Sample records for computer animation techniques

  1. Computer animation challenges for computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Vines, Mauricio; Lee, Won-Sook; Mavriplis, Catherine

    2012-07-01

    Computer animation requirements differ from those of traditional computational fluid dynamics (CFD) investigations in that visual plausibility and rapid frame update rates trump physical accuracy. We present an overview of the main techniques for fluid simulation in computer animation, starting with Eulerian grid approaches, the Lattice Boltzmann method, Fourier transform techniques and Lagrangian particle introduction. Adaptive grid methods, precomputation of results for model reduction, parallelisation and computation on graphical processing units (GPUs) are reviewed in the context of accelerating simulation computations for animation. A survey of current specific approaches for the application of these techniques to the simulation of smoke, fire, water, bubbles, mixing, phase change and solid-fluid coupling is also included. Adding plausibility to results through particle introduction, turbulence detail and concentration on regions of interest by level set techniques has elevated the degree of accuracy and realism of recent animations. Basic approaches are described here. Techniques to control the simulation to produce a desired visual effect are also discussed. Finally, some references to rendering techniques and haptic applications are mentioned to provide the reader with a complete picture of the challenges of simulating fluids in computer animation.

  2. Computer Modeling of Microbiological Experiments in the Teaching Laboratory: Animation Techniques.

    ERIC Educational Resources Information Center

    Tritz, Gerald J.

    1987-01-01

    Discusses the use of computer assisted instruction in the medical education program of the Kirksville College of Osteopathic Medicine (Missouri). Describes the animation techniques used in a series of simulations for microbiology. (TW)

  3. Facial Animations: Future Research Directions & Challenges

    NASA Astrophysics Data System (ADS)

    Alkawaz, Mohammed Hazim; Mohamad, Dzulkifli; Rehman, Amjad; Basori, Ahmad Hoirul

    2014-06-01

    Nowadays, computer facial animation is used in a significant multitude fields that brought human and social to study the computer games, films and interactive multimedia reality growth. Authoring the computer facial animation, complex and subtle expressions are challenging and fraught with problems. As a result, the current most authored using universal computer animation techniques often limit the production quality and quantity of facial animation. With the supplement of computer power, facial appreciative, software sophistication and new face-centric methods emerging are immature in nature. Therefore, this paper concentrates to define and managerially categorize current and emerged surveyed facial animation experts to define the recent state of the field, observed bottlenecks and developing techniques. This paper further presents a real-time simulation model of human worry and howling with detail discussion about their astonish, sorrow, annoyance and panic perception.

  4. The Effects of Computer Animated Dissection versus Preserved Animal Dissection on the Student Achievement in a High School Biology Class.

    ERIC Educational Resources Information Center

    Kariuki, Patrick; Paulson, Ronda

    The purpose of this study was to examine the effectiveness of computer-animated dissection techniques versus the effectiveness of traditional dissection techniques as related to student achievement. The sample used was 104 general biology students from a small, rural high school in Northeast Tennessee. Random selection was used to separate the…

  5. Using Animation to Support the Teaching of Computer Game Development Techniques

    ERIC Educational Resources Information Center

    Taylor, Mark John; Pountney, David C.; Baskett, M.

    2008-01-01

    In this paper, we examine the potential use of animation for supporting the teaching of some of the mathematical concepts that underlie computer games development activities, such as vector and matrix algebra. An experiment was conducted with a group of UK undergraduate computing students to compare the perceived usefulness of animated and static…

  6. The Representation of Anatomical Structures through Computer Animation for Scientific, Educational and Artistic Applications.

    ERIC Educational Resources Information Center

    Stredney, Donald Larry

    An overview of computer animation and the techniques involved in its creation is provided in the introduction to this masters thesis, which focuses on the problems encountered by students in learning the forms and functions of complex anatomical structures and ways in which computer animation can address these problems. The objectives for,…

  7. Simple and powerful visual stimulus generator.

    PubMed

    Kremlácek, J; Kuba, M; Kubová, Z; Vít, F

    1999-02-01

    We describe a cheap, simple, portable and efficient approach to visual stimulation for neurophysiology which does not need any special hardware equipment. The method based on an animation technique uses the FLI autodesk animator format. This form of the animation is replayed by a special program ('player') providing synchronisation pulses toward recording system via parallel port. The 'player is running on an IBM compatible personal computer under MS-DOS operation system and stimulus is displayed on a VGA computer monitor. Various stimuli created with this technique for visual evoked potentials (VEPs) are presented.

  8. Effect of Computer Animation Technique on Students' Comprehension of the "Solar System and Beyond" Unit in the Science and Technology Course

    ERIC Educational Resources Information Center

    Aksoy, Gokhan

    2013-01-01

    The purpose of this study is to determine the effect of computer animation technique on academic achievement of students in the "Solar System and Beyond" unit lecture as part of the Science and Technology course of the seventh grade in primary education. The sample of the study consists of 60 students attending to the 7th grade of primary school…

  9. Video-signal synchronizes registration of visual evoked responses.

    PubMed

    Vít, F; Kuba, M; Kremlácek, J; Kubová, Z; Horevaj, M

    1996-01-01

    Autodesk Animator software offers the suitable technique for visual stimulation in the registration of visual evoked responses (VERs). However, it is not possible to generate pulses that are synchronous with the animated sequences on any output port of the computer. These pulses are necessary for the synchronization of the computer that makes the registration of the VERs. The principle of the circuit is presented that is able to provide the synchronization of the analyzer with the stimulation computer using Autodesk Animator software.

  10. Comments on event driven animation

    NASA Technical Reports Server (NTRS)

    Gomez, Julian E.

    1987-01-01

    Event driven animation provides a general method of describing controlling values for various computer animation techniques. A definition and comments are provided on genralizing motion description with events. Additional comments are also provided about the implementation of twixt.

  11. Considerations in video playback design: using optic flow analysis to examine motion characteristics of live and computer-generated animation sequences.

    PubMed

    Woo, Kevin L; Rieucau, Guillaume

    2008-07-01

    The increasing use of the video playback technique in behavioural ecology reveals a growing need to ensure better control of the visual stimuli that focal animals experience. Technological advances now allow researchers to develop computer-generated animations instead of using video sequences of live-acting demonstrators. However, care must be taken to match the motion characteristics (speed and velocity) of the animation to the original video source. Here, we presented a tool based on the use of an optic flow analysis program to measure the resemblance of motion characteristics of computer-generated animations compared to videos of live-acting animals. We examined three distinct displays (tail-flick (TF), push-up body rock (PUBR), and slow arm wave (SAW)) exhibited by animations of Jacky dragons (Amphibolurus muricatus) that were compared to the original video sequences of live lizards. We found no significant differences between the motion characteristics of videos and animations across all three displays. Our results showed that our animations are similar the speed and velocity features of each display. Researchers need to ensure that similar motion characteristics in animation and video stimuli are represented, and this feature is a critical component in the future success of the video playback technique.

  12. Computational Analysis of Behavior.

    PubMed

    Egnor, S E Roian; Branson, Kristin

    2016-07-08

    In this review, we discuss the emerging field of computational behavioral analysis-the use of modern methods from computer science and engineering to quantitatively measure animal behavior. We discuss aspects of experiment design important to both obtaining biologically relevant behavioral data and enabling the use of machine vision and learning techniques for automation. These two goals are often in conflict. Restraining or restricting the environment of the animal can simplify automatic behavior quantification, but it can also degrade the quality or alter important aspects of behavior. To enable biologists to design experiments to obtain better behavioral measurements, and computer scientists to pinpoint fruitful directions for algorithm improvement, we review known effects of artificial manipulation of the animal on behavior. We also review machine vision and learning techniques for tracking, feature extraction, automated behavior classification, and automated behavior discovery, the assumptions they make, and the types of data they work best with.

  13. Applications of CFD and visualization techniques

    NASA Technical Reports Server (NTRS)

    Saunders, James H.; Brown, Susan T.; Crisafulli, Jeffrey J.; Southern, Leslie A.

    1992-01-01

    In this paper, three applications are presented to illustrate current techniques for flow calculation and visualization. The first two applications use a commercial computational fluid dynamics (CFD) code, FLUENT, performed on a Cray Y-MP. The results are animated with the aid of data visualization software, apE. The third application simulates a particulate deposition pattern using techniques inspired by developments in nonlinear dynamical systems. These computations were performed on personal computers.

  14. Computer Simulation of a Hardwood Processing Plant

    Treesearch

    D. Earl Kline; Philip A. Araman

    1990-01-01

    The overall purpose of this paper is to introduce computer simulation as a decision support tool that can be used to provide managers with timely information. A simulation/animation modeling procedure is demonstrated for wood products manufacuring systems. Simulation modeling techniques are used to assist in identifying and solving problems. Animation is used for...

  15. A 21st-Century Art Room: The Remix of "Creativity" and Technology

    ERIC Educational Resources Information Center

    Bryant, Courtney

    2010-01-01

    This article describes the author's innovative approach to facilitating students' imaginations and critical thinking through a computer animation project. The author conducted a qualitative case study in a computer animation unit and explored urban high school students' use of creative problem-solving strategies, defined as techniques that offer…

  16. Applications of penetrating radiation for small animal imaging

    NASA Astrophysics Data System (ADS)

    Hasegawa, Bruce H.; Wu, Max C.; Iwata, Koji; Hwang, Andrew B.; Wong, Kenneth H.; Barber, William C.; Dae, Michael W.; Sakdinawat, Anne E.

    2002-11-01

    Researchers long have relied on research involving small animals to unravel scientific mysteries in the biological sciences, and to develop new diagnostic and therapeutic techniques in the medical and health sciences. Within the past 2 decades, new techniques have been developed to manipulate the genome of the mouse, allowing the development of transgenic and knockout models of mammalian and human disease, development, and physiology. Traditionally, much biological research involving small animals has relied on the use of invasive methods such as organ harvesting, tissue sampling, and autoradiography during which the animal was sacrificed to perform a single measurement. More recently, imaging techniques have been developed that assess anatomy and physiology in the intact animal, in a way that allows the investigator to follow the progression of disease, or to monitor the response to therapeutic interventions. Imaging techniques that use penetrating radiation at millimeter or submillimeter levels to image small animals include x-ray computed tomography (microCT), single-photon emission computed tomography (microSPECT), and imaging positron emission computed tomography (microPET). MicroCT generates cross-sectional slices which reveal the structure of the object with spatial resolution in the range of 50 to 100 microns. MicroSPECT and microPET are radionuclide imaging techniques in which a radiopharmaceutical is injected into the animal that is accumulated to metabolism, blood flow, bone remodeling, tumor growth, or other biological processes. Both microSPECT and microPET offer spatial resolutions in the range of 1-2 millimeters. However, microPET records annihilation photons produced by a positron-emitting radiopharmaceutical using electronic coincidence, and has a sensitivity approximately two orders of magnitude better than microSPECT, while microSPECT is compatible with gamma-ray emitting radiopharmaceuticals that are less expensive and more readily available than those used with microPET. High-resolution dual-modality imaging systems now are being developed that combine microPET or microSPECT with microCT in a way that facilitates more direct correlation of anatomy and physiology in the same animal. Small animal imaging allows researchers to perform experiments that are not possible with conventional invasive techniques, and thereby are becoming increasingly important tools for discovery of fundamental biological information, and development of new diagnostic and therapeutic techniques in the biomedical sciences.

  17. A comparison of computer-assisted and manual wound size measurement.

    PubMed

    Thawer, Habiba A; Houghton, Pamela E; Woodbury, M Gail; Keast, David; Campbell, Karen

    2002-10-01

    Accurate and precise wound measurements are a critical component of every wound assessment. To examine the reliability and validity of a new computerized technique for measuring human and animal wounds, chronic human wounds (N = 45) and surgical animal wounds (N = 38) were assessed using manual and computerized techniques. Using intraclass correlation coefficients, intrarater and interrater reliability of surface area measurements obtained using the computerized technique were compared to those obtained using acetate tracings and planimetry. A single measurement of surface area using either technique produced excellent intrarater and interrater reliability for both human and animal wounds, but the computerized technique was more precise than the manual technique for measuring the surface area of animal wounds. For both types of wounds and measurement techniques, intrarater and interrater reliability improved when the average of three repeated measurements was obtained. The precision of each technique with human wounds and the precision of the manual technique with animal wounds also improved when three repeated measurement results were averaged. Concurrent validity between the two techniques was excellent for human wounds but poor for the smaller animal wounds, regardless of whether single or the average of three repeated surface area measurements was used. The computerized technique permits reliable and valid assessment of the surface area of both human and animal wounds.

  18. Effect of Jigsaw II, Reading-Writing-Presentation, and Computer Animations on the Teaching of "Light" Unit

    ERIC Educational Resources Information Center

    Koç, Yasemin; Yildiz, Emre; Çaliklar, Seyma; Simsek, Ümit

    2016-01-01

    The aim of this study is to determine the effect of Jigsaw II technique, reading-writing-presentation method, and computer animation on students' academic achievements, epistemological beliefs, attitudes towards science lesson, and the retention of knowledge in the "Light" unit covered in the 7th grade. The sample of the study consists…

  19. An Educational MONTE CARLO Simulation/Animation Program for the Cosmic Rays Muons and a Prototype Computer-Driven Hardware Display.

    ERIC Educational Resources Information Center

    Kalkanis, G.; Sarris, M. M.

    1999-01-01

    Describes an educational software program for the study of and detection methods for the cosmic ray muons passing through several light transparent materials (i.e., water, air, etc.). Simulates muons and Cherenkov photons' paths and interactions and visualizes/animates them on the computer screen using Monte Carlo methods/techniques which employ…

  20. Explorations in Space and Time: Computer-Generated Astronomy Films

    ERIC Educational Resources Information Center

    Meeks, M. L.

    1973-01-01

    Discusses the use of the computer animation technique to travel through space and time and watch models of astronomical systems in motion. Included is a list of eight computer-generated demonstration films entitled Explorations in Space and Time.'' (CC)

  1. Creating stimuli for the study of biological-motion perception.

    PubMed

    Dekeyser, Mathias; Verfaillie, Karl; Vanrie, Jan

    2002-08-01

    In the perception of biological motion, the stimulus information is confined to a small number of lights attached to the major joints of a moving person. Despite this drastic degradation of the stimulus information, the human visual apparatus organizes the swarm of moving dots into a vivid percept of a moving biological creature. Several techniques have been proposed to create point-light stimuli: placing dots at strategic locations on photographs or films, video recording a person with markers attached to the body, computer animation based on artificial synthesis, and computer animation based on motion-capture data. A description is given of the technique we are currently using in our laboratory to produce animated point-light figures. The technique is based on a combination of motion capture and three-dimensional animation software (Character Studio, Autodesk, Inc., 1998). Some of the advantages of our approach are that the same actions can be shown from any viewpoint, that point-light versions, as well as versions with a full-fleshed character, can be created of the same actions, and that point lights can indicate the center of a joint (thereby eliminating several disadvantages associated with other techniques).

  2. Development of computational small animal models and their applications in preclinical imaging and therapy research.

    PubMed

    Xie, Tianwu; Zaidi, Habib

    2016-01-01

    The development of multimodality preclinical imaging techniques and the rapid growth of realistic computer simulation tools have promoted the construction and application of computational laboratory animal models in preclinical research. Since the early 1990s, over 120 realistic computational animal models have been reported in the literature and used as surrogates to characterize the anatomy of actual animals for the simulation of preclinical studies involving the use of bioluminescence tomography, fluorescence molecular tomography, positron emission tomography, single-photon emission computed tomography, microcomputed tomography, magnetic resonance imaging, and optical imaging. Other applications include electromagnetic field simulation, ionizing and nonionizing radiation dosimetry, and the development and evaluation of new methodologies for multimodality image coregistration, segmentation, and reconstruction of small animal images. This paper provides a comprehensive review of the history and fundamental technologies used for the development of computational small animal models with a particular focus on their application in preclinical imaging as well as nonionizing and ionizing radiation dosimetry calculations. An overview of the overall process involved in the design of these models, including the fundamental elements used for the construction of different types of computational models, the identification of original anatomical data, the simulation tools used for solving various computational problems, and the applications of computational animal models in preclinical research. The authors also analyze the characteristics of categories of computational models (stylized, voxel-based, and boundary representation) and discuss the technical challenges faced at the present time as well as research needs in the future.

  3. Techniques for animation of CFD results. [computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Horowitz, Jay; Hanson, Jeffery C.

    1992-01-01

    Video animation is becoming increasingly vital to the computational fluid dynamics researcher, not just for presentation, but for recording and comparing dynamic visualizations that are beyond the current capabilities of even the most powerful graphic workstation. To meet these needs, Lewis Research Center has recently established a facility to provide users with easy access to advanced video animation capabilities. However, producing animation that is both visually effective and scientifically accurate involves various technological and aesthetic considerations that must be understood both by the researcher and those supporting the visualization process. These considerations include: scan conversion, color conversion, and spatial ambiguities.

  4. A video-based system for hand-driven stop-motion animation.

    PubMed

    Han, Xiaoguang; Fu, Hongbo; Zheng, Hanlin; Liu, Ligang; Wang, Jue

    2013-01-01

    Stop-motion is a well-established animation technique but is often laborious and requires craft skills. A new video-based system can animate the vast majority of everyday objects in stop-motion style, more flexibly and intuitively. Animators can perform and capture motions continuously instead of breaking them into increments and shooting one still picture per increment. More important, the system permits direct hand manipulation without resorting to rigs, achieving more natural object control for beginners. The system's key component is two-phase keyframe-based capturing and processing, assisted by computer vision techniques. With this system, even amateurs can generate high-quality stop-motion animations.

  5. Crash Simulation and Animation: 'A New Approach for Traffic Safety Analysis'

    DOT National Transportation Integrated Search

    2001-02-01

    This researchs objective is to present a methodology to supplement the conventional traffic safety analysis techniques. This methodology aims at using computer simulation to animate and visualize crash occurrence at high-risk locations. This methodol...

  6. Development of computational small animal models and their applications in preclinical imaging and therapy research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Tianwu; Zaidi, Habib, E-mail: habib.zaidi@hcuge.ch; Geneva Neuroscience Center, Geneva University, Geneva CH-1205

    The development of multimodality preclinical imaging techniques and the rapid growth of realistic computer simulation tools have promoted the construction and application of computational laboratory animal models in preclinical research. Since the early 1990s, over 120 realistic computational animal models have been reported in the literature and used as surrogates to characterize the anatomy of actual animals for the simulation of preclinical studies involving the use of bioluminescence tomography, fluorescence molecular tomography, positron emission tomography, single-photon emission computed tomography, microcomputed tomography, magnetic resonance imaging, and optical imaging. Other applications include electromagnetic field simulation, ionizing and nonionizing radiation dosimetry, and themore » development and evaluation of new methodologies for multimodality image coregistration, segmentation, and reconstruction of small animal images. This paper provides a comprehensive review of the history and fundamental technologies used for the development of computational small animal models with a particular focus on their application in preclinical imaging as well as nonionizing and ionizing radiation dosimetry calculations. An overview of the overall process involved in the design of these models, including the fundamental elements used for the construction of different types of computational models, the identification of original anatomical data, the simulation tools used for solving various computational problems, and the applications of computational animal models in preclinical research. The authors also analyze the characteristics of categories of computational models (stylized, voxel-based, and boundary representation) and discuss the technical challenges faced at the present time as well as research needs in the future.« less

  7. Effects of Jigsaw Cooperative Learning and Animation Techniques on Students' Understanding of Chemical Bonding and Their Conceptions of the Particulate Nature of Matter

    ERIC Educational Resources Information Center

    Karacop, Ataman; Doymus, Kemal

    2013-01-01

    The aim of this study was to determine the effect of jigsaw cooperative learning and computer animation techniques on academic achievements of first year university students attending classes in which the unit of chemical bonding is taught within the general chemistry course and these students' learning of the particulate nature of matter of this…

  8. A Computer-Based Atlas of a Rat Dissection.

    ERIC Educational Resources Information Center

    Quentin-Baxter, Megan; Dewhurst, David

    1990-01-01

    A hypermedia computer program that uses text, graphics, sound, and animation with associative information linking techniques to teach the functional anatomy of a rat is described. The program includes a nonintimidating tutor, to which the student may turn. (KR)

  9. Virtual reality and 3D animation in forensic visualization.

    PubMed

    Ma, Minhua; Zheng, Huiru; Lallie, Harjinder

    2010-09-01

    Computer-generated three-dimensional (3D) animation is an ideal media to accurately visualize crime or accident scenes to the viewers and in the courtrooms. Based upon factual data, forensic animations can reproduce the scene and demonstrate the activity at various points in time. The use of computer animation techniques to reconstruct crime scenes is beginning to replace the traditional illustrations, photographs, and verbal descriptions, and is becoming popular in today's forensics. This article integrates work in the areas of 3D graphics, computer vision, motion tracking, natural language processing, and forensic computing, to investigate the state-of-the-art in forensic visualization. It identifies and reviews areas where new applications of 3D digital technologies and artificial intelligence could be used to enhance particular phases of forensic visualization to create 3D models and animations automatically and quickly. Having discussed the relationships between major crime types and level-of-detail in corresponding forensic animations, we recognized that high level-of-detail animation involving human characters, which is appropriate for many major crime types but has had limited use in courtrooms, could be useful for crime investigation. © 2010 American Academy of Forensic Sciences.

  10. High-quality animation of 2D steady vector fields.

    PubMed

    Lefer, Wilfrid; Jobard, Bruno; Leduc, Claire

    2004-01-01

    Simulators for dynamic systems are now widely used in various application areas and raise the need for effective and accurate flow visualization techniques. Animation allows us to depict direction, orientation, and velocity of a vector field accurately. This paper extends a former proposal for a new approach to produce perfectly cyclic and variable-speed animations for 2D steady vector fields (see [1] and [2]). A complete animation of an arbitrary number of frames is encoded in a single image. The animation can be played using the color table animation technique, which is very effective even on low-end workstations. A cyclic set of textures can be produced as well and then encoded in a common animation format or used for texture mapping on 3D objects. As compared to other approaches, the method presented in this paper produces smoother animations and is more effective, both in memory requirements to store the animation, and in computation time.

  11. Tools for 3D scientific visualization in computational aerodynamics at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Bancroft, Gordon; Plessel, Todd; Merritt, Fergus; Watson, Val

    1989-01-01

    Hardware, software, and techniques used by the Fluid Dynamics Division (NASA) for performing visualization of computational aerodynamics, which can be applied to the visualization of flow fields from computer simulations of fluid dynamics about the Space Shuttle, are discussed. Three visualization techniques applied, post-processing, tracking, and steering, are described, as well as the post-processing software packages used, PLOT3D, SURF (Surface Modeller), GAS (Graphical Animation System), and FAST (Flow Analysis software Toolkit). Using post-processing methods a flow simulation was executed on a supercomputer and, after the simulation was complete, the results were processed for viewing. It is shown that the high-resolution, high-performance three-dimensional workstation combined with specially developed display and animation software provides a good tool for analyzing flow field solutions obtained from supercomputers.

  12. The Effects of Animation Technique on Teaching of Acids and Bases Topics

    ERIC Educational Resources Information Center

    Dasdemir, Ikramettin; Doymus, Kemal; Simsek, Ümit; Karaçöp, Ataman

    2008-01-01

    This study has been carried out in order to determine the effect of computer animations in teaching acid and base topics in science and technology courses on the academic success of the primary school students and the opinions of students related to teaching with the animations. This research was conducted by the participation of 55 students from…

  13. 3D Reconstruction of Chick Embryo Vascular Geometries Using Non-invasive High-Frequency Ultrasound for Computational Fluid Dynamics Studies.

    PubMed

    Tan, Germaine Xin Yi; Jamil, Muhammad; Tee, Nicole Gui Zhen; Zhong, Liang; Yap, Choon Hwai

    2015-11-01

    Recent animal studies have provided evidence that prenatal blood flow fluid mechanics may play a role in the pathogenesis of congenital cardiovascular malformations. To further these researches, it is important to have an imaging technique for small animal embryos with sufficient resolution to support computational fluid dynamics studies, and that is also non-invasive and non-destructive to allow for subject-specific, longitudinal studies. In the current study, we developed such a technique, based on ultrasound biomicroscopy scans on chick embryos. Our technique included a motion cancelation algorithm to negate embryonic body motion, a temporal averaging algorithm to differentiate blood spaces from tissue spaces, and 3D reconstruction of blood volumes in the embryo. The accuracy of the reconstructed models was validated with direct stereoscopic measurements. A computational fluid dynamics simulation was performed to model fluid flow in the generated construct of a Hamburger-Hamilton (HH) stage 27 embryo. Simulation results showed that there were divergent streamlines and a low shear region at the carotid duct, which may be linked to the carotid duct's eventual regression and disappearance by HH stage 34. We show that our technique has sufficient resolution to produce accurate geometries for computational fluid dynamics simulations to quantify embryonic cardiovascular fluid mechanics.

  14. Animations, games, and virtual reality for the Jing-Hang Grand Canal.

    PubMed

    Chen, Wenzhi; Zhang, Mingmin; Pan, Zhigeng; Liu, Gengdai; Shen, Huaqing; Chen, Shengnan; Liu, Yong

    2010-01-01

    Digital heritage, an effective method to preserve and present natural and cultural heritage, is engaging many heritage preservation specialists and computer scientists. In particular, computer graphics researchers have become involved, and digital heritage has employed many CG techniques. For example, Daniel Pletinckx and his colleagues employed VR in a real museum at Ename, Belgium, and Zhigeng Pan and his colleagues applied it to construct a virtual Olympics museum. Soo-Chang Pei and his colleagues focused on restoring ancient Chinese paintings. Here, we describe how we've applied animations, computer games, and VR to China's famous Jing-Hang Grand Canal.

  15. Computer Animations a Science Teaching Aid: Contemplating an Effective Methodology

    ERIC Educational Resources Information Center

    Tannu, Kirti

    2008-01-01

    To improve quality of science education, the author suggests use of entertaining and exciting technique of animation for better understanding of scientific principles. Latest technologies are being used with more vigour to spread venomous superstitions. Better understanding of science may help students to better their scientific temper. Keeping…

  16. Non-invasive methods for the determination of body and carcass composition in livestock: dual-energy X-ray absorptiometry, computed tomography, magnetic resonance imaging and ultrasound: invited review.

    PubMed

    Scholz, A M; Bünger, L; Kongsro, J; Baulain, U; Mitchell, A D

    2015-07-01

    The ability to accurately measure body or carcass composition is important for performance testing, grading and finally selection or payment of meat-producing animals. Advances especially in non-invasive techniques are mainly based on the development of electronic and computer-driven methods in order to provide objective phenotypic data. The preference for a specific technique depends on the target animal species or carcass, combined with technical and practical aspects such as accuracy, reliability, cost, portability, speed, ease of use, safety and for in vivo measurements the need for fixation or sedation. The techniques rely on specific device-driven signals, which interact with tissues in the body or carcass at the atomic or molecular level, resulting in secondary or attenuated signals detected by the instruments and analyzed quantitatively. The electromagnetic signal produced by the instrument may originate from mechanical energy such as sound waves (ultrasound - US), 'photon' radiation (X-ray-computed tomography - CT, dual-energy X-ray absorptiometry - DXA) or radio frequency waves (magnetic resonance imaging - MRI). The signals detected by the corresponding instruments are processed to measure, for example, tissue depths, areas, volumes or distributions of fat, muscle (water, protein) and partly bone or bone mineral. Among the above techniques, CT is the most accurate one followed by MRI and DXA, whereas US can be used for all sizes of farm animal species even under field conditions. CT, MRI and US can provide volume data, whereas only DXA delivers immediate whole-body composition results without (2D) image manipulation. A combination of simple US and more expensive CT, MRI or DXA might be applied for farm animal selection programs in a stepwise approach.

  17. Teaching Cardiovascular Integrations with Computer Laboratories.

    ERIC Educational Resources Information Center

    Peterson, Nils S.; Campbell, Kenneth B.

    1985-01-01

    Describes a computer-based instructional unit in cardiovascular physiology. The program (which employs simulated laboratory experimental techniques with a problem-solving format is designed to supplement an animal laboratory and to offer students an integrative approach to physiology through use of microcomputers. Also presents an overview of the…

  18. Sound For Animation And Virtual Reality

    NASA Technical Reports Server (NTRS)

    Hahn, James K.; Docter, Pete; Foster, Scott H.; Mangini, Mark; Myers, Tom; Wenzel, Elizabeth M.; Null, Cynthia (Technical Monitor)

    1995-01-01

    Sound is an integral part of the experience in computer animation and virtual reality. In this course, we will present some of the important technical issues in sound modeling, rendering, and synchronization as well as the "art" and business of sound that are being applied in animations, feature films, and virtual reality. The central theme is to bring leading researchers and practitioners from various disciplines to share their experiences in this interdisciplinary field. The course will give the participants an understanding of the problems and techniques involved in producing and synchronizing sounds, sound effects, dialogue, and music. The problem spans a number of domains including computer animation and virtual reality. Since sound has been an integral part of animations and films much longer than for computer-related domains, we have much to learn from traditional animation and film production. By bringing leading researchers and practitioners from a wide variety of disciplines, the course seeks to give the audience a rich mixture of experiences. It is expected that the audience will be able to apply what they have learned from this course in their research or production.

