applying tension and torsion spring forces proportional to the local flow gradient at every grid point and finding the equilibrium position of the resulting system of grid points. The multi-dimensional problem of grid adaption is split into a series of one-dimensional problems along the computational coordinate lines. The reduced one dimensional problem then requires a tridiagonal solver to find the location of grid points along a coordinate line. Multi-directional adaption is achieved by the sequential application of the method in each coordinate direction. The tension forces direct the redistribution of points to the strong gradient region. To maintain smoothness and a measure of orthogonality of grid lines, torsional forces are introduced that relate information between the family of lines adjacent to one another. The smoothness and orthogonality constraints are direction-dependent, since they relate only the coordinate lines that are being adapted to the neighboring lines that have already been adapted. Therefore the solutions are non-unique and depend on the order and direction of adaption. Non-uniqueness of the adapted grid is acceptable since it makes possible an overall and local error reduction through grid redistribution. SAGE includes the ability to modify the adaption techniques in boundary regions, which substantially improves the flexibility of the adaptive scheme. The vectorial approach used in the analysis also provides flexibility. The user has complete choice of adaption direction and order of sequential adaptions without concern for the computational data structure. Multiple passes are available with no restraint on stepping directions; for each adaptive pass the user can choose a completely new set of adaptive parameters. This facility, combined with the capability of edge boundary control, enables the code to individually adapt multi-dimensional multiple grids. Zonal grids can be adapted while maintaining continuity along the common boundaries. For patched grids, the multiple-pass capability enables complete adaption. SAGE is written in FORTRAN 77 and is intended to be machine independent; however, it requires a FORTRAN compiler which supports NAMELIST input. It has been successfully implemented on Sun series computers, SGI IRIS's, DEC MicroVAX computers, HP series computers, the Cray YMP, and IBM PC compatibles. Source code is provided, but no sample input and output files are provided. The code reads three datafiles: one that contains the initial grid coordinates (x,y,z), one that contains corresponding flow-field variables, and one that contains the user control parameters. It is assumed that the first two datasets are formatted as defined in the plotting software package PLOT3D. Several machine versions of PLOT3D are available from COSMIC. The amount of main memory is dependent on the size of the matrix. The standard distribution medium for SAGE is a 5.25 inch 360K MS-DOS format diskette. It is also available on a .25 inch streaming magnetic tape cartridge in UNIX tar format or on a 9-track 1600 BPI ASCII CARD IMAGE format magnetic tape. SAGE was developed in 1989, first released as a 2D version in 1991 and updated to 3D in 1993.

  12. An Annotated Bibliography of the Manned Systems Measurement Literature

    DTIC Science & Technology

    1985-02-01

    designs that are considered applicable to assessment of training effectiveness include the classic Solomon four - group design; iterative adaptation to...element (analogue computer) were used for this study . *».U Operators were taken from 3 groups : (1) persons with both licensed flying and driving...conclusions are that the classic four - group design is impractical for most training evaluation; that "adaptive research for big effects" is apt to be

  13. Enhancing automatic closed-loop glucose control in type 1 diabetes with an adaptive meal bolus calculator - in silico evaluation under intra-day variability.

    PubMed

    Herrero, Pau; Bondia, Jorge; Adewuyi, Oloruntoba; Pesl, Peter; El-Sharkawy, Mohamed; Reddy, Monika; Toumazou, Chris; Oliver, Nick; Georgiou, Pantelis

    2017-07-01

    Current prototypes of closed-loop systems for glucose control in type 1 diabetes mellitus, also referred to as artificial pancreas systems, require a pre-meal insulin bolus to compensate for delays in subcutaneous insulin absorption in order to avoid initial post-prandial hyperglycemia. Computing such a meal bolus is a challenging task due to the high intra-subject variability of insulin requirements. Most closed-loop systems compute this pre-meal insulin dose by a standard bolus calculation, as is commonly found in insulin pumps. However, the performance of these calculators is limited due to a lack of adaptiveness in front of dynamic changes in insulin requirements. Despite some initial attempts to include adaptation within these calculators, challenges remain. In this paper we present a new technique to automatically adapt the meal-priming bolus within an artificial pancreas. The technique consists of using a novel adaptive bolus calculator based on Case-Based Reasoning and Run-To-Run control, within a closed-loop controller. Coordination between the adaptive bolus calculator and the controller was required to achieve the desired performance. For testing purposes, the clinically validated Imperial College Artificial Pancreas controller was employed. The proposed system was evaluated against itself but without bolus adaptation. The UVa-Padova T1DM v3.2 system was used to carry out a three-month in silico study on 11 adult and 11 adolescent virtual subjects taking into account inter-and intra-subject variability of insulin requirements and uncertainty on carbohydrate intake. Overall, the closed-loop controller enhanced by an adaptive bolus calculator improves glycemic control when compared to its non-adaptive counterpart. In particular, the following statistically significant improvements were found (non-adaptive vs. adaptive). Adults: mean glucose 142.2 ± 9.4vs. 131.8 ± 4.2mg/dl; percentage time in target [70, 180]mg/dl, 82.0 ± 7.0vs. 89.5 ± 4.2; percentage time above target 17.7 ± 7.0vs. 10.2 ± 4.1. Adolescents: mean glucose 158.2 ± 21.4vs. 140.5 ± 13.0mg/dl; percentage time in target, 65.9 ± 12.9vs. 77.5 ± 12.2; percentage time above target, 31.7 ± 13.1vs. 19.8 ± 10.2. Note that no increase in percentage time in hypoglycemia was observed. Using an adaptive meal bolus calculator within a closed-loop control system has the potential to improve glycemic control in type 1 diabetes when compared to its non-adaptive counterpart. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Development and Evaluation of an Adaptive Computerized Training System (ACTS). R&D Report 78-1.

    ERIC Educational Resources Information Center

    Knerr, Bruce W.; Nawrocki, Leon H.

    This report describes the development of a computer based system designed to train electronic troubleshooting procedures. The ACTS uses artificial intelligence techniques to develop models of student and expert troubleshooting behavior as they solve a series of troubleshooting problems on the system. Comparisons of the student and expert models…

  15. Goal-based angular adaptivity applied to a wavelet-based discretisation of the neutral particle transport equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goffin, Mark A., E-mail: mark.a.goffin@gmail.com; Buchan, Andrew G.; Dargaville, Steven

    2015-01-15

    A method for applying goal-based adaptive methods to the angular resolution of the neutral particle transport equation is presented. The methods are applied to an octahedral wavelet discretisation of the spherical angular domain which allows for anisotropic resolution. The angular resolution is adapted across both the spatial and energy dimensions. The spatial domain is discretised using an inner-element sub-grid scale finite element method. The goal-based adaptive methods optimise the angular discretisation to minimise the error in a specific functional of the solution. The goal-based error estimators require the solution of an adjoint system to determine the importance to the specifiedmore » functional. The error estimators and the novel methods to calculate them are described. Several examples are presented to demonstrate the effectiveness of the methods. It is shown that the methods can significantly reduce the number of unknowns and computational time required to obtain a given error. The novelty of the work is the use of goal-based adaptive methods to obtain anisotropic resolution in the angular domain for solving the transport equation. -- Highlights: •Wavelet angular discretisation used to solve transport equation. •Adaptive method developed for the wavelet discretisation. •Anisotropic angular resolution demonstrated through the adaptive method. •Adaptive method provides improvements in computational efficiency.« less

