ERIC Educational Resources Information Center
Ozgun-Koca, S. Ash
2010-01-01
Although growing numbers of secondary school mathematics teachers and students use calculators to study graphs, they mainly rely on paper-and-pencil when manipulating algebraic symbols. However, the Computer Algebra Systems (CAS) on computers or handheld calculators create new possibilities for teaching and learning algebraic manipulation. This…
ERIC Educational Resources Information Center
Gonzalez-Vega, Laureano
1999-01-01
Using a Computer Algebra System (CAS) to help with the teaching of an elementary course in linear algebra can be one way to introduce computer algebra, numerical analysis, data structures, and algorithms. Highlights the advantages and disadvantages of this approach to the teaching of linear algebra. (Author/MM)
Implementing Computer Algebra Enabled Questions for the Assessment and Learning of Mathematics
ERIC Educational Resources Information Center
Sangwin, Christopher J.; Naismith, Laura
2008-01-01
We present principles for the design of an online system to support computer algebra enabled questions for use within the teaching and learning of mathematics in higher education. The introduction of a computer algebra system (CAS) into a computer aided assessment (CAA) system affords sophisticated response processing of student provided answers.…
ERIC Educational Resources Information Center
van Herwaarden, Onno A.; Gielen, Joseph L. W.
2002-01-01
Focuses on students showing a lack of conceptual insight while using computer algebra systems (CAS) in the setting of an elementary calculus and linear algebra course for first year university students in social sciences. The use of a computer algebra environment has been incorporated into a more traditional course but with special attention on…
Category-theoretic models of algebraic computer systems
NASA Astrophysics Data System (ADS)
Kovalyov, S. P.
2016-01-01
A computer system is said to be algebraic if it contains nodes that implement unconventional computation paradigms based on universal algebra. A category-based approach to modeling such systems that provides a theoretical basis for mapping tasks to these systems' architecture is proposed. The construction of algebraic models of general-purpose computations involving conditional statements and overflow control is formally described by a reflector in an appropriate category of algebras. It is proved that this reflector takes the modulo ring whose operations are implemented in the conventional arithmetic processors to the Łukasiewicz logic matrix. Enrichments of the set of ring operations that form bases in the Łukasiewicz logic matrix are found.
Assessing Elementary Algebra with STACK
ERIC Educational Resources Information Center
Sangwin, Christopher J.
2007-01-01
This paper concerns computer aided assessment (CAA) of mathematics in which a computer algebra system (CAS) is used to help assess students' responses to elementary algebra questions. Using a methodology of documentary analysis, we examine what is taught in elementary algebra. The STACK CAA system, http://www.stack.bham.ac.uk/, which uses the CAS…
Computer Algebra Systems in Undergraduate Instruction.
ERIC Educational Resources Information Center
Small, Don; And Others
1986-01-01
Computer algebra systems (such as MACSYMA and muMath) can carry out many of the operations of calculus, linear algebra, and differential equations. Use of them with sketching graphs of rational functions and with other topics is discussed. (MNS)
Computing Gröbner Bases within Linear Algebra
NASA Astrophysics Data System (ADS)
Suzuki, Akira
In this paper, we present an alternative algorithm to compute Gröbner bases, which is based on computations on sparse linear algebra. Both of S-polynomial computations and monomial reductions are computed in linear algebra simultaneously in this algorithm. So it can be implemented to any computational system which can handle linear algebra. For a given ideal in a polynomial ring, it calculates a Gröbner basis along with the corresponding term order appropriately.
Generic, Type-Safe and Object Oriented Computer Algebra Software
NASA Astrophysics Data System (ADS)
Kredel, Heinz; Jolly, Raphael
Advances in computer science, in particular object oriented programming, and software engineering have had little practical impact on computer algebra systems in the last 30 years. The software design of existing systems is still dominated by ad-hoc memory management, weakly typed algorithm libraries and proprietary domain specific interactive expression interpreters. We discuss a modular approach to computer algebra software: usage of state-of-the-art memory management and run-time systems (e.g. JVM) usage of strongly typed, generic, object oriented programming languages (e.g. Java) and usage of general purpose, dynamic interactive expression interpreters (e.g. Python) To illustrate the workability of this approach, we have implemented and studied computer algebra systems in Java and Scala. In this paper we report on the current state of this work by presenting new examples.
NASA Astrophysics Data System (ADS)
Roussel, Marc R.
1999-10-01
One of the traditional obstacles to learning quantum mechanics is the relatively high level of mathematical proficiency required to solve even routine problems. Modern computer algebra systems are now sufficiently reliable that they can be used as mathematical assistants to alleviate this difficulty. In the quantum mechanics course at the University of Lethbridge, the traditional three lecture hours per week have been replaced by two lecture hours and a one-hour computer-aided problem solving session using a computer algebra system (Maple). While this somewhat reduces the number of topics that can be tackled during the term, students have a better opportunity to familiarize themselves with the underlying theory with this course design. Maple is also available to students during examinations. The use of a computer algebra system expands the class of feasible problems during a time-limited exercise such as a midterm or final examination. A modern computer algebra system is a complex piece of software, so some time needs to be devoted to teaching the students its proper use. However, the advantages to the teaching of quantum mechanics appear to outweigh the disadvantages.
Maple (Computer Algebra System) in Teaching Pre-Calculus: Example of Absolute Value Function
ERIC Educational Resources Information Center
Tuluk, Güler
2014-01-01
Modules in Computer Algebra Systems (CAS) make Mathematics interesting and easy to understand. The present study focused on the implementation of the algebraic, tabular (numerical), and graphical approaches used for the construction of the concept of absolute value function in teaching mathematical content knowledge along with Maple 9. The study…
NASA Astrophysics Data System (ADS)
Ardıç, Mehmet Alper; Işleyen, Tevfik
2018-01-01
In this study, we deal with the development process of in-service training activities designed in order for mathematics teachers of secondary education to realize teaching of mathematics, utilizing computer algebra systems. In addition, the results obtained from the researches carried out during and after the in-service training were summarized. Last section focuses on suggestions any teacher can use to carry out activities aimed at using computer algebra systems in teaching environments.
SD-CAS: Spin Dynamics by Computer Algebra System.
Filip, Xenia; Filip, Claudiu
2010-11-01
A computer algebra tool for describing the Liouville-space quantum evolution of nuclear 1/2-spins is introduced and implemented within a computational framework named Spin Dynamics by Computer Algebra System (SD-CAS). A distinctive feature compared with numerical and previous computer algebra approaches to solving spin dynamics problems results from the fact that no matrix representation for spin operators is used in SD-CAS, which determines a full symbolic character to the performed computations. Spin correlations are stored in SD-CAS as four-entry nested lists of which size increases linearly with the number of spins into the system and are easily mapped into analytical expressions in terms of spin operator products. For the so defined SD-CAS spin correlations a set of specialized functions and procedures is introduced that are essential for implementing basic spin algebra operations, such as the spin operator products, commutators, and scalar products. They provide results in an abstract algebraic form: specific procedures to quantitatively evaluate such symbolic expressions with respect to the involved spin interaction parameters and experimental conditions are also discussed. Although the main focus in the present work is on laying the foundation for spin dynamics symbolic computation in NMR based on a non-matrix formalism, practical aspects are also considered throughout the theoretical development process. In particular, specific SD-CAS routines have been implemented using the YACAS computer algebra package (http://yacas.sourceforge.net), and their functionality was demonstrated on a few illustrative examples. Copyright © 2010 Elsevier Inc. All rights reserved.
Computing the Moore-Penrose Inverse of a Matrix with a Computer Algebra System
ERIC Educational Resources Information Center
Schmidt, Karsten
2008-01-01
In this paper "Derive" functions are provided for the computation of the Moore-Penrose inverse of a matrix, as well as for solving systems of linear equations by means of the Moore-Penrose inverse. Making it possible to compute the Moore-Penrose inverse easily with one of the most commonly used Computer Algebra Systems--and to have the blueprint…
Computer Algebra Systems in Education Newsletter[s].
ERIC Educational Resources Information Center
Computer Algebra Systems in Education Newsletter, 1990
1990-01-01
Computer Algebra Systems (CAS) are computer systems for the exact solution of problems in symbolic form. The newspaper is designed to serve as a conduit for information and ideas on the use of CAS in education, especially in lower division college and university courses. Articles included are about CAS programs in several colleges, experiences…
Towards Student Instrumentation of Computer-Based Algebra Systems in University Courses
ERIC Educational Resources Information Center
Stewart, Sepideh; Thomas, Michael O. J.; Hannah, John
2005-01-01
There are many perceived benefits of using technology, such as computer algebra systems, in undergraduate mathematics courses. However, attaining these benefits sometimes proves elusive. Some of the key variables are the teaching approach and the student instrumentation of the technology. This paper considers the instrumentation of computer-based…
The Simulation of an Oxidation-Reduction Titration Curve with Computer Algebra
ERIC Educational Resources Information Center
Whiteley, Richard V., Jr.
2015-01-01
Although the simulation of an oxidation/reduction titration curve is an important exercise in an undergraduate course in quantitative analysis, that exercise is frequently simplified to accommodate computational limitations. With the use of readily available computer algebra systems, however, such curves for complicated systems can be generated…
A Flexible, Extensible Online Testing System for Mathematics
ERIC Educational Resources Information Center
Passmore, Tim; Brookshaw, Leigh; Butler, Harry
2011-01-01
An online testing system developed for entry-skills testing of first-year university students in algebra and calculus is described. The system combines the open-source computer algebra system "Maxima" with computer scripts to parse student answers, which are entered using standard mathematical notation and conventions. The answers can…
NASA Astrophysics Data System (ADS)
Nazarov, Anton
2012-11-01
In this paper we present Affine.m-a program for computations in representation theory of finite-dimensional and affine Lie algebras and describe implemented algorithms. The algorithms are based on the properties of weights and Weyl symmetry. Computation of weight multiplicities in irreducible and Verma modules, branching of representations and tensor product decomposition are the most important problems for us. These problems have numerous applications in physics and we provide some examples of these applications. The program is implemented in the popular computer algebra system Mathematica and works with finite-dimensional and affine Lie algebras. Catalogue identifier: AENA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENB_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, UK Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 24 844 No. of bytes in distributed program, including test data, etc.: 1 045 908 Distribution format: tar.gz Programming language: Mathematica. Computer: i386-i686, x86_64. Operating system: Linux, Windows, Mac OS, Solaris. RAM: 5-500 Mb Classification: 4.2, 5. Nature of problem: Representation theory of finite-dimensional Lie algebras has many applications in different branches of physics, including elementary particle physics, molecular physics, nuclear physics. Representations of affine Lie algebras appear in string theories and two-dimensional conformal field theory used for the description of critical phenomena in two-dimensional systems. Also Lie symmetries play a major role in a study of quantum integrable systems. Solution method: We work with weights and roots of finite-dimensional and affine Lie algebras and use Weyl symmetry extensively. Central problems which are the computations of weight multiplicities, branching and fusion coefficients are solved using one general recurrent algorithm based on generalization of Weyl character formula. We also offer alternative implementation based on the Freudenthal multiplicity formula which can be faster in some cases. Restrictions: Computational complexity grows fast with the rank of an algebra, so computations for algebras of ranks greater than 8 are not practical. Unusual features: We offer the possibility of using a traditional mathematical notation for the objects in representation theory of Lie algebras in computations if Affine.m is used in the Mathematica notebook interface. Running time: From seconds to days depending on the rank of the algebra and the complexity of the representation.
Some Applications of Algebraic System Solving
ERIC Educational Resources Information Center
Roanes-Lozano, Eugenio
2011-01-01
Technology and, in particular, computer algebra systems, allows us to change both the way we teach mathematics and the mathematical curriculum. Curiously enough, unlike what happens with linear system solving, algebraic system solving is not widely known. The aim of this paper is to show that, although the theory lying behind the "exact…
Computer-Aided College Algebra: Learning Components that Students Find Beneficial
ERIC Educational Resources Information Center
Aichele, Douglas B.; Francisco, Cynthia; Utley, Juliana; Wescoatt, Benjamin
2011-01-01
A mixed-method study was conducted during the Fall 2008 semester to better understand the experiences of students participating in computer-aided instruction of College Algebra using the software MyMathLab. The learning environment included a computer learning system for the majority of the instruction, a support system via focus groups (weekly…
Teaching of Real Numbers by Using the Archimedes-Cantor Approach and Computer Algebra Systems
ERIC Educational Resources Information Center
Vorob'ev, Evgenii M.
2015-01-01
Computer technologies and especially computer algebra systems (CAS) allow students to overcome some of the difficulties they encounter in the study of real numbers. The teaching of calculus can be considerably more effective with the use of CAS provided the didactics of the discipline makes it possible to reveal the full computational potential of…
Gauss Elimination: Workhorse of Linear Algebra.
1995-08-05
linear algebra computation for solving systems, computing determinants and determining the rank of matrix. All of these are discussed in varying contexts. These include different arithmetic or algebraic setting such as integer arithmetic or polynomial rings as well as conventional real (floating-point) arithmetic. These have effects on both accuracy and complexity analyses of the algorithm. These, too, are covered here. The impact of modern parallel computer architecture on GE is also
FINITE DIFFERENCE THEORY, * LINEAR ALGEBRA , APPLIED MATHEMATICS, APPROXIMATION(MATHEMATICS), BOUNDARY VALUE PROBLEMS, COMPUTATIONS, HYPERBOLAS, MATHEMATICAL MODELS, NUMERICAL ANALYSIS, PARTIAL DIFFERENTIAL EQUATIONS, STABILITY.
Developing a TI-92 Manual Generator Based on Computer Algebra Systems
ERIC Educational Resources Information Center
Jun, Youngcook
2004-01-01
The electronic medium suitable for mathematics learning and teaching is often designed with a notebook interface provided in a computer algebra system. Such a notebook interface facilitates a workspace for mathematical activities along with an online help system. In this paper, the proposed feature is implemented in the Mathematica's notebook…
Decomposition of algebraic sets and applications to weak centers of cubic systems
NASA Astrophysics Data System (ADS)
Chen, Xingwu; Zhang, Weinian
2009-10-01
There are many methods such as Gröbner basis, characteristic set and resultant, in computing an algebraic set of a system of multivariate polynomials. The common difficulties come from the complexity of computation, singularity of the corresponding matrices and some unnecessary factors in successive computation. In this paper, we decompose algebraic sets, stratum by stratum, into a union of constructible sets with Sylvester resultants, so as to simplify the procedure of elimination. Applying this decomposition to systems of multivariate polynomials resulted from period constants of reversible cubic differential systems which possess a quadratic isochronous center, we determine the order of weak centers and discuss the bifurcation of critical periods.
Derive Workshop Matrix Algebra and Linear Algebra.
ERIC Educational Resources Information Center
Townsley Kulich, Lisa; Victor, Barbara
This document presents the course content for a workshop that integrates the use of the computer algebra system Derive with topics in matrix and linear algebra. The first section is a guide to using Derive that provides information on how to write algebraic expressions, make graphs, save files, edit, define functions, differentiate expressions,…
Effects of Computer Algebra System (CAS) with Metacognitive Training on Mathematical Reasoning.
ERIC Educational Resources Information Center
Kramarski, Bracha; Hirsch, Chaya
2003-01-01
Describes a study that investigated the differential effects of Computer Algebra Systems (CAS) and metacognitive training (META) on mathematical reasoning. Participants were 83 Israeli eighth-grade students. Results showed that CAS embedded within META significantly outperformed the META and CAS alone conditions, which in turn significantly…
Computer Algebra Systems and Theorems on Real Roots of Polynomials
ERIC Educational Resources Information Center
Aidoo, Anthony Y.; Manthey, Joseph L.; Ward, Kim Y.
2010-01-01
A computer algebra system is used to derive a theorem on the existence of roots of a quadratic equation on any bounded real interval. This is extended to a cubic polynomial. We discuss how students could be led to derive and prove these theorems. (Contains 1 figure.)
Computer Algebra System Calculators: Gender Issues and Teachers' Expectations
ERIC Educational Resources Information Center
Forgasz, Helen J.; Griffith, Shirly
2006-01-01
In this paper we present findings from two studies focusing on computer algebra system (CAS) calculators. In Victoria, Australia, it is currently mandatory for students to use graphics calculators in some grade 12 mathematics examinations. Since 2001, a pilot study has been conducted involving Victorian Certificate of Education (VCE) students…
Using Computer Symbolic Algebra to Solve Differential Equations.
ERIC Educational Resources Information Center
Mathews, John H.
1989-01-01
This article illustrates that mathematical theory can be incorporated into the process to solve differential equations by a computer algebra system, muMATH. After an introduction to functions of muMATH, several short programs for enhancing the capabilities of the system are discussed. Listed are six references. (YP)
HOMAR: A computer code for generating homotopic grids using algebraic relations: User's manual
NASA Technical Reports Server (NTRS)
Moitra, Anutosh
1989-01-01
A computer code for fast automatic generation of quasi-three-dimensional grid systems for aerospace configurations is described. The code employs a homotopic method to algebraically generate two-dimensional grids in cross-sectional planes, which are stacked to produce a three-dimensional grid system. Implementation of the algebraic equivalents of the homotopic relations for generating body geometries and grids are explained. Procedures for controlling grid orthogonality and distortion are described. Test cases with description and specification of inputs are presented in detail. The FORTRAN computer program and notes on implementation and use are included.
ERIC Educational Resources Information Center
Herron, Sherry; Gandy, Rex; Ye, Ningjun; Syed, Nasser
2012-01-01
A unique aspect of the implementation of a computer algebra system (CAS) at a comprehensive university in the U.S. allowed us to compare the student success and failure rates to the traditional method of teaching college algebra. Due to space limitations, the university offered sections of both CAS and traditional simultaneously and, upon…
Astronomy Education using the Web and a Computer Algebra System
NASA Astrophysics Data System (ADS)
Flurchick, K. M.; Culver, Roger B.; Griego, Ben
2013-04-01
The combination of a web server and a Computer Algebra System to provide students the ability to explore and investigate astronomical concepts presented in a class can help student understanding. This combination of technologies provides a framework to extend the classroom experience with independent student exploration. In this presentation we report on the developmen of this web based material and some initial results of students making use of the computational tools using webMathematica^TM. The material developed allow the student toanalyze and investigate a variety of astronomical phenomena, including topics such as the Runge-Lenz vector, descriptions of the orbits of some of the exo-planets, Bode' law and other topics related to celestial mechanics. The server based Computer Algebra System system allows for computations without installing software on the student's computer but provides a powerful environment to explore the various concepts. The current system is installed at North Carolina A&T State University and has been used in several undergraduate classes.
Egri-Nagy, Attila; Nehaniv, Chrystopher L
2008-01-01
Biochemical and genetic regulatory networks are often modeled by Petri nets. We study the algebraic structure of the computations carried out by Petri nets from the viewpoint of algebraic automata theory. Petri nets comprise a formalized graphical modeling language, often used to describe computation occurring within biochemical and genetic regulatory networks, but the semantics may be interpreted in different ways in the realm of automata. Therefore, there are several different ways to turn a Petri net into a state-transition automaton. Here, we systematically investigate different conversion methods and describe cases where they may yield radically different algebraic structures. We focus on the existence of group components of the corresponding transformation semigroups, as these reflect symmetries of the computation occurring within the biological system under study. Results are illustrated by applications to the Petri net modelling of intermediary metabolism. Petri nets with inhibition are shown to be computationally rich, regardless of the particular interpretation method. Along these lines we provide a mathematical argument suggesting a reason for the apparent all-pervasiveness of inhibitory connections in living systems.
Digital Maps, Matrices and Computer Algebra
ERIC Educational Resources Information Center
Knight, D. G.
2005-01-01
The way in which computer algebra systems, such as Maple, have made the study of complex problems accessible to undergraduate mathematicians with modest computational skills is illustrated by some large matrix calculations, which arise from representing the Earth's surface by digital elevation models. Such problems are often considered to lie in…
High Level Technology in a Low Level Mathematics Course.
ERIC Educational Resources Information Center
Schultz, James E.; Noguera, Norma
2000-01-01
Describes a teaching experiment in which spreadsheets and computer algebra systems were used to teach a low-level college consumer mathematics course. Students were successful in using different types of functions to solve a variety of problems drawn from real-world situations. Provides an existence proof that computer algebra systems can assist…
Some Unexpected Results Using Computer Algebra Systems.
ERIC Educational Resources Information Center
Alonso, Felix; Garcia, Alfonsa; Garcia, Francisco; Hoya, Sara; Rodriguez, Gerardo; de la Villa, Agustin
2001-01-01
Shows how teachers can often use unexpected outputs from Computer Algebra Systems (CAS) to reinforce concepts and to show students the importance of thinking about how they use the software and reflecting on their results. Presents different examples where DERIVE, MAPLE, or Mathematica does not work as expected and suggests how to use them as a…
ERIC Educational Resources Information Center
Maat, Siti Mistima; Zakaria, Effandi
2011-01-01
Ordinary differential equations (ODEs) are one of the important topics in engineering mathematics that lead to the understanding of technical concepts among students. This study was conducted to explore the students' understanding of ODEs when they solve ODE questions using a traditional method as well as a computer algebraic system, particularly…
Analysis of Computer Algebra System Tutorials Using Cognitive Load Theory
ERIC Educational Resources Information Center
May, Patricia
2004-01-01
Most research in the area of Computer Algebra Systems (CAS) has been designed to compare the effectiveness of instructional technology to traditional lecture-based formats. While results are promising, research also indicates evidence of the steep learning curve imposed by the technology. Yet no studies have been conducted to investigate this…
A Study of the Use of a Handheld Computer Algebra System in Discrete Mathematics
ERIC Educational Resources Information Center
Powers, Robert A.; Allison, Dean E.; Grassl, Richard M.
2005-01-01
This study investigated the impact of the TI-92 handheld Computer Algebra System (CAS) on student achievement in a discrete mathematics course. Specifically, the researchers examined the differences between a CAS section and a control section of discrete mathematics on students' in-class examinations. Additionally, they analysed student approaches…
Asymptotic identity in min-plus algebra: a report on CPNS.
Li, Ming; Zhao, Wei
2012-01-01
Network calculus is a theory initiated primarily in computer communication networks, especially in the aspect of real-time communications, where min-plus algebra plays a role. Cyber-physical networking systems (CPNSs) are recently developing fast and models in data flows as well as systems in CPNS are, accordingly, greatly desired. Though min-plus algebra may be a promising tool to linearize any node in CPNS as can be seen from its applications to the Internet computing, there are tough problems remaining unsolved in this regard. The identity in min-plus algebra is one problem we shall address. We shall point out the confusions about the conventional identity in the min-plus algebra and present an analytical expression of the asymptotic identity that may not cause confusions.
Asymptotic Identity in Min-Plus Algebra: A Report on CPNS
Li, Ming; Zhao, Wei
2012-01-01
Network calculus is a theory initiated primarily in computer communication networks, especially in the aspect of real-time communications, where min-plus algebra plays a role. Cyber-physical networking systems (CPNSs) are recently developing fast and models in data flows as well as systems in CPNS are, accordingly, greatly desired. Though min-plus algebra may be a promising tool to linearize any node in CPNS as can be seen from its applications to the Internet computing, there are tough problems remaining unsolved in this regard. The identity in min-plus algebra is one problem we shall address. We shall point out the confusions about the conventional identity in the min-plus algebra and present an analytical expression of the asymptotic identity that may not cause confusions. PMID:21822446
General Algebraic Modeling System Tutorial | High-Performance Computing |
power generation from two different fuels. The goal is to minimize the cost for one of the fuels while Here's a basic tutorial for modeling optimization problems with the General Algebraic Modeling System (GAMS). Overview The GAMS (General Algebraic Modeling System) package is essentially a compiler for a
Some Applications Of Semigroups And Computer Algebra In Discrete Structures
NASA Astrophysics Data System (ADS)
Bijev, G.
2009-11-01
An algebraic approach to the pseudoinverse generalization problem in Boolean vector spaces is used. A map (p) is defined, which is similar to an orthogonal projection in linear vector spaces. Some other important maps with properties similar to those of the generalized inverses (pseudoinverses) of linear transformations and matrices corresponding to them are also defined and investigated. Let Ax = b be an equation with matrix A and vectors x and b Boolean. Stochastic experiments for solving the equation, which involves the maps defined and use computer algebra methods, have been made. As a result, the Hamming distance between vectors Ax = p(b) and b is equal or close to the least possible. We also share our experience in using computer algebra systems for teaching discrete mathematics and linear algebra and research. Some examples for computations with binary relations using Maple are given.
ERIC Educational Resources Information Center
Exley, I. Sheck
The high percentage of high school pre-algebra students having difficulty learning the abstract concept of graphing ordered pairs on the Cartesian rectangular coordinate system was addressed by the creation and implementation of a computer-managed instructional program. Modules consisted of a pretest, instruction, two practice sessions, and a…
ERIC Educational Resources Information Center
Fonger, Nicole L.; Davis, Jon D.; Rohwer, Mary Lou
2018-01-01
This research addresses the issue of how to support students' representational fluency--the ability to create, move within, translate across, and derive meaning from external representations of mathematical ideas. The context of solving linear equations in a combined computer algebra system (CAS) and paper-and-pencil classroom environment is…
Computer Algebra Systems: Permitted but Are They Used?
ERIC Educational Resources Information Center
Pierce, Robyn; Bardini, Caroline
2015-01-01
Since the 1990s, computer algebra systems (CAS) have been available in Australia as hand-held devices designed for students with the expectation that they will be used in the mathematics classroom. The data discussed in this paper was collected as part of a pilot study that investigated first year university mathematics and statistics students'…
ERIC Educational Resources Information Center
Marshall, Neil; Buteau, Chantal; Jarvis, Daniel H.; Lavicza, Zsolt
2012-01-01
We present a comparative study of a literature review of 326 selected contributions (Buteau, Marshall, Jarvis & Lavicza, 2010) to an international (US, UK, Hungary) survey of mathematicians (Lavicza, 2008) regarding the use of Computer Algebra Systems (CAS) in post-secondary mathematics education. The comparison results are organized with respect…
Examining the Use of Computer Algebra Systems in University-Level Mathematics Teaching
ERIC Educational Resources Information Center
Lavicza, Zsolt
2009-01-01
The use of Computer Algebra Systems (CAS) is becoming increasingly important and widespread in mathematics research and teaching. In this paper, I will report on a questionnaire study enquiring about mathematicians' use of CAS in mathematics teaching in three countries; the United States, the United Kingdom, and Hungary. Based on the responses…
ERIC Educational Resources Information Center
Perram, John W.; Andersen, Morten; Ellekilde, Lars-Peter; Hjorth, Poul G.
2004-01-01
This paper discusses experience with alternative assessment strategies for an introductory course in dynamical systems, where the use of computer algebra and calculus is fully integrated into the learning process, so that the standard written examination would not be appropriate. Instead, students' competence was assessed by grading three large…
Mixing Microworld and CAS Features in Building Computer Systems that Help Students Learn Algebra
ERIC Educational Resources Information Center
Nicaud, Jean-Francois; Bouhineau, Denis; Chaachoua, Hamid
2004-01-01
We present the design principles for a new kind of computer system that helps students learn algebra. The fundamental idea is to have a system based on the microworld paradigm that allows students to make their own calculations, as they do with paper and pencil, without being obliged to use commands, and to verify the correctness of these…
ERIC Educational Resources Information Center
Matsumoto, Paul S.
2014-01-01
The article describes the use of Mathematica, a computer algebra system (CAS), in a high school chemistry course. Mathematica was used to generate a graph, where a slider controls the value of parameter(s) in the equation; thus, students can visualize the effect of the parameter(s) on the behavior of the system. Also, Mathematica can show the…
NASA Technical Reports Server (NTRS)
Mulligan, Jeffrey B.
2017-01-01
A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. We would like it to match the well-defined algebra of spectral functions describing lights and surface reflectances, but an exact correspondence is impossible after the spectra have been projected to a three-dimensional color space, because of metamerism physically different spectra can produce the same color sensation. Metameric spectra are interchangeable for the purposes of addition, but not multiplication, so any color algebra is necessarily an approximation to physical reality. Nevertheless, because the majority of naturally-occurring spectra are well-behaved (e.g., continuous and slowly-varying), color algebras can be formulated that are largely accurate and agree well with human intuition. Here we explore the family of algebras that result from associating each color with a member of a three-dimensional manifold of spectra. This association can be used to construct a color product, defined as the color of the spectrum of the wavelength-wise product of the spectra associated with the two input colors. The choice of the spectral manifold determines the behavior of the resulting system, and certain special subspaces allow computational efficiencies. The resulting systems can be used to improve computer graphic rendering techniques, and to model various perceptual phenomena such as color constancy.
Multi-loop Integrand Reduction with Computational Algebraic Geometry
NASA Astrophysics Data System (ADS)
Badger, Simon; Frellesvig, Hjalte; Zhang, Yang
2014-06-01
We discuss recent progress in multi-loop integrand reduction methods. Motivated by the possibility of an automated construction of multi-loop amplitudes via generalized unitarity cuts we describe a procedure to obtain a general parameterisation of any multi-loop integrand in a renormalizable gauge theory. The method relies on computational algebraic geometry techniques such as Gröbner bases and primary decomposition of ideals. We present some results for two and three loop amplitudes obtained with the help of the MACAULAY2 computer algebra system and the Mathematica package BASISDET.
A Comparison of Equality in Computer Algebra and Correctness in Mathematical Pedagogy (II)
ERIC Educational Resources Information Center
Bradford, Russell; Davenport, James H.; Sangwin, Chris
2010-01-01
A perennial problem in computer-aided assessment is that "a right answer", pedagogically speaking, is not the same thing as "a mathematically correct expression", as verified by a computer algebra system, or indeed other techniques such as random evaluation. Paper I in this series considered the difference in cases where there was "the right…
ERIC Educational Resources Information Center
Tonisson, Eno; Lepp, Marina
2015-01-01
The answers offered by computer algebra systems (CAS) can sometimes differ from those expected by the students or teachers. The comparison of the students' answers and CAS answers could provide ground for discussion about equivalence and correctness. Investigating the students' comparison of the answers gives the possibility to study different…
ERIC Educational Resources Information Center
Tonisson, Eno
2015-01-01
Sometimes Computer Algebra Systems (CAS) offer an answer that is somewhat different from the answer that is probably expected by the student or teacher. These (somewhat unexpected) answers could serve as a catalyst for rich mathematical discussion. In this study, over 120 equations from school mathematics were solved using 8 different CAS. Many…
ERIC Educational Resources Information Center
Karakus, Fatih; Aydin, Bünyamin
2017-01-01
This study aimed at determining the effects of using a computer algebra system (CAS) on undergraduate students' spatial visualization skills in a calculus course. This study used an experimental design. The "one group pretest-posttest design" was the research model. The participants were 41 sophomore students (26 female and 15 male)…
ERIC Educational Resources Information Center
Buteau, Chantal; Jarvis, Daniel H.; Lavicza, Zsolt
2014-01-01
In this article, we outline the findings of a Canadian survey study (N = 302) that focused on the extent of computer algebra systems (CAS)-based technology use in postsecondary mathematics instruction. Results suggest that a considerable number of Canadian mathematicians use CAS in research and teaching. CAS use in research was found to be the…
CENTER CONDITIONS AND CYCLICITY FOR A FAMILY OF CUBIC SYSTEMS: COMPUTER ALGEBRA APPROACH.
Ferčec, Brigita; Mahdi, Adam
2013-01-01
Using methods of computational algebra we obtain an upper bound for the cyclicity of a family of cubic systems. We overcame the problem of nonradicality of the associated Bautin ideal by moving from the ring of polynomials to a coordinate ring. Finally, we determine the number of limit cycles bifurcating from each component of the center variety.
The Effect of an Intelligent Tutoring System (ITS) on Student Achievement in Algebraic Expression
ERIC Educational Resources Information Center
Chien, Tsai Chen; Md. Yunus, Aida Suraya; Ali, Wan Zah Wan; Bakar, Ab. Rahim
2008-01-01
In this experimental study, use of Computer Assisted Instruction (CAI) followed by use of an Intelligent Tutoring System (CAI+ITS) was compared to the use of CAI (CAI only) in tutoring students on the topic of Algebraic Expression. Two groups of students participated in the study. One group of 32 students studied algebraic expression in a CAI…
Construction of Orthonormal Wavelets Using Symbolic Algebraic Methods
NASA Astrophysics Data System (ADS)
Černá, Dana; Finěk, Václav
2009-09-01
Our contribution is concerned with the solution of nonlinear algebraic equations systems arising from the computation of scaling coefficients of orthonormal wavelets with compact support. Specifically Daubechies wavelets, symmlets, coiflets, and generalized coiflets. These wavelets are defined as a solution of equation systems which are partly linear and partly nonlinear. The idea of presented methods consists in replacing those equations for scaling coefficients by equations for scaling moments. It enables us to eliminate some quadratic conditions in the original system and then simplify it. The simplified system is solved with the aid of the Gröbner basis method. The advantage of our approach is that in some cases, it provides all possible solutions and these solutions can be computed to arbitrary precision. For small systems, we are even able to find explicit solutions. The computation was carried out by symbolic algebra software Maple.
An Algebraic Approach to Guarantee Harmonic Balance Method Using Gröbner Base
NASA Astrophysics Data System (ADS)
Yagi, Masakazu; Hisakado, Takashi; Okumura, Kohshi
Harmonic balance (HB) method is well known principle for analyzing periodic oscillations on nonlinear networks and systems. Because the HB method has a truncation error, approximated solutions have been guaranteed by error bounds. However, its numerical computation is very time-consuming compared with solving the HB equation. This paper proposes an algebraic representation of the error bound using Gröbner base. The algebraic representation enables to decrease the computational cost of the error bound considerably. Moreover, using singular points of the algebraic representation, we can obtain accurate break points of the error bound by collisions.
Comparison of methods for developing the dynamics of rigid-body systems
NASA Technical Reports Server (NTRS)
Ju, M. S.; Mansour, J. M.
1989-01-01
Several approaches for developing the equations of motion for a three-degree-of-freedom PUMA robot were compared on the basis of computational efficiency (i.e., the number of additions, subtractions, multiplications, and divisions). Of particular interest was the investigation of the use of computer algebra as a tool for developing the equations of motion. Three approaches were implemented algebraically: Lagrange's method, Kane's method, and Wittenburg's method. Each formulation was developed in absolute and relative coordinates. These six cases were compared to each other and to a recursive numerical formulation. The results showed that all of the formulations implemented algebraically required fewer calculations than the recursive numerical algorithm. The algebraic formulations required fewer calculations in absolute coordinates than in relative coordinates. Each of the algebraic formulations could be simplified, using patterns from Kane's method, to yield the same number of calculations in a given coordinate system.
Inequalities, Assessment and Computer Algebra
ERIC Educational Resources Information Center
Sangwin, Christopher J.
2015-01-01
The goal of this paper is to examine single variable real inequalities that arise as tutorial problems and to examine the extent to which current computer algebra systems (CAS) can (1) automatically solve such problems and (2) determine whether students' own answers to such problems are correct. We review how inequalities arise in contemporary…
ERIC Educational Resources Information Center
Leng, Ng Wee; Choo, Kwee Tiow; Soon, Lau Hock; Yi-Huak, Koh; Sun, Yap Yew
2005-01-01
This study examines the effects of using Texas Instruments' Voyage 200 calculator (V200), a graphing calculator with a built-in computer algebra system (CAS), on attitudes towards CAS and achievement in mathematics of junior college students (17 year olds). Students' attitudes towards CAS were examined using a 40-item Likert-type instrument…
Communication Avoiding and Overlapping for Numerical Linear Algebra
2012-05-08
future exascale systems, communication cost must be avoided or overlapped. Communication-avoiding 2.5D algorithms improve scalability by reducing...linear algebra problems to future exascale systems, communication cost must be avoided or overlapped. Communication-avoiding 2.5D algorithms improve...will continue to grow relative to the cost of computation. With exascale computing as the long-term goal, the community needs to develop techniques
The 6th International Conference on Computer Science and Computational Mathematics (ICCSCM 2017)
NASA Astrophysics Data System (ADS)
2017-09-01
The ICCSCM 2017 (The 6th International Conference on Computer Science and Computational Mathematics) has aimed to provide a platform to discuss computer science and mathematics related issues including Algebraic Geometry, Algebraic Topology, Approximation Theory, Calculus of Variations, Category Theory; Homological Algebra, Coding Theory, Combinatorics, Control Theory, Cryptology, Geometry, Difference and Functional Equations, Discrete Mathematics, Dynamical Systems and Ergodic Theory, Field Theory and Polynomials, Fluid Mechanics and Solid Mechanics, Fourier Analysis, Functional Analysis, Functions of a Complex Variable, Fuzzy Mathematics, Game Theory, General Algebraic Systems, Graph Theory, Group Theory and Generalizations, Image Processing, Signal Processing and Tomography, Information Fusion, Integral Equations, Lattices, Algebraic Structures, Linear and Multilinear Algebra; Matrix Theory, Mathematical Biology and Other Natural Sciences, Mathematical Economics and Financial Mathematics, Mathematical Physics, Measure Theory and Integration, Neutrosophic Mathematics, Number Theory, Numerical Analysis, Operations Research, Optimization, Operator Theory, Ordinary and Partial Differential Equations, Potential Theory, Real Functions, Rings and Algebras, Statistical Mechanics, Structure Of Matter, Topological Groups, Wavelets and Wavelet Transforms, 3G/4G Network Evolutions, Ad-Hoc, Mobile, Wireless Networks and Mobile Computing, Agent Computing & Multi-Agents Systems, All topics related Image/Signal Processing, Any topics related Computer Networks, Any topics related ISO SC-27 and SC- 17 standards, Any topics related PKI(Public Key Intrastructures), Artifial Intelligences(A.I.) & Pattern/Image Recognitions, Authentication/Authorization Issues, Biometric authentication and algorithms, CDMA/GSM Communication Protocols, Combinatorics, Graph Theory, and Analysis of Algorithms, Cryptography and Foundation of Computer Security, Data Base(D.B.) Management & Information Retrievals, Data Mining, Web Image Mining, & Applications, Defining Spectrum Rights and Open Spectrum Solutions, E-Comerce, Ubiquitous, RFID, Applications, Fingerprint/Hand/Biometrics Recognitions and Technologies, Foundations of High-performance Computing, IC-card Security, OTP, and Key Management Issues, IDS/Firewall, Anti-Spam mail, Anti-virus issues, Mobile Computing for E-Commerce, Network Security Applications, Neural Networks and Biomedical Simulations, Quality of Services and Communication Protocols, Quantum Computing, Coding, and Error Controls, Satellite and Optical Communication Systems, Theory of Parallel Processing and Distributed Computing, Virtual Visions, 3-D Object Retrievals, & Virtual Simulations, Wireless Access Security, etc. The success of ICCSCM 2017 is reflected in the received papers from authors around the world from several countries which allows a highly multinational and multicultural idea and experience exchange. The accepted papers of ICCSCM 2017 are published in this Book. Please check http://www.iccscm.com for further news. A conference such as ICCSCM 2017 can only become successful using a team effort, so herewith we want to thank the International Technical Committee and the Reviewers for their efforts in the review process as well as their valuable advices. We are thankful to all those who contributed to the success of ICCSCM 2017. The Secretary
Computer algebra and operators
NASA Technical Reports Server (NTRS)
Fateman, Richard; Grossman, Robert
1989-01-01
The symbolic computation of operator expansions is discussed. Some of the capabilities that prove useful when performing computer algebra computations involving operators are considered. These capabilities may be broadly divided into three areas: the algebraic manipulation of expressions from the algebra generated by operators; the algebraic manipulation of the actions of the operators upon other mathematical objects; and the development of appropriate normal forms and simplification algorithms for operators and their actions. Brief descriptions are given of the computer algebra computations that arise when working with various operators and their actions.
Benhammouda, Brahim
2016-01-01
Since 1980, the Adomian decomposition method (ADM) has been extensively used as a simple powerful tool that applies directly to solve different kinds of nonlinear equations including functional, differential, integro-differential and algebraic equations. However, for differential-algebraic equations (DAEs) the ADM is applied only in four earlier works. There, the DAEs are first pre-processed by some transformations like index reductions before applying the ADM. The drawback of such transformations is that they can involve complex algorithms, can be computationally expensive and may lead to non-physical solutions. The purpose of this paper is to propose a novel technique that applies the ADM directly to solve a class of nonlinear higher-index Hessenberg DAEs systems efficiently. The main advantage of this technique is that; firstly it avoids complex transformations like index reductions and leads to a simple general algorithm. Secondly, it reduces the computational work by solving only linear algebraic systems with a constant coefficient matrix at each iteration, except for the first iteration where the algebraic system is nonlinear (if the DAE is nonlinear with respect to the algebraic variable). To demonstrate the effectiveness of the proposed technique, we apply it to a nonlinear index-three Hessenberg DAEs system with nonlinear algebraic constraints. This technique is straightforward and can be programmed in Maple or Mathematica to simulate real application problems.
Bisimulation equivalence of differential-algebraic systems
NASA Astrophysics Data System (ADS)
Megawati, Noorma Yulia; Schaft, Arjan van der
2018-01-01
In this paper, the notion of bisimulation relation for linear input-state-output systems is extended to general linear differential-algebraic (DAE) systems. Geometric control theory is used to derive a linear-algebraic characterisation of bisimulation relations, and an algorithm for computing the maximal bisimulation relation between two linear DAE systems. The general definition is specialised to the case where the matrix pencil sE - A is regular. Furthermore, by developing a one-sided version of bisimulation, characterisations of simulation and abstraction are obtained.
Revisiting Newtonian and Non-Newtonian Fluid Mechanics Using Computer Algebra
ERIC Educational Resources Information Center
Knight, D. G.
2006-01-01
This article illustrates how a computer algebra system, such as Maple[R], can assist in the study of theoretical fluid mechanics, for both Newtonian and non-Newtonian fluids. The continuity equation, the stress equations of motion, the Navier-Stokes equations, and various constitutive equations are treated, using a full, but straightforward,…
Automatic code generation in SPARK: Applications of computer algebra and compiler-compilers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nataf, J.M.; Winkelmann, F.
We show how computer algebra and compiler-compilers are used for automatic code generation in the Simulation Problem Analysis and Research Kernel (SPARK), an object oriented environment for modeling complex physical systems that can be described by differential-algebraic equations. After a brief overview of SPARK, we describe the use of computer algebra in SPARK's symbolic interface, which generates solution code for equations that are entered in symbolic form. We also describe how the Lex/Yacc compiler-compiler is used to achieve important extensions to the SPARK simulation language, including parametrized macro objects and steady-state resetting of a dynamic simulation. The application of thesemore » methods to solving the partial differential equations for two-dimensional heat flow is illustrated.« less
Automatic code generation in SPARK: Applications of computer algebra and compiler-compilers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nataf, J.M.; Winkelmann, F.
We show how computer algebra and compiler-compilers are used for automatic code generation in the Simulation Problem Analysis and Research Kernel (SPARK), an object oriented environment for modeling complex physical systems that can be described by differential-algebraic equations. After a brief overview of SPARK, we describe the use of computer algebra in SPARK`s symbolic interface, which generates solution code for equations that are entered in symbolic form. We also describe how the Lex/Yacc compiler-compiler is used to achieve important extensions to the SPARK simulation language, including parametrized macro objects and steady-state resetting of a dynamic simulation. The application of thesemore » methods to solving the partial differential equations for two-dimensional heat flow is illustrated.« less
Two-spectral Yang-Baxter operators in topological quantum computation
NASA Astrophysics Data System (ADS)
Sanchez, William F.