  19. Real-time human versus animal classification using pyro-electric sensor array and Hidden Markov Model

    NASA Astrophysics Data System (ADS)

    Hossen, Jakir; Jacobs, Eddie L.; Chari, Srikant

    2014-03-01

    In this paper, we propose a real-time human versus animal classification technique using a pyro-electric sensor array and Hidden Markov Model. The technique starts with the variational energy functional level set segmentation technique to separate the object from background. After segmentation, we convert the segmented object to a signal by considering column-wise pixel values and then finding the wavelet coefficients of the signal. HMMs are trained to statistically model the wavelet features of individuals through an expectation-maximization learning process. Human versus animal classifications are made by evaluating a set of new wavelet feature data against the trained HMMs using the maximum-likelihood criterion. Human and animal data acquired-using a pyro-electric sensor in different terrains are used for performance evaluation of the algorithms. Failures of the computationally effective SURF feature based approach that we develop in our previous research are because of distorted images produced when the object runs very fast or if the temperature difference between target and background is not sufficient to accurately profile the object. We show that wavelet based HMMs work well for handling some of the distorted profiles in the data set. Further, HMM achieves improved classification rate over the SURF algorithm with almost the same computational time.

  20. An Implementation of Interactive Objects on the Web.

    ERIC Educational Resources Information Center

    Fritze, Paul

    With the release of ShockWave, MacroMedia Director animations can now be incorporated directly into Web pages to provide high quality animation and interactivity, to support, for example, tutorial style questions and instantaneous feedback. This paper looks at the application of this technique in the translation of a traditional computer-based…

  1. Use of Colour and Interactive Animation in Learning 3D Vectors

    ERIC Educational Resources Information Center

    Iskander, Wejdan; Curtis, Sharon

    2005-01-01

    This study investigated the effects of two computer-implemented techniques (colour and interactive animation) on learning 3D vectors. The participants were 43 female Saudi Arabian high school students. They were pre-tested on 3D vectors using a paper questionnaire that consisted of calculation and visualization types of questions. The students…

  2. [The study and manufacture of spinning counter for experimental animals].

    PubMed

    Qi, X P; Zhou, C; Liu, F J; Chen, Z; Jiang, L; Yan, Z

    1997-09-01

    The single-chip microcomputer technique is used in the present study of spinning counter, which has 4 observation tunnels, the spinning behave of four experiment animals can be recorded at same time. The function of this instrument has four selections according to different experiment, and the recording data can be compute processed.

  3. Using postural synergies to animate a low-dimensional hand avatar in haptic simulation.

    PubMed

    Mulatto, Sara; Formaglio, Alessandro; Malvezzi, Monica; Prattichizzo, Domenico

    2013-01-01

    A technique to animate a realistic hand avatar with 20 DoFs based on the biomechanics of the human hand is presented. The animation does not use any sensor glove or advanced tracker with markers. The proposed approach is based on the knowledge of a set of kinematic constraints on the model of the hand, referred to as postural synergies, which allows to represent the hand posture using a number of variables lower than the number of joints of the hand model. This low-dimensional set of parameters is estimated from direct measurement of the motion of thumb and index finger tracked using two haptic devices. A kinematic inversion algorithm has been developed, which takes synergies into account and estimates the kinematic configuration of the whole hand, i.e., also of the fingers whose end tips are not directly tracked by the two haptic devices. The hand skin is deformable and its deformation is computed using a linear vertex blending technique. The proposed synergy-based animation of the hand avatar involves only algebraic computations and is suitable for real-time implementation as required in haptics.

  4. Advances in Small Animal Imaging Systems

    NASA Astrophysics Data System (ADS)

    Loudos, George K.

    2007-11-01

    The rapid growth in genetics and molecular biology combined with the development of techniques for genetically engineering small animals has led to an increased interest in in vivo laboratory animal imaging during the past few years. For this purpose, new instrumentation, data acquisition strategies, and image processing and reconstruction techniques are being developed, researched and evaluated. The aim of this article is to give a short overview of the state of the art technologies for high resolution and high sensitivity molecular imaging techniques, primarily positron emission tomography (PET) and single photon emission computed tomography (SPECT). The basic needs of small animal imaging will be described. The evolution in instrumentation in the past two decades, as well as the commercially available systems will be overviewed. Finally, the new trends in detector technology and preliminary results from challenging applications will be presented. For more details a number of references are provided.

  5. Adaptive Animation of Human Motion for E-Learning Applications

    ERIC Educational Resources Information Center

    Li, Frederick W. B.; Lau, Rynson W. H.; Komura, Taku; Wang, Meng; Siu, Becky

    2007-01-01

    Human motion animation has been one of the major research topics in the field of computer graphics for decades. Techniques developed in this area help present human motions in various applications. This is crucial for enhancing the realism as well as promoting the user interest in the applications. To carry this merit to e-learning applications,…

  6. Using parallel evolutionary development for a biologically-inspired computer vision system for mobile robots.

    PubMed

    Wright, Cameron H G; Barrett, Steven F; Pack, Daniel J

    2005-01-01

    We describe a new approach to attacking the problem of robust computer vision for mobile robots. The overall strategy is to mimic the biological evolution of animal vision systems. Our basic imaging sensor is based upon the eye of the common house fly, Musca domestica. The computational algorithms are a mix of traditional image processing, subspace techniques, and multilayer neural networks.

  7. Automatic Grading of 3D Computer Animation Laboratory Assignments

    ERIC Educational Resources Information Center

    Lamberti, Fabrizio; Sanna, Andrea; Paravati, Gianluca; Carlevaris, Gilles

    2014-01-01

    Assessment is a delicate task in the overall teaching process because it may require significant time and may be prone to subjectivity. Subjectivity is especially true for disciplines in which perceptual factors play a key role in the evaluation. In previous decades, computer-based assessment techniques were developed to address the…

  8. Using animation quality metric to improve efficiency of global illumination computation for dynamic environments

    NASA Astrophysics Data System (ADS)

    Myszkowski, Karol; Tawara, Takehiro; Seidel, Hans-Peter

    2002-06-01

    In this paper, we consider applications of perception-based video quality metrics to improve the performance of global lighting computations for dynamic environments. For this purpose we extend the Visible Difference Predictor (VDP) developed by Daly to handle computer animations. We incorporate into the VDP the spatio-velocity CSF model developed by Kelly. The CSF model requires data on the velocity of moving patterns across the image plane. We use the 3D image warping technique to compensate for the camera motion, and we conservatively assume that the motion of animated objects (usually strong attractors of the visual attention) is fully compensated by the smooth pursuit eye motion. Our global illumination solution is based on stochastic photon tracing and takes advantage of temporal coherence of lighting distribution, by processing photons both in the spatial and temporal domains. The VDP is used to keep noise inherent in stochastic methods below the sensitivity level of the human observer. As a result a perceptually-consistent quality across all animation frames is obtained.

  9. Using 3D computer simulations to enhance ophthalmic training.

    PubMed

    Glittenberg, C; Binder, S

    2006-01-01

    To develop more effective methods of demonstrating and teaching complex topics in ophthalmology with the use of computer aided three-dimensional (3D) animation and interactive multimedia technologies. We created 3D animations and interactive computer programmes demonstrating the neuroophthalmological nature of the oculomotor system, including the anatomy, physiology and pathophysiology of the extra-ocular eye muscles and the oculomotor cranial nerves, as well as pupillary symptoms of neurological diseases. At the University of Vienna we compared their teaching effectiveness to conventional teaching methods in a comparative study involving 100 medical students, a multiple choice exam and a survey. The comparative study showed that our students achieved significantly better test results (80%) than the control group (63%) (diff. = 17 +/- 5%, p = 0.004). The survey showed a positive reaction to the software and a strong preference to have more subjects and techniques demonstrated in this fashion. Three-dimensional computer animation technology can significantly increase the quality and efficiency of the education and demonstration of complex topics in ophthalmology.

  10. Solving large mixed linear models using preconditioned conjugate gradient iteration.

    PubMed

    Strandén, I; Lidauer, M

    1999-12-01

    Continuous evaluation of dairy cattle with a random regression test-day model requires a fast solving method and algorithm. A new computing technique feasible in Jacobi and conjugate gradient based iterative methods using iteration on data is presented. In the new computing technique, the calculations in multiplication of a vector by a matrix were recorded to three steps instead of the commonly used two steps. The three-step method was implemented in a general mixed linear model program that used preconditioned conjugate gradient iteration. Performance of this program in comparison to other general solving programs was assessed via estimation of breeding values using univariate, multivariate, and random regression test-day models. Central processing unit time per iteration with the new three-step technique was, at best, one-third that needed with the old technique. Performance was best with the test-day model, which was the largest and most complex model used. The new program did well in comparison to other general software. Programs keeping the mixed model equations in random access memory required at least 20 and 435% more time to solve the univariate and multivariate animal models, respectively. Computations of the second best iteration on data took approximately three and five times longer for the animal and test-day models, respectively, than did the new program. Good performance was due to fast computing time per iteration and quick convergence to the final solutions. Use of preconditioned conjugate gradient based methods in solving large breeding value problems is supported by our findings.

  11. Huntington II Simulation Program - TAG. Student Workbook, Teacher's Guide, and Resource Handbook.

    ERIC Educational Resources Information Center

    Friedland, James

    Presented are instructions for the use of "TAG," a model for estimating animal population in a given area. The computer program asks the student to estimate the number of bass in a simulated farm pond using the technique of tagging and recovery. The objective of the simulation is to teach principles for estimating animal populations when they…

  12. Monitoring of piglets' open field activity and choice behaviour during the replay of maternal vocalization: a comparison between Observer and PID technique.

    PubMed

    Puppe, B; Schön, P C; Wendland, K

    1999-07-01

    The paper presents a new system for the automatic monitoring of open field activity and choice behaviour of medium-sized animals. Passive infrared motion detectors (PID) were linked on-line via a digital I/O interface to a personal computer provided with self-developed analysis software based on LabVIEW (PID technique). The set up was used for testing 18 one-week-old piglets (Sus scrofa) for their approach to their mother's nursing vocalization replayed through loudspeakers. The results were validated by comparison with a conventional Observer technique, a computer-aided direct observation. In most of the cases, no differences were seen between the Observer and PID technique regarding the percentage of stay in previously defined open field segments, the locomotor open field activity, and the choice behaviour. The results revealed that piglets are clearly attracted by their mother's nursing vocalization. The monitoring system presented in this study is thus suitable for detailed behavioural investigations of individual acoustic recognition. In general, the PID technique is a useful tool for research into the behaviour of individual animals in a restricted open field which does not rely on subjective analysis by a human observer.

  13. Efficient Stochastic Rendering of Static and Animated Volumes Using Visibility Sweeps.

    PubMed

    von Radziewsky, Philipp; Kroes, Thomas; Eisemann, Martin; Eisemann, Elmar

    2017-09-01

    Stochastically solving the rendering integral (particularly visibility) is the de-facto standard for physically-based light transport but it is computationally expensive, especially when displaying heterogeneous volumetric data. In this work, we present efficient techniques to speed-up the rendering process via a novel visibility-estimation method in concert with an unbiased importance sampling (involving environmental lighting and visibility inside the volume), filtering, and update techniques for both static and animated scenes. Our major contributions include a progressive estimate of partial occlusions based on a fast sweeping-plane algorithm. These occlusions are stored in an octahedral representation, which can be conveniently transformed into a quadtree-based hierarchy suited for a joint importance sampling. Further, we propose sweep-space filtering, which suppresses the occurrence of fireflies and investigate different update schemes for animated scenes. Our technique is unbiased, requires little precomputation, is highly parallelizable, and is applicable to a various volume data sets, dynamic transfer functions, animated volumes and changing environmental lighting.

  14. Learning Inverse Rig Mappings by Nonlinear Regression.

    PubMed

    Holden, Daniel; Saito, Jun; Komura, Taku

    2017-03-01

    We present a framework to design inverse rig-functions-functions that map low level representations of a character's pose such as joint positions or surface geometry to the representation used by animators called the animation rig. Animators design scenes using an animation rig, a framework widely adopted in animation production which allows animators to design character poses and geometry via intuitive parameters and interfaces. Yet most state-of-the-art computer animation techniques control characters through raw, low level representations such as joint angles, joint positions, or vertex coordinates. This difference often stops the adoption of state-of-the-art techniques in animation production. Our framework solves this issue by learning a mapping between the low level representations of the pose and the animation rig. We use nonlinear regression techniques, learning from example animation sequences designed by the animators. When new motions are provided in the skeleton space, the learned mapping is used to estimate the rig controls that reproduce such a motion. We introduce two nonlinear functions for producing such a mapping: Gaussian process regression and feedforward neural networks. The appropriate solution depends on the nature of the rig and the amount of data available for training. We show our framework applied to various examples including articulated biped characters, quadruped characters, facial animation rigs, and deformable characters. With our system, animators have the freedom to apply any motion synthesis algorithm to arbitrary rigging and animation pipelines for immediate editing. This greatly improves the productivity of 3D animation, while retaining the flexibility and creativity of artistic input.

  15. Using Computational and Mechanical Models to Study Animal Locomotion

    PubMed Central

    Miller, Laura A.; Goldman, Daniel I.; Hedrick, Tyson L.; Tytell, Eric D.; Wang, Z. Jane; Yen, Jeannette; Alben, Silas

    2012-01-01

    Recent advances in computational methods have made realistic large-scale simulations of animal locomotion possible. This has resulted in numerous mathematical and computational studies of animal movement through fluids and over substrates with the purpose of better understanding organisms’ performance and improving the design of vehicles moving through air and water and on land. This work has also motivated the development of improved numerical methods and modeling techniques for animal locomotion that is characterized by the interactions of fluids, substrates, and structures. Despite the large body of recent work in this area, the application of mathematical and numerical methods to improve our understanding of organisms in the context of their environment and physiology has remained relatively unexplored. Nature has evolved a wide variety of fascinating mechanisms of locomotion that exploit the properties of complex materials and fluids, but only recently are the mathematical, computational, and robotic tools available to rigorously compare the relative advantages and disadvantages of different methods of locomotion in variable environments. Similarly, advances in computational physiology have only recently allowed investigators to explore how changes at the molecular, cellular, and tissue levels might lead to changes in performance at the organismal level. In this article, we highlight recent examples of how computational, mathematical, and experimental tools can be combined to ultimately answer the questions posed in one of the grand challenges in organismal biology: “Integrating living and physical systems.” PMID:22988026

  16. The recovery and utilization of space suit range-of-motion data

    NASA Technical Reports Server (NTRS)

    Reinhardt, AL; Walton, James S.

    1988-01-01

    A technique for recovering data for the range of motion of a subject wearing a space suit is described along with the validation of this technique on an EVA space suit. Digitized data are automatically acquired from video images of the subject; three-dimensional trajectories are recovered from these data, and can be displayed using three-dimensional computer graphics. Target locations are recovered using a unique video processor and close-range photogrammetry. It is concluded that such data can be used in such applications as the animation of anthropometric computer models.

  17. High resolution bone mineral densitometry with a gamma camera

    NASA Technical Reports Server (NTRS)

    Leblanc, A.; Evans, H.; Jhingran, S.; Johnson, P.

    1983-01-01

    A technique by which the regional distribution of bone mineral can be determined in bone samples from small animals is described. The technique employs an Anger camera interfaced to a medical computer. High resolution imaging is possible by producing magnified images of the bone samples. Regional densitometry of femurs from oophorectomised and bone mineral loss.

  18. Parallel Markov chain Monte Carlo - bridging the gap to high-performance Bayesian computation in animal breeding and genetics.

    PubMed

    Wu, Xiao-Lin; Sun, Chuanyu; Beissinger, Timothy M; Rosa, Guilherme Jm; Weigel, Kent A; Gatti, Natalia de Leon; Gianola, Daniel

    2012-09-25

    Most Bayesian models for the analysis of complex traits are not analytically tractable and inferences are based on computationally intensive techniques. This is true of Bayesian models for genome-enabled selection, which uses whole-genome molecular data to predict the genetic merit of candidate animals for breeding purposes. In this regard, parallel computing can overcome the bottlenecks that can arise from series computing. Hence, a major goal of the present study is to bridge the gap to high-performance Bayesian computation in the context of animal breeding and genetics. Parallel Monte Carlo Markov chain algorithms and strategies are described in the context of animal breeding and genetics. Parallel Monte Carlo algorithms are introduced as a starting point including their applications to computing single-parameter and certain multiple-parameter models. Then, two basic approaches for parallel Markov chain Monte Carlo are described: one aims at parallelization within a single chain; the other is based on running multiple chains, yet some variants are discussed as well. Features and strategies of the parallel Markov chain Monte Carlo are illustrated using real data, including a large beef cattle dataset with 50K SNP genotypes. Parallel Markov chain Monte Carlo algorithms are useful for computing complex Bayesian models, which does not only lead to a dramatic speedup in computing but can also be used to optimize model parameters in complex Bayesian models. Hence, we anticipate that use of parallel Markov chain Monte Carlo will have a profound impact on revolutionizing the computational tools for genomic selection programs.

  19. Parallel Markov chain Monte Carlo - bridging the gap to high-performance Bayesian computation in animal breeding and genetics

    PubMed Central

    2012-01-01

    Background Most Bayesian models for the analysis of complex traits are not analytically tractable and inferences are based on computationally intensive techniques. This is true of Bayesian models for genome-enabled selection, which uses whole-genome molecular data to predict the genetic merit of candidate animals for breeding purposes. In this regard, parallel computing can overcome the bottlenecks that can arise from series computing. Hence, a major goal of the present study is to bridge the gap to high-performance Bayesian computation in the context of animal breeding and genetics. Results Parallel Monte Carlo Markov chain algorithms and strategies are described in the context of animal breeding and genetics. Parallel Monte Carlo algorithms are introduced as a starting point including their applications to computing single-parameter and certain multiple-parameter models. Then, two basic approaches for parallel Markov chain Monte Carlo are described: one aims at parallelization within a single chain; the other is based on running multiple chains, yet some variants are discussed as well. Features and strategies of the parallel Markov chain Monte Carlo are illustrated using real data, including a large beef cattle dataset with 50K SNP genotypes. Conclusions Parallel Markov chain Monte Carlo algorithms are useful for computing complex Bayesian models, which does not only lead to a dramatic speedup in computing but can also be used to optimize model parameters in complex Bayesian models. Hence, we anticipate that use of parallel Markov chain Monte Carlo will have a profound impact on revolutionizing the computational tools for genomic selection programs. PMID:23009363

  20. Simulating Scenes In Outer Space

    NASA Technical Reports Server (NTRS)

    Callahan, John D.

    1989-01-01

    Multimission Interactive Picture Planner, MIP, computer program for scientifically accurate and fast, three-dimensional animation of scenes in deep space. Versatile, reasonably comprehensive, and portable, and runs on microcomputers. New techniques developed to perform rapidly calculations and transformations necessary to animate scenes in scientifically accurate three-dimensional space. Written in FORTRAN 77 code. Primarily designed to handle Voyager, Galileo, and Space Telescope. Adapted to handle other missions.

  1. NeuroPhysics: Studying how neurons create the perception of space-time using Physics' tools and techniques

    NASA Astrophysics Data System (ADS)

    Dhingra, Shonali; Sandler, Roman; Rios, Rodrigo; Vuong, Cliff; Mehta, Mayank

    All animals naturally perceive the abstract concept of space-time. A brain region called the Hippocampus is known to be important in creating these perceptions, but the underlying mechanisms are unknown. In our lab we employ several experimental and computational techniques from Physics to tackle this fundamental puzzle. Experimentally, we use ideas from Nanoscience and Materials Science to develop techniques to measure the activity of hippocampal neurons, in freely-behaving animals. Computationally, we develop models to study neuronal activity patterns, which are point processes that are highly stochastic and multidimensional. We then apply these techniques to collect and analyze neuronal signals from rodents while they're exploring space in Real World or Virtual Reality with various stimuli. Our findings show that under these conditions neuronal activity depends on various parameters, such as sensory cues including visual and auditory, and behavioral cues including, linear and angular, position and velocity. Further, neuronal networks create internally-generated rhythms, which influence perception of space and time. In totality, these results further our understanding of how the brain develops a cognitive map of our surrounding space, and keep track of time.

  2. Physics-based animation of large-scale splashing liquids, elastoplastic solids, and model-reduced flow

    NASA Astrophysics Data System (ADS)

    Gerszewski, Daniel James

    Physical simulation has become an essential tool in computer animation. As the use of visual effects increases, the need for simulating real-world materials increases. In this dissertation, we consider three problems in physics-based animation: large-scale splashing liquids, elastoplastic material simulation, and dimensionality reduction techniques for fluid simulation. Fluid simulation has been one of the greatest successes of physics-based animation, generating hundreds of research papers and a great many special effects over the last fifteen years. However, the animation of large-scale, splashing liquids remains challenging. We show that a novel combination of unilateral incompressibility, mass-full FLIP, and blurred boundaries is extremely well-suited to the animation of large-scale, violent, splashing liquids. Materials that incorporate both plastic and elastic deformations, also referred to as elastioplastic materials, are frequently encountered in everyday life. Methods for animating such common real-world materials are useful for effects practitioners and have been successfully employed in films. We describe a point-based method for animating elastoplastic materials. Our primary contribution is a simple method for computing the deformation gradient for each particle in the simulation. Given the deformation gradient, we can apply arbitrary constitutive models and compute the resulting elastic forces. Our method has two primary advantages: we do not store or compare to an initial rest configuration and we work directly with the deformation gradient. The first advantage avoids poor numerical conditioning and the second naturally leads to a multiplicative model of deformation appropriate for finite deformations. One of the most significant drawbacks of physics-based animation is that ever-higher fidelity leads to an explosion in the number of degrees of freedom. This problem leads us to the consideration of dimensionality reduction techniques. We present several enhancements to model-reduced fluid simulation that allow improved simulation bases and two-way solid-fluid coupling. Specifically, we present a basis enrichment scheme that allows us to combine data-driven or artistically derived bases with more general analytic bases derived from Laplacian Eigenfunctions. Additionally, we handle two-way solid-fluid coupling in a time-splitting fashion---we alternately timestep the fluid and rigid body simulators, while taking into account the effects of the fluid on the rigid bodies and vice versa. We employ the vortex panel method to handle solid-fluid coupling and use dynamic pressure to compute the effect of the fluid on rigid bodies. Taken together, these contributions have advanced the state-of-the art in physics-based animation and are practical enough to be used in production pipelines.

  3. New Features in the Computational Infrastructure for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Smith, M. S.; Lingerfelt, E. J.; Scott, J. P.; Hix, W. R.; Nesaraja, C. D.; Koura, H.; Roberts, L. F.

    2006-04-01

    The Computational Infrastructure for Nuclear Astrophysics is a suite of computer codes online at nucastrodata.org that streamlines the incorporation of recent nuclear physics results into astrophysical simulations. The freely-available, cross- platform suite enables users to upload cross sections and s-factors, convert them into reaction rates, parameterize the rates, store the rates in customizable libraries, setup and run custom post-processing element synthesis calculations, and visualize the results. New features include the ability for users to comment on rates or libraries using an email-type interface, a nuclear mass model evaluator, enhanced techniques for rate parameterization, better treatment of rate inverses, and creation and exporting of custom animations of simulation results. We also have online animations of r- process, rp-process, and neutrino-p process element synthesis occurring in stellar explosions.

  4. Computed 3D visualisation of an extinct cephalopod using computer tomographs.

    PubMed

    Lukeneder, Alexander

    2012-08-01

    The first 3D visualisation of a heteromorph cephalopod species from the Southern Alps (Dolomites, northern Italy) is presented. Computed tomography, palaeontological data and 3D reconstructions were included in the production of a movie, which shows a life reconstruction of the extinct organism. This detailed reconstruction is according to the current knowledge of the shape and mode of life as well as habitat of this animal. The results are based on the most complete shell known thus far of the genus Dissimilites . Object-based combined analyses from computed tomography and various computed 3D facility programmes help to understand morphological details as well as their ontogentical changes in fossil material. In this study, an additional goal was to show changes in locomotion during different ontogenetic phases of such fossil, marine shell-bearing animals (ammonoids). Hence, the presented models and tools can serve as starting points for discussions on morphology and locomotion of extinct cephalopods in general, and of the genus Dissimilites in particular. The heteromorph ammonoid genus Dissimilites is interpreted here as an active swimmer of the Tethyan Ocean. This study portrays non-destructive methods of 3D visualisation applied on palaeontological material, starting with computed tomography resulting in animated, high-quality video clips. The here presented 3D geometrical models and animation, which are based on palaeontological material, demonstrate the wide range of applications, analytical techniques and also outline possible limitations of 3D models in earth sciences and palaeontology. The realistic 3D models and motion pictures can easily be shared amongst palaeontologists. Data, images and short clips can be discussed online and, if necessary, adapted in morphological details and motion-style to better represent the cephalopod animal.

  5. Computed 3D visualisation of an extinct cephalopod using computer tomographs

    NASA Astrophysics Data System (ADS)

    Lukeneder, Alexander

    2012-08-01

    The first 3D visualisation of a heteromorph cephalopod species from the Southern Alps (Dolomites, northern Italy) is presented. Computed tomography, palaeontological data and 3D reconstructions were included in the production of a movie, which shows a life reconstruction of the extinct organism. This detailed reconstruction is according to the current knowledge of the shape and mode of life as well as habitat of this animal. The results are based on the most complete shell known thus far of the genus Dissimilites. Object-based combined analyses from computed tomography and various computed 3D facility programmes help to understand morphological details as well as their ontogentical changes in fossil material. In this study, an additional goal was to show changes in locomotion during different ontogenetic phases of such fossil, marine shell-bearing animals (ammonoids). Hence, the presented models and tools can serve as starting points for discussions on morphology and locomotion of extinct cephalopods in general, and of the genus Dissimilites in particular. The heteromorph ammonoid genus Dissimilites is interpreted here as an active swimmer of the Tethyan Ocean. This study portrays non-destructive methods of 3D visualisation applied on palaeontological material, starting with computed tomography resulting in animated, high-quality video clips. The here presented 3D geometrical models and animation, which are based on palaeontological material, demonstrate the wide range of applications, analytical techniques and also outline possible limitations of 3D models in earth sciences and palaeontology. The realistic 3D models and motion pictures can easily be shared amongst palaeontologists. Data, images and short clips can be discussed online and, if necessary, adapted in morphological details and motion-style to better represent the cephalopod animal.

  6. Computed 3D visualisation of an extinct cephalopod using computer tomographs

    PubMed Central

    Lukeneder, Alexander

    2012-01-01

    The first 3D visualisation of a heteromorph cephalopod species from the Southern Alps (Dolomites, northern Italy) is presented. Computed tomography, palaeontological data and 3D reconstructions were included in the production of a movie, which shows a life reconstruction of the extinct organism. This detailed reconstruction is according to the current knowledge of the shape and mode of life as well as habitat of this animal. The results are based on the most complete shell known thus far of the genus Dissimilites. Object-based combined analyses from computed tomography and various computed 3D facility programmes help to understand morphological details as well as their ontogentical changes in fossil material. In this study, an additional goal was to show changes in locomotion during different ontogenetic phases of such fossil, marine shell-bearing animals (ammonoids). Hence, the presented models and tools can serve as starting points for discussions on morphology and locomotion of extinct cephalopods in general, and of the genus Dissimilites in particular. The heteromorph ammonoid genus Dissimilites is interpreted here as an active swimmer of the Tethyan Ocean. This study portrays non-destructive methods of 3D visualisation applied on palaeontological material, starting with computed tomography resulting in animated, high-quality video clips. The here presented 3D geometrical models and animation, which are based on palaeontological material, demonstrate the wide range of applications, analytical techniques and also outline possible limitations of 3D models in earth sciences and palaeontology. The realistic 3D models and motion pictures can easily be shared amongst palaeontologists. Data, images and short clips can be discussed online and, if necessary, adapted in morphological details and motion-style to better represent the cephalopod animal. PMID:24850976

  7. Virtual Character Animation Based on Affordable Motion Capture and Reconfigurable Tangible Interfaces.

    PubMed

    Lamberti, Fabrizio; Paravati, Gianluca; Gatteschi, Valentina; Cannavo, Alberto; Montuschi, Paolo

    2018-05-01

    Software for computer animation is generally characterized by a steep learning curve, due to the entanglement of both sophisticated techniques and interaction methods required to control 3D geometries. This paper proposes a tool designed to support computer animation production processes by leveraging the affordances offered by articulated tangible user interfaces and motion capture retargeting solutions. To this aim, orientations of an instrumented prop are recorded together with animator's motion in the 3D space and used to quickly pose characters in the virtual environment. High-level functionalities of the animation software are made accessible via a speech interface, thus letting the user control the animation pipeline via voice commands while focusing on his or her hands and body motion. The proposed solution exploits both off-the-shelf hardware components (like the Lego Mindstorms EV3 bricks and the Microsoft Kinect, used for building the tangible device and tracking animator's skeleton) and free open-source software (like the Blender animation tool), thus representing an interesting solution also for beginners approaching the world of digital animation for the first time. Experimental results in different usage scenarios show the benefits offered by the designed interaction strategy with respect to a mouse & keyboard-based interface both for expert and non-expert users.