  16. Computer-Adaptive Testing: Implications for Students' Achievement, Motivation, Engagement, and Subjective Test Experience

    ERIC Educational Resources Information Center

    Martin, Andrew J.; Lazendic, Goran

    2018-01-01

    The present study investigated the implications of computer-adaptive testing (operationalized by way of multistage adaptive testing; MAT) and "conventional" fixed order computer testing for various test-relevant outcomes in numeracy, including achievement, test-relevant motivation and engagement, and subjective test experience. It did so…

  17. Adaptive data rate control TDMA systems as a rain attenuation compensation technique

    NASA Technical Reports Server (NTRS)

    Sato, Masaki; Wakana, Hiromitsu; Takahashi, Takashi; Takeuchi, Makoto; Yamamoto, Minoru

    1993-01-01

    Rainfall attenuation has a severe effect on signal strength and impairs communication links for future mobile and personal satellite communications using Ka-band and millimeter wave frequencies. As rain attenuation compensation techniques, several methods such as uplink power control, site diversity, and adaptive control of data rate or forward error correction have been proposed. In this paper, we propose a TDMA system that can compensate rain attenuation by adaptive control of transmission rates. To evaluate the performance of this TDMA terminal, we carried out three types of experiments: experiments using a Japanese CS-3 satellite with Ka-band transponders, in house IF loop-back experiments, and computer simulations. Experimental results show that this TDMA system has advantages over the conventional constant-rate TDMA systems, as resource sharing technique, in both bit error rate and total TDMA burst lengths required for transmitting given information.

  18. Systems and methods for biometric identification using the acoustic properties of the ear canal

    DOEpatents

    Bouchard, Ann Marie; Osbourn, Gordon Cecil

    1998-01-01

    The present invention teaches systems and methods for verifying or recognizing a person's identity based on measurements of the acoustic response of the individual's ear canal. The system comprises an acoustic emission device, which emits an acoustic source signal s(t), designated by a computer, into the ear canal of an individual, and an acoustic response detection device, which detects the acoustic response signal f(t). A computer digitizes the response (detected) signal f(t) and stores the data. Computer-implemented algorithms analyze the response signal f(t) to produce ear-canal feature data. The ear-canal feature data obtained during enrollment is stored on the computer, or some other recording medium, to compare the enrollment data with ear-canal feature data produced in a subsequent access attempt, to determine if the individual has previously been enrolled. The system can also be adapted for remote access applications.

  19. Systems and methods for biometric identification using the acoustic properties of the ear canal

    DOEpatents

    Bouchard, A.M.; Osbourn, G.C.

    1998-07-28

    The present invention teaches systems and methods for verifying or recognizing a person`s identity based on measurements of the acoustic response of the individual`s ear canal. The system comprises an acoustic emission device, which emits an acoustic source signal s(t), designated by a computer, into the ear canal of an individual, and an acoustic response detection device, which detects the acoustic response signal f(t). A computer digitizes the response (detected) signal f(t) and stores the data. Computer-implemented algorithms analyze the response signal f(t) to produce ear-canal feature data. The ear-canal feature data obtained during enrollment is stored on the computer, or some other recording medium, to compare the enrollment data with ear-canal feature data produced in a subsequent access attempt, to determine if the individual has previously been enrolled. The system can also be adapted for remote access applications. 5 figs.

  20. A performance analysis of advanced I/O architectures for PC-based network file servers

    NASA Astrophysics Data System (ADS)

    Huynh, K. D.; Khoshgoftaar, T. M.

    1994-12-01

    In the personal computing and workstation environments, more and more I/O adapters are becoming complete functional subsystems that are intelligent enough to handle I/O operations on their own without much intervention from the host processor. The IBM Subsystem Control Block (SCB) architecture has been defined to enhance the potential of these intelligent adapters by defining services and conventions that deliver command information and data to and from the adapters. In recent years, a new storage architecture, the Redundant Array of Independent Disks (RAID), has been quickly gaining acceptance in the world of computing. In this paper, we would like to discuss critical system design issues that are important to the performance of a network file server. We then present a performance analysis of the SCB architecture and disk array technology in typical network file server environments based on personal computers (PCs). One of the key issues investigated in this paper is whether a disk array can outperform a group of disks (of same type, same data capacity, and same cost) operating independently, not in parallel as in a disk array.

  1. A resource management architecture based on complex network theory in cloud computing federation

    NASA Astrophysics Data System (ADS)

    Zhang, Zehua; Zhang, Xuejie

    2011-10-01

    Cloud Computing Federation is a main trend of Cloud Computing. Resource Management has significant effect on the design, realization, and efficiency of Cloud Computing Federation. Cloud Computing Federation has the typical characteristic of the Complex System, therefore, we propose a resource management architecture based on complex network theory for Cloud Computing Federation (abbreviated as RMABC) in this paper, with the detailed design of the resource discovery and resource announcement mechanisms. Compare with the existing resource management mechanisms in distributed computing systems, a Task Manager in RMABC can use the historical information and current state data get from other Task Managers for the evolution of the complex network which is composed of Task Managers, thus has the advantages in resource discovery speed, fault tolerance and adaptive ability. The result of the model experiment confirmed the advantage of RMABC in resource discovery performance.

  2. Infrastructure Systems for Advanced Computing in E-science applications

    NASA Astrophysics Data System (ADS)

    Terzo, Olivier

    2013-04-01

    In the e-science field are growing needs for having computing infrastructure more dynamic and customizable with a model of use "on demand" that follow the exact request in term of resources and storage capacities. The integration of grid and cloud infrastructure solutions allows us to offer services that can adapt the availability in terms of up scaling and downscaling resources. The main challenges for e-sciences domains will on implement infrastructure solutions for scientific computing that allow to adapt dynamically the demands of computing resources with a strong emphasis on optimizing the use of computing resources for reducing costs of investments. Instrumentation, data volumes, algorithms, analysis contribute to increase the complexity for applications who require high processing power and storage for a limited time and often exceeds the computational resources that equip the majority of laboratories, research Unit in an organization. Very often it is necessary to adapt or even tweak rethink tools, algorithms, and consolidate existing applications through a phase of reverse engineering in order to adapt them to a deployment on Cloud infrastructure. For example, in areas such as rainfall monitoring, meteorological analysis, Hydrometeorology, Climatology Bioinformatics Next Generation Sequencing, Computational Electromagnetic, Radio occultation, the complexity of the analysis raises several issues such as the processing time, the scheduling of tasks of processing, storage of results, a multi users environment. For these reasons, it is necessary to rethink the writing model of E-Science applications in order to be already adapted to exploit the potentiality of cloud computing services through the uses of IaaS, PaaS and SaaS layer. An other important focus is on create/use hybrid infrastructure typically a federation between Private and public cloud, in fact in this way when all resources owned by the organization are all used it will be easy with a federate cloud infrastructure to add some additional resources form the Public cloud for following the needs in term of computational and storage resources and release them where process are finished. Following the hybrid model, the scheduling approach is important for managing both cloud models. Thanks to this model infrastructure every time resources are available for additional request in term of IT capacities that can used "on demand" for a limited time without having to proceed to purchase additional servers.