2011-05-01
One of the current trends in quantum computing is the application of algebraic topological methods in the design of new algorithms and quantum computers, giving rise to topological quantum computing. One of the tools used in it is the Yang-Baxter equation whose solutions are interpreted as universal quantum gates. Lately, more general Yang-Baxter equations have been investigated, making progress as two-spectral equations and Yang-Baxter systems. This paper intends to apply these new findings to the field of topological quantum computation, more specifically, the proposition of the two-spectral Yang-Baxter operators as universal quantum gates for 2 qubits and 2 qutrits systems, obtaining 4x4 and 9x9 matrices respectively, and further elaboration of the corresponding Hamiltonian by the use of computer algebra software Mathematica® and its Qucalc package. In addition, possible physical systems to which the Yang-Baxter operators obtained can be applied are considered. In the present work it is demonstrated the utility of the Yang-Baxter equation to generate universal quantum gates and the power of computer algebra to design them; it is expected that these mathematical studies contribute to the further development of quantum computers
Algorithms for computations of Loday algebras' invariants
NASA Astrophysics Data System (ADS)
Hussain, Sharifah Kartini Said; Rakhimov, I. S.; Basri, W.
2017-04-01
The paper is devoted to applications of some computer programs to study structural determination of Loday algebras. We present how these computer programs can be applied in computations of various invariants of Loday algebras and provide several computer programs in Maple to verify Loday algebras' identities, the isomorphisms between the algebras, as a special case, to describe the automorphism groups, centroids and derivations.
ERIC Educational Resources Information Center
Yildiz Ulus, Aysegul
2013-01-01
This paper examines experimental and algorithmic contributions of advanced calculators (graphing and computer algebra system, CAS) in teaching the concept of "diagonalization," one of the key topics in Linear Algebra courses taught at the undergraduate level. Specifically, the proposed hypothesis of this study is to assess the effective…
Arithmetic Circuit Verification Based on Symbolic Computer Algebra
NASA Astrophysics Data System (ADS)
Watanabe, Yuki; Homma, Naofumi; Aoki, Takafumi; Higuchi, Tatsuo
This paper presents a formal approach to verify arithmetic circuits using symbolic computer algebra. Our method describes arithmetic circuits directly with high-level mathematical objects based on weighted number systems and arithmetic formulae. Such circuit description can be effectively verified by polynomial reduction techniques using Gröbner Bases. In this paper, we describe how the symbolic computer algebra can be used to describe and verify arithmetic circuits. The advantageous effects of the proposed approach are demonstrated through experimental verification of some arithmetic circuits such as multiply-accumulator and FIR filter. The result shows that the proposed approach has a definite possibility of verifying practical arithmetic circuits.
A Comparison Study between a Traditional and Experimental Program.
ERIC Educational Resources Information Center
Dogan, Hamide
This paper is part of a dissertation defended in January 2001 as part of the author's Ph.D. requirement. The study investigated the effects of use of Mathematica, a computer algebra system, in learning basic linear algebra concepts, It was done by means of comparing two first year linear algebra classes, one traditional and one Mathematica…
An algebra of reversible computation.
Wang, Yong
2016-01-01
We design an axiomatization for reversible computation called reversible ACP (RACP). It has four extendible modules: basic reversible processes algebra, algebra of reversible communicating processes, recursion and abstraction. Just like process algebra ACP in classical computing, RACP can be treated as an axiomatization foundation for reversible computation.
High level language-based robotic control system
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo (Inventor); Kruetz, Kenneth K. (Inventor); Jain, Abhinandan (Inventor)
1994-01-01
This invention is a robot control system based on a high level language implementing a spatial operator algebra. There are two high level languages included within the system. At the highest level, applications programs can be written in a robot-oriented applications language including broad operators such as MOVE and GRASP. The robot-oriented applications language statements are translated into statements in the spatial operator algebra language. Programming can also take place using the spatial operator algebra language. The statements in the spatial operator algebra language from either source are then translated into machine language statements for execution by a digital control computer. The system also includes the capability of executing the control code sequences in a simulation mode before actual execution to assure proper action at execution time. The robot's environment is checked as part of the process and dynamic reconfiguration is also possible. The languages and system allow the programming and control of multiple arms and the use of inward/outward spatial recursions in which every computational step can be related to a transformation from one point in the mechanical robot to another point to name two major advantages.
High level language-based robotic control system
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo (Inventor); Kreutz, Kenneth K. (Inventor); Jain, Abhinandan (Inventor)
1996-01-01
This invention is a robot control system based on a high level language implementing a spatial operator algebra. There are two high level languages included within the system. At the highest level, applications programs can be written in a robot-oriented applications language including broad operators such as MOVE and GRASP. The robot-oriented applications language statements are translated into statements in the spatial operator algebra language. Programming can also take place using the spatial operator algebra language. The statements in the spatial operator algebra language from either source are then translated into machine language statements for execution by a digital control computer. The system also includes the capability of executing the control code sequences in a simulation mode before actual execution to assure proper action at execution time. The robot's environment is checked as part of the process and dynamic reconfiguration is also possible. The languages and system allow the programming and control of multiple arms and the use of inward/outward spatial recursions in which every computational step can be related to a transformation from one point in the mechanical robot to another point to name two major advantages.
Introducing Computer Algebra to School Teachers of Mathematics
ERIC Educational Resources Information Center
Man, Yiu-Kwong
2007-01-01
Since the last decade, the use of computer algebra systems at the Hong Kong school level is still very limited. Among various reasons behind, the lack of exposure of this kind of software to local school teachers should be taken into account. In this article, we describe how to introduce MAPLE in a BEd module of a local teacher-training programme.…
The Automation of Stochastization Algorithm with Use of SymPy Computer Algebra Library
NASA Astrophysics Data System (ADS)
Demidova, Anastasya; Gevorkyan, Migran; Kulyabov, Dmitry; Korolkova, Anna; Sevastianov, Leonid
2018-02-01
SymPy computer algebra library is used for automatic generation of ordinary and stochastic systems of differential equations from the schemes of kinetic interaction. Schemes of this type are used not only in chemical kinetics but also in biological, ecological and technical models. This paper describes the automatic generation algorithm with an emphasis on application details.
Assessing Mathematics Automatically Using Computer Algebra and the Internet
ERIC Educational Resources Information Center
Sangwin, Chris
2004-01-01
This paper reports some recent developments in mathematical computer-aided assessment which employs computer algebra to evaluate students' work using the Internet. Technical and educational issues raised by this use of computer algebra are addressed. Working examples from core calculus and algebra which have been used with first year university…
ADAM: analysis of discrete models of biological systems using computer algebra.
Hinkelmann, Franziska; Brandon, Madison; Guang, Bonny; McNeill, Rustin; Blekherman, Grigoriy; Veliz-Cuba, Alan; Laubenbacher, Reinhard
2011-07-20
Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, Petri nets, and agent-based models, to gain a better understanding of them. The computational complexity to analyze the complete dynamics of these models grows exponentially in the number of variables, which impedes working with complex models. There exist software tools to analyze discrete models, but they either lack the algorithmic functionality to analyze complex models deterministically or they are inaccessible to many users as they require understanding the underlying algorithm and implementation, do not have a graphical user interface, or are hard to install. Efficient analysis methods that are accessible to modelers and easy to use are needed. We propose a method for efficiently identifying attractors and introduce the web-based tool Analysis of Dynamic Algebraic Models (ADAM), which provides this and other analysis methods for discrete models. ADAM converts several discrete model types automatically into polynomial dynamical systems and analyzes their dynamics using tools from computer algebra. Specifically, we propose a method to identify attractors of a discrete model that is equivalent to solving a system of polynomial equations, a long-studied problem in computer algebra. Based on extensive experimentation with both discrete models arising in systems biology and randomly generated networks, we found that the algebraic algorithms presented in this manuscript are fast for systems with the structure maintained by most biological systems, namely sparseness and robustness. For a large set of published complex discrete models, ADAM identified the attractors in less than one second. Discrete modeling techniques are a useful tool for analyzing complex biological systems and there is a need in the biological community for accessible efficient analysis tools. ADAM provides analysis methods based on mathematical algorithms as a web-based tool for several different input formats, and it makes analysis of complex models accessible to a larger community, as it is platform independent as a web-service and does not require understanding of the underlying mathematics.
Motion Planning in a Society of Intelligent Mobile Agents
NASA Technical Reports Server (NTRS)
Esterline, Albert C.; Shafto, Michael (Technical Monitor)
2002-01-01
The majority of the work on this grant involved formal modeling of human-computer integration. We conceptualize computer resources as a multiagent system so that these resources and human collaborators may be modeled uniformly. In previous work we had used modal for this uniform modeling, and we had developed a process-algebraic agent abstraction. In this work, we applied this abstraction (using CSP) in uniformly modeling agents and users, which allowed us to use tools for investigating CSP models. This work revealed the power of, process-algebraic handshakes in modeling face-to-face conversation. We also investigated specifications of human-computer systems in the style of algebraic specification. This involved specifying the common knowledge required for coordination and process-algebraic patterns of communication actions intended to establish the common knowledge. We investigated the conditions for agents endowed with perception to gain common knowledge and implemented a prototype neural-network system that allows agents to detect when such conditions hold. The literature on multiagent systems conceptualizes communication actions as speech acts. We implemented a prototype system that infers the deontic effects (obligations, permissions, prohibitions) of speech acts and detects violations of these effects. A prototype distributed system was developed that allows users to collaborate in moving proxy agents; it was designed to exploit handshakes and common knowledge Finally. in work carried over from a previous NASA ARC grant, about fifteen undergraduates developed and presented projects on multiagent motion planning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suh, Uhi Rinn, E-mail: uhrisu1@math.snu.ac.kr
We introduce a classical BRST complex (See Definition 3.2.) and show that one can construct a classical affine W-algebra via the complex. This definition clarifies that classical affine W-algebras can be considered as quasi-classical limits of quantum affine W-algebras. We also give a definition of a classical affine fractional W-algebra as a Poisson vertex algebra. As in the classical affine case, a classical affine fractional W-algebra has two compatible λ-brackets and is isomorphic to an algebra of differential polynomials as a differential algebra. When a classical affine fractional W-algebra is associated to a minimal nilpotent, we describe explicit forms ofmore » free generators and compute λ-brackets between them. Provided some assumptions on a classical affine fractional W-algebra, we find an infinite sequence of integrable systems related to the algebra, using the generalized Drinfel’d and Sokolov reduction.« less
Stability of Linear Equations--Algebraic Approach
ERIC Educational Resources Information Center
Cherif, Chokri; Goldstein, Avraham; Prado, Lucio M. G.
2012-01-01
This article could be of interest to teachers of applied mathematics as well as to people who are interested in applications of linear algebra. We give a comprehensive study of linear systems from an application point of view. Specifically, we give an overview of linear systems and problems that can occur with the computed solution when the…
An Example of Competence-Based Learning: Use of Maxima in Linear Algebra for Engineers
ERIC Educational Resources Information Center
Diaz, Ana; Garcia, Alfonsa; de la Villa, Agustin
2011-01-01
This paper analyses the role of Computer Algebra Systems (CAS) in a model of learning based on competences. The proposal is an e-learning model Linear Algebra course for Engineering, which includes the use of a CAS (Maxima) and focuses on problem solving. A reference model has been taken from the Spanish Open University. The proper use of CAS is…
Numerical methods on some structured matrix algebra problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jessup, E.R.
1996-06-01
This proposal concerned the design, analysis, and implementation of serial and parallel algorithms for certain structured matrix algebra problems. It emphasized large order problems and so focused on methods that can be implemented efficiently on distributed-memory MIMD multiprocessors. Such machines supply the computing power and extensive memory demanded by the large order problems. We proposed to examine three classes of matrix algebra problems: the symmetric and nonsymmetric eigenvalue problems (especially the tridiagonal cases) and the solution of linear systems with specially structured coefficient matrices. As all of these are of practical interest, a major goal of this work was tomore » translate our research in linear algebra into useful tools for use by the computational scientists interested in these and related applications. Thus, in addition to software specific to the linear algebra problems, we proposed to produce a programming paradigm and library to aid in the design and implementation of programs for distributed-memory MIMD computers. We now report on our progress on each of the problems and on the programming tools.« less
NASA Technical Reports Server (NTRS)
Mulligan, Jeffrey B.
2017-01-01
A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. The difficulty addressed here is the fact that, because of metamerism, we cannot know with certainty the spectrum that produced a particular color solely on the basis of sensory data. Knowledge of the spectrum is not required to compute additive mixture of colors, but is critical for subtractive (multiplicative) mixture. Therefore, we cannot predict with certainty the multiplicative interactions between colors based solely on sensory data. There are two potential applications of a color algebra: first, to aid modeling phenomena of human visual perception, such as color constancy and transparency; and, second, to provide better models of the interactions of lights and surfaces for computer graphics rendering.
NASA Astrophysics Data System (ADS)
Zhang, Shunli; Zhang, Dinghua; Gong, Hao; Ghasemalizadeh, Omid; Wang, Ge; Cao, Guohua
2014-11-01
Iterative algorithms, such as the algebraic reconstruction technique (ART), are popular for image reconstruction. For iterative reconstruction, the area integral model (AIM) is more accurate for better reconstruction quality than the line integral model (LIM). However, the computation of the system matrix for AIM is more complex and time-consuming than that for LIM. Here, we propose a fast and accurate method to compute the system matrix for AIM. First, we calculate the intersection of each boundary line of a narrow fan-beam with pixels in a recursive and efficient manner. Then, by grouping the beam-pixel intersection area into six types according to the slopes of the two boundary lines, we analytically compute the intersection area of the narrow fan-beam with the pixels in a simple algebraic fashion. Overall, experimental results show that our method is about three times faster than the Siddon algorithm and about two times faster than the distance-driven model (DDM) in computation of the system matrix. The reconstruction speed of our AIM-based ART is also faster than the LIM-based ART that uses the Siddon algorithm and DDM-based ART, for one iteration. The fast reconstruction speed of our method was accomplished without compromising the image quality.
Classical versus Computer Algebra Methods in Elementary Geometry
ERIC Educational Resources Information Center
Pech, Pavel
2005-01-01
Computer algebra methods based on results of commutative algebra like Groebner bases of ideals and elimination of variables make it possible to solve complex, elementary and non elementary problems of geometry, which are difficult to solve using a classical approach. Computer algebra methods permit the proof of geometric theorems, automatic…
A computing method for sound propagation through a nonuniform jet stream
NASA Technical Reports Server (NTRS)
Padula, S. L.; Liu, C. H.
1974-01-01
The classical formulation of sound propagation through a jet flow was found to be inadequate for computer solutions. Previous investigations selected the phase and amplitude of the acoustic pressure as dependent variables requiring the solution of a system of nonlinear algebraic equations. The nonlinearities complicated both the analysis and the computation. A reformulation of the convective wave equation in terms of a new set of dependent variables is developed with a special emphasis on its suitability for numerical solutions on fast computers. The technique is very attractive because the resulting equations are linear in nonwaving variables. The computer solution to such a linear system of algebraic equations may be obtained by well-defined and direct means which are conservative of computer time and storage space. Typical examples are illustrated and computational results are compared with available numerical and experimental data.
Pre-Algebra Groups. Concepts & Applications.
ERIC Educational Resources Information Center
Montgomery County Public Schools, Rockville, MD.
Discussion material and exercises related to pre-algebra groups are provided in this five chapter manual. Chapter 1 (mappings) focuses on restricted domains, order of operations (parentheses and exponents), rules of assignment, and computer extensions. Chapter 2 considers finite number systems, including binary operations, clock arithmetic,…
2002-06-01
techniques for addressing the software component retrieval problem. Steigerwald [Ste91] introduced the use of algebraic specifications for defining the...provided in terms of a specification written using Luqi’s Prototype Specification Description Language (PSDL) [LBY88] augmented with an algebraic
Possibility of Engineering Education That Makes Use of Algebraic Calculators by Various Scenes
NASA Astrophysics Data System (ADS)
Umeno, Yoshio
Algebraic calculators are graphing calculators with a feature of computer algebra system. It can be said that we can solve mathematics only by pushing some keys of these calculators in technical colleges or universities. They also possess another feature, so we can make extensive use in engineering education. For example, we can use them for a basic education, a programming education, English education, and creative thinking tools for excellent students. In this paper, we will introduce the summary of algebraic calculators, then, consider how we utilize them in engineer education.
Computational algebraic geometry of epidemic models
NASA Astrophysics Data System (ADS)
Rodríguez Vega, Martín.
2014-06-01
Computational Algebraic Geometry is applied to the analysis of various epidemic models for Schistosomiasis and Dengue, both, for the case without control measures and for the case where control measures are applied. The models were analyzed using the mathematical software Maple. Explicitly the analysis is performed using Groebner basis, Hilbert dimension and Hilbert polynomials. These computational tools are included automatically in Maple. Each of these models is represented by a system of ordinary differential equations, and for each model the basic reproductive number (R0) is calculated. The effects of the control measures are observed by the changes in the algebraic structure of R0, the changes in Groebner basis, the changes in Hilbert dimension, and the changes in Hilbert polynomials. It is hoped that the results obtained in this paper become of importance for designing control measures against the epidemic diseases described. For future researches it is proposed the use of algebraic epidemiology to analyze models for airborne and waterborne diseases.
ADAM: Analysis of Discrete Models of Biological Systems Using Computer Algebra
2011-01-01
Background Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, Petri nets, and agent-based models, to gain a better understanding of them. The computational complexity to analyze the complete dynamics of these models grows exponentially in the number of variables, which impedes working with complex models. There exist software tools to analyze discrete models, but they either lack the algorithmic functionality to analyze complex models deterministically or they are inaccessible to many users as they require understanding the underlying algorithm and implementation, do not have a graphical user interface, or are hard to install. Efficient analysis methods that are accessible to modelers and easy to use are needed. Results We propose a method for efficiently identifying attractors and introduce the web-based tool Analysis of Dynamic Algebraic Models (ADAM), which provides this and other analysis methods for discrete models. ADAM converts several discrete model types automatically into polynomial dynamical systems and analyzes their dynamics using tools from computer algebra. Specifically, we propose a method to identify attractors of a discrete model that is equivalent to solving a system of polynomial equations, a long-studied problem in computer algebra. Based on extensive experimentation with both discrete models arising in systems biology and randomly generated networks, we found that the algebraic algorithms presented in this manuscript are fast for systems with the structure maintained by most biological systems, namely sparseness and robustness. For a large set of published complex discrete models, ADAM identified the attractors in less than one second. Conclusions Discrete modeling techniques are a useful tool for analyzing complex biological systems and there is a need in the biological community for accessible efficient analysis tools. ADAM provides analysis methods based on mathematical algorithms as a web-based tool for several different input formats, and it makes analysis of complex models accessible to a larger community, as it is platform independent as a web-service and does not require understanding of the underlying mathematics. PMID:21774817
Teaching of real numbers by using the Archimedes-Cantor approach and computer algebra systems
NASA Astrophysics Data System (ADS)
Vorob'ev, Evgenii M.
2015-11-01
Computer technologies and especially computer algebra systems (CAS) allow students to overcome some of the difficulties they encounter in the study of real numbers. The teaching of calculus can be considerably more effective with the use of CAS provided the didactics of the discipline makes it possible to reveal the full computational potential of CAS. In the case of real numbers, the Archimedes-Cantor approach satisfies this requirement. The name of Archimedes brings back the exhaustion method. Cantor's name reminds us of the use of Cauchy rational sequences to represent real numbers. The usage of CAS with the Archimedes-Cantor approach enables the discussion of various representations of real numbers such as graphical, decimal, approximate decimal with precision estimates, and representation as points on a straight line. Exercises with numbers such as e, π, the golden ratio ϕ, and algebraic irrational numbers can help students better understand the real numbers. The Archimedes-Cantor approach also reveals a deep and close relationship between real numbers and continuity, in particular the continuity of functions.
Using computer algebra and SMT-solvers to analyze a mathematical model of cholera propagation
NASA Astrophysics Data System (ADS)
Trujillo Arredondo, Mariana
2014-06-01
We analyze a mathematical model for the transmission of cholera. The model is already defined and involves variables such as the pathogen agent, which in this case is the bacterium Vibrio cholera, and the human population. The human population is divided into three classes: susceptible, infectious and removed. Using Computer Algebra, specifically Maple we obtain two equilibrium states: the disease free state and the endemic state. Using Maple it is possible to prove that the disease free state is locally asymptotically stable if and only if R0 < 1. Using Maple it is possible to prove that the endemic equilibrium state is locally stable when it exists, it is to say when R0 > 1. Using the package Red-Log of the Computer algebra system Reduce and the SMT-Solver Z3Py it is possible to obtain numerical conditions for the model. The formula for the basic reproductive number makes a synthesis with all epidemic parameters in the model. Also it is possible to make numerical simulations which are very illustrative about the epidemic patters that are expected to be observed in real situations. We claim that these kinds of software are very useful in the analysis of epidemic models given that the symbolic computation provides algebraic formulas for the basic reproductive number and such algebraic formulas are very useful to derive control measures. For other side, computer algebra software is a powerful tool to make the stability analysis for epidemic models given that the all steps in the stability analysis can be made automatically: finding the equilibrium points, computing the jacobian, computing the characteristic polynomial for the jacobian, and applying the Routh-Hurwitz theorem to the characteristic polynomial. Finally, using SMT-Solvers is possible to make automatically checks of satisfiability, validity and quantifiers elimination being these computations very useful to analyse complicated epidemic models.
Explicating mathematical thinking in differential equations using a computer algebra system
NASA Astrophysics Data System (ADS)
Zeynivandnezhad, Fereshteh; Bates, Rachel
2018-07-01
The importance of developing students' mathematical thinking is frequently highlighted in literature regarding the teaching and learning of mathematics. Despite this importance, most curricula and instructional activities for undergraduate mathematics fail to bring the learner beyond the mathematics. The purpose of this study was to enhance students' mathematical thinking by implementing a computer algebra system and active learning pedagogical approaches. students' mathematical thinking processes were analyzed while completing specific differential equations tasks based on posed prompts and questions and Instrumental Genesis. Data were collected from 37 engineering students in a public Malaysian university. This study used the descriptive and interpretive qualitative research design to investigate the students' perspectives of emerging mathematical understanding and approaches to learning mathematics in an undergraduate differential equations course. Results of this study concluded that students used a variety of mathematical thinking processes in a non-sequential manner. Additionally, the outcomes provide justification for continued use of technologies such as computer algebra systems in undergraduate mathematics courses and the need for further studies to uncover the various processes students utilize to complete specific mathematical tasks.
TDIGG - TWO-DIMENSIONAL, INTERACTIVE GRID GENERATION CODE
NASA Technical Reports Server (NTRS)
Vu, B. T.
1994-01-01
TDIGG is a fast and versatile program for generating two-dimensional computational grids for use with finite-difference flow-solvers. Both algebraic and elliptic grid generation systems are included. The method for grid generation by algebraic transformation is based on an interpolation algorithm and the elliptic grid generation is established by solving the partial differential equation (PDE). Non-uniform grid distributions are carried out using a hyperbolic tangent stretching function. For algebraic grid systems, interpolations in one direction (univariate) and two directions (bivariate) are considered. These interpolations are associated with linear or cubic Lagrangian/Hermite/Bezier polynomial functions. The algebraic grids can subsequently be smoothed using an elliptic solver. For elliptic grid systems, the PDE can be in the form of Laplace (zero forcing function) or Poisson. The forcing functions in the Poisson equation come from the boundary or the entire domain of the initial algebraic grids. A graphics interface procedure using the Silicon Graphics (GL) Library is included to allow users to visualize the grid variations at each iteration. This will allow users to interactively modify the grid to match their applications. TDIGG is written in FORTRAN 77 for Silicon Graphics IRIS series computers running IRIX. This package requires either MIT's X Window System, Version 11 Revision 4 or SGI (Motif) Window System. A sample executable is provided on the distribution medium. It requires 148K of RAM for execution. The standard distribution medium is a .25 inch streaming magnetic IRIX tape cartridge in UNIX tar format. This program was developed in 1992.
The preconditioned Gauss-Seidel method faster than the SOR method
NASA Astrophysics Data System (ADS)
Niki, Hiroshi; Kohno, Toshiyuki; Morimoto, Munenori
2008-09-01
In recent years, a number of preconditioners have been applied to linear systems [A.D. Gunawardena, S.K. Jain, L. Snyder, Modified iterative methods for consistent linear systems, Linear Algebra Appl. 154-156 (1991) 123-143; T. Kohno, H. Kotakemori, H. Niki, M. Usui, Improving modified Gauss-Seidel method for Z-matrices, Linear Algebra Appl. 267 (1997) 113-123; H. Kotakemori, K. Harada, M. Morimoto, H. Niki, A comparison theorem for the iterative method with the preconditioner (I+Smax), J. Comput. Appl. Math. 145 (2002) 373-378; H. Kotakemori, H. Niki, N. Okamoto, Accelerated iteration method for Z-matrices, J. Comput. Appl. Math. 75 (1996) 87-97; M. Usui, H. Niki, T.Kohno, Adaptive Gauss-Seidel method for linear systems, Internat. J. Comput. Math. 51(1994)119-125 [10
Volume-preserving normal forms of Hopf-zero singularity
NASA Astrophysics Data System (ADS)
Gazor, Majid; Mokhtari, Fahimeh
2013-10-01
A practical method is described for computing the unique generator of the algebra of first integrals associated with a large class of Hopf-zero singularity. The set of all volume-preserving classical normal forms of this singularity is introduced via a Lie algebra description. This is a maximal vector space of classical normal forms with first integral; this is whence our approach works. Systems with a nonzero condition on their quadratic parts are considered. The algebra of all first integrals for any such system has a unique (modulo scalar multiplication) generator. The infinite level volume-preserving parametric normal forms of any nondegenerate perturbation within the Lie algebra of any such system is computed, where it can have rich dynamics. The associated unique generator of the algebra of first integrals are derived. The symmetry group of the infinite level normal forms are also discussed. Some necessary formulas are derived and applied to appropriately modified Rössler and generalized Kuramoto-Sivashinsky equations to demonstrate the applicability of our theoretical results. An approach (introduced by Iooss and Lombardi) is applied to find an optimal truncation for the first level normal forms of these examples with exponentially small remainders. The numerically suggested radius of convergence (for the first integral) associated with a hypernormalization step is discussed for the truncated first level normal forms of the examples. This is achieved by an efficient implementation of the results using Maple.
Algebraic grid adaptation method using non-uniform rational B-spline surface modeling
NASA Technical Reports Server (NTRS)
Yang, Jiann-Cherng; Soni, B. K.
1992-01-01
An algebraic adaptive grid system based on equidistribution law and utilized by the Non-Uniform Rational B-Spline (NURBS) surface for redistribution is presented. A weight function, utilizing a properly weighted boolean sum of various flow field characteristics is developed. Computational examples are presented to demonstrate the success of this technique.
An Ada Linear-Algebra Software Package Modeled After HAL/S
NASA Technical Reports Server (NTRS)
Klumpp, Allan R.; Lawson, Charles L.
1990-01-01
New avionics software written more easily. Software package extends Ada programming language to include linear-algebra capabilities similar to those of HAL/S programming language. Designed for such avionics applications as Space Station flight software. In addition to built-in functions of HAL/S, package incorporates quaternion functions used in Space Shuttle and Galileo projects and routines from LINPAK solving systems of equations involving general square matrices. Contains two generic programs: one for floating-point computations and one for integer computations. Written on IBM/AT personal computer running under PC DOS, v.3.1.
A Electro-Optical Image Algebra Processing System for Automatic Target Recognition
NASA Astrophysics Data System (ADS)
Coffield, Patrick Cyrus
The proposed electro-optical image algebra processing system is designed specifically for image processing and other related computations. The design is a hybridization of an optical correlator and a massively paralleled, single instruction multiple data processor. The architecture of the design consists of three tightly coupled components: a spatial configuration processor (the optical analog portion), a weighting processor (digital), and an accumulation processor (digital). The systolic flow of data and image processing operations are directed by a control buffer and pipelined to each of the three processing components. The image processing operations are defined in terms of basic operations of an image algebra developed by the University of Florida. The algebra is capable of describing all common image-to-image transformations. The merit of this architectural design is how it implements the natural decomposition of algebraic functions into spatially distributed, point use operations. The effect of this particular decomposition allows convolution type operations to be computed strictly as a function of the number of elements in the template (mask, filter, etc.) instead of the number of picture elements in the image. Thus, a substantial increase in throughput is realized. The implementation of the proposed design may be accomplished in many ways. While a hybrid electro-optical implementation is of primary interest, the benefits and design issues of an all digital implementation are also discussed. The potential utility of this architectural design lies in its ability to control a large variety of the arithmetic and logic operations of the image algebra's generalized matrix product. The generalized matrix product is the most powerful fundamental operation in the algebra, thus allowing a wide range of applications. No other known device or design has made this claim of processing speed and general implementation of a heterogeneous image algebra.
A Computing Method for Sound Propagation Through a Nonuniform Jet Stream
NASA Technical Reports Server (NTRS)
Padula, S. L.; Liu, C. H.
1974-01-01
Understanding the principles of jet noise propagation is an essential ingredient of systematic noise reduction research. High speed computer methods offer a unique potential for dealing with complex real life physical systems whereas analytical solutions are restricted to sophisticated idealized models. The classical formulation of sound propagation through a jet flow was found to be inadequate for computer solutions and a more suitable approach was needed. Previous investigations selected the phase and amplitude of the acoustic pressure as dependent variables requiring the solution of a system of nonlinear algebraic equations. The nonlinearities complicated both the analysis and the computation. A reformulation of the convective wave equation in terms of a new set of dependent variables is developed with a special emphasis on its suitability for numerical solutions on fast computers. The technique is very attractive because the resulting equations are linear in nonwaving variables. The computer solution to such a linear system of algebraic equations may be obtained by well-defined and direct means which are conservative of computer time and storage space. Typical examples are illustrated and computational results are compared with available numerical and experimental data.
Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems
NASA Technical Reports Server (NTRS)
Downie, John D.; Goodman, Joseph W.
1989-01-01
The accuracy requirements of optical processors in adaptive optics systems are determined by estimating the required accuracy in a general optical linear algebra processor (OLAP) that results in a smaller average residual aberration than that achieved with a conventional electronic digital processor with some specific computation speed. Special attention is given to an error analysis of a general OLAP with regard to the residual aberration that is created in an adaptive mirror system by the inaccuracies of the processor, and to the effect of computational speed of an electronic processor on the correction. Results are presented on the ability of an OLAP to compete with a digital processor in various situations.
Labeled trees and the efficient computation of derivations
NASA Technical Reports Server (NTRS)
Grossman, Robert; Larson, Richard G.
1989-01-01
The effective parallel symbolic computation of operators under composition is discussed. Examples include differential operators under composition and vector fields under the Lie bracket. Data structures consisting of formal linear combinations of rooted labeled trees are discussed. A multiplication on rooted labeled trees is defined, thereby making the set of these data structures into an associative algebra. An algebra homomorphism is defined from the original algebra of operators into this algebra of trees. An algebra homomorphism from the algebra of trees into the algebra of differential operators is then described. The cancellation which occurs when noncommuting operators are expressed in terms of commuting ones occurs naturally when the operators are represented using this data structure. This leads to an algorithm which, for operators which are derivations, speeds up the computation exponentially in the degree of the operator. It is shown that the algebra of trees leads naturally to a parallel version of the algorithm.
Application of Computer Graphics to Graphing in Algebra and Trigonometry. Final Report.
ERIC Educational Resources Information Center
Morris, J. Richard
This project was designed to improve the graphing competency of students in elementary algebra, intermediate algebra, and trigonometry courses at Virginia Commonwealth University. Computer graphics programs were designed using an Apple II Plus computer and implemented using Pascal. The software package is interactive and gives students control…
McCaig, Chris; Begon, Mike; Norman, Rachel; Shankland, Carron
2011-03-01
Changing scale, for example, the ability to move seamlessly from an individual-based model to a population-based model, is an important problem in many fields. In this paper, we introduce process algebra as a novel solution to this problem in the context of models of infectious disease spread. Process algebra allows us to describe a system in terms of the stochastic behaviour of individuals, and is a technique from computer science. We review the use of process algebra in biological systems, and the variety of quantitative and qualitative analysis techniques available. The analysis illustrated here solves the changing scale problem: from the individual behaviour we can rigorously derive equations to describe the mean behaviour of the system at the level of the population. The biological problem investigated is the transmission of infection, and how this relates to individual interactions.
Final Report: Subcontract B623868 Algebraic Multigrid solvers for coupled PDE systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brannick, J.
The Pennsylvania State University (“Subcontractor”) continued to work on the design of algebraic multigrid solvers for coupled systems of partial differential equations (PDEs) arising in numerical modeling of various applications, with a main focus on solving the Dirac equation arising in Quantum Chromodynamics (QCD). The goal of the proposed work was to develop combined geometric and algebraic multilevel solvers that are robust and lend themselves to efficient implementation on massively parallel heterogeneous computers for these QCD systems. The research in these areas built on previous works, focusing on the following three topics: (1) the development of parallel full-multigrid (PFMG) andmore » non-Galerkin coarsening techniques in this frame work for solving the Wilson Dirac system; (2) the use of these same Wilson MG solvers for preconditioning the Overlap and Domain Wall formulations of the Dirac equation; and (3) the design and analysis of algebraic coarsening algorithms for coupled PDE systems including Stokes equation, Maxwell equation and linear elasticity.« less
Affine Kac-Moody symmetric spaces related with A1^{(1)}, A2^{(1)},} A2^{(2)}
NASA Astrophysics Data System (ADS)
Nayak, Saudamini; Pati, K. C.
2014-08-01
Symmetric spaces associated with Lie algebras and Lie groups which are Riemannian manifolds have recently got a lot of attention in various branches of Physics for their role in classical/quantum integrable systems, transport phenomena, etc. Their infinite dimensional counter parts have recently been discovered which are affine Kac-Moody symmetric spaces. In this paper we have (algebraically) explicitly computed the affine Kac-Moody symmetric spaces associated with affine Kac-Moody algebras A1^{(1)}, A2^{(1)}, A2^{(2)}. We hope these types of spaces will play similar roles as that of symmetric spaces in many physical systems.
Unique Factorization in Cyclotomic Integers of Degree Seven
ERIC Educational Resources Information Center
Duckworth, W. Ethan
2008-01-01
This article provides a survey of some basic results in algebraic number theory and applies this material to prove that the cyclotomic integers generated by a seventh root of unity are a unique factorization domain. Part of the proof uses the computer algebra system Maple to find and verify factorizations. The proofs use a combination of historic…
Teaching Mathematics in the PC Lab--The Students' Viewpoints
ERIC Educational Resources Information Center
Schmidt, Karsten; Kohler, Anke
2013-01-01
The Matrix Algebra portion of the intermediate mathematics course at the Schmalkalden University Faculty of Business and Economics has been moved from a traditional classroom setting to a technology-based setting in the PC lab. A Computer Algebra System license was acquired that also allows its use on the students' own PCs. A survey was carried…
ERIC Educational Resources Information Center
Kopp, Jaine; Bergman, Lincoln
This teacher guide helps build a solid foundation in algebra for students in grades 3-5 in which students gain essential understanding of properties of numbers, variables, functions, equations, and formulas. Throughout the problem solving activities, students use computational skills and gain a deeper understanding of the number system. Students…
Examinations in the Final Year of Transition to Mathematical Methods Computer Algebra System (CAS)
ERIC Educational Resources Information Center
Leigh-Lancaster, David; Les, Magdalena; Evans, Michael
2010-01-01
2009 was the final year of parallel implementation for Mathematical Methods Units 3 and 4 and Mathematical Methods (CAS) Units 3 and 4. From 2006-2009 there was a common technology-free short answer examination that covered the same function, algebra, calculus and probability content for both studies with corresponding expectations for key…
Computer programs for the solution of systems of linear algebraic equations
NASA Technical Reports Server (NTRS)
Sequi, W. T.
1973-01-01
FORTRAN subprograms for the solution of systems of linear algebraic equations are described, listed, and evaluated in this report. Procedures considered are direct solution, iteration, and matrix inversion. Both incore methods and those which utilize auxiliary data storage devices are considered. Some of the subroutines evaluated require the entire coefficient matrix to be in core, whereas others account for banding or sparceness of the system. General recommendations relative to equation solving are made, and on the basis of tests, specific subprograms are recommended.
Using computer algebra and SMT solvers in algebraic biology
NASA Astrophysics Data System (ADS)
Pineda Osorio, Mateo
2014-05-01
Biologic processes are represented as Boolean networks, in a discrete time. The dynamics within these networks are approached with the help of SMT Solvers and the use of computer algebra. Software such as Maple and Z3 was used in this case. The number of stationary states for each network was calculated. The network studied here corresponds to the immune system under the effects of drastic mood changes. Mood is considered as a Boolean variable that affects the entire dynamics of the immune system, changing the Boolean satisfiability and the number of stationary states of the immune network. Results obtained show Z3's great potential as a SMT Solver. Some of these results were verified in Maple, even though it showed not to be as suitable for the problem approach. The solving code was constructed using Z3-Python and Z3-SMT-LiB. Results obtained are important in biology systems and are expected to help in the design of immune therapies. As a future line of research, more complex Boolean network representations of the immune system as well as the whole psychological apparatus are suggested.
Morales, Rafael; Rincón, Fernando; Gazzano, Julio Dondo; López, Juan Carlos
2014-01-01
Time derivative estimation of signals plays a very important role in several fields, such as signal processing and control engineering, just to name a few of them. For that purpose, a non-asymptotic algebraic procedure for the approximate estimation of the system states is used in this work. The method is based on results from differential algebra and furnishes some general formulae for the time derivatives of a measurable signal in which two algebraic derivative estimators run simultaneously, but in an overlapping fashion. The algebraic derivative algorithm presented in this paper is computed online and in real-time, offering high robustness properties with regard to corrupting noises, versatility and ease of implementation. Besides, in this work, we introduce a novel architecture to accelerate this algebraic derivative estimator using reconfigurable logic. The core of the algorithm is implemented in an FPGA, improving the speed of the system and achieving real-time performance. Finally, this work proposes a low-cost platform for the integration of hardware in the loop in MATLAB. PMID:24859033
Using Technology to Optimize and Generalize: The Least-Squares Line
ERIC Educational Resources Information Center
Burke, Maurice J.; Hodgson, Ted R.
2007-01-01
With the help of technology and a basic high school algebra method for finding the vertex of a quadratic polynomial, students can develop and prove the formula for least-squares lines. Students are exposed to the power of a computer algebra system to generalize processes they understand and to see deeper patterns in those processes. (Contains 4…
ERIC Educational Resources Information Center
Pantzare, Anna Lind
2012-01-01
Calculators with computer algebra systems (CAS) are powerful tools when working with equations and algebraic expressions in mathematics. When calculators are allowed to be used during assessments but are not available or provided to every student, they may cause bias. The CAS calculators may also have an impact on the trustworthiness of results.…
HEP - A semaphore-synchronized multiprocessor with central control. [Heterogeneous Element Processor
NASA Technical Reports Server (NTRS)
Gilliland, M. C.; Smith, B. J.; Calvert, W.
1976-01-01
The paper describes the design concept of the Heterogeneous Element Processor (HEP), a system tailored to the special needs of scientific simulation. In order to achieve high-speed computation required by simulation, HEP features a hierarchy of processes executing in parallel on a number of processors, with synchronization being largely accomplished by hardware. A full-empty-reserve scheme of synchronization is realized by zero-one-valued hardware semaphores. A typical system has, besides the control computer and the scheduler, an algebraic module, a memory module, a first-in first-out (FIFO) module, an integrator module, and an I/O module. The architecture of the scheduler and the algebraic module is examined in detail.
Remote Symbolic Computation of Loci
ERIC Educational Resources Information Center
Abanades, Miguel A.; Escribano, Jesus; Botana, Francisco
2010-01-01
This article presents a web-based tool designed to compute certified equations and graphs of geometric loci specified using standard Dynamic Geometry Systems (DGS). Complementing the graphing abilities of the considered DGS, the equations of the loci produced by the application are remotely computed using symbolic algebraic techniques from the…
Development of a Diagnostic and Remedial Learning System Based on an Enhanced Concept--Effect Model
ERIC Educational Resources Information Center
Panjaburees, Patcharin; Triampo, Wannapong; Hwang, Gwo-Jen; Chuedoung, Meechoke; Triampo, Darapond
2013-01-01
With the rapid advances in computer technology during recent years, researchers have demonstrated the pivotal influences of computer-assisted diagnostic systems on student learning performance improvement. This research aims to develop a Diagnostic and Remedial Learning System (DRLS) for an algebra course in a Thai lower secondary school context…
Intelligent Machines in the 21st Century: Automating the Processes of Inference and Inquiry
NASA Technical Reports Server (NTRS)
Knuth, Kevin H.
2003-01-01
The last century saw the application of Boolean algebra toward the construction of computing machines, which work by applying logical transformations to information contained in their memory. The development of information theory and the generalization of Boolean algebra to Bayesian inference have enabled these computing machines. in the last quarter of the twentieth century, to be endowed with the ability to learn by making inferences from data. This revolution is just beginning as new computational techniques continue to make difficult problems more accessible. However, modern intelligent machines work by inferring knowledge using only their pre-programmed prior knowledge and the data provided. They lack the ability to ask questions, or request data that would aid their inferences. Recent advances in understanding the foundations of probability theory have revealed implications for areas other than logic. Of relevance to intelligent machines, we identified the algebra of questions as the free distributive algebra, which now allows us to work with questions in a way analogous to that which Boolean algebra enables us to work with logical statements. In this paper we describe this logic of inference and inquiry using the mathematics of partially ordered sets and the scaffolding of lattice theory, discuss the far-reaching implications of the methodology, and demonstrate its application with current examples in machine learning. Automation of both inference and inquiry promises to allow robots to perform science in the far reaches of our solar system and in other star systems by enabling them to not only make inferences from data, but also decide which question to ask, experiment to perform, or measurement to take given what they have learned and what they are designed to understand.
A spatial operator algebra for manipulator modeling and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Kreutz, K.; Milman, M.
1988-01-01
A powerful new spatial operator algebra for modeling, control, and trajectory design of manipulators is discussed along with its implementation in the Ada programming language. Applications of this algebra to robotics include an operator representation of the manipulator Jacobian matrix; the robot dynamical equations formulated in terms of the spatial algebra, showing the complete equivalence between the recursive Newton-Euler formulations to robot dynamics; the operator factorization and inversion of the manipulator mass matrix which immediately results in O(N) recursive forward dynamics algorithms; the joint accelerations of a manipulator due to a tip contact force; the recursive computation of the equivalent mass matrix as seen at the tip of a manipulator; and recursive forward dynamics of a closed chain system. Finally, additional applications and current research involving the use of the spatial operator algebra are discussed in general terms.
ERIC Educational Resources Information Center
Pierce, Robyn; Ball, Lynda; Stacey, Kaye
2009-01-01
The use of Computer Algebra Systems (CAS) in years 9 and 10 classrooms as a tool to support learning or in preparation for senior secondary mathematics is controversial. This paper presents an analysis of the positive and negative aspects of using CAS identified in the literature related to these year levels, along with the perceptions of 12…
Group analysis of dynamics equations of self-gravitating polytropic gas
NASA Astrophysics Data System (ADS)
Klebanov, I.; Panov, A.; Ivanov, S.; Maslova, O.