  8. Noninvasive imaging of experimental lung fibrosis.

    PubMed

    Zhou, Yong; Chen, Huaping; Ambalavanan, Namasivayam; Liu, Gang; Antony, Veena B; Ding, Qiang; Nath, Hrudaya; Eary, Janet F; Thannickal, Victor J

    2015-07-01

    Small animal models of lung fibrosis are essential for unraveling the molecular mechanisms underlying human fibrotic lung diseases; additionally, they are useful for preclinical testing of candidate antifibrotic agents. The current end-point measures of experimental lung fibrosis involve labor-intensive histological and biochemical analyses. These measures fail to account for dynamic changes in the disease process in individual animals and are limited by the need for large numbers of animals for longitudinal studies. The emergence of noninvasive imaging technologies provides exciting opportunities to image lung fibrosis in live animals as often as needed and to longitudinally track the efficacy of novel antifibrotic compounds. Data obtained by noninvasive imaging provide complementary information to histological and biochemical measurements. In addition, the use of noninvasive imaging in animal studies reduces animal usage, thus satisfying animal welfare concerns. In this article, we review these new imaging modalities with the potential for evaluation of lung fibrosis in small animal models. Such techniques include micro-computed tomography (micro-CT), magnetic resonance imaging, positron emission tomography (PET), single photon emission computed tomography (SPECT), and multimodal imaging systems including PET/CT and SPECT/CT. It is anticipated that noninvasive imaging will be increasingly used in animal models of fibrosis to gain insights into disease pathogenesis and as preclinical tools to assess drug efficacy.

  9. Computer animation for minimally invasive surgery: computer system requirements and preferred implementations

    NASA Astrophysics Data System (ADS)

    Pieper, Steven D.; McKenna, Michael; Chen, David; McDowall, Ian E.

    1994-04-01

    We are interested in the application of computer animation to surgery. Our current project, a navigation and visualization tool for knee arthroscopy, relies on real-time computer graphics and the human interface technologies associated with virtual reality. We believe that this new combination of techniques will lead to improved surgical outcomes and decreased health care costs. To meet these expectations in the medical field, the system must be safe, usable, and cost-effective. In this paper, we outline some of the most important hardware and software specifications in the areas of video input and output, spatial tracking, stereoscopic displays, computer graphics models and libraries, mass storage and network interfaces, and operating systems. Since this is a fairly new combination of technologies and a new application, our justification for our specifications are drawn from the current generation of surgical technology and by analogy to other fields where virtual reality technology has been more extensively applied and studied.

  10. Computer-assisted 3D design software for teaching neuro-ophthalmology of the oculomotor system and training new retinal surgery techniques

    NASA Astrophysics Data System (ADS)

    Glittenberg, Carl; Binder, Susanne

    2004-07-01

    Purpose: To create a more effective method of demonstrating complex subject matter in ophthalmology with the use of high end, 3-D, computer aided animation and interactive multimedia technologies. Specifically, to explore the possibilities of demonstrating the complex nature of the neuroophthalmological basics of the human oculomotor system in a clear and non confusing way, and to demonstrate new forms of retinal surgery in a manner that makes the procedures easier to understand for other retinal surgeons. Methods and Materials: Using Reflektions 4.3, Monzoom Pro 4.5, Cinema 4D XL 5.03, Cinema 4D XL 8 Studio Bundle, Mediator 4.0, Mediator Pro 5.03, Fujitsu-Siemens Pentium III and IV, Gericom Webgine laptop, M.G.I. Video Wave 1.0 and 5, Micrografix Picture Publisher 6.0 and 8, Amorphium 1.0, and Blobs for Windows, we created 3-D animations showing the origin, insertion, course, main direction of pull, and auxiliary direction of pull of the six extra-ocular eye muscles. We created 3-D animations that (a) show the intra-cranial path of the relevant oculomotor cranial nerves and which muscles are supplied by them, (b) show which muscles are active in each of the ten lines of sight, (c) demonstrate the various malfunctions of oculomotor systems, as well as (d) show the surgical techniques and the challenges in radial optic neurotomies and subretinal surgeries. Most of the 3-D animations were integrated in interactive multimedia teaching programs. Their effectiveness was compared to conventional teaching methods in a comparative study performed at the University of Vienna. We also performed a survey to examine the response of students being taught with the interactive programs. We are currently in the process of placing most of the animations in an interactive web site in order to make them freely available to everyone who is interested. Results: Although learning how to use complex 3-D computer animation and multimedia authoring software can be very time consuming and frustrating, we found that once the programs are mastered they can be used to create 3-D animations that drastically improve the quality of medical demonstrations. The comparative study showed a significant advantage of using these technologies over conventional teaching methods. The feedback from medical students, doctors, and retinal surgeons was overwhelmingly positive. A strong interest was expressed to have more subjects and techniques demonstrated in this fashion. Conclusion: 3-D computer technologies should be used in the demonstration of all complex medical subjects. More effort and resources need to be given to the development of these technologies that can improve the understanding of medicine for students, doctors, and patients alike.

  11. Molecular Imaging of Experimental Abdominal Aortic Aneurysms

    PubMed Central

    Ramaswamy, Aneesh K.; Hamilton, Mark; Joshi, Rucha V.; Kline, Benjamin P.; Li, Rui; Wang, Pu; Goergen, Craig J.

    2013-01-01

    Current laboratory research in the field of abdominal aortic aneurysm (AAA) disease often utilizes small animal experimental models induced by genetic manipulation or chemical application. This has led to the use and development of multiple high-resolution molecular imaging modalities capable of tracking disease progression, quantifying the role of inflammation, and evaluating the effects of potential therapeutics. In vivo imaging reduces the number of research animals used, provides molecular and cellular information, and allows for longitudinal studies, a necessity when tracking vessel expansion in a single animal. This review outlines developments of both established and emerging molecular imaging techniques used to study AAA disease. Beyond the typical modalities used for anatomical imaging, which include ultrasound (US) and computed tomography (CT), previous molecular imaging efforts have used magnetic resonance (MR), near-infrared fluorescence (NIRF), bioluminescence, single-photon emission computed tomography (SPECT), and positron emission tomography (PET). Mouse and rat AAA models will hopefully provide insight into potential disease mechanisms, and the development of advanced molecular imaging techniques, if clinically useful, may have translational potential. These efforts could help improve the management of aneurysms and better evaluate the therapeutic potential of new treatments for human AAA disease. PMID:23737735

  12. Establishment of temporomandibular joint puncture technique in rats using in vivo micro-computed tomography (R_mCT®)

    PubMed Central

    Kameoka, S; Matsumoto, K; Kai, Y; Yonehara, Y; Arai, Y; Honda, K

    2010-01-01

    The aim of the report was to establish puncture techniques for the temporomandibular joint (TMJ) cavity in rats. The experimental sample comprised 30 male Sprague–Dawley rats. Under general anaesthesia the superior joint cavity of the rat was punctured either laterally (lateral puncture technique (LPT), n = 11), anteriorly (anterosuperior puncture technique (ASPT), n = 13) or anteroinferior puncture technique (AIPT), n = 6) using a 27-gauge needle. After the tip of the needle was confirmed by micro-CT (R-mCT®, Rigaku, Tokyo, Japan) located on the mandibular fossa, 0.05 ml of contrast media was injected under micro-CT fluoroscopic guidance. After confirmation that the joint cavity was filled with contrast media, micro-CT imaging was carried out. The puncture for LPT was accurate in 5 of the 11 animals. The ASPT was accurate in all 13 animals. The AIPT punctured 3 of the 6 animals. Furthermore, the ASPT and AIPT demonstrated improved preservation of the needle; it was harder to detach the needle, which led to greater stability. These results suggest that ASPT assisted by R-mCT® is useful for basic research, including drug discovery and pathogenesis of TMJ diseases. PMID:20841463

  13. Animated computer graphics models of space and earth sciences data generated via the massively parallel processor

    NASA Technical Reports Server (NTRS)

    Treinish, Lloyd A.; Gough, Michael L.; Wildenhain, W. David

    1987-01-01

    The capability was developed of rapidly producing visual representations of large, complex, multi-dimensional space and earth sciences data sets via the implementation of computer graphics modeling techniques on the Massively Parallel Processor (MPP) by employing techniques recently developed for typically non-scientific applications. Such capabilities can provide a new and valuable tool for the understanding of complex scientific data, and a new application of parallel computing via the MPP. A prototype system with such capabilities was developed and integrated into the National Space Science Data Center's (NSSDC) Pilot Climate Data System (PCDS) data-independent environment for computer graphics data display to provide easy access to users. While developing these capabilities, several problems had to be solved independently of the actual use of the MPP, all of which are outlined.

  14. Results and applications of a space suit range-of-motion study

    NASA Technical Reports Server (NTRS)

    Reinhardt, AL

    1989-01-01

    The range of motion of space suits has traditionally been described using limited 2-D mapping of limb, torso, or arm movements performed in front of an orthogonal grid. A new technique for recovering extra-vehicular (EVA) space suit range-of-motion data during underwater testing was described in a paper presented by the author at the 1988 conference. The new technique uses digitized data which is automatically acquired from video images of the subject. Three-dimensional trajectories are recovered from these data, and can be displayed using 2-D computer graphics. Results of using this technique for the current shuttle EVA suit during underwater simulated weightlessness testing are discussed. Application of the data for use in animating anthropometric computer models is highlighted.

  15. Infotech Interactive: Increasing Student Participation Using Multimedia.

    ERIC Educational Resources Information Center

    Baxter, Anthony Q.

    Multimedia techniques allow one to present information using text, video, animations, and sound. "Infotech Interactive" is a CD-ROM multimedia product developed to enhance an introductory computing concepts course. The software includes the following module topics: (1) "Mouse Basics"; (2) "Data into Information"; (3)…

  16. Automatic creation of three-dimensional avatars

    NASA Astrophysics Data System (ADS)

    Villa-Uriol, Maria-Cruz; Sainz, Miguel; Kuester, Falko; Bagherzadeh, Nader

    2003-01-01

    Highly accurate avatars of humans promise a new level of realism in engineering and entertainment applications, including areas such as computer animated movies, computer game development interactive virtual environments and tele-presence. In order to provide high-quality avatars, new techniques for the automatic acquisition and creation are required. A framework for the capture and construction of arbitrary avatars from image data is presented in this paper. Avatars are automatically reconstructed from multiple static images of a human subject by utilizing image information to reshape a synthetic three-dimensional articulated reference model. A pipeline is presented that combines a set of hardware-accelerated stages into one seamless system. Primary stages in this pipeline include pose estimation, skeleton fitting, body part segmentation, geometry construction and coloring, leading to avatars that can be animated and included into interactive environments. The presented system removes traditional constraints in the initial pose of the captured subject by using silhouette-based modification techniques in combination with a reference model. Results can be obtained in near-real time with very limited user intervention.

  17. Advecting Procedural Textures for 2D Flow Animation

    NASA Technical Reports Server (NTRS)

    Kao, David; Pang, Alex; Moran, Pat (Technical Monitor)

    2001-01-01

    This paper proposes the use of specially generated 3D procedural textures for visualizing steady state 2D flow fields. We use the flow field to advect and animate the texture over time. However, using standard texture advection techniques and arbitrary textures will introduce some undesirable effects such as: (a) expanding texture from a critical source point, (b) streaking pattern from the boundary of the flowfield, (c) crowding of advected textures near an attracting spiral or sink, and (d) absent or lack of textures in some regions of the flow. This paper proposes a number of strategies to solve these problems. We demonstrate how the technique works using both synthetic data and computational fluid dynamics data.

  18. Interactive local super-resolution reconstruction of whole-body MRI mouse data: a pilot study with applications to bone and kidney metastases.

    PubMed

    Dzyubachyk, Oleh; Khmelinskii, Artem; Plenge, Esben; Kok, Peter; Snoeks, Thomas J A; Poot, Dirk H J; Löwik, Clemens W G M; Botha, Charl P; Niessen, Wiro J; van der Weerd, Louise; Meijering, Erik; Lelieveldt, Boudewijn P F

    2014-01-01

    In small animal imaging studies, when the locations of the micro-structures of interest are unknown a priori, there is a simultaneous need for full-body coverage and high resolution. In MRI, additional requirements to image contrast and acquisition time will often make it impossible to acquire such images directly. Recently, a resolution enhancing post-processing technique called super-resolution reconstruction (SRR) has been demonstrated to improve visualization and localization of micro-structures in small animal MRI by combining multiple low-resolution acquisitions. However, when the field-of-view is large relative to the desired voxel size, solving the SRR problem becomes very expensive, in terms of both memory requirements and computation time. In this paper we introduce a novel local approach to SRR that aims to overcome the computational problems and allow researchers to efficiently explore both global and local characteristics in whole-body small animal MRI. The method integrates state-of-the-art image processing techniques from the areas of articulated atlas-based segmentation, planar reformation, and SRR. A proof-of-concept is provided with two case studies involving CT, BLI, and MRI data of bone and kidney tumors in a mouse model. We show that local SRR-MRI is a computationally efficient complementary imaging modality for the precise characterization of tumor metastases, and that the method provides a feasible high-resolution alternative to conventional MRI.

  19. Retrospective respiration-gated whole-body photoacoustic computed tomography of mice

    NASA Astrophysics Data System (ADS)

    Xia, Jun; Chen, Wanyi; Maslov, Konstantin; Anastasio, Mark A.; Wang, Lihong V.

    2014-01-01

    Photoacoustic tomography (PAT) is an emerging technique that has a great potential for preclinical whole-body imaging. To date, most whole-body PAT systems require multiple laser shots to generate one cross-sectional image, yielding a frame rate of <1 Hz. Because a mouse breathes at up to 3 Hz, without proper gating mechanisms, acquired images are susceptible to motion artifacts. Here, we introduce, for the first time to our knowledge, retrospective respiratory gating for whole-body photoacoustic computed tomography. This new method involves simultaneous capturing of the animal's respiratory waveform during photoacoustic data acquisition. The recorded photoacoustic signals are sorted and clustered according to the respiratory phase, and an image of the animal at each respiratory phase is reconstructed subsequently from the corresponding cluster. The new method was tested in a ring-shaped confocal photoacoustic computed tomography system with a hardware-limited frame rate of 0.625 Hz. After respiratory gating, we observed sharper vascular and anatomical images at different positions of the animal body. The entire breathing cycle can also be visualized at 20 frames/cycle.

  20. Applications of computational fluid dynamics (CFD) in the modelling and design of ventilation systems in the agricultural industry: a review.

    PubMed

    Norton, Tomás; Sun, Da-Wen; Grant, Jim; Fallon, Richard; Dodd, Vincent

    2007-09-01

    The application of computational fluid dynamics (CFD) in the agricultural industry is becoming ever more important. Over the years, the versatility, accuracy and user-friendliness offered by CFD has led to its increased take-up by the agricultural engineering community. Now CFD is regularly employed to solve environmental problems of greenhouses and animal production facilities. However, due to a combination of increased computer efficacy and advanced numerical techniques, the realism of these simulations has only been enhanced in recent years. This study provides a state-of-the-art review of CFD, its current applications in the design of ventilation systems for agricultural production systems, and the outstanding challenging issues that confront CFD modellers. The current status of greenhouse CFD modelling was found to be at a higher standard than that of animal housing, owing to the incorporation of user-defined routines that simulate crop biological responses as a function of local environmental conditions. Nevertheless, the most recent animal housing simulations have addressed this issue and in turn have become more physically realistic.

  1. Three-dimensional computer visualization of forensic pathology data.

    PubMed

    March, Jack; Schofield, Damian; Evison, Martin; Woodford, Noel

    2004-03-01

    Despite a decade of use in US courtrooms, it is only recently that forensic computer animations have become an increasingly important form of communication in legal spheres within the United Kingdom. Aims Research at the University of Nottingham has been influential in the critical investigation of forensic computer graphics reconstruction methodologies and techniques and in raising the profile of this novel form of data visualization within the United Kingdom. The case study presented demonstrates research undertaken by Aims Research and the Department of Forensic Pathology at the University of Sheffield, which aims to apply, evaluate, and develop novel 3-dimensional computer graphics (CG) visualization and virtual reality (VR) techniques in the presentation and investigation of forensic information concerning the human body. The inclusion of such visualizations within other CG or VR environments may ultimately provide the potential for alternative exploratory directions, processes, and results within forensic pathology investigations.

  2. Method for image reconstruction of moving radionuclide source distribution

    DOEpatents

    Stolin, Alexander V.; McKisson, John E.; Lee, Seung Joon; Smith, Mark Frederick

    2012-12-18

    A method for image reconstruction of moving radionuclide distributions. Its particular embodiment is for single photon emission computed tomography (SPECT) imaging of awake animals, though its techniques are general enough to be applied to other moving radionuclide distributions as well. The invention eliminates motion and blurring artifacts for image reconstructions of moving source distributions. This opens new avenues in the area of small animal brain imaging with radiotracers, which can now be performed without the perturbing influences of anesthesia or physical restraint on the biological system.

  3. Computer-generated imagery for 4-D meteorological data

    NASA Technical Reports Server (NTRS)

    Hibbard, William L.

    1986-01-01

    The University of Wisconsin-Madison Space Science and Engineering Center is developing animated stereo display terminals for use with McIDAS (Man-computer Interactive Data Access System). This paper describes image-generation techniques which have been developed to take maximum advantage of these terminals, integrating large quantities of four-dimensional meteorological data from balloon and satellite soundings, satellite images, Doppler and volumetric radar, and conventional surface observations. The images have been designed to use perspective, shading, hidden-surface removal, and transparency to augment the animation and stereo-display geometry. They create an illusion of a moving three-dimensional model of the atmosphere. This paper describes the design of these images and a number of rules of thumb for generating four-dimensional meteorological displays.

  4. Interactive Display of Surfaces Using Subdivision Surfaces and Wavelets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duchaineau, M A; Bertram, M; Porumbescu, S

    2001-10-03

    Complex surfaces and solids are produced by large-scale modeling and simulation activities in a variety of disciplines. Productive interaction with these simulations requires that these surfaces or solids be viewable at interactive rates--yet many of these surfaced solids can contain hundreds of millions of polygondpolyhedra. Interactive display of these objects requires compression techniques to minimize storage, and fast view-dependent triangulation techniques to drive the graphics hardware. In this paper, we review recent advances in subdivision-surface wavelet compression and optimization that can be used to provide a framework for both compression and triangulation. These techniques can be used to produce suitablemore » approximations of complex surfaces of arbitrary topology, and can be used to determine suitable triangulations for display. The techniques can be used in a variety of applications in computer graphics, computer animation and visualization.« less

  5. 3D Flow Visualization Using Texture Advection

    NASA Technical Reports Server (NTRS)

    Kao, David; Zhang, Bing; Kim, Kwansik; Pang, Alex; Moran, Pat (Technical Monitor)

    2001-01-01

    Texture advection is an effective tool for animating and investigating 2D flows. In this paper, we discuss how this technique can be extended to 3D flows. In particular, we examine the use of 3D and 4D textures on 3D synthetic and computational fluid dynamics flow fields.

  6. Laser-assisted cartilage reshaping: in vitro and in vivo animal studies

    NASA Astrophysics Data System (ADS)

    Wang, Zhi; Pankratov, Michail M.; Perrault, Donald F., Jr.; Shapshay, Stanley M.

    1995-05-01

    Correction of cartilaginous defects in the head and neck area remains a challenge for the surgeon. This study investigated a new technique for laser-assisted cartilage reshaping. The pulsed 1.44 micrometers Nd:YAG laser was used in vitro and in vivo experiments to irradiate cartilage to change it's shape without carbonization or vaporization of tissue. Two watts of average power in non contact manner was used to irradiate and reshape the cartilage. The extracted reshaped cartilage specimens underwent testing of elastic force with a computer assisted measurement system that recorded the changes in elastic force in the specimens from 1 hr to 11 days post-irradiation. An animal model of defective tracheal cartilage (collapsed tracheal wall) was created, allowed to heal for 6 weeks and then corrected endoscopically with the laser-assisted technique. The results of the in vitro and in vivo investigations demonstrated that it was possible to alter the cartilage and that cartilage would retain its new shape. The clinical significance of the technique is evident and warrants further animal studies and clinical trials.

  7. High-speed real-time animated displays on the ADAGE (trademark) RDS 3000 raster graphics system

    NASA Technical Reports Server (NTRS)

    Kahlbaum, William M., Jr.; Ownbey, Katrina L.

    1989-01-01

    Techniques which may be used to increase the animation update rate of real-time computer raster graphic displays are discussed. They were developed on the ADAGE RDS 3000 graphic system in support of the Advanced Concepts Simulator at the NASA Langley Research Center. These techniques involve the use of a special purpose parallel processor, for high-speed character generation. The description of the parallel processor includes the Barrel Shifter which is part of the hardware and is the key to the high-speed character rendition. The final result of this total effort was a fourfold increase in the update rate of an existing primary flight display from 4 to 16 frames per second.

  8. Cultural evolution of military camouflage.

    PubMed

    Talas, Laszlo; Baddeley, Roland J; Cuthill, Innes C

    2017-07-05

    While one has evolved and the other been consciously created, animal and military camouflage are expected to show many similar design principles. Using a unique database of calibrated photographs of camouflage uniform patterns, processed using texture and colour analysis methods from computer vision, we show that the parallels with biology are deeper than design for effective concealment. Using two case studies we show that, like many animal colour patterns, military camouflage can serve multiple functions. Following the dissolution of the Warsaw Pact, countries that became more Western-facing in political terms converged on NATO patterns in camouflage texture and colour. Following the break-up of the former Yugoslavia, the resulting states diverged in design, becoming more similar to neighbouring countries than the ancestral design. None of these insights would have been obtained using extant military approaches to camouflage design, which focus solely on concealment. Moreover, our computational techniques for quantifying pattern offer new tools for comparative biologists studying animal coloration.This article is part of the themed issue 'Animal coloration: production, perception, function and application'. © 2017 The Author(s).

  9. A Kenyan perspective on the use of animals in science education and scientific research in Africa and prospects for improvement

    PubMed Central

    Kimwele, Charles; Matheka, Duncan; Ferdowsian, Hope

    2011-01-01

    Introduction Animal experimentation is common in Africa, a region that accords little priority on animal protection in comparison to economic and social development. The current study aimed at investigating the prevalence of animal experimentation in Kenya, and to review shortfalls in policy, legislation, implementation and enforcement that result in inadequate animal care in Kenya and other African nations. Methods Data was collected using questionnaires, administered at 39 highly ranked academic and research institutions aiming to identify those that used animals, their sources of animals, and application of the three Rs. Perceived challenges to the use of non-animal alternatives and common methods of euthanasia were also queried. Data was analyzed using Epidata, SPSS 16.0 and Microsoft Excel. Results Thirty-eight (97.4%) of thirty-nine institutions reported using animals for education and/or research. Thirty (76.9%) institutions reported using analgesics or anesthetics on a regular basis. Thirteen (33.3%) institutions regularly used statistical methods to minimize the use of animals. Overall, sixteen (41.0%) institutions explored the use of alternatives to animals such as cell cultures and computer simulation techniques, with one (2.6%) academic institution having completely replaced animals with computer modeling, manikins and visual illustrations. The commonest form of euthanasia employed was chloroform administration, reportedly in fourteen (29.8%) of 47 total methods (some institutions used more than one method). Twenty-eight (71.8%) institutions had no designated ethics committee to review or monitor protocols using animals. Conclusion Animals are commonly used in academic and research institutions in Kenya. The relative lack of ethical guidance and oversight regarding the use of animals in research and education presents significant concerns. PMID:22355442

  10. A Kenyan perspective on the use of animals in science education and scientific research in Africa and prospects for improvement.

    PubMed

    Kimwele, Charles; Matheka, Duncan; Ferdowsian, Hope

    2011-01-01

    Animal experimentation is common in Africa, a region that accords little priority on animal protection in comparison to economic and social development. The current study aimed at investigating the prevalence of animal experimentation in Kenya, and to review shortfalls in policy, legislation, implementation and enforcement that result in inadequate animal care in Kenya and other African nations. Data was collected using questionnaires, administered at 39 highly ranked academic and research institutions aiming to identify those that used animals, their sources of animals, and application of the three Rs. Perceived challenges to the use of non-animal alternatives and common methods of euthanasia were also queried. Data was analyzed using Epidata, SPSS 16.0 and Microsoft Excel. Thirty-eight (97.4%) of thirty-nine institutions reported using animals for education and/or research. Thirty (76.9%) institutions reported using analgesics or anesthetics on a regular basis. Thirteen (33.3%) institutions regularly used statistical methods to minimize the use of animals. Overall, sixteen (41.0%) institutions explored the use of alternatives to animals such as cell cultures and computer simulation techniques, with one (2.6%) academic institution having completely replaced animals with computer modeling, manikins and visual illustrations. The commonest form of euthanasia employed was chloroform administration, reportedly in fourteen (29.8%) of 47 total methods (some institutions used more than one method). Twenty-eight (71.8%) institutions had no designated ethics committee to review or monitor protocols using animals. Animals are commonly used in academic and research institutions in Kenya. The relative lack of ethical guidance and oversight regarding the use of animals in research and education presents significant concerns.

  11. Use of three-dimensional computer graphic animation to illustrate cleft lip and palate surgery.

    PubMed

    Cutting, C; Oliker, A; Haring, J; Dayan, J; Smith, D

    2002-01-01

    Three-dimensional (3D) computer animation is not commonly used to illustrate surgical techniques. This article describes the surgery-specific processes that were required to produce animations to teach cleft lip and palate surgery. Three-dimensional models were created using CT scans of two Chinese children with unrepaired clefts (one unilateral and one bilateral). We programmed several custom software tools, including an incision tool, a forceps tool, and a fat tool. Three-dimensional animation was found to be particularly useful for illustrating surgical concepts. Positioning the virtual "camera" made it possible to view the anatomy from angles that are impossible to obtain with a real camera. Transparency allows the underlying anatomy to be seen during surgical repair while maintaining a view of the overlaying tissue relationships. Finally, the representation of motion allows modeling of anatomical mechanics that cannot be done with static illustrations. The animations presented in this article can be viewed on-line at http://www.smiletrain.org/programs/virtual_surgery2.htm. Sophisticated surgical procedures are clarified with the use of 3D animation software and customized software tools. The next step in the development of this technology is the creation of interactive simulators that recreate the experience of surgery in a safe, digital environment. Copyright 2003 Wiley-Liss, Inc.

  12. Computer-animated stimuli to measure motion sensitivity: constraints on signal design in the Jacky dragon.

    PubMed

    Woo, Kevin L; Rieucau, Guillaume; Burke, Darren

    2017-02-01

    Identifying perceptual thresholds is critical for understanding the mechanisms that underlie signal evolution. Using computer-animated stimuli, we examined visual speed sensitivity in the Jacky dragon Amphibolurus muricatus , a species that makes extensive use of rapid motor patterns in social communication. First, focal lizards were tested in discrimination trials using random-dot kinematograms displaying combinations of speed, coherence, and direction. Second, we measured subject lizards' ability to predict the appearance of a secondary reinforcer (1 of 3 different computer-generated animations of invertebrates: cricket, spider, and mite) based on the direction of movement of a field of drifting dots by following a set of behavioural responses (e.g., orienting response, latency to respond) to our virtual stimuli. We found an effect of both speed and coherence, as well as an interaction between these 2 factors on the perception of moving stimuli. Overall, our results showed that Jacky dragons have acute sensitivity to high speeds. We then employed an optic flow analysis to match the performance to ecologically relevant motion. Our results suggest that the Jacky dragon visual system may have been shaped to detect fast motion. This pre-existing sensitivity may have constrained the evolution of conspecific displays. In contrast, Jacky dragons may have difficulty in detecting the movement of ambush predators, such as snakes and of some invertebrate prey. Our study also demonstrates the potential of the computer-animated stimuli technique for conducting nonintrusive tests to explore motion range and sensitivity in a visually mediated species.

  13. The aquatic animals' transcriptome resource for comparative functional analysis.

    PubMed

    Chou, Chih-Hung; Huang, Hsi-Yuan; Huang, Wei-Chih; Hsu, Sheng-Da; Hsiao, Chung-Der; Liu, Chia-Yu; Chen, Yu-Hung; Liu, Yu-Chen; Huang, Wei-Yun; Lee, Meng-Lin; Chen, Yi-Chang; Huang, Hsien-Da

    2018-05-09

    Aquatic animals have great economic and ecological importance. Among them, non-model organisms have been studied regarding eco-toxicity, stress biology, and environmental adaptation. Due to recent advances in next-generation sequencing techniques, large amounts of RNA-seq data for aquatic animals are publicly available. However, currently there is no comprehensive resource exist for the analysis, unification, and integration of these datasets. This study utilizes computational approaches to build a new resource of transcriptomic maps for aquatic animals. This aquatic animal transcriptome map database dbATM provides de novo assembly of transcriptome, gene annotation and comparative analysis of more than twenty aquatic organisms without draft genome. To improve the assembly quality, three computational tools (Trinity, Oases and SOAPdenovo-Trans) were employed to enhance individual transcriptome assembly, and CAP3 and CD-HIT-EST software were then used to merge these three assembled transcriptomes. In addition, functional annotation analysis provides valuable clues to gene characteristics, including full-length transcript coding regions, conserved domains, gene ontology and KEGG pathways. Furthermore, all aquatic animal genes are essential for comparative genomics tasks such as constructing homologous gene groups and blast databases and phylogenetic analysis. In conclusion, we establish a resource for non model organism aquatic animals, which is great economic and ecological importance and provide transcriptomic information including functional annotation and comparative transcriptome analysis. The database is now publically accessible through the URL http://dbATM.mbc.nctu.edu.tw/ .