  3. Neural robust stabilization via event-triggering mechanism and adaptive learning technique.

    PubMed

    Wang, Ding; Liu, Derong

    2018-06-01

    The robust control synthesis of continuous-time nonlinear systems with uncertain term is investigated via event-triggering mechanism and adaptive critic learning technique. We mainly focus on combining the event-triggering mechanism with adaptive critic designs, so as to solve the nonlinear robust control problem. This can not only make better use of computation and communication resources, but also conduct controller design from the view of intelligent optimization. Through theoretical analysis, the nonlinear robust stabilization can be achieved by obtaining an event-triggered optimal control law of the nominal system with a newly defined cost function and a certain triggering condition. The adaptive critic technique is employed to facilitate the event-triggered control design, where a neural network is introduced as an approximator of the learning phase. The performance of the event-triggered robust control scheme is validated via simulation studies and comparisons. The present method extends the application domain of both event-triggered control and adaptive critic control to nonlinear systems possessing dynamical uncertainties. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Authoring of Adaptive Computer Assisted Assessment of Free-Text Answers

    ERIC Educational Resources Information Center

    Alfonseca, Enrique; Carro, Rosa M.; Freire, Manuel; Ortigosa, Alvaro; Perez, Diana; Rodriguez, Pilar

    2005-01-01

    Adaptation techniques can be applied not only to the multimedia contents or navigational possibilities of a course, but also to the assessment. In order to facilitate the authoring of adaptive free-text assessment and its integration within adaptive web-based courses, Adaptive Hypermedia techniques and Free-text Computer Assisted Assessment are…

  5. Dynamical information encoding in neural adaptation.

    PubMed

    Luozheng Li; Wenhao Zhang; Yuanyuan Mi; Dahui Wang; Xiaohan Lin; Si Wu

    2016-08-01

    Adaptation refers to the general phenomenon that a neural system dynamically adjusts its response property according to the statistics of external inputs. In response to a prolonged constant stimulation, neuronal firing rates always first increase dramatically at the onset of the stimulation; and afterwards, they decrease rapidly to a low level close to background activity. This attenuation of neural activity seems to be contradictory to our experience that we can still sense the stimulus after the neural system is adapted. Thus, it prompts a question: where is the stimulus information encoded during the adaptation? Here, we investigate a computational model in which the neural system employs a dynamical encoding strategy during the neural adaptation: at the early stage of the adaptation, the stimulus information is mainly encoded in the strong independent firings; and as time goes on, the information is shifted into the weak but concerted responses of neurons. We find that short-term plasticity, a general feature of synapses, provides a natural mechanism to achieve this goal. Furthermore, we demonstrate that with balanced excitatory and inhibitory inputs, this correlation-based information can be read out efficiently. The implications of this study on our understanding of neural information encoding are discussed.

  6. Evaluation of an Adaptive Game that Uses EEG Measures Validated during the Design Process as Inputs to a Biocybernetic Loop.

    PubMed

    Ewing, Kate C; Fairclough, Stephen H; Gilleade, Kiel

    2016-01-01

    Biocybernetic adaptation is a form of physiological computing whereby real-time data streaming from the brain and body is used by a negative control loop to adapt the user interface. This article describes the development of an adaptive game system that is designed to maximize player engagement by utilizing changes in real-time electroencephalography (EEG) to adjust the level of game demand. The research consists of four main stages: (1) the development of a conceptual framework upon which to model the interaction between person and system; (2) the validation of the psychophysiological inference underpinning the loop; (3) the construction of a working prototype; and (4) an evaluation of the adaptive game. Two studies are reported. The first demonstrates the sensitivity of EEG power in the (frontal) theta and (parietal) alpha bands to changing levels of game demand. These variables were then reformulated within the working biocybernetic control loop designed to maximize player engagement. The second study evaluated the performance of an adaptive game of Tetris with respect to system behavior and user experience. Important issues for the design and evaluation of closed-loop interfaces are discussed.

  7. Evaluation of an Adaptive Game that Uses EEG Measures Validated during the Design Process as Inputs to a Biocybernetic Loop

    PubMed Central

    Ewing, Kate C.; Fairclough, Stephen H.; Gilleade, Kiel

    2016-01-01

    Biocybernetic adaptation is a form of physiological computing whereby real-time data streaming from the brain and body is used by a negative control loop to adapt the user interface. This article describes the development of an adaptive game system that is designed to maximize player engagement by utilizing changes in real-time electroencephalography (EEG) to adjust the level of game demand. The research consists of four main stages: (1) the development of a conceptual framework upon which to model the interaction between person and system; (2) the validation of the psychophysiological inference underpinning the loop; (3) the construction of a working prototype; and (4) an evaluation of the adaptive game. Two studies are reported. The first demonstrates the sensitivity of EEG power in the (frontal) theta and (parietal) alpha bands to changing levels of game demand. These variables were then reformulated within the working biocybernetic control loop designed to maximize player engagement. The second study evaluated the performance of an adaptive game of Tetris with respect to system behavior and user experience. Important issues for the design and evaluation of closed-loop interfaces are discussed. PMID:27242486

  8. Non-Kolmogorovian Approach to the Context-Dependent Systems Breaking the Classical Probability Law

    NASA Astrophysics Data System (ADS)

    Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Yamato, Ichiro

    2013-07-01

    There exist several phenomena breaking the classical probability laws. The systems related to such phenomena are context-dependent, so that they are adaptive to other systems. In this paper, we present a new mathematical formalism to compute the joint probability distribution for two event-systems by using concepts of the adaptive dynamics and quantum information theory, e.g., quantum channels and liftings. In physics the basic example of the context-dependent phenomena is the famous double-slit experiment. Recently similar examples have been found in biological and psychological sciences. Our approach is an extension of traditional quantum probability theory, and it is general enough to describe aforementioned contextual phenomena outside of quantum physics.

  9. Adaptable structural synthesis using advanced analysis and optimization coupled by a computer operating system

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, J.; Bhat, R. B.