2018-06-01
The Lie algebras admitted by the dynamics equations of self-gravitating gas for an arbitrary equation of state and a polytropic gas are calculated. A spherically symmetric submodel is constructed for the case of a polytropic gas. The Lie algebras and the optimal system of subalgebras for a spherically symmetric submodel are computed. An invariant solution describing the steady motion is obtained.
Using Information Technology in Mathematics Education.
ERIC Educational Resources Information Center
Tooke, D. James, Ed.; Henderson, Norma, Ed.
This collection of essays examines the history and impact of computers in mathematics and mathematics education from the early, computer-assisted instruction efforts through LOGO, the constructivist educational software for K-9 schools developed in the 1980s, to MAPLE, the computer algebra system for mathematical problem solving developed in the…
Student Performance in Computer-Assisted Instruction in Programming.
ERIC Educational Resources Information Center
Friend, Jamesine E.; And Others
A computer-assisted instructional system to teach college students the computer language, AID (Algebraic Interpretive Dialogue), two control programs, and data collected by the two control programs are described. It was found that although first response errors were often those of AID syntax, such errors were easily corrected. Secondly, while…
Advanced Algebra and Calculus. High School Mathematics Curricula. Instructor's Guide.
ERIC Educational Resources Information Center
Natour, Denise M.
This manual is an instructor's guide for the utilization of the "CCA High School Mathematics Curricula: Advanced Algebra and Calculus" courseware developed by the Computer-based Education Research Laboratory (CERL). The curriculum comprises 34 algebra lessons within 12 units and 15 calculus lessons that are computer-based and require…
Changes in Pre-Service Teachers' Algebraic Misconceptions by Using Computer-Assisted Instruction
ERIC Educational Resources Information Center
Lin, ByCheng-Yao; Ko, Yi-Yin; Kuo, Yu-Chun
2014-01-01
In order to carry out current reforms regarding algebra and technology in elementary school mathematics successfully, pre-service elementary mathematics teachers must be equipped with adequate understandings of algebraic concepts and self-confidence in using computers for their future teaching. This paper examines the differences in preservice…
Global identifiability of linear compartmental models--a computer algebra algorithm.
Audoly, S; D'Angiò, L; Saccomani, M P; Cobelli, C
1998-01-01
A priori global identifiability deals with the uniqueness of the solution for the unknown parameters of a model and is, thus, a prerequisite for parameter estimation of biological dynamic models. Global identifiability is however difficult to test, since it requires solving a system of algebraic nonlinear equations which increases both in nonlinearity degree and number of terms and unknowns with increasing model order. In this paper, a computer algebra tool, GLOBI (GLOBal Identifiability) is presented, which combines the topological transfer function method with the Buchberger algorithm, to test global identifiability of linear compartmental models. GLOBI allows for the automatic testing of a priori global identifiability of general structure compartmental models from general multi input-multi output experiments. Examples of usage of GLOBI to analyze a priori global identifiability of some complex biological compartmental models are provided.
Ghosh, A
1988-08-01
Lanczos and conjugate gradient algorithms are important in computational linear algebra. In this paper, a parallel pipelined realization of these algorithms on a ring of optical linear algebra processors is described. The flow of data is designed to minimize the idle times of the optical multiprocessor and the redundancy of computations. The effects of optical round-off errors on the solutions obtained by the optical Lanczos and conjugate gradient algorithms are analyzed, and it is shown that optical preconditioning can improve the accuracy of these algorithms substantially. Algorithms for optical preconditioning and results of numerical experiments on solving linear systems of equations arising from partial differential equations are discussed. Since the Lanczos algorithm is used mostly with sparse matrices, a folded storage scheme to represent sparse matrices on spatial light modulators is also described.
Rosen's (M,R) system in process algebra.
Gatherer, Derek; Galpin, Vashti
2013-11-17
Robert Rosen's Metabolism-Replacement, or (M,R), system can be represented as a compact network structure with a single source and three products derived from that source in three consecutive reactions. (M,R) has been claimed to be non-reducible to its components and algorithmically non-computable, in the sense of not being evaluable as a function by a Turing machine. If (M,R)-like structures are present in real biological networks, this suggests that many biological networks will be non-computable, with implications for those branches of systems biology that rely on in silico modelling for predictive purposes. We instantiate (M,R) using the process algebra Bio-PEPA, and discuss the extent to which our model represents a true realization of (M,R). We observe that under some starting conditions and parameter values, stable states can be achieved. Although formal demonstration of algorithmic computability remains elusive for (M,R), we discuss the extent to which our Bio-PEPA representation of (M,R) allows us to sidestep Rosen's fundamental objections to computational systems biology. We argue that the behaviour of (M,R) in Bio-PEPA shows life-like properties.
Computer program determines chemical equilibria in complex systems
NASA Technical Reports Server (NTRS)
Gordon, S.; Zeleznik, F. J.
1966-01-01
Computer program numerically solves nonlinear algebraic equations for chemical equilibrium based on iteration equations independent of choice of components. This program calculates theoretical performance for frozen and equilibrium composition during expansion and Chapman-Jouguet flame properties, studies combustion, and designs hardware.
On ``Overestimation-free Computational Version of Interval Analysis''
NASA Astrophysics Data System (ADS)
Popova, Evgenija D.
2013-10-01
The transformation of interval parameters into trigonometric functions, proposed in Int. J. Comput. Meth. Eng. Sci. Mech., vol. 13, pp. 319-328 (2012), is not motivated in comparison to the infinitely many equivalent algebraic transformations. The conclusions about the efficacy of the methodology used are based on incorrect comparisons between solutions of different problems. We show theoretically, and in the examples considered in the commented article, that changing the number of the parameters in a system of linear algebraic equations may change the initial problem, respectively, its solution set. We also correct various misunderstandings and bugs that appear in the article noted above.
Invariant classification of second-order conformally flat superintegrable systems
NASA Astrophysics Data System (ADS)
Capel, J. J.; Kress, J. M.
2014-12-01
In this paper we continue the work of Kalnins et al in classifying all second-order conformally-superintegrable (Laplace-type) systems over conformally flat spaces, using tools from algebraic geometry and classical invariant theory. The results obtained show, through Stäckel equivalence, that the list of known nondegenerate superintegrable systems over three-dimensional conformally flat spaces is complete. In particular, a seven-dimensional manifold is determined such that each point corresponds to a conformal class of superintegrable systems. This manifold is foliated by the nonlinear action of the conformal group in three dimensions. Two systems lie in the same conformal class if and only if they lie in the same leaf of the foliation. This foliation is explicitly described using algebraic varieties formed from representations of the conformal group. The proof of these results rely heavily on Gröbner basis calculations using the computer algebra software packages Maple and Singular.
Intelligent machines in the twenty-first century: foundations of inference and inquiry.
Knuth, Kevin H
2003-12-15
The last century saw the application of Boolean algebra to the construction of computing machines, which work by applying logical transformations to information contained in their memory. The development of information theory and the generalization of Boolean algebra to Bayesian inference have enabled these computing machines, in the last quarter of the twentieth century, to be endowed with the ability to learn by making inferences from data. This revolution is just beginning as new computational techniques continue to make difficult problems more accessible. Recent advances in our understanding of the foundations of probability theory have revealed implications for areas other than logic. Of relevance to intelligent machines, we recently identified the algebra of questions as the free distributive algebra, which will now allow us to work with questions in a way analogous to that which Boolean algebra enables us to work with logical statements. In this paper, we examine the foundations of inference and inquiry. We begin with a history of inferential reasoning, highlighting key concepts that have led to the automation of inference in modern machine-learning systems. We then discuss the foundations of inference in more detail using a modern viewpoint that relies on the mathematics of partially ordered sets and the scaffolding of lattice theory. This new viewpoint allows us to develop the logic of inquiry and introduce a measure describing the relevance of a proposed question to an unresolved issue. Last, we will demonstrate the automation of inference, and discuss how this new logic of inquiry will enable intelligent machines to ask questions. Automation of both inference and inquiry promises to allow robots to perform science in the far reaches of our solar system and in other star systems by enabling them not only to make inferences from data, but also to decide which question to ask, which experiment to perform, or which measurement to take given what they have learned and what they are designed to understand.
Intelligent machines in the twenty-first century: foundations of inference and inquiry
NASA Technical Reports Server (NTRS)
Knuth, Kevin H.
2003-01-01
The last century saw the application of Boolean algebra to the construction of computing machines, which work by applying logical transformations to information contained in their memory. The development of information theory and the generalization of Boolean algebra to Bayesian inference have enabled these computing machines, in the last quarter of the twentieth century, to be endowed with the ability to learn by making inferences from data. This revolution is just beginning as new computational techniques continue to make difficult problems more accessible. Recent advances in our understanding of the foundations of probability theory have revealed implications for areas other than logic. Of relevance to intelligent machines, we recently identified the algebra of questions as the free distributive algebra, which will now allow us to work with questions in a way analogous to that which Boolean algebra enables us to work with logical statements. In this paper, we examine the foundations of inference and inquiry. We begin with a history of inferential reasoning, highlighting key concepts that have led to the automation of inference in modern machine-learning systems. We then discuss the foundations of inference in more detail using a modern viewpoint that relies on the mathematics of partially ordered sets and the scaffolding of lattice theory. This new viewpoint allows us to develop the logic of inquiry and introduce a measure describing the relevance of a proposed question to an unresolved issue. Last, we will demonstrate the automation of inference, and discuss how this new logic of inquiry will enable intelligent machines to ask questions. Automation of both inference and inquiry promises to allow robots to perform science in the far reaches of our solar system and in other star systems by enabling them not only to make inferences from data, but also to decide which question to ask, which experiment to perform, or which measurement to take given what they have learned and what they are designed to understand.
Parallel Algorithms for Least Squares and Related Computations.
1991-03-22
for dense computations in linear algebra . The work has recently been published in a general reference book on parallel algorithms by SIAM. AFO SR...written his Ph.D. dissertation with the principal investigator. (See publication 6.) • Parallel Algorithms for Dense Linear Algebra Computations. Our...and describe and to put into perspective a selection of the more important parallel algorithms for numerical linear algebra . We give a major new
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nayak, Saudamini, E-mail: anumama.nayak07@gmail.com; Pati, K. C., E-mail: kcpati@nitrkl.ac.in
Symmetric spaces associated with Lie algebras and Lie groups which are Riemannian manifolds have recently got a lot of attention in various branches of Physics for their role in classical/quantum integrable systems, transport phenomena, etc. Their infinite dimensional counter parts have recently been discovered which are affine Kac-Moody symmetric spaces. In this paper we have (algebraically) explicitly computed the affine Kac-Moody symmetric spaces associated with affine Kac-Moody algebras A{sub 1}{sup (1)},A{sub 2}{sup (1)},A{sub 2}{sup (2)}. We hope these types of spaces will play similar roles as that of symmetric spaces in many physical systems.
Study-simulation of space station dynamics
NASA Technical Reports Server (NTRS)
Gaitens, M. J.
1971-01-01
Matrix algebra translator and executor /MATE/ takes equations describing structural control system environmental interaction problem for flexible spacecraft components and loads them into self programming computer.
A Computer Algebra Approach to Solving Chemical Equilibria in General Chemistry
ERIC Educational Resources Information Center
Kalainoff, Melinda; Lachance, Russ; Riegner, Dawn; Biaglow, Andrew
2012-01-01
In this article, we report on a semester-long study of the incorporation into our general chemistry course, of advanced algebraic and computer algebra techniques for solving chemical equilibrium problems. The method presented here is an alternative to the commonly used concentration table method for describing chemical equilibria in general…
Teaching mathematics in the PC lab - the students' viewpoints
NASA Astrophysics Data System (ADS)
Schmidt, Karsten; Köhler, Anke
2013-04-01
The Matrix Algebra portion of the intermediate mathematics course at the Schmalkalden University Faculty of Business and Economics has been moved from a traditional classroom setting to a technology-based setting in the PC lab. A Computer Algebra System license was acquired that also allows its use on the students' own PCs. A survey was carried out to analyse the students' attitudes towards the use of technology in mathematics teaching.
NASA Technical Reports Server (NTRS)
Stoutemyer, D. R.
1977-01-01
The computer algebra language MACSYMA enables the programmer to include symbolic physical units in computer calculations, and features automatic detection of dimensionally-inhomogeneous formulas and conversion of inconsistent units in a dimensionally homogeneous formula. Some examples illustrate these features.
Dini, Paolo; Nehaniv, Chrystopher L; Egri-Nagy, Attila; Schilstra, Maria J
2013-05-01
Interaction computing (IC) aims to map the properties of integrable low-dimensional non-linear dynamical systems to the discrete domain of finite-state automata in an attempt to reproduce in software the self-organizing and dynamically stable properties of sub-cellular biochemical systems. As the work reported in this paper is still at the early stages of theory development it focuses on the analysis of a particularly simple chemical oscillator, the Belousov-Zhabotinsky (BZ) reaction. After retracing the rationale for IC developed over the past several years from the physical, biological, mathematical, and computer science points of view, the paper presents an elementary discussion of the Krohn-Rhodes decomposition of finite-state automata, including the holonomy decomposition of a simple automaton, and of its interpretation as an abstract positional number system. The method is then applied to the analysis of the algebraic properties of discrete finite-state automata derived from a simplified Petri net model of the BZ reaction. In the simplest possible and symmetrical case the corresponding automaton is, not surprisingly, found to contain exclusively cyclic groups. In a second, asymmetrical case, the decomposition is much more complex and includes five different simple non-abelian groups whose potential relevance arises from their ability to encode functionally complete algebras. The possible computational relevance of these findings is discussed and possible conclusions are drawn. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
1984-06-01
A.Arays, G.V.Sibiriskov. The AVTO -ANALTZE J. Comput. Math. and Mth. Phys., v. 11, N.4, Progrn eg System. J. Comput. Math. and Cinpur. 1971, pp. 1071...1075. Mach., No.3, Kharkov, 1972. 2. S.A.Abhrmov. On Sam Algorithms for Algebraic 13. Z.A.Arays, C.V.Sibiriakov. AVTO -AALM.K. Novo- Transformstions of
Projects Using a Computer Algebra System in First-Year Undergraduate Mathematics
ERIC Educational Resources Information Center
Rosenzweig, Martin
2007-01-01
This paper illustrates the use of computer-based projects in two one-semester first-year undergraduate mathematics classes. Developed over a period of years, the approach is one in which the classes are organised into work-groups, with computer-based projects being undertaken periodically to illustrate the class material. These projects are…
Polynomial algebra of discrete models in systems biology.
Veliz-Cuba, Alan; Jarrah, Abdul Salam; Laubenbacher, Reinhard
2010-07-01
An increasing number of discrete mathematical models are being published in Systems Biology, ranging from Boolean network models to logical models and Petri nets. They are used to model a variety of biochemical networks, such as metabolic networks, gene regulatory networks and signal transduction networks. There is increasing evidence that such models can capture key dynamic features of biological networks and can be used successfully for hypothesis generation. This article provides a unified framework that can aid the mathematical analysis of Boolean network models, logical models and Petri nets. They can be represented as polynomial dynamical systems, which allows the use of a variety of mathematical tools from computer algebra for their analysis. Algorithms are presented for the translation into polynomial dynamical systems. Examples are given of how polynomial algebra can be used for the model analysis. alanavc@vt.edu Supplementary data are available at Bioinformatics online.
NASA Technical Reports Server (NTRS)
Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.
1982-01-01
The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.
Relations between Some Characteristic Lengths in a Triangle
ERIC Educational Resources Information Center
Koepf, Wolfram; Brede, Markus
2005-01-01
The paper's aim is to note a remarkable (and apparently unknown) relation for right triangles, its generalisation to arbitrary triangles and the possibility to derive these and some related relations by elimination using Groebner basis computations with a modern computer algebra system. (Contains 9 figures.)
Computational Science in Armenia (Invited Talk)
NASA Astrophysics Data System (ADS)
Marandjian, H.; Shoukourian, Yu.
This survey is devoted to the development of informatics and computer science in Armenia. The results in theoretical computer science (algebraic models, solutions to systems of general form recursive equations, the methods of coding theory, pattern recognition and image processing), constitute the theoretical basis for developing problem-solving-oriented environments. As examples can be mentioned: a synthesizer of optimized distributed recursive programs, software tools for cluster-oriented implementations of two-dimensional cellular automata, a grid-aware web interface with advanced service trading for linear algebra calculations. In the direction of solving scientific problems that require high-performance computing resources, examples of completed projects include the field of physics (parallel computing of complex quantum systems), astrophysics (Armenian virtual laboratory), biology (molecular dynamics study of human red blood cell membrane), meteorology (implementing and evaluating the Weather Research and Forecast Model for the territory of Armenia). The overview also notes that the Institute for Informatics and Automation Problems of the National Academy of Sciences of Armenia has established a scientific and educational infrastructure, uniting computing clusters of scientific and educational institutions of the country and provides the scientific community with access to local and international computational resources, that is a strong support for computational science in Armenia.
NASA Technical Reports Server (NTRS)
Ingels, F. M.; Mo, C. D.
1978-01-01
An empirical study of the performance of the Viterbi decoders in bursty channels was carried out and an improved algebraic decoder for nonsystematic codes was developed. The hybrid algorithm was simulated for the (2,1), k = 7 code on a computer using 20 channels having various error statistics, ranging from pure random error to pure bursty channels. The hybrid system outperformed both the algebraic and the Viterbi decoders in every case, except the 1% random error channel where the Viterbi decoder had one bit less decoding error.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luszczek, Piotr R; Tomov, Stanimire Z; Dongarra, Jack J
We present an efficient and scalable programming model for the development of linear algebra in heterogeneous multi-coprocessor environments. The model incorporates some of the current best design and implementation practices for the heterogeneous acceleration of dense linear algebra (DLA). Examples are given as the basis for solving linear systems' algorithms - the LU, QR, and Cholesky factorizations. To generate the extreme level of parallelism needed for the efficient use of coprocessors, algorithms of interest are redesigned and then split into well-chosen computational tasks. The tasks execution is scheduled over the computational components of a hybrid system of multi-core CPUs andmore » coprocessors using a light-weight runtime system. The use of lightweight runtime systems keeps scheduling overhead low, while enabling the expression of parallelism through otherwise sequential code. This simplifies the development efforts and allows the exploration of the unique strengths of the various hardware components.« less
Computers and the Multiplicity of Polynomial Roots.
ERIC Educational Resources Information Center
Wavrik, John J.
1982-01-01
Described are stages in the development of a computer program to solve a particular algebra problem and the nature of algebraic computation is presented. A program in BASIC is provided to give ideas to others for developing their own programs. (MP)
Computational approach to compact Riemann surfaces
NASA Astrophysics Data System (ADS)
Frauendiener, Jörg; Klein, Christian
2017-01-01
A purely numerical approach to compact Riemann surfaces starting from plane algebraic curves is presented. The critical points of the algebraic curve are computed via a two-dimensional Newton iteration. The starting values for this iteration are obtained from the resultants with respect to both coordinates of the algebraic curve and a suitable pairing of their zeros. A set of generators of the fundamental group for the complement of these critical points in the complex plane is constructed from circles around these points and connecting lines obtained from a minimal spanning tree. The monodromies are computed by solving the defining equation of the algebraic curve on collocation points along these contours and by analytically continuing the roots. The collocation points are chosen to correspond to Chebychev collocation points for an ensuing Clenshaw-Curtis integration of the holomorphic differentials which gives the periods of the Riemann surface with spectral accuracy. At the singularities of the algebraic curve, Puiseux expansions computed by contour integration on the circles around the singularities are used to identify the holomorphic differentials. The Abel map is also computed with the Clenshaw-Curtis algorithm and contour integrals. As an application of the code, solutions to the Kadomtsev-Petviashvili equation are computed on non-hyperelliptic Riemann surfaces.
Reusable Software Component Retrieval via Normalized Algebraic Specifications
1991-12-01
outputs. In fact, this method of query is simpler for matching since it relieves the system from the burden of generating a test set. Eichmann [Eich9l...September 1991. [Eich9l] Eichmann , David A., "Selecting Reusable Components Using Algebraic Specifications", Proceedings of the Second International...Technology Atlanta, Georgia 30332-0800 12. Dr. David Eichmann 1 Department of Statistics and Computer Science Knapp Hall West Virginia University Morgantown, West Virginia 26506 226
Fault tolerant computing: A preamble for assuring viability of large computer systems
NASA Technical Reports Server (NTRS)
Lim, R. S.
1977-01-01
The need for fault-tolerant computing is addressed from the viewpoints of (1) why it is needed, (2) how to apply it in the current state of technology, and (3) what it means in the context of the Phoenix computer system and other related systems. To this end, the value of concurrent error detection and correction is described. User protection, program retry, and repair are among the factors considered. The technology of algebraic codes to protect memory systems and arithmetic codes to protect memory systems and arithmetic codes to protect arithmetic operations is discussed.
NASA Astrophysics Data System (ADS)
Shevchenko, I. I.
2008-05-01
The problem of stability of the triangular libration points in the planar circular restricted three-body problem is considered. A software package, intended for normalization of autonomous Hamiltonian systems by means of computer algebra, is designed so that normalization problems of high analytical complexity could be solved. It is used to obtain the Birkhoff normal form of the Hamiltonian in the given problem. The normalization is carried out up to the 6th order of expansion of the Hamiltonian in the coordinates and momenta. Analytical expressions for the coefficients of the normal form of the 6th order are derived. Though intermediary expressions occupy gigabytes of the computer memory, the obtained coefficients of the normal form are compact enough for presentation in typographic format. The analogue of the Deprit formula for the stability criterion is derived in the 6th order of normalization. The obtained floating-point numerical values for the normal form coefficients and the stability criterion confirm the results by Markeev (1969) and Coppola and Rand (1989), while the obtained analytical and exact numeric expressions confirm the results by Meyer and Schmidt (1986) and Schmidt (1989). The given computational problem is solved without constructing a specialized algebraic processor, i.e., the designed computer algebra package has a broad field of applicability.
Libraries for Software Use on Peregrine | High-Performance Computing | NREL
-specific libraries. Libraries List Name Description BLAS Basic Linear Algebra Subroutines, libraries only managing hierarchically structured data. LAPACK Standard Netlib offering for computational linear algebra
Simplifications for hydronic system models in modelica
Jorissen, F.; Wetter, M.; Helsen, L.
2018-01-12
Building systems and their heating, ventilation and air conditioning flow networks, are becoming increasingly complex. Some building energy simulation tools simulate these flow networks using pressure drop equations. These flow network models typically generate coupled algebraic nonlinear systems of equations, which become increasingly more difficult to solve as their sizes increase. This leads to longer computation times and can cause the solver to fail. These problems also arise when using the equation-based modelling language Modelica and Annex 60-based libraries. This may limit the applicability of the library to relatively small problems unless problems are restructured. This paper discusses two algebraicmore » loop types and presents an approach that decouples algebraic loops into smaller parts, or removes them completely. The approach is applied to a case study model where an algebraic loop of 86 iteration variables is decoupled into smaller parts with a maximum of five iteration variables.« less
Application of symbolic and algebraic manipulation software in solving applied mechanics problems
NASA Technical Reports Server (NTRS)
Tsai, Wen-Lang; Kikuchi, Noboru
1993-01-01
As its name implies, symbolic and algebraic manipulation is an operational tool which not only can retain symbols throughout computations but also can express results in terms of symbols. This report starts with a history of symbolic and algebraic manipulators and a review of the literatures. With the help of selected examples, the capabilities of symbolic and algebraic manipulators are demonstrated. These applications to problems of applied mechanics are then presented. They are the application of automatic formulation to applied mechanics problems, application to a materially nonlinear problem (rigid-plastic ring compression) by finite element method (FEM) and application to plate problems by FEM. The advantages and difficulties, contributions, education, and perspectives of symbolic and algebraic manipulation are discussed. It is well known that there exist some fundamental difficulties in symbolic and algebraic manipulation, such as internal swelling and mathematical limitation. A remedy for these difficulties is proposed, and the three applications mentioned are solved successfully. For example, the closed from solution of stiffness matrix of four-node isoparametrical quadrilateral element for 2-D elasticity problem was not available before. Due to the work presented, the automatic construction of it becomes feasible. In addition, a new advantage of the application of symbolic and algebraic manipulation found is believed to be crucial in improving the efficiency of program execution in the future. This will substantially shorten the response time of a system. It is very significant for certain systems, such as missile and high speed aircraft systems, in which time plays an important role.
Applications of computer algebra to distributed parameter systems
NASA Technical Reports Server (NTRS)
Storch, Joel A.
1993-01-01
In the analysis of vibrations of continuous elastic systems, one often encounters complicated transcendental equations with roots directly related to the system's natural frequencies. Typically, these equations contain system parameters whose values must be specified before a numerical solution can be obtained. The present paper presents a method whereby the fundamental frequency can be obtained in analytical form to any desired degree of accuracy. The method is based upon truncation of rapidly converging series involving inverse powers of the system natural frequencies. A straightforward method to developing these series and summing them in closed form is presented. It is demonstrated how Computer Algebra can be exploited to perform the intricate analytical procedures which otherwise would render the technique difficult to apply in practice. We illustrate the method by developing two analytical approximations to the fundamental frequency of a vibrating cantilever carrying a rigid tip body. The results are compared to the numerical solution of the exact (transcendental) frequency equation over a range of system parameters.
Projectile Motion with Mathematica.
ERIC Educational Resources Information Center
de Alwis, Tilak
2000-01-01
Describes how to use the computer algebra system (CAS) Mathematica to analyze projectile motion with and without air resistance. These experiments result in several conjectures leading to theorems. (Contains 17 references.) (Author/ASK)
Computer Program For Linear Algebra
NASA Technical Reports Server (NTRS)
Krogh, F. T.; Hanson, R. J.
1987-01-01
Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.
A Functional Analytic Approach to Computer-Interactive Mathematics
ERIC Educational Resources Information Center
Ninness, Chris; Rumph, Robin; McCuller, Glen; Harrison, Carol; Ford, Angela M.; Ninness, Sharon K.
2005-01-01
Following a pretest, 11 participants who were naive with regard to various algebraic and trigonometric transformations received an introductory lecture regarding the fundamentals of the rectangular coordinate system. Following the lecture, they took part in a computer-interactive matching-to-sample procedure in which they received training on…
A Pulsatile Cardiovascular Computer Model for Teaching Heart-Blood Vessel Interaction.
ERIC Educational Resources Information Center
Campbell, Kenneth; And Others
1982-01-01
Describes a model which gives realistic predictions of pulsatile pressure, flow, and volume events in the cardiovascular system. Includes computer oriented laboratory exercises for veterinary and graduate students; equations of the dynamic and algebraic models; and a flow chart for the cardiovascular teaching program. (JN)
High-Speed Computation of the Kleene Star in Max-Plus Algebraic System Using a Cell Broadband Engine
NASA Astrophysics Data System (ADS)
Goto, Hiroyuki
This research addresses a high-speed computation method for the Kleene star of the weighted adjacency matrix in a max-plus algebraic system. We focus on systems whose precedence constraints are represented by a directed acyclic graph and implement it on a Cell Broadband Engine™ (CBE) processor. Since the resulting matrix gives the longest travel times between two adjacent nodes, it is often utilized in scheduling problem solvers for a class of discrete event systems. This research, in particular, attempts to achieve a speedup by using two approaches: parallelization and SIMDization (Single Instruction, Multiple Data), both of which can be accomplished by a CBE processor. The former refers to a parallel computation using multiple cores, while the latter is a method whereby multiple elements are computed by a single instruction. Using the implementation on a Sony PlayStation 3™ equipped with a CBE processor, we found that the SIMDization is effective regardless of the system's size and the number of processor cores used. We also found that the scalability of using multiple cores is remarkable especially for systems with a large number of nodes. In a numerical experiment where the number of nodes is 2000, we achieved a speedup of 20 times compared with the method without the above techniques.
ERIC Educational Resources Information Center
Sandoval, Ivonne; Solares Rojas, Armando; García-Campos, Montserrat
2017-01-01
We present results of the analysis of knowledge used by a secondary school mathematics teacher in her classroom practice. This knowledge takes shape and is displayed as specific teaching strategies in the management of her class when she incorporates Computer Algebra Systems. Based on observations of regular classes, we find that her knowledge…
Recursive boson system in the Cuntz algebra O{sub {infinity}}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawamura, Katsunori
2007-09-15
Bosons and fermions are often written by elements of other algebras. Abe (private communication) gave a realization of bosons by formal infinite sums of the canonical generators of the Cuntz algebra O{sub {infinity}}. We show that such formal infinite sum always makes sense on a certain dense subspace of any permutative representation of O{sub {infinity}}. In this meaning, we can regard as if the algebra B of bosons was a unital *-subalgebra of O{sub {infinity}} on a given permutative representation. According to this relation, we compute branching laws arising from restrictions of representations of O{sub {infinity}} on B. For example,more » it is shown that the Fock representation of B is given as the restriction of the standard representation of O{sub {infinity}} on B.« less
Diagnosing students' misconceptions in algebra: results from an experimental pilot study.
Russell, Michael; O'Dwyer, Laura M; Miranda, Helena
2009-05-01
Computer-based diagnostic assessment systems hold potential to help teachers identify sources of poor performance and to connect teachers and students to learning activities designed to help advance students' conceptual understandings. The present article presents findings from a study that examined how students' performance in algebra and their overcoming of common algebraic misconceptions were affected by the use of a diagnostic assessment system that focused on important algebra concepts. This study used a four-group randomized cluster trial design in which teachers were assigned randomly to one of four groups: a "business as usual" control group, a partial intervention group that was provided with access to diagnostic tests results, a partial intervention group that was provided with access to the learning activities, and a full intervention group that was given access to the test results and learning activities. Data were collected from 905 students (6th-12th grade) nested within 44 teachers. We used hierarchical linear modeling techniques to compare the effects of full, partial, and no (control) intervention on students' algebraic ability and misconceptions. The analyses indicate that full intervention had a net positive effect on ability and misconception measures.
Imagination, Intuition, and Computing in School Algebra.
ERIC Educational Resources Information Center
Kieren, Thomas E.; Olson, Alton T.
1989-01-01
Two incidents involving novice teachers with classes in grades 7 and 10 are presented. Then considered are the nature of intuitive mathematics and contributions computers can make to such intuitive mathematics, particularly in Algebra. (MNS)
A scalable approach to solving dense linear algebra problems on hybrid CPU-GPU systems
Song, Fengguang; Dongarra, Jack
2014-10-01
Aiming to fully exploit the computing power of all CPUs and all graphics processing units (GPUs) on hybrid CPU-GPU systems to solve dense linear algebra problems, in this paper we design a class of heterogeneous tile algorithms to maximize the degree of parallelism, to minimize the communication volume, and to accommodate the heterogeneity between CPUs and GPUs. The new heterogeneous tile algorithms are executed upon our decentralized dynamic scheduling runtime system, which schedules a task graph dynamically and transfers data between compute nodes automatically. The runtime system uses a new distributed task assignment protocol to solve data dependencies between tasksmore » without any coordination between processing units. By overlapping computation and communication through dynamic scheduling, we are able to attain scalable performance for the double-precision Cholesky factorization and QR factorization. Finally, our approach demonstrates a performance comparable to Intel MKL on shared-memory multicore systems and better performance than both vendor (e.g., Intel MKL) and open source libraries (e.g., StarPU) in the following three environments: heterogeneous clusters with GPUs, conventional clusters without GPUs, and shared-memory systems with multiple GPUs.« less
A scalable approach to solving dense linear algebra problems on hybrid CPU-GPU systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Fengguang; Dongarra, Jack
Aiming to fully exploit the computing power of all CPUs and all graphics processing units (GPUs) on hybrid CPU-GPU systems to solve dense linear algebra problems, in this paper we design a class of heterogeneous tile algorithms to maximize the degree of parallelism, to minimize the communication volume, and to accommodate the heterogeneity between CPUs and GPUs. The new heterogeneous tile algorithms are executed upon our decentralized dynamic scheduling runtime system, which schedules a task graph dynamically and transfers data between compute nodes automatically. The runtime system uses a new distributed task assignment protocol to solve data dependencies between tasksmore » without any coordination between processing units. By overlapping computation and communication through dynamic scheduling, we are able to attain scalable performance for the double-precision Cholesky factorization and QR factorization. Finally, our approach demonstrates a performance comparable to Intel MKL on shared-memory multicore systems and better performance than both vendor (e.g., Intel MKL) and open source libraries (e.g., StarPU) in the following three environments: heterogeneous clusters with GPUs, conventional clusters without GPUs, and shared-memory systems with multiple GPUs.« less
QCCM Center for Quantum Algorithms
2008-10-17
algorithms (e.g., quantum walks and adiabatic computing ), as well as theoretical advances relating algorithms to physical implementations (e.g...Park, NC 27709-2211 15. SUBJECT TERMS Quantum algorithms, quantum computing , fault-tolerant error correction Richard Cleve MITACS East Academic...0511200 Algebraic results on quantum automata A. Ambainis, M. Beaudry, M. Golovkins, A. Kikusts, M. Mercer, D. Thrien Theory of Computing Systems 39(2006
NASA Astrophysics Data System (ADS)
Lai, Siyan; Xu, Ying; Shao, Bo; Guo, Menghan; Lin, Xiaola
2017-04-01
In this paper we study on Monte Carlo method for solving systems of linear algebraic equations (SLAE) based on shared memory. Former research demostrated that GPU can effectively speed up the computations of this issue. Our purpose is to optimize Monte Carlo method simulation on GPUmemoryachritecture specifically. Random numbers are organized to storein shared memory, which aims to accelerate the parallel algorithm. Bank conflicts can be avoided by our Collaborative Thread Arrays(CTA)scheme. The results of experiments show that the shared memory based strategy can speed up the computaions over than 3X at most.
Transfer Functions Via Laplace- And Fourier-Borel Transforms
NASA Technical Reports Server (NTRS)
Can, Sumer; Unal, Aynur
1991-01-01
Approach to solution of nonlinear ordinary differential equations involves transfer functions based on recently-introduced Laplace-Borel and Fourier-Borel transforms. Main theorem gives transform of response of nonlinear system as Cauchy product of transfer function and transform of input function of system, together with memory effects. Used to determine responses of electrical circuits containing variable inductances or resistances. Also possibility of doing all noncommutative algebra on computers in such symbolic programming languages as Macsyma, Reduce, PL1, or Lisp. Process of solution organized and possibly simplified by algebraic manipulations reducing integrals in solutions to known or tabulated forms.
Two Related Parametric Integrals
ERIC Educational Resources Information Center
Dana-Picard, T.
2007-01-01
Two related sequences of definite integrals are considered. By mixing hand-work, computer algebra system assistance and websurfing, fine connections can be studied between integrals and a couple of interesting sequences of integers. (Contains 4 tables.)
Exploring the Phase Space of a System of Differential Equations: Different Mathematical Registers
ERIC Educational Resources Information Center
Dana-Picard, Thierry; Kidron, Ivy
2008-01-01
We describe and analyze a situation involving symbolic representation and graphical visualization of the solution of a system of two linear differential equations, using a computer algebra system. Symbolic solution and graphical representation complement each other. Graphical representation helps to understand the behavior of the symbolic…
The theory of Enceladus and Dione: An application of computerized algebra in dynamical astronomy
NASA Technical Reports Server (NTRS)
Jefferys, W. H.; Ries, L. M.
1974-01-01
A theory of Saturn's satellites Enceladus and Dione is discussed which is literal (all constants of integration appear explicitly), canonically invariant (the Hori-Lie method is used), and which correctly handles the eccentricity-type resonance between the two satellites. Algebraic manipulations are designed to be performed using the TRIGMAN formula manipulation language, and computer programs were developed so that, with minor modifications, they can be used on the Mimas-Tethys and Titan-Hyperion systems.
SymPy: Symbolic computing in python
Meurer, Aaron; Smith, Christopher P.; Paprocki, Mateusz; ...
2017-01-02
Here, SymPy is a full featured computer algebra system (CAS) written in the Python programming language. It is open source, being licensed under the extremely permissive 3-clause BSD license. SymPy was started by Ondrej Certik in 2005, and it has since grown into a large open source project, with over 500 contributors.
The Multiple Pendulum Problem via Maple[R
ERIC Educational Resources Information Center
Salisbury, K. L.; Knight, D. G.
2002-01-01
The way in which computer algebra systems, such as Maple, have made the study of physical problems of some considerable complexity accessible to mathematicians and scientists with modest computational skills is illustrated by solving the multiple pendulum problem. A solution is obtained for four pendulums with no restriction on the size of the…
Modelling the Landing of a Plane in a Calculus Lab
ERIC Educational Resources Information Center
Morante, Antonio; Vallejo, Jose A.
2012-01-01
We exhibit a simple model of a plane landing that involves only basic concepts of differential calculus, so it is suitable for a first-year calculus lab. We use the computer algebra system Maxima and the interactive geometry software GeoGebra to do the computations and graphics. (Contains 5 figures and 1 note.)
A Comparison of Solver Performance for Complex Gastric Electrophysiology Models
Sathar, Shameer; Cheng, Leo K.; Trew, Mark L.
2016-01-01
Computational techniques for solving systems of equations arising in gastric electrophysiology have not been studied for efficient solution process. We present a computationally challenging problem of simulating gastric electrophysiology in anatomically realistic stomach geometries with multiple intracellular and extracellular domains. The multiscale nature of the problem and mesh resolution required to capture geometric and functional features necessitates efficient solution methods if the problem is to be tractable. In this study, we investigated and compared several parallel preconditioners for the linear systems arising from tetrahedral discretisation of electrically isotropic and anisotropic problems, with and without stimuli. The results showed that the isotropic problem was computationally less challenging than the anisotropic problem and that the application of extracellular stimuli increased workload considerably. Preconditioning based on block Jacobi and algebraic multigrid solvers were found to have the best overall solution times and least iteration counts, respectively. The algebraic multigrid preconditioner would be expected to perform better on large problems. PMID:26736543
Image Algebra Matlab language version 2.3 for image processing and compression research
NASA Astrophysics Data System (ADS)
Schmalz, Mark S.; Ritter, Gerhard X.; Hayden, Eric
2010-08-01
Image algebra is a rigorous, concise notation that unifies linear and nonlinear mathematics in the image domain. Image algebra was developed under DARPA and US Air Force sponsorship at University of Florida for over 15 years beginning in 1984. Image algebra has been implemented in a variety of programming languages designed specifically to support the development of image processing and computer vision algorithms and software. The University of Florida has been associated with development of the languages FORTRAN, Ada, Lisp, and C++. The latter implementation involved a class library, iac++, that supported image algebra programming in C++. Since image processing and computer vision are generally performed with operands that are array-based, the Matlab™ programming language is ideal for implementing the common subset of image algebra. Objects include sets and set operations, images and operations on images, as well as templates and image-template convolution operations. This implementation, called Image Algebra Matlab (IAM), has been found to be useful for research in data, image, and video compression, as described herein. Due to the widespread acceptance of the Matlab programming language in the computing community, IAM offers exciting possibilities for supporting a large group of users. The control over an object's computational resources provided to the algorithm designer by Matlab means that IAM programs can employ versatile representations for the operands and operations of the algebra, which are supported by the underlying libraries written in Matlab. In a previous publication, we showed how the functionality of IAC++ could be carried forth into a Matlab implementation, and provided practical details of a prototype implementation called IAM Version 1. In this paper, we further elaborate the purpose and structure of image algebra, then present a maturing implementation of Image Algebra Matlab called IAM Version 2.3, which extends the previous implementation of IAM to include polymorphic operations over different point sets, as well as recursive convolution operations and functional composition. We also show how image algebra and IAM can be employed in image processing and compression research, as well as algorithm development and analysis.
Multilinear Computing and Multilinear Algebraic Geometry
2016-08-10
instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send...performance period of this project. 15. SUBJECT TERMS Tensors , multilinearity, algebraic geometry, numerical computations, computational tractability, high...Reset DISTRIBUTION A: Distribution approved for public release. DISTRIBUTION A: Distribution approved for public release. INSTRUCTIONS FOR COMPLETING
Quantum field theory and coalgebraic logic in theoretical computer science.
Basti, Gianfranco; Capolupo, Antonio; Vitiello, Giuseppe
2017-11-01
We suggest that in the framework of the Category Theory it is possible to demonstrate the mathematical and logical dual equivalence between the category of the q-deformed Hopf Coalgebras and the category of the q-deformed Hopf Algebras in quantum field theory (QFT), interpreted as a thermal field theory. Each pair algebra-coalgebra characterizes a QFT system and its mirroring thermal bath, respectively, so to model dissipative quantum systems in far-from-equilibrium conditions, with an evident significance also for biological sciences. Our study is in fact inspired by applications to neuroscience where the brain memory capacity, for instance, has been modeled by using the QFT unitarily inequivalent representations. The q-deformed Hopf Coalgebras and the q-deformed Hopf Algebras constitute two dual categories because characterized by the same functor T, related with the Bogoliubov transform, and by its contravariant application T op , respectively. The q-deformation parameter is related to the Bogoliubov angle, and it is effectively a thermal parameter. Therefore, the different values of q identify univocally, and label the vacua appearing in the foliation process of the quantum vacuum. This means that, in the framework of Universal Coalgebra, as general theory of dynamic and computing systems ("labelled state-transition systems"), the so labelled infinitely many quantum vacua can be interpreted as the Final Coalgebra of an "Infinite State Black-Box Machine". All this opens the way to the possibility of designing a new class of universal quantum computing architectures based on this coalgebraic QFT formulation, as its ability of naturally generating a Fibonacci progression demonstrates. Copyright © 2017 Elsevier Ltd. All rights reserved.
Schwinger-Keldysh formalism. Part II: thermal equivariant cohomology
NASA Astrophysics Data System (ADS)
Haehl, Felix M.; Loganayagam, R.; Rangamani, Mukund
2017-06-01
Causally ordered correlation functions of local operators in near-thermal quantum systems computed using the Schwinger-Keldysh formalism obey a set of Ward identities. These can be understood rather simply as the consequence of a topological (BRST) algebra, called the universal Schwinger-Keldysh superalgebra, as explained in our compan-ion paper [1]. In the present paper we provide a mathematical discussion of this topological algebra. In particular, we argue that the structures can be understood in the language of extended equivariant cohomology. To keep the discussion self-contained, we provide a ba-sic review of the algebraic construction of equivariant cohomology and explain how it can be understood in familiar terms as a superspace gauge algebra. We demonstrate how the Schwinger-Keldysh construction can be succinctly encoded in terms a thermal equivariant cohomology algebra which naturally acts on the operator (super)-algebra of the quantum system. The main rationale behind this exploration is to extract symmetry statements which are robust under renormalization group flow and can hence be used to understand low-energy effective field theory of near-thermal physics. To illustrate the general prin-ciples, we focus on Langevin dynamics of a Brownian particle, rephrasing some known results in terms of thermal equivariant cohomology. As described elsewhere, the general framework enables construction of effective actions for dissipative hydrodynamics and could potentially illumine our understanding of black holes.