  14. Building foundations for transcatheter intervascular anastomoses: 3D anatomy of the great vessels in large experimental animals.

    PubMed

    Sizarov, Aleksander; de Bakker, Bernadette S; Klein, Karina; Ohlerth, Stefanie

    2014-10-01

    To provide comprehensive illustrations of anatomy of the relevant vessels in large experimental animals in an interactive format as preparation for developing an effective and safe transcatheter technique of aortopulmonary and bidirectional cavopulmonary intervascular anastomoses. Computed tomographic angiographic studies in two calves and two sheep were used to prepare 3D reconstructions of the aorta, pulmonary arteries, and caval and pulmonary veins. Based on these reconstructions, computer simulations of the creation of stent-enhanced aortopulmonary and bidirectional cavopulmonary anastomoses were made. We observed the following major anatomical features: (i) caudal course of the main pulmonary artery and its branches with the proximal right pulmonary artery located immediately caudal to the aortic arch, and with the central left pulmonary artery lying at a substantial distance from the descending aorta; and (ii) the distal right pulmonary artery is located dorsal to the right atrium and inferior caval vein at a substantial distance from the superior caval vein. Animations showed creation of transcatheter analogues of Waterston's and Potts' aortopulmonary shunts through placement of a covered spool-shaped stent, and the transcatheter creation of bidirectional Glenn's cavopulmonary anastomosis, by placement of a long covered trumpet-shaped stent. There are considerable differences in vascular anatomy between large experimental animals and humans. Given the need to elaborate new transcatheter techniques for intervascular anastomoses in suitable animal models before application to human, it is crucial to take these anatomical differences into account during testing and optimization of the proposed procedures. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  15. Halftoning method for the generation of motion stimuli

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.; Stone, Leland S.

    1989-01-01

    This paper describes a novel computer-graphic technique for the generation of a broad class of motion stimuli for vision research, which uses color table animation in conjunction with a single base image. Using this technique, contrast and temporal frequency can be varied with a negligible amount of computation, once a single-base image is produced. Since only two-bit planes are needed to display a single drifting grating, an eight-bit/pixel display can be used to generate four-component plaids, in which each component of the plaid has independently programmable contrast and temporal frequency. Because the contrast and temporal frequencies of the various components are mutually independent, a large number of two-dimensional stimulus motions can be produced from a single image file.

  16. Flow visualization of CFD using graphics workstations

    NASA Technical Reports Server (NTRS)

    Lasinski, Thomas; Buning, Pieter; Choi, Diana; Rogers, Stuart; Bancroft, Gordon

    1987-01-01

    High performance graphics workstations are used to visualize the fluid flow dynamics obtained from supercomputer solutions of computational fluid dynamic programs. The visualizations can be done independently on the workstation or while the workstation is connected to the supercomputer in a distributed computing mode. In the distributed mode, the supercomputer interactively performs the computationally intensive graphics rendering tasks while the workstation performs the viewing tasks. A major advantage of the workstations is that the viewers can interactively change their viewing position while watching the dynamics of the flow fields. An overview of the computer hardware and software required to create these displays is presented. For complex scenes the workstation cannot create the displays fast enough for good motion analysis. For these cases, the animation sequences are recorded on video tape or 16 mm film a frame at a time and played back at the desired speed. The additional software and hardware required to create these video tapes or 16 mm movies are also described. Photographs illustrating current visualization techniques are discussed. Examples of the use of the workstations for flow visualization through animation are available on video tape.

  17. They See a Rat, We Seek a Cure for Diseases: The Current Status of Animal Experimentation in Medical Practice

    PubMed Central

    Kehinde, Elijah O.

    2013-01-01

    The objective of this review article was to examine current and prospective developments in the scientific use of laboratory animals, and to find out whether or not there are still valid scientific benefits of and justification for animal experimentation. The PubMed and Web of Science databases were searched using the following key words: animal models, basic research, pharmaceutical research, toxicity testing, experimental surgery, surgical simulation, ethics, animal welfare, benign, malignant diseases. Important relevant reviews, original articles and references from 1970 to 2012 were reviewed for data on the use of experimental animals in the study of diseases. The use of laboratory animals in scientific research continues to generate intense public debate. Their use can be justified today in the following areas of research: basic scientific research, use of animals as models for human diseases, pharmaceutical research and development, toxicity testing and teaching of new surgical techniques. This is because there are inherent limitations in the use of alternatives such as in vitro studies, human clinical trials or computer simulation. However, there are problems of transferability of results obtained from animal research to humans. Efforts are on-going to find suitable alternatives to animal experimentation like cell and tissue culture and computer simulation. For the foreseeable future, it would appear that to enable scientists to have a more precise understanding of human disease, including its diagnosis, prognosis and therapeutic intervention, there will still be enough grounds to advocate animal experimentation. However, efforts must continue to minimize or eliminate the need for animal testing in scientific research as soon as possible. PMID:24217224

  18. They see a rat, we seek a cure for diseases: the current status of animal experimentation in medical practice.

    PubMed

    Kehinde, Elijah O

    2013-01-01

    The objective of this review article was to examine current and prospective developments in the scientific use of laboratory animals, and to find out whether or not there are still valid scientific benefits of and justification for animal experimentation. The PubMed and Web of Science databases were searched using the following key words: animal models, basic research, pharmaceutical research, toxicity testing, experimental surgery, surgical simulation, ethics, animal welfare, benign, malignant diseases. Important relevant reviews, original articles and references from 1970 to 2012 were reviewed for data on the use of experimental animals in the study of diseases. The use of laboratory animals in scientific research continues to generate intense public debate. Their use can be justified today in the following areas of research: basic scientific research, use of animals as models for human diseases, pharmaceutical research and development, toxicity testing and teaching of new surgical techniques. This is because there are inherent limitations in the use of alternatives such as in vitro studies, human clinical trials or computer simulation. However, there are problems of transferability of results obtained from animal research to humans. Efforts are on-going to find suitable alternatives to animal experimentation like cell and tissue culture and computer simulation. For the foreseeable future, it would appear that to enable scientists to have a more precise understanding of human disease, including its diagnosis, prognosis and therapeutic intervention, there will still be enough grounds to advocate animal experimentation. However, efforts must continue to minimize or eliminate the need for animal testing in scientific research as soon as possible. © 2013 S. Karger AG, Basel.

  19. Advances in PCR technology.

    PubMed

    Lauerman, Lloyd H

    2004-12-01

    Since the discovery of the polymerase chain reaction (PCR) 20 years ago, an avalanche of scientific publications have reported major developments and changes in specialized equipment, reagents, sample preparation, computer programs and techniques, generated through business, government and university research. The requirement for genetic sequences for primer selection and validation has been greatly facilitated by the development of new sequencing techniques, machines and computer programs. Genetic libraries, such as GenBank, EMBL and DDBJ continue to accumulate a wealth of genetic sequence information for the development and validation of molecular-based diagnostic procedures concerning human and veterinary disease agents. The mechanization of various aspects of the PCR assay, such as robotics, microfluidics and nanotechnology, has made it possible for the rapid advancement of new procedures. Real-time PCR, DNA microarray and DNA chips utilize these newer techniques in conjunction with computer and computer programs. Instruments for hand-held PCR assays are being developed. The PCR and reverse transcription-PCR (RT-PCR) assays have greatly accelerated the speed and accuracy of diagnoses of human and animal disease, especially of the infectious agents that are difficult to isolate or demonstrate. The PCR has made it possible to genetically characterize a microbial isolate inexpensively and rapidly for identification, typing and epidemiological comparison.

  20. IMPROVED BIOMASS UTILIZATION THROUGH REMOTE FLOW SENSING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington University- St. Louis: Muthanna Al-Dahhan

    The growth of the livestock industry provides a valuable source of affordable, sustainable, and renewable bioenergy, while also requiring the safe disposal of the large quantities of animal wastes (manure) generated at dairy, swine, and poultry farms. If these biomass resources are mishandled and underutilized, major environmental problems will be created, such as surface and ground water contamination, odors, dust, ammonia leaching, and methane emission. Anaerobic digestion of animal wastes, in which microorganisms break down organic materials in the absence of oxygen, is one of the most promising waste treatment technologies. This process produces biogas typically containing {approx}65% methane andmore » {approx}35% carbon dioxide. The production of biogas through anaerobic digestion from animal wastes, landfills, and municipal waste water treatment plants represents a large source of renewable and sustainable bio-fuel. Such bio-fuel can be combusted directly, used in internal combustion engines, converted into methanol, or partially oxidized to produce synthesis gas (a mixture of hydrogen and carbon monoxide) that can be converted to clean liquid fuels and chemicals via Fischer-Tropsch synthesis. Different design and mixing configurations of anaerobic digesters for treating cow manure have been utilized commercially and/or tested on a laboratory scale. These digesters include mechanically mixed, gas recirculation mixed, and slurry recirculation mixed designs, as well as covered lagoon digesters. Mixing is an important parameter for successful performance of anaerobic digesters. It enhances substrate contact with the microbial community; improves pH, temperature and substrate/microorganism uniformity; prevents stratification and scum accumulation; facilitates the removal of biogas from the digester; reduces or eliminates the formation of inactive zones (dead zones); prevents settling of biomass and inert solids; and aids in particle size reduction. Unfortunately, information and findings in the literature on the effect of mixing on anaerobic digestion are contradictory. One reason is the lack of measurement techniques for opaque systems such as digesters. Better understanding of the mixing and hydrodynamics of digesters will result in appropriate design, configuration selection, scale-up, and performance, which will ultimately enable avoiding digester failures. Accordingly, this project sought to advance the fundamental knowledge and understanding of the design, scale up, operation, and performance of cow manure anaerobic digesters with high solids loading. The project systematically studied parameters affecting cow manure anaerobic digestion performance, in different configurations and sizes by implementing computer automated radioactive particle tracking (CARPT), computed tomography (CT), and computational fluid dynamics (CFD), and by developing novel multiple-particle CARPT (MP-CARPT) and dual source CT (DSCT) techniques. The accomplishments of the project were achieved in a collaborative effort among Washington University, the Oak Ridge National Laboratory, and the Iowa Energy Center teams. The following investigations and achievements were accomplished: Systematic studies of anaerobic digesters performance and kinetics using various configurations, modes of mixing, and scales (laboratory, pilot plant, and commercial sizes) were conducted and are discussed in Chapter 2. It was found that mixing significantly affected the performance of the pilot plant scale digester ({approx}97 liter). The detailed mixing and hydrodynamics were investigated using computer automated radioactive particle tracking (CARPT) techniques, and are discussed in Chapter 3. A novel multiple particle tracking technique (MP-CARPT) technique that can track simultaneously up to 8 particles was developed, tested, validated, and implemented. Phase distribution was investigated using gamma ray computer tomography (CT) techniques, which are discussed in Chapter 4. A novel dual source CT (DSCT) technique was developed to measure the phase distribution of dynamic three phase system such as digesters with high solids loading and other types of gas-liquid-solid fluidization systems. Evaluation and validation of the computational fluid dynamics (CFD) models and closures were conducted to model and simulate the hydrodynamics and mixing intensity of the anaerobic digesters (Chapter 5). It is strongly recommended that additional studies be conducted, both on hydrodynamics and performance, in large scale digesters. The studies should use advanced non-invasive measurement techniques, including the developed novel measurement techniques, to further understand their design, scale-up, performance, and operation to avoid any digester failure. The final goal is a system ready to be used by farmers on site for bioenergy production and for animal/farm waste treatment.« less

  1. 'Towers in the Tempest' Computer Animation Submission

    NASA Technical Reports Server (NTRS)

    Shirah, Greg

    2008-01-01

    The following describes a computer animation that has been submitted to the ACM/SIGGRAPH 2008 computer graphics conference: 'Towers in the Tempest' clearly communicates recent scientific research into how hurricanes intensify. This intensification can be caused by a phenomenon called a 'hot tower.' For the first time, research meteorologists have run complex atmospheric simulations at a very fine temporal resolution of 3 minutes. Combining this simulation data with satellite observations enables detailed study of 'hot towers.' The science of 'hot towers' is described using: satellite observation data, conceptual illustrations, and a volumetric atmospheric simulation data. The movie starts by showing a 'hot tower' observed by NASA's Tropical Rainfall Measuring Mission (TRMM) spacecraft's three dimensional precipitation radar data of Hurricane Bonnie. Next, the dynamics of a hurricane and the formation of 'hot towers' are briefly explained using conceptual illustrations. Finally, volumetric cloud, wind, and vorticity data from a supercomputer simulation of Hurricane Bonnie are shown using volume techniques such as ray marching.

  2. Computer-animated stimuli to measure motion sensitivity: constraints on signal design in the Jacky dragon

    PubMed Central

    Rieucau, Guillaume; Burke, Darren

    2017-01-01

    Abstract Identifying perceptual thresholds is critical for understanding the mechanisms that underlie signal evolution. Using computer-animated stimuli, we examined visual speed sensitivity in the Jacky dragon Amphibolurus muricatus, a species that makes extensive use of rapid motor patterns in social communication. First, focal lizards were tested in discrimination trials using random-dot kinematograms displaying combinations of speed, coherence, and direction. Second, we measured subject lizards’ ability to predict the appearance of a secondary reinforcer (1 of 3 different computer-generated animations of invertebrates: cricket, spider, and mite) based on the direction of movement of a field of drifting dots by following a set of behavioural responses (e.g., orienting response, latency to respond) to our virtual stimuli. We found an effect of both speed and coherence, as well as an interaction between these 2 factors on the perception of moving stimuli. Overall, our results showed that Jacky dragons have acute sensitivity to high speeds. We then employed an optic flow analysis to match the performance to ecologically relevant motion. Our results suggest that the Jacky dragon visual system may have been shaped to detect fast motion. This pre-existing sensitivity may have constrained the evolution of conspecific displays. In contrast, Jacky dragons may have difficulty in detecting the movement of ambush predators, such as snakes and of some invertebrate prey. Our study also demonstrates the potential of the computer-animated stimuli technique for conducting nonintrusive tests to explore motion range and sensitivity in a visually mediated species. PMID:29491965

  3. New imaging systems in nuclear medicine. Final report, January 1, 1993--December 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-12-31

    The aim of this program has been to improve the performance of positron emission tomography (PET) to achieve high resolution with high sensitivity. Towards this aim, the authors have carried out the following studies: (1) explored new techniques for detection of annihilation radiation including new detector materials and system geometries, specific areas that they have studied include--exploration of factors related to resolution and sensitivity of PET instrumentation including geometry, detection materials and coding, and the exploration of technique to improve the image quality by use of depth of interaction and increased sampling; (2) complete much of the final testing ofmore » PCR-II, an analog-coded cylindrical positron tomograph, developed and constructed during the current funding period; (3) developed the design of a positron microtomograph with mm resolution for quantitative studies in small animals, a single slice version of this device has been designed and studied by use of computer simulation; (4) continued and expanded the program of biological studies in animal models. Current studies have included imaging of animal models of Parkinson`s and Huntington`s disease and cancer. These studies have included new radiopharmaceuticals and techniques involving molecular biology.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demeure, I.M.

    The research presented here is concerned with representation techniques and tools to support the design, prototyping, simulation, and evaluation of message-based parallel, distributed computations. The author describes ParaDiGM-Parallel, Distributed computation Graph Model-a visual representation technique for parallel, message-based distributed computations. ParaDiGM provides several views of a computation depending on the aspect of concern. It is made of two complementary submodels, the DCPG-Distributed Computing Precedence Graph-model, and the PAM-Process Architecture Model-model. DCPGs are precedence graphs used to express the functionality of a computation in terms of tasks, message-passing, and data. PAM graphs are used to represent the partitioning of a computationmore » into schedulable units or processes, and the pattern of communication among those units. There is a natural mapping between the two models. He illustrates the utility of ParaDiGM as a representation technique by applying it to various computations (e.g., an adaptive global optimization algorithm, the client-server model). ParaDiGM representations are concise. They can be used in documenting the design and the implementation of parallel, distributed computations, in describing such computations to colleagues, and in comparing and contrasting various implementations of the same computation. He then describes VISA-VISual Assistant, a software tool to support the design, prototyping, and simulation of message-based parallel, distributed computations. VISA is based on the ParaDiGM model. In particular, it supports the editing of ParaDiGM graphs to describe the computations of interest, and the animation of these graphs to provide visual feedback during simulations. The graphs are supplemented with various attributes, simulation parameters, and interpretations which are procedures that can be executed by VISA.« less

  5. Dual-modality imaging of function and physiology

    NASA Astrophysics Data System (ADS)

    Hasegawa, Bruce H.; Iwata, Koji; Wong, Kenneth H.; Wu, Max C.; Da Silva, Angela; Tang, Hamilton R.; Barber, William C.; Hwang, Andrew B.; Sakdinawat, Anne E.

    2002-04-01

    Dual-modality imaging is a technique where computed tomography or magnetic resonance imaging is combined with positron emission tomography or single-photon computed tomography to acquire structural and functional images with an integrated system. The data are acquired during a single procedure with the patient on a table viewed by both detectors to facilitate correlation between the structural and function images. The resulting data can be useful for localization for more specific diagnosis of disease. In addition, the anatomical information can be used to compensate the correlated radionuclide data for physical perturbations such as photon attenuation, scatter radiation, and partial volume errors. Thus, dual-modality imaging provides a priori information that can be used to improve both the visual quality and the quantitative accuracy of the radionuclide images. Dual-modality imaging systems also are being developed for biological research that involves small animals. The small-animal dual-modality systems offer advantages for measurements that currently are performed invasively using autoradiography and tissue sampling. By acquiring the required data noninvasively, dual-modality imaging has the potential to allow serial studies in a single animal, to perform measurements with fewer animals, and to improve the statistical quality of the data.

  6. Modified animal model and computer-assisted approach for dentoalveolar distraction osteogenesis to reconstruct unilateral maxillectomy defect.

    PubMed

    Feng, Zhihong; Zhao, Jinlong; Zhou, Libin; Dong, Yan; Zhao, Yimin

    2009-10-01

    The purpose of this report is to show the establishment of an animal model with a unilateral maxilla defect, application of virtual reality and rapid prototyping in the surgical planning for dentoalveolar distraction osteogenesis (DO). Two adult dogs were used to develop an animal model with a unilateral maxillary defect. The 3-dimensional model of the canine craniofacial skeleton was reconstructed with computed tomography data using the software Mimics, version 12.0 (Materialise Group, Leuven, Belgium). A virtual individual distractor was designed and transferred onto the model with the defect, and the osteotomies and distraction processes were simulated. A precise casting technique and numeric control technology were applied to produce the titanium distraction device, which was installed on the physical model with the defect, which was generated using Selective Laser Sintering technology, and the in vitro simulation of osteotomies and DO was done. The 2 dogs survived the operation and were lively. The osteotomies and distraction process were simulated successfully whether on the virtual or the physical model. The bone transport could be distracted to the desired position both in the virtual environment and on the physical model. The novel method to develop an animal model with a unilateral maxillary defect was feasible, and the animal model was suitable to develop the reconstruction method for unilateral maxillary defect cases with dentoalveolar DO. Computer-assisted surgical planning and simulation improved the reliability of the maxillofacial surgery, especially for the complex cases. The novel idea to reconstruct the unilateral maxillary defect with dentoalveolar DO was proved through the model experiment.

  7. The environmental-data automated track annotation (Env-DATA) system: linking animal tracks with environmental data

    USGS Publications Warehouse

    Dodge, Somayeh; Bohrer, Gil; Weinzierl, Rolf P.; Davidson, Sarah C.; Kays, Roland; Douglas, David C.; Cruz, Sebastian; Han, J.; Brandes, David; Wikelski, Martin

    2013-01-01

    The movement of animals is strongly influenced by external factors in their surrounding environment such as weather, habitat types, and human land use. With advances in positioning and sensor technologies, it is now possible to capture animal locations at high spatial and temporal granularities. Likewise, scientists have an increasing access to large volumes of environmental data. Environmental data are heterogeneous in source and format, and are usually obtained at different spatiotemporal scales than movement data. Indeed, there remain scientific and technical challenges in developing linkages between the growing collections of animal movement data and the large repositories of heterogeneous remote sensing observations, as well as in the developments of new statistical and computational methods for the analysis of movement in its environmental context. These challenges include retrieval, indexing, efficient storage, data integration, and analytical techniques.

  8. Human motion planning based on recursive dynamics and optimal control techniques

    NASA Technical Reports Server (NTRS)

    Lo, Janzen; Huang, Gang; Metaxas, Dimitris

    2002-01-01

    This paper presents an efficient optimal control and recursive dynamics-based computer animation system for simulating and controlling the motion of articulated figures. A quasi-Newton nonlinear programming technique (super-linear convergence) is implemented to solve minimum torque-based human motion-planning problems. The explicit analytical gradients needed in the dynamics are derived using a matrix exponential formulation and Lie algebra. Cubic spline functions are used to make the search space for an optimal solution finite. Based on our formulations, our method is well conditioned and robust, in addition to being computationally efficient. To better illustrate the efficiency of our method, we present results of natural looking and physically correct human motions for a variety of human motion tasks involving open and closed loop kinematic chains.

  9. Use of a balloon-expandable metallic stent for treatment of nasopharyngeal stenosis in dogs and cats: six cases (2005-2007).

    PubMed

    Berent, Allyson C; Weisse, Chick; Todd, Kimberly; Rondeau, Mark P; Reiter, Alexander M

    2008-11-01

    To determine outcome associated with use of a balloon-expandable metallic stent for treatment of nasopharyngeal stenosis in dogs and cats. Retrospective case series. 3 dogs and 3 cats. All 6 animals had severe inspiratory stertor at initial examination. Two animals had no orifice present at the stenosis. Nasopharyngeal stenosis was diagnosed and stent size determined by use of computed tomography. A percutaneous transluminal angioplasty balloon premounted with a balloon-expandable metallic stent was placed over a guidewire, advanced through the stenotic lesion under fluoroscopic and rhinoscopic guidance, and dilated to restore patency. All animals had immediate resolution of clinical signs after stent placement. The procedure took a median of 38 minutes (range, 22 to 70 minutes). One animal with a stenosis located far caudally needed the tip of the stent resected because of hairball entrapment and exaggerated swallowing. Both animals without an orifice in the stenosis had tissue in-growth requiring a covered stent. All animals were reexamined 6 to 12 weeks after treatment via rhinoscopy, radiography, computed tomography, or a combination of techniques. All animals lacked signs of discomfort; 5 of 6 were breathing normally 12 to 28 months after the procedure. Transnasal balloon-expandable metallic stent placement may represent a rapid, safe, noninvasive, and effective treatment in animals with nasopharyngeal stenosis. If the stenosis is extremely caudal in the nasopharynx, serial balloon dilatation might be considered prior to stent placement. A covered stent should be considered initially if the stenosis is completely closed.

  10. Whole-Volume Clustering of Time Series Data from Zebrafish Brain Calcium Images via Mixture Modeling.

    PubMed

    Nguyen, Hien D; Ullmann, Jeremy F P; McLachlan, Geoffrey J; Voleti, Venkatakaushik; Li, Wenze; Hillman, Elizabeth M C; Reutens, David C; Janke, Andrew L

    2018-02-01

    Calcium is a ubiquitous messenger in neural signaling events. An increasing number of techniques are enabling visualization of neurological activity in animal models via luminescent proteins that bind to calcium ions. These techniques generate large volumes of spatially correlated time series. A model-based functional data analysis methodology via Gaussian mixtures is suggested for the clustering of data from such visualizations is proposed. The methodology is theoretically justified and a computationally efficient approach to estimation is suggested. An example analysis of a zebrafish imaging experiment is presented.

  11. The Speed Death of the Eye: The Ideology of Hollywood Film Special Effects

    ERIC Educational Resources Information Center

    Blackmore, Tim

    2007-01-01

    In the late 20th and early 21st centuries, increased computing power has made possible extraordinary leaps in film special effects. This article argues that special effects developed since the beginning of digital animation, when coupled with standard editing room techniques (jump cuts, cutaways), have brought us to an era where the eye cannot…

  12. 3D Mapping of Language Networks in Clinical and Pre-Clinical Alzheimer's Disease

    ERIC Educational Resources Information Center

    Apostolova, Liana G.; Lu, Po; Rogers, Steve; Dutton, Rebecca A.; Hayashi, Kiralee M.; Toga, Arthur W.; Cummings, Jeffrey L.; Thompson, Paul M.

    2008-01-01

    We investigated the associations between Boston naming and the animal fluency tests and cortical atrophy in 19 probable AD and 5 multiple domain amnestic mild cognitive impairment patients who later converted to AD. We applied a surface-based computational anatomy technique to MRI scans of the brain and then used linear regression models to detect…

  13. Introducing Seismic Tomography with Computational Modeling

    NASA Astrophysics Data System (ADS)

    Neves, R.; Neves, M. L.; Teodoro, V.

    2011-12-01

    Learning seismic tomography principles and techniques involves advanced physical and computational knowledge. In depth learning of such computational skills is a difficult cognitive process that requires a strong background in physics, mathematics and computer programming. The corresponding learning environments and pedagogic methodologies should then involve sets of computational modelling activities with computer software systems which allow students the possibility to improve their mathematical or programming knowledge and simultaneously focus on the learning of seismic wave propagation and inverse theory. To reduce the level of cognitive opacity associated with mathematical or programming knowledge, several computer modelling systems have already been developed (Neves & Teodoro, 2010). Among such systems, Modellus is particularly well suited to achieve this goal because it is a domain general environment for explorative and expressive modelling with the following main advantages: 1) an easy and intuitive creation of mathematical models using just standard mathematical notation; 2) the simultaneous exploration of images, tables, graphs and object animations; 3) the attribution of mathematical properties expressed in the models to animated objects; and finally 4) the computation and display of mathematical quantities obtained from the analysis of images and graphs. Here we describe virtual simulations and educational exercises which enable students an easy grasp of the fundamental of seismic tomography. The simulations make the lecture more interactive and allow students the possibility to overcome their lack of advanced mathematical or programming knowledge and focus on the learning of seismological concepts and processes taking advantage of basic scientific computation methods and tools.

  14. Validation of 2 noninvasive, markerless reconstruction techniques in biplane high-speed fluoroscopy for 3-dimensional research of bovine distal limb kinematics.

    PubMed

    Weiss, M; Reich, E; Grund, S; Mülling, C K W; Geiger, S M

    2017-10-01

    Lameness severely impairs cattle's locomotion, and it is among the most important threats to animal welfare, performance, and productivity in the modern dairy industry. However, insight into the pathological alterations of claw biomechanics leading to lameness and an understanding of the biomechanics behind development of claw lesions causing lameness are limited. Biplane high-speed fluoroscopic kinematography is a new approach for the analysis of skeletal motion. Biplane high-speed videos in combination with bone scans can be used for 3-dimensional (3D) animations of bones moving in 3D space. The gold standard, marker-based animation, requires implantation of radio-opaque markers into bones, which impairs the practicability for lameness research in live animals. Therefore, the purpose of this study was to evaluate the comparative accuracy of 2 noninvasive, markerless animation techniques (semi-automatic and manual) in 3D animation of the bovine distal limb. Tantalum markers were implanted into each of the distal, middle, and proximal phalanges of 5 isolated bovine distal forelimbs, and biplane high-speed x-ray videos of each limb were recorded to capture the simulation of one step. The limbs were scanned by computed tomography to create bone models of the 6 digital bones, and 3D animation of the bones' movements were subsequently reconstructed using the marker-based, the semi-automatic, and the manual animation techniques. Manual animation translational bias and precision varied from 0.63 ± 0.26 mm to 0.80 ± 0.49 mm, and rotational bias and precision ranged from 2.41 ± 1.43° to 6.75 ± 4.67°. Semi-automatic translational values for bias and precision ranged from 1.26 ± 1.28 mm to 2.75 ± 2.17 mm, and rotational values varied from 3.81 ± 2.78° to 11.7 ± 8.11°. In our study, we demonstrated the successful application of biplane high-speed fluoroscopic kinematography to gait analysis of bovine distal limb. Using the manual animation technique, kinematics can be measured with sub-millimeter accuracy without the need for invasive marker implantation. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. An automated device for provoking and capturing wildlife calls

    USGS Publications Warehouse

    Ausband, David E.; Skrivseth, Jesse; Mitchell, Michael S.