    1979-01-01

    A finite element program is linked with a general purpose optimization program in a 'programing system' which includes user supplied codes that contain problem dependent formulations of the design variables, objective function and constraints. The result is a system adaptable to a wide spectrum of structural optimization problems. In a sample of numerical examples, the design variables are the cross-sectional dimensions and the parameters of overall shape geometry, constraints are applied to stresses, displacements, buckling and vibration characteristics, and structural mass is the objective function. Thin-walled, built-up structures and frameworks are included in the sample. Details of the system organization and characteristics of the component programs are given.

  10. Adaptive P300 based control system

    PubMed Central

    Jin, Jing; Allison, Brendan Z.; Sellers, Eric W.; Brunner, Clemens; Horki, Petar; Wang, Xingyu; Neuper, Christa

    2015-01-01

    An adaptive P300 brain-computer interface (BCI) using a 12 × 7 matrix explored new paradigms to improve bit rate and accuracy. During online use, the system adaptively selects the number of flashes to average. Five different flash patterns were tested. The 19-flash paradigm represents the typical row/column presentation (i.e., 12 columns and 7 rows). The 9- and 14-flash A & B paradigms present all items of the 12 × 7 matrix three times using either nine or 14 flashes (instead of 19), decreasing the amount of time to present stimuli. Compared to 9-flash A, 9-flash B decreased the likelihood that neighboring items would flash when the target was not flashing, thereby reducing interference from items adjacent to targets. 14-flash A also reduced adjacent item interference and 14-flash B additionally eliminated successive (double) flashes of the same item. Results showed that accuracy and bit rate of the adaptive system were higher than the non-adaptive system. In addition, 9- and 14-flash B produced significantly higher performance than their respective A conditions. The results also show the trend that the 14-flash B paradigm was better than the 19-flash pattern for naïve users. PMID:21474877

  11. EOS: A project to investigate the design and construction of real-time distributed Embedded Operating Systems

    NASA Technical Reports Server (NTRS)

    Campbell, R. H.; Essick, Ray B.; Johnston, Gary; Kenny, Kevin; Russo, Vince

    1987-01-01

    Project EOS is studying the problems of building adaptable real-time embedded operating systems for the scientific missions of NASA. Choices (A Class Hierarchical Open Interface for Custom Embedded Systems) is an operating system designed and built by Project EOS to address the following specific issues: the software architecture for adaptable embedded parallel operating systems, the achievement of high-performance and real-time operation, the simplification of interprocess communications, the isolation of operating system mechanisms from one another, and the separation of mechanisms from policy decisions. Choices is written in C++ and runs on a ten processor Encore Multimax. The system is intended for use in constructing specialized computer applications and research on advanced operating system features including fault tolerance and parallelism.

  12. Space shuttle atmospheric revitalization subsystem/active thermal control subsystem computer program (users manual)

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A shuttle (ARS) atmosphere revitalization subsystem active thermal control subsystem (ATCS) performance routine was developed. This computer program is adapted from the Shuttle EC/LSS Design Computer Program. The program was upgraded in three noteworthy areas: (1) The functional ARS/ATCS schematic has been revised to accurately synthesize the shuttle baseline system definition. (2) The program logic has been improved to provide a more accurate prediction of the integrated ARS/ATCS system performance. Additionally, the logic has been expanded to model all components and thermal loads in the ARS/ATCS system. (3) The program is designed to be used on the NASA JSC crew system division's programmable calculator system. As written the new computer routine has an average running time of five minutes. The use of desk top type calculation equipment, and the rapid response of the program provides the NASA with an analytical tool for trade studies to refine the system definition, and for test support of the RSECS or integrated Shuttle ARS/ATCS test programs.

  13. Simulating closed- and open-loop voluntary movement: a nonlinear control-systems approach.

    PubMed

    Davidson, Paul R; Jones, Richard D; Andreae, John H; Sirisena, Harsha R

    2002-11-01

    In many recent human motor control models, including feedback-error learning and adaptive model theory (AMT), feedback control is used to correct errors while an inverse model is simultaneously tuned to provide accurate feedforward control. This popular and appealing hypothesis, based on a combination of psychophysical observations and engineering considerations, predicts that once the tuning of the inverse model is complete the role of feedback control is limited to the correction of disturbances. This hypothesis was tested by looking at the open-loop behavior of the human motor system during adaptation. An experiment was carried out involving 20 normal adult subjects who learned a novel visuomotor relationship on a pursuit tracking task with a steering wheel for input. During learning, the response cursor was periodically blanked, removing all feedback about the external system (i.e., about the relationship between hand motion and response cursor motion). Open-loop behavior was not consistent with a progressive transfer from closed- to open-loop control. Our recently developed computational model of the brain--a novel nonlinear implementation of AMT--was able to reproduce the observed closed- and open-loop results. In contrast, other control-systems models exhibited only minimal feedback control following adaptation, leading to incorrect open-loop behavior. This is because our model continues to use feedback to control slow movements after adaptation is complete. This behavior enhances the internal stability of the inverse model. In summary, our computational model is currently the only motor control model able to accurately simulate the closed- and open-loop characteristics of the experimental response trajectories.

  14. Trigger learning and ECG parameter customization for remote cardiac clinical care information system.

    PubMed

    Bashir, Mohamed Ezzeldin A; Lee, Dong Gyu; Li, Meijing; Bae, Jang-Whan; Shon, Ho Sun; Cho, Myung Chan; Ryu, Keun Ho

    2012-07-01

    Coronary heart disease is being identified as the largest single cause of death along the world. The aim of a cardiac clinical information system is to achieve the best possible diagnosis of cardiac arrhythmias by electronic data processing. Cardiac information system that is designed to offer remote monitoring of patient who needed continues follow up is demanding. However, intra- and interpatient electrocardiogram (ECG) morphological descriptors are varying through the time as well as the computational limits pose significant challenges for practical implementations. The former requires that the classification model be adjusted continuously, and the latter requires a reduction in the number and types of ECG features, and thus, the computational burden, necessary to classify different arrhythmias. We propose the use of adaptive learning to automatically train the classifier on up-to-date ECG data, and employ adaptive feature selection to define unique feature subsets pertinent to different types of arrhythmia. Experimental results show that this hybrid technique outperforms conventional approaches and is, therefore, a promising new intelligent diagnostic tool.

  15. Virtual-system-coupled adaptive umbrella sampling to compute free-energy landscape for flexible molecular docking.

    PubMed

    Higo, Junichi; Dasgupta, Bhaskar; Mashimo, Tadaaki; Kasahara, Kota; Fukunishi, Yoshifumi; Nakamura, Haruki

    2015-07-30

    A novel enhanced conformational sampling method, virtual-system-coupled adaptive umbrella sampling (V-AUS), was proposed to compute 300-K free-energy landscape for flexible molecular docking, where a virtual degrees of freedom was introduced to control the sampling. This degree of freedom interacts with the biomolecular system. V-AUS was applied to complex formation of two disordered amyloid-β (Aβ30-35 ) peptides in a periodic box filled by an explicit solvent. An interpeptide distance was defined as the reaction coordinate, along which sampling was enhanced. A uniform conformational distribution was obtained covering a wide interpeptide distance ranging from the bound to unbound states. The 300-K free-energy landscape was characterized by thermodynamically stable basins of antiparallel and parallel β-sheet complexes and some other complex forms. Helices were frequently observed, when the two peptides contacted loosely or fluctuated freely without interpeptide contacts. We observed that V-AUS converged to uniform distribution more effectively than conventional AUS sampling did. © 2015 Wiley Periodicals, Inc.