Sixth SIAM conference on applied linear algebra: Final program and abstracts. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-12-31
Linear algebra plays a central role in mathematics and applications. The analysis and solution of problems from an amazingly wide variety of disciplines depend on the theory and computational techniques of linear algebra. In turn, the diversity of disciplines depending on linear algebra also serves to focus and shape its development. Some problems have special properties (numerical, structural) that can be exploited. Some are simply so large that conventional approaches are impractical. New computer architectures motivate new algorithms, and fresh ways to look at old ones. The pervasive nature of linear algebra in analyzing and solving problems means that peoplemore » from a wide spectrum--universities, industrial and government laboratories, financial institutions, and many others--share an interest in current developments in linear algebra. This conference aims to bring them together for their mutual benefit. Abstracts of papers presented are included.« less
Schwarz maps of algebraic linear ordinary differential equations
NASA Astrophysics Data System (ADS)
Sanabria Malagón, Camilo
2017-12-01
A linear ordinary differential equation is called algebraic if all its solution are algebraic over its field of definition. In this paper we solve the problem of finding closed form solution to algebraic linear ordinary differential equations in terms of standard equations. Furthermore, we obtain a method to compute all algebraic linear ordinary differential equations with rational coefficients by studying their associated Schwarz map through the Picard-Vessiot Theory.
Algebraic multigrid domain and range decomposition (AMG-DD / AMG-RD)*
Bank, R.; Falgout, R. D.; Jones, T.; ...
2015-10-29
In modern large-scale supercomputing applications, algebraic multigrid (AMG) is a leading choice for solving matrix equations. However, the high cost of communication relative to that of computation is a concern for the scalability of traditional implementations of AMG on emerging architectures. This paper introduces two new algebraic multilevel algorithms, algebraic multigrid domain decomposition (AMG-DD) and algebraic multigrid range decomposition (AMG-RD), that replace traditional AMG V-cycles with a fully overlapping domain decomposition approach. While the methods introduced here are similar in spirit to the geometric methods developed by Brandt and Diskin [Multigrid solvers on decomposed domains, in Domain Decomposition Methods inmore » Science and Engineering, Contemp. Math. 157, AMS, Providence, RI, 1994, pp. 135--155], Mitchell [Electron. Trans. Numer. Anal., 6 (1997), pp. 224--233], and Bank and Holst [SIAM J. Sci. Comput., 22 (2000), pp. 1411--1443], they differ primarily in that they are purely algebraic: AMG-RD and AMG-DD trade communication for computation by forming global composite “grids” based only on the matrix, not the geometry. (As is the usual AMG convention, “grids” here should be taken only in the algebraic sense, regardless of whether or not it corresponds to any geometry.) Another important distinguishing feature of AMG-RD and AMG-DD is their novel residual communication process that enables effective parallel computation on composite grids, avoiding the all-to-all communication costs of the geometric methods. The main purpose of this paper is to study the potential of these two algebraic methods as possible alternatives to existing AMG approaches for future parallel machines. As a result, this paper develops some theoretical properties of these methods and reports on serial numerical tests of their convergence properties over a spectrum of problem parameters.« less
Identification of control targets in Boolean molecular network models via computational algebra.
Murrugarra, David; Veliz-Cuba, Alan; Aguilar, Boris; Laubenbacher, Reinhard
2016-09-23
Many problems in biomedicine and other areas of the life sciences can be characterized as control problems, with the goal of finding strategies to change a disease or otherwise undesirable state of a biological system into another, more desirable, state through an intervention, such as a drug or other therapeutic treatment. The identification of such strategies is typically based on a mathematical model of the process to be altered through targeted control inputs. This paper focuses on processes at the molecular level that determine the state of an individual cell, involving signaling or gene regulation. The mathematical model type considered is that of Boolean networks. The potential control targets can be represented by a set of nodes and edges that can be manipulated to produce a desired effect on the system. This paper presents a method for the identification of potential intervention targets in Boolean molecular network models using algebraic techniques. The approach exploits an algebraic representation of Boolean networks to encode the control candidates in the network wiring diagram as the solutions of a system of polynomials equations, and then uses computational algebra techniques to find such controllers. The control methods in this paper are validated through the identification of combinatorial interventions in the signaling pathways of previously reported control targets in two well studied systems, a p53-mdm2 network and a blood T cell lymphocyte granular leukemia survival signaling network. Supplementary data is available online and our code in Macaulay2 and Matlab are available via http://www.ms.uky.edu/~dmu228/ControlAlg . This paper presents a novel method for the identification of intervention targets in Boolean network models. The results in this paper show that the proposed methods are useful and efficient for moderately large networks.
NASA Technical Reports Server (NTRS)
Moitra, Anutosh
1989-01-01
A fast and versatile procedure for algebraically generating boundary conforming computational grids for use with finite-volume Euler flow solvers is presented. A semi-analytic homotopic procedure is used to generate the grids. Grids generated in two-dimensional planes are stacked to produce quasi-three-dimensional grid systems. The body surface and outer boundary are described in terms of surface parameters. An interpolation scheme is used to blend between the body surface and the outer boundary in order to determine the field points. The method, albeit developed for analytically generated body geometries is equally applicable to other classes of geometries. The method can be used for both internal and external flow configurations, the only constraint being that the body geometries be specified in two-dimensional cross-sections stationed along the longitudinal axis of the configuration. Techniques for controlling various grid parameters, e.g., clustering and orthogonality are described. Techniques for treating problems arising in algebraic grid generation for geometries with sharp corners are addressed. A set of representative grid systems generated by this method is included. Results of flow computations using these grids are presented for validation of the effectiveness of the method.
NASA Astrophysics Data System (ADS)
Gorgizadeh, Shahnam; Flisgen, Thomas; van Rienen, Ursula
2018-07-01
Generalized eigenvalue problems are standard problems in computational sciences. They may arise in electromagnetic fields from the discretization of the Helmholtz equation by for example the finite element method (FEM). Geometrical perturbations of the structure under concern lead to a new generalized eigenvalue problems with different system matrices. Geometrical perturbations may arise by manufacturing tolerances, harsh operating conditions or during shape optimization. Directly solving the eigenvalue problem for each perturbation is computationally costly. The perturbed eigenpairs can be approximated using eigenpair derivatives. Two common approaches for the calculation of eigenpair derivatives, namely modal superposition method and direct algebraic methods, are discussed in this paper. Based on the direct algebraic methods an iterative algorithm is developed for efficiently calculating the eigenvalues and eigenvectors of the perturbed geometry from the eigenvalues and eigenvectors of the unperturbed geometry.
Chaos, Fractals, and Polynomials.
ERIC Educational Resources Information Center
Tylee, J. Louis; Tylee, Thomas B.
1996-01-01
Discusses chaos theory; linear algebraic equations and the numerical solution of polynomials, including the use of the Newton-Raphson technique to find polynomial roots; fractals; search region and coordinate systems; convergence; and generating color fractals on a computer. (LRW)
Survey of Turbulence Models for the Computation of Turbulent Jet Flow and Noise
NASA Technical Reports Server (NTRS)
Nallasamy, N.
1999-01-01
The report presents an overview of jet noise computation utilizing the computational fluid dynamic solution of the turbulent jet flow field. The jet flow solution obtained with an appropriate turbulence model provides the turbulence characteristics needed for the computation of jet mixing noise. A brief account of turbulence models that are relevant for the jet noise computation is presented. The jet flow solutions that have been directly used to calculate jet noise are first reviewed. Then, the turbulent jet flow studies that compute the turbulence characteristics that may be used for noise calculations are summarized. In particular, flow solutions obtained with the k-e model, algebraic Reynolds stress model, and Reynolds stress transport equation model are reviewed. Since, the small scale jet mixing noise predictions can be improved by utilizing anisotropic turbulence characteristics, turbulence models that can provide the Reynolds stress components must now be considered for jet flow computations. In this regard, algebraic stress models and Reynolds stress transport models are good candidates. Reynolds stress transport models involve more modeling and computational effort and time compared to algebraic stress models. Hence, it is recommended that an algebraic Reynolds stress model (ASM) be implemented in flow solvers to compute the Reynolds stress components.
NASA Astrophysics Data System (ADS)
Angeli, C.; Cimiraglia, R.
2005-02-01
Starting from a CAS-SCF calculation a sequence of contracted functions can be generated by applying strings of spin-traced replacement operators to the CAS-SCF solution. The laborious task of producing the Hamiltonian matrix elements between such functions can be substantially reduced making use of a computer algebra system. An implementation employing the MuPAD system is presented and illustrated.
Mathematical model for Dengue with three states of infection
NASA Astrophysics Data System (ADS)
Hincapie, Doracelly; Ospina, Juan
2012-06-01
A mathematical model for dengue with three states of infection is proposed and analyzed. The model consists in a system of differential equations. The three states of infection are respectively asymptomatic, partially asymptomatic and fully asymptomatic. The model is analyzed using computer algebra software, specifically Maple, and the corresponding basic reproductive number and the epidemic threshold are computed. The resulting basic reproductive number is an algebraic synthesis of all epidemic parameters and it makes clear the possible control measures. The microscopic structure of the epidemic parameters is established using the quantum theory of the interactions between the atoms and radiation. In such approximation, the human individual is represented by an atom and the mosquitoes are represented by radiation. The force of infection from the mosquitoes to the humans is considered as the transition probability from the fundamental state of atom to excited states. The combination of computer algebra software and quantum theory provides a very complete formula for the basic reproductive number and the possible control measures tending to stop the propagation of the disease. It is claimed that such result may be important in military medicine and the proposed method can be applied to other vector-borne diseases.
DiStefano, Joseph
2014-01-01
Parameter identifiability problems can plague biomodelers when they reach the quantification stage of development, even for relatively simple models. Structural identifiability (SI) is the primary question, usually understood as knowing which of P unknown biomodel parameters p 1,…, pi,…, pP are-and which are not-quantifiable in principle from particular input-output (I-O) biodata. It is not widely appreciated that the same database also can provide quantitative information about the structurally unidentifiable (not quantifiable) subset, in the form of explicit algebraic relationships among unidentifiable pi. Importantly, this is a first step toward finding what else is needed to quantify particular unidentifiable parameters of interest from new I–O experiments. We further develop, implement and exemplify novel algorithms that address and solve the SI problem for a practical class of ordinary differential equation (ODE) systems biology models, as a user-friendly and universally-accessible web application (app)–COMBOS. Users provide the structural ODE and output measurement models in one of two standard forms to a remote server via their web browser. COMBOS provides a list of uniquely and non-uniquely SI model parameters, and–importantly-the combinations of parameters not individually SI. If non-uniquely SI, it also provides the maximum number of different solutions, with important practical implications. The behind-the-scenes symbolic differential algebra algorithms are based on computing Gröbner bases of model attributes established after some algebraic transformations, using the computer-algebra system Maxima. COMBOS was developed for facile instructional and research use as well as modeling. We use it in the classroom to illustrate SI analysis; and have simplified complex models of tumor suppressor p53 and hormone regulation, based on explicit computation of parameter combinations. It’s illustrated and validated here for models of moderate complexity, with and without initial conditions. Built-in examples include unidentifiable 2 to 4-compartment and HIV dynamics models. PMID:25350289
NASA Astrophysics Data System (ADS)
Senovilla, José M. M.
2010-11-01
The algebraic classification of the Weyl tensor in the arbitrary dimension n is recovered by means of the principal directions of its 'superenergy' tensor. This point of view can be helpful in order to compute the Weyl aligned null directions explicitly, and permits one to obtain the algebraic type of the Weyl tensor by computing the principal eigenvalue of rank-2 symmetric future tensors. The algebraic types compatible with states of intrinsic gravitational radiation can then be explored. The underlying ideas are general, so that a classification of arbitrary tensors in the general dimension can be achieved.
Computers in the Classroom: Teacher's Resource Manual for Algebra.
ERIC Educational Resources Information Center
Koetke, Walter
Demonstration programs, possible assignments for students (with solutions), and remedial drill programs for students to use are presented to aid teachers using a computer or a computer terminal in the teaching of algebra. The text can be followed page by page or used as a well-indexed reference work, and specific suggestions are made on how and…
ADART: an adaptive algebraic reconstruction algorithm for discrete tomography.
Maestre-Deusto, F Javier; Scavello, Giovanni; Pizarro, Joaquín; Galindo, Pedro L
2011-08-01
In this paper we suggest an algorithm based on the Discrete Algebraic Reconstruction Technique (DART) which is capable of computing high quality reconstructions from substantially fewer projections than required for conventional continuous tomography. Adaptive DART (ADART) goes a step further than DART on the reduction of the number of unknowns of the associated linear system achieving a significant reduction in the pixel error rate of reconstructed objects. The proposed methodology automatically adapts the border definition criterion at each iteration, resulting in a reduction of the number of pixels belonging to the border, and consequently of the number of unknowns in the general algebraic reconstruction linear system to be solved, being this reduction specially important at the final stage of the iterative process. Experimental results show that reconstruction errors are considerably reduced using ADART when compared to original DART, both in clean and noisy environments.
Teacher's Guide to Secondary Mathematics.
ERIC Educational Resources Information Center
Duval County Schools, Jacksonville, FL.
This is a teacher's guide to secondary school mathematics. Developed for use in the Duval County Public Schools, Jacksonville, Florida. Areas of mathematics covered are algebra, analysis, calculus, computer literacy, computer science, geometry, analytic geometry, general mathematics, consumer mathematics, pre-algebra, probability and statistics,…
On squares of representations of compact Lie algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeier, Robert, E-mail: robert.zeier@ch.tum.de; Zimborás, Zoltán, E-mail: zimboras@gmail.com
We study how tensor products of representations decompose when restricted from a compact Lie algebra to one of its subalgebras. In particular, we are interested in tensor squares which are tensor products of a representation with itself. We show in a classification-free manner that the sum of multiplicities and the sum of squares of multiplicities in the corresponding decomposition of a tensor square into irreducible representations has to strictly grow when restricted from a compact semisimple Lie algebra to a proper subalgebra. For this purpose, relevant details on tensor products of representations are compiled from the literature. Since the summore » of squares of multiplicities is equal to the dimension of the commutant of the tensor-square representation, it can be determined by linear-algebra computations in a scenario where an a priori unknown Lie algebra is given by a set of generators which might not be a linear basis. Hence, our results offer a test to decide if a subalgebra of a compact semisimple Lie algebra is a proper one without calculating the relevant Lie closures, which can be naturally applied in the field of controlled quantum systems.« less
NASA Astrophysics Data System (ADS)
Dias, David P.
2008-08-01
Given a C^*-dynamical system (A, G, α) one defines a homomorphism, called the Chern-Connes character, that take an element in K_0(A) oplus K_1(A), the K-theory groups of the C^*-algebra A, and maps it into H_{{R}}^*(G), the real deRham cohomology ring of G. We explictly compute this homomorphism for the examples (overline{Psi_{cl}^0(S^1)}, S^1, α) and (overline{Psi_{cl}^0(S^2)}, SO(3), α), where overline{Psi_{cl}^0(M)} denotes the C^*-algebra generated by the classical pseudodifferential operators of zero order in the manifold M and α the action of conjugation by the regular representation (translations).
CATO--A General User Interface for CAS
ERIC Educational Resources Information Center
Janetzko, Hans-Dieter
2015-01-01
CATO is a new user interface, developed by the author as a response to the significant difficulties faced by scientists, engineers, and students in their usage of computer algebra (CA) systems. Their tendency to use CA systems only occasionally means that they are unfamiliar with requisite grammar and syntax these systems require. The author…
The Mathlet Toolkit: Creating Dynamic Applets for Differential Equations and Dynamical Systems
ERIC Educational Resources Information Center
Decker, Robert
2011-01-01
Dynamic/interactive graphing applets can be used to supplement standard computer algebra systems such as Maple, Mathematica, Derive, or TI calculators, in courses such as Calculus, Differential Equations, and Dynamical Systems. The addition of this type of software can lead to discovery learning, with students developing their own conjectures, and…
Luenser, Arne; Kussmann, Jörg; Ochsenfeld, Christian
2016-09-28
We present a (sub)linear-scaling algorithm to determine indirect nuclear spin-spin coupling constants at the Hartree-Fock and Kohn-Sham density functional levels of theory. Employing efficient integral algorithms and sparse algebra routines, an overall (sub)linear scaling behavior can be obtained for systems with a non-vanishing HOMO-LUMO gap. Calculations on systems with over 1000 atoms and 20 000 basis functions illustrate the performance and accuracy of our reference implementation. Specifically, we demonstrate that linear algebra dominates the runtime of conventional algorithms for 10 000 basis functions and above. Attainable speedups of our method exceed 6 × in total runtime and 10 × in the linear algebra steps for the tested systems. Furthermore, a convergence study of spin-spin couplings of an aminopyrazole peptide upon inclusion of the water environment is presented: using the new method it is shown that large solvent spheres are necessary to converge spin-spin coupling values.
Linear homotopy solution of nonlinear systems of equations in geodesy
NASA Astrophysics Data System (ADS)
Paláncz, Béla; Awange, Joseph L.; Zaletnyik, Piroska; Lewis, Robert H.
2010-01-01
A fundamental task in geodesy is solving systems of equations. Many geodetic problems are represented as systems of multivariate polynomials. A common problem in solving such systems is improper initial starting values for iterative methods, leading to convergence to solutions with no physical meaning, or to convergence that requires global methods. Though symbolic methods such as Groebner bases or resultants have been shown to be very efficient, i.e., providing solutions for determined systems such as 3-point problem of 3D affine transformation, the symbolic algebra can be very time consuming, even with special Computer Algebra Systems (CAS). This study proposes the Linear Homotopy method that can be implemented easily in high-level computer languages like C++ and Fortran that are faster than CAS by at least two orders of magnitude. Using Mathematica, the power of Homotopy is demonstrated in solving three nonlinear geodetic problems: resection, GPS positioning, and affine transformation. The method enlarging the domain of convergence is found to be efficient, less sensitive to rounding of numbers, and has lower complexity compared to other local methods like Newton-Raphson.
ERIC Educational Resources Information Center
Savelsbergh, Elwin R.; Ferguson-Hessler, Monica G. M.; de Jong, Ton
An approach to teaching problem-solving based on using the computer software Mathematica is applied to the study of electrostatics and is compared with the normal approach to the module. Learning outcomes for both approaches were not significantly different. The experimental course successfully addressed a number of misconceptions. Students in the…
Using Maple to Implement eLearning Integrated with Computer Aided Assessment
ERIC Educational Resources Information Center
Blyth, Bill; Labovic, Aleksandra
2009-01-01
Advanced mathematics courses have been developed and refined by the first author, using an action research methodology, for more than a decade. These courses use the computer algebra system (CAS) Maple in an "immersion mode" where all presentations and student work are done using Maple. Assignments and examinations are Maple files downloaded from…
Full thermomechanical coupling in modelling of micropolar thermoelasticity
NASA Astrophysics Data System (ADS)
Murashkin, E. V.; Radayev, Y. N.
2018-04-01
The present paper is devoted to plane harmonic waves of displacements and microrotations propagating in fully coupled thermoelastic continua. The analysis is carried out in the framework of linear conventional thermoelastic micropolar continuum model. The reduced energy balance equation and the special form of the Helmholtz free energy are discussed. The constitutive constants providing fully coupling of equations of motion and heat conduction are considered. The dispersion equation is derived and analysed in the form bi-cubic and bi-quadratic polynoms product. The equation are analyzed by the computer algebra system Mathematica. Algebraic forms expressed by complex multivalued square and cubic radicals are obtained for wavenumbers of transverse and longitudinal waves. The exact forms of wavenumbers of a plane harmonic coupled thermoelastic waves are computed.
ERIC Educational Resources Information Center
Palmer, Loretta
A basic algebra unit was developed at Utah Valley State College to emphasize applications of mathematical concepts in the work world, using video and computer-generated graphics to integrate textual material. The course was implemented in three introductory algebra sections involving 80 students and taught algebraic concepts using such areas as…
Assessing non-uniqueness: An algebraic approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasco, Don W.
Geophysical inverse problems are endowed with a rich mathematical structure. When discretized, most differential and integral equations of interest are algebraic (polynomial) in form. Techniques from algebraic geometry and computational algebra provide a means to address questions of existence and uniqueness for both linear and non-linear inverse problem. In a sense, the methods extend ideas which have proven fruitful in treating linear inverse problems.
Using trees to compute approximate solutions to ordinary differential equations exactly
NASA Technical Reports Server (NTRS)
Grossman, Robert
1991-01-01
Some recent work is reviewed which relates families of trees to symbolic algorithms for the exact computation of series which approximate solutions of ordinary differential equations. It turns out that the vector space whose basis is the set of finite, rooted trees carries a natural multiplication related to the composition of differential operators, making the space of trees an algebra. This algebraic structure can be exploited to yield a variety of algorithms for manipulating vector fields and the series and algebras they generate.
Intelligent Tutoring Systems and Learning Outcomes: A Meta-Analysis
ERIC Educational Resources Information Center
Ma, Wenting; Adesope, Olusola O.; Nesbit, John C.; Liu, Qing
2014-01-01
Intelligent Tutoring Systems (ITS) are computer programs that model learners' psychological states to provide individualized instruction. They have been developed for diverse subject areas (e.g., algebra, medicine, law, reading) to help learners acquire domain-specific, cognitive and metacognitive knowledge. A meta-analysis was conducted on…
Reducing Communication in Algebraic Multigrid Using Additive Variants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vassilevski, Panayot S.; Yang, Ulrike Meier
Algebraic multigrid (AMG) has proven to be an effective scalable solver on many high performance computers. However, its increasing communication complexity on coarser levels has shown to seriously impact its performance on computers with high communication cost. Moreover, additive AMG variants provide not only increased parallelism as well as decreased numbers of messages per cycle but also generally exhibit slower convergence. Here we present various new additive variants with convergence rates that are significantly improved compared to the classical additive algebraic multigrid method and investigate their potential for decreased communication, and improved communication-computation overlap, features that are essential for goodmore » performance on future exascale architectures.« less
Reducing Communication in Algebraic Multigrid Using Additive Variants
Vassilevski, Panayot S.; Yang, Ulrike Meier
2014-02-12
Algebraic multigrid (AMG) has proven to be an effective scalable solver on many high performance computers. However, its increasing communication complexity on coarser levels has shown to seriously impact its performance on computers with high communication cost. Moreover, additive AMG variants provide not only increased parallelism as well as decreased numbers of messages per cycle but also generally exhibit slower convergence. Here we present various new additive variants with convergence rates that are significantly improved compared to the classical additive algebraic multigrid method and investigate their potential for decreased communication, and improved communication-computation overlap, features that are essential for goodmore » performance on future exascale architectures.« less
Observability of Automata Networks: Fixed and Switching Cases.
Li, Rui; Hong, Yiguang; Wang, Xingyuan
2018-04-01
Automata networks are a class of fully discrete dynamical systems, which have received considerable interest in various different areas. This brief addresses the observability of automata networks and switched automata networks in a unified framework, and proposes simple necessary and sufficient conditions for observability. The results are achieved by employing methods from symbolic computation, and are suited for implementation using computer algebra systems. Several examples are presented to demonstrate the application of the results.
The analysis of control trajectories using symbolic and database computing
NASA Technical Reports Server (NTRS)
Grossman, Robert
1995-01-01
This final report comprises the formal semi-annual status reports for this grant for the periods June 30-December 31, 1993, January 1-June 30, 1994, and June 1-December 31, 1994. The research supported by this grant is broadly concerned with the symbolic computation, mixed numeric-symbolic computation, and database computation of trajectories of dynamical systems, especially control systems. A review of work during the report period covers: trajectories and approximating series, the Cayley algebra of trees, actions of differential operators, geometrically stable integration algorithms, hybrid systems, trajectory stores, PTool, and other activities. A list of publications written during the report period is attached.
LAPACKrc: Fast linear algebra kernels/solvers for FPGA accelerators
NASA Astrophysics Data System (ADS)
Gonzalez, Juan; Núñez, Rafael C.
2009-07-01
We present LAPACKrc, a family of FPGA-based linear algebra solvers able to achieve more than 100x speedup per commodity processor on certain problems. LAPACKrc subsumes some of the LAPACK and ScaLAPACK functionalities, and it also incorporates sparse direct and iterative matrix solvers. Current LAPACKrc prototypes demonstrate between 40x-150x speedup compared against top-of-the-line hardware/software systems. A technology roadmap is in place to validate current performance of LAPACKrc in HPC applications, and to increase the computational throughput by factors of hundreds within the next few years.
Soft hairy warped black hole entropy
NASA Astrophysics Data System (ADS)
Grumiller, Daniel; Hacker, Philip; Merbis, Wout
2018-02-01
We reconsider warped black hole solutions in topologically massive gravity and find novel boundary conditions that allow for soft hairy excitations on the horizon. To compute the associated symmetry algebra we develop a general framework to compute asymptotic symmetries in any Chern-Simons-like theory of gravity. We use this to show that the near horizon symmetry algebra consists of two u (1) current algebras and recover the surprisingly simple entropy formula S = 2 π( J 0 + + J 0 - ), where J 0 ± are zero mode charges of the current algebras. This provides the first example of a locally non-maximally symmetric configuration exhibiting this entropy law and thus non-trivial evidence for its universality.
Analysis of SI models with multiple interacting populations using subpopulations.
Thomas, Evelyn K; Gurski, Katharine F; Hoffman, Kathleen A
2015-02-01
Computing endemic equilibria and basic reproductive numbers for systems of differential equations describing epidemiological systems with multiple connections between subpopulations is often algebraically intractable. We present an alternative method which deconstructs the larger system into smaller subsystems and captures the interactions between the smaller systems as external forces using an approximate model. We bound the basic reproductive numbers of the full system in terms of the basic reproductive numbers of the smaller systems and use the alternate model to provide approximations for the endemic equilibrium. In addition to creating algebraically tractable reproductive numbers and endemic equilibria, we can demonstrate the influence of the interactions between subpopulations on the basic reproductive number of the full system. The focus of this paper is to provide analytical tools to help guide public health decisions with limited intervention resources.
NASA Technical Reports Server (NTRS)
Palusinski, O. A.; Allgyer, T. T.; Mosher, R. A.; Bier, M.; Saville, D. A.
1981-01-01
A mathematical model of isoelectric focusing at the steady state has been developed for an M-component system of electrochemically defined ampholytes. The model is formulated from fundamental principles describing the components' chemical equilibria, mass transfer resulting from diffusion and electromigration, and electroneutrality. The model consists of ordinary differential equations coupled with a system of algebraic equations. The model is implemented on a digital computer using FORTRAN-based simulation software. Computer simulation data are presented for several two-component systems showing the effects of varying the isoelectric points and dissociation constants of the constituents.
Phased-mission system analysis using Boolean algebraic methods
NASA Technical Reports Server (NTRS)
Somani, Arun K.; Trivedi, Kishor S.
1993-01-01
Most reliability analysis techniques and tools assume that a system is used for a mission consisting of a single phase. However, multiple phases are natural in many missions. The failure rates of components, system configuration, and success criteria may vary from phase to phase. In addition, the duration of a phase may be deterministic or random. Recently, several researchers have addressed the problem of reliability analysis of such systems using a variety of methods. A new technique for phased-mission system reliability analysis based on Boolean algebraic methods is described. Our technique is computationally efficient and is applicable to a large class of systems for which the failure criterion in each phase can be expressed as a fault tree (or an equivalent representation). Our technique avoids state space explosion that commonly plague Markov chain-based analysis. A phase algebra to account for the effects of variable configurations and success criteria from phase to phase was developed. Our technique yields exact (as opposed to approximate) results. The use of our technique was demonstrated by means of an example and present numerical results to show the effects of mission phases on the system reliability.
In Praise of Numerical Computation
NASA Astrophysics Data System (ADS)
Yap, Chee K.
Theoretical Computer Science has developed an almost exclusively discrete/algebraic persona. We have effectively shut ourselves off from half of the world of computing: a host of problems in Computational Science & Engineering (CS&E) are defined on the continuum, and, for them, the discrete viewpoint is inadequate. The computational techniques in such problems are well-known to numerical analysis and applied mathematics, but are rarely discussed in theoretical algorithms: iteration, subdivision and approximation. By various case studies, I will indicate how our discrete/algebraic view of computing has many shortcomings in CS&E. We want embrace the continuous/analytic view, but in a new synthesis with the discrete/algebraic view. I will suggest a pathway, by way of an exact numerical model of computation, that allows us to incorporate iteration and approximation into our algorithms’ design. Some recent results give a peek into how this view of algorithmic development might look like, and its distinctive form suggests the name “numerical computational geometry” for such activities.
Reflections on John Monaghan's "Computer Algebra, Instrumentation, and the Anthropological Approach"
ERIC Educational Resources Information Center
Blume, Glen
2007-01-01
Reactions to John Monaghan's "Computer Algebra, Instrumentation and the Anthropological Approach" focus on a variety of issues related to the ergonomic approach (instrumentation) and anthropological approach to mathematical activity and practice. These include uses of the term technique; several possibilities for integration of the two approaches;…
Research issues of geometry-based visual languages and some solutions
NASA Astrophysics Data System (ADS)
Green, Thorn G.
This dissertation addresses the problem of how to design visual language systems that are based upon Geometric Algebra, and provide a visual coupling of algebraic expressions and geometric depictions. This coupling of algebraic expressions and geometric depictions provides a new means for expressing both mathematical and geometric relationships present in mathematics, physics, and Computer-Aided Geometric Design (CAGD). Another significant feature of such a system is that the result of changing a parameter (by dragging the mouse) can be seen immediately in the depiction(s) of all expressions that use that parameter. This greatly aides the cognition of the relationships between variables. Systems for representing such a coupling of algebra and geometry have characteristics of both visual language systems, and systems for scientific visualization. Instead of using a parsing or dataflow paradigm for the visual language representation, the systems instead represent equations as manipulatible constrained diagrams for their visualization. This requires that the design of such a system have (but is not limited to) a means for parsing equations entered by the user, a scheme for producing a visual representation of these equations; techniques for maintaining the coupling between the expressions entered and the diagrams displayed; algorithms for maintaining the consistency of the diagrams; and, indexing capabilities that are efficient enough to allow diagrams to be created, and manipulated in a short enough period of time. The author proposes solutions for how such a design can be realized.
ERIC Educational Resources Information Center
Foley, Greg
2014-01-01
A problem that illustrates two ways of computing the break-even radius of insulation is outlined. The problem is suitable for students who are taking an introductory module in heat transfer or transport phenomena and who have some previous knowledge of the numerical solution of non- linear algebraic equations. The potential for computer algebra,…
Submicron Systems Architecture Project
1981-11-01
This project is concerned with the architecture , design , and testing of VLSI Systems. The principal activities in this report period include: The Tree Machine; COPE, The Homogeneous Machine; Computational Arrays; Switch-Level Model for MOS Logic Design; Testing; Local Network and Designer Workstations; Self-timed Systems; Characterization of Deadlock Free Resource Contention; Concurrency Algebra; Language Design and Logic for Program Verification.
Calculation of normal modes of the closed waveguides in general vector case
NASA Astrophysics Data System (ADS)
Malykh, M. D.; Sevastianov, L. A.; Tiutiunnik, A. A.
2018-04-01
The article is devoted to the calculation of normal modes of the closed waveguides with an arbitrary filling ɛ, μ in the system of computer algebra Sage. Maxwell equations in the cylinder are reduced to the system of two bounded Helmholtz equations, the notion of weak solution of this system is given and then this system is investigated as a system of ordinary differential equations. The normal modes of this system are an eigenvectors of a matrix pencil. We suggest to calculate the matrix elements approximately and to truncate the matrix by usual way but further to solve the truncated eigenvalue problem exactly in the field of algebraic numbers. This approach allows to keep the symmetry of the initial problem and in particular the multiplicity of the eigenvalues. In the work would be presented some results of calculations.
NASA Technical Reports Server (NTRS)
Wigton, Larry
1996-01-01
Improving the numerical linear algebra routines for use in new Navier-Stokes codes, specifically Tim Barth's unstructured grid code, with spin-offs to TRANAIR is reported. A fast distance calculation routine for Navier-Stokes codes using the new one-equation turbulence models is written. The primary focus of this work was devoted to improving matrix-iterative methods. New algorithms have been developed which activate the full potential of classical Cray-class computers as well as distributed-memory parallel computers.
ERIC Educational Resources Information Center
Teles, Elizabeth, Ed.; And Others
1990-01-01
Reviewed are two computer software packages for Macintosh microcomputers including "Phase Portraits," an exploratory graphics tool for studying first-order planar systems; and "MacMath," a set of programs for exploring differential equations, linear algebra, and other mathematical topics. Features, ease of use, cost, availability, and hardware…
Sequences, Series, and Mathematica.
ERIC Educational Resources Information Center
Mathews, John H.
1992-01-01
Describes how the computer algebra system Mathematica can be used to enhance the teaching of the topics of sequences and series. Examines its capabilities to find exact, approximate, and graphically generated approximate solutions to problems from these topics and to understand proofs about sequences. (MDH)
Structural Features of Algebraic Quantum Notations
ERIC Educational Resources Information Center
Gire, Elizabeth; Price, Edward
2015-01-01
The formalism of quantum mechanics includes a rich collection of representations for describing quantum systems, including functions, graphs, matrices, histograms of probabilities, and Dirac notation. The varied features of these representations affect how computations are performed. For example, identifying probabilities of measurement outcomes…
Generalized Quantum Field Theory Based on a Nonlinear Deformed Heisenberg Algebra
NASA Astrophysics Data System (ADS)
Ribeiro-Silva, C. I.; Oliveira-Neto, N. M.
We consider a quantum field theory based on a nonlinear Heisenberg algebra which describes phenomenologically a composite particle. Perturbative computation, considering the λϕ4 interaction was done and we also performed some comparison with a quantum field theory based on the q-oscillator algebra.
ERIC Educational Resources Information Center
1997
Astro Algebra is one of six titles in the Mighty Math Series from Edmark, a comprehensive line of math software for students from kindergarten through ninth grade. Many of the activities in Astro Algebra contain a unique technology that uses the computer to help students make the connection between concrete and abstract mathematics. This software…
ERIC Educational Resources Information Center
Tolar, Tammy Daun; Lederberg, Amy R.; Fletcher, Jack M.
2009-01-01
The goal of this study was to develop and evaluate a structural model of the relations among cognitive abilities and arithmetic skills and college students' algebra achievement. The model of algebra achievement was compared to a model of performance on the Scholastic Assessment in Mathematics (SAT-M) to determine whether the pattern of relations…
A path model for Whittaker vectors
NASA Astrophysics Data System (ADS)
Di Francesco, Philippe; Kedem, Rinat; Turmunkh, Bolor
2017-06-01
In this paper we construct weighted path models to compute Whittaker vectors in the completion of Verma modules, as well as Whittaker functions of fundamental type, for all finite-dimensional simple Lie algebras, affine Lie algebras, and the quantum algebra U_q(slr+1) . This leads to series expressions for the Whittaker functions. We show how this construction leads directly to the quantum Toda equations satisfied by these functions, and to the q-difference equations in the quantum case. We investigate the critical limit of affine Whittaker functions computed in this way.
"MONSTROUS MOONSHINE" and Physics
NASA Astrophysics Data System (ADS)
Pushkin, A. V.
The report presents some results obtained by the author on the quantum gravitation theory. Algebraic structure of this theory proves to be related to the commutative nonassociative Griess algebra. The theory symmetry is the automorphism group of Griess algebra: "Monster" simple group. Knowledge of the theory symmetry allows to compute observed physical values in the `zero' approximation. The report presents such computed results for values {m_{p}}/{m_{c}} and α, for the latter the `zero' approximation accuracy, controlled by the theory, being one order of magnitude higher than the accuracy of modern measurements.
A look at scalable dense linear algebra libraries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dongarra, J.J.; Van de Geijn, R.A.; Walker, D.W.
1992-01-01
We discuss the essential design features of a library of scalable software for performing dense linear algebra computations on distributed memory concurrent computers. The square block scattered decomposition is proposed as a flexible and general-purpose way of decomposing most, if not all, dense matrix problems. An object- oriented interface to the library permits more portable applications to be written, and is easy to learn and use, since details of the parallel implementation are hidden from the user. Experiments on the Intel Touchstone Delta system with a prototype code that uses the square block scattered decomposition to perform LU factorization aremore » presented and analyzed. It was found that the code was both scalable and efficient, performing at about 14 GFLOPS (double precision) for the largest problem considered.« less
A look at scalable dense linear algebra libraries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dongarra, J.J.; Van de Geijn, R.A.; Walker, D.W.
1992-08-01
We discuss the essential design features of a library of scalable software for performing dense linear algebra computations on distributed memory concurrent computers. The square block scattered decomposition is proposed as a flexible and general-purpose way of decomposing most, if not all, dense matrix problems. An object- oriented interface to the library permits more portable applications to be written, and is easy to learn and use, since details of the parallel implementation are hidden from the user. Experiments on the Intel Touchstone Delta system with a prototype code that uses the square block scattered decomposition to perform LU factorization aremore » presented and analyzed. It was found that the code was both scalable and efficient, performing at about 14 GFLOPS (double precision) for the largest problem considered.« less
NASA Technical Reports Server (NTRS)
Packard, A. K.; Sastry, S. S.
1986-01-01
A method of solving a class of linear matrix equations over various rings is proposed, using results from linear geometric control theory. An algorithm, successfully implemented, is presented, along with non-trivial numerical examples. Applications of the method to the algebraic control system design methodology are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitanidis, Peter
As large-scale, commercial storage projects become operational, the problem of utilizing information from diverse sources becomes more critically important. In this project, we developed, tested, and applied an advanced joint data inversion system for CO 2 storage modeling with large data sets for use in site characterization and real-time monitoring. Emphasis was on the development of advanced and efficient computational algorithms for joint inversion of hydro-geophysical data, coupled with state-of-the-art forward process simulations. The developed system consists of (1) inversion tools using characterization data, such as 3D seismic survey (amplitude images), borehole log and core data, as well as hydraulic,more » tracer and thermal tests before CO 2 injection, (2) joint inversion tools for updating the geologic model with the distribution of rock properties, thus reducing uncertainty, using hydro-geophysical monitoring data, and (3) highly efficient algorithms for directly solving the dense or sparse linear algebra systems derived from the joint inversion. The system combines methods from stochastic analysis, fast linear algebra, and high performance computing. The developed joint inversion tools have been tested through synthetic CO 2 storage examples.« less
Quantization of Poisson Manifolds from the Integrability of the Modular Function
NASA Astrophysics Data System (ADS)
Bonechi, F.; Ciccoli, N.; Qiu, J.; Tarlini, M.
2014-10-01
We discuss a framework for quantizing a Poisson manifold via the quantization of its symplectic groupoid, combining the tools of geometric quantization with the results of Renault's theory of groupoid C*-algebras. This setting allows very singular polarizations. In particular, we consider the case when the modular function is multiplicatively integrable, i.e., when the space of leaves of the polarization inherits a groupoid structure. If suitable regularity conditions are satisfied, then one can define the quantum algebra as the convolution algebra of the subgroupoid of leaves satisfying the Bohr-Sommerfeld conditions. We apply this procedure to the case of a family of Poisson structures on , seen as Poisson homogeneous spaces of the standard Poisson-Lie group SU( n + 1). We show that a bihamiltonian system on defines a multiplicative integrable model on the symplectic groupoid; we compute the Bohr-Sommerfeld groupoid and show that it satisfies the needed properties for applying Renault theory. We recover and extend Sheu's description of quantum homogeneous spaces as groupoid C*-algebras.
Automatic Blocking Of QR and LU Factorizations for Locality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Q; Kennedy, K; You, H
2004-03-26
QR and LU factorizations for dense matrices are important linear algebra computations that are widely used in scientific applications. To efficiently perform these computations on modern computers, the factorization algorithms need to be blocked when operating on large matrices to effectively exploit the deep cache hierarchy prevalent in today's computer memory systems. Because both QR (based on Householder transformations) and LU factorization algorithms contain complex loop structures, few compilers can fully automate the blocking of these algorithms. Though linear algebra libraries such as LAPACK provides manually blocked implementations of these algorithms, by automatically generating blocked versions of the computations, moremore » benefit can be gained such as automatic adaptation of different blocking strategies. This paper demonstrates how to apply an aggressive loop transformation technique, dependence hoisting, to produce efficient blockings for both QR and LU with partial pivoting. We present different blocking strategies that can be generated by our optimizer and compare the performance of auto-blocked versions with manually tuned versions in LAPACK, both using reference BLAS, ATLAS BLAS and native BLAS specially tuned for the underlying machine architectures.« less
NASA Technical Reports Server (NTRS)
Cleaveland, Rance; Luettgen, Gerald; Natarajan, V.
1999-01-01
This paper surveys the semantic ramifications of extending traditional process algebras with notions of priority that allow for some transitions to be given precedence over others. These enriched formalisms allow one to model system features such as interrupts, prioritized choice, or real-time behavior. Approaches to priority in process algebras can be classified according to whether the induced notion of preemption on transitions is global or local and whether priorities are static or dynamic. Early work in the area concentrated on global pre-emption and static priorities and led to formalisms for modeling interrupts and aspects of real-time, such as maximal progress, in centralized computing environments. More recent research has investigated localized notions of pre-emption in which the distribution of systems is taken into account, as well as dynamic priority approaches, i.e., those where priority values may change as systems evolve. The latter allows one to model behavioral phenomena such as scheduling algorithms and also enables the efficient encoding of real-time semantics. Technically, this paper studies the different models of priorities by presenting extensions of Milner's Calculus of Communicating Systems (CCS) with static and dynamic priority as well as with notions of global and local pre- emption. In each case the operational semantics of CCS is modified appropriately, behavioral theories based on strong and weak bisimulation are given, and related approaches for different process-algebraic settings are discussed.
Students' Use of Computational Thinking in Linear Algebra
ERIC Educational Resources Information Center
Bagley, Spencer; Rabin, Jeffrey M.
2016-01-01
In this work, we examine students' ways of thinking when presented with a novel linear algebra problem. Our intent was to explore how students employ and coordinate three modes of thinking, which we call computational, abstract, and geometric, following similar frameworks proposed by Hillel (2000) and Sierpinska (2000). However, the undergraduate…
Algebraic Functions, Computer Programming, and the Challenge of Transfer
ERIC Educational Resources Information Center
Schanzer, Emmanuel Tanenbaum
2015-01-01
Students' struggles with algebra are well documented. Prior to the introduction of functions, mathematics is typically focused on applying a set of arithmetic operations to compute an answer. The introduction of functions, however, marks the point at which mathematics begins to focus on building up abstractions as a way to solve complex problems.…
Variational data assimilation system "INM RAS - Black Sea"
NASA Astrophysics Data System (ADS)
Parmuzin, Eugene; Agoshkov, Valery; Assovskiy, Maksim; Giniatulin, Sergey; Zakharova, Natalia; Kuimov, Grigory; Fomin, Vladimir
2013-04-01
Development of Informational-Computational Systems (ICS) for Data Assimilation Procedures is one of multidisciplinary problems. To study and solve these problems one needs to apply modern results from different disciplines and recent developments in: mathematical modeling; theory of adjoint equations and optimal control; inverse problems; numerical methods theory; numerical algebra and scientific computing. The problems discussed above are studied in the Institute of Numerical Mathematics of the Russian Academy of Science (INM RAS) in ICS for Personal Computers (PC). Special problems and questions arise while effective ICS versions for PC are being developed. These problems and questions can be solved with applying modern methods of numerical mathematics and by solving "parallelism problem" using OpenMP technology and special linear algebra packages. In this work the results on the ICS development for PC-ICS "INM RAS - Black Sea" are presented. In the work the following problems and questions are discussed: practical problems that can be studied by ICS; parallelism problems and their solutions with applying of OpenMP technology and the linear algebra packages used in ICS "INM - Black Sea"; Interface of ICS. The results of ICS "INM RAS - Black Sea" testing are presented. Efficiency of technologies and methods applied are discussed. The work was supported by RFBR, grants No. 13-01-00753, 13-05-00715 and by The Ministry of education and science of Russian Federation, project 8291, project 11.519.11.1005 References: [1] V.I. Agoshkov, M.V. Assovskii, S.A. Lebedev, Numerical simulation of Black Sea hydrothermodynamics taking into account tide-forming forces. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, 5-31 [2] E.I. Parmuzin, V.I. Agoshkov, Numerical solution of the variational assimilation problem for sea surface temperature in the model of the Black Sea dynamics. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, 69-94 [3] V.B. Zalesny, N.A. Diansky, V.V. Fomin, S.N. Moshonkin, S.G. Demyshev, Numerical model of the circulation of Black Sea and Sea of Azov. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, 95-111 [4] V.I. Agoshkov, S.V. Giniatulin, G.V. Kuimov. OpenMP technology and linear algebra packages in the variation data assimilation systems. - Abstracts of the 1-st China-Russia Conference on Numerical Algebra with Applications in Radiactive Hydrodynamics, Beijing, China, October 16-18, 2012. [5] Zakharova N.B., Agoshkov V.I., Parmuzin E.I., The new method of ARGO buoys system observation data interpolation. Russian Journal of Numerical Analysis and Mathematical Modelling. Vol. 28, Issue 1, 2013.
xPerm: fast index canonicalization for tensor computer algebra
NASA Astrophysics Data System (ADS)
Martín-García, José M.