    2011-01-01

    Some animals exhibit call-and-response behaviors that can be exploited to facilitate detection. Traditionally, acoustic surveys that use call-and-respond techniques have required an observer's presence to perform the broadcast, record the response, or both events. This can be labor-intensive and may influence animal behavior and, thus, survey results. We developed an automated acoustic survey device using commercially available hardware (e.g., laptop computer, speaker, microphone) and an author-created (JS) software program ("HOOT") that can be used to survey for any animal that calls. We tested this device to determine 1) deployment longevity, 2) effective sampling area, and 3) ability to detect known packs of gray wolves (Canis lupus) in Idaho, USA. Our device was able to broadcast and record twice daily for 6–7 days using the internal computer battery and surveyed an area of 3.3–17.5 km2 in relatively open habitat depending on the hardware components used. We surveyed for wolves at 2 active rendezvous sites used by closely monitored, radiocollared wolf packs and obtained 4 responses across both packs over 3 days of sampling. We confirmed reproduction in these 2 packs by detecting pup howls aurally from the resulting device recordings. Our device can broadcast and record animal calls and the computer software is freely downloadable. This automated survey device can be used to collect reliable data while reducing the labor costs traditionally associated with acoustic surveys.

  16. An automated device for provoking and capturing Wildlife calls

    USGS Publications Warehouse

    Ausband, D.E.; Skrivseth, J.; Mitchell, M.S.

    2011-01-01

    Some animals exhibit call-and-response behaviors that can be exploited to facilitate detection. Traditionally, acoustic surveys that use call-and-respond techniques have required an observer's presence to perform the broadcast, record the response, or both events. This can be labor-intensive and may influence animal behavior and, thus, survey results. We developed an automated acoustic survey device using commercially available hardware (e.g., laptop computer, speaker, microphone) and an author-created (JS) software program ("HOOT") that can be used to survey for any animal that calls. We tested this device to determine 1) deployment longevity, 2) effective sampling area, and 3) ability to detect known packs of gray wolves (Canis lupus) in Idaho, USA. Our device was able to broadcast and record twice daily for 6-7 days using the internal computer battery and surveyed an area of 3.3-17.5 km in relatively open habitat depending on the hardware components used. We surveyed for wolves at 2 active rendezvous sites used by closely monitored, radiocollared wolf packs and obtained 4 responses across both packs over 3 days of sampling. We confirmed reproduction in these 2 packs by detecting pup howls aurally from the resulting device recordings. Our device can broadcast and record animal calls and the computer software is freely downloadable. This automated survey device can be used to collect reliable data while reducing the labor costs traditionally associated with acoustic surveys. ?? 2011 The Wildlife Society.

  17. Computer-based System for the Virtual-Endoscopic Guidance of Bronchoscopy.

    PubMed

    Helferty, J P; Sherbondy, A J; Kiraly, A P; Higgins, W E

    2007-11-01

    The standard procedure for diagnosing lung cancer involves two stages: three-dimensional (3D) computed-tomography (CT) image assessment, followed by interventional bronchoscopy. In general, the physician has no link between the 3D CT image assessment results and the follow-on bronchoscopy. Thus, the physician essentially performs bronchoscopic biopsy of suspect cancer sites blindly. We have devised a computer-based system that greatly augments the physician's vision during bronchoscopy. The system uses techniques from computer graphics and computer vision to enable detailed 3D CT procedure planning and follow-on image-guided bronchoscopy. The procedure plan is directly linked to the bronchoscope procedure, through a live registration and fusion of the 3D CT data and bronchoscopic video. During a procedure, the system provides many visual tools, fused CT-video data, and quantitative distance measures; this gives the physician considerable visual feedback on how to maneuver the bronchoscope and where to insert the biopsy needle. Central to the system is a CT-video registration technique, based on normalized mutual information. Several sets of results verify the efficacy of the registration technique. In addition, we present a series of test results for the complete system for phantoms, animals, and human lung-cancer patients. The results indicate that not only is the variation in skill level between different physicians greatly reduced by the system over the standard procedure, but that biopsy effectiveness increases.

  18. Using the stereokinetic effect to convey depth - Computationally efficient depth-from-motion displays

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.; Proffitt, Dennis R.

    1992-01-01

    Recent developments in microelectronics have encouraged the use of 3D data bases to create compelling volumetric renderings of graphical objects. However, even with the computational capabilities of current-generation graphical systems, real-time displays of such objects are difficult, particularly when dynamic spatial transformations are involved. In this paper we discuss a type of visual stimulus (the stereokinetic effect display) that is computationally far less complex than a true three-dimensional transformation but yields an equally compelling depth impression, often perceptually indiscriminable from the true spatial transformation. Several possible applications for this technique are discussed (e.g., animating contour maps and air traffic control displays so as to evoke accurate depth percepts).

  19. Pattern perception and computational complexity: introduction to the special issue

    PubMed Central

    Fitch, W. Tecumseh; Friederici, Angela D.; Hagoort, Peter

    2012-01-01

    Research on pattern perception and rule learning, grounded in formal language theory (FLT) and using artificial grammar learning paradigms, has exploded in the last decade. This approach marries empirical research conducted by neuroscientists, psychologists and ethologists with the theory of computation and FLT, developed by mathematicians, linguists and computer scientists over the last century. Of particular current interest are comparative extensions of this work to non-human animals, and neuroscientific investigations using brain imaging techniques. We provide a short introduction to the history of these fields, and to some of the dominant hypotheses, to help contextualize these ongoing research programmes, and finally briefly introduce the papers in the current issue. PMID:22688630

  20. Computerized approaches to enhance understanding of organic reaction mechanisms: CAN reaction mechanisms and CPLEX prelaboratory methodology

    NASA Astrophysics Data System (ADS)

    Al-Shammari, Abdulrahman G. Alhamzani

    2008-10-01

    Two approaches to enhance the understanding of organic reaction mechanisms are described. First, a new method for teaching organic reaction mechanisms that can be used in a Computer-Assisted Instruction (CAI) environment is proposed and tested (Chapter 1). The method concentrates upon the important intermediate structures, which are assumed to be on the reaction coordinate, and which can be evaluated and graded by currently available computer techniques. At the same time, the "curved arrows" that show the electron flow in a reaction mechanism are neglected, since they cannot be evaluated and graded with currently available computer techniques. By allowing student practice for learning organic reaction mechanisms using the Curved Arrow Neglect (CAN) method within a "Practice Makes Perfect" CAI method, student performance in the drawing of traditional reaction mechanisms, in which students had to include the "curved arrows" on their written classroom exams, was significantly enhanced. Second, computerized prelaboratory experiments (CPLEX) for organic chemistry laboratory 1 & 2 courses have been created, used, and evaluated (Chapters 2 and 3). These computerized prelabs are unique because they combine both "dry lab" actions with detailed animations of the actual chemistry occurring at the molecular level. The "dry lab" serves to simulate the actual physical manipulations of equipment and chemicals that occur in the laboratory experiment through the use of drag-and-drop computer technology. At the same time, these physical actions are accompanied on a separate part of the computer screen by animations showing the chemistry at the molecular level that is occurring in the experiment. These CPLEX modules were made into Internet accessible modules. The students were allowed to access the CPLEX modules prior to performing the actual laboratory experiment. A detailed evaluation of students' perception of the modules was accomplished via survey methodology during the entire implementation process over the course of three semesters. Results of the survey data indicate that students thought that they better understood the chemical principles and procedures of the laboratory experiment. Interestingly, students prefer the CPLEX prelaboratory materials, compared to the traditional textbooks, by a wide margin (Chapter 2). The utility of CPLEX was further demonstrated by enabling a study of the effectiveness of animated reaction mechanisms to promote student learning. While most instructors believe that animated mechanisms aid student understanding of reactions, there has been no quantitative data to-date to support this view. In this work, a quantitative study, using an experimental/control group study, was conducted to provide data on the effectiveness of animated reaction mechanisms to promote student learning. Analysis of student answers, using an appropriate rubric, demonstrated that there was a statistically significant improvement in students' scores in the mechanistic question of a pre-laboratory quiz in the post-treatment results of the experimental group which had had access to the animated reaction mechanisms (Chapter 3).

  1. Monitoring of experimental rat lung transplants by high-resolution flat-panel volumetric computer tomography (fpVCT).

    PubMed

    Greschus, Susanne; Kuchenbuch, Tim; Plötz, Christian; Obert, Martin; Traupe, Horst; Padberg, Winfried; Grau, Veronika; Hirschburger, Markus

    2009-01-01

    Noninvasive assessment of experimental lung transplants with high resolution would be favorable to exclude technical failure and to follow up graft outcome in the living animal. Here we describe a flat-panel Volumetric Computed Tomography (fpVCT) technique using a prototype scanner. Lung transplantation was performed in allogeneic as well as in corresponding syngeneic rat strain combinations. At different time points post-transplantation, fpVCT was performed. Lung transplants can be visualized in the living rat with high-spatial resolution. FpVCT allows a detailed analysis of the lung and the bronchi. Infiltrates developing during rejection episodes can be diagnosed and follow-up studies can easily be performed. With fpVCT it is possible to control the technical success of the surgical procedure. Graft rejection can be visualized individually in the living animal noninvasively, which is highly advantageous for studying the pathogenesis of chronic rejection or to monitor new therapies.

  2. Design of a recovery system for a reentry vehicle

    NASA Technical Reports Server (NTRS)

    Von Eckroth, Wulf; Garrard, William L.; Miller, Norman

    1993-01-01

    Engineers are often required to design decelerator systems which are deployed in cross-wind orientations. If the system is not designed to minimize 'line sail', damage to the parachutes could result. A Reentry Vehicle Analysis Code (RVAC) and an accompanying graphics animation software program (DISPLAY) are presented in this paper. These computer codes allow the user to quickly apply the Purvis line sail modeling technique to any vehicle and then observe the relative motion of the vehicle, nose cap, suspension lines, pilot and drogue bags and canopies on a computer screen. Data files are created which allow plots of velocities, spacial positions, and dynamic pressures versus time to be generated. The code is an important tool for the design engineer because it integrates two degrees of freedom (DOF) line sail equations with a three DOF model of the reentry body and jettisoned nose cap to provide an animated output.

  3. Guide to making time-lapse graphics using the facilities of the National Magnetic Fusion Energy Computing Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munro, J.K. Jr.

    1980-05-01

    The advent of large, fast computers has opened the way to modeling more complex physical processes and to handling very large quantities of experimental data. The amount of information that can be processed in a short period of time is so great that use of graphical displays assumes greater importance as a means of displaying this information. Information from dynamical processes can be displayed conveniently by use of animated graphics. This guide presents the basic techniques for generating black and white animated graphics, with consideration of aesthetic, mechanical, and computational problems. The guide is intended for use by someone whomore » wants to make movies on the National Magnetic Fusion Energy Computing Center (NMFECC) CDC-7600. Problems encountered by a geographically remote user are given particular attention. Detailed information is given that will allow a remote user to do some file checking and diagnosis before giving graphics files to the system for processing into film in order to spot problems without having to wait for film to be delivered. Source listings of some useful software are given in appendices along with descriptions of how to use it. 3 figures, 5 tables.« less

  4. Biomechanical testing simulation of a cadaver spine specimen: development and evaluation study.

    PubMed

    Ahn, Hyung Soo; DiAngelo, Denis J

    2007-05-15

    This article describes a computer model of the cadaver cervical spine specimen and virtual biomechanical testing. To develop a graphics-oriented, multibody model of a cadaver cervical spine and to build a virtual laboratory simulator for the biomechanical testing using physics-based dynamic simulation techniques. Physics-based computer simulations apply the laws of physics to solid bodies with defined material properties. This technique can be used to create a virtual simulator for the biomechanical testing of a human cadaver spine. An accurate virtual model and simulation would complement tissue-based in vitro studies by providing a consistent test bed with minimal variability and by reducing cost. The geometry of cervical vertebrae was created from computed tomography images. Joints linking adjacent vertebrae were modeled as a triple-joint complex, comprised of intervertebral disc joints in the anterior region, 2 facet joints in the posterior region, and the surrounding ligament structure. A virtual laboratory simulation of an in vitro testing protocol was performed to evaluate the model responses during flexion, extension, and lateral bending. For kinematic evaluation, the rotation of motion segment unit, coupling behaviors, and 3-dimensional helical axes of motion were analyzed. The simulation results were in correlation with the findings of in vitro tests and published data. For kinetic evaluation, the forces of the intervertebral discs and facet joints of each segment were determined and visually animated. This methodology produced a realistic visualization of in vitro experiment, and allowed for the analyses of the kinematics and kinetics of the cadaver cervical spine. With graphical illustrations and animation features, this modeling technique has provided vivid and intuitive information.

  5. Arrhythmic risk biomarkers for the assessment of drug cardiotoxicity: from experiments to computer simulations

    PubMed Central

    Corrias, A.; Jie, X.; Romero, L.; Bishop, M. J.; Bernabeu, M.; Pueyo, E.; Rodriguez, B.

    2010-01-01

    In this paper, we illustrate how advanced computational modelling and simulation can be used to investigate drug-induced effects on cardiac electrophysiology and on specific biomarkers of pro-arrhythmic risk. To do so, we first perform a thorough literature review of proposed arrhythmic risk biomarkers from the ionic to the electrocardiogram levels. The review highlights the variety of proposed biomarkers, the complexity of the mechanisms of drug-induced pro-arrhythmia and the existence of significant animal species differences in drug-induced effects on cardiac electrophysiology. Predicting drug-induced pro-arrhythmic risk solely using experiments is challenging both preclinically and clinically, as attested by the rise in the cost of releasing new compounds to the market. Computational modelling and simulation has significantly contributed to the understanding of cardiac electrophysiology and arrhythmias over the last 40 years. In the second part of this paper, we illustrate how state-of-the-art open source computational modelling and simulation tools can be used to simulate multi-scale effects of drug-induced ion channel block in ventricular electrophysiology at the cellular, tissue and whole ventricular levels for different animal species. We believe that the use of computational modelling and simulation in combination with experimental techniques could be a powerful tool for the assessment of drug safety pharmacology. PMID:20478918

  6. USE OF COMPUTED TOMOGRAPHY FOR INVESTIGATION OF HEPATIC LIPIDOSIS IN CAPTIVE CHELONOIDIS CARBONARIA (SPIX, 1824).

    PubMed

    Marchiori, Adriano; da Silva, Ieverton Cleiton Correia; de Albuquerque Bonelli, Marília; de Albuquerque Zanotti, Luciana Carla Rameh; Siqueira, Daniel B; Zanotti, Alexandre Pinheiro; Costa, Fabiano Séllos

    2015-06-01

    Computed tomography is a sensitive and highly applicable technique for determining the degree of radiographic attenuation of the hepatic parenchyma. Radiodensity measurements of the liver can help in the diagnosis of hepatic lipidosis in humans and animals. The objective was to investigate the presence of hepatic lipidosis in captive red-footed tortoises (Chelonoidis carbonaria) using computed tomography. Computed tomography was performed in 10 male red-footed tortoises. Mean radiographic attenuation values for the hepatic parenchyma were 11.2±3.0 Hounsfield units (HU). Seven red-footed tortoises had values lower than 20 HU, which is compatible with C. carbonaria hepatic lipidosis. These results allowed an early diagnosis of the hepatic changes and suggested corrective measures regarding feeding and management protocols.

  7. Face Processing: Models For Recognition

    NASA Astrophysics Data System (ADS)

    Turk, Matthew A.; Pentland, Alexander P.

    1990-03-01

    The human ability to process faces is remarkable. We can identify perhaps thousands of faces learned throughout our lifetime and read facial expression to understand such subtle qualities as emotion. These skills are quite robust, despite sometimes large changes in the visual stimulus due to expression, aging, and distractions such as glasses or changes in hairstyle or facial hair. Computers which model and recognize faces will be useful in a variety of applications, including criminal identification, human-computer interface, and animation. We discuss models for representing faces and their applicability to the task of recognition, and present techniques for identifying faces and detecting eye blinks.

  8. Facial expression system on video using widrow hoff

    NASA Astrophysics Data System (ADS)

    Jannah, M.; Zarlis, M.; Mawengkang, H.

    2018-03-01

    Facial expressions recognition is one of interesting research. This research contains human feeling to computer application Such as the interaction between human and computer, data compression, facial animation and facial detection from the video. The purpose of this research is to create facial expression system that captures image from the video camera. The system in this research uses Widrow-Hoff learning method in training and testing image with Adaptive Linear Neuron (ADALINE) approach. The system performance is evaluated by two parameters, detection rate and false positive rate. The system accuracy depends on good technique and face position that trained and tested.

  9. The conclusiveness of less-invasive imaging techniques (computer tomography, X-ray) with regard to their identification of bone diseases in a primate model (Callithrix jacchus).

    PubMed

    Grohmann, J; Taetzner, S; Theuss, T; Kuehnel, F; Buchwald, U; Einspanier, A

    2012-04-01

    Although common marmosets seem to be appropriate animal models to examine bone diseases, no data about the conclusiveness of less-invasive techniques are available. Therefore, the aim was to combine different techniques to analyse changes in bone metabolism of common marmosets with bone diseases. Five monkeys were examined by X-ray, computer tomography (CT), histology and immunohistochemistry (IHC). Monkeys with lowest bone mineral density (BMD) showed increased bone marrow, decreased cancellous bone and decreased contrast in X-ray. Highest alkaline phosphatase (AP)-levels were detected in bones with low elastic modulus. Expression of osteopontin (OPN), osteocalcin (OC) and runt-related transcriptions factor 2 (RUNX 2) was detected in bones with high modulus. No expression was present in bones with lower modulus. Collagen type I and V were found in every bone. In conclusion, CT, X-ray and AP are useful techniques to detect bone diseases in common marmosets. These observations could be confirmed by IHC. © 2012 John Wiley & Sons A/S.

  10. Using an instrumented manikin for Space Station Freedom analysis

    NASA Technical Reports Server (NTRS)

    Orr, Linda; Hill, Richard

    1989-01-01

    One of the most intriguing and complex areas of current computer graphics research is animating human figures to behave in a realistic manner. Believable, accurate human models are desirable for many everyday uses including industrial and architectural design, medical applications, and human factors evaluations. For zero-gravity (0-g) spacecraft design and mission planning scenarios, they are particularly valuable since 0-g conditions are difficult to simulate in a one-gravity Earth environment. At NASA/JSC, an in-house human modeling package called PLAID is currently being used to produce animations for human factors evaluation of Space Station Freedom design issues. Presented here is an introductory background discussion of problems encountered in existing techniques for animating human models and how an instrumented manikin can help improve the realism of these models.

  11. The role of simulation in surgical training.

    PubMed Central

    Torkington, J.; Smith, S. G.; Rees, B. I.; Darzi, A.

    2000-01-01

    Surgical training has undergone many changes in the last decade. One outcome of these changes is the interest that has been generated in the possibility of training surgical skills outside the operating theatre. Simulation of surgical procedures and human tissue, if perfect, would allow complete transfer of techniques learnt in a skills laboratory directly to the operating theatre. Several techniques of simulation are available including artificial tissues, animal models and virtual reality computer simulation. Each is discussed in this article and their advantages and disadvantages considered. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:10743423

  12. Multi-media based education.

    PubMed

    Wurdack, C M

    1997-01-01

    Computers are changing the way we do everything from paying our bills to programming our home entertainment systems. If you thought that dental education was not likely to benefit from computers, consider this: Computer technology is revolutionizing dental instruction in ways that promise to improve the quality and efficiency of dental education. It is providing a challenging learning opportunity for dental educators as well. Since much of dental education involves the visual transfer of both concepts and procedures from the instructor to the student, it makes sense that using computer technology to enhance conventional teaching techniques--with materials that include clear, informative images and real-time demonstrations melding sound and animation to deliver to the student in the classroom material that complements textbooks, 35mm slides, and the lecture format. Use of computers at UOP is about teaching students to be competent dentists by making instruction more direct, better visualized, and more comprehensible.

  13. Computer-Generated, Three-Dimensional Character Animation: A Report and Analysis.

    ERIC Educational Resources Information Center

    Kingsbury, Douglas Lee

    This master's thesis details the experience gathered in the production "Snoot and Muttly," a short character animation with 3-D computer generated images, and provides an analysis of the computer-generated 3-D character animation system capabilities. Descriptions are provided of the animation environment at the Ohio State University…

  14. Can Computer Animations Affect College Biology Students' Conceptions about Diffusion and Osmosis?

    ERIC Educational Resources Information Center

    Sanger, Michael J.; Brecheisen, Dorothy M.; Hynek, Brian M.

    2001-01-01

    Investigates whether viewing computer animations representing the process of diffusion and osmosis affects students' conceptions. Discusses the difficulties of implementing computer animations in the classroom. (Contains 27 references.) (YDS)

  15. Computer animations stimulate contagious yawning in chimpanzees

    PubMed Central

    Campbell, Matthew W.; Carter, J. Devyn; Proctor, Darby; Eisenberg, Michelle L.; de Waal, Frans B. M.

    2009-01-01

    People empathize with fictional displays of behaviour, including those of cartoons and computer animations, even though the stimuli are obviously artificial. However, the extent to which other animals also may respond empathetically to animations has yet to be determined. Animations provide a potentially useful tool for exploring non-human behaviour, cognition and empathy because computer-generated stimuli offer complete control over variables and the ability to program stimuli that could not be captured on video. Establishing computer animations as a viable tool requires that non-human subjects identify with and respond to animations in a way similar to the way they do to images of actual conspecifics. Contagious yawning has been linked to empathy and poses a good test of involuntary identification and motor mimicry. We presented 24 chimpanzees with three-dimensional computer-animated chimpanzees yawning or displaying control mouth movements. The apes yawned significantly more in response to the yawn animations than to the controls, implying identification with the animations. These results support the phenomenon of contagious yawning in chimpanzees and suggest an empathic response to animations. Understanding how chimpanzees connect with animations, to both empathize and imitate, may help us to understand how humans do the same. PMID:19740888

  16. Multi-camera real-time three-dimensional tracking of multiple flying animals

    PubMed Central

    Straw, Andrew D.; Branson, Kristin; Neumann, Titus R.; Dickinson, Michael H.

    2011-01-01

    Automated tracking of animal movement allows analyses that would not otherwise be possible by providing great quantities of data. The additional capability of tracking in real time—with minimal latency—opens up the experimental possibility of manipulating sensory feedback, thus allowing detailed explorations of the neural basis for control of behaviour. Here, we describe a system capable of tracking the three-dimensional position and body orientation of animals such as flies and birds. The system operates with less than 40 ms latency and can track multiple animals simultaneously. To achieve these results, a multi-target tracking algorithm was developed based on the extended Kalman filter and the nearest neighbour standard filter data association algorithm. In one implementation, an 11-camera system is capable of tracking three flies simultaneously at 60 frames per second using a gigabit network of nine standard Intel Pentium 4 and Core 2 Duo computers. This manuscript presents the rationale and details of the algorithms employed and shows three implementations of the system. An experiment was performed using the tracking system to measure the effect of visual contrast on the flight speed of Drosophila melanogaster. At low contrasts, speed is more variable and faster on average than at high contrasts. Thus, the system is already a useful tool to study the neurobiology and behaviour of freely flying animals. If combined with other techniques, such as ‘virtual reality’-type computer graphics or genetic manipulation, the tracking system would offer a powerful new way to investigate the biology of flying animals. PMID:20630879

  17. Collective motion in animal groups

    NASA Astrophysics Data System (ADS)

    Couzin, Iain

    2004-03-01

    In recent years there has been a growing interest in the relationship between individual behavior and population-level properties in animal groups. One of the fundamental problems is related to spatial scale; how do interactions over a local range result in population properties at larger, averaged, scales, and how can we integrate the properties of aggregates over these scales? Many group-living animals exhibit complex, and coordinated, spatio-temporal patterns which despite their ubiquity and ecological importance are very poorly understood. This is largely due to the difficulties associated with quantifying the motion of, and interactions among, many animals simultaneously. It is on how these behaviors scale to collective behaviors that I will focus here. Using a combined empirical approach (using novel computer vision techniques) and individual-based computer models, I investigate pattern formation in both invertebrate and vertebrate systems, including - Collective memory and self-organized group structure in vertebrate groups (Couzin, I.D., Krause, J., James, R., Ruxton, G.D. & Franks, N.R. (2002) Journal of Theoretical Biology 218, 1-11. (2) Couzin, I.D. & Krause, J. (2003) Advances in the Study of Behavior 32, 1-75. (3) Hoare, D.J., Couzin, I.D. Godin, J.-G. & Krause, J. (2003) Animal Behaviour, in press.) - Self-organized lane formation and optimized traffic flow in army ants (Couzin, I.D. & Franks, N.R. (2003) Proceedings of the Royal Society of London, Series B 270, 139-146) - Leadership and information transfer in flocks, schools and swarms. - Why do hoppers hop? Hopping and the generation of long-range order in some of the largest animal groups in nature, locust hopper bands.

  18. D Animation Reconstruction from Multi-Camera Coordinates Transformation

    NASA Astrophysics Data System (ADS)

    Jhan, J. P.; Rau, J. Y.; Chou, C. M.

    2016-06-01

    Reservoir dredging issues are important to extend the life of reservoir. The most effective and cost reduction way is to construct a tunnel to desilt the bottom sediment. Conventional technique is to construct a cofferdam to separate the water, construct the intake of tunnel inside and remove the cofferdam afterwards. In Taiwan, the ZengWen reservoir dredging project will install an Elephant-trunk Steel Pipe (ETSP) in the water to connect the desilting tunnel without building the cofferdam. Since the installation is critical to the whole project, a 1:20 model was built to simulate the installation steps in a towing tank, i.e. launching, dragging, water injection, and sinking. To increase the construction safety, photogrammetry technic is adopted to record images during the simulation, compute its transformation parameters for dynamic analysis and reconstruct the 4D animations. In this study, several Australiscoded targets are fixed on the surface of ETSP for auto-recognition and measurement. The cameras orientations are computed by space resection where the 3D coordinates of coded targets are measured. Two approaches for motion parameters computation are proposed, i.e. performing 3D conformal transformation from the coordinates of cameras and relative orientation computation by the orientation of single camera. Experimental results show the 3D conformal transformation can achieve sub-mm simulation results, and relative orientation computation shows the flexibility for dynamic motion analysis which is easier and more efficiency.

  19. Application of cellular automata approach for cloud simulation and rendering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher Immanuel, W.; Paul Mary Deborrah, S.; Samuel Selvaraj, R.

    Current techniques for creating clouds in games and other real time applications produce static, homogenous clouds. These clouds, while viable for real time applications, do not exhibit an organic feel that clouds in nature exhibit. These clouds, when viewed over a time period, were able to deform their initial shape and move in a more organic and dynamic way. With cloud shape technology we should be able in the future to extend to create even more cloud shapes in real time with more forces. Clouds are an essential part of any computer model of a landscape or an animation ofmore » an outdoor scene. A realistic animation of clouds is also important for creating scenes for flight simulators, movies, games, and other. Our goal was to create a realistic animation of clouds.« less

  20. Effects of Computer Animation Exercises on Student Cognitive Processes.

    ERIC Educational Resources Information Center

    Fowler, Will

    A study examining the effects of computer animation exercises on cognitive development asked two groups of seventh graders to create computer animations, working from a simple mythic text. The ability of students to create narrative scenarios from this mythic text was analyzed. These scenarios were then recreated in the school computer lab, using…

  1. Flexible Animation Computer Program

    NASA Technical Reports Server (NTRS)

    Stallcup, Scott S.

    1990-01-01

    FLEXAN (Flexible Animation), computer program animating structural dynamics on Evans and Sutherland PS300-series graphics workstation with VAX/VMS host computer. Typical application is animation of spacecraft undergoing structural stresses caused by thermal and vibrational effects. Displays distortions in shape of spacecraft. Program displays single natural mode of vibration, mode history, or any general deformation of flexible structure. Written in FORTRAN 77.

  2. Effects of Jigsaw Cooperative Learning and Animation Techniques on Students' Understanding of Chemical Bonding and Their Conceptions of the Particulate Nature of Matter

    NASA Astrophysics Data System (ADS)

    Karacop, Ataman; Doymus, Kemal

    2013-04-01

    The aim of this study was to determine the effect of jigsaw cooperative learning and computer animation techniques on academic achievements of first year university students attending classes in which the unit of chemical bonding is taught within the general chemistry course and these students' learning of the particulate nature of matter of this unit. The sample of this study consisted of 115 first-year science education students who attended the classes in which the unit of chemical bonding was taught in a university faculty of education during the 2009-2010 academic year. The data collection instruments used were the Test of Scientific Reasoning, the Purdue Spatial Visualization Test: Rotations, the Chemical Bonding Academic Achievement Test, and the Particulate Nature of Matter Test in Chemical Bonding (CbPNMT). The study was carried out in three different groups. One of the groups was randomly assigned to the jigsaw group, the second was assigned to the animation group (AG), and the third was assigned to the control group, in which the traditional teaching method was applied. The data obtained with the instruments were evaluated using descriptive statistics, one-way ANOVA, and MANCOVA. The results indicate that the teaching of chemical bonding via the animation and jigsaw techniques was more effective than the traditional teaching method in increasing academic achievement. In addition, according to findings from the CbPNMT, the students from the AG were more successful in terms of correct understanding of the particulate nature of matter.

  3. Three-dimensional analysis of scoliosis surgery using stereophotogrammetry

    NASA Astrophysics Data System (ADS)

    Jang, Stanley B.; Booth, Kellogg S.; Reilly, Chris W.; Sawatzky, Bonita J.; Tredwell, Stephen J.