  16. Trust Management in Swarm-Based Autonomic Computing Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maiden, Wendy M.; Haack, Jereme N.; Fink, Glenn A.

    2009-07-07

    Reputation-based trust management techniques can address issues such as insider threat as well as quality of service issues that may be malicious in nature. However, trust management techniques must be adapted to the unique needs of the architectures and problem domains to which they are applied. Certain characteristics of swarms such as their lightweight ephemeral nature and indirect communication make this adaptation especially challenging. In this paper we look at the trust issues and opportunities in mobile agent swarm-based autonomic systems and find that by monitoring the trustworthiness of the autonomic managers rather than the swarming sensors, the trust managementmore » problem becomes much more scalable and still serves to protect the swarms. We also analyze the applicability of trust management research as it has been applied to architectures with similar characteristics. Finally, we specify required characteristics for trust management mechanisms to be used to monitor the trustworthiness of the entities in a swarm-based autonomic computing system.« less

  17. Development of adaptive observation strategy using retrospective optimal interpolation

    NASA Astrophysics Data System (ADS)

    Noh, N.; Kim, S.; Song, H.; Lim, G.

    2011-12-01

    Retrospective optimal interpolation (ROI) is a method that is used to minimize cost functions with multiple minima without using adjoint models. Song and Lim (2011) perform the experiments to reduce the computational costs for implementing ROI by transforming the control variables into eigenvectors of background error covariance. We adapt the ROI algorithm to compute sensitivity estimates of severe weather events over the Korean peninsula. The eigenvectors of the ROI algorithm is modified every time the observations are assimilated. This implies that the modified eigenvectors shows the error distribution of control variables which are updated by assimilating observations. So, We can estimate the effects of the specific observations. In order to verify the adaptive observation strategy, High-impact weather over the Korean peninsula is simulated and interpreted using WRF modeling system and sensitive regions for each high-impact weather is calculated. The effects of assimilation for each observation type is discussed.

  18. Estimation of Faults in DC Electrical Power System

    NASA Technical Reports Server (NTRS)

    Gorinevsky, Dimitry; Boyd, Stephen; Poll, Scott

    2009-01-01

    This paper demonstrates a novel optimization-based approach to estimating fault states in a DC power system. Potential faults changing the circuit topology are included along with faulty measurements. Our approach can be considered as a relaxation of the mixed estimation problem. We develop a linear model of the circuit and pose a convex problem for estimating the faults and other hidden states. A sparse fault vector solution is computed by using 11 regularization. The solution is computed reliably and efficiently, and gives accurate diagnostics on the faults. We demonstrate a real-time implementation of the approach for an instrumented electrical power system testbed, the ADAPT testbed at NASA ARC. The estimates are computed in milliseconds on a PC. The approach performs well despite unmodeled transients and other modeling uncertainties present in the system.

  19. Design of adaptive control systems by means of self-adjusting transversal filters

    NASA Technical Reports Server (NTRS)

    Merhav, S. J.

    1986-01-01

    The design of closed-loop adaptive control systems based on nonparametric identification was addressed. Implementation is by self-adjusting Least Mean Square (LMS) transversal filters. The design concept is Model Reference Adaptive Control (MRAC). Major issues are to preserve the linearity of the error equations of each LMS filter, and to prevent estimation bias that is due to process or measurement noise, thus providing necessary conditions for the convergence and stability of the control system. The controlled element is assumed to be asymptotically stable and minimum phase. Because of the nonparametric Finite Impulse Response (FIR) estimates provided by the LMS filters, a-priori information on the plant model is needed only in broad terms. Following a survey of control system configurations and filter design considerations, system implementation is shown here in Single Input Single Output (SISO) format which is readily extendable to multivariable forms. In extensive computer simulation studies the controlled element is represented by a second-order system with widely varying damping, natural frequency, and relative degree.

  20. Flatness-based adaptive fuzzy control of chaotic finance dynamics

    NASA Astrophysics Data System (ADS)

    Rigatos, G.; Siano, P.; Loia, V.; Tommasetti, A.; Troisi, O.

    2017-11-01

    A flatness-based adaptive fuzzy control is applied to the problem of stabilization of the dynamics of a chaotic finance system, describing interaction between the interest rate, the investment demand and the price exponent. By proving that the system is differentially flat and by applying differential flatness diffeomorphisms, its transformation to the linear canonical (Brunovsky) is performed. For the latter description of the system, the design of a stabilizing state feedback controller becomes possible. A first problem in the design of such a controller is that the dynamic model of the finance system is unknown and thus it has to be identified with the use neurofuzzy approximators. The estimated dynamics provided by the approximators is used in the computation of the control input, thus establishing an indirect adaptive control scheme. The learning rate of the approximators is chosen from the requirement the system's Lyapunov function to have always a negative first-order derivative. Another problem that has to be dealt with is that the control loop is implemented only with the use of output feedback. To estimate the non-measurable state vector elements of the finance system, a state observer is implemented in the control loop. The computation of the feedback control signal requires the solution of two algebraic Riccati equations at each iteration of the control algorithm. Lyapunov stability analysis demonstrates first that an H-infinity tracking performance criterion is satisfied. This signifies elevated robustness against modelling errors and external perturbations. Moreover, the global asymptotic stability is proven for the control loop.

  1. Comparison of wavefront sensor models for simulation of adaptive optics.

    PubMed

    Wu, Zhiwen; Enmark, Anita; Owner-Petersen, Mette; Andersen, Torben

    2009-10-26

    The new generation of extremely large telescopes will have adaptive optics. Due to the complexity and cost of such systems, it is important to simulate their performance before construction. Most systems planned will have Shack-Hartmann wavefront sensors. Different mathematical models are available for simulation of such wavefront sensors. The choice of wavefront sensor model strongly influences computation time and simulation accuracy. We have studied the influence of three wavefront sensor models on performance calculations for a generic, adaptive optics (AO) system designed for K-band operation of a 42 m telescope. The performance of this AO system has been investigated both for reduced wavelengths and for reduced r(0) in the K band. The telescope AO system was designed for K-band operation, that is both the subaperture size and the actuator pitch were matched to a fixed value of r(0) in the K-band. We find that under certain conditions, such as investigating limiting guide star magnitude for large Strehl-ratios, a full model based on Fraunhofer propagation to the subimages is significantly more accurate. It does however require long computation times. The shortcomings of simpler models based on either direct use of average wavefront tilt over the subapertures for actuator control, or use of the average tilt to move a precalculated point spread function in the subimages are most pronounced for studies of system limitations to operating parameter variations. In the long run, efficient parallelization techniques may be developed to overcome the problem.