2008-10-01
We present a very fast implementation of the Butler-Portugal algorithm for index canonicalization with respect to permutation symmetries. It is called xPerm, and has been written as a combination of a Mathematica package and a C subroutine. The latter performs the most demanding parts of the computations and can be linked from any other program or computer algebra system. We demonstrate with tests and timings the effectively polynomial performance of the Butler-Portugal algorithm with respect to the number of indices, though we also show a case in which it is exponential. Our implementation handles generic tensorial expressions with several dozen indices in hundredths of a second, or one hundred indices in a few seconds, clearly outperforming all other current canonicalizers. The code has been already under intensive testing for several years and has been essential in recent investigations in large-scale tensor computer algebra. Program summaryProgram title: xPerm Catalogue identifier: AEBH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 93 582 No. of bytes in distributed program, including test data, etc.: 1 537 832 Distribution format: tar.gz Programming language: C and Mathematica (version 5.0 or higher) Computer: Any computer running C and Mathematica (version 5.0 or higher) Operating system: Linux, Unix, Windows XP, MacOS RAM:: 20 Mbyte Word size: 64 or 32 bits Classification: 1.5, 5 Nature of problem: Canonicalization of indexed expressions with respect to permutation symmetries. Solution method: The Butler-Portugal algorithm. Restrictions: Multiterm symmetries are not considered. Running time: A few seconds with generic expressions of up to 100 indices. The xPermDoc.nb notebook supplied with the distribution takes approximately one and a half hours to execute in full.
Literal algebra for satellite dynamics. [perturbation analysis
NASA Technical Reports Server (NTRS)
Gaposchkin, E. M.
1975-01-01
A description of the rather general class of operations available is given and the operations are related to problems in satellite dynamics. The implementation of an algebra processor is discussed. The four main categories of symbol processors are related to list processing, string manipulation, symbol manipulation, and formula manipulation. Fundamental required operations for an algebra processor are considered. It is pointed out that algebra programs have been used for a number of problems in celestial mechanics with great success. The advantage of computer algebra is its accuracy and speed.
Numerical Methods for Forward and Inverse Problems in Discontinuous Media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chartier, Timothy P.
The research emphasis under this grant's funding is in the area of algebraic multigrid methods. The research has two main branches: 1) exploring interdisciplinary applications in which algebraic multigrid can make an impact and 2) extending the scope of algebraic multigrid methods with algorithmic improvements that are based in strong analysis.The work in interdisciplinary applications falls primarily in the field of biomedical imaging. Work under this grant demonstrated the effectiveness and robustness of multigrid for solving linear systems that result from highly heterogeneous finite element method models of the human head. The results in this work also give promise tomore » medical advances possible with software that may be developed. Research to extend the scope of algebraic multigrid has been focused in several areas. In collaboration with researchers at the University of Colorado, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory, the PI developed an adaptive multigrid with subcycling via complementary grids. This method has very cheap computing costs per iterate and is showing promise as a preconditioner for conjugate gradient. Recent work with Los Alamos National Laboratory concentrates on developing algorithms that take advantage of the recent advances in adaptive multigrid research. The results of the various efforts in this research could ultimately have direct use and impact to researchers for a wide variety of applications, including, astrophysics, neuroscience, contaminant transport in porous media, bi-domain heart modeling, modeling of tumor growth, and flow in heterogeneous porous media. This work has already led to basic advances in computational mathematics and numerical linear algebra and will continue to do so into the future.« less
Supercalculators and University Entrance Calculus Examinations.
ERIC Educational Resources Information Center
Hong, Ye Yoon; Thomas, Mike; Kiernan, Christine
2000-01-01
Investigates whether the use of computer algebra systems could provide a significant advantage to students taking standard university entrance calculus examinations. Indicates that supercalculators would probably provide a significant advantage, particularly for lower-achieving students. Demonstrates that it is possible to write questions in which…
Designing Virtual Worlds for Use in Mathematics Education.
ERIC Educational Resources Information Center
Winn, William; Bricken, William
Virtual Reality (VR) is a computer generated, multi-dimensional, inclusive environment that can build axioms of algebra into the behavior of the world. This paper discusses the use of VR to represent part of the algebra curriculum in order to improve students' classroom experiences in learning algebra. Students learn to construct their knowledge…
Linear Algebra and Image Processing
ERIC Educational Resources Information Center
Allali, Mohamed
2010-01-01
We use the computing technology digital image processing (DIP) to enhance the teaching of linear algebra so as to make the course more visual and interesting. Certainly, this visual approach by using technology to link linear algebra to DIP is interesting and unexpected to both students as well as many faculty. (Contains 2 tables and 11 figures.)
An Algebraic Implicitization and Specialization of Minimum KL-Divergence Models
NASA Astrophysics Data System (ADS)
Dukkipati, Ambedkar; Manathara, Joel George
In this paper we study representation of KL-divergence minimization, in the cases where integer sufficient statistics exists, using tools from polynomial algebra. We show that the estimation of parametric statistical models in this case can be transformed to solving a system of polynomial equations. In particular, we also study the case of Kullback-Csisźar iteration scheme. We present implicit descriptions of these models and show that implicitization preserves specialization of prior distribution. This result leads us to a Gröbner bases method to compute an implicit representation of minimum KL-divergence models.
Implicit Runge-Kutta Methods with Explicit Internal Stages
NASA Astrophysics Data System (ADS)
Skvortsov, L. M.
2018-03-01
The main computational costs of implicit Runge-Kutta methods are caused by solving a system of algebraic equations at every step. By introducing explicit stages, it is possible to increase the stage (or pseudo-stage) order of the method, which makes it possible to increase the accuracy and avoid reducing the order in solving stiff problems, without additional costs of solving algebraic equations. The paper presents implicit methods with an explicit first stage and one or two explicit internal stages. The results of solving test problems are compared with similar methods having no explicit internal stages.
Hash function based on chaotic map lattices.
Wang, Shihong; Hu, Gang
2007-06-01
A new hash function system, based on coupled chaotic map dynamics, is suggested. By combining floating point computation of chaos and some simple algebraic operations, the system reaches very high bit confusion and diffusion rates, and this enables the system to have desired statistical properties and strong collision resistance. The chaos-based hash function has its advantages for high security and fast performance, and it serves as one of the most highly competitive candidates for practical applications of hash function for software realization and secure information communications in computer networks.
Hash function based on chaotic map lattices
NASA Astrophysics Data System (ADS)
Wang, Shihong; Hu, Gang
2007-06-01
A new hash function system, based on coupled chaotic map dynamics, is suggested. By combining floating point computation of chaos and some simple algebraic operations, the system reaches very high bit confusion and diffusion rates, and this enables the system to have desired statistical properties and strong collision resistance. The chaos-based hash function has its advantages for high security and fast performance, and it serves as one of the most highly competitive candidates for practical applications of hash function for software realization and secure information communications in computer networks.
Learning Nonadjacent Dependencies: No Need for Algebraic-Like Computations
ERIC Educational Resources Information Center
Perruchet, Pierre; Tyler, Michael D.; Galland, Nadine; Peereman, Ronald
2004-01-01
Is it possible to learn the relation between 2 nonadjacent events? M. Pena, L. L. Bonatti, M. Nespor, and J. Mehler (2002) claimed this to be possible, but only in conditions suggesting the involvement of algebraic-like computations. The present article reports simulation studies and experimental data showing that the observations on which Pe?a et…
Higher Inductive Types as Homotopy-Initial Algebras
2016-08-01
Higher Inductive Types as Homotopy-Initial Algebras Kristina Sojakova CMU-CS-16-125 August 2016 School of Computer Science Carnegie Mellon University...talk at the Workshop on Logic, Language, Information and Computation (WoLLIC 2011). 1, 2.1 [38] M. Warren. Homotopy-Theoretic Aspects of Constructive Type Theory. PhD thesis, Carnegie Mellon University, 2008. 1 143
ERIC Educational Resources Information Center
Gasyna, Zbigniew L.
2008-01-01
Computational experiment is proposed in which a linear algebra method is applied to the solution of the Schrodinger equation for a diatomic oscillator. Calculations of the vibration-rotation spectrum for the HCl molecule are presented and the results show excellent agreement with experimental data. (Contains 1 table and 1 figure.)
An algebraic interpretation of PSP composition.
Vaucher, G
1998-01-01
The introduction of time in artificial neurons is a delicate problem on which many groups are working. Our approach combines some properties of biological models and the algebraic properties of McCulloch and Pitts artificial neuron (AN) (McCulloch and Pitts, 1943) to produce a new model which links both characteristics. In this extended artificial neuron, postsynaptic potentials (PSPs) are considered as numerical elements, having two degrees of freedom, on which the neuron computes operations. Modelled in this manner, a group of neurons can be seen as a computer with an asynchronous architecture. To formalize the functioning of this computer, we propose an algebra of impulses. This approach might also be interesting in the modelling of the passive electrical properties in some biological neurons.
NASA Technical Reports Server (NTRS)
Jain, A.; Man, G. K.
1993-01-01
This paper describes the Dynamics Algorithms for Real-Time Simulation (DARTS) real-time hardware-in-the-loop dynamics simulator for the National Aeronautics and Space Administration's Cassini spacecraft. The spacecraft model consists of a central flexible body with a number of articulated rigid-body appendages. The demanding performance requirements from the spacecraft control system require the use of a high fidelity simulator for control system design and testing. The DARTS algorithm provides a new algorithmic and hardware approach to the solution of this hardware-in-the-loop simulation problem. It is based upon the efficient spatial algebra dynamics for flexible multibody systems. A parallel and vectorized version of this algorithm is implemented on a low-cost, multiprocessor computer to meet the simulation timing requirements.
Optical systolic solutions of linear algebraic equations
NASA Technical Reports Server (NTRS)
Neuman, C. P.; Casasent, D.
1984-01-01
The philosophy and data encoding possible in systolic array optical processor (SAOP) were reviewed. The multitude of linear algebraic operations achievable on this architecture is examined. These operations include such linear algebraic algorithms as: matrix-decomposition, direct and indirect solutions, implicit and explicit methods for partial differential equations, eigenvalue and eigenvector calculations, and singular value decomposition. This architecture can be utilized to realize general techniques for solving matrix linear and nonlinear algebraic equations, least mean square error solutions, FIR filters, and nested-loop algorithms for control engineering applications. The data flow and pipelining of operations, design of parallel algorithms and flexible architectures, application of these architectures to computationally intensive physical problems, error source modeling of optical processors, and matching of the computational needs of practical engineering problems to the capabilities of optical processors are emphasized.
Hine, N D M; Haynes, P D; Mostofi, A A; Payne, M C
2010-09-21
We present calculations of formation energies of defects in an ionic solid (Al(2)O(3)) extrapolated to the dilute limit, corresponding to a simulation cell of infinite size. The large-scale calculations required for this extrapolation are enabled by developments in the approach to parallel sparse matrix algebra operations, which are central to linear-scaling density-functional theory calculations. The computational cost of manipulating sparse matrices, whose sizes are determined by the large number of basis functions present, is greatly improved with this new approach. We present details of the sparse algebra scheme implemented in the ONETEP code using hierarchical sparsity patterns, and demonstrate its use in calculations on a wide range of systems, involving thousands of atoms on hundreds to thousands of parallel processes.
Exact solution of some linear matrix equations using algebraic methods
NASA Technical Reports Server (NTRS)
Djaferis, T. E.; Mitter, S. K.
1979-01-01
Algebraic methods are used to construct the exact solution P of the linear matrix equation PA + BP = - C, where A, B, and C are matrices with real entries. The emphasis of this equation is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The paper is divided into six sections which include the proof of the basic lemma, the Liapunov equation, and the computer implementation for the rational, integer and modular algorithms. Two numerical examples are given and the entire calculation process is depicted.
Multiple-block grid adaption for an airplane geometry
NASA Technical Reports Server (NTRS)
Abolhassani, Jamshid Samareh; Smith, Robert E.
1988-01-01
Grid-adaption methods are developed with the capability of moving grid points in accordance with several variables for a three-dimensional multiple-block grid system. These methods are algebraic, and they are implemented for the computation of high-speed flow over an airplane configuration.
A high-accuracy optical linear algebra processor for finite element applications
NASA Technical Reports Server (NTRS)
Casasent, D.; Taylor, B. K.
1984-01-01
Optical linear processors are computationally efficient computers for solving matrix-matrix and matrix-vector oriented problems. Optical system errors limit their dynamic range to 30-40 dB, which limits their accuray to 9-12 bits. Large problems, such as the finite element problem in structural mechanics (with tens or hundreds of thousands of variables) which can exploit the speed of optical processors, require the 32 bit accuracy obtainable from digital machines. To obtain this required 32 bit accuracy with an optical processor, the data can be digitally encoded, thereby reducing the dynamic range requirements of the optical system (i.e., decreasing the effect of optical errors on the data) while providing increased accuracy. This report describes a new digitally encoded optical linear algebra processor architecture for solving finite element and banded matrix-vector problems. A linear static plate bending case study is described which quantities the processor requirements. Multiplication by digital convolution is explained, and the digitally encoded optical processor architecture is advanced.
Numerical evaluation of mobile robot navigation in static indoor environment via EGAOR Iteration
NASA Astrophysics Data System (ADS)
Dahalan, A. A.; Saudi, A.; Sulaiman, J.; Din, W. R. W.
2017-09-01
One of the key issues in mobile robot navigation is the ability for the robot to move from an arbitrary start location to a specified goal location without colliding with any obstacles while traveling, also known as mobile robot path planning problem. In this paper, however, we examined the performance of a robust searching algorithm that relies on the use of harmonic potentials of the environment to generate smooth and safe path for mobile robot navigation in a static known indoor environment. The harmonic potentials will be discretized by using Laplacian’s operator to form a system of algebraic approximation equations. This algebraic linear system will be computed via 4-Point Explicit Group Accelerated Over-Relaxation (4-EGAOR) iterative method for rapid computation. The performance of the proposed algorithm will then be compared and analyzed against the existing algorithms in terms of number of iterations and execution time. The result shows that the proposed algorithm performed better than the existing methods.
Efficient computer algebra algorithms for polynomial matrices in control design
NASA Technical Reports Server (NTRS)
Baras, J. S.; Macenany, D. C.; Munach, R.
1989-01-01
The theory of polynomial matrices plays a key role in the design and analysis of multi-input multi-output control and communications systems using frequency domain methods. Examples include coprime factorizations of transfer functions, cannonical realizations from matrix fraction descriptions, and the transfer function design of feedback compensators. Typically, such problems abstract in a natural way to the need to solve systems of Diophantine equations or systems of linear equations over polynomials. These and other problems involving polynomial matrices can in turn be reduced to polynomial matrix triangularization procedures, a result which is not surprising given the importance of matrix triangularization techniques in numerical linear algebra. Matrices with entries from a field and Gaussian elimination play a fundamental role in understanding the triangularization process. In the case of polynomial matrices, matrices with entries from a ring for which Gaussian elimination is not defined and triangularization is accomplished by what is quite properly called Euclidean elimination. Unfortunately, the numerical stability and sensitivity issues which accompany floating point approaches to Euclidean elimination are not very well understood. New algorithms are presented which circumvent entirely such numerical issues through the use of exact, symbolic methods in computer algebra. The use of such error-free algorithms guarantees that the results are accurate to within the precision of the model data--the best that can be hoped for. Care must be taken in the design of such algorithms due to the phenomenon of intermediate expressions swell.
ERIC Educational Resources Information Center
Fonger, Nicole L.
2012-01-01
Representational fluency (RF) includes an ability to interpret, create, move within and among, and connect tool-based representations of mathematical objects. Taken as an indicator of conceptual understanding, there is a need to better support school algebra students' RF in learning environments that utilize both computer algebra systems…
Inequalities, assessment and computer algebra
NASA Astrophysics Data System (ADS)
Sangwin, Christopher J.
2015-01-01
The goal of this paper is to examine single variable real inequalities that arise as tutorial problems and to examine the extent to which current computer algebra systems (CAS) can (1) automatically solve such problems and (2) determine whether students' own answers to such problems are correct. We review how inequalities arise in contemporary curricula. We consider the formal mathematical processes by which such inequalities are solved, and we consider the notation and syntax through which solutions are expressed. We review the extent to which current CAS can accurately solve these inequalities, and the form given to the solutions by the designers of this software. Finally, we discuss the functionality needed to deal with students' answers, i.e. to establish equivalence (or otherwise) of expressions representing unions of intervals. We find that while contemporary CAS accurately solve inequalities there is a wide variety of notation used.
Cierniak, Robert; Lorent, Anna
2016-09-01
The main aim of this paper is to investigate properties of our originally formulated statistical model-based iterative approach applied to the image reconstruction from projections problem which are related to its conditioning, and, in this manner, to prove a superiority of this approach over ones recently used by other authors. The reconstruction algorithm based on this conception uses a maximum likelihood estimation with an objective adjusted to the probability distribution of measured signals obtained from an X-ray computed tomography system with parallel beam geometry. The analysis and experimental results presented here show that our analytical approach outperforms the referential algebraic methodology which is explored widely in the literature and exploited in various commercial implementations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Efficient and Robust Optimization for Building Energy Simulation
Pourarian, Shokouh; Kearsley, Anthony; Wen, Jin; Pertzborn, Amanda
2016-01-01
Efficiently, robustly and accurately solving large sets of structured, non-linear algebraic and differential equations is one of the most computationally expensive steps in the dynamic simulation of building energy systems. Here, the efficiency, robustness and accuracy of two commonly employed solution methods are compared. The comparison is conducted using the HVACSIM+ software package, a component based building system simulation tool. The HVACSIM+ software presently employs Powell’s Hybrid method to solve systems of nonlinear algebraic equations that model the dynamics of energy states and interactions within buildings. It is shown here that the Powell’s method does not always converge to a solution. Since a myriad of other numerical methods are available, the question arises as to which method is most appropriate for building energy simulation. This paper finds considerable computational benefits result from replacing the Powell’s Hybrid method solver in HVACSIM+ with a solver more appropriate for the challenges particular to numerical simulations of buildings. Evidence is provided that a variant of the Levenberg-Marquardt solver has superior accuracy and robustness compared to the Powell’s Hybrid method presently used in HVACSIM+. PMID:27325907
Efficient and Robust Optimization for Building Energy Simulation.
Pourarian, Shokouh; Kearsley, Anthony; Wen, Jin; Pertzborn, Amanda
2016-06-15
Efficiently, robustly and accurately solving large sets of structured, non-linear algebraic and differential equations is one of the most computationally expensive steps in the dynamic simulation of building energy systems. Here, the efficiency, robustness and accuracy of two commonly employed solution methods are compared. The comparison is conducted using the HVACSIM+ software package, a component based building system simulation tool. The HVACSIM+ software presently employs Powell's Hybrid method to solve systems of nonlinear algebraic equations that model the dynamics of energy states and interactions within buildings. It is shown here that the Powell's method does not always converge to a solution. Since a myriad of other numerical methods are available, the question arises as to which method is most appropriate for building energy simulation. This paper finds considerable computational benefits result from replacing the Powell's Hybrid method solver in HVACSIM+ with a solver more appropriate for the challenges particular to numerical simulations of buildings. Evidence is provided that a variant of the Levenberg-Marquardt solver has superior accuracy and robustness compared to the Powell's Hybrid method presently used in HVACSIM+.
Spatial-Operator Algebra For Flexible-Link Manipulators
NASA Technical Reports Server (NTRS)
Jain, Abhinandan; Rodriguez, Guillermo
1994-01-01
Method of computing dynamics of multiple-flexible-link robotic manipulators based on spatial-operator algebra, which originally applied to rigid-link manipulators. Aspects of spatial-operator-algebra approach described in several previous articles in NASA Tech Briefs-most recently "Robot Control Based on Spatial-Operator Algebra" (NPO-17918). In extension of spatial-operator algebra to manipulators with flexible links, each link represented by finite-element model: mass of flexible link apportioned among smaller, lumped-mass rigid bodies, coupling of motions expressed in terms of vibrational modes. This leads to operator expression for modal-mass matrix of link.
Applications: Using Algebra in an Accounting Practice.
ERIC Educational Resources Information Center
Eisner, Gail A.
1994-01-01
Presents examples of algebra from the field of accounting including proportional ownership of stock, separation of a loan payment into principal and interest portions, depreciation methods, and salary withholdings computations. (MKR)
Numerical methods in Markov chain modeling
NASA Technical Reports Server (NTRS)
Philippe, Bernard; Saad, Youcef; Stewart, William J.
1989-01-01
Several methods for computing stationary probability distributions of Markov chains are described and compared. The main linear algebra problem consists of computing an eigenvector of a sparse, usually nonsymmetric, matrix associated with a known eigenvalue. It can also be cast as a problem of solving a homogeneous singular linear system. Several methods based on combinations of Krylov subspace techniques are presented. The performance of these methods on some realistic problems are compared.
The explanation of the twin paradox using Poincare transformation and computer algebra system REDUCE
NASA Astrophysics Data System (ADS)
Hermanto, Arief
2012-06-01
We explain the twin (A and B) paradox using Poincare transformation (as the generalization of Lorentz transformation) in Special Relativity. We want to emphasize the fact that the paradox can really be explained in the context of Special Relativity. The twin A stays at home whereas B makes a round trip. We can still stay in Special Relativity if the non-inertial reference frame of B is in the form of a set of two inertial frames (K1 and K2) moving with different velocities with respect to a fixed inertial reference frame (K0) of A. K1 and K2 are each connected to K0 with Poincare Transformation. We use the CAS (computer algebra system) REDUCE to assist the computation. To make the discussion realistic and simpler we use rational numbers (so that we will get exact computational results) instead of symbols. The important point is that we will show how the fact can be understood by both parties (A and B) by simulating numerically the trip from the points of view of each A and B. A will accept the fact that B is younger and B will also accept the fact that A is older at the reunion. We hope the paradox will thus be explained away satisfactorily.
NASA Astrophysics Data System (ADS)
Saveliev, M. V.; Vershik, A. M.
1989-12-01
We present an axiomatic formulation of a new class of infinitedimensional Lie algebras-the generalizations of Z-graded Lie algebras with, generally speaking, an infinite-dimensional Cartan subalgebra and a contiguous set of roots. We call such algebras “continuum Lie algebras.” The simple Lie algebras of constant growth are encapsulated in our formulation. We pay particular attention to the case when the local algebra is parametrized by a commutative algebra while the Cartan operator (the generalization of the Cartan matrix) is a linear operator. Special examples of these algebras are the Kac-Moody algebras, algebras of Poisson brackets, algebras of vector fields on a manifold, current algebras, and algebras with differential or integro-differential cartan operator. The nonlinear dynamical systems associated with the continuum contragredient Lie algebras are also considered.
ERIC Educational Resources Information Center
Garner, Sue; Pierce, Robyn
2016-01-01
Although research shows that Computer Algebra Systems offer pedagogical opportunities, more than a decade later some teachers are reluctant to change established practices. In 2002, the University of Melbourne in Australia launched a research project to investigate implementation of a senior mathematics course in which students could use a…
CAS as Environments for Implementing Mathematical Microworlds.
ERIC Educational Resources Information Center
Alpers, Burkhard
2002-01-01
Investigates whether computer algebra systems (CAS) are suitable environments for implementing mathematical microworlds. Recalls what constitutes a microworld and explores how CAS can be used for implementation, stating potentials as well as limitations. Provides as an example the microworld "Formula 1", implemented in Maple Software. (Author/KHR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meurer, Aaron; Smith, Christopher P.; Paprocki, Mateusz
Here, SymPy is a full featured computer algebra system (CAS) written in the Python programming language. It is open source, being licensed under the extremely permissive 3-clause BSD license. SymPy was started by Ondrej Certik in 2005, and it has since grown into a large open source project, with over 500 contributors.
Fu, Jian; Hu, Xinhua; Velroyen, Astrid; Bech, Martin; Jiang, Ming; Pfeiffer, Franz
2015-01-01
Due to the potential of compact imaging systems with magnified spatial resolution and contrast, cone-beam x-ray differential phase-contrast computed tomography (DPC-CT) has attracted significant interest. The current proposed FDK reconstruction algorithm with the Hilbert imaginary filter will induce severe cone-beam artifacts when the cone-beam angle becomes large. In this paper, we propose an algebraic iterative reconstruction (AIR) method for cone-beam DPC-CT and report its experiment results. This approach considers the reconstruction process as the optimization of a discrete representation of the object function to satisfy a system of equations that describes the cone-beam DPC-CT imaging modality. Unlike the conventional iterative algorithms for absorption-based CT, it involves the derivative operation to the forward projections of the reconstructed intermediate image to take into account the differential nature of the DPC projections. This method is based on the algebraic reconstruction technique, reconstructs the image ray by ray, and is expected to provide better derivative estimates in iterations. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured with a three-grating interferometer and a mini-focus x-ray tube source. It is shown that the proposed method can reduce the cone-beam artifacts and performs better than FDK under large cone-beam angles. This algorithm is of interest for future cone-beam DPC-CT applications.
NASA Technical Reports Server (NTRS)
Klumpp, A. R.; Lawson, C. L.
1988-01-01
Routines provided for common scalar, vector, matrix, and quaternion operations. Computer program extends Ada programming language to include linear-algebra capabilities similar to HAS/S programming language. Designed for such avionics applications as software for Space Station.
Optimal control in a model of malaria with differential susceptibility
NASA Astrophysics Data System (ADS)
Hincapié, Doracelly; Ospina, Juan
2014-06-01
A malaria model with differential susceptibility is analyzed using the optimal control technique. In the model the human population is classified as susceptible, infected and recovered. Susceptibility is assumed dependent on genetic, physiological, or social characteristics that vary between individuals. The model is described by a system of differential equations that relate the human and vector populations, so that the infection is transmitted to humans by vectors, and the infection is transmitted to vectors by humans. The model considered is analyzed using the optimal control method when the control consists in using of insecticide-treated nets and educational campaigns; and the optimality criterion is to minimize the number of infected humans, while keeping the cost as low as is possible. One first goal is to determine the effects of differential susceptibility in the proposed control mechanism; and the second goal is to determine the algebraic form of the basic reproductive number of the model. All computations are performed using computer algebra, specifically Maple. It is claimed that the analytical results obtained are important for the design and implementation of control measures for malaria. It is suggested some future investigations such as the application of the method to other vector-borne diseases such as dengue or yellow fever; and also it is suggested the possible application of free software of computer algebra like Maxima.
Genetic algorithms in teaching artificial intelligence (automated generation of specific algebras)
NASA Astrophysics Data System (ADS)
Habiballa, Hashim; Jendryscik, Radek
2017-11-01
The problem of teaching essential Artificial Intelligence (AI) methods is an important task for an educator in the branch of soft-computing. The key focus is often given to proper understanding of the principle of AI methods in two essential points - why we use soft-computing methods at all and how we apply these methods to generate reasonable results in sensible time. We present one interesting problem solved in the non-educational research concerning automated generation of specific algebras in the huge search space. We emphasize above mentioned points as an educational case study of an interesting problem in automated generation of specific algebras.
ERIC Educational Resources Information Center
Fuchs, Karl Josef; Simonovits, Reinhard; Thaller, Bernd
2008-01-01
This paper describes a high school project where the mathematics teaching and learning software M@th Desktop (MD) based on the Computer Algebra System Mathematica was used for symbolical and numerical calculations and for visualisation. The mathematics teaching and learning software M@th Desktop 2.0 (MD) contains the modules Basics including tools…
Computerized Proof Techniques for Undergraduates
ERIC Educational Resources Information Center
Smith, Christopher J.; Tefera, Akalu; Zeleke, Aklilu
2012-01-01
The use of computer algebra systems such as Maple and Mathematica is becoming increasingly important and widespread in mathematics learning, teaching and research. In this article, we present computerized proof techniques of Gosper, Wilf-Zeilberger and Zeilberger that can be used for enhancing the teaching and learning of topics in discrete…
Enhancing Undergraduate Mathematics Curriculum via Coding Theory and Cryptography
ERIC Educational Resources Information Center
Aydin, Nuh
2009-01-01
The theory of error-correcting codes and cryptography are two relatively recent applications of mathematics to information and communication systems. The mathematical tools used in these fields generally come from algebra, elementary number theory, and combinatorics, including concepts from computational complexity. It is possible to introduce the…
Maple Explorations, Perfect Numbers, and Mersenne Primes
ERIC Educational Resources Information Center
Ghusayni, B.
2005-01-01
Some examples from different areas of mathematics are explored to give a working knowledge of the computer algebra system Maple. Perfect numbers and Mersenne primes, which have fascinated people for a very long time and continue to do so, are studied using Maple and some questions are posed that still await answers.
Using Matlab in a Multivariable Calculus Course.
ERIC Educational Resources Information Center
Schlatter, Mark D.
The benefits of high-level mathematics packages such as Matlab include both a computer algebra system and the ability to provide students with concrete visual examples. This paper discusses how both capabilities of Matlab were used in a multivariate calculus class. Graphical user interfaces which display three-dimensional surfaces, contour plots,…
Dynamic Programming: An Introduction by Example
ERIC Educational Resources Information Center
Zietz, Joachim
2007-01-01
The author introduces some basic dynamic programming techniques, using examples, with the help of the computer algebra system "Maple". The emphasis is on building confidence and intuition for the solution of dynamic problems in economics. To integrate the material better, the same examples are used to introduce different techniques. One covers the…
Explicating Mathematical Thinking in Differential Equations Using a Computer Algebra System
ERIC Educational Resources Information Center
Zeynivandnezhad, Fereshteh; Bates, Rachel
2018-01-01
The importance of developing students' mathematical thinking is frequently highlighted in literature regarding the teaching and learning of mathematics. Despite this importance, most curricula and instructional activities for undergraduate mathematics fail to bring the learner beyond the mathematics. The purpose of this study was to enhance…
ERIC Educational Resources Information Center
Garner, Sue
2004-01-01
The Victorian Curriculum and Assessment Authority (VCAA) Computer Algebra System (CAS)Pilot study (2001-2005) is monitoring the use of CAS in senior secondary mathematics. This article explores the author's experiences in the CAS classroom and delineates changes in teaching style, as a result of the introduction of CAS into the senior mathematics…
NASA Astrophysics Data System (ADS)
Angeli, C.; Cimiraglia, R.
2013-02-01
A symbolic program performing the Formal Reduction of Density Operators (FRODO), formerly developed in the MuPAD computer algebra system with the purpose of evaluating the matrix elements of the electronic Hamiltonian between internally contracted functions in a complete active space (CAS) scheme, has been rewritten in Mathematica. New version : A program summaryProgram title: FRODO Catalogue identifier: ADV Y _v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVY_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3878 No. of bytes in distributed program, including test data, etc.: 170729 Distribution format: tar.gz Programming language: Mathematica Computer: Any computer on which the Mathematica computer algebra system can be installed Operating system: Linux Classification: 5 Catalogue identifier of previous version: ADV Y _v1_0 Journal reference of previous version: Comput. Phys. Comm. 171(2005)63 Does the new version supersede the previous version?: No Nature of problem. In order to improve on the CAS-SCF wavefunction one can resort to multireference perturbation theory or configuration interaction based on internally contracted functions (ICFs) which are obtained by application of the excitation operators to the reference CAS-SCF wavefunction. The previous formulation of such matrix elements in the MuPAD computer algebra system, has been rewritten using Mathematica. Solution method: The method adopted consists in successively eliminating all occurrences of inactive orbital indices (core and virtual) from the products of excitation operators which appear in the definition of the ICFs and in the electronic Hamiltonian expressed in the second quantization formalism. Reasons for new version: Some years ago we published in this journal a couple of papers [1, 2] hereafter to be referred to as papers I and II, respectively dedicated to the automated evaluation of the matrix elements of the molecular electronic Hamiltonian between internally contracted functions [3] (ICFs). In paper II the program FRODO (after Formal Reduction Of Density Operators) was presented with the purpose of providing working formulas for each occurrence of the ICFs. The original FRODO program was written in the MuPAD computer algebra system [4] and was actively used in our group for the generation of the matrix elements to be employed in the third-order n-electron valence state perturbation theory (NEVPT) [5-8] as well as in the internally contracted configuration interaction (IC-CI) [9]. We present a new version of the program FRODO written in the Mathematica system [10]. The reason for the rewriting of the program lies in the fact that, on the one hand, MuPAD does not seem to be any longer available as a stand-alone system and, on the other hand, Mathematica, due to its ubiquitousness, appears to be increasingly the computer algebra system most widely used nowadays. Restrictions: The program is limited to no more than doubly excited ICFs. Running time: The examples described in the Readme file take a few seconds to run. References: [1] C. Angeli, R. Cimiraglia, Comp. Phys. Comm. 166 (2005) 53. [2] C. Angeli, R. Cimiraglia, Comp. Phys. Comm. 171 (2005) 63. [3] H.-J. Werner, P. J. Knowles, Adv. Chem. Phys. 89 (1988) 5803. [4] B. Fuchssteiner, W. Oevel: http://www.mupad.de Mupad research group, university of Paderborn. Mupad version 2.5.3 for Linux. [5] C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger, J.-P. Malrieu, J. Chem. Phys. 114 (2001) 10252. [6] C. Angeli, R. Cimiraglia, J.-P. Malrieu, J. Chem. Phys. 117 (2002) 9138. [7] C. Angeli, B. Bories, A. Cavallini, R. Cimiraglia, J. Chem. Phys. 124 (2006) 054108. [8] C. Angeli, M. Pastore, R. Cimiraglia, Theor. Chem. Acc. 117 (2007) 743. [9] C. Angeli, R. Cimiraglia, Mol. Phys. in press, DOI:10.1080/00268976.2012.689872 [10] http://www.wolfram.com/Mathematica. Mathematica version 8 for Linux.
NASA Astrophysics Data System (ADS)
Man, Yiu-Kwong
2010-10-01
In this communication, we present a method for computing the Liouvillian solution of second-order linear differential equations via algebraic invariant curves. The main idea is to integrate Kovacic's results on second-order linear differential equations with the Prelle-Singer method for computing first integrals of differential equations. Some examples on using this approach are provided.
Computer Aided Instruction for a Course in Boolean Algebra and Logic Design. Final Report (Revised).
ERIC Educational Resources Information Center
Roy, Rob
The use of computers to prepare deficient college and graduate students for courses that build upon previously acquired information would solve the growing problem of professors who must spend up to one third of their class time in review of material. But examination of students who were taught Boolean Algebra and Logic Design by means of Computer…
Signal Processing for Radar Target Tracking and Identification
1996-12-01
Computes the likelihood for various potential jump moves. 12. matrix_mult.m: Parallel implementation of linear algebra ... Elementary Lineary Algebra with Applications, John Wiley k Sons, Inc., New York, 1987. [9] A. K. Bhattacharyya, and D. L. Sengupta, Radar Cross...Miller, ’Target Tracking and Recognition Using Jump-Diffusion Processes," ARO’s 11th Army Conf. on Applied Mathemat- ics and Computing, June 8-11
Matrix preconditioning: a robust operation for optical linear algebra processors.
Ghosh, A; Paparao, P
1987-07-15
Analog electrooptical processors are best suited for applications demanding high computational throughput with tolerance for inaccuracies. Matrix preconditioning is one such application. Matrix preconditioning is a preprocessing step for reducing the condition number of a matrix and is used extensively with gradient algorithms for increasing the rate of convergence and improving the accuracy of the solution. In this paper, we describe a simple parallel algorithm for matrix preconditioning, which can be implemented efficiently on a pipelined optical linear algebra processor. From the results of our numerical experiments we show that the efficacy of the preconditioning algorithm is affected very little by the errors of the optical system.
Spectral relationships between kicked Harper and on-resonance double kicked rotor operators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawton, Wayne; Mouritzen, Anders S.; Wang Jiao
2009-03-15
Kicked Harper operators and on-resonance double kicked rotor operators model quantum systems whose semiclassical limits exhibit chaotic dynamics. Recent computational studies indicate a striking resemblance between the spectra of these operators. In this paper we apply C*-algebra methods to explain this resemblance. We show that each pair of corresponding operators belongs to a common rotation C*-algebra B{sub {alpha}}, prove that their spectra are equal if {alpha} is irrational, and prove that the Hausdorff distance between their spectra converges to zero as q increases if {alpha}=p/q with p and q coprime integers. Moreover, we show that corresponding operators in B{sub {alpha}}more » are homomorphic images of mother operators in the universal rotation C*-algebra A{sub {alpha}} that are unitarily equivalent and hence have identical spectra. These results extend analogous results for almost Mathieu operators. We also utilize the C*-algebraic framework to develop efficient algorithms to compute the spectra of these mother operators for rational {alpha} and present preliminary numerical results that support the conjecture that their spectra are Cantor sets if {alpha} is irrational. This conjecture for almost Mathieu operators, called the ten Martini problem, was recently proven after intensive efforts over several decades. This proof for the almost Mathieu operators utilized transfer matrix methods, which do not exist for the kicked operators. We outline a strategy, based on a special property of loop groups of semisimple Lie groups, to prove this conjecture for the kicked operators.« less
Robust algebraic image enhancement for intelligent control systems
NASA Technical Reports Server (NTRS)
Lerner, Bao-Ting; Morrelli, Michael
1993-01-01
Robust vision capability for intelligent control systems has been an elusive goal in image processing. The computationally intensive techniques a necessary for conventional image processing make real-time applications, such as object tracking and collision avoidance difficult. In order to endow an intelligent control system with the needed vision robustness, an adequate image enhancement subsystem capable of compensating for the wide variety of real-world degradations, must exist between the image capturing and the object recognition subsystems. This enhancement stage must be adaptive and must operate with consistency in the presence of both statistical and shape-based noise. To deal with this problem, we have developed an innovative algebraic approach which provides a sound mathematical framework for image representation and manipulation. Our image model provides a natural platform from which to pursue dynamic scene analysis, and its incorporation into a vision system would serve as the front-end to an intelligent control system. We have developed a unique polynomial representation of gray level imagery and applied this representation to develop polynomial operators on complex gray level scenes. This approach is highly advantageous since polynomials can be manipulated very easily, and are readily understood, thus providing a very convenient environment for image processing. Our model presents a highly structured and compact algebraic representation of grey-level images which can be viewed as fuzzy sets.
Software for Training in Pre-College Mathematics
NASA Technical Reports Server (NTRS)
Shelton, Robert O.; Moebes, Travis A.; VanAlstine, Scot
2003-01-01
The Intelligent Math Tutor (IMT) is a computer program for training students in pre-college and college-level mathematics courses, including fundamentals, intermediate algebra, college algebra, and trigonometry. The IMT can be executed on a server computer for access by students via the Internet; alternatively, it can be executed on students computers equipped with compact- disk/read-only-memory (CD-ROM) drives. The IMT provides interactive exercises, assessment, tracking, and an on-line graphing calculator with algebraic-manipulation capabilities. The IMT provides an innovative combination of content, delivery mechanism, and artificial intelligence. Careful organization and presentation of the content make it possible to provide intelligent feedback to the student based on performance on exercises and tests. The tracking and feedback mechanisms are implemented within the capabilities of a commercial off-the-shelf development software tool and are written in the Unified Modeling Language to maximize reuse and minimize development cost. The graphical calculator is a standard feature of most college and pre-college algebra and trigonometry courses. Placing this functionality in a Java applet decreases the cost, provides greater capabilities, and provides an opportunity to integrate the calculator with the lessons.
ERIC Educational Resources Information Center
Rice, Bart F.; Wilde, Carroll O.
It is noted that with the prominence of computers in today's technological society, digital communication systems have become widely used in a variety of applications. Some of the problems that arise in digital communications systems are described. This unit presents the problem of correcting errors in such systems. Error correcting codes are…
Continuous analog of multiplicative algebraic reconstruction technique for computed tomography
NASA Astrophysics Data System (ADS)
Tateishi, Kiyoko; Yamaguchi, Yusaku; Abou Al-Ola, Omar M.; Kojima, Takeshi; Yoshinaga, Tetsuya
2016-03-01
We propose a hybrid dynamical system as a continuous analog to the block-iterative multiplicative algebraic reconstruction technique (BI-MART), which is a well-known iterative image reconstruction algorithm for computed tomography. The hybrid system is described by a switched nonlinear system with a piecewise smooth vector field or differential equation and, for consistent inverse problems, the convergence of non-negatively constrained solutions to a globally stable equilibrium is guaranteed by the Lyapunov theorem. Namely, we can prove theoretically that a weighted Kullback-Leibler divergence measure can be a common Lyapunov function for the switched system. We show that discretizing the differential equation by using the first-order approximation (Euler's method) based on the geometric multiplicative calculus leads to the same iterative formula of the BI-MART with the scaling parameter as a time-step of numerical discretization. The present paper is the first to reveal that a kind of iterative image reconstruction algorithm is constructed by the discretization of a continuous-time dynamical system for solving tomographic inverse problems. Iterative algorithms with not only the Euler method but also the Runge-Kutta methods of lower-orders applied for discretizing the continuous-time system can be used for image reconstruction. A numerical example showing the characteristics of the discretized iterative methods is presented.
ERIC Educational Resources Information Center
Bishop, Amy Renee
2010-01-01
The purpose of this research was to determine the effect of computer-based instruction on student mathematics achievement and students' attitudes toward mathematics in developmental and introductory mathematics courses, namely Elementary Algebra, Intermediate Algebra, and College Algebra, at a community college. The researcher also examined the…
Boolean Minimization and Algebraic Factorization Procedures for Fully Testable Sequential Machines
1989-09-01
Boolean Minimization and Algebraic Factorization Procedures for Fully Testable Sequential Machines Srinivas Devadas and Kurt Keutzer F ( Abstract In this...Projects Agency under contract number N00014-87-K-0825. Author Information Devadas : Department of Electrical Engineering and Computer Science, Room 36...MA 02139; (617) 253-0292. 0 * Boolean Minimization and Algebraic Factorization Procedures for Fully Testable Sequential Machines Siivas Devadas
Algebraic model checking for Boolean gene regulatory networks.