    1994-04-01

    A new stereophotogrammetric analysis and 3D visualization allow accurate assessment of the scoliotic spine during instrumentation. Stereophoto pairs taken at each stage of the operation and robust statistical techniques are used to compute 3D transformations of the vertebrae between stages. These determine rotation, translation, goodness of fit, and overall spinal contour. A polygonal model of the spine using commercial 3D modeling package is used to produce an animation sequence of the transformation. The visualization have provided some important observation. Correction of the scoliosis is achieved largely through vertebral translation and coronal plane rotation, contrary to claims that large axial rotations are required. The animations provide valuable qualitative information for surgeons assessing the results of scoliotic correction.

  4. Geographic profiling applied to testing models of bumble-bee foraging.

    PubMed

    Raine, Nigel E; Rossmo, D Kim; Le Comber, Steven C

    2009-03-06

    Geographic profiling (GP) was originally developed as a statistical tool to help police forces prioritize lists of suspects in investigations of serial crimes. GP uses the location of related crime sites to make inferences about where the offender is most likely to live, and has been extremely successful in criminology. Here, we show how GP is applicable to experimental studies of animal foraging, using the bumble-bee Bombus terrestris. GP techniques enable us to simplify complex patterns of spatial data down to a small number of parameters (2-3) for rigorous hypothesis testing. Combining computer model simulations and experimental observation of foraging bumble-bees, we demonstrate that GP can be used to discriminate between foraging patterns resulting from (i) different hypothetical foraging algorithms and (ii) different food item (flower) densities. We also demonstrate that combining experimental and simulated data can be used to elucidate animal foraging strategies: specifically that the foraging patterns of real bumble-bees can be reliably discriminated from three out of nine hypothetical foraging algorithms. We suggest that experimental systems, like foraging bees, could be used to test and refine GP model predictions, and that GP offers a useful technique to analyse spatial animal behaviour data in both the laboratory and field.

  5. Application of a model of instrumental conditioning to mobile robot control

    NASA Astrophysics Data System (ADS)

    Saksida, Lisa M.; Touretzky, D. S.

    1997-09-01

    Instrumental conditioning is a psychological process whereby an animal learns to associate its actions with their consequences. This type of learning is exploited in animal training techniques such as 'shaping by successive approximations,' which enables trainers to gradually adjust the animal's behavior by giving strategically timed reinforcements. While this is similar in principle to reinforcement learning, the real phenomenon includes many subtle effects not considered in the machine learning literature. In addition, a good deal of domain information is utilized by an animal learning a new task; it does not start from scratch every time it learns a new behavior. For these reasons, it is not surprising that mobile robot learning algorithms have yet to approach the sophistication and robustness of animal learning. A serious attempt to model instrumental learning could prove fruitful for improving machine learning techniques. In the present paper, we develop a computational theory of shaping at a level appropriate for controlling mobile robots. The theory is based on a series of mechanisms for 'behavior editing,' in which pre-existing behaviors, either innate or previously learned, can be dramatically changed in magnitude, shifted in direction, or otherwise manipulated so as to produce new behavioral routines. We have implemented our theory on Amelia, an RWI B21 mobile robot equipped with a gripper and color video camera. We provide results from training Amelia on several tasks, all of which were constructed as variations of one innate behavior, object-pursuit.

  6. Computational Methods of Studying the Binding of Toxins From Venomous Animals to Biological Ion Channels: Theory and Applications

    PubMed Central

    Chen, Rong; Chung, Shin-Ho

    2013-01-01

    The discovery of new drugs that selectively block or modulate ion channels has great potential to provide new treatments for a host of conditions. One promising avenue revolves around modifying or mimicking certain naturally occurring ion channel modulator toxins. This strategy appears to offer the prospect of designing drugs that are both potent and specific. The use of computational modeling is crucial to this endeavor, as it has the potential to provide lower cost alternatives for exploring the effects of new compounds on ion channels. In addition, computational modeling can provide structural information and theoretical understanding that is not easily derivable from experimental results. In this review, we look at the theory and computational methods that are applicable to the study of ion channel modulators. The first section provides an introduction to various theoretical concepts, including force-fields and the statistical mechanics of binding. We then look at various computational techniques available to the researcher, including molecular dynamics, Brownian dynamics, and molecular docking systems. The latter section of the review explores applications of these techniques, concentrating on pore blocker and gating modifier toxins of potassium and sodium channels. After first discussing the structural features of these channels, and their modes of block, we provide an in-depth review of past computational work that has been carried out. Finally, we discuss prospects for future developments in the field. PMID:23589832

  7. Virtual reality neurosurgery: a simulator blueprint.

    PubMed

    Spicer, Mark A; van Velsen, Martin; Caffrey, John P; Apuzzo, Michael L J

    2004-04-01

    This article details preliminary studies undertaken to integrate the most relevant advancements across multiple disciplines in an effort to construct a highly realistic neurosurgical simulator based on a distributed computer architecture. Techniques based on modified computational modeling paradigms incorporating finite element analysis are presented, as are current and projected efforts directed toward the implementation of a novel bidirectional haptic device. Patient-specific data derived from noninvasive magnetic resonance imaging sequences are used to construct a computational model of the surgical region of interest. Magnetic resonance images of the brain may be coregistered with those obtained from magnetic resonance angiography, magnetic resonance venography, and diffusion tensor imaging to formulate models of varying anatomic complexity. The majority of the computational burden is encountered in the presimulation reduction of the computational model and allows realization of the required threshold rates for the accurate and realistic representation of real-time visual animations. Intracranial neurosurgical procedures offer an ideal testing site for the development of a totally immersive virtual reality surgical simulator when compared with the simulations required in other surgical subspecialties. The material properties of the brain as well as the typically small volumes of tissue exposed in the surgical field, coupled with techniques and strategies to minimize computational demands, provide unique opportunities for the development of such a simulator. Incorporation of real-time haptic and visual feedback is approached here and likely will be accomplished soon.

  8. The AAHA Computer Program. American Animal Hospital Association.

    PubMed

    Albers, J W

    1986-07-01

    The American Animal Hospital Association Computer Program should benefit all small animal practitioners. Through the availability of well-researched and well-developed certified software, veterinarians will have increased confidence in their purchase decisions. With the expansion of computer applications to improve practice management efficiency, veterinary computer systems will further justify their initial expense. The development of the Association's veterinary computer network will provide a variety of important services to the profession.

  9. Hyperthermia treatment of spontaneously occurring oral cavity tumors using a computer-controlled Nd:YAG laser system

    NASA Astrophysics Data System (ADS)

    Panjehpour, Masoud; Overholt, Bergein F.; Frazier, Donita L.; Klebanow, Edward R.

    1991-05-01

    Conventional hyperthermia treatment of superficial tumors in the oral cavity is difficult due to inability in accessing the lesion. A new hyperthermia technique employing near infrared Nd:YAG irradiation delivered through an optical fiber is introduced for heating oral and nasal tumors in animals. This system consisted of an Nd:YAG laser, a He-Ne laser, a computer controlled optical shutter, an interstitial thermometer, computer and a printer. The tumors were heated via surface illumination of the lesion. A thermocouple implanted in the base of the tumor provided temperature feedback for laser energy regulation. Three spontaneously occurring canine (two squamous cell carcinoma on the gum, one pigmented melanoma on the hard palate) and one feline tumor (squamous cell carcinoma on the nose) have been treated with the Nd:YAG laser-induced hyperthermia delivered following radiation therapy. The tumor temperature was maintained between 43.2-43.5 degree(s)C for one hour. Nd:YAG hyperthermia allowed efficient delivery of heat to veterinary oral and nasal lesions otherwise impossible to treat with conventional heating techniques.

  10. Recent advances in exploring the neural underpinnings of auditory scene perception

    PubMed Central

    Snyder, Joel S.; Elhilali, Mounya

    2017-01-01

    Studies of auditory scene analysis have traditionally relied on paradigms using artificial sounds—and conventional behavioral techniques—to elucidate how we perceptually segregate auditory objects or streams from each other. In the past few decades, however, there has been growing interest in uncovering the neural underpinnings of auditory segregation using human and animal neuroscience techniques, as well as computational modeling. This largely reflects the growth in the fields of cognitive neuroscience and computational neuroscience and has led to new theories of how the auditory system segregates sounds in complex arrays. The current review focuses on neural and computational studies of auditory scene perception published in the past few years. Following the progress that has been made in these studies, we describe (1) theoretical advances in our understanding of the most well-studied aspects of auditory scene perception, namely segregation of sequential patterns of sounds and concurrently presented sounds; (2) the diversification of topics and paradigms that have been investigated; and (3) how new neuroscience techniques (including invasive neurophysiology in awake humans, genotyping, and brain stimulation) have been used in this field. PMID:28199022

  11. Visualizing a silicon quantum computer

    NASA Astrophysics Data System (ADS)

    Sanders, Barry C.; Hollenberg, Lloyd C. L.; Edmundson, Darran; Edmundson, Andrew

    2008-12-01

    Quantum computation is a fast-growing, multi-disciplinary research field. The purpose of a quantum computer is to execute quantum algorithms that efficiently solve computational problems intractable within the existing paradigm of 'classical' computing built on bits and Boolean gates. While collaboration between computer scientists, physicists, chemists, engineers, mathematicians and others is essential to the project's success, traditional disciplinary boundaries can hinder progress and make communicating the aims of quantum computing and future technologies difficult. We have developed a four minute animation as a tool for representing, understanding and communicating a silicon-based solid-state quantum computer to a variety of audiences, either as a stand-alone animation to be used by expert presenters or embedded into a longer movie as short animated sequences. The paper includes a generally applicable recipe for successful scientific animation production.

  12. Initial Reading through Computer Animation.

    ERIC Educational Resources Information Center

    Geoffrion, Leo D.; Bergeron, R. Daniel

    The Computer Animated Reading Instruction System (CARIS) was developed to introduce reading to children with varied sensory, cognitive, and physical handicaps. CARIS employs an exploratory learning approach which encourages children to experiment with the reading and writing of words and sentences. Brief computer-animated cartoons provide the…

  13. Correlative visualization techniques for multidimensional data

    NASA Technical Reports Server (NTRS)

    Treinish, Lloyd A.; Goettsche, Craig

    1989-01-01

    Critical to the understanding of data is the ability to provide pictorial or visual representation of those data, particularly in support of correlative data analysis. Despite the advancement of visualization techniques for scientific data over the last several years, there are still significant problems in bringing today's hardware and software technology into the hands of the typical scientist. For example, there are other computer science domains outside of computer graphics that are required to make visualization effective such as data management. Well-defined, flexible mechanisms for data access and management must be combined with rendering algorithms, data transformation, etc. to form a generic visualization pipeline. A generalized approach to data visualization is critical for the correlative analysis of distinct, complex, multidimensional data sets in the space and Earth sciences. Different classes of data representation techniques must be used within such a framework, which can range from simple, static two- and three-dimensional line plots to animation, surface rendering, and volumetric imaging. Static examples of actual data analyses will illustrate the importance of an effective pipeline in data visualization system.

  14. Combination of Multi-Agent Systems and Wireless Sensor Networks for the Monitoring of Cattle

    PubMed Central

    Barriuso, Alberto L.; De Paz, Juan F.; Lozano, Álvaro

    2018-01-01

    Precision breeding techniques have been widely used to optimize expenses and increase livestock yields. Notwithstanding, the joint use of heterogeneous sensors and artificial intelligence techniques for the simultaneous analysis or detection of different problems that cattle may present has not been addressed. This study arises from the necessity to obtain a technological tool that faces this state of the art limitation. As novelty, this work presents a multi-agent architecture based on virtual organizations which allows to deploy a new embedded agent model in computationally limited autonomous sensors, making use of the Platform for Automatic coNstruction of orGanizations of intElligent Agents (PANGEA). To validate the proposed platform, different studies have been performed, where parameters specific to each animal are studied, such as physical activity, temperature, estrus cycle state and the moment in which the animal goes into labor. In addition, a set of applications that allow farmers to remotely monitor the livestock have been developed. PMID:29301310

  15. Combination of Multi-Agent Systems and Wireless Sensor Networks for the Monitoring of Cattle.

    PubMed

    Barriuso, Alberto L; Villarrubia González, Gabriel; De Paz, Juan F; Lozano, Álvaro; Bajo, Javier

    2018-01-02

    Precision breeding techniques have been widely used to optimize expenses and increase livestock yields. Notwithstanding, the joint use of heterogeneous sensors and artificial intelligence techniques for the simultaneous analysis or detection of different problems that cattle may present has not been addressed. This study arises from the necessity to obtain a technological tool that faces this state of the art limitation. As novelty, this work presents a multi-agent architecture based on virtual organizations which allows to deploy a new embedded agent model in computationally limited autonomous sensors, making use of the Platform for Automatic coNstruction of orGanizations of intElligent Agents (PANGEA). To validate the proposed platform, different studies have been performed, where parameters specific to each animal are studied, such as physical activity, temperature, estrus cycle state and the moment in which the animal goes into labor. In addition, a set of applications that allow farmers to remotely monitor the livestock have been developed.

  16. Computational imaging of sperm locomotion.

    PubMed

    Daloglu, Mustafa Ugur; Ozcan, Aydogan

    2017-08-01

    Not only essential for scientific research, but also in the analysis of male fertility and for animal husbandry, sperm tracking and characterization techniques have been greatly benefiting from computational imaging. Digital image sensors, in combination with optical microscopy tools and powerful computers, have enabled the use of advanced detection and tracking algorithms that automatically map sperm trajectories and calculate various motility parameters across large data sets. Computational techniques are driving the field even further, facilitating the development of unconventional sperm imaging and tracking methods that do not rely on standard optical microscopes and objective lenses, which limit the field of view and volume of the semen sample that can be imaged. As an example, a holographic on-chip sperm imaging platform, only composed of a light-emitting diode and an opto-electronic image sensor, has emerged as a high-throughput, low-cost and portable alternative to lens-based traditional sperm imaging and tracking methods. In this approach, the sample is placed very close to the image sensor chip, which captures lensfree holograms generated by the interference of the background illumination with the light scattered from sperm cells. These holographic patterns are then digitally processed to extract both the amplitude and phase information of the spermatozoa, effectively replacing the microscope objective lens with computation. This platform has further enabled high-throughput 3D imaging of spermatozoa with submicron 3D positioning accuracy in large sample volumes, revealing various rare locomotion patterns. We believe that computational chip-scale sperm imaging and 3D tracking techniques will find numerous opportunities in both sperm related research and commercial applications. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Computer program for maintenance of individual animal records in a nonhuman primate colony.

    PubMed

    Kuehl, T J; Dukelow, W R

    1977-06-01

    A computer program was developed to maintain animal records for a nonhuman primate colony used in research. The program was designed for use with an existing laboratory notebook system. The computer program identifies each notebook entry containing information about each animal and keeps other information, including animal name, sex, species, projects to which the animal is assigned, location of the animal, dates and body weights. The program is interactive and easy to use. Information stored in the system is readily accessible to all investigators using the animals. In 17 months of use, 1382 master file entries were developed for 113 monkeys.

  18. Temporal and spectral imaging with micro-CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, Samuel M.; Johnson, G. Allan; Badea, Cristian T.

    2012-08-15

    Purpose: Micro-CT is widely used for small animal imaging in preclinical studies of cardiopulmonary disease, but further development is needed to improve spatial resolution, temporal resolution, and material contrast. We present a technique for visualizing the changing distribution of iodine in the cardiac cycle with dual source micro-CT. Methods: The approach entails a retrospectively gated dual energy scan with optimized filters and voltages, and a series of computational operations to reconstruct the data. Projection interpolation and five-dimensional bilateral filtration (three spatial dimensions + time + energy) are used to reduce noise and artifacts associated with retrospective gating. We reconstruct separatemore » volumes corresponding to different cardiac phases and apply a linear transformation to decompose these volumes into components representing concentrations of water and iodine. Since the resulting material images are still compromised by noise, we improve their quality in an iterative process that minimizes the discrepancy between the original acquired projections and the projections predicted by the reconstructed volumes. The values in the voxels of each of the reconstructed volumes represent the coefficients of linear combinations of basis functions over time and energy. We have implemented the reconstruction algorithm on a graphics processing unit (GPU) with CUDA. We tested the utility of the technique in simulations and applied the technique in an in vivo scan of a C57BL/6 mouse injected with blood pool contrast agent at a dose of 0.01 ml/g body weight. Postreconstruction, at each cardiac phase in the iodine images, we segmented the left ventricle and computed its volume. Using the maximum and minimum volumes in the left ventricle, we calculated the stroke volume, the ejection fraction, and the cardiac output. Results: Our proposed method produces five-dimensional volumetric images that distinguish different materials at different points in time, and can be used to segment regions containing iodinated blood and compute measures of cardiac function. Conclusions: We believe this combined spectral and temporal imaging technique will be useful for future studies of cardiopulmonary disease in small animals.« less

  19. A Reward-Based Behavioral Platform to Measure Neural Activity during Head-Fixed Behavior.

    PubMed

    Micallef, Andrew H; Takahashi, Naoya; Larkum, Matthew E; Palmer, Lucy M

    2017-01-01

    Understanding the neural computations that contribute to behavior requires recording from neurons while an animal is behaving. This is not an easy task as most subcellular recording techniques require absolute head stability. The Go/No-Go sensory task is a powerful decision-driven task that enables an animal to report a binary decision during head-fixation. Here we discuss how to set up an Ardunio and Python based platform system to control a Go/No-Go sensory behavior paradigm. Using an Arduino micro-controller and Python-based custom written program, a reward can be delivered to the animal depending on the decision reported. We discuss the various components required to build the behavioral apparatus that can control and report such a sensory stimulus paradigm. This system enables the end user to control the behavioral testing in real-time and therefore it provides a strong custom-made platform for probing the neural basis of behavior.

  20. Role of Animal Models in Coronary Stenting.

    PubMed

    Iqbal, Javaid; Chamberlain, Janet; Francis, Sheila E; Gunn, Julian

    2016-02-01

    Coronary angioplasty initially employed balloon dilatation only. This technique revolutionized the treatment of coronary artery disease, although outcomes were compromised by acute vessel closure, late constrictive remodeling, and restenosis due to neointimal proliferation. These processes were studied in animal models, which contributed to understanding the biology of endovascular arterial injury. Coronary stents overcome acute recoil, with improvements in the design and metallurgy since then, leading to the development of drug-eluting stents and bioresorbable scaffolds. These devices now undergo computer modeling and benchtop and animal testing before evaluation in clinical trials. Animal models, including rabbit, sheep, dog and pig are available, all with individual benefits and limitations. In smaller mammals, such as mouse and rabbit, the target for stenting is generally the aorta; whereas in larger animals, such as the pig, it is generally the coronary artery. The pig coronary stenting model is a gold-standard for evaluating safety; but insights into biomechanical properties, the biology of stenting, and efficacy in controlling neointimal proliferation can also be gained. Intra-coronary imaging modalities such as intravascular ultrasound and optical coherence tomography allow precise serial evaluation in vivo, and recent developments in genetically modified animal models of atherosclerosis provide realistic test beds for future stents and scaffolds.

  1. Quick, Accurate, Smart: 3D Computer Vision Technology Helps Assessing Confined Animals' Behaviour.

    PubMed

    Barnard, Shanis; Calderara, Simone; Pistocchi, Simone; Cucchiara, Rita; Podaliri-Vulpiani, Michele; Messori, Stefano; Ferri, Nicola

    2016-01-01

    Mankind directly controls the environment and lifestyles of several domestic species for purposes ranging from production and research to conservation and companionship. These environments and lifestyles may not offer these animals the best quality of life. Behaviour is a direct reflection of how the animal is coping with its environment. Behavioural indicators are thus among the preferred parameters to assess welfare. However, behavioural recording (usually from video) can be very time consuming and the accuracy and reliability of the output rely on the experience and background of the observers. The outburst of new video technology and computer image processing gives the basis for promising solutions. In this pilot study, we present a new prototype software able to automatically infer the behaviour of dogs housed in kennels from 3D visual data and through structured machine learning frameworks. Depth information acquired through 3D features, body part detection and training are the key elements that allow the machine to recognise postures, trajectories inside the kennel and patterns of movement that can be later labelled at convenience. The main innovation of the software is its ability to automatically cluster frequently observed temporal patterns of movement without any pre-set ethogram. Conversely, when common patterns are defined through training, a deviation from normal behaviour in time or between individuals could be assessed. The software accuracy in correctly detecting the dogs' behaviour was checked through a validation process. An automatic behaviour recognition system, independent from human subjectivity, could add scientific knowledge on animals' quality of life in confinement as well as saving time and resources. This 3D framework was designed to be invariant to the dog's shape and size and could be extended to farm, laboratory and zoo quadrupeds in artificial housing. The computer vision technique applied to this software is innovative in non-human animal behaviour science. Further improvements and validation are needed, and future applications and limitations are discussed.

  2. [Animal experimentation, computer simulation and surgical research].

    PubMed

    Carpentier, Alain

    2009-11-01

    We live in a digital world In medicine, computers are providing new tools for data collection, imaging, and treatment. During research and development of complex technologies and devices such as artificial hearts, computer simulation can provide more reliable information than experimentation on large animals. In these specific settings, animal experimentation should serve more to validate computer models of complex devices than to demonstrate their reliability.

  3. A Primer on High-Throughput Computing for Genomic Selection

    PubMed Central

    Wu, Xiao-Lin; Beissinger, Timothy M.; Bauck, Stewart; Woodward, Brent; Rosa, Guilherme J. M.; Weigel, Kent A.; Gatti, Natalia de Leon; Gianola, Daniel

    2011-01-01

    High-throughput computing (HTC) uses computer clusters to solve advanced computational problems, with the goal of accomplishing high-throughput over relatively long periods of time. In genomic selection, for example, a set of markers covering the entire genome is used to train a model based on known data, and the resulting model is used to predict the genetic merit of selection candidates. Sophisticated models are very computationally demanding and, with several traits to be evaluated sequentially, computing time is long, and output is low. In this paper, we present scenarios and basic principles of how HTC can be used in genomic selection, implemented using various techniques from simple batch processing to pipelining in distributed computer clusters. Various scripting languages, such as shell scripting, Perl, and R, are also very useful to devise pipelines. By pipelining, we can reduce total computing time and consequently increase throughput. In comparison to the traditional data processing pipeline residing on the central processors, performing general-purpose computation on a graphics processing unit provide a new-generation approach to massive parallel computing in genomic selection. While the concept of HTC may still be new to many researchers in animal breeding, plant breeding, and genetics, HTC infrastructures have already been built in many institutions, such as the University of Wisconsin–Madison, which can be leveraged for genomic selection, in terms of central processing unit capacity, network connectivity, storage availability, and middleware connectivity. Exploring existing HTC infrastructures as well as general-purpose computing environments will further expand our capability to meet increasing computing demands posed by unprecedented genomic data that we have today. We anticipate that HTC will impact genomic selection via better statistical models, faster solutions, and more competitive products (e.g., from design of marker panels to realized genetic gain). Eventually, HTC may change our view of data analysis as well as decision-making in the post-genomic era of selection programs in animals and plants, or in the study of complex diseases in humans. PMID:22303303

  4. Sparse coding for flexible, robust 3D facial-expression synthesis.

    PubMed

    Lin, Yuxu; Song, Mingli; Quynh, Dao Thi Phuong; He, Ying; Chen, Chun

    2012-01-01

    Computer animation researchers have been extensively investigating 3D facial-expression synthesis for decades. However, flexible, robust production of realistic 3D facial expressions is still technically challenging. A proposed modeling framework applies sparse coding to synthesize 3D expressive faces, using specified coefficients or expression examples. It also robustly recovers facial expressions from noisy and incomplete data. This approach can synthesize higher-quality expressions in less time than the state-of-the-art techniques.

  5. Nonuniform update for sparse target recovery in fluorescence molecular tomography accelerated by ordered subsets.

    PubMed

    Zhu, Dianwen; Li, Changqing

    2014-12-01

    Fluorescence molecular tomography (FMT) is a promising imaging modality and has been actively studied in the past two decades since it can locate the specific tumor position three-dimensionally in small animals. However, it remains a challenging task to obtain fast, robust and accurate reconstruction of fluorescent probe distribution in small animals due to the large computational burden, the noisy measurement and the ill-posed nature of the inverse problem. In this paper we propose a nonuniform preconditioning method in combination with L (1) regularization and ordered subsets technique (NUMOS) to take care of the different updating needs at different pixels, to enhance sparsity and suppress noise, and to further boost convergence of approximate solutions for fluorescence molecular tomography. Using both simulated data and phantom experiment, we found that the proposed nonuniform updating method outperforms its popular uniform counterpart by obtaining a more localized, less noisy, more accurate image. The computational cost was greatly reduced as well. The ordered subset (OS) technique provided additional 5 times and 3 times speed enhancements for simulation and phantom experiments, respectively, without degrading image qualities. When compared with the popular L (1) algorithms such as iterative soft-thresholding algorithm (ISTA) and Fast iterative soft-thresholding algorithm (FISTA) algorithms, NUMOS also outperforms them by obtaining a better image in much shorter period of time.

  6. Artificial pigs in space: using artificial intelligence and artificial life techniques to design animal housing.

    PubMed

    Stricklin, W R; de Bourcier, P; Zhou, J Z; Gonyou, H W

    1998-10-01

    Computer simulations have been used by us since the early 1970s to gain an understanding of the spacing and movement patterns of confined animals. The work has progressed from the early stages, in which we used randomly positioned points, to current investigations of animats (computer-simulated animals), which show low levels of learning via artificial neural networks. We have determined that 1) pens of equal floor area but of different shape result in different spatial and movement patterns for randomly positioned and moving animats; 2) when group size increases under constant density, freedom of movement approaches an asymptote at approximately six animats; 3) matching the number of animats with the number of corners results in optimal freedom of movement for small groups of animats; and 4) perimeter positioning occurs in groups of animats that maximize their distance to first- and second-nearest neighbors. Recently, we developed animats that move, compete for social dominance, and are motivated to obtain resources (food, resting sites, etc.). We are currently developing an animat that learns its behavior from the spatial and movement data collected on live pigs. The animat model is then used to pretest pen designs, followed by new pig spatial data fed into the animat model, resulting in a new pen design to be tested, and the steps are repeated. We believe that methodologies from artificial-life and artificial intelligence can contribute to the understanding of basic animal behavior principles, as well as to the solving of problems in production agriculture in areas such as animal housing design.

  7. The Roles of Mental Animations and External Animations in Understanding Mechanical Systems

    ERIC Educational Resources Information Center

    Hegarty, Mary; Kriz, Sarah; Cate, Christina

    2003-01-01

    The effects of computer animations and mental animation on people's mental models of a mechanical system are examined. In 3 experiments, students learned how a mechanical system works from various instructional treatments including viewing a static diagram of the machine, predicting motion from static diagrams, viewing computer animations, and…

  8. Computer graphic visualization of orbiter lower surface boundary-layer transition

    NASA Technical Reports Server (NTRS)

    Throckmorton, D. A.; Hartung, L. C.

    1984-01-01

    Computer graphic techniques are applied to the processing of Shuttle Orbiter flight data in order to create a visual presentation of the extent and movement of the boundary-layer transition front over the orbiter lower surface during entry. Flight-measured surface temperature-time histories define the onset and completion of the boundary-layer transition process at any measurement location. The locus of points which define the spatial position of the boundary-layer transition front on the orbiter planform is plotted at each discrete time for which flight data are available. Displaying these images sequentially in real-time results in an animated simulation of the in-flight boundary-layer transition process.

  9. Computer animation in teaching science: Effectiveness in teaching retrograde motion to 9th graders

    NASA Astrophysics Data System (ADS)

    Klenk, Kristin Elmstrom

    The purpose of this study is to determine whether an instructional approach which includes computer animations is more effective than a traditional textbook-only approach in helping ninth grade students learn an abstract concept, in this case planetary retrograde motion. This investigation uses a quasi-experimental design with convenient sampling. The independent variable is the type of instruction provided to students; traditional text-based instruction (control group) compared to traditional instruction which also includes the viewing of 4 computer animations (treatment). Two conditions of the treatment examine the relative advantage of the order of the presentation of the animations and text-based instruction, as well as the quality of understanding and the retention of the learning over time. The dependent variable is student achievement which is measured using an instrument designed specifically for this study. Comparison of the independent variable to the dependent variable based upon the results from a Repeated Measure Factorial Design in ANOVA indicates that the treatment is an effective instructional technique. The posttest1 mean score of the treatment groups was significantly greater than the posttest1 mean score of the control group. Further posthoc tests indicate that there was no significant difference between the two treatments (1 and 2); read/animation versus animation/read. However, there was a significant difference in the mean score depending on the pathway, students enrolled in the A pathway achieved a significantly higher mean score after the treatment than students in the B pathway. The A pathway (n = 185) represent the larger heterogeneous population of students as compared to the B pathway (n=16) which includes students with lower cognitive abilities and special needs. When all of the students are included in the analysis the results indicate that students do not retain their understanding of the concept. However, when the students in the B pathway are removed from the data set the analysis changes, the posttest1 and posttest2 means are not significantly different. Students in the A pathway did retain their understanding of the concept and were able to demonstrate it on the assessment. A detailed item analysis of the multiple choice question suggest that students in the B pathway were much more likely to guess on the multiple choice questions than students in the A pathway who show no evidence of guessing. The outcome of this study suggests that an instructional approach with includes viewing computer animations is an effective strategy for teaching and learning an abstract concept in a ninth grade Earth Science classroom.