  2. Adaptation to Variance of Stimuli in Drosophila Larva Navigation

    NASA Astrophysics Data System (ADS)

    Wolk, Jason; Gepner, Ruben; Gershow, Marc

    In order to respond to stimuli that vary over orders of magnitude while also being capable of sensing very small changes, neural systems must be capable of rapidly adapting to the variance of stimuli. We study this adaptation in Drosophila larvae responding to varying visual signals and optogenetically induced fictitious odors using an infrared illuminated arena and custom computer vision software. Larval navigational decisions (when to turn) are modeled as the output a linear-nonlinear Poisson process. The development of the nonlinear turn rate in response to changes in variance is tracked using an adaptive point process filter determining the rate of adaptation to different stimulus profiles. Supported by NIH Grant 1DP2EB022359 and NSF Grant PHY-1455015.

  3. CORDIC-based digital signal processing (DSP) element for adaptive signal processing

    NASA Astrophysics Data System (ADS)

    Bolstad, Gregory D.; Neeld, Kenneth B.

    1995-04-01

    The High Performance Adaptive Weight Computation (HAWC) processing element is a CORDIC based application specific DSP element that, when connected in a linear array, can perform extremely high throughput (100s of GFLOPS) matrix arithmetic operations on linear systems of equations in real time. In particular, it very efficiently performs the numerically intense computation of optimal least squares solutions for large, over-determined linear systems. Most techniques for computing solutions to these types of problems have used either a hard-wired, non-programmable systolic array approach, or more commonly, programmable DSP or microprocessor approaches. The custom logic methods can be efficient, but are generally inflexible. Approaches using multiple programmable generic DSP devices are very flexible, but suffer from poor efficiency and high computation latencies, primarily due to the large number of DSP devices that must be utilized to achieve the necessary arithmetic throughput. The HAWC processor is implemented as a highly optimized systolic array, yet retains some of the flexibility of a programmable data-flow system, allowing efficient implementation of algorithm variations. This provides flexible matrix processing capabilities that are one to three orders of magnitude less expensive and more dense than the current state of the art, and more importantly, allows a realizable solution to matrix processing problems that were previously considered impractical to physically implement. HAWC has direct applications in RADAR, SONAR, communications, and image processing, as well as in many other types of systems.

  4. A cost-effective line-based light-balancing technique using adaptive processing.

    PubMed

    Hsia, Shih-Chang; Chen, Ming-Huei; Chen, Yu-Min

    2006-09-01

    The camera imaging system has been widely used; however, the displaying image appears to have an unequal light distribution. This paper presents novel light-balancing techniques to compensate uneven illumination based on adaptive signal processing. For text image processing, first, we estimate the background level and then process each pixel with nonuniform gain. This algorithm can balance the light distribution while keeping a high contrast in the image. For graph image processing, the adaptive section control using piecewise nonlinear gain is proposed to equalize the histogram. Simulations show that the performance of light balance is better than the other methods. Moreover, we employ line-based processing to efficiently reduce the memory requirement and the computational cost to make it applicable in real-time systems.

  5. Mathematical and Computational Modeling for Tumor Virotherapy with Mediated Immunity.

    PubMed

    Timalsina, Asim; Tian, Jianjun Paul; Wang, Jin

    2017-08-01

    We propose a new mathematical modeling framework based on partial differential equations to study tumor virotherapy with mediated immunity. The model incorporates both innate and adaptive immune responses and represents the complex interaction among tumor cells, oncolytic viruses, and immune systems on a domain with a moving boundary. Using carefully designed computational methods, we conduct extensive numerical simulation to the model. The results allow us to examine tumor development under a wide range of settings and provide insight into several important aspects of the virotherapy, including the dependence of the efficacy on a few key parameters and the delay in the adaptive immunity. Our findings also suggest possible ways to improve the virotherapy for tumor treatment.

  6. Three-Dimensional Analysis of Internal Adaptations of Crowns Cast from Resin Patterns Fabricated Using Computer-Aided Design/Computer-Assisted Manufacturing Technologies.

    PubMed

    Liu, Yushu; Ye, Hongqiang; Wang, Yong; Zhao, Yijao; Sun, Yuchun; Zhou, Yongsheng

    2018-05-17

    To evaluate the internal adaptations of cast crowns made from resin patterns produced using three different computer-aided design/computer-assisted manufacturing technologies. A full-crown abutment made of zirconia was digitized using an intraoral scanner, and the design of the crown was finished on the digital model. Resin patterns were fabricated using a fused deposition modeling (FDM) 3D printer (LT group), a digital light projection (DLP) 3D printer (EV group), or a five-axis milling machine (ZT group). All patterns were cast in cobalt-chromium alloy crowns. Crowns made from traditional handmade wax patterns (HM group) were used as controls. Each group contained 10 samples. The internal gaps of the patterns were analyzed using a 3D replica method and optical digitization. The results were compared using Kruskal-Wallis analysis of variance (ANOVA), a one-sample t test, and signed rank test (α = .05). For the LT group, the marginal and axial gaps were significantly larger than in the other three groups (P < .05), but the occlusal adaptation did not reveal a significant difference (P > .05). In the ZT group, the axial gap was slightly smaller than in the HM group (P < .0083). All the means of gaps in all areas in the four groups were less than 150 μm. Casting crowns using casting patterns made from all three CAD/CAM systems could not produce the prescribed parameters, but the crowns showed clinically acceptable internal adaptations.

  7. Decomposed fuzzy systems and their application in direct adaptive fuzzy control.

    PubMed

    Hsueh, Yao-Chu; Su, Shun-Feng; Chen, Ming-Chang

    2014-10-01

    In this paper, a novel fuzzy structure termed as the decomposed fuzzy system (DFS) is proposed to act as the fuzzy approximator for adaptive fuzzy control systems. The proposed structure is to decompose each fuzzy variable into layers of fuzzy systems, and each layer is to characterize one traditional fuzzy set. Similar to forming fuzzy rules in traditional fuzzy systems, layers from different variables form the so-called component fuzzy systems. DFS is proposed to provide more adjustable parameters to facilitate possible adaptation in fuzzy rules, but without introducing a learning burden. It is because those component fuzzy systems are independent so that it can facilitate minimum distribution learning effects among component fuzzy systems. It can be seen from our experiments that even when the rule number increases, the learning time in terms of cycles is still almost constant. It can also be found that the function approximation capability and learning efficiency of the DFS are much better than that of the traditional fuzzy systems when employed in adaptive fuzzy control systems. Besides, in order to further reduce the computational burden, a simplified DFS is proposed in this paper to satisfy possible real time constraints required in many applications. From our simulation results, it can be seen that the simplified DFS can perform fairly with a more concise decomposition structure.