Tran, Quoc-Nam
2011-01-01
We present a computational method in which modular and Groebner bases (GB) computation in Boolean rings are used for solving problems in Boolean gene regulatory networks (BN). In contrast to other known algebraic approaches, the degree of intermediate polynomials during the calculation of Groebner bases using our method will never grow resulting in a significant improvement in running time and memory space consumption. We also show how calculation in temporal logic for model checking can be done by means of our direct and efficient Groebner basis computation in Boolean rings. We present our experimental results in finding attractors and control strategies of Boolean networks to illustrate our theoretical arguments. The results are promising. Our algebraic approach is more efficient than the state-of-the-art model checker NuSMV on BNs. More importantly, our approach finds all solutions for the BN problems.
Prime factorization using quantum annealing and computational algebraic geometry
NASA Astrophysics Data System (ADS)
Dridi, Raouf; Alghassi, Hedayat
2017-02-01
We investigate prime factorization from two perspectives: quantum annealing and computational algebraic geometry, specifically Gröbner bases. We present a novel autonomous algorithm which combines the two approaches and leads to the factorization of all bi-primes up to just over 200000, the largest number factored to date using a quantum processor. We also explain how Gröbner bases can be used to reduce the degree of Hamiltonians.
NASA Astrophysics Data System (ADS)
Campoamor-Stursberg, R.
2018-03-01
A procedure for the construction of nonlinear realizations of Lie algebras in the context of Vessiot-Guldberg-Lie algebras of first-order systems of ordinary differential equations (ODEs) is proposed. The method is based on the reduction of invariants and projection of lowest-dimensional (irreducible) representations of Lie algebras. Applications to the description of parameterized first-order systems of ODEs related by contraction of Lie algebras are given. In particular, the kinematical Lie algebras in (2 + 1)- and (3 + 1)-dimensions are realized simultaneously as Vessiot-Guldberg-Lie algebras of parameterized nonlinear systems in R3 and R4, respectively.
NASA Technical Reports Server (NTRS)
Kim, Sang-Wook; Chen, Yen-Sen
1988-01-01
An algebraic stress turbulence model and a computational procedure for turbulent boundary layer flows which is based on the semidiscrete Galerkin FEM are discussed. In the algebraic stress turbulence model, the eddy viscosity expression is obtained from the Reynolds stress turbulence model, and the turbulent kinetic energy dissipation rate equation is improved by including a production range time scale. Good agreement with experimental data is found for the examples of a fully developed channel flow, a fully developed pipe flow, a flat plate boundary layer flow, a plane jet exhausting into a moving stream, a circular jet exhausting into a moving stream, and a wall jet flow.
Redundant binary number representation for an inherently parallel arithmetic on optical computers.
De Biase, G A; Massini, A
1993-02-10
A simple redundant binary number representation suitable for digital-optical computers is presented. By means of this representation it is possible to build an arithmetic with carry-free parallel algebraic sums carried out in constant time and parallel multiplication in log N time. This redundant number representation naturally fits the 2's complement binary number system and permits the construction of inherently parallel arithmetic units that are used in various optical technologies. Some properties of this number representation and several examples of computation are presented.
Weak completions, bornologies and rigid cohomology
NASA Astrophysics Data System (ADS)
Cortiñas, Guillermo; Cuntz, Joachim; Meyer, Ralf; Tamme, Georg
2018-07-01
Let V be a complete discrete valuation ring with residue field k of positive characteristic and with fraction field K of characteristic 0. We clarify the analysis behind the Monsky-Washnitzer completion of a commutative V-algebra using completions of bornological V-algebras. This leads us to a functorial chain complex for a finitely generated commutative algebra over the residue field k that computes its rigid cohomology in the sense of Berthelot.
Equivalent Expressions Using CAS and Paper-and-Pencil Techniques
ERIC Educational Resources Information Center
Fonger, Nicole L.
2014-01-01
How can the key concept of equivalent expressions be addressed so that students strengthen their representational fluency with symbols, graphs, and numbers? How can research inform the synergistic use of both paper-and-pencil analysis and computer algebra systems (CAS) in a classroom learning environment? These and other related questions have…
Assisting Students' Cognitive Strategies with the Use of CAS
ERIC Educational Resources Information Center
Sarvari, Csaba; Lavicza, Zsolt; Klincsik, Mihaly
2010-01-01
This paper examines various cognitive strategies applied while CAS (Computer Algebra System) are used in undergraduate-level engineering mathematics teaching and learning. We posed some questions in relation to such CAS use: What kind of tools can CAS offer to enhance different cognitive strategies of students? How can the use of CAS widen the…
Teaching Calculus with Wolfram|Alpha
ERIC Educational Resources Information Center
Dimiceli, Vincent E.; Lang, Andrew S. I. D.; Locke, LeighAnne
2010-01-01
This article describes the benefits and drawbacks of using Wolfram|Alpha as the platform for teaching calculus concepts in the lab setting. It is a result of our experiences designing and creating an entirely new set of labs using Wolfram|Alpha. We present the reasoning behind our transition from using a standard computer algebra system (CAS) to…
The Didactical Contract Surrounding CAS When Changing Teachers in the Classroom
ERIC Educational Resources Information Center
Jankvist, Uffe Thomas; Misfeldt, Morten; Marcussen, Anders
2016-01-01
The article discusses three empirical examples of Computer Algebra System (CAS) use in a Danish upper secondary school mathematics class that had experienced a recent change of teacher. All examples lead to didactical problems surrounding the situation and unclear expectations between teacher and students, involving loss of students' mathematical…
ERIC Educational Resources Information Center
Ocal, Mehmet Fatih
2017-01-01
Integrating the properties of computer algebra systems and dynamic geometry environments, Geogebra became an effective and powerful tool for teaching and learning mathematics. One of the reasons that teachers use Geogebra in mathematics classrooms is to make students learn mathematics meaningfully and conceptually. From this perspective, the…
CATO--A Guided User Interface for Different CAS
ERIC Educational Resources Information Center
Janetzko, Hans-Dieter
2017-01-01
CATO is a new user interface, written in Java and developed by the author as a response to the significant difficulties faced by students who only sporadically use computer algebra systems (CAS). The usage of CAS in mathematical lectures should be an integral part of mathematical instruction. However, difficulties arise for those students who have…
Problem Solving in Calculus with Symbolic Geometry and CAS
ERIC Educational Resources Information Center
Todd, Philip; Wiechmann, James
2008-01-01
Computer algebra systems (CAS) have been around for a number of years, as has dynamic geometry. Symbolic geometry software is new. It bears a superficial similarity to dynamic geometry software, but differs in that problems may be set up involving symbolic variables and constants, and measurements are given as symbolic expressions. Mathematical…
The New Technologies in Mathematics: A Personal History of 30 Years
ERIC Educational Resources Information Center
de la Villa, Agustín; García, Alfonsa; García, Francisco; Rodríguez, Gerardo
2017-01-01
A personal overview about the use of new technologies for teaching and learning mathematics is given in this paper. We analyse the introduction of Computer Algebra Systems with learning purposes, reviewing different frameworks and didactical resources, some of them generated according the philosophy of the European Area of Higher Education.…
CAS-Induced Difficulties in Learning Mathematics?
ERIC Educational Resources Information Center
Jankvist, Uffe Thomas; Misfeldt, Morten
2015-01-01
In recent years computer algebra systems (CAS) have become an integrated part of the upper secondary school mathematics program. Despite the many positive possibilities of CAS, there also seems to be a flip side of the coin in relation to actual difficulties in learning mathematics, not least because a strong dependence on CAS for mathematical…
Pre Service Teachers' Usage of Dynamic Mathematics Software
ERIC Educational Resources Information Center
Bulut, Mehmet; Bulut, Neslihan
2011-01-01
Aim of this study is about mathematics education and dynamic mathematics software. Dynamic mathematics software provides new opportunities for using both computer algebra system and dynamic geometry software. GeoGebra selected as dynamic mathematics software in this research. In this study, it is investigated that what is the usage of pre service…
Introduction to Mathematica® for Physicists
NASA Astrophysics Data System (ADS)
Grozin, Andrey
We were taught at calculus classes that integration is an art, not a science (in contrast to differentiation—even a monkey can be trained to take derivatives). And we were taught wrong. The Risch algorithm (which is known for decades) allows one to find, in a finite number of steps, if a given indefinite integral can be taken in elementary functions, and if so, to calculate it. This algorithm has been constructed in works by an American mathematician Risch near 1970; many cases were not analyzed completely in these works and were later considered by other mathematicians. The algorithm is very complicated, and no computer algebra system implements it fully. Its implementation in Mathematica is rather complete, even with extensions to some classes of special functions, but details are not publicly known. Strictly speaking, it is not quite an algorithm, because it contains algorithmically unsolvable subproblems, such as finding out if a given combination of elementary functions vanishes. But in practice computer algebra systems are quite good in solving such problems. Here we shall consider, at a very elementary level, the main ideas of the Risch algorithm; see [16] for more details.
A Second Order Semi-Discrete Cosserat Rod Model Suitable for Dynamic Simulations in Real Time
NASA Astrophysics Data System (ADS)
Lang, Holger; Linn, Joachim
2009-09-01
We present an alternative approach for a semi-discrete viscoelastic Cosserat rod model that allows both fast dynamic computations within milliseconds and accurate results compared to detailed finite element solutions. The model is able to represent extension, shearing, bending and torsion. For inner dissipation, a consistent damping potential from Antman is chosen. The continuous equations of motion, which consist a system of nonlinear hyperbolic partial differential algebraic equations, are derived from a two dimensional variational principle. The semi-discrete balance equations are obtained by spatial finite difference schemes on a staggered grid and standard index reduction techniques. The right-hand side of the model and its Jacobian can be chosen free of higher algebraic (e.g. root) or transcendent (e.g. trigonometric or exponential) functions and is therefore extremely cheap to evaluate numerically. For the time integration of the system, we use well established stiff solvers. As our model yields computational times within milliseconds, it is suitable for interactive manipulation. It reflects structural mechanics solutions sufficiently correct, as comparison with detailed finite element results shows.
- XSUMMER- Transcendental functions and symbolic summation in FORM
NASA Astrophysics Data System (ADS)
Moch, S.; Uwer, P.
2006-05-01
Harmonic sums and their generalizations are extremely useful in the evaluation of higher-order perturbative corrections in quantum field theory. Of particular interest have been the so-called nested sums, where the harmonic sums and their generalizations appear as building blocks, originating for example, from the expansion of generalized hypergeometric functions around integer values of the parameters. In this paper we discuss the implementation of several algorithms to solve these sums by algebraic means, using the computer algebra system FORM. Program summaryTitle of program:XSUMMER Catalogue identifier:ADXQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXQ_v1_0 Program obtainable from:CPC Program Library, Queen's University of Belfast, N. Ireland License:GNU Public License and FORM License Computers:all Operating system:all Program language:FORM Memory required to execute:Depending on the complexity of the problem, recommended at least 64 MB RAM No. of lines in distributed program, including test data, etc.:9854 No. of bytes in distributed program, including test data, etc.:126 551 Distribution format:tar.gz Other programs called:none External files needed:none Nature of the physical problem:Systematic expansion of higher transcendental functions in a small parameter. The expansions arise in the calculation of loop integrals in perturbative quantum field theory. Method of solution:Algebraic manipulations of nested sums. Restrictions on complexity of the problem:Usually limited only by the available disk space. Typical running time:Dependent on the complexity of the problem.
On an example of a system of differential equations that are integrated in Abelian functions
NASA Astrophysics Data System (ADS)
Malykh, M. D.; Sevastianov, L. A.
2017-12-01
The short review of the theory of Abelian functions and its applications in mechanics and analytical theory of differential equations is given. We think that Abelian functions are the natural generalization of commonly used functions because if the general solution of the 2nd order differential equation depends algebraically on the constants of integration, then integrating this equation does not lead out of the realm of commonly used functions complemented by the Abelian functions (Painlevé theorem). We present a relatively simple example of a dynamical system that is integrated in Abelian integrals by “pairing” two copies of a hyperelliptic curve. Unfortunately, initially simple formulas unfold into very long ones. Apparently the theory of Abelian functions hasn’t been finished in the last century because without computer algebra systems it was impossible to complete the calculations to the end. All calculations presented in our report are performed in Sage.
Metrics for Labeled Markov Systems
NASA Technical Reports Server (NTRS)
Desharnais, Josee; Jagadeesan, Radha; Gupta, Vineet; Panangaden, Prakash
1999-01-01
Partial Labeled Markov Chains are simultaneously generalizations of process algebra and of traditional Markov chains. They provide a foundation for interacting discrete probabilistic systems, the interaction being synchronization on labels as in process algebra. Existing notions of process equivalence are too sensitive to the exact probabilities of various transitions. This paper addresses contextual reasoning principles for reasoning about more robust notions of "approximate" equivalence between concurrent interacting probabilistic systems. The present results indicate that:We develop a family of metrics between partial labeled Markov chains to formalize the notion of distance between processes. We show that processes at distance zero are bisimilar. We describe a decision procedure to compute the distance between two processes. We show that reasoning about approximate equivalence can be done compositionally by showing that process combinators do not increase distance. We introduce an asymptotic metric to capture asymptotic properties of Markov chains; and show that parallel composition does not increase asymptotic distance.
Prime factorization using quantum annealing and computational algebraic geometry
Dridi, Raouf; Alghassi, Hedayat
2017-01-01
We investigate prime factorization from two perspectives: quantum annealing and computational algebraic geometry, specifically Gröbner bases. We present a novel autonomous algorithm which combines the two approaches and leads to the factorization of all bi-primes up to just over 200000, the largest number factored to date using a quantum processor. We also explain how Gröbner bases can be used to reduce the degree of Hamiltonians. PMID:28220854
NASA Astrophysics Data System (ADS)
Ablinger, J.; Behring, A.; Blümlein, J.; De Freitas, A.; von Manteuffel, A.; Schneider, C.
2016-05-01
Three loop ladder and V-topology diagrams contributing to the massive operator matrix element AQg are calculated. The corresponding objects can all be expressed in terms of nested sums and recurrences depending on the Mellin variable N and the dimensional parameter ε. Given these representations, the desired Laurent series expansions in ε can be obtained with the help of our computer algebra toolbox. Here we rely on generalized hypergeometric functions and Mellin-Barnes representations, on difference ring algorithms for symbolic summation, on an optimized version of the multivariate Almkvist-Zeilberger algorithm for symbolic integration, and on new methods to calculate Laurent series solutions of coupled systems of differential equations. The solutions can be computed for general coefficient matrices directly for any basis also performing the expansion in the dimensional parameter in case it is expressible in terms of indefinite nested product-sum expressions. This structural result is based on new results of our difference ring theory. In the cases discussed we deal with iterative sum- and integral-solutions over general alphabets. The final results are expressed in terms of special sums, forming quasi-shuffle algebras, such as nested harmonic sums, generalized harmonic sums, and nested binomially weighted (cyclotomic) sums. Analytic continuations to complex values of N are possible through the recursion relations obeyed by these quantities and their analytic asymptotic expansions. The latter lead to a host of new constants beyond the multiple zeta values, the infinite generalized harmonic and cyclotomic sums in the case of V-topologies.
The general symmetry algebra structure of the underdetermined equation ux=(vxx)2
NASA Astrophysics Data System (ADS)
Kersten, Paul H. M.
1991-08-01
In a recent paper, Anderson, Kamran, and Olver [``Interior, exterior, and generalized symmetries,'' preprint (1990)] obtained the first- and second-order generalized symmetry algebra for the system ux=(vxx)2, leading to the noncompact real form of the exceptional Lie algebra G2. Here, the structure of the general higher-order symmetry algebra is obtained. Moreover, the Lie algebra G2 is obtained as ordinary symmetry algebra of the associated first-order system. The general symmetry algebra for ux=f(u,v,vx,...,) is established also.
Mapping chemicals in air using an environmental CAT scanning system: evaluation of algorithms
NASA Astrophysics Data System (ADS)
Samanta, A.; Todd, L. A.
A new technique is being developed which creates near real-time maps of chemical concentrations in air for environmental and occupational environmental applications. This technique, we call Environmental CAT Scanning, combines the real-time measuring technique of open-path Fourier transform infrared spectroscopy with the mapping capabilitites of computed tomography to produce two-dimensional concentration maps. With this system, a network of open-path measurements is obtained over an area; measurements are then processed using a tomographic algorithm to reconstruct the concentrations. This research focussed on the process of evaluating and selecting appropriate reconstruction algorithms, for use in the field, by using test concentration data from both computer simultation and laboratory chamber studies. Four algorithms were tested using three types of data: (1) experimental open-path data from studies that used a prototype opne-path Fourier transform/computed tomography system in an exposure chamber; (2) synthetic open-path data generated from maps created by kriging point samples taken in the chamber studies (in 1), and; (3) synthetic open-path data generated using a chemical dispersion model to create time seires maps. The iterative algorithms used to reconstruct the concentration data were: Algebraic Reconstruction Technique without Weights (ART1), Algebraic Reconstruction Technique with Weights (ARTW), Maximum Likelihood with Expectation Maximization (MLEM) and Multiplicative Algebraic Reconstruction Technique (MART). Maps were evaluated quantitatively and qualitatively. In general, MART and MLEM performed best, followed by ARTW and ART1. However, algorithm performance varied under different contaminant scenarios. This study showed the importance of using a variety of maps, particulary those generated using dispersion models. The time series maps provided a more rigorous test of the algorithms and allowed distinctions to be made among the algorithms. A comprehensive evaluation of algorithms, for the environmental application of tomography, requires the use of a battery of test concentration data before field implementation, which models reality and tests the limits of the algorithms.
On genera of curves from high-loop generalized unitarity cuts
NASA Astrophysics Data System (ADS)
Huang, Rijun; Zhang, Yang
2013-04-01
Generalized unitarity cut of a Feynman diagram generates an algebraic system of polynomial equations. At high-loop levels, these equations may define a complex curve or a (hyper-)surface with complicated topology. We study the curve cases, i.e., a 4-dimensional L-loop diagram with (4 L-1) cuts. The topology of a complex curve is classified by its genus. Hence in this paper, we use computational algebraic geometry to calculate the genera of curves from two and three-loop unitarity cuts. The global structure of degenerate on-shell equations under some specific kinematic configurations is also sketched. The genus information can also be used to judge if a unitary cut solution could be rationally parameterized.
On recent advances and future research directions for computational fluid dynamics
NASA Technical Reports Server (NTRS)
Baker, A. J.; Soliman, M. O.; Manhardt, P. D.
1986-01-01
This paper highlights some recent accomplishments regarding CFD numerical algorithm constructions for generation of discrete approximate solutions to classes of Reynolds-averaged Navier-Stokes equations. Following an overview of turbulent closure modeling, and development of appropriate conservation law systems, a Taylor weak-statement semi-discrete approximate solution algorithm is developed. Various forms for completion to the final linear algebra statement are cited, as are a range of candidate numerical linear algebra solution procedures. This development sequence emphasizes the key building blocks of a CFD RNS algorithm, including solution trial and test spaces, integration procedure and added numerical stability mechanisms. A range of numerical results are discussed focusing on key topics guiding future research directions.
Numerical linear algebra in data mining
NASA Astrophysics Data System (ADS)
Eldén, Lars
Ideas and algorithms from numerical linear algebra are important in several areas of data mining. We give an overview of linear algebra methods in text mining (information retrieval), pattern recognition (classification of handwritten digits), and PageRank computations for web search engines. The emphasis is on rank reduction as a method of extracting information from a data matrix, low-rank approximation of matrices using the singular value decomposition and clustering, and on eigenvalue methods for network analysis.
NASA Astrophysics Data System (ADS)
Hermann, Robert
1982-07-01
Recent work by Morrison, Marsden, and Weinstein has drawn attention to the possibility of utilizing the cosymplectic structure of the dual of the Lie algebra of certain infinite dimensional Lie groups to study hydrodynamical and plasma systems. This paper treats certain models arising in elementary particle physics, considered by Lee, Weinberg, and Zumino; Sugawara; Bardacki, Halpern, and Frishman; Hermann; and Dolan. The lie algebras involved are associated with the ''current algebras'' of Gell-Mann. This class of Lie algebras contains certain of the algebras that are called ''Kac-Moody algebras'' in the recent mathematics and mathematical physics literature.
Assessment of polytechnic students' understanding of basic algebra
NASA Astrophysics Data System (ADS)
Mokmin, Nur Azlina Mohamed; Masood, Mona
2015-12-01
It is important for engineering students to excel in algebra. Previous studies show that the algebraic fraction is a subtopic of algebra that was found to be the most challenging for engineering students. This study is done with 191 first semester engineering students who have enrolled in engineering programs in Malaysian polytechnic. The respondents are divided into Group 1 (Distinction) and Group 2 (Credit) based on their Mathematics SPM result. A computer application is developed for this study to assess student information and understanding of the algebraic fraction topic. The result is analyzed using SPSS and Microsoft Excel. The test results show that there are significant differences between Group 1 and Group 2 and that most of the students scored below the minimum requirement.
Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems.
Downie, J D; Goodman, J W
1989-10-15
A ground-based adaptive optics imaging telescope system attempts to improve image quality by measuring and correcting for atmospherically induced wavefront aberrations. The necessary control computations during each cycle will take a finite amount of time, which adds to the residual error variance since the atmosphere continues to change during that time. Thus an optical processor may be well-suited for this task. This paper investigates this possibility by studying the accuracy requirements in a general optical processor that will make it competitive with, or superior to, a conventional digital computer for adaptive optics use.
Lambda: A Mathematica package for operator product expansions in vertex algebras
NASA Astrophysics Data System (ADS)
Ekstrand, Joel
2011-02-01
We give an introduction to the Mathematica package Lambda, designed for calculating λ-brackets in both vertex algebras, and in SUSY vertex algebras. This is equivalent to calculating operator product expansions in two-dimensional conformal field theory. The syntax of λ-brackets is reviewed, and some simple examples are shown, both in component notation, and in N=1 superfield notation. Program summaryProgram title: Lambda Catalogue identifier: AEHF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License No. of lines in distributed program, including test data, etc.: 18 087 No. of bytes in distributed program, including test data, etc.: 131 812 Distribution format: tar.gz Programming language: Mathematica Computer: See specifications for running Mathematica V7 or above. Operating system: See specifications for running Mathematica V7 or above. RAM: Varies greatly depending on calculation to be performed. Classification: 4.2, 5, 11.1. Nature of problem: Calculate operator product expansions (OPEs) of composite fields in 2d conformal field theory. Solution method: Implementation of the algebraic formulation of OPEs given by vertex algebras, and especially by λ-brackets. Running time: Varies greatly depending on calculation requested. The example notebook provided takes about 3 s to run.
MULTIVARIATERESIDUES : A Mathematica package for computing multivariate residues
NASA Astrophysics Data System (ADS)
Larsen, Kasper J.; Rietkerk, Robbert
2018-01-01
Multivariate residues appear in many different contexts in theoretical physics and algebraic geometry. In theoretical physics, they for example give the proper definition of generalized-unitarity cuts, and they play a central role in the Grassmannian formulation of the S-matrix by Arkani-Hamed et al. In realistic cases their evaluation can be non-trivial. In this paper we provide a Mathematica package for efficient evaluation of multivariate residues based on methods from computational algebraic geometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hounkonnou, Mahouton Norbert; Nkouankam, Elvis Benzo Ngompe
2010-10-15
From the realization of q-oscillator algebra in terms of generalized derivative, we compute the matrix elements from deformed exponential functions and deduce generating functions associated with Rogers-Szego polynomials as well as their relevant properties. We also compute the matrix elements associated with the (p,q)-oscillator algebra (a generalization of the q-one) and perform the Fourier-Gauss transform of a generalization of the deformed exponential functions.
I CAN Learn[R] Pre-Algebra and Algebra. What Works Clearinghouse Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2009
2009-01-01
The I CAN Learn[R] Education System is an interactive, self-paced, mastery-based software system that includes the I CAN Learn[R] Fundamentals of Math (5th-6th grade math) curriculum, the I CAN Learn[R] Pre-Algebra curriculum, and the I CAN Learn[R] Algebra curriculum. College algebra credit is also available to students in participating schools…
A ∞-Algebra of an Elliptic Curve and Eisenstein Series
NASA Astrophysics Data System (ADS)
Polishchuk, Alexander
2011-02-01
We compute explicitly the A ∞-structure on the algebra {Ext^*(mathcal{O}_C oplus L, mathcal{O}_C oplus L)} , where L is a line bundle of degree 1 on an elliptic curve C. The answer involves higher derivatives of Eisenstein series.
The Golden Ratio: A Golden Opportunity to Investigate Multiple Representations of a Problem.
ERIC Educational Resources Information Center
Dickey, Edwin M.
1993-01-01
This article explores the multiple representations (verbal, algebraic, graphical, and numerical) that can be used to study the golden ratio. Emphasis is placed on using technology (both calculators and computers) to investigate the algebraic, graphical, and numerical representations. (JAF)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korneeva, Anna; Shaydurov, Vladimir
In the paper, the data analysis is considered for thin-film thermoresistors coated on to a radio-electronic printed circuit board to determine possible zones of its overheating. A mathematical model consists in an underdetermined system of linear algebraic equations with an infinite set of solutions. For computing a more real solution, two additional conditions are used: the smoothness of a solution and the positiveness of an increase of temperature during overheating. Computational experiments demonstrate that an overheating zone is determined exactly with a tolerable accuracy of temperature in it.
Efficient hybrid-symbolic methods for quantum mechanical calculations
NASA Astrophysics Data System (ADS)
Scott, T. C.; Zhang, Wenxing
2015-06-01
We present hybrid symbolic-numerical tools to generate optimized numerical code for rapid prototyping and fast numerical computation starting from a computer algebra system (CAS) and tailored to any given quantum mechanical problem. Although a major focus concerns the quantum chemistry methods of H. Nakatsuji which has yielded successful and very accurate eigensolutions for small atoms and molecules, the tools are general and may be applied to any basis set calculation with a variational principle applied to its linear and non-linear parameters.
Combinatorial-topological framework for the analysis of global dynamics.
Bush, Justin; Gameiro, Marcio; Harker, Shaun; Kokubu, Hiroshi; Mischaikow, Konstantin; Obayashi, Ippei; Pilarczyk, Paweł
2012-12-01
We discuss an algorithmic framework based on efficient graph algorithms and algebraic-topological computational tools. The framework is aimed at automatic computation of a database of global dynamics of a given m-parameter semidynamical system with discrete time on a bounded subset of the n-dimensional phase space. We introduce the mathematical background, which is based upon Conley's topological approach to dynamics, describe the algorithms for the analysis of the dynamics using rectangular grids both in phase space and parameter space, and show two sample applications.
Combinatorial-topological framework for the analysis of global dynamics
NASA Astrophysics Data System (ADS)
Bush, Justin; Gameiro, Marcio; Harker, Shaun; Kokubu, Hiroshi; Mischaikow, Konstantin; Obayashi, Ippei; Pilarczyk, Paweł
2012-12-01
We discuss an algorithmic framework based on efficient graph algorithms and algebraic-topological computational tools. The framework is aimed at automatic computation of a database of global dynamics of a given m-parameter semidynamical system with discrete time on a bounded subset of the n-dimensional phase space. We introduce the mathematical background, which is based upon Conley's topological approach to dynamics, describe the algorithms for the analysis of the dynamics using rectangular grids both in phase space and parameter space, and show two sample applications.
A Cohomological Perspective on Algebraic Quantum Field Theory
NASA Astrophysics Data System (ADS)
Hawkins, Eli
2018-05-01
Algebraic quantum field theory is considered from the perspective of the Hochschild cohomology bicomplex. This is a framework for studying deformations and symmetries. Deformation is a possible approach to the fundamental challenge of constructing interacting QFT models. Symmetry is the primary tool for understanding the structure and properties of a QFT model. This perspective leads to a generalization of the algebraic quantum field theory framework, as well as a more general definition of symmetry. This means that some models may have symmetries that were not previously recognized or exploited. To first order, a deformation of a QFT model is described by a Hochschild cohomology class. A deformation could, for example, correspond to adding an interaction term to a Lagrangian. The cohomology class for such an interaction is computed here. However, the result is more general and does not require the undeformed model to be constructed from a Lagrangian. This computation leads to a more concrete version of the construction of perturbative algebraic quantum field theory.
NASA Technical Reports Server (NTRS)
Davis, J. E.; Bonnett, W. S.; Medan, R. T.
1976-01-01
A computer program known as SOLN was developed as an independent segment of the NASA-Ames three-dimensional potential flow analysis systems of linear algebraic equations. Methods used include: LU decomposition, Householder's method, a partitioning scheme, and a block successive relaxation method. Due to the independent modular nature of the program, it may be used by itself and not necessarily in conjunction with other segments of the POTFAN system.
Many-core graph analytics using accelerated sparse linear algebra routines
NASA Astrophysics Data System (ADS)
Kozacik, Stephen; Paolini, Aaron L.; Fox, Paul; Kelmelis, Eric
2016-05-01
Graph analytics is a key component in identifying emerging trends and threats in many real-world applications. Largescale graph analytics frameworks provide a convenient and highly-scalable platform for developing algorithms to analyze large datasets. Although conceptually scalable, these techniques exhibit poor performance on modern computational hardware. Another model of graph computation has emerged that promises improved performance and scalability by using abstract linear algebra operations as the basis for graph analysis as laid out by the GraphBLAS standard. By using sparse linear algebra as the basis, existing highly efficient algorithms can be adapted to perform computations on the graph. This approach, however, is often less intuitive to graph analytics experts, who are accustomed to vertex-centric APIs such as Giraph, GraphX, and Tinkerpop. We are developing an implementation of the high-level operations supported by these APIs in terms of linear algebra operations. This implementation is be backed by many-core implementations of the fundamental GraphBLAS operations required, and offers the advantages of both the intuitive programming model of a vertex-centric API and the performance of a sparse linear algebra implementation. This technology can reduce the number of nodes required, as well as the run-time for a graph analysis problem, enabling customers to perform more complex analysis with less hardware at lower cost. All of this can be accomplished without the requirement for the customer to make any changes to their analytics code, thanks to the compatibility with existing graph APIs.
Using CAS to Solve a Mathematics Task: A Deconstruction
ERIC Educational Resources Information Center
Berger, Margot
2010-01-01
I investigate how and whether a heterogeneous group of first-year university mathematics students in South Africa harness the potential power of a computer algebra system (CAS) when doing a specific mathematics task. In order to do this, I develop a framework for deconstructing a mathematics task requiring the use of CAS, into its primary…
Concerning the Integral dx/x[superscript m] (1+x)
ERIC Educational Resources Information Center
Walters, William; Huber, Michael
2010-01-01
Consider the integral dx/x[superscript m] (1+x). In the "CRC Standard Mathematical Tables," this integral can require repeated integral evaluations. Enter this integral into your favourite computer algebra system, and the results may be unrecognizable. In this article, we seek to provide a simpler evaluation for integrals of this form. We state up…
SAGE as a Source for Undergraduate Research Projects
ERIC Educational Resources Information Center
Hutz, Benjamin
2017-01-01
This article examines the use of the computer algebra system SAGE for undergraduate student research projects. After reading this article, the reader should understand the benefits of using SAGE as a source of research projects and how to commence working with SAGE. The author proposes a tiered working group model to allow maximum benefit to the…
ERIC Educational Resources Information Center
Farley, Rosemary Carroll
2013-01-01
At Manhattan College, secondary mathematics education students take a capstone course designed specifically for them. In this course, students revisit important topics in the high school curriculum from a mathematically advanced perspective; incorporating the mathematical knowledge they have attained in their college mathematics classes to an…
Use of a Colony of Cooperating Agents and MAPLE To Solve the Traveling Salesman Problem.
ERIC Educational Resources Information Center
Guerrieri, Bruno
This paper reviews an approach for finding optimal solutions to the traveling salesman problem, a well-known problem in combinational optimization, and describes implementing the approach using the MAPLE computer algebra system. The method employed in this approach to the problem is similar to the way ant colonies manage to establish shortest…
ERIC Educational Resources Information Center
Ocak, Mehmet
2008-01-01
This correlational study examined the relationship between gender and the students' attitude and prior knowledge of using one of the mathematical software programs (MATLAB). Participants were selected from one community college, one state university and one private college. Students were volunteers from three Calculus I classrooms (one class from…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kadets, Boris; Karolinsky, Eugene; Pop, Iulia
2016-05-15
In this paper we continue to study Belavin–Drinfeld cohomology introduced in Kadets et al., Commun. Math. Phys. 344(1), 1-24 (2016) and related to the classification of quantum groups whose quasi-classical limit is a given simple complex Lie algebra #Mathematical Fraktur Small G#. Here we compute Belavin–Drinfeld cohomology for all non-skewsymmetric r-matrices on the Belavin–Drinfeld list for simple Lie algebras of type B, C, and D.
Asymptotic symmetries of Rindler space at the horizon and null infinity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Hyeyoun
2010-08-15
We investigate the asymptotic symmetries of Rindler space at null infinity and at the event horizon using both systematic and ad hoc methods. We find that the approaches that yield infinite-dimensional asymptotic symmetry algebras in the case of anti-de Sitter and flat spaces only give a finite-dimensional algebra for Rindler space at null infinity. We calculate the charges corresponding to these symmetries and confirm that they are finite, conserved, and integrable, and that the algebra of charges gives a representation of the asymptotic symmetry algebra. We also use relaxed boundary conditions to find infinite-dimensional asymptotic symmetry algebras for Rindler spacemore » at null infinity and at the event horizon. We compute the charges corresponding to these symmetries and confirm that they are finite and integrable. We also determine sufficient conditions for the charges to be conserved on-shell, and for the charge algebra to give a representation of the asymptotic symmetry algebra. In all cases, we find that the central extension of the charge algebra is trivial.« less
Quantum teleportation and Birman-Murakami-Wenzl algebra
NASA Astrophysics Data System (ADS)
Zhang, Kun; Zhang, Yong
2017-02-01
In this paper, we investigate the relationship of quantum teleportation in quantum information science and the Birman-Murakami-Wenzl (BMW) algebra in low-dimensional topology. For simplicity, we focus on the two spin-1/2 representation of the BMW algebra, which is generated by both the Temperley-Lieb projector and the Yang-Baxter gate. We describe quantum teleportation using the Temperley-Lieb projector and the Yang-Baxter gate, respectively, and study teleportation-based quantum computation using the Yang-Baxter gate. On the other hand, we exploit the extended Temperley-Lieb diagrammatical approach to clearly show that the tangle relations of the BMW algebra have a natural interpretation of quantum teleportation. Inspired by this interpretation, we construct a general representation of the tangle relations of the BMW algebra and obtain interesting representations of the BMW algebra. Therefore, our research sheds a light on a link between quantum information science and low-dimensional topology.
Line defect Schur indices, Verlinde algebras and U(1) r fixed points
NASA Astrophysics Data System (ADS)
Neitzke, Andrew; Yan, Fei
2017-11-01
Given an N=2 superconformal field theory, we reconsider the Schur index ℐ L ( q) in the presence of a half line defect L. Recently Cordova-Gaiotto-Shao found that ℐ L ( q) admits an expansion in terms of characters of the chiral algebra A introduced by Beem et al., with simple coefficients υ L, β ( q). We report a puzzling new feature of this expansion: the q → 1 limit of the coefficients υ L, β ( q) is linearly related to the vacuum expectation values 〈 L〉 in U(1) r -invariant vacua of the theory compactified on S 1. This relation can be expressed algebraically as a commutative diagram involving three algebras: the algebra generated by line defects, the algebra of functions on U(1) r -invariant vacua, and a Verlindelike algebra associated to A . Our evidence is experimental, by direct computation in the Argyres-Douglas theories of type ( A 1, A 2), ( A 1, A 4), ( A 1, A 6), ( A 1, D 3) and ( A 1, D 5). In the latter two theories, which have flavor symmetries, the Verlinde-like algebra which appears is a new deformation of algebras previously considered.
Determination of eigenvalues of dynamical systems by symbolic computation
NASA Technical Reports Server (NTRS)
Howard, J. C.
1982-01-01
A symbolic computation technique for determining the eigenvalues of dynamical systems is described wherein algebraic operations, symbolic differentiation, matrix formulation and inversion, etc., can be performed on a digital computer equipped with a formula-manipulation compiler. An example is included that demonstrates the facility with which the system dynamics matrix and the control distribution matrix from the state space formulation of the equations of motion can be processed to obtain eigenvalue loci as a function of a system parameter. The example chosen to demonstrate the technique is a fourth-order system representing the longitudinal response of a DC 8 aircraft to elevator inputs. This simplified system has two dominant modes, one of which is lightly damped and the other well damped. The loci may be used to determine the value of the controlling parameter that satisfied design requirements. The results were obtained using the MACSYMA symbolic manipulation system.
Ermakov's Superintegrable Toy and Nonlocal Symmetries
NASA Astrophysics Data System (ADS)
Leach, P. G. L.; Karasu Kalkanli, A.; Nucci, M. C.; Andriopoulos, K.
2005-11-01
We investigate the symmetry properties of a pair of Ermakov equations. The system is superintegrable and yet possesses only three Lie point symmetries with the algebra sl(2, R). The number of point symmetries is insufficient and the algebra unsuitable for the complete specification of the system. We use the method of reduction of order to reduce the nonlinear fourth-order system to a third-order system comprising a linear second-order equation and a conservation law. We obtain the representation of the complete symmetry group from this system. Four of the required symmetries are nonlocal and the algebra is the direct sum of a one-dimensional Abelian algebra with the semidirect sum of a two-dimensional solvable algebra with a two-dimensional Abelian algebra. The problem illustrates the difficulties which can arise in very elementary systems. Our treatment demonstrates the existence of possible routes to overcome these problems in a systematic fashion.
ERIC Educational Resources Information Center
Gerhardt, Ira
2015-01-01
An experiment was conducted over three recent semesters of an introductory calculus course to test whether it was possible to quantify the effect that difficulty with basic algebraic and arithmetic computation had on individual performance. Points lost during the term were classified as being due to either algebraic and arithmetic mistakes…
Applications of Maple To Algebraic Cryptography.
ERIC Educational Resources Information Center
Sigmon, Neil P.
1997-01-01
Demonstrates the use of technology to enhance the appreciation of applications involving abstract algebra. The symbolic manipulator Maple can perform computations required for a linear cryptosystem. One major benefit of this process is that students can encipher and decipher messages using a linear cryptosystem without becoming confused and…
Numerical algebraic geometry: a new perspective on gauge and string theories
NASA Astrophysics Data System (ADS)
Mehta, Dhagash; He, Yang-Hui; Hauensteine, Jonathan D.
2012-07-01
There is a rich interplay between algebraic geometry and string and gauge theories which has been recently aided immensely by advances in computational algebra. However, symbolic (Gröbner) methods are severely limited by algorithmic issues such as exponential space complexity and being highly sequential. In this paper, we introduce a novel paradigm of numerical algebraic geometry which in a plethora of situations overcomes these shortcomings. The so-called `embarrassing parallelizability' allows us to solve many problems and extract physical information which elude symbolic methods. We describe the method and then use it to solve various problems arising from physics which could not be otherwise solved.
Quantum superintegrable system with a novel chain structure of quadratic algebras
NASA Astrophysics Data System (ADS)
Liao, Yidong; Marquette, Ian; Zhang, Yao-Zhong
2018-06-01
We analyse the n-dimensional superintegrable Kepler–Coulomb system with non-central terms. We find a novel underlying chain structure of quadratic algebras formed by the integrals of motion. We identify the elements for each sub-structure and obtain the algebra relations satisfied by them and the corresponding Casimir operators. These quadratic sub-algebras are realized in terms of a chain of deformed oscillators with factorized structure functions. We construct the finite-dimensional unitary representations of the deformed oscillators, and give an algebraic derivation of the energy spectrum of the superintegrable system.
IBM system/360 assembly language interval arithmetic software
NASA Technical Reports Server (NTRS)
Phillips, E. J.
1972-01-01
Computer software designed to perform interval arithmetic is described. An interval is defined as the set of all real numbers between two given numbers including or excluding one or both endpoints. Interval arithmetic consists of the various elementary arithmetic operations defined on the set of all intervals, such as interval addition, subtraction, union, etc. One of the main applications of interval arithmetic is in the area of error analysis of computer calculations. For example, it has been used sucessfully to compute bounds on sounding errors in the solution of linear algebraic systems, error bounds in numerical solutions of ordinary differential equations, as well as integral equations and boundary value problems. The described software enables users to implement algorithms of the type described in references efficiently on the IBM 360 system.
Cryptographic Properties of Monotone Boolean Functions
2016-01-01
Algebraic attacks on stream ciphers with linear feedback, in: Advances in Cryptology (Eurocrypt 2003), Lecture Notes in Comput. Sci. 2656, Springer, Berlin...spectrum, algebraic immu- nity MSC 2010: 06E30, 94C10, 94A60, 11T71, 05E99 || Communicated by: Carlo Blundo 1 Introduction Let F 2 be the prime eld of...7]. For the reader’s convenience, we recall some basic notions below. Any f ∈ Bn can be expressed in algebraic normal form (ANF) as f(x 1 , x 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Won Sang, E-mail: mimip4444@hanmail.net; Hounkonnou, Mahouton Norbert, E-mail: norbert.hounkonnou@cipma.uac.bj; Arjika, Sama, E-mail: rjksama2008@gmail.com
In this paper, we propose a full characterization of a generalized q-deformed Tamm-Dancoff oscillator algebra and investigate its main mathematical and physical properties. Specifically, we study its various representations and find the condition satisfied by the deformed q-number to define the algebra structure function. Particular Fock spaces involving finite and infinite dimensions are examined. A deformed calculus is performed as well as a coordinate realization for this algebra. A relevant example is exhibited. Associated coherent states are constructed. Finally, some thermodynamics aspects are computed and discussed.
Lee, Jae H.; Yao, Yushu; Shrestha, Uttam; Gullberg, Grant T.; Seo, Youngho
2014-01-01
The primary goal of this project is to implement the iterative statistical image reconstruction algorithm, in this case maximum likelihood expectation maximum (MLEM) used for dynamic cardiac single photon emission computed tomography, on Spark/GraphX. This involves porting the algorithm to run on large-scale parallel computing systems. Spark is an easy-to- program software platform that can handle large amounts of data in parallel. GraphX is a graph analytic system running on top of Spark to handle graph and sparse linear algebra operations in parallel. The main advantage of implementing MLEM algorithm in Spark/GraphX is that it allows users to parallelize such computation without any expertise in parallel computing or prior knowledge in computer science. In this paper we demonstrate a successful implementation of MLEM in Spark/GraphX and present the performance gains with the goal to eventually make it useable in clinical setting. PMID:27081299
Lee, Jae H; Yao, Yushu; Shrestha, Uttam; Gullberg, Grant T; Seo, Youngho
2014-11-01
The primary goal of this project is to implement the iterative statistical image reconstruction algorithm, in this case maximum likelihood expectation maximum (MLEM) used for dynamic cardiac single photon emission computed tomography, on Spark/GraphX. This involves porting the algorithm to run on large-scale parallel computing systems. Spark is an easy-to- program software platform that can handle large amounts of data in parallel. GraphX is a graph analytic system running on top of Spark to handle graph and sparse linear algebra operations in parallel. The main advantage of implementing MLEM algorithm in Spark/GraphX is that it allows users to parallelize such computation without any expertise in parallel computing or prior knowledge in computer science. In this paper we demonstrate a successful implementation of MLEM in Spark/GraphX and present the performance gains with the goal to eventually make it useable in clinical setting.