  10. The virtual craniofacial patient: 3D jaw modeling and animation.

    PubMed

    Enciso, Reyes; Memon, Ahmed; Fidaleo, Douglas A; Neumann, Ulrich; Mah, James

    2003-01-01

    In this paper, we present new developments in the area of 3D human jaw modeling and animation. CT (Computed Tomography) scans have traditionally been used to evaluate patients with dental implants, assess tumors, cysts, fractures and surgical procedures. More recently this data has been utilized to generate models. Researchers have reported semi-automatic techniques to segment and model the human jaw from CT images and manually segment the jaw from MRI images. Recently opto-electronic and ultrasonic-based systems (JMA from Zebris) have been developed to record mandibular position and movement. In this research project we introduce: (1) automatic patient-specific three-dimensional jaw modeling from CT data and (2) three-dimensional jaw motion simulation using jaw tracking data from the JMA system (Zebris).

  11. Computer vision, camouflage breaking and countershading

    PubMed Central

    Tankus, Ariel; Yeshurun, Yehezkel

    2008-01-01

    Camouflage is frequently used in the animal kingdom in order to conceal oneself from visual detection or surveillance. Many camouflage techniques are based on masking the familiar contours and texture of the subject by superposition of multiple edges on top of it. This work presents an operator, Darg, for the detection of three-dimensional smooth convex (or, equivalently, concave) objects. It can be used to detect curved objects on a relatively flat background, regardless of image edges, contours and texture. We show that a typical camouflage found in some animal species seems to be a ‘countermeasure’ taken against detection that might be based on our method. Detection by Darg is shown to be very robust, from both theoretical considerations and practical examples of real-life images. PMID:18990669

  12. Developing Educational Computer Animation Based on Human Personality Types

    ERIC Educational Resources Information Center

    Musa, Sajid; Ziatdinov, Rushan; Sozcu, Omer Faruk; Griffiths, Carol

    2015-01-01

    Computer animation in the past decade has become one of the most noticeable features of technology-based learning environments. By its definition, it refers to simulated motion pictures showing movement of drawn objects, and is often defined as the art in movement. Its educational application known as educational computer animation is considered…

  13. Using a Computer Animation to Teach High School Molecular Biology

    ERIC Educational Resources Information Center

    Rotbain, Yosi; Marbach-Ad, Gili; Stavy, Ruth

    2008-01-01

    We present an active way to use a computer animation in secondary molecular genetics class. For this purpose we developed an activity booklet that helps students to work interactively with a computer animation which deals with abstract concepts and processes in molecular biology. The achievements of the experimental group were compared with those…

  14. 3D animation of facial plastic surgery based on computer graphics

    NASA Astrophysics Data System (ADS)

    Zhang, Zonghua; Zhao, Yan

    2013-12-01

    More and more people, especial women, are getting desired to be more beautiful than ever. To some extent, it becomes true because the plastic surgery of face was capable in the early 20th and even earlier as doctors just dealing with war injures of face. However, the effect of post-operation is not always satisfying since no animation could be seen by the patients beforehand. In this paper, by combining plastic surgery of face and computer graphics, a novel method of simulated appearance of post-operation will be given to demonstrate the modified face from different viewpoints. The 3D human face data are obtained by using 3D fringe pattern imaging systems and CT imaging systems and then converted into STL (STereo Lithography) file format. STL file is made up of small 3D triangular primitives. The triangular mesh can be reconstructed by using hash function. Top triangular meshes in depth out of numbers of triangles must be picked up by ray-casting technique. Mesh deformation is based on the front triangular mesh in the process of simulation, which deforms interest area instead of control points. Experiments on face model show that the proposed 3D animation facial plastic surgery can effectively demonstrate the simulated appearance of post-operation.

  15. Collaborative Approach in the Development of High‐Performance Brain–Computer Interfaces for a Neuroprosthetic Arm: Translation from Animal Models to Human Control

    PubMed Central

    Collinger, Jennifer L.; Kryger, Michael A.; Barbara, Richard; Betler, Timothy; Bowsher, Kristen; Brown, Elke H. P.; Clanton, Samuel T.; Degenhart, Alan D.; Foldes, Stephen T.; Gaunt, Robert A.; Gyulai, Ferenc E.; Harchick, Elizabeth A.; Harrington, Deborah; Helder, John B.; Hemmes, Timothy; Johannes, Matthew S.; Katyal, Kapil D.; Ling, Geoffrey S. F.; McMorland, Angus J. C.; Palko, Karina; Para, Matthew P.; Scheuermann, Janet; Schwartz, Andrew B.; Skidmore, Elizabeth R.; Solzbacher, Florian; Srikameswaran, Anita V.; Swanson, Dennis P.; Swetz, Scott; Tyler‐Kabara, Elizabeth C.; Velliste, Meel; Wang, Wei; Weber, Douglas J.; Wodlinger, Brian

    2013-01-01

    Abstract Our research group recently demonstrated that a person with tetraplegia could use a brain–computer interface (BCI) to control a sophisticated anthropomorphic robotic arm with skill and speed approaching that of an able‐bodied person. This multiyear study exemplifies important principles in translating research from foundational theory and animal experiments into a clinical study. We present a roadmap that may serve as an example for other areas of clinical device research as well as an update on study results. Prior to conducting a multiyear clinical trial, years of animal research preceded BCI testing in an epilepsy monitoring unit, and then in a short‐term (28 days) clinical investigation. Scientists and engineers developed the necessary robotic and surgical hardware, software environment, data analysis techniques, and training paradigms. Coordination among researchers, funding institutes, and regulatory bodies ensured that the study would provide valuable scientific information in a safe environment for the study participant. Finally, clinicians from neurosurgery, anesthesiology, physiatry, psychology, and occupational therapy all worked in a multidisciplinary team along with the other researchers to conduct a multiyear BCI clinical study. This teamwork and coordination can be used as a model for others attempting to translate basic science into real‐world clinical situations. PMID:24528900

  16. Computer-Generated, Three-Dimensional Character Animation.

    ERIC Educational Resources Information Center

    Van Baerle, Susan Lynn

    This master's thesis begins by discussing the differences between 3-D computer animation of solid three-dimensional, or monolithic, objects, and the animation of characters, i.e., collections of movable parts with soft pliable surfaces. Principles from two-dimensional character animation that can be transferred to three-dimensional character…

  17. The retrobulbar sinus is superior to the lateral tail vein for the injection of contrast media in small animal cardiac imaging.

    PubMed

    Socher, M; Kuntz, J; Sawall, S; Bartling, S; Kachelrieß, M

    2014-04-01

    Cardiac perfusion studies using computed tomography are a common tool in clinical practice. Recent technical advances and the availability of dedicated small animal scanners allow the transfer of these techniques to the preclinical sector in general and to mouse models of cardiac diseases in particular. This necessitates new requirements for contrast injection techniques as a rapid transport of contrast media from the intravenous access to the animal heart. Clinical contrast agents containing high iodine concentrations are used within small animal studies although they exhibit a high viscosity which might limit their transport within the vasculature. The authors provide a comparison of the transport of contrast media following an injection into the lateral tail vein and an injection into the retrobulbar sinus and discuss the anatomy involved. The temporal evolution of a contrast bolus and its in vivo distribution is visualized. It is demonstrated that injecting contrast agents into the lateral tail vein of mice results in a retrograde blood flow to the liver veins and therefore does not deliver a detectable contrast bolus to the heart, and thus it cannot be used for cardiac perfusion studies. By contrast, boli injected into the retrobulbar sinus are rapidly transported to the heart and provide ventricular contrast enabling perfusion studies similar to those in human patients. The results demonstrate that an injection into the retrobulbar sinus is superior to an injection into the lateral tail vein for the delivery of contrast boli to the animal heart, while all drawbacks of an injection into the lateral tail vein are overcome.

  18. Reduction in radiation dose with reconstruction technique in the brain perfusion CT

    NASA Astrophysics Data System (ADS)

    Kim, H. J.; Lee, H. K.; Song, H.; Ju, M. S.; Dong, K. R.; Chung, W. K.; Cho, M. S.; Cho, J. H.

    2011-12-01

    The principal objective of this study was to verify the utility of the reconstruction imaging technique in the brain perfusion computed tomography (PCT) scan by assessing reductions in the radiation dose and analyzing the generated images. The setting used for image acquisition had a detector coverage of 40 mm, a helical thickness of 0.625 mm, a helical shuttle mode scan type and a rotation time of 0.5 s as the image parameters used for the brain PCT scan. Additionally, a phantom experiment and an animal experiment were carried out. In the phantom and animal experiments, noise was measured in the scanning with the tube voltage fixed at 80 kVp (kilovolt peak) and the level of the adaptive statistical iterative reconstruction (ASIR) was changed from 0% to 100% at 10% intervals. The standard deviation of the CT coefficient was measured three times to calculate the mean value. In the phantom and animal experiments, the absorbed dose was measured 10 times under the same conditions as the ones for noise measurement before the mean value was calculated. In the animal experiment, pencil-type and CT-dedicated ionization chambers were inserted into the central portion of pig heads for measurement. In the phantom study, as the level of the ASIR changed from 0% to 100% under identical scanning conditions, the noise value and dose were proportionally reduced. In our animal experiment, the noise value was lowest when the ASIR level was 50%, unlike in the phantom study. The dose was reduced as in the phantom study.

  19. Reinforcement learning and decision making in monkeys during a competitive game.

    PubMed

    Lee, Daeyeol; Conroy, Michelle L; McGreevy, Benjamin P; Barraclough, Dominic J

    2004-12-01

    Animals living in a dynamic environment must adjust their decision-making strategies through experience. To gain insights into the neural basis of such adaptive decision-making processes, we trained monkeys to play a competitive game against a computer in an oculomotor free-choice task. The animal selected one of two visual targets in each trial and was rewarded only when it selected the same target as the computer opponent. To determine how the animal's decision-making strategy can be affected by the opponent's strategy, the computer opponent was programmed with three different algorithms that exploited different aspects of the animal's choice and reward history. When the computer selected its targets randomly with equal probabilities, animals selected one of the targets more often, violating the prediction of probability matching, and their choices were systematically influenced by the choice history of the two players. When the computer exploited only the animal's choice history but not its reward history, animal's choice became more independent of its own choice history but was still related to the choice history of the opponent. This bias was substantially reduced, but not completely eliminated, when the computer used the choice history of both players in making its predictions. These biases were consistent with the predictions of reinforcement learning, suggesting that the animals sought optimal decision-making strategies using reinforcement learning algorithms.

  20. Herpetological Monitoring Using a Pitfall Trapping Design in Southern California

    USGS Publications Warehouse

    Fisher, Robert; Stokes, Drew; Rochester, Carlton; Brehme, Cheryl; Hathaway, Stacie; Case, Ted

    2008-01-01

    The steps necessary to conduct a pitfall trapping survey for small terrestrial vertebrates are presented. Descriptions of the materials needed and the methods to build trapping equipment from raw materials are discussed. Recommended data collection techniques are given along with suggested data fields. Animal specimen processing procedures, including toe- and scale-clipping, are described for lizards, snakes, frogs, and salamanders. Methods are presented for conducting vegetation surveys that can be used to classify the environment associated with each pitfall trap array. Techniques for data storage and presentation are given based on commonly use computer applications. As with any study, much consideration should be given to the study design and methods before beginning any data collection effort.

  1. An Assessment of the Impact of a Collaborative Didactic Approach and Students' Background in Teaching Computer Animation

    ERIC Educational Resources Information Center

    Sanna, Andrea; Valpreda, Fabrizio

    2017-01-01

    The purpose of this study was to compare different students' backgrounds and two different didactic methodologies to profitably teach computer animation in Italian schools of design and engineering. Teachers and instructors have long been engaged in discussions to define effective curricula for teaching computer animation. Various…

  2. Diffusible iodine-based contrast-enhanced computed tomography (diceCT): an emerging tool for rapid, high-resolution, 3-D imaging of metazoan soft tissues.

    PubMed

    Gignac, Paul M; Kley, Nathan J; Clarke, Julia A; Colbert, Matthew W; Morhardt, Ashley C; Cerio, Donald; Cost, Ian N; Cox, Philip G; Daza, Juan D; Early, Catherine M; Echols, M Scott; Henkelman, R Mark; Herdina, A Nele; Holliday, Casey M; Li, Zhiheng; Mahlow, Kristin; Merchant, Samer; Müller, Johannes; Orsbon, Courtney P; Paluh, Daniel J; Thies, Monte L; Tsai, Henry P; Witmer, Lawrence M

    2016-06-01

    Morphologists have historically had to rely on destructive procedures to visualize the three-dimensional (3-D) anatomy of animals. More recently, however, non-destructive techniques have come to the forefront. These include X-ray computed tomography (CT), which has been used most commonly to examine the mineralized, hard-tissue anatomy of living and fossil metazoans. One relatively new and potentially transformative aspect of current CT-based research is the use of chemical agents to render visible, and differentiate between, soft-tissue structures in X-ray images. Specifically, iodine has emerged as one of the most widely used of these contrast agents among animal morphologists due to its ease of handling, cost effectiveness, and differential affinities for major types of soft tissues. The rapid adoption of iodine-based contrast agents has resulted in a proliferation of distinct specimen preparations and scanning parameter choices, as well as an increasing variety of imaging hardware and software preferences. Here we provide a critical review of the recent contributions to iodine-based, contrast-enhanced CT research to enable researchers just beginning to employ contrast enhancement to make sense of this complex new landscape of methodologies. We provide a detailed summary of recent case studies, assess factors that govern success at each step of the specimen storage, preparation, and imaging processes, and make recommendations for standardizing both techniques and reporting practices. Finally, we discuss potential cutting-edge applications of diffusible iodine-based contrast-enhanced computed tomography (diceCT) and the issues that must still be overcome to facilitate the broader adoption of diceCT going forward. © 2016 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.

  3. How Does Viewing One Computer Animation Affect Students' Interpretations of Another Animation Depicting the Same Oxidation-Reduction Reaction?

    ERIC Educational Resources Information Center

    Rosenthal, Deborah P.; Sanger, Michael J.

    2013-01-01

    Two groups of students were shown unnarrated versions of two different particulate-level computer animations of varying complexity depicting the oxidation-reduction reaction of aqueous silver nitrate and solid copper metal; one group saw the more simplified animation first and the more complex animation second while the other group saw these…

  4. Electromagnetic Model Reliably Predicts Radar Scattering Characteristics of Airborne Organisms

    NASA Astrophysics Data System (ADS)

    Mirkovic, Djordje; Stepanian, Phillip M.; Kelly, Jeffrey F.; Chilson, Phillip B.

    2016-10-01

    The radar scattering characteristics of aerial animals are typically obtained from controlled laboratory measurements of a freshly harvested specimen. These measurements are tedious to perform, difficult to replicate, and typically yield only a small subset of the full azimuthal, elevational, and polarimetric radio scattering data. As an alternative, biological applications of radar often assume that the radar cross sections of flying animals are isotropic, since sophisticated computer models are required to estimate the 3D scattering properties of objects having complex shapes. Using the method of moments implemented in the WIPL-D software package, we show for the first time that such electromagnetic modeling techniques (typically applied to man-made objects) can accurately predict organismal radio scattering characteristics from an anatomical model: here the Brazilian free-tailed bat (Tadarida brasiliensis). The simulated scattering properties of the bat agree with controlled measurements and radar observations made during a field study of bats in flight. This numerical technique can produce the full angular set of quantitative polarimetric scattering characteristics, while eliminating many practical difficulties associated with physical measurements. Such a modeling framework can be applied for bird, bat, and insect species, and will help drive a shift in radar biology from a largely qualitative and phenomenological science toward quantitative estimation of animal densities and taxonomic identification.

  5. Electromagnetic Model Reliably Predicts Radar Scattering Characteristics of Airborne Organisms

    PubMed Central

    Mirkovic, Djordje; Stepanian, Phillip M.; Kelly, Jeffrey F.; Chilson, Phillip B.

    2016-01-01

    The radar scattering characteristics of aerial animals are typically obtained from controlled laboratory measurements of a freshly harvested specimen. These measurements are tedious to perform, difficult to replicate, and typically yield only a small subset of the full azimuthal, elevational, and polarimetric radio scattering data. As an alternative, biological applications of radar often assume that the radar cross sections of flying animals are isotropic, since sophisticated computer models are required to estimate the 3D scattering properties of objects having complex shapes. Using the method of moments implemented in the WIPL-D software package, we show for the first time that such electromagnetic modeling techniques (typically applied to man-made objects) can accurately predict organismal radio scattering characteristics from an anatomical model: here the Brazilian free-tailed bat (Tadarida brasiliensis). The simulated scattering properties of the bat agree with controlled measurements and radar observations made during a field study of bats in flight. This numerical technique can produce the full angular set of quantitative polarimetric scattering characteristics, while eliminating many practical difficulties associated with physical measurements. Such a modeling framework can be applied for bird, bat, and insect species, and will help drive a shift in radar biology from a largely qualitative and phenomenological science toward quantitative estimation of animal densities and taxonomic identification. PMID:27762292

  6. Electromagnetic Model Reliably Predicts Radar Scattering Characteristics of Airborne Organisms.

    PubMed

    Mirkovic, Djordje; Stepanian, Phillip M; Kelly, Jeffrey F; Chilson, Phillip B

    2016-10-20

    The radar scattering characteristics of aerial animals are typically obtained from controlled laboratory measurements of a freshly harvested specimen. These measurements are tedious to perform, difficult to replicate, and typically yield only a small subset of the full azimuthal, elevational, and polarimetric radio scattering data. As an alternative, biological applications of radar often assume that the radar cross sections of flying animals are isotropic, since sophisticated computer models are required to estimate the 3D scattering properties of objects having complex shapes. Using the method of moments implemented in the WIPL-D software package, we show for the first time that such electromagnetic modeling techniques (typically applied to man-made objects) can accurately predict organismal radio scattering characteristics from an anatomical model: here the Brazilian free-tailed bat (Tadarida brasiliensis). The simulated scattering properties of the bat agree with controlled measurements and radar observations made during a field study of bats in flight. This numerical technique can produce the full angular set of quantitative polarimetric scattering characteristics, while eliminating many practical difficulties associated with physical measurements. Such a modeling framework can be applied for bird, bat, and insect species, and will help drive a shift in radar biology from a largely qualitative and phenomenological science toward quantitative estimation of animal densities and taxonomic identification.

  7. Dry coupling for whole-body small-animal photoacoustic computed tomography

    NASA Astrophysics Data System (ADS)

    Yeh, Chenghung; Li, Lei; Zhu, Liren; Xia, Jun; Li, Chiye; Chen, Wanyi; Garcia-Uribe, Alejandro; Maslov, Konstantin I.; Wang, Lihong V.

    2017-04-01

    We have enhanced photoacoustic computed tomography with dry acoustic coupling that eliminates water immersion anxiety and wrinkling of the animal and facilitates incorporating complementary modalities and procedures. The dry acoustic coupler is made of a tubular elastic membrane enclosed by a closed transparent water tank. The tubular membrane ensures water-free contact with the animal, and the closed water tank allows pressurization for animal stabilization. The dry coupler was tested using a whole-body small-animal ring-shaped photoacoustic computed tomography system. Dry coupling was found to provide image quality comparable to that of conventional water coupling.

  8. Titration Techniques

    NASA Astrophysics Data System (ADS)

    Jacobsen, Jerrold J.; Houston Jetzer, Kelly; Patani, Néha; Zimmerman, John; Zweerink, Gerald

    1995-07-01

    Significant attention is paid to the proper technique for reading a meniscus. Video shows meniscus-viewing techniques for colorless and dark liquids and the consequences of not reading a meniscus at eye level. Lessons are provided on approaching the end point, focusing on end point colors produced via different commonly used indicators. The concept of a titration curve is illustrated by means of a pH meter. Carefully recorded images of the entire range of meniscus values in a buret, pipet, and graduated cylinder are included so that you can show your students, in lecture or pre-lab discussion, any meniscus and discuss how to read the buret properly. These buret meniscus values are very carefully recorded at the rate of one video frame per hundredth of a milliliter, so that an image showing any given meniscus value can be obtained. These images can be easily incorporated into a computer-based multimedia environment for testing or meniscus-reading exercises. Two of the authors have used this technique and found the exercise to be very well received by their students. Video on side two shows nearly 100 "bloopers", demonstrating both the right way and wrong ways to do tasks associated with titration. This material can be used in a variety of situations: to show students the correct way to do something; to test students by asking them "What is this person doing wrong?"; or to develop multimedia, computer-based lessons. The contents of Titration Techniques are listed below: Side 1 Titration: what it is. A simple titration; Acid-base titration animation; A brief redox titration; Redox titration animation; A complete acid-base titration. Titration techniques. Hand technique variations; Stopcock; Using a buret to measure liquid volumes; Wait before reading meniscus; Dirty and clean burets; Read meniscus at eye level (see Fig. 1); Meniscus viewing techniques--light colored liquids; Meniscus viewing techniques--dark liquids; Using a magnetic stirrer; Rough titration; Significant figures; Approaching the end point; End point colors; Titration with a pH meter; Titration curves; Colors of indicators. Meniscus values. Buret meniscus values; Pipet meniscus values; Graduated cylinder meniscus values. Side 2"Bloopers". Introducing the people; Titration animation; Inspecting the buret; Rinsing the buret with water; Preparing a solid sample; Obtaining a liquid sample; Delivering a liquid sample with a Mohr pipet; Pipetting a liquid sample with a Mohr pipet; Rinsing the Mohr pipet with sample; Using the Mohr pipet to transfer sample; Delivering a liquid sample with a volumetric pipet; Pipetting a liquid sample with a volumetric pipet; Rinsing the volumetric pipet with sample; Using the volumetric pipet to transfer sample; Obtaining the titrant; Rinsing the buret with titrant; Filling the buret with titrant; Adding the indicator; The initial reading; Beginning the titration; Delivering titrant; The final reading. Figure 3. Near the end point a single drop of titrant can cause a lasting color change.

  9. Applying Strategic Visualization(Registered Trademark) to Lunar and Planetary Mission Design

    NASA Technical Reports Server (NTRS)

    Frassanito, John R.; Cooke, D. R.

    2002-01-01

    NASA teams, such as the NASA Exploration Team (NEXT), utilize advanced computational visualization processes to develop mission designs and architectures for lunar and planetary missions. One such process, Strategic Visualization (trademark), is a tool used extensively to help mission designers visualize various design alternatives and present them to other participants of their team. The participants, which may include NASA, industry, and the academic community, are distributed within a virtual network. Consequently, computer animation and other digital techniques provide an efficient means to communicate top-level technical information among team members. Today,Strategic Visualization(trademark) is used extensively both in the mission design process within the technical community, and to communicate the value of space exploration to the general public. Movies and digital images have been generated and shown on nationally broadcast television and the Internet, as well as in magazines and digital media. In our presentation will show excerpts of a computer-generated animation depicting the reference Earth/Moon L1 Libration Point Gateway architecture. The Gateway serves as a staging corridor for human expeditions to the lunar poles and other surface locations. Also shown are crew transfer systems and current reference lunar excursion vehicles as well as the Human and robotic construction of an inflatable telescope array for deployment to the Sun/Earth Libration Point.

  10. Applications of computer-graphics animation for motion-perception research

    NASA Technical Reports Server (NTRS)

    Proffitt, D. R.; Kaiser, M. K.

    1986-01-01

    The advantages and limitations of using computer animated stimuli in studying motion perception are presented and discussed. Most current programs of motion perception research could not be pursued without the use of computer graphics animation. Computer generated displays afford latitudes of freedom and control that are almost impossible to attain through conventional methods. There are, however, limitations to this presentational medium. At present, computer generated displays present simplified approximations of the dynamics in natural events. Very little is known about how the differences between natural events and computer simulations influence perceptual processing. In practice, the differences are assumed to be irrelevant to the questions under study, and that findings with computer generated stimuli will generalize to natural events.

  11. Leatherbacks swimming in silico: modeling and verifying their momentum and heat balance using computational fluid dynamics.

    PubMed

    Dudley, Peter N; Bonazza, Riccardo; Jones, T Todd; Wyneken, Jeanette; Porter, Warren P

    2014-01-01

    As global temperatures increase throughout the coming decades, species ranges will shift. New combinations of abiotic conditions will make predicting these range shifts difficult. Biophysical mechanistic niche modeling places bounds on an animal's niche through analyzing the animal's physical interactions with the environment. Biophysical mechanistic niche modeling is flexible enough to accommodate these new combinations of abiotic conditions. However, this approach is difficult to implement for aquatic species because of complex interactions among thrust, metabolic rate and heat transfer. We use contemporary computational fluid dynamic techniques to overcome these difficulties. We model the complex 3D motion of a swimming neonate and juvenile leatherback sea turtle to find power and heat transfer rates during the stroke. We combine the results from these simulations and a numerical model to accurately predict the core temperature of a swimming leatherback. These results are the first steps in developing a highly accurate mechanistic niche model, which can assists paleontologist in understanding biogeographic shifts as well as aid contemporary species managers about potential range shifts over the coming decades.

  12. High-resolution CT assessment of the pediatric airways: structure and function

    NASA Astrophysics Data System (ADS)

    Kramer, Sandra S.; Hoffman, Eric A.; Amirav, Israel

    1994-05-01

    The airway has always been a central focus for respiratory pathology in infants and children. Imaging of the larynx, trachea, and the central bronchi can be readily accomplished by radiographic or conventional CT techniques. Newer high resolution CT (HRCT) techniques have extended our view of the bronchi peripherally to the limits of scanner resolution, i.e., to bronchial generations 7 - 9, and rapid volumetric CT data acquisitions have made it possible to follow the same lung anatomic level through the rapidly occurring changes in a series of experimental protocols. These techniques together with a custom designed computer software program for image display and analysis have enabled us to objectively study changes in airway caliber and lung density that occurred in an animal mode of airway reactivity and thereby relate structure with function in the airways.

  13. Understanding how animal groups achieve coordinated movement

    PubMed Central

    Herbert-Read, J. E.

    2016-01-01

    ABSTRACT Moving animal groups display remarkable feats of coordination. This coordination is largely achieved when individuals adjust their movement in response to their neighbours' movements and positions. Recent advancements in automated tracking technologies, including computer vision and GPS, now allow researchers to gather large amounts of data on the movements and positions of individuals in groups. Furthermore, analytical techniques from fields such as statistical physics now allow us to identify the precise interaction rules used by animals on the move. These interaction rules differ not only between species, but also between individuals in the same group. These differences have wide-ranging implications, affecting how groups make collective decisions and driving the evolution of collective motion. Here, I describe how trajectory data can be used to infer how animals interact in moving groups. I give examples of the similarities and differences in the spatial and directional organisations of animal groups between species, and discuss the rules that animals use to achieve this organisation. I then explore how groups of the same species can exhibit different structures, and ask whether this results from individuals adapting their interaction rules. I then examine how the interaction rules between individuals in the same groups can also differ, and discuss how this can affect ecological and evolutionary processes. Finally, I suggest areas of future research. PMID:27707862

  14. The use of computed tomography for assessment of the swim bladder in koi carp (Cyprinus carpio).

    PubMed

    Pees, Michael; Pees, Kathrin; Kiefer, Ingmar

    2010-01-01

    Seven normal koi (Cyprinus carpio) and seven koi with negative buoyancy were examined using computed tomography (CT) to assess the swim bladder. The volume of the swim bladder was calculated in all animals. In the healthy koi there was a statistical correlation (r = 0.996) between body mass and swim bladder volume with volume (ml) being related to body mass according to the formula 4.9 +/- 0.054 x BM (g). In all koi with buoyancy problems, the gas volume of the swim bladder was reduced. Additionally, fluid was found within the swim bladder in three of the abnormal koi. CT proved to be a quick noninvasive technique for the examination of the swim bladder in koi.

  15. Luggage and shipped goods.

    PubMed

    Vogel, H; Haller, D

    2007-08-01

    Control of luggage and shipped goods are frequently carried out. The possibilities of X-ray technology shall be demonstrated. There are different imaging techniques. The main concepts are transmission imaging, backscatter imaging, computed tomography, and dual energy imaging and the combination of different methods The images come from manufacturers and personal collections. The search concerns mainly, weapons, explosives, and drugs; furthermore animals, and stolen goods, Special problems offer the control of letters and the detection of Improvised Explosive Devices (IED). One has to expect that controls will increase and that imaging with X-rays will have their part. Pattern recognition software will be used for analysis enforced by economy and by demand for higher efficiency - man and computer will produce more security than man alone.