  8. Registration of surface structures using airborne focused ultrasound.

    PubMed

    Sundström, N; Börjesson, P O; Holmer, N G; Olsson, L; Persson, H W

    1991-01-01

    A low-cost measuring system, based on a personal computer combined with standard equipment for complex measurements and signal processing, has been assembled. Such a system increases the possibilities for small hospitals and clinics to finance advanced measuring equipment. A description of equipment developed for airborne ultrasound together with a personal computer-based system for fast data acquisition and processing is given. Two air-adapted ultrasound transducers with high lateral resolution have been developed. Furthermore, a few results for fast and accurate estimation of signal arrival time are presented. The theoretical estimation models developed are applied to skin surface profile registrations.

  9. Modeling the Internet of Things, Self-Organizing and Other Complex Adaptive Communication Networks: A Cognitive Agent-Based Computing Approach

    PubMed Central

    2016-01-01

    Background Computer Networks have a tendency to grow at an unprecedented scale. Modern networks involve not only computers but also a wide variety of other interconnected devices ranging from mobile phones to other household items fitted with sensors. This vision of the "Internet of Things" (IoT) implies an inherent difficulty in modeling problems. Purpose It is practically impossible to implement and test all scenarios for large-scale and complex adaptive communication networks as part of Complex Adaptive Communication Networks and Environments (CACOONS). The goal of this study is to explore the use of Agent-based Modeling as part of the Cognitive Agent-based Computing (CABC) framework to model a Complex communication network problem. Method We use Exploratory Agent-based Modeling (EABM), as part of the CABC framework, to develop an autonomous multi-agent architecture for managing carbon footprint in a corporate network. To evaluate the application of complexity in practical scenarios, we have also introduced a company-defined computer usage policy. Results The conducted experiments demonstrated two important results: Primarily CABC-based modeling approach such as using Agent-based Modeling can be an effective approach to modeling complex problems in the domain of IoT. Secondly, the specific problem of managing the Carbon footprint can be solved using a multiagent system approach. PMID:26812235

  10. Test Anxiety, Computer-Adaptive Testing and the Common Core

    ERIC Educational Resources Information Center

    Colwell, Nicole Makas

    2013-01-01

    This paper highlights the current findings and issues regarding the role of computer-adaptive testing in test anxiety. The computer-adaptive test (CAT) proposed by one of the Common Core consortia brings these issues to the forefront. Research has long indicated that test anxiety impairs student performance. More recent research indicates that…

  11. An efficient parallel termination detection algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, A. H.; Crivelli, S.; Jessup, E. R.

    2004-05-27

    Information local to any one processor is insufficient to monitor the overall progress of most distributed computations. Typically, a second distributed computation for detecting termination of the main computation is necessary. In order to be a useful computational tool, the termination detection routine must operate concurrently with the main computation, adding minimal overhead, and it must promptly and correctly detect termination when it occurs. In this paper, we present a new algorithm for detecting the termination of a parallel computation on distributed-memory MIMD computers that satisfies all of those criteria. A variety of termination detection algorithms have been devised. Ofmore » these, the algorithm presented by Sinha, Kale, and Ramkumar (henceforth, the SKR algorithm) is unique in its ability to adapt to the load conditions of the system on which it runs, thereby minimizing the impact of termination detection on performance. Because their algorithm also detects termination quickly, we consider it to be the most efficient practical algorithm presently available. The termination detection algorithm presented here was developed for use in the PMESC programming library for distributed-memory MIMD computers. Like the SKR algorithm, our algorithm adapts to system loads and imposes little overhead. Also like the SKR algorithm, ours is tree-based, and it does not depend on any assumptions about the physical interconnection topology of the processors or the specifics of the distributed computation. In addition, our algorithm is easier to implement and requires only half as many tree traverses as does the SKR algorithm. This paper is organized as follows. In section 2, we define our computational model. In section 3, we review the SKR algorithm. We introduce our new algorithm in section 4, and prove its correctness in section 5. We discuss its efficiency and present experimental results in section 6.« less

  12. Computer programming for generating visual stimuli.

    PubMed

    Bukhari, Farhan; Kurylo, Daniel D

    2008-02-01

    Critical to vision research is the generation of visual displays with precise control over stimulus metrics. Generating stimuli often requires adapting commercial software or developing specialized software for specific research applications. In order to facilitate this process, we give here an overview that allows nonexpert users to generate and customize stimuli for vision research. We first give a review of relevant hardware and software considerations, to allow the selection of display hardware, operating system, programming language, and graphics packages most appropriate for specific research applications. We then describe the framework of a generic computer program that can be adapted for use with a broad range of experimental applications. Stimuli are generated in the context of trial events, allowing the display of text messages, the monitoring of subject responses and reaction times, and the inclusion of contingency algorithms. This approach allows direct control and management of computer-generated visual stimuli while utilizing the full capabilities of modern hardware and software systems. The flowchart and source code for the stimulus-generating program may be downloaded from www.psychonomic.org/archive.

  13. Automated attendance accounting system

    NASA Technical Reports Server (NTRS)

    Chapman, C. P. (Inventor)

    1973-01-01

    An automated accounting system useful for applying data to a computer from any or all of a multiplicity of data terminals is disclosed. The system essentially includes a preselected number of data terminals which are each adapted to convert data words of decimal form to another form, i.e., binary, usable with the computer. Each data terminal may take the form of a keyboard unit having a number of depressable buttons or switches corresponding to selected data digits and/or function digits. A bank of data buffers, one of which is associated with each data terminal, is provided as a temporary storage. Data from the terminals is applied to the data buffers on a digit by digit basis for transfer via a multiplexer to the computer.

  14. Specification and Analysis of Parallel Machine Architecture

    DTIC Science & Technology

    1990-03-17

    Parallel Machine Architeture C.V. Ramamoorthy Computer Science Division Dept. of Electrical Engineering and Computer Science University of California...capacity. (4) Adaptive: The overhead in resolution of deadlocks, etc. should be in proportion to their frequency. (5) Avoid rollbacks: Rollbacks can be...snapshots of system state graphically at a rate proportional to simulation time. Some of the examples are as follow: (1) When the simulation clock of

  15. Zap 'Em with Assistive Technology: Notetaking, Modified Materials, Assistive Writing Tools, References, Organizational Tools, Cognitive Assistance, Adapted Access.

    ERIC Educational Resources Information Center

    Lahm, Elizabeth A.; Morrissette, Sandra K.