Motivating the Concept of Eigenvectors via Cryptography
ERIC Educational Resources Information Center
Siap, Irfan
2008-01-01
New methods of teaching linear algebra in the undergraduate curriculum have attracted much interest lately. Most of this work is focused on evaluating and discussing the integration of special computer software into the Linear Algebra curriculum. In this article, I discuss my approach on introducing the concept of eigenvectors and eigenvalues,…
Solving Optimization Problems with Spreadsheets
ERIC Educational Resources Information Center
Beigie, Darin
2017-01-01
Spreadsheets provide a rich setting for first-year algebra students to solve problems. Individual spreadsheet cells play the role of variables, and creating algebraic expressions for a spreadsheet to perform a task allows students to achieve a glimpse of how mathematics is used to program a computer and solve problems. Classic optimization…
Lattices, vertex algebras, and modular categories
NASA Astrophysics Data System (ADS)
van Ekeren, Jethro
2018-03-01
In this note we give an account of recent progress on the construction of holomorphic vertex algebras as cyclic orbifolds as well as related topics in lattices and modular categories. We present a novel computation of the Schur indicator of a lattice involution orbifold using finite Heisenberg groups and discriminant forms.
Racing against Time: Using Technology To Explore Distance, Rate, and Time.
ERIC Educational Resources Information Center
Essex, N. Kathryn; Lambdin, Diana V.; McGraw, Rebecca H.
2002-01-01
Investigates ways to analyze change in various contexts. Focuses on computer technology providing contexts for children's investigations of patterns of change and helping to develop foundational ideas of algebra and calculus. Discusses relationships between patterns of change, fundamental algebraic notions as linear and nonlinear functions, and…
Titration Calculations with Computer Algebra Software
ERIC Educational Resources Information Center
Lachance, Russ; Biaglow, Andrew
2012-01-01
This article examines the symbolic algebraic solution of the titration equations for a diprotic acid, as obtained using "Mathematica," "Maple," and "Mathcad." The equilibrium and conservation equations are solved symbolically by the programs to eliminate the approximations that normally would be performed by the student. Of the three programs,…
Aspects géométriques et intégrables des modèles de matrices aléatoires
NASA Astrophysics Data System (ADS)
Marchal, Olivier
2010-12-01
This thesis deals with the geometric and integrable aspects associated with random matrix models. Its purpose is to provide various applications of random matrix theory, from algebraic geometry to partial differential equations of integrable systems. The variety of these applications shows why matrix models are important from a mathematical point of view. First, the thesis will focus on the study of the merging of two intervals of the eigenvalues density near a singular point. Specifically, we will show why this special limit gives universal equations from the Painlevé II hierarchy of integrable systems theory. Then, following the approach of (bi) orthogonal polynomials introduced by Mehta to compute partition functions, we will find Riemann-Hilbert and isomonodromic problems connected to matrix models, making the link with the theory of Jimbo, Miwa and Ueno. In particular, we will describe how the hermitian two-matrix models provide a degenerate case of Jimbo-Miwa-Ueno's theory that we will generalize in this context. Furthermore, the loop equations method, with its central notions of spectral curve and topological expansion, will lead to the symplectic invariants of algebraic geometry recently proposed by Eynard and Orantin. This last point will be generalized to the case of non-hermitian matrix models (arbitrary beta) paving the way to "quantum algebraic geometry" and to the generalization of symplectic invariants to "quantum curves". Finally, this set up will be applied to combinatorics in the context of topological string theory, with the explicit computation of an hermitian random matrix model enumerating the Gromov-Witten invariants of a toric Calabi-Yau threefold.
Equations of motion for a spectrum-generating algebra: Lipkin Meshkov Glick model
NASA Astrophysics Data System (ADS)
Rosensteel, G.; Rowe, D. J.; Ho, S. Y.
2008-01-01
For a spectrum-generating Lie algebra, a generalized equations-of-motion scheme determines numerical values of excitation energies and algebra matrix elements. In the approach to the infinite particle number limit or, more generally, whenever the dimension of the quantum state space is very large, the equations-of-motion method may achieve results that are impractical to obtain by diagonalization of the Hamiltonian matrix. To test the method's effectiveness, we apply it to the well-known Lipkin-Meshkov-Glick (LMG) model to find its low-energy spectrum and associated generator matrix elements in the eigenenergy basis. When the dimension of the LMG representation space is 106, computation time on a notebook computer is a few minutes. For a large particle number in the LMG model, the low-energy spectrum makes a quantum phase transition from a nondegenerate harmonic vibrator to a twofold degenerate harmonic oscillator. The equations-of-motion method computes critical exponents at the transition point.
Spatial operator approach to flexible multibody system dynamics and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.
1991-01-01
The inverse and forward dynamics problems for flexible multibody systems were solved using the techniques of spatially recursive Kalman filtering and smoothing. These algorithms are easily developed using a set of identities associated with mass matrix factorization and inversion. These identities are easily derived using the spatial operator algebra developed by the author. Current work is aimed at computational experiments with the described algorithms and at modelling for control design of limber manipulator systems. It is also aimed at handling and manipulation of flexible objects.
An Analysis of Elliptic Grid Generation Techniques Using an Implicit Euler Solver.
1986-06-09
automatic determination of the control fu.nction, . elements of covariant metric tensor in the elliptic grid generation system , from the Cm = 1,2,3...computational fluid d’nan1-cs code. Tne code Inclues a tnree-dimensional current research is aimed primaril: at algebraic generation system based on transfinite...start the iterative solution of the f. ow, nea, transfer, and combustion proble:s. elliptic generation system . Tn13 feature also .:ven-.ts :.t be made
Computers and the Rational-Root Theorem--Another View.
ERIC Educational Resources Information Center
Waits, Bert K.; Demana, Franklin
1989-01-01
An approach to finding the rational roots of polynomial equations based on computer graphing is given. It integrates graphing with the purely algebraic approach. Either computers or graphing calculators can be used. (MNS)
Symmetric linear systems - An application of algebraic systems theory
NASA Technical Reports Server (NTRS)
Hazewinkel, M.; Martin, C.
1983-01-01
Dynamical systems which contain several identical subsystems occur in a variety of applications ranging from command and control systems and discretization of partial differential equations, to the stability augmentation of pairs of helicopters lifting a large mass. Linear models for such systems display certain obvious symmetries. In this paper, we discuss how these symmetries can be incorporated into a mathematical model that utilizes the modern theory of algebraic systems. Such systems are inherently related to the representation theory of algebras over fields. We will show that any control scheme which respects the dynamical structure either implicitly or explicitly uses the underlying algebra.
On differential operators generating iterative systems of linear ODEs of maximal symmetry algebra
NASA Astrophysics Data System (ADS)
Ndogmo, J. C.
2017-06-01
Although every iterative scalar linear ordinary differential equation is of maximal symmetry algebra, the situation is different and far more complex for systems of linear ordinary differential equations, and an iterative system of linear equations need not be of maximal symmetry algebra. We illustrate these facts by examples and derive families of vector differential operators whose iterations are all linear systems of equations of maximal symmetry algebra. Some consequences of these results are also discussed.
NASA Technical Reports Server (NTRS)
Norstrud, H.
1973-01-01
The analytical solution to the transonic small perturbation equation which describes steady compressible flow past finite wings at subsonic speeds can be expressed as a nonlinear integral equation with the perturbation velocity potential as the unknown function. This known formulation is substituted by a system of nonlinear algebraic equations to which various methods are applicable for its solution. Due to the presence of mathematical discontinuities in the flow solutions, however, a main computational difficulty was to ensure uniqueness of the solutions when local velocities on the wing exceeded the speed of sound. For continuous solutions this was achieved by embedding the algebraic system in an one-parameter operator homotopy in order to apply the method of parametric differentiation. The solution to the initial system of equations appears then as a solution to a Cauchy problem where the initial condition is related to the accompanying incompressible flow solution. In using this technique, however, a continuous dependence of the solution development on the initial data is lost when the solution reaches the minimum bifurcation point. A steepest descent iteration technique was therefore, added to the computational scheme for the calculation of discontinuous flow solutions. Results for purely subsonic flows and supersonic flows with and without compression shocks are given and compared with other available theoretical solutions.
Aguayo-Ortiz, A; Mendoza, S; Olvera, D
2018-01-01
In this article we develop a Primitive Variable Recovery Scheme (PVRS) to solve any system of coupled differential conservative equations. This method obtains directly the primitive variables applying the chain rule to the time term of the conservative equations. With this, a traditional finite volume method for the flux is applied in order avoid violation of both, the entropy and "Rankine-Hugoniot" jump conditions. The time evolution is then computed using a forward finite difference scheme. This numerical technique evades the recovery of the primitive vector by solving an algebraic system of equations as it is often used and so, it generalises standard techniques to solve these kind of coupled systems. The article is presented bearing in mind special relativistic hydrodynamic numerical schemes with an added pedagogical view in the appendix section in order to easily comprehend the PVRS. We present the convergence of the method for standard shock-tube problems of special relativistic hydrodynamics and a graphical visualisation of the errors using the fluctuations of the numerical values with respect to exact analytic solutions. The PVRS circumvents the sometimes arduous computation that arises from standard numerical methods techniques, which obtain the desired primitive vector solution through an algebraic polynomial of the charges.
Large-scale computation of incompressible viscous flow by least-squares finite element method
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Lin, T. L.; Povinelli, Louis A.
1993-01-01
The least-squares finite element method (LSFEM) based on the velocity-pressure-vorticity formulation is applied to large-scale/three-dimensional steady incompressible Navier-Stokes problems. This method can accommodate equal-order interpolations and results in symmetric, positive definite algebraic system which can be solved effectively by simple iterative methods. The first-order velocity-Bernoulli function-vorticity formulation for incompressible viscous flows is also tested. For three-dimensional cases, an additional compatibility equation, i.e., the divergence of the vorticity vector should be zero, is included to make the first-order system elliptic. The simple substitution of the Newton's method is employed to linearize the partial differential equations, the LSFEM is used to obtain discretized equations, and the system of algebraic equations is solved using the Jacobi preconditioned conjugate gradient method which avoids formation of either element or global matrices (matrix-free) to achieve high efficiency. To show the validity of this scheme for large-scale computation, we give numerical results for 2D driven cavity problem at Re = 10000 with 408 x 400 bilinear elements. The flow in a 3D cavity is calculated at Re = 100, 400, and 1,000 with 50 x 50 x 50 trilinear elements. The Taylor-Goertler-like vortices are observed for Re = 1,000.
Mendoza, S.; Olvera, D.
2018-01-01
In this article we develop a Primitive Variable Recovery Scheme (PVRS) to solve any system of coupled differential conservative equations. This method obtains directly the primitive variables applying the chain rule to the time term of the conservative equations. With this, a traditional finite volume method for the flux is applied in order avoid violation of both, the entropy and “Rankine-Hugoniot” jump conditions. The time evolution is then computed using a forward finite difference scheme. This numerical technique evades the recovery of the primitive vector by solving an algebraic system of equations as it is often used and so, it generalises standard techniques to solve these kind of coupled systems. The article is presented bearing in mind special relativistic hydrodynamic numerical schemes with an added pedagogical view in the appendix section in order to easily comprehend the PVRS. We present the convergence of the method for standard shock-tube problems of special relativistic hydrodynamics and a graphical visualisation of the errors using the fluctuations of the numerical values with respect to exact analytic solutions. The PVRS circumvents the sometimes arduous computation that arises from standard numerical methods techniques, which obtain the desired primitive vector solution through an algebraic polynomial of the charges. PMID:29659602
NASA Technical Reports Server (NTRS)
Jain, Abhinandan
2011-01-01
Ndarts software provides algorithms for computing quantities associated with the dynamics of articulated, rigid-link, multibody systems. It is designed as a general-purpose dynamics library that can be used for the modeling of robotic platforms, space vehicles, molecular dynamics, and other such applications. The architecture and algorithms in Ndarts are based on the Spatial Operator Algebra (SOA) theory for computational multibody and robot dynamics developed at JPL. It uses minimal, internal coordinate models. The algorithms are low-order, recursive scatter/ gather algorithms. In comparison with the earlier Darts++ software, this version has a more general and cleaner design needed to support a larger class of computational dynamics needs. It includes a frames infrastructure, allows algorithms to operate on subgraphs of the system, and implements lazy and deferred computation for better efficiency. Dynamics modeling modules such as Ndarts are core building blocks of control and simulation software for space, robotic, mechanism, bio-molecular, and material systems modeling.
The discrete adjoint method for parameter identification in multibody system dynamics.
Lauß, Thomas; Oberpeilsteiner, Stefan; Steiner, Wolfgang; Nachbagauer, Karin
2018-01-01
The adjoint method is an elegant approach for the computation of the gradient of a cost function to identify a set of parameters. An additional set of differential equations has to be solved to compute the adjoint variables, which are further used for the gradient computation. However, the accuracy of the numerical solution of the adjoint differential equation has a great impact on the gradient. Hence, an alternative approach is the discrete adjoint method , where the adjoint differential equations are replaced by algebraic equations. Therefore, a finite difference scheme is constructed for the adjoint system directly from the numerical time integration method. The method provides the exact gradient of the discretized cost function subjected to the discretized equations of motion.
Using Dynamic Geometry and Computer Algebra Systems in Problem Based Courses for Future Engineers
ERIC Educational Resources Information Center
Tomiczková, Svetlana; Lávicka, Miroslav
2015-01-01
It is a modern trend today when formulating the curriculum of a geometric course at the technical universities to start from a real-life problem originated in technical praxis and subsequently to define which geometric theories and which skills are necessary for its solving. Nowadays, interactive and dynamic geometry software plays a more and more…
CAS or Pen-and-Paper: Factors That Influence Students' Choices
ERIC Educational Resources Information Center
Cameron, Scott; Ball, Lynda
2015-01-01
This paper reports on a study of choices about the use of a computer algebra system (CAS) or pen-and-paper (p&p) by a class of seven Year 11 Mathematical Methods (CAS) students as they completed a calculus worksheet. Factors that influenced students' choices are highlighted by comparing and contrasting the use of CAS and p&p between…
An Analytical Framework for Categorizing the Use of CAS Symbolic Manipulation in Textbooks
ERIC Educational Resources Information Center
Davis, Jon D.; Fonger, Nicole L.
2015-01-01
The symbolic manipulation capabilities of computer algebra systems, which we refer to as CAS-S, are now becoming instantiated within secondary mathematics textbooks in the United States for the first time. While a number of research studies have examined how teachers use this technology in their classrooms, one of the most important factors in how…
The Impact on Student Achievement of When CAS Technology Is Introduced
ERIC Educational Resources Information Center
Driver, David
2012-01-01
When a Computer Algebra System (CAS) is used as a pedagogical and functional tool in class and as a functional tool in exams, its effect on student achievement can be quite profound. The timing of when students are first introduced to a CAS has an impact on gains in student achievement. In this action research project, the CAS calculator was…
Approximated analytical solution to an Ebola optimal control problem
NASA Astrophysics Data System (ADS)
Hincapié-Palacio, Doracelly; Ospina, Juan; Torres, Delfim F. M.
2016-11-01
An analytical expression for the optimal control of an Ebola problem is obtained. The analytical solution is found as a first-order approximation to the Pontryagin Maximum Principle via the Euler-Lagrange equation. An implementation of the method is given using the computer algebra system Maple. Our analytical solutions confirm the results recently reported in the literature using numerical methods.
ERIC Educational Resources Information Center
Gerny, Marianne; Alpers, Burkhard
2004-01-01
In this article we describe a mathematical microworld for investigating car motion on a racing course and its use with a group of grade 12 students. The microworld is concerned with the mathematical construction of courses and functions which describe car motion. It is implemented in the computer algebra system, Maple[R], which provides the means…
ERIC Educational Resources Information Center
Ardiç, Mehmet Alper; Isleyen, Tevfik
2017-01-01
The purpose of this study is to determine the levels of high school mathematics teachers in achieving mathematics instruction via computer algebra systems and the reflections of these practices in the classroom. Three high school mathematics teachers employed at different types of school participated in the study. In the beginning of this…
Mastering algebra retrains the visual system to perceive hierarchical structure in equations.
Marghetis, Tyler; Landy, David; Goldstone, Robert L
2016-01-01
Formal mathematics is a paragon of abstractness. It thus seems natural to assume that the mathematical expert should rely more on symbolic or conceptual processes, and less on perception and action. We argue instead that mathematical proficiency relies on perceptual systems that have been retrained to implement mathematical skills. Specifically, we investigated whether the visual system-in particular, object-based attention-is retrained so that parsing algebraic expressions and evaluating algebraic validity are accomplished by visual processing. Object-based attention occurs when the visual system organizes the world into discrete objects, which then guide the deployment of attention. One classic signature of object-based attention is better perceptual discrimination within, rather than between, visual objects. The current study reports that object-based attention occurs not only for simple shapes but also for symbolic mathematical elements within algebraic expressions-but only among individuals who have mastered the hierarchical syntax of algebra. Moreover, among these individuals, increased object-based attention within algebraic expressions is associated with a better ability to evaluate algebraic validity. These results suggest that, in mastering the rules of algebra, people retrain their visual system to represent and evaluate abstract mathematical structure. We thus argue that algebraic expertise involves the regimentation and reuse of evolutionarily ancient perceptual processes. Our findings implicate the visual system as central to learning and reasoning in mathematics, leading us to favor educational approaches to mathematics and related STEM fields that encourage students to adapt, not abandon, their use of perception.
Virasoro algebra in the KN algebra; Bosonic string with fermionic ghosts on Riemann surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koibuchi, H.
1991-10-10
In this paper the bosonic string model with fermionic ghosts is considered in the framework of the KN algebra. The authors' attentions are paid to representations of KN algebra and a Clifford algebra of the ghosts. The authors show that a Virasoro-like algebra is obtained from KN algebra when KN algebra has certain antilinear anti-involution, and that it is isomorphic to the usual Virasoro algebra. The authors show that there is an expected relation between a central charge of this Virasoro-like algebra and an anomaly of the combined system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marquette, Ian, E-mail: i.marquette@uq.edu.au; Quesne, Christiane, E-mail: cquesne@ulb.ac.be
2015-06-15
We extend the construction of 2D superintegrable Hamiltonians with separation of variables in spherical coordinates using combinations of shift, ladder, and supercharge operators to models involving rational extensions of the two-parameter Lissajous systems on the sphere. These new families of superintegrable systems with integrals of arbitrary order are connected with Jacobi exceptional orthogonal polynomials of type I (or II) and supersymmetric quantum mechanics. Moreover, we present an algebraic derivation of the degenerate energy spectrum for the one- and two-parameter Lissajous systems and the rationally extended models. These results are based on finitely generated polynomial algebras, Casimir operators, realizations as deformedmore » oscillator algebras, and finite-dimensional unitary representations. Such results have only been established so far for 2D superintegrable systems separable in Cartesian coordinates, which are related to a class of polynomial algebras that display a simpler structure. We also point out how the structure function of these deformed oscillator algebras is directly related with the generalized Heisenberg algebras spanned by the nonpolynomial integrals.« less
A Geometric Construction of Cyclic Cocycles on Twisted Convolution Algebras
NASA Astrophysics Data System (ADS)
Angel, Eitan
2010-09-01
In this thesis we give a construction of cyclic cocycles on convolution algebras twisted by gerbes over discrete translation groupoids. In his seminal book, Connes constructs a map from the equivariant cohomology of a manifold carrying the action of a discrete group into the periodic cyclic cohomology of the associated convolution algebra. Furthermore, for proper étale groupoids, J.-L. Tu and P. Xu provide a map between the periodic cyclic cohomology of a gerbe twisted convolution algebra and twisted cohomology groups. Our focus will be the convolution algebra with a product defined by a gerbe over a discrete translation groupoid. When the action is not proper, we cannot construct an invariant connection on the gerbe; therefore to study this algebra, we instead develop simplicial notions related to ideas of J. Dupont to construct a simplicial form representing the Dixmier-Douady class of the gerbe. Then by using a JLO formula we define a morphism from a simplicial complex twisted by this simplicial Dixmier-Douady form to the mixed bicomplex of certain matrix algebras. Finally, we define a morphism from this complex to the mixed bicomplex computing the periodic cyclic cohomology of the twisted convolution algebras.
Classical affine W-algebras associated to Lie superalgebras
NASA Astrophysics Data System (ADS)
Suh, Uhi Rinn
2016-02-01
In this paper, we prove classical affine W-algebras associated to Lie superalgebras (W-superalgebras), which can be constructed in two different ways: via affine classical Hamiltonian reductions and via taking quasi-classical limits of quantum affine W-superalgebras. Also, we show that a classical finite W-superalgebra can be obtained by a Zhu algebra of a classical affine W-superalgebra. Using the definition by Hamiltonian reductions, we find free generators of a classical W-superalgebra associated to a minimal nilpotent. Moreover, we compute generators of the classical W-algebra associated to spo(2|3) and its principal nilpotent. In the last part of this paper, we introduce a generalization of classical affine W-superalgebras called classical affine fractional W-superalgebras. We show these have Poisson vertex algebra structures and find generators of a fractional W-superalgebra associated to a minimal nilpotent.
Conformal field algebras with quantum symmetry from the theory of superselection sectors
NASA Astrophysics Data System (ADS)
Mack, Gerhard; Schomerus, Volker
1990-11-01
According to the theory of superselection sectors of Doplicher, Haag, and Roberts, field operators which make transitions between different superselection sectors—i.e. different irreducible representations of the observable algebra—are to be constructed by adjoining localized endomorphisms to the algebra of local observables. We find the relevant endomorphisms of the chiral algebra of observables in the minimal conformal model with central charge c=1/2 (Ising model). We show by explicit and elementary construction how they determine a representation of the braid group B ∞ which is associated with a Temperley-Lieb-Jones algebra. We recover fusion rules, and compute the quantum dimensions of the superselection sectors. We exhibit a field algebra which is quantum group covariant and acts in the Hilbert space of physical states. It obeys local braid relations in an appropriate weak sense.
On explicit algebraic stress models for complex turbulent flows
NASA Technical Reports Server (NTRS)
Gatski, T. B.; Speziale, C. G.
1992-01-01
Explicit algebraic stress models that are valid for three-dimensional turbulent flows in noninertial frames are systematically derived from a hierarchy of second-order closure models. This represents a generalization of the model derived by Pope who based his analysis on the Launder, Reece, and Rodi model restricted to two-dimensional turbulent flows in an inertial frame. The relationship between the new models and traditional algebraic stress models -- as well as anistropic eddy visosity models -- is theoretically established. The need for regularization is demonstrated in an effort to explain why traditional algebraic stress models have failed in complex flows. It is also shown that these explicit algebraic stress models can shed new light on what second-order closure models predict for the equilibrium states of homogeneous turbulent flows and can serve as a useful alternative in practical computations.
Normal forms of Hopf-zero singularity
NASA Astrophysics Data System (ADS)
Gazor, Majid; Mokhtari, Fahimeh
2015-01-01
The Lie algebra generated by Hopf-zero classical normal forms is decomposed into two versal Lie subalgebras. Some dynamical properties for each subalgebra are described; one is the set of all volume-preserving conservative systems while the other is the maximal Lie algebra of nonconservative systems. This introduces a unique conservative-nonconservative decomposition for the normal form systems. There exists a Lie-subalgebra that is Lie-isomorphic to a large family of vector fields with Bogdanov-Takens singularity. This gives rise to a conclusion that the local dynamics of formal Hopf-zero singularities is well-understood by the study of Bogdanov-Takens singularities. Despite this, the normal form computations of Bogdanov-Takens and Hopf-zero singularities are independent. Thus, by assuming a quadratic nonzero condition, complete results on the simplest Hopf-zero normal forms are obtained in terms of the conservative-nonconservative decomposition. Some practical formulas are derived and the results implemented using Maple. The method has been applied on the Rössler and Kuramoto-Sivashinsky equations to demonstrate the applicability of our results.
Math/Measurement Literacy for Upgrading Skills of Industrial Hourly Workers. Math Manual.
ERIC Educational Resources Information Center
McMahon, Joan L.
This manual contains materials for a numeracy course for adult industrial workers. In addition to assessment tests, seven units are provided. Unit topics are whole numbers; fractions; decimals; percents, median, and range; measurement and signed numbers; ratio/proportion and introduction to algebra; and computer literacy using algebra software.…
Avoiding Communication in Dense Linear Algebra
2013-08-16
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.1 Asymptotic Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 6...and parallelizing Strassen’s matrix multiplication algorithm (Chapter 11). 6 Chapter 2 Preliminaries 2.1 Notation and Definitions In this section we...between computations and algo- rithms). The following definition is based on [56]: Definition 2.1. A classical algorithm in linear algebra is one that
Transforming an Introductory Linear Algebra Course with a TI-92 Hand-Held Computer.
ERIC Educational Resources Information Center
Quesada, Antonio R.
2003-01-01
Describes how the introduction of the TI-92 transformed a traditional first semester linear algebra course into a matrix-oriented course that emphasized conceptual understanding, relevant applications, and numerical issues. Indicates an increase in students' overall performance as they found the calculator very useful, believed it helped them…
Preliminary Success and Retention Rates in Selected Math Courses. Research Report.
ERIC Educational Resources Information Center
Cuesta Coll., San Luis Obispo, CA. Matriculation and Research Services.
This report presents findings of exploratory research on success, retention, and persistence in math courses at Cuesta College. The following research questions were addressed: (1) How do success rates in Math 23 (elementary algebra) and Math 27 (intermediate algebra) compare with traditional and computer-assisted formats? (2) What are the…
Analysis of Costs in an Algebra I Curriculum Effectiveness Study. Technical Report
ERIC Educational Resources Information Center
Daugherty, Lindsay; Phillips, Andrea; Pane, John F.; Karam, Rita
2012-01-01
In an ongoing study, RAND researchers are evaluating the effectiveness of Carnegie Learning's Cognitive Tutor Algebra I (CTAI) curriculum, a technology-based curriculum that combines classroom instruction with individualized instruction by a computer-based tutor. While the effectiveness of the curriculum in raising student achievement is the main…
ERIC Educational Resources Information Center
Lewis, Virginia Vimpeny
2011-01-01
Number Concepts; Measurement; Geometry; Probability; Statistics; and Patterns, Functions and Algebra. Procedural Errors were further categorized into the following content categories: Computation; Measurement; Statistics; and Patterns, Functions, and Algebra. The results of the analysis showed the main sources of error for 6th, 7th, and 8th…
Extending Clause Learning of SAT Solvers with Boolean Gröbner Bases
NASA Astrophysics Data System (ADS)
Zengler, Christoph; Küchlin, Wolfgang
We extend clause learning as performed by most modern SAT Solvers by integrating the computation of Boolean Gröbner bases into the conflict learning process. Instead of learning only one clause per conflict, we compute and learn additional binary clauses from a Gröbner basis of the current conflict. We used the Gröbner basis engine of the logic package Redlog contained in the computer algebra system Reduce to extend the SAT solver MiniSAT with Gröbner basis learning. Our approach shows a significant reduction of conflicts and a reduction of restarts and computation time on many hard problems from the SAT 2009 competition.
Integrand-level reduction of loop amplitudes by computational algebraic geometry methods
NASA Astrophysics Data System (ADS)
Zhang, Yang
2012-09-01
We present an algorithm for the integrand-level reduction of multi-loop amplitudes of renormalizable field theories, based on computational algebraic geometry. This algorithm uses (1) the Gröbner basis method to determine the basis for integrand-level reduction, (2) the primary decomposition of an ideal to classify all inequivalent solutions of unitarity cuts. The resulting basis and cut solutions can be used to reconstruct the integrand from unitarity cuts, via polynomial fitting techniques. The basis determination part of the algorithm has been implemented in the Mathematica package, BasisDet. The primary decomposition part can be readily carried out by algebraic geometry softwares, with the output of the package BasisDet. The algorithm works in both D = 4 and D = 4 - 2 ɛ dimensions, and we present some two and three-loop examples of applications of this algorithm.
ORACLS: A system for linear-quadratic-Gaussian control law design
NASA Technical Reports Server (NTRS)
Armstrong, E. S.
1978-01-01
A modern control theory design package (ORACLS) for constructing controllers and optimal filters for systems modeled by linear time-invariant differential or difference equations is described. Numerical linear-algebra procedures are used to implement the linear-quadratic-Gaussian (LQG) methodology of modern control theory. Algorithms are included for computing eigensystems of real matrices, the relative stability of a matrix, factored forms for nonnegative definite matrices, the solutions and least squares approximations to the solutions of certain linear matrix algebraic equations, the controllability properties of a linear time-invariant system, and the steady state covariance matrix of an open-loop stable system forced by white noise. Subroutines are provided for solving both the continuous and discrete optimal linear regulator problems with noise free measurements and the sampled-data optimal linear regulator problem. For measurement noise, duality theory and the optimal regulator algorithms are used to solve the continuous and discrete Kalman-Bucy filter problems. Subroutines are also included which give control laws causing the output of a system to track the output of a prescribed model.
Implementation of Parallel Dynamic Simulation on Shared-Memory vs. Distributed-Memory Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Shuangshuang; Chen, Yousu; Wu, Di
2015-12-09
Power system dynamic simulation computes the system response to a sequence of large disturbance, such as sudden changes in generation or load, or a network short circuit followed by protective branch switching operation. It consists of a large set of differential and algebraic equations, which is computational intensive and challenging to solve using single-processor based dynamic simulation solution. High-performance computing (HPC) based parallel computing is a very promising technology to speed up the computation and facilitate the simulation process. This paper presents two different parallel implementations of power grid dynamic simulation using Open Multi-processing (OpenMP) on shared-memory platform, and Messagemore » Passing Interface (MPI) on distributed-memory clusters, respectively. The difference of the parallel simulation algorithms and architectures of the two HPC technologies are illustrated, and their performances for running parallel dynamic simulation are compared and demonstrated.« less
Iterative algorithms for computing the feedback Nash equilibrium point for positive systems
NASA Astrophysics Data System (ADS)
Ivanov, I.; Imsland, Lars; Bogdanova, B.
2017-03-01
The paper studies N-player linear quadratic differential games on an infinite time horizon with deterministic feedback information structure. It introduces two iterative methods (the Newton method as well as its accelerated modification) in order to compute the stabilising solution of a set of generalised algebraic Riccati equations. The latter is related to the Nash equilibrium point of the considered game model. Moreover, we derive the sufficient conditions for convergence of the proposed methods. Finally, we discuss two numerical examples so as to illustrate the performance of both of the algorithms.
NASA Astrophysics Data System (ADS)
Alam Khan, Najeeb; Razzaq, Oyoon Abdul
2016-03-01
In the present work a wavelets approximation method is employed to solve fuzzy boundary value differential equations (FBVDEs). Essentially, a truncated Legendre wavelets series together with the Legendre wavelets operational matrix of derivative are utilized to convert FB- VDE into a simple computational problem by reducing it into a system of fuzzy algebraic linear equations. The capability of scheme is investigated on second order FB- VDE considered under generalized H-differentiability. Solutions are represented graphically showing competency and accuracy of this method.
Experimental realization of a highly secure chaos communication under strong channel noise
NASA Astrophysics Data System (ADS)
Ye, Weiping; Dai, Qionglin; Wang, Shihong; Lu, Huaping; Kuang, Jinyu; Zhao, Zhenfeng; Zhu, Xiangqing; Tang, Guoning; Huang, Ronghuai; Hu, Gang
2004-09-01
A one-way coupled spatiotemporally chaotic map lattice is used to construct cryptosystem. With the combinatorial applications of both chaotic computations and conventional algebraic operations, our system has optimal cryptographic properties much better than the separative applications of known chaotic and conventional methods. We have realized experiments to practice duplex voice secure communications in realistic Wired Public Switched Telephone Network by applying our chaotic system and the system of Advanced Encryption Standard (AES), respectively, for cryptography. Our system can work stably against strong channel noise when AES fails to work.
Two dissimilar approaches to dynamical systems on hyper MV -algebras and their information entropy
NASA Astrophysics Data System (ADS)
Mehrpooya, Adel; Ebrahimi, Mohammad; Davvaz, Bijan
2017-09-01
Measuring the flow of information that is related to the evolution of a system which is modeled by applying a mathematical structure is of capital significance for science and usually for mathematics itself. Regarding this fact, a major issue in concern with hyperstructures is their dynamics and the complexity of the varied possible dynamics that exist over them. Notably, the dynamics and uncertainty of hyper MV -algebras which are hyperstructures and extensions of a central tool in infinite-valued Lukasiewicz propositional calculus that models many valued logics are of primary concern. Tackling this problem, in this paper we focus on the subject of dynamical systems on hyper MV -algebras and their entropy. In this respect, we adopt two varied approaches. One is the set-based approach in which hyper MV -algebra dynamical systems are developed by employing set functions and set partitions. By the other method that is based on points and point partitions, we establish the concept of hyper injective dynamical systems on hyper MV -algebras. Next, we study the notion of entropy for both kinds of systems. Furthermore, we consider essential ergodic characteristics of those systems and their entropy. In particular, we introduce the concept of isomorphic hyper injective and hyper MV -algebra dynamical systems, and we demonstrate that isomorphic systems have the same entropy. We present a couple of theorems in order to help calculate entropy. In particular, we prove a contemporary version of addition and Kolmogorov-Sinai Theorems. Furthermore, we provide a comparison between the indispensable properties of hyper injective and semi-independent dynamical systems. Specifically, we present and prove theorems that draw comparisons between the entropies of such systems. Lastly, we discuss some possible relationships between the theories of hyper MV -algebra and MV -algebra dynamical systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heroux, Michael Allen; Marker, Bryan
This report summarizes the progress made as part of a one year lab-directed research and development (LDRD) project to fund the research efforts of Bryan Marker at the University of Texas at Austin. The goal of the project was to develop new techniques for automatically tuning the performance of dense linear algebra kernels. These kernels often represent the majority of computational time in an application. The primary outcome from this work is a demonstration of the value of model driven engineering as an approach to accurately predict and study performance trade-offs for dense linear algebra computations.
Dual-scale topology optoelectronic processor.
Marsden, G C; Krishnamoorthy, A V; Esener, S C; Lee, S H
1991-12-15
The dual-scale topology optoelectronic processor (D-STOP) is a parallel optoelectronic architecture for matrix algebraic processing. The architecture can be used for matrix-vector multiplication and two types of vector outer product. The computations are performed electronically, which allows multiplication and summation concepts in linear algebra to be generalized to various nonlinear or symbolic operations. This generalization permits the application of D-STOP to many computational problems. The architecture uses a minimum number of optical transmitters, which thereby reduces fabrication requirements while maintaining area-efficient electronics. The necessary optical interconnections are space invariant, minimizing space-bandwidth requirements.
Finite-size anomalies of the Drude weight: Role of symmetries and ensembles
NASA Astrophysics Data System (ADS)
Sánchez, R. J.; Varma, V. K.
2017-12-01
We revisit the numerical problem of computing the high temperature spin stiffness, or Drude weight, D of the spin-1 /2 X X Z chain using exact diagonalization to systematically analyze its dependence on system symmetries and ensemble. Within the canonical ensemble and for states with zero total magnetization, we find D vanishes exactly due to spin-inversion symmetry for all but the anisotropies Δ˜M N=cos(π M /N ) with N ,M ∈Z+ coprimes and N >M , provided system sizes L ≥2 N , for which states with different spin-inversion signature become degenerate due to the underlying s l2 loop algebra symmetry. All these loop-algebra degenerate states carry finite currents which we conjecture [based on data from the system sizes and anisotropies Δ˜M N (with N
Zhao, Shouwei
2011-06-01
A Lie algebraic condition for global exponential stability of linear discrete switched impulsive systems is presented in this paper. By considering a Lie algebra generated by all subsystem matrices and impulsive matrices, when not all of these matrices are Schur stable, we derive new criteria for global exponential stability of linear discrete switched impulsive systems. Moreover, simple sufficient conditions in terms of Lie algebra are established for the synchronization of nonlinear discrete systems using a hybrid switching and impulsive control. As an application, discrete chaotic system's synchronization is investigated by the proposed method.
ERIC Educational Resources Information Center
Alexander, John W., Jr.; Rosenberg, Nancy S.
This document consists of two modules. The first of these views applications of algebra and elementary calculus to curve fitting. The user is provided with information on how to: 1) construct scatter diagrams; 2) choose an appropriate function to fit specific data; 3) understand the underlying theory of least squares; 4) use a computer program to…
An algorithmic approach to solving polynomial equations associated with quantum circuits
NASA Astrophysics Data System (ADS)
Gerdt, V. P.; Zinin, M. V.
2009-12-01
In this paper we present two algorithms for reducing systems of multivariate polynomial equations over the finite field F 2 to the canonical triangular form called lexicographical Gröbner basis. This triangular form is the most appropriate for finding solutions of the system. On the other hand, the system of polynomials over F 2 whose variables also take values in F 2 (Boolean polynomials) completely describes the unitary matrix generated by a quantum circuit. In particular, the matrix itself can be computed by counting the number of solutions (roots) of the associated polynomial system. Thereby, efficient construction of the lexicographical Gröbner bases over F 2 associated with quantum circuits gives a method for computing their circuit matrices that is alternative to the direct numerical method based on linear algebra. We compare our implementation of both algorithms with some other software packages available for computing Gröbner bases over F 2.
Building a symbolic computer algebra toolbox to compute 2D Fourier transforms in polar coordinates.
Dovlo, Edem; Baddour, Natalie
2015-01-01
The development of a symbolic computer algebra toolbox for the computation of two dimensional (2D) Fourier transforms in polar coordinates is presented. Multidimensional Fourier transforms are widely used in image processing, tomographic reconstructions and in fact any application that requires a multidimensional convolution. By examining a function in the frequency domain, additional information and insights may be obtained. The advantages of our method include: •The implementation of the 2D Fourier transform in polar coordinates within the toolbox via the combination of two significantly simpler transforms.•The modular approach along with the idea of lookup tables implemented help avoid the issue of indeterminate results which may occur when attempting to directly evaluate the transform.•The concept also helps prevent unnecessary computation of already known transforms thereby saving memory and processing time.
Algebraic Systems and Pushdown Automata
NASA Astrophysics Data System (ADS)
Petre, Ion; Salomaa, Arto
We concentrate in this chapter on the core aspects of algebraic series, pushdown automata, and their relation to formal languages. We choose to follow here a presentation of their theory based on the concept of properness. We introduce in Sect. 2 some auxiliary notions and results needed throughout the chapter, in particular the notions of discrete convergence in semirings and C-cycle free infinite matrices. In Sect. 3 we introduce the algebraic power series in terms of algebraic systems of equations. We focus on interconnections with context-free grammars and on normal forms. We then conclude the section with a presentation of the theorems of Shamir and Chomsky-Schützenberger. We discuss in Sect. 4 the algebraic and the regulated rational transductions, as well as some representation results related to them. Section 5 is dedicated to pushdown automata and focuses on the interconnections with classical (non-weighted) pushdown automata and on the interconnections with algebraic systems. We then conclude the chapter with a brief discussion of some of the other topics related to algebraic systems and pushdown automata.
Attitude and CAS Use in Senior Secondary Mathematics: A Case Study of Seven Year 11 Students
ERIC Educational Resources Information Center
Cameron, Scott; Ball, Lynda
2014-01-01
This paper investigates the possible influence of attitude on seven Year 11 students' use of a Computer Algebra System (CAS) during a class activity where students could choose to use CAS or pen-and-paper in solving a range of problems. Investigation of anxiety, confidence, liking and usefulness through a survey and interview revealed that these…
Bajaj, Chandrajit; Chen, Shun-Chuan; Rand, Alexander
2011-01-01
In order to compute polarization energy of biomolecules, we describe a boundary element approach to solving the linearized Poisson-Boltzmann equation. Our approach combines several important features including the derivative boundary formulation of the problem and a smooth approximation of the molecular surface based on the algebraic spline molecular surface. State of the art software for numerical linear algebra and the kernel independent fast multipole method is used for both simplicity and efficiency of our implementation. We perform a variety of computational experiments, testing our method on a number of actual proteins involved in molecular docking and demonstrating the effectiveness of our solver for computing molecular polarization energy. PMID:21660123
A braided monoidal category for free super-bosons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Runkel, Ingo, E-mail: ingo.runkel@uni-hamburg.de
The chiral conformal field theory of free super-bosons is generated by weight one currents whose mode algebra is the affinisation of an abelian Lie super-algebra h with non-degenerate super-symmetric pairing. The mode algebras of a single free boson and of a single pair of symplectic fermions arise for even|odd dimension 1|0 and 0|2 of h, respectively. In this paper, the representations of the untwisted mode algebra of free super-bosons are equipped with a tensor product, a braiding, and an associator. In the symplectic fermion case, i.e., if h is purely odd, the braided monoidal structure is extended to representations ofmore » the Z/2Z-twisted mode algebra. The tensor product is obtained by computing spaces of vertex operators. The braiding and associator are determined by explicit calculations from three- and four-point conformal blocks.« less
Classical affine W-algebras associated to Lie superalgebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suh, Uhi Rinn, E-mail: uhrisu1@math.snu.ac.kr
2016-02-15
In this paper, we prove classical affine W-algebras associated to Lie superalgebras (W-superalgebras), which can be constructed in two different ways: via affine classical Hamiltonian reductions and via taking quasi-classical limits of quantum affine W-superalgebras. Also, we show that a classical finite W-superalgebra can be obtained by a Zhu algebra of a classical affine W-superalgebra. Using the definition by Hamiltonian reductions, we find free generators of a classical W-superalgebra associated to a minimal nilpotent. Moreover, we compute generators of the classical W-algebra associated to spo(2|3) and its principal nilpotent. In the last part of this paper, we introduce a generalizationmore » of classical affine W-superalgebras called classical affine fractional W-superalgebras. We show these have Poisson vertex algebra structures and find generators of a fractional W-superalgebra associated to a minimal nilpotent.« less
Symbolic-Numerical Modeling of the Influence of Damping Moments on Satellite Dynamics
NASA Astrophysics Data System (ADS)
Gutnik, Sergey A.; Sarychev, Vasily A.
2018-02-01
The dynamics of a satellite on a circular orbit under the influence of gravitational and active damping torques, which are proportional to the projections of the angular velocity of the satellite, is investigated. Computer algebra Gröbner basis methods for the determination of all equilibrium orientations of the satellite in the orbital coordinate system with given damping torque and given principal central moments of inertia were used. The conditions of the equilibria existence depending on three damping parameters were obtained from the analysis of the real roots of the algebraic equations spanned by the constructed Gröbner basis. Conditions of asymptotic stability of the satellite equilibria and the transition decay processes of the spatial oscillations of the satellite at different damping parameters have also been obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozlov, I K
In this paper we study topological properties of an integrable case for Euler's equations on the Lie algebra so(4), which can be regarded as an analogue of the classical Kovalevskaya case in rigid body dynamics. In particular, for all values of the parameters of the system under consideration, the bifurcation diagrams of the momentum mapping are constructed, the types of critical points of rank 0 are determined, the bifurcations of Liouville tori are described, and the loop molecules are computed for all singular points of the bifurcation diagrams. It follows from the obtained results that some topological properties of the classicalmore » Kovalevskaya case can be obtained from the corresponding properties of the considered integrable case on the Lie algebra so(4) by taking a natural limit. Bibliography: 21 titles.« less
NASA Technical Reports Server (NTRS)
O'Hara, Charles G. (Inventor); Shrestha, Bijay (Inventor); Vijayaraj, Veeraraghavan (Inventor); Mali, Preeti (Inventor)
2011-01-01
A compositing process for selecting spatial data collected over a period of time, creating temporal data cubes from the spatial data, and processing and/or analyzing the data using temporal mapping algebra functions. In some embodiments, the temporal data cube is creating a masked cube using the data cubes, and computing a composite from the masked cube by using temporal mapping algebra.
Semiclassical spectrum for BMN string in Sch 5 × S 5
NASA Astrophysics Data System (ADS)
Ouyang, Hao
2017-12-01
We investigate the algebraic curve for string in Sch 5 × S 5. We compute the semiclassical spectrum for BMN string in Sch 5 × S 5 from the algebraic curve. We compare our results with the anomalous dimensions in sl(2) sector of the null dipole deformation of N=4 superYang-Millstheory.
ERIC Educational Resources Information Center
Hagerty, Gary; Smith, Stanley; Goodwin, Danielle
2010-01-01
In 2001, Black Hills State University (BHSU) redesigned college algebra to use the computer-based mastery learning program, Assessment and Learning in Knowledge Spaces [1], historical development of concepts modules, whole class discussions, cooperative activities, relevant applications problems, and many fewer lectures. This resulted in a 21%…
Diagonalization and Jordan Normal Form--Motivation through "Maple"[R
ERIC Educational Resources Information Center
Glaister, P.
2009-01-01
Following an introduction to the diagonalization of matrices, one of the more difficult topics for students to grasp in linear algebra is the concept of Jordan normal form. In this note, we show how the important notions of diagonalization and Jordan normal form can be introduced and developed through the use of the computer algebra package…
Using process algebra to develop predator-prey models of within-host parasite dynamics.
McCaig, Chris; Fenton, Andy; Graham, Andrea; Shankland, Carron; Norman, Rachel
2013-07-21
As a first approximation of immune-mediated within-host parasite dynamics we can consider the immune response as a predator, with the parasite as its prey. In the ecological literature of predator-prey interactions there are a number of different functional responses used to describe how a predator reproduces in response to consuming prey. Until recently most of the models of the immune system that have taken a predator-prey approach have used simple mass action dynamics to capture the interaction between the immune response and the parasite. More recently Fenton and Perkins (2010) employed three of the most commonly used prey-dependent functional response terms from the ecological literature. In this paper we make use of a technique from computing science, process algebra, to develop mathematical models. The novelty of the process algebra approach is to allow stochastic models of the population (parasite and immune cells) to be developed from rules of individual cell behaviour. By using this approach in which individual cellular behaviour is captured we have derived a ratio-dependent response similar to that seen in the previous models of immune-mediated parasite dynamics, confirming that, whilst this type of term is controversial in ecological predator-prey models, it is appropriate for models of the immune system. Copyright © 2013 Elsevier Ltd. All rights reserved.
Multiphysics Simulations: Challenges and Opportunities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keyes, David; McInnes, Lois C.; Woodward, Carol
2013-02-12
We consider multiphysics applications from algorithmic and architectural perspectives, where ‘‘algorithmic’’ includes both mathematical analysis and computational complexity, and ‘‘architectural’’ includes both software and hardware environments. Many diverse multiphysics applications can be reduced, en route to their computational simulation, to a common algebraic coupling paradigm. Mathematical analysis of multiphysics coupling in this form is not always practical for realistic applications, but model problems representative of applications discussed herein can provide insight. A variety of software frameworks for multiphysics applications have been constructed and refined within disciplinary communities and executed on leading-edge computer systems. We examine several of these, expose somemore » commonalities among them, and attempt to extrapolate best practices to future systems. From our study, we summarize challenges and forecast opportunities.« less
NASA Technical Reports Server (NTRS)
Bittker, D. A.; Scullin, V. J.
1984-01-01
A general chemical kinetics code is described for complex, homogeneous ideal gas reactions in any chemical system. The main features of the GCKP84 code are flexibility, convenience, and speed of computation for many different reaction conditions. The code, which replaces the GCKP code published previously, solves numerically the differential equations for complex reaction in a batch system or one dimensional inviscid flow. It also solves numerically the nonlinear algebraic equations describing the well stirred reactor. A new state of the art numerical integration method is used for greatly increased speed in handling systems of stiff differential equations. The theory and the computer program, including details of input preparation and a guide to using the code are given.
Prlj, Antonio; Curchod, Basile F E; Corminboeuf, Clémence
2015-06-14
The computational elucidation and proper description of the ultrafast deactivation mechanisms of simple organic electronic units, such as thiophene and its oligomers, is as challenging as it is contentious. A comprehensive excited state dynamics analysis of these systems utilizing reliable electronic structure approaches is currently lacking, with earlier pictures of the photochemistry of these systems being conceived based upon high-level static computations or lower level dynamic trajectories. Here a detailed surface hopping molecular dynamics of thiophene and bithiophene using the algebraic diagrammatic construction to second order (ADC(2)) method is presented. Our findings illustrate that ring puckering plays an important role in thiophene photochemistry and that the photostability increases when going upon dimerization into bithiophene.
A Trotter-Suzuki approximation for Lie groups with applications to Hamiltonian simulation
NASA Astrophysics Data System (ADS)
Somma, Rolando D.
2016-06-01
We present a product formula to approximate the exponential of a skew-Hermitian operator that is a sum of generators of a Lie algebra. The number of terms in the product depends on the structure factors. When the generators have large norm with respect to the dimension of the Lie algebra, or when the norm of the effective operator resulting from nested commutators is less than the product of the norms, the number of terms in the product is significantly less than that obtained from well-known results. We apply our results to construct product formulas useful for the quantum simulation of some continuous-variable and bosonic physical systems, including systems whose potential is not quadratic. For many of these systems, we show that the number of terms in the product can be sublinear or even subpolynomial in the dimension of the relevant local Hilbert spaces, where such a dimension is usually determined by the energy scale of the problem. Our results emphasize the power of quantum computers for the simulation of various quantum systems.
A Trotter-Suzuki approximation for Lie groups with applications to Hamiltonian simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somma, Rolando D., E-mail: somma@lanl.gov
2016-06-15
We present a product formula to approximate the exponential of a skew-Hermitian operator that is a sum of generators of a Lie algebra. The number of terms in the product depends on the structure factors. When the generators have large norm with respect to the dimension of the Lie algebra, or when the norm of the effective operator resulting from nested commutators is less than the product of the norms, the number of terms in the product is significantly less than that obtained from well-known results. We apply our results to construct product formulas useful for the quantum simulation ofmore » some continuous-variable and bosonic physical systems, including systems whose potential is not quadratic. For many of these systems, we show that the number of terms in the product can be sublinear or even subpolynomial in the dimension of the relevant local Hilbert spaces, where such a dimension is usually determined by the energy scale of the problem. Our results emphasize the power of quantum computers for the simulation of various quantum systems.« less
A Trotter-Suzuki approximation for Lie groups with applications to Hamiltonian simulation
Somma, Rolando D.
2016-06-01
In this paper, we present a product formula to approximate the exponential of a skew-Hermitian operator that is a sum of generators of a Lie algebra. The number of terms in the product depends on the structure factors. When the generators have large norm with respect to the dimension of the Lie algebra, or when the norm of the effective operator resulting from nested commutators is less than the product of the norms, the number of terms in the product is significantly less than that obtained from well-known results. We apply our results to construct product formulas useful for themore » quantum simulation of some continuous-variable and bosonic physical systems, including systems whose potential is not quadratic. For many of these systems, we show that the number of terms in the product can be sublinear or even subpolynomial in the dimension of the relevant local Hilbert spaces, where such a dimension is usually determined by the energy scale of the problem. Our results emphasize the power of quantum computers for the simulation of various quantum systems.« less
Dolan Grady relations and noncommutative quasi-exactly solvable systems
NASA Astrophysics Data System (ADS)
Klishevich, Sergey M.; Plyushchay, Mikhail S.
2003-11-01
We investigate a U(1) gauge invariant quantum mechanical system on a 2D noncommutative space with coordinates generating a generalized deformed oscillator algebra. The Hamiltonian is taken as a quadratic form in gauge covariant derivatives obeying the nonlinear Dolan-Grady relations. This restricts the structure function of the deformed oscillator algebra to a quadratic polynomial. The cases when the coordinates form the {\\mathfrak{su}}(2) and {\\mathfrak{sl}}(2,{\\bb {R}}) algebras are investigated in detail. Reducing the Hamiltonian to 1D finite-difference quasi-exactly solvable operators, we demonstrate partial algebraization of the spectrum of the corresponding systems on the fuzzy sphere and noncommutative hyperbolic plane. A completely covariant method based on the notion of intrinsic algebra is proposed to deal with the spectral problem of such systems.
Dynamic analysis methods for detecting anomalies in asynchronously interacting systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Akshat; Solis, John Hector; Matschke, Benjamin
2014-01-01
Detecting modifications to digital system designs, whether malicious or benign, is problematic due to the complexity of the systems being analyzed. Moreover, static analysis techniques and tools can only be used during the initial design and implementation phases to verify safety and liveness properties. It is computationally intractable to guarantee that any previously verified properties still hold after a system, or even a single component, has been produced by a third-party manufacturer. In this paper we explore new approaches for creating a robust system design by investigating highly-structured computational models that simplify verification and analysis. Our approach avoids the needmore » to fully reconstruct the implemented system by incorporating a small verification component that dynamically detects for deviations from the design specification at run-time. The first approach encodes information extracted from the original system design algebraically into a verification component. During run-time this component randomly queries the implementation for trace information and verifies that no design-level properties have been violated. If any deviation is detected then a pre-specified fail-safe or notification behavior is triggered. Our second approach utilizes a partitioning methodology to view liveness and safety properties as a distributed decision task and the implementation as a proposed protocol that solves this task. Thus the problem of verifying safety and liveness properties is translated to that of verifying that the implementation solves the associated decision task. We develop upon results from distributed systems and algebraic topology to construct a learning mechanism for verifying safety and liveness properties from samples of run-time executions.« less
Diffraction of Electromagnetic Waves on a Waveguide Joint
NASA Astrophysics Data System (ADS)
Malykh, Mikhail; Sevastianov, Leonid; Tyutyunnik, Anastasiya; Nikolaev, Nikolai
2018-02-01
In general, the investigation of the electromagnetic field in an inhomogeneous waveguide doesn't reduce to the study of two independent boundary value problems for the Helmholtz equation. We show how to rewrite the Helmholtz equations in the "Hamiltonian form" to express the connection between these two problems explicitly. The problem of finding monochromatic waves in an arbitrary waveguide is reduced to an infinite system of ordinary differential equations in a properly constructed Hilbert space. The calculations are performed in the computer algebra system Sage.
Workshop on Advances in Scientific Computation and Differential Equations (SCADE)
1994-07-18
STATEMENT ~~’"j’’ Approved for public release; distribution unlimited. I ABSTRACT (MAMMU 200WOMW 94 808 1 64 4.L SUBIECT TERMS Ii11URE Of PAGES 12 16...called differential algebraic ODEs (DAES). (Some important early research on this topic was by L. Petzold.) Both theoretically and in terms of...completely specify the solution. In many physical systems, especially those in biology, or other large scale slowly responding systems, the inclusion of some
RANS modeling of scalar dispersion from localized sources within a simplified urban-area model
NASA Astrophysics Data System (ADS)
Rossi, Riccardo; Capra, Stefano; Iaccarino, Gianluca
2011-11-01
The dispersion of a passive scalar downstream a localized source within a simplified urban-like geometry is examined by means of RANS scalar flux models. The computations are conducted under conditions of neutral stability and for three different incoming wind directions (0°, 45°, 90°) at a roughness Reynolds number of Ret = 391. A Reynolds stress transport model is used to close the flow governing equations whereas both the standard eddy-diffusivity closure and algebraic flux models are employed to close the transport equation for the passive scalar. The comparison with a DNS database shows improved reliability from algebraic scalar flux models towards predicting both the mean concentration and the plume structure. Since algebraic flux models do not increase substantially the computational effort, the results indicate that the use of tensorial-diffusivity can be promising tool for dispersion simulations for the urban environment.
The state of the Java universe
Gosling, James
2018-05-22
Speaker Bio: James Gosling received a B.Sc. in computer science from the University of Calgary, Canada in 1977. He received a Ph.D. in computer science from Carnegie-Mellon University in 1983. The title of his thesis was The Algebraic Manipulation of Constraints. He has built satellite data acquisition systems, a multiprocessor version of UNIX®, several compilers, mail systems, and window managers. He has also built a WYSIWYG text editor, a constraint-based drawing editor, and a text editor called Emacs, for UNIX systems. At Sun his early activity was as lead engineer of the NeWS window system. He did the original design of the Java programming language and implemented its original compiler and virtual machine. He has recently been a contributor to the Real-Time Specification for Java.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gosling, James
Speaker Bio: James Gosling received a B.Sc. in computer science from the University of Calgary, Canada in 1977. He received a Ph.D. in computer science from Carnegie-Mellon University in 1983. The title of his thesis was The Algebraic Manipulation of Constraints. He has built satellite data acquisition systems, a multiprocessor version of UNIX®, several compilers, mail systems, and window managers. He has also built a WYSIWYG text editor, a constraint-based drawing editor, and a text editor called Emacs, for UNIX systems. At Sun his early activity was as lead engineer of the NeWS window system. He did the original designmore » of the Java programming language and implemented its original compiler and virtual machine. He has recently been a contributor to the Real-Time Specification for Java.« less
Progress on a Taylor weak statement finite element algorithm for high-speed aerodynamic flows
NASA Technical Reports Server (NTRS)
Baker, A. J.; Freels, J. D.
1989-01-01
A new finite element numerical Computational Fluid Dynamics (CFD) algorithm has matured to the point of efficiently solving two-dimensional high speed real-gas compressible flow problems in generalized coordinates on modern vector computer systems. The algorithm employs a Taylor Weak Statement classical Galerkin formulation, a variably implicit Newton iteration, and a tensor matrix product factorization of the linear algebra Jacobian under a generalized coordinate transformation. Allowing for a general two-dimensional conservation law system, the algorithm has been exercised on the Euler and laminar forms of the Navier-Stokes equations. Real-gas fluid properties are admitted, and numerical results verify solution accuracy, efficiency, and stability over a range of test problem parameters.
A polymorphic reconfigurable emulator for parallel simulation
NASA Technical Reports Server (NTRS)
Parrish, E. A., Jr.; Mcvey, E. S.; Cook, G.
1980-01-01
Microprocessor and arithmetic support chip technology was applied to the design of a reconfigurable emulator for real time flight simulation. The system developed consists of master control system to perform all man machine interactions and to configure the hardware to emulate a given aircraft, and numerous slave compute modules (SCM) which comprise the parallel computational units. It is shown that all parts of the state equations can be worked on simultaneously but that the algebraic equations cannot (unless they are slowly varying). Attempts to obtain algorithms that will allow parellel updates are reported. The word length and step size to be used in the SCM's is determined and the architecture of the hardware and software is described.
Styopin, Nikita E; Vershinin, Anatoly V; Zingerman, Konstantin M; Levin, Vladimir A
2016-09-01
Different variants of the Uzawa algorithm are compared with one another. The comparison is performed for the case in which this algorithm is applied to large-scale systems of linear algebraic equations. These systems arise in the finite-element solution of the problems of elasticity theory for incompressible materials. A modification of the Uzawa algorithm is proposed. Computational experiments show that this modification improves the convergence of the Uzawa algorithm for the problems of solid mechanics. The results of computational experiments show that each variant of the Uzawa algorithm considered has its advantages and disadvantages and may be convenient in one case or another.
Building a symbolic computer algebra toolbox to compute 2D Fourier transforms in polar coordinates
Dovlo, Edem; Baddour, Natalie
2015-01-01
The development of a symbolic computer algebra toolbox for the computation of two dimensional (2D) Fourier transforms in polar coordinates is presented. Multidimensional Fourier transforms are widely used in image processing, tomographic reconstructions and in fact any application that requires a multidimensional convolution. By examining a function in the frequency domain, additional information and insights may be obtained. The advantages of our method include: • The implementation of the 2D Fourier transform in polar coordinates within the toolbox via the combination of two significantly simpler transforms. • The modular approach along with the idea of lookup tables implemented help avoid the issue of indeterminate results which may occur when attempting to directly evaluate the transform. • The concept also helps prevent unnecessary computation of already known transforms thereby saving memory and processing time. PMID:26150988
Perturbative computation in a generalized quantum field theory
NASA Astrophysics Data System (ADS)
Bezerra, V. B.; Curado, E. M.; Rego-Monteiro, M. A.
2002-10-01
We consider a quantum field theory that creates at any point of the space-time particles described by a q-deformed Heisenberg algebra which is interpreted as a phenomenological quantum theory describing the scattering of spin-0 composed particles. We discuss the generalization of Wick's expansion for this case and we compute perturbatively the scattering 1+2-->1'+2' to second order in the coupling constant. The result we find shows that the structure of a composed particle, described here phenomenologically by the deformed algebraic structure, can modify in a simple but nontrivial way the perturbation expansion for the process under consideration.
An analysis of thermal response factors and how to reduce their computational time requirement
NASA Technical Reports Server (NTRS)
Wiese, M. R.
1982-01-01
Te RESFAC2 version of the Thermal Response Factor Program (RESFAC) is the result of numerous modifications and additions to the original RESFAC. These modifications and additions have significantly reduced the program's computational time requirement. As a result of this work, the program is more efficient and its code is both readable and understandable. This report describes what a thermal response factor is; analyzes the original matrix algebra calculations and root finding techniques; presents a new root finding technique and streamlined matrix algebra; supplies ten validation cases and their results.
Surface defects and chiral algebras
NASA Astrophysics Data System (ADS)
Córdova, Clay; Gaiotto, Davide; Shao, Shu-Heng
2017-05-01
We investigate superconformal surface defects in four-dimensional N=2 superconformal theories. Each such defect gives rise to a module of the associated chiral algebra and the surface defect Schur index is the character of this module. Various natural chiral algebra operations such as Drinfeld-Sokolov reduction and spectral flow can be interpreted as constructions involving four-dimensional surface defects. We compute the index of these defects in the free hypermultiplet theory and Argyres-Douglas theories, using both infrared techniques involving BPS states, as well as renormalization group flows onto Higgs branches. In each case we find perfect agreement with the predicted characters.
Complementary Reliability-Based Decodings of Binary Linear Block Codes
NASA Technical Reports Server (NTRS)
Fossorier, Marc P. C.; Lin, Shu
1997-01-01
This correspondence presents a hybrid reliability-based decoding algorithm which combines the reprocessing method based on the most reliable basis and a generalized Chase-type algebraic decoder based on the least reliable positions. It is shown that reprocessing with a simple additional algebraic decoding effort achieves significant coding gain. For long codes, the order of reprocessing required to achieve asymptotic optimum error performance is reduced by approximately 1/3. This significantly reduces the computational complexity, especially for long codes. Also, a more efficient criterion for stopping the decoding process is derived based on the knowledge of the algebraic decoding solution.
Structure of Lie point and variational symmetry algebras for a class of odes
NASA Astrophysics Data System (ADS)
Ndogmo, J. C.
2018-04-01
It is known for scalar ordinary differential equations, and for systems of ordinary differential equations of order not higher than the third, that their Lie point symmetry algebras is of maximal dimension if and only if they can be reduced by a point transformation to the trivial equation y(n)=0. For arbitrary systems of ordinary differential equations of order n ≥ 3 reducible by point transformations to the trivial equation, we determine the complete structure of their Lie point symmetry algebras as well as that for their variational, and their divergence symmetry algebras. As a corollary, we obtain the maximal dimension of the Lie point symmetry algebra for any system of linear or nonlinear ordinary differential equations.
Computer Classification of Triangles and Quadrilaterals--A Challenging Application
ERIC Educational Resources Information Center
Dennis, J. Richard
1978-01-01
Two computer exercises involving the classification of geometric figures are given. The mathematics required is relatively simple but comes from several areas--synthetic geometry, analytic geometry, and linear algebra. (MN)
Evaluation of Madison Park PLATO Training on August 2000 BPS City Algebra Test Achievement.
ERIC Educational Resources Information Center
Baum, Christopher F.
This report presents empirical findings from the analysis of the performance of 85 students from Madison Park High School, Boston, Massachusetts, on the Boston Public Schools City Algebra Test (BPSCAT) in June and August 2000, and how their participation in Jobs for Youths Boston PLATO computer-based instruction in the intervening months may have…
ERIC Educational Resources Information Center
Lee, Kerry; Ng, Swee Fong; Bull, Rebecca; Pe, Madeline Lee; Ho, Ringo Ho Moon
2011-01-01
Although mathematical pattern tasks are often found in elementary school curricula and are deemed a building block for algebra, a recent report (National Mathematics Advisory Panel, 2008) suggests the resources devoted to its teaching and assessment need to be rebalanced. We examined whether children's developing proficiency in solving algebraic…
Method of generating features optimal to a dataset and classifier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruillard, Paul J.; Gosink, Luke J.; Jarman, Kenneth D.
A method of generating features optimal to a particular dataset and classifier is disclosed. A dataset of messages is inputted and a classifier is selected. An algebra of features is encoded. Computable features that are capable of describing the dataset from the algebra of features are selected. Irredundant features that are optimal for the classifier and the dataset are selected.
Cubic map algebra functions for spatio-temporal analysis
Mennis, J.; Viger, R.; Tomlin, C.D.
2005-01-01
We propose an extension of map algebra to three dimensions for spatio-temporal data handling. This approach yields a new class of map algebra functions that we call "cube functions." Whereas conventional map algebra functions operate on data layers representing two-dimensional space, cube functions operate on data cubes representing two-dimensional space over a third-dimensional period of time. We describe the prototype implementation of a spatio-temporal data structure and selected cube function versions of conventional local, focal, and zonal map algebra functions. The utility of cube functions is demonstrated through a case study analyzing the spatio-temporal variability of remotely sensed, southeastern U.S. vegetation character over various land covers and during different El Nin??o/Southern Oscillation (ENSO) phases. Like conventional map algebra, the application of cube functions may demand significant data preprocessing when integrating diverse data sets, and are subject to limitations related to data storage and algorithm performance. Solutions to these issues include extending data compression and computing strategies for calculations on very large data volumes to spatio-temporal data handling.
A short note on calculating the adjusted SAR index
USDA-ARS?s Scientific Manuscript database
A simple algebraic technique is presented for computing the adjusted SAR Index proposed by Suarez (1981). The statistical formula presented in this note facilitates the computation of the adjusted SAR without the use of either a look-up table, custom computer software or the need to compute exact a...
A splitting algorithm for the wavelet transform of cubic splines on a nonuniform grid
NASA Astrophysics Data System (ADS)
Sulaimanov, Z. M.; Shumilov, B. M.
2017-10-01
For cubic splines with nonuniform nodes, splitting with respect to the even and odd nodes is used to obtain a wavelet expansion algorithm in the form of the solution to a three-diagonal system of linear algebraic equations for the coefficients. Computations by hand are used to investigate the application of this algorithm for numerical differentiation. The results are illustrated by solving a prediction problem.
ERIC Educational Resources Information Center
Beaudin, Michel; Picard, Gilles
2010-01-01
Starting in September 1999, new students at ETS were required to own the TI-92 Plus or TI-89 symbolic calculator and since September 2002, the Voyage 200. Looking back at these ten years of working with a computer algebra system on every student's desk, one could ask whether the introduction of this hand-held technology has really forced teachers…
Symbolic-numeric interface: A review
NASA Technical Reports Server (NTRS)
Ng, E. W.
1980-01-01
A survey of the use of a combination of symbolic and numerical calculations is presented. Symbolic calculations primarily refer to the computer processing of procedures from classical algebra, analysis, and calculus. Numerical calculations refer to both numerical mathematics research and scientific computation. This survey is intended to point out a large number of problem areas where a cooperation of symbolic and numerical methods is likely to bear many fruits. These areas include such classical operations as differentiation and integration, such diverse activities as function approximations and qualitative analysis, and such contemporary topics as finite element calculations and computation complexity. It is contended that other less obvious topics such as the fast Fourier transform, linear algebra, nonlinear analysis and error analysis would also benefit from a synergistic approach.
On Correspondence of BRST-BFV, Dirac, and Refined Algebraic Quantizations of Constrained Systems
NASA Astrophysics Data System (ADS)
Shvedov, O. Yu.
2002-11-01
The correspondence between BRST-BFV, Dirac, and refined algebraic (group averaging, projection operator) approaches to quantizing constrained systems is analyzed. For the closed-algebra case, it is shown that the component of the BFV wave function corresponding to maximal (minimal) value of number of ghosts and antighosts in the Schrodinger representation may be viewed as a wave function in the refined algebraic (Dirac) quantization approach. The Giulini-Marolf group averaging formula for the inner product in the refined algebraic quantization approach is obtained from the Batalin-Marnelius prescription for the BRST-BFV inner product, which should be generally modified due to topological problems. The considered prescription for the correspondence of states is observed to be applicable to the open-algebra case. The refined algebraic quantization approach is generalized then to the case of nontrivial structure functions. A simple example is discussed. The correspondence of observables for different quantization methods is also investigated.
NASA Astrophysics Data System (ADS)
Divakov, D.; Sevastianov, L.; Nikolaev, N.
2017-01-01
The paper deals with a numerical solution of the problem of waveguide propagation of polarized light in smoothly-irregular transition between closed regular waveguides using the incomplete Galerkin method. This method consists in replacement of variables in the problem of reduction of the Helmholtz equation to the system of differential equations by the Kantorovich method and in formulation of the boundary conditions for the resulting system. The formulation of the boundary problem for the ODE system is realized in computer algebra system Maple. The stated boundary problem is solved using Maples libraries of numerical methods.
Extending the length and time scales of Gram-Schmidt Lyapunov vector computations
NASA Astrophysics Data System (ADS)
Costa, Anthony B.; Green, Jason R.
2013-08-01
Lyapunov vectors have found growing interest recently due to their ability to characterize systems out of thermodynamic equilibrium. The computation of orthogonal Gram-Schmidt vectors requires multiplication and QR decomposition of large matrices, which grow as N2 (with the particle count). This expense has limited such calculations to relatively small systems and short time scales. Here, we detail two implementations of an algorithm for computing Gram-Schmidt vectors. The first is a distributed-memory message-passing method using Scalapack. The second uses the newly-released MAGMA library for GPUs. We compare the performance of both codes for Lennard-Jones fluids from N=100 to 1300 between Intel Nahalem/Infiniband DDR and NVIDIA C2050 architectures. To our best knowledge, these are the largest systems for which the Gram-Schmidt Lyapunov vectors have been computed, and the first time their calculation has been GPU-accelerated. We conclude that Lyapunov vector calculations can be significantly extended in length and time by leveraging the power of GPU-accelerated linear algebra.
Visualising elastic anisotropy: theoretical background and computational implementation
NASA Astrophysics Data System (ADS)
Nordmann, J.; Aßmus, M.; Altenbach, H.
2018-02-01
In this article, we present the technical realisation for visualisations of characteristic parameters of the fourth-order elasticity tensor, which is classified by three-dimensional symmetry groups. Hereby, expressions for spatial representations of uc(Young)'s modulus and bulk modulus as well as plane representations of shear modulus and uc(Poisson)'s ratio are derived and transferred into a comprehensible form to computer algebra systems. Additionally, we present approaches for spatial representations of both latter parameters. These three- and two-dimensional representations are implemented into the software MATrix LABoratory. Exemplary representations of characteristic materials complete the present treatise.
Energy conserving, linear scaling Born-Oppenheimer molecular dynamics.
Cawkwell, M J; Niklasson, Anders M N
2012-10-07
Born-Oppenheimer molecular dynamics simulations with long-term conservation of the total energy and a computational cost that scales linearly with system size have been obtained simultaneously. Linear scaling with a low pre-factor is achieved using density matrix purification with sparse matrix algebra and a numerical threshold on matrix elements. The extended Lagrangian Born-Oppenheimer molecular dynamics formalism [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] yields microcanonical trajectories with the approximate forces obtained from the linear scaling method that exhibit no systematic drift over hundreds of picoseconds and which are indistinguishable from trajectories computed using exact forces.
The algebra of supertraces for 2+1 super de Sitter gravity
NASA Technical Reports Server (NTRS)
Urrutia, L. F.; Waelbroeck, H.; Zertuche, F.
1993-01-01
The algebra of the observables for 2+1 super de Sitter gravity, for one genus of the spatial surface is calculated. The algebra turns out to be an infinite Lie algebra subject to non-linear constraints. The constraints are solved explicitly in terms of five independent complex supertraces. These variables are the true degrees of freedom of the system and their quantized algebra generates a new structure which is referred to as a 'central extension' of the quantum algebra SU(2)q.
NASA Astrophysics Data System (ADS)
Nurhayati, D. M.; Herman, T.; Suhendra, S.
2017-09-01
This study aims to determine the difficulties of algebraic thinking ability of students in one of secondary school on quadrilateral subject and to describe Math-Talk Learning Community as the alternative way that can be done to overcome the difficulties of the students’ algebraic thinking ability. Research conducted by using quantitative approach with descriptive method. The population in this research was all students of that school and twenty three students as the sample that was chosen by purposive sampling technique. Data of algebraic thinking were collected through essay test. The results showed the percentage of achievement of students’ algebraic thinking’s indicators on three aspects: a) algebra as generalized arithmetic with the indicators (conceptually based computational strategies and estimation); b) algebra as the language of mathematics (meaning of variables, variable expressions and meaning of solution); c) algebra as a tool for functions and mathematical modelling (representing mathematical ideas using equations, tables, or words and generalizing patterns and rules in real-world contexts) is still low. It is predicted that because the secondary school students was not familiar with the abstract problem and they are still at a semi-concrete stage where the stage of cognitive development is between concrete and abstract. Based on the percentage achievement of each indicators, it can be concluded that the level of achievement of student’s mathematical communication using conventional learning is still low, so students’ algebraic thinking ability need to be improved.
A nearly-linear computational-cost scheme for the forward dynamics of an N-body pendulum
NASA Technical Reports Server (NTRS)
Chou, Jack C. K.
1989-01-01
The dynamic equations of motion of an n-body pendulum with spherical joints are derived to be a mixed system of differential and algebraic equations (DAE's). The DAE's are kept in implicit form to save arithmetic and preserve the sparsity of the system and are solved by the robust implicit integration method. At each solution point, the predicted solution is corrected to its exact solution within given tolerance using Newton's iterative method. For each iteration, a linear system of the form J delta X = E has to be solved. The computational cost for solving this linear system directly by LU factorization is O(n exp 3), and it can be reduced significantly by exploring the structure of J. It is shown that by recognizing the recursive patterns and exploiting the sparsity of the system the multiplicative and additive computational costs for solving J delta X = E are O(n) and O(n exp 2), respectively. The formulation and solution method for an n-body pendulum is presented. The computational cost is shown to be nearly linearly proportional to the number of bodies.
The use of spectral methods in bidomain studies.
Trayanova, N; Pilkington, T
1992-01-01
A Fourier transform method is developed for solving the bidomain coupled differential equations governing the intracellular and extracellular potentials on a finite sheet of cardiac cells undergoing stimulation. The spectral formulation converts the system of differential equations into a "diagonal" system of algebraic equations. Solving the algebraic equations directly and taking the inverse transform of the potentials proved numerically less expensive than solving the coupled differential equations by means of traditional numerical techniques, such as finite differences; the comparison between the computer execution times showed that the Fourier transform method was about 40 times faster than the finite difference method. By application of the Fourier transform method, transmembrane potential distributions in the two-dimensional myocardial slice were calculated. For a tissue characterized by a ratio of the intra- to extracellular conductivities that is different in all principal directions, the transmembrane potential distribution exhibits a rather complicated geometrical pattern. The influence of the different anisotropy ratios, the finite tissue size, and the stimuli configuration on the pattern of membrane polarization is investigated.
Application of numerical grid generation for improved CFD analysis of multiphase screw machines
NASA Astrophysics Data System (ADS)
Rane, S.; Kovačević, A.
2017-08-01
Algebraic grid generation is widely used for discretization of the working domain of twin screw machines. Algebraic grid generation is fast and has good control over the placement of grid nodes. However, the desired qualities of grid which should be able to handle multiphase flows such as oil injection, may be difficult to achieve at times. In order to obtain fast solution of multiphase screw machines, it is important to further improve the quality and robustness of the computational grid. In this paper, a deforming grid of a twin screw machine is generated using algebraic transfinite interpolation to produce initial mesh upon which an elliptic partial differential equations (PDE) of the Poisson’s form is solved numerically to produce smooth final computational mesh. The quality of numerical cells and their distribution obtained by the differential method is greatly improved. In addition, a similar procedure was introduced to fully smoothen the transition of the partitioning rack curve between the rotors thus improving continuous movement of grid nodes and in turn improve robustness and speed of the Computational Fluid Dynamic (CFD) solver. Analysis of an oil injected twin screw compressor is presented to compare the improvements in grid quality factors in the regions of importance such as interlobe space, radial tip and the core of the rotor. The proposed method that combines algebraic and differential grid generation offer significant improvement in grid quality and robustness of numerical solution.
TBGG- INTERACTIVE ALGEBRAIC GRID GENERATION
NASA Technical Reports Server (NTRS)
Smith, R. E.
1994-01-01
TBGG, Two-Boundary Grid Generation, applies an interactive algebraic grid generation technique in two dimensions. The program incorporates mathematical equations that relate the computational domain to the physical domain. TBGG has application to a variety of problems using finite difference techniques, such as computational fluid dynamics. Examples include the creation of a C-type grid about an airfoil and a nozzle configuration in which no left or right boundaries are specified. The underlying two-boundary technique of grid generation is based on Hermite cubic interpolation between two fixed, nonintersecting boundaries. The boundaries are defined by two ordered sets of points, referred to as the top and bottom. Left and right side boundaries may also be specified, and call upon linear blending functions to conform interior interpolation to the side boundaries. Spacing between physical grid coordinates is determined as a function of boundary data and uniformly spaced computational coordinates. Control functions relating computational coordinates to parametric intermediate variables that affect the distance between grid points are embedded in the interpolation formulas. A versatile control function technique with smooth cubic spline functions is also presented. The TBGG program is written in FORTRAN 77. It works best in an interactive graphics environment where computational displays and user responses are quickly exchanged. The program has been implemented on a CDC Cyber 170 series computer using NOS 2.4 operating system, with a central memory requirement of 151,700 (octal) 60 bit words. TBGG requires a Tektronix 4015 terminal and the DI-3000 Graphics Library of Precision Visuals, Inc. TBGG was developed in 1986.
Solving Equations of Multibody Dynamics
NASA Technical Reports Server (NTRS)
Jain, Abhinandan; Lim, Christopher
2007-01-01
Darts++ is a computer program for solving the equations of motion of a multibody system or of a multibody model of a dynamic system. It is intended especially for use in dynamical simulations performed in designing and analyzing, and developing software for the control of, complex mechanical systems. Darts++ is based on the Spatial-Operator- Algebra formulation for multibody dynamics. This software reads a description of a multibody system from a model data file, then constructs and implements an efficient algorithm that solves the dynamical equations of the system. The efficiency and, hence, the computational speed is sufficient to make Darts++ suitable for use in realtime closed-loop simulations. Darts++ features an object-oriented software architecture that enables reconfiguration of system topology at run time; in contrast, in related prior software, system topology is fixed during initialization. Darts++ provides an interface to scripting languages, including Tcl and Python, that enable the user to configure and interact with simulation objects at run time.
Lie algebraic similarity transformed Hamiltonians for lattice model systems
NASA Astrophysics Data System (ADS)
Wahlen-Strothman, Jacob M.; Jiménez-Hoyos, Carlos A.; Henderson, Thomas M.; Scuseria, Gustavo E.
2015-01-01
We present a class of Lie algebraic similarity transformations generated by exponentials of two-body on-site Hermitian operators whose Hausdorff series can be summed exactly without truncation. The correlators are defined over the entire lattice and include the Gutzwiller factor ni ↑ni ↓ , and two-site products of density (ni ↑+ni ↓) and spin (ni ↑-ni ↓) operators. The resulting non-Hermitian many-body Hamiltonian can be solved in a biorthogonal mean-field approach with polynomial computational cost. The proposed similarity transformation generates locally weighted orbital transformations of the reference determinant. Although the energy of the model is unbound, projective equations in the spirit of coupled cluster theory lead to well-defined solutions. The theory is tested on the one- and two-dimensional repulsive Hubbard model where it yields accurate results for small and medium sized interaction strengths.
A 3D generic inverse dynamic method using wrench notation and quaternion algebra.
Dumas, R; Aissaoui, R; de Guise, J A
2004-06-01
In the literature, conventional 3D inverse dynamic models are limited in three aspects related to inverse dynamic notation, body segment parameters and kinematic formalism. First, conventional notation yields separate computations of the forces and moments with successive coordinate system transformations. Secondly, the way conventional body segment parameters are defined is based on the assumption that the inertia tensor is principal and the centre of mass is located between the proximal and distal ends. Thirdly, the conventional kinematic formalism uses Euler or Cardanic angles that are sequence-dependent and suffer from singularities. In order to overcome these limitations, this paper presents a new generic method for inverse dynamics. This generic method is based on wrench notation for inverse dynamics, a general definition of body segment parameters and quaternion algebra for the kinematic formalism.
Computational efficiency for the surface renewal method
NASA Astrophysics Data System (ADS)
Kelley, Jason; Higgins, Chad
2018-04-01
Measuring surface fluxes using the surface renewal (SR) method requires programmatic algorithms for tabulation, algebraic calculation, and data quality control. A number of different methods have been published describing automated calibration of SR parameters. Because the SR method utilizes high-frequency (10 Hz+) measurements, some steps in the flux calculation are computationally expensive, especially when automating SR to perform many iterations of these calculations. Several new algorithms were written that perform the required calculations more efficiently and rapidly, and that tested for sensitivity to length of flux averaging period, ability to measure over a large range of lag timescales, and overall computational efficiency. These algorithms utilize signal processing techniques and algebraic simplifications that demonstrate simple modifications that dramatically improve computational efficiency. The results here complement efforts by other authors to standardize a robust and accurate computational SR method. Increased speed of computation time grants flexibility to implementing the SR method, opening new avenues for SR to be used in research, for applied monitoring, and in novel field deployments.
Proceedings of the 1977 MACSYMA users' conference (NASA)
NASA Technical Reports Server (NTRS)
1977-01-01
The MACSYMA program for symbolic and algebraic manipulation enables exact, symbolic mathematical computations to be performed on a computer. This program is rather large, and various approaches to the hardware and software problems are examined.
Final Report, DE-FG01-06ER25718 Domain Decomposition and Parallel Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Widlund, Olof B.
2015-06-09
The goal of this project is to develop and improve domain decomposition algorithms for a variety of partial differential equations such as those of linear elasticity and electro-magnetics.These iterative methods are designed for massively parallel computing systems and allow the fast solution of the very large systems of algebraic equations that arise in large scale and complicated simulations. A special emphasis is placed on problems arising from Maxwell's equation. The approximate solvers, the preconditioners, are combined with the conjugate gradient method and must always include a solver of a coarse model in order to have a performance which is independentmore » of the number of processors used in the computer simulation. A recent development allows for an adaptive construction of this coarse component of the preconditioner.« less
Vertex Algebras W(p)Am and W(p)Dm and Constant Term Identities
NASA Astrophysics Data System (ADS)
Adamović, Dražen; Lin, Xianzu; Milas, Antun
2015-03-01
We consider AD-type orbifolds of the triplet vertex algebras W(p) extending the well-known c=1 orbifolds of lattice vertex algebras. We study the structure of Zhu's algebras A(W(p)^{A_m}) and A(W(p)^{D_m}), where A_m and D_m are cyclic and dihedral groups, respectively. A combinatorial algorithm for classification of irreducible W(p)^Γ-modules is developed, which relies on a family of constant term identities and properties of certain polynomials based on constant terms. All these properties can be checked for small values of m and p with a computer software. As a result, we argue that if certain constant term properties hold, the irreducible modules constructed in [Commun. Contemp. Math. 15 (2013), 1350028, 30 pages; Internat. J. Math. 25 (2014), 1450001, 34 pages] provide a complete list of irreducible W(p)^{A_m} and W(p)^{D_m}-modules. This paper is a continuation of our previous work on the ADE subalgebras of the triplet vertex algebra W(p).
ERIC Educational Resources Information Center
Kieran, Carolyn; Drijvers, Paul
2006-01-01
This paper addresses the dialectical relation between theoretical thinking and technique, as they co-emerge in a combined computer algebra (CAS) and paper-and-pencil environment. The theoretical framework in this ongoing study consists of the instrumental approach to tool use and an adaptation of Chevallard's anthropological theory. The main aim…
Space Mathematics: A Resource for Secondary School Teachers
NASA Technical Reports Server (NTRS)
Kastner, Bernice
1985-01-01
A collection of mathematical problems related to NASA space science projects is presented. In developing the examples and problems, attention was given to preserving the authenticity and significance of the original setting while keeping the level of mathematics within the secondary school curriculum. Computation and measurement, algebra, geometry, probability and statistics, exponential and logarithmic functions, trigonometry, matrix algebra, conic sections, and calculus are among the areas addressed.
High-performance image processing architecture
NASA Astrophysics Data System (ADS)
Coffield, Patrick C.
1992-04-01
The proposed architecture is a logical design specifically for image processing and other related computations. The design is a hybrid electro-optical concept consisting of three tightly coupled components: a spatial configuration processor (the optical analog portion), a weighting processor (digital), and an accumulation processor (digital). The systolic flow of data and image processing operations are directed by a control buffer and pipelined to each of the three processing components. The image processing operations are defined by an image algebra developed by the University of Florida. The algebra is capable of describing all common image-to-image transformations. The merit of this architectural design is how elegantly it handles the natural decomposition of algebraic functions into spatially distributed, point-wise operations. The effect of this particular decomposition allows convolution type operations to be computed strictly as a function of the number of elements in the template (mask, filter, etc.) instead of the number of picture elements in the image. Thus, a substantial increase in throughput is realized. The logical architecture may take any number of physical forms. While a hybrid electro-optical implementation is of primary interest, the benefits and design issues of an all digital implementation are also discussed. The potential utility of this architectural design lies in its ability to control all the arithmetic and logic operations of the image algebra's generalized matrix product. This is the most powerful fundamental formulation in the algebra, thus allowing a wide range of applications.
State-Space System Realization with Input- and Output-Data Correlation
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan
1997-01-01
This paper introduces a general version of the information matrix consisting of the autocorrelation and cross-correlation matrices of the shifted input and output data. Based on the concept of data correlation, a new system realization algorithm is developed to create a model directly from input and output data. The algorithm starts by computing a special type of correlation matrix derived from the information matrix. The special correlation matrix provides information on the system-observability matrix and the state-vector correlation. A system model is then developed from the observability matrix in conjunction with other algebraic manipulations. This approach leads to several different algorithms for computing system matrices for use in representing the system model. The relationship of the new algorithms with other realization algorithms in the time and frequency domains is established with matrix factorization of the information matrix. Several examples are given to illustrate the validity and usefulness of these new algorithms.
Designing Virtual Worlds for Use in Mathematics Education: The Example of Experiential Algebra.
ERIC Educational Resources Information Center
Winn, William; Bricken, William
1992-01-01
Discussion of the use of virtual reality (VR) to help students learn highlights the use of VR with elementary algebra. Learning theory is examined, including knowledge construction; knowledge representation is discussed, including the symbol systems of algebra; and spatial algebra is described and illustrated. (34 references) (LRW)