    This collection of materials describes different types of computer applications and software that can help students with disabilities. It contains information on: (1) Easy Access, a feature of the systems software on every Macintosh computer that allows use of the keypad instead of the mouse, options for slow keys, and options for sticky keys; (2)…

  16. A Well-Tempered Hybrid Method for Solving Challenging Time-Dependent Density Functional Theory (TDDFT) Systems.

    PubMed

    Kasper, Joseph M; Williams-Young, David B; Vecharynski, Eugene; Yang, Chao; Li, Xiaosong

    2018-04-10

    The time-dependent Hartree-Fock (TDHF) and time-dependent density functional theory (TDDFT) equations allow one to probe electronic resonances of a system quickly and inexpensively. However, the iterative solution of the eigenvalue problem can be challenging or impossible to converge, using standard methods such as the Davidson algorithm for spectrally dense regions in the interior of the spectrum, as are common in X-ray absorption spectroscopy (XAS). More robust solvers, such as the generalized preconditioned locally harmonic residual (GPLHR) method, can alleviate this problem, but at the expense of higher average computational cost. A hybrid method is proposed which adapts to the problem in order to maximize computational performance while providing the superior convergence of GPLHR. In addition, a modification to the GPLHR algorithm is proposed to adaptively choose the shift parameter to enforce a convergence of states above a predefined energy threshold.

  17. Evaluation of marginal and internal adaptation of hybrid and nanoceramic systems with microcomputed tomography: An in vitro study.

    PubMed

    Yildirim, Güler; Uzun, Ismail H; Keles, Ali

    2017-08-01

    The accuracy of recently introduced chairside computer-aided design and computer-aided manufacturing (CAD-CAM) blocks is not well established, and marginal integrity and internal adaptation are not known. The purpose of this in vitro study was to evaluate the marginal and internal adaptation of hybrid and nanoceramics using microcomputed tomography (μ-CT). The marginal and internal adaptation of 3 polymer-infiltrated ceramic-network (PICN) materials (Vita Enamic [VE]; Lava Ultimate [LU]; Vita Suprinity [VS]) were compared with lithium disilicate (IPS e.max.CAD, IPS). Ninety-six specimens (48 dies and 48 crowns) were prepared (n=12 each group) using a chairside CAD-CAM system. The restorations were scanned with μ-CT, with 160 measurements made for each crown, and used in 2-dimensional (2D) analysis. The marginal adaptation of marginal discrepancy (MD), absolute marginal discrepancy (AMD), internal adaptation of shoulder area (SA), axial space (AS), and occlusal space (OS) were compared using appropriate statistical analysis methods (α=.05). Cement volumes were compared using 3D analysis. The IPS blocks showed higher MD (130 μm), AMD (156 μm), SA (111 μm) (P<.05), AS (52 μm), and OS (192 μm) than the other blocks (P<.01). The adaptation values of VS were significantly lower than those of the IPS block (P<.05). The adaption values of the LU and VE blocks were significantly lower than those of others (P<.01) but were statistically similar to one another (P>.05). IPS had the largest cement space at 18 mm 3 (P<.01). The marginal and internal adaptation values were within a clinically acceptable range for all 3 hybrids and nanoceramics tested. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  18. Vascular surgical data registries for small computers.

    PubMed

    Kaufman, J L; Rosenberg, N

    1984-08-01

    Recent designs for computer-based vascular surgical registries and clinical data bases have employed large centralized systems with formal programming and mass storage. Small computers, of the types created for office use or for word processing, now contain sufficient speed and memory storage capacity to allow construction of decentralized office-based registries. Using a standardized dictionary of terms and a method of data organization adapted to word processing, we have created a new vascular surgery data registry, "VASREG." Data files are organized without programming, and a limited number of powerful logical statements in English are used for sorting. The capacity is 25,000 records with current inexpensive memory technology. VASREG is adaptable to computers made by a variety of manufacturers, and interface programs are available for conversion of the word processor formated registry data into forms suitable for analysis by programs written in a standard programming language. This is a low-cost clinical data registry available to any physician. With a standardized dictionary, preparation of regional and national statistical summaries may be facilitated.

  19. An intelligent interface for satellite operations: Your Orbit Determination Assistant (YODA)

    NASA Technical Reports Server (NTRS)

    Schur, Anne

    1988-01-01

    An intelligent interface is often characterized by the ability to adapt evaluation criteria as the environment and user goals change. Some factors that impact these adaptations are redefinition of task goals and, hence, user requirements; time criticality; and system status. To implement adaptations affected by these factors, a new set of capabilities must be incorporated into the human-computer interface design. These capabilities include: (1) dynamic update and removal of control states based on user inputs, (2) generation and removal of logical dependencies as change occurs, (3) uniform and smooth interfacing to numerous processes, databases, and expert systems, and (4) unobtrusive on-line assistance to users of concepts were applied and incorporated into a human-computer interface using artificial intelligence techniques to create a prototype expert system, Your Orbit Determination Assistant (YODA). YODA is a smart interface that supports, in real teime, orbit analysts who must determine the location of a satellite during the station acquisition phase of a mission. Also described is the integration of four knowledge sources required to support the orbit determination assistant: orbital mechanics, spacecraft specifications, characteristics of the mission support software, and orbit analyst experience. This initial effort is continuing with expansion of YODA's capabilities, including evaluation of results of the orbit determination task.

  20. Achieving realistic performance and decison-making capabilities in computer-generated air forces

    NASA Astrophysics Data System (ADS)

    Banks, Sheila B.; Stytz, Martin R.; Santos, Eugene, Jr.; Zurita, Vincent B.; Benslay, James L., Jr.

    1997-07-01

    For a computer-generated force (CGF) system to be useful in training environments, it must be able to operate at multiple skill levels, exhibit competency at assigned missions, and comply with current doctrine. Because of the rapid rate of change in distributed interactive simulation (DIS) and the expanding set of performance objectives for any computer- generated force, the system must also be modifiable at reasonable cost and incorporate mechanisms for learning. Therefore, CGF applications must have adaptable decision mechanisms and behaviors and perform automated incorporation of past reasoning and experience into its decision process. The CGF must also possess multiple skill levels for classes of entities, gracefully degrade its reasoning capability in response to system stress, possess an expandable modular knowledge structure, and perform adaptive mission planning. Furthermore, correctly performing individual entity behaviors is not sufficient. Issues related to complex inter-entity behavioral interactions, such as the need to maintain formation and share information, must also be considered. The CGF must also be able to acceptably respond to unforeseen circumstances and be able to make decisions in spite of uncertain information. Because of the need for increased complexity in the virtual battlespace, the CGF should exhibit complex, realistic behavior patterns within the battlespace. To achieve these necessary capabilities, an extensible software architecture, an expandable knowledge base, and an adaptable decision making mechanism are required. Our lab has addressed these issues in detail. The resulting DIS-compliant system is called the automated wingman (AW). The AW is based on fuzzy logic, the common object database (CODB) software architecture, and a hierarchical knowledge structure. We describe the techniques we used to enable us to make progress toward a CGF entity that satisfies the requirements presented above. We present our design and implementation of an adaptable decision making mechanism that uses multi-layered, fuzzy logic controlled situational analysis. Because our research indicates that fuzzy logic can perform poorly under certain circumstances, we combine fuzzy logic inferencing with adversarial game tree techniques for decision making in strategic and tactical engagements. We describe the approach we employed to achieve this fusion. We also describe the automated wingman's system architecture and knowledge base architecture.

Top