  16. An introduction to electronic learning and its use to address challenges in surgical training.

    PubMed

    Baran, Szczepan W; Johnson, Elizabeth J; Kehler, James

    2009-06-01

    The animal research community faces a shortage of surgical training opportunities along with an increasing demand for expertise in surgical techniques. One possible means of overcoming this challenge is the use of computer-based or electronic learning (e-learning) to disseminate material to a broad range of animal users. E-learning platforms can take many different forms, ranging from simple text documents that are posted online to complex virtual courses that incorporate dynamic video or audio content and in which students and instructors can interact in real time. The authors present an overview of e-learning and discuss its potential benefits as a supplement to hands-on rodent surgical training. They also discuss a few basic considerations in developing and implementing electronic courses.

  17. A computer vision for animal ecology.

    PubMed

    Weinstein, Ben G

    2018-05-01

    A central goal of animal ecology is to observe species in the natural world. The cost and challenge of data collection often limit the breadth and scope of ecological study. Ecologists often use image capture to bolster data collection in time and space. However, the ability to process these images remains a bottleneck. Computer vision can greatly increase the efficiency, repeatability and accuracy of image review. Computer vision uses image features, such as colour, shape and texture to infer image content. I provide a brief primer on ecological computer vision to outline its goals, tools and applications to animal ecology. I reviewed 187 existing applications of computer vision and divided articles into ecological description, counting and identity tasks. I discuss recommendations for enhancing the collaboration between ecologists and computer scientists and highlight areas for future growth of automated image analysis. © 2017 The Author. Journal of Animal Ecology © 2017 British Ecological Society.

  18. Magnetic Resonance Microscopy of the Lung

    NASA Astrophysics Data System (ADS)

    Johnson, G. Allan

    1999-11-01

    The lung presents both challenges and opportunities for study by magnetic resonance imaging (MRI). The technical challenges arise from respiratory and cardiac motion, limited signal from the tissues, and unique physical structure of the lung. These challenges are heightened in magnetic resonance microscopy (MRM) where the spatial resolution may be up to a million times higher than that of conventional MRI. The development of successful techniques for MRM of the lung present enormous opportunities for basic studies of lung structure and function, toxicology, environmental stress, and drug discovery by permitting investigators to study this most essential organ nondestructively in the live animal. Over the last 15 years, scientists at the Duke Center for In Vivo Microscopy have developed techniques for MRM in the live animal through an interdisciplinary program of biology, physics, chemistry, electrical engineering, and computer science. This talk will focus on the development of specialized radiofrequency coils for lung imaging, projection encoding methods to limit susceptibility losses, specialized support structures to control and monitor physiologic motion, and the most recent development of hyperpolarized gas imaging with ^3He and ^129Xe.

  19. Planetary Education and Outreach Using the NOAA Science on a Sphere

    NASA Technical Reports Server (NTRS)

    Simon-Miller, A. A.; Williams, D. R.; Smith, S. M.; Friedlander, J. S.; Mayo, L. A.; Clark, P. E.; Henderson, M. A.

    2011-01-01

    Science On a Sphere (SOS) is a large visualization system, developed by the National Oceanic and Atmospheric Administration (NOAH), that uses computers running Redhat Linux and four video projectors to display animated data onto the outside of a sphere. Said another way, SOS is a stationary globe that can show dynamic, animated images in spherical form. Visualization of cylindrical data maps show planets, their atmosphere, oceans, and land, in very realistic form. The SOS system uses 4 video projectors to display images onto the sphere. Each projector is driven by a separate computer, and a fifth computer is used to control the operation of the display computers. Each computer is a relatively powerful PC with a high-end graphics card. The video projectors have native XGA resolution. The projectors are placed at the corners of a 30' x 30' square with a 68" carbon fiber sphere suspended in the center of the square. The equator of the sphere is typically located 86" off the floor. SOS uses common image formats such as JPEG, or TIFF in a very specific, but simple form; the images are plotted on an equatorial cylindrical equidistant projection, or as it is commonly known, a latitude/longitude grid, where the image is twice as wide as it is high (rectangular). 2048x] 024 is the minimum usable spatial resolution without some noticeable pixelation. Labels and text can be applied within the image, or using a timestamp-like feature within the SOS system software. There are two basic modes of operation for SOS: displaying a single image or an animated sequence of frames. The frame or frames can be setup to rotate or tilt, as in a planetary rotation. Sequences of images that animate through time produce a movie visualization, with or without an overlain soundtrack. After the images are processed, SOS will display the images in sequence and play them like a movie across the entire sphere surface. Movies can be of any arbitrary length, limited mainly by disk space and can be animated at frame rates up to 30 frames per second. Transitions, special effects, and other computer graphics techniques can be added to a sequence through the use of off-the-shelf software, like Final Cut Pro. However, one drawback is that the Sphere cannot be used in the same manner as a flat movie screen; images cannot be pushed to a "side", a highlighted area must be viewable to all sides of the room simultaneously, and some transitions do not work as well as others. We discuss these issues and workarounds in our poster.

  20. Measurement of left ventricular mass in vivo using gated nuclear magnetic resonance imaging.

    PubMed

    Florentine, M S; Grosskreutz, C L; Chang, W; Hartnett, J A; Dunn, V D; Ehrhardt, J C; Fleagle, S R; Collins, S M; Marcus, M L; Skorton, D J

    1986-07-01

    Alterations of left ventricular mass occur in a variety of congenital and acquired heart diseases. In vivo determination of left ventricular mass, using several different techniques, has been previously reported. Problems inherent in some previous methods include the use of ionizing radiation, complicated geometric assumptions and invasive techniques. We tested the ability of gated nuclear magnetic resonance imaging to determine in vivo left ventricular mass in animals. By studying both dogs (n = 9) and cats (n = 2) of various sizes, a broad range of left ventricular mass (7 to 133 g) was examined. With a 0.5 tesla superconducting nuclear magnetic resonance imaging system the left ventricle was imaged in the transaxial plane and multiple adjacent 10 mm thick slices were obtained. Endocardial and epicardial edges were manually traced in each computer-displayed image. The wall area of each image was determined by computer and the areas were summed and multiplied by the slice thickness and the specific gravity of muscle, providing calculated left ventricular mass. Calculated left ventricular mass was compared with actual postmortem left ventricular mass using linear regression analysis. An excellent relation between calculated and actual mass was found (r = 0.95; SEE = 13.1 g; regression equation: magnetic resonance mass = 0.95 X actual mass + 14.8 g). Intraobserver and interobserver reproducibility were also excellent (r = 0.99). Thus, gated nuclear magnetic resonance imaging can accurately determine in vivo left ventricular mass in anesthetized animals.

  1. EM-ANIMATE: A Computer Program for Displaying and Animating Electromagnetic Near-Field and Surface-Current Solutions: Video Supplement to NASA Technical Memorandum 4539

    NASA Technical Reports Server (NTRS)

    Hom, Kam W.

    1994-01-01

    In this video, several examples of electromagnetic field and surface-current animation sequences are shown to demonstrate the visualization capabilities of the EM-ANIMATE computer program. These examples show the animation of total and scattered electric near fields from test bodies of a flat plate, a corner reflector, and a sphere. These test cases show the electric-field behavior caused by different scattering mechanisms through the animation of electromagnetic data from the EM-ANIMATE routine.

  2. Image analysis for estimating the weight of live animals

    NASA Astrophysics Data System (ADS)

    Schofield, C. P.; Marchant, John A.

    1991-02-01

    Many components of animal production have been automated. For example weighing feeding identification and yield recording on cattle pigs poultry and fish. However some of these tasks still require a considerable degree of human input and more effective automation could lead to better husbandry. For example if the weight of pigs could be monitored more often without increasing labour input then this information could be used to measure growth rates and control fat level allowing accurate prediction of market dates and optimum carcass quality to be achieved with improved welfare at minimum cost. Some aspects of animal production have defied automation. For example attending to the well being of housed animals is the preserve of the expert stockman. He gathers visual data about the animals in his charge (in more plain words goes and looks at their condition and behaviour) and processes this data to draw conclusions and take actions. Automatically collecting data on well being implies that the animals are not disturbed from their normal environment otherwise false conclusions will be drawn. Computer image analysis could provide the data required without the need to disturb the animals. This paper describes new work at the Institute of Engineering Research which uses image analysis to estimate the weight of pigs as a starting point for the wider range of applications which have been identified. In particular a technique has been developed to

  3. A Reward-Based Behavioral Platform to Measure Neural Activity during Head-Fixed Behavior

    PubMed Central

    Micallef, Andrew H.; Takahashi, Naoya; Larkum, Matthew E.; Palmer, Lucy M.

    2017-01-01

    Understanding the neural computations that contribute to behavior requires recording from neurons while an animal is behaving. This is not an easy task as most subcellular recording techniques require absolute head stability. The Go/No-Go sensory task is a powerful decision-driven task that enables an animal to report a binary decision during head-fixation. Here we discuss how to set up an Ardunio and Python based platform system to control a Go/No-Go sensory behavior paradigm. Using an Arduino micro-controller and Python-based custom written program, a reward can be delivered to the animal depending on the decision reported. We discuss the various components required to build the behavioral apparatus that can control and report such a sensory stimulus paradigm. This system enables the end user to control the behavioral testing in real-time and therefore it provides a strong custom-made platform for probing the neural basis of behavior. PMID:28620282

  4. The effect of enhanced carbon dioxide on the sinking and swimming of the shelled pteropod Limacina retroversa

    NASA Astrophysics Data System (ADS)

    Bergan, A. J.; Maas, A.; Lawson, G. L.

    2016-02-01

    Shelled pteropods (thecosomes) are planktonic mollusks that are expected to be negatively impacted by ocean acidification. The shells of live pteropods exposed to enhanced CO2 are known to exhibit degradation in condition, but the impacts on the fitness of the animals are unclear. Limacina retroversa from the Gulf of Maine were used to investigate the impact of enhanced CO2 on shell condition as well as swimming and sinking behaviors. L. retroversa were caught in the summer, fall, and spring and maintained in seawater at either ambient or two levels of enhanced CO2, and then filmed in a mirrored tank to measure the 3D velocities and other characteristics of the animals' movements while sinking or swimming. Shell condition was also examined by a suite of imaging techniques including light microscopy, SEM, and micro-computed tomography. After exposures to enhanced CO2 of as little as 3 days the pteropod shells became darker and more opaque. The pteropds had slower sinking velocities when kept under medium and high CO2 (800 and 1200 ppm) in comparison to the ambient ( 400 ppm) control group for exposure periods between one and four weeks. The swimming velocities of animals ascending in the tank were similarly decreased for animals maintained under the enhanced CO2 conditions for one to three weeks. The wing beat frequency and the path of motion were analyzed to further characterize swimming ability. Pteropods use both sinking and swimming as anti-predation techniques and hence the observed decrease in sinking and swimming speeds observed for animals exposed to increased CO2 could have a direct impact on their fitness by increasing their mortality risk to predators.

  5. High-level user interfaces for transfer function design with semantics.

    PubMed

    Salama, Christof Rezk; Keller, Maik; Kohlmann, Peter

    2006-01-01

    Many sophisticated techniques for the visualization of volumetric data such as medical data have been published. While existing techniques are mature from a technical point of view, managing the complexity of visual parameters is still difficult for non-expert users. To this end, this paper presents new ideas to facilitate the specification of optical properties for direct volume rendering. We introduce an additional level of abstraction for parametric models of transfer functions. The proposed framework allows visualization experts to design high-level transfer function models which can intuitively be used by non-expert users. The results are user interfaces which provide semantic information for specialized visualization problems. The proposed method is based on principal component analysis as well as on concepts borrowed from computer animation.

  6. Depth-estimation-enabled compound eyes

    NASA Astrophysics Data System (ADS)

    Lee, Woong-Bi; Lee, Heung-No

    2018-04-01

    Most animals that have compound eyes determine object distances by using monocular cues, especially motion parallax. In artificial compound eye imaging systems inspired by natural compound eyes, object depths are typically estimated by measuring optic flow; however, this requires mechanical movement of the compound eyes or additional acquisition time. In this paper, we propose a method for estimating object depths in a monocular compound eye imaging system based on the computational compound eye (COMPU-EYE) framework. In the COMPU-EYE system, acceptance angles are considerably larger than interommatidial angles, causing overlap between the ommatidial receptive fields. In the proposed depth estimation technique, the disparities between these receptive fields are used to determine object distances. We demonstrate that the proposed depth estimation technique can estimate the distances of multiple objects.

  7. An introduction to metabolomics and its potential application in veterinary science.

    PubMed

    Jones, Oliver A H; Cheung, Victoria L

    2007-10-01

    Metabolomics has been found to be applicable to a wide range of fields, including the study of gene function, toxicology, plant sciences, environmental analysis, clinical diagnostics, nutrition, and the discrimination of organism genotypes. This approach combines high-throughput sample analysis with computer-assisted multivariate pattern-recognition techniques. It is increasingly being deployed in toxico- and pharmacokinetic studies in the pharmaceutical industry, especially during the safety assessment of candidate drugs in human medicine. However, despite the potential of this technique to reduce both costs and the numbers of animals used for research, examples of the application of metabolomics in veterinary research are, thus far, rare. Here we give an introduction to metabolomics and discuss its potential in the field of veterinary science.

  8. FLEXAN (version 2.0) user's guide

    NASA Technical Reports Server (NTRS)

    Stallcup, Scott S.

    1989-01-01

    The FLEXAN (Flexible Animation) computer program, Version 2.0 is described. FLEXAN animates 3-D wireframe structural dynamics on the Evans and Sutherland PS300 graphics workstation with a VAX/VMS host computer. Animation options include: unconstrained vibrational modes, mode time histories (multiple modes), delta time histories (modal and/or nonmodal deformations), color time histories (elements of the structure change colors through time), and rotational time histories (parts of the structure rotate through time). Concurrent color, mode, delta, and rotation, time history animations are supported. FLEXAN does not model structures or calculate the dynamics of structures; it only animates data from other computer programs. FLEXAN was developed to aid in the study of the structural dynamics of spacecraft.

  9. Visualization Tools for Teaching Computer Security

    ERIC Educational Resources Information Center

    Yuan, Xiaohong; Vega, Percy; Qadah, Yaseen; Archer, Ricky; Yu, Huiming; Xu, Jinsheng

    2010-01-01

    Using animated visualization tools has been an important teaching approach in computer science education. We have developed three visualization and animation tools that demonstrate various information security concepts and actively engage learners. The information security concepts illustrated include: packet sniffer and related computer network…

  10. Making Progress and Gaining Momentum in Global 3Rs Efforts: How the European Pharmaceutical Industry Is Contributing

    PubMed Central

    Fleetwood, Gill; Chlebus, Magda; Coenen, Joachim; Dudoignon, Nicolas; Lecerf, Catherine; Maisonneuve, Catherine; Robinson, Sally

    2015-01-01

    Animal research together with other investigational methods (computer modeling, in vitro tests, etc) remains an indispensable part of the pharmaceutical research and development process. The European pharmaceutical industry recognizes the responsibilities inherent in animal research and is committed to applying and enhancing 3Rs principles. New nonsentient, ex vivo, and in vitro methods are developed every day and contribute to reducing and, in some instances, replacing in vivo studies. Their utility is however limited by the extent of our current knowledge and understanding of complex biological systems. Until validated alternative ways to model these complex interactions become available, animals remain indispensable in research and safety testing. In the interim, scientists continue to look for ways to reduce the number of animals needed to obtain valid results, refine experimental techniques to enhance animal welfare, and replace animals with other research methods whenever feasible. As research goals foster increasing cross-sector and international collaboration, momentum is growing to enhance and coordinate scientific innovation globally—beyond a single company, stakeholder group, sector, region, or country. The implementation of 3Rs strategies can be viewed as an integral part of this continuously evolving science, demonstrating the link between science and welfare, benefiting both the development of new medicines and animal welfare. This goal is one of the key objectives of the Research and Animal Welfare working group of the European Federation of Pharmaceutical Industries and Associations. PMID:25836966

  11. Making progress and gaining momentum in global 3Rs efforts: how the European pharmaceutical industry is contributing.

    PubMed

    Fleetwood, Gill; Chlebus, Magda; Coenen, Joachim; Dudoignon, Nicolas; Lecerf, Catherine; Maisonneuve, Catherine; Robinson, Sally

    2015-03-01

    Animal research together with other investigational methods (computer modeling, in vitro tests, etc) remains an indispensable part of the pharmaceutical research and development process. The European pharmaceutical industry recognizes the responsibilities inherent in animal research and is committed to applying and enhancing 3Rs principles. New nonsentient, ex vivo, and in vitro methods are developed every day and contribute to reducing and, in some instances, replacing in vivo studies. Their utility is however limited by the extent of our current knowledge and understanding of complex biological systems. Until validated alternative ways to model these complex interactions become available, animals remain indispensable in research and safety testing. In the interim, scientists continue to look for ways to reduce the number of animals needed to obtain valid results, refine experimental techniques to enhance animal welfare, and replace animals with other research methods whenever feasible. As research goals foster increasing cross-sector and international collaboration, momentum is growing to enhance and coordinate scientific innovation globally-beyond a single company, stakeholder group, sector, region, or country. The implementation of 3Rs strategies can be viewed as an integral part of this continuously evolving science, demonstrating the link between science and welfare, benefiting both the development of new medicines and animal welfare. This goal is one of the key objectives of the Research and Animal Welfare working group of the European Federation of Pharmaceutical Industries and Associations.

  12. ASSESSMENT OF VENOUS THROMBOSIS IN ANIMAL MODELS

    PubMed Central

    SP, Grover; CE, Evans; AS, Patel; B, Modarai; P, Saha; A, Smith

    2016-01-01

    Deep vein thrombosis and common complications, including pulmonary embolism and post thrombotic syndrome, represent a major source of morbidity and mortality worldwide. Experimental models of venous thrombosis have provided considerable insight into the cellular and molecular mechanisms that regulate thrombus formation and subsequent resolution. Here we critically appraise the ex vivo and in vivo techniques used to assess venous thrombosis in these models. Particular attention is paid to imaging modalities, including magnetic resonance imaging, micro computed tomography and high frequency ultrasound that facilitate longitudinal assessment of thrombus size and composition. PMID:26681755

  13. Assessment of Venous Thrombosis in Animal Models.

    PubMed

    Grover, Steven P; Evans, Colin E; Patel, Ashish S; Modarai, Bijan; Saha, Prakash; Smith, Alberto

    2016-02-01

    Deep vein thrombosis and common complications, including pulmonary embolism and post-thrombotic syndrome, represent a major source of morbidity and mortality worldwide. Experimental models of venous thrombosis have provided considerable insight into the cellular and molecular mechanisms that regulate thrombus formation and subsequent resolution. Here, we critically appraise the ex vivo and in vivo techniques used to assess venous thrombosis in these models. Particular attention is paid to imaging modalities, including magnetic resonance imaging, micro-computed tomography, and high-frequency ultrasound that facilitate longitudinal assessment of thrombus size and composition. © 2015 American Heart Association, Inc.

  14. The Use of Audio and Animation in Computer Based Instruction.

    ERIC Educational Resources Information Center

    Koroghlanian, Carol; Klein, James D.

    This study investigated the effects of audio, animation, and spatial ability in a computer-based instructional program for biology. The program presented instructional material via test or audio with lean text and included eight instructional sequences presented either via static illustrations or animations. High school students enrolled in a…

  15. Computer-aided meiotic maturation assay (CAMMA) of zebrafish (danio rerio) oocytes in vitro.

    PubMed

    Lessman, Charles A; Nathani, Ravikanth; Uddin, Rafique; Walker, Jamie; Liu, Jianxiong

    2007-01-01

    We have developed a new technique called Computer-Aided Meiotic Maturation Assay (CAMMA) for imaging large arrays of zebrafish oocytes and automatically collecting image files at regular intervals during meiotic maturation. This novel method uses a transparency scanner interfaced to a computer with macro programming that automatically scans and archives the image files. Images are stacked and analyzed with ImageJ to quantify changes in optical density characteristic of zebrafish oocyte maturation. Major advantages of CAMMA include (1) ability to image very large arrays of oocytes and follow individual cells over time, (2) simultaneously image many treatment groups, (3) digitized images may be stacked, animated, and analyzed in programs such as ImageJ, NIH-Image, or ScionImage, and (4) CAMMA system is inexpensive, costing less than most microscopes used in traditional assays. We have used CAMMA to determine the dose response and time course of oocyte maturation induced by 17alpha-hydroxyprogesterone (HP). Maximal decrease in optical density occurs around 5 hr after 0.1 micro g/ml HP (28.5 degrees C), approximately 3 hr after germinal vesicle migration (GVM) and dissolution (GVD). In addition to changes in optical density, GVD is accompanied by streaming of ooplasm to the animal pole to form a blastodisc. These dynamic changes are readily visualized by animating image stacks from CAMMA; thus, CAMMA provides a valuable source of time-lapse movies for those studying zebrafish oocyte maturation. The oocyte clearing documented by CAMMA is correlated to changes in size distribution of major yolk proteins upon SDS-PAGE, and, this in turn, is related to increased cyclin B(1) protein.

  16. Study of Image Qualities From 6D Robot-Based CBCT Imaging System of Small Animal Irradiator.

    PubMed

    Sharma, Sunil; Narayanasamy, Ganesh; Clarkson, Richard; Chao, Ming; Moros, Eduardo G; Zhang, Xin; Yan, Yulong; Boerma, Marjan; Paudel, Nava; Morrill, Steven; Corry, Peter; Griffin, Robert J

    2017-01-01

    To assess the quality of cone beam computed tomography images obtained by a robotic arm-based and image-guided small animal conformal radiation therapy device. The small animal conformal radiation therapy device is equipped with a 40 to 225 kV X-ray tube mounted on a custom made gantry, a 1024 × 1024 pixels flat panel detector (200 μm resolution), a programmable 6 degrees of freedom robot for cone beam computed tomography imaging and conformal delivery of radiation doses. A series of 2-dimensional radiographic projection images were recorded in cone beam mode by placing and rotating microcomputed tomography phantoms on the "palm' of the robotic arm. Reconstructed images were studied for image quality (spatial resolution, image uniformity, computed tomography number linearity, voxel noise, and artifacts). Geometric accuracy was measured to be 2% corresponding to 0.7 mm accuracy on a Shelley microcomputed tomography QA phantom. Qualitative resolution of reconstructed axial computed tomography slices using the resolution coils was within 200 μm. Quantitative spatial resolution was found to be 3.16 lp/mm. Uniformity of the system was measured within 34 Hounsfield unit on a QRM microcomputed tomography water phantom. Computed tomography numbers measured using the linearity plate were linear with material density ( R 2 > 0.995). Cone beam computed tomography images of the QRM multidisk phantom had minimal artifacts. Results showed that the small animal conformal radiation therapy device is capable of producing high-quality cone beam computed tomography images for precise and conformal small animal dose delivery. With its high-caliber imaging capabilities, the small animal conformal radiation therapy device is a powerful tool for small animal research.

  17. Teaching ocean wave forecasting using computer-generated visualization and animation—Part 2: swell forecasting

    NASA Astrophysics Data System (ADS)

    Whitford, Dennis J.

    2002-05-01

    This paper, the second of a two-part series, introduces undergraduate students to ocean wave forecasting using interactive computer-generated visualization and animation. Verbal descriptions and two-dimensional illustrations are often insufficient for student comprehension. Fortunately, the introduction of computers in the geosciences provides a tool for addressing this problem. Computer-generated visualization and animation, accompanied by oral explanation, have been shown to be a pedagogical improvement to more traditional methods of instruction. Cartographic science and other disciplines using geographical information systems have been especially aggressive in pioneering the use of visualization and animation, whereas oceanography has not. This paper will focus on the teaching of ocean swell wave forecasting, often considered a difficult oceanographic topic due to the mathematics and physics required, as well as its interdependence on time and space. Several MATLAB ® software programs are described and offered to visualize and animate group speed, frequency dispersion, angular dispersion, propagation, and wave height forecasting of deep water ocean swell waves. Teachers may use these interactive visualizations and animations without requiring an extensive background in computer programming.

  18. Elucidating Neuronal Mechanisms Using Intracellular Recordings during Behavior.

    PubMed

    Lee, Albert K; Brecht, Michael

    2018-06-01

    Intracellular recording allows measurement and perturbation of the membrane potential of identified neurons with sub-millisecond and sub-millivolt precision. This gives intracellular recordings a unique capacity to provide rich information about individual cells (e.g., high-resolution characterization of inputs, outputs, excitability, and structure). Hence, such recordings can elucidate the mechanisms that underlie fundamental phenomena, such as brain state, sparse coding, gating, gain modulation, and learning. Technical developments have increased the range of behaviors during which intracellular recording methods can be employed, such as in freely moving animals and head-fixed animals actively performing tasks, including in virtual environments. Such advances, and the combination of intracellular recordings with genetic and imaging techniques, have enabled investigation of the mechanisms that underlie neural computations during natural and trained behaviors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Preclinical In vivo Imaging for Fat Tissue Identification, Quantification, and Functional Characterization.

    PubMed

    Marzola, Pasquina; Boschi, Federico; Moneta, Francesco; Sbarbati, Andrea; Zancanaro, Carlo

    2016-01-01

    Localization, differentiation, and quantitative assessment of fat tissues have always collected the interest of researchers. Nowadays, these topics are even more relevant as obesity (the excess of fat tissue) is considered a real pathology requiring in some cases pharmacological and surgical approaches. Several weight loss medications, acting either on the metabolism or on the central nervous system, are currently under preclinical or clinical investigation. Animal models of obesity have been developed and are widely used in pharmaceutical research. The assessment of candidate drugs in animal models requires non-invasive methods for longitudinal assessment of efficacy, the main outcome being the amount of body fat. Fat tissues can be either quantified in the entire animal or localized and measured in selected organs/regions of the body. Fat tissues are characterized by peculiar contrast in several imaging modalities as for example Magnetic Resonance Imaging (MRI) that can distinguish between fat and water protons thank to their different magnetic resonance properties. Since fat tissues have higher carbon/hydrogen content than other soft tissues and bones, they can be easily assessed by Computed Tomography (CT) as well. Interestingly, MRI also discriminates between white and brown adipose tissue (BAT); the latter has long been regarded as a potential target for anti-obesity drugs because of its ability to enhance energy consumption through increased thermogenesis. Positron Emission Tomography (PET) performed with 18 F-FDG as glucose analog radiotracer reflects well the metabolic rate in body tissues and consequently is the technique of choice for studies of BAT metabolism. This review will focus on the main, non-invasive imaging techniques (MRI, CT, and PET) that are fundamental for the assessment, quantification and functional characterization of fat deposits in small laboratory animals. The contribution of optical techniques, which are currently regarded with increasing interest, will be also briefly described. For each technique the physical principles of signal detection will be overviewed and some relevant studies will be summarized. Far from being exhaustive, this review has the purpose to highlight some strategies that can be adopted for the in vivo identification, quantification, and functional characterization of adipose tissues mainly from the point of view of biophysics and physiology.

  20. Animal and in silico models for the study of sarcomeric cardiomyopathies

    PubMed Central

    Duncker, Dirk J.; Bakkers, Jeroen; Brundel, Bianca J.; Robbins, Jeff; Tardiff, Jil C.; Carrier, Lucie

    2015-01-01

    Over the past decade, our understanding of cardiomyopathies has improved dramatically, due to improvements in screening and detection of gene defects in the human genome as well as a variety of novel animal models (mouse, zebrafish, and drosophila) and in silico computational models. These novel experimental tools have created a platform that is highly complementary to the naturally occurring cardiomyopathies in cats and dogs that had been available for some time. A fully integrative approach, which incorporates all these modalities, is likely required for significant steps forward in understanding the molecular underpinnings and pathogenesis of cardiomyopathies. Finally, novel technologies, including CRISPR/Cas9, which have already been proved to work in zebrafish, are currently being employed to engineer sarcomeric cardiomyopathy in larger animals, including pigs and non-human primates. In the mouse, the increased speed with which these techniques can be employed to engineer precise ‘knock-in’ models that previously took years to make via multiple rounds of homologous recombination-based gene targeting promises multiple and precise models of human cardiac disease for future study. Such novel genetically engineered animal models recapitulating human sarcomeric protein defects will help bridging the gap to translate therapeutic targets from small animal and in silico models to the human patient with sarcomeric cardiomyopathy. PMID:25600962

  1. Optimization of dual energy contrast enhanced breast tomosynthesis for improved mammographic lesion detection and diagnosis

    NASA Astrophysics Data System (ADS)

    Saunders, R.; Samei, E.; Badea, C.; Yuan, H.; Ghaghada, K.; Qi, Y.; Hedlund, L. W.; Mukundan, S.

    2008-03-01

    Dual-energy contrast-enhanced breast tomosynthesis has been proposed as a technique to improve the detection of early-stage cancer in young, high-risk women. This study focused on optimizing this technique using computer simulations. The computer simulation used analytical calculations to optimize the signal difference to noise ratio (SdNR) of resulting images from such a technique at constant dose. The optimization included the optimal radiographic technique, optimal distribution of dose between the two single-energy projection images, and the optimal weighting factor for the dual energy subtraction. Importantly, the SdNR included both anatomical and quantum noise sources, as dual energy imaging reduces anatomical noise at the expense of increases in quantum noise. Assuming a tungsten anode, the maximum SdNR at constant dose was achieved for a high energy beam at 49 kVp with 92.5 μm copper filtration and a low energy beam at 49 kVp with 95 μm tin filtration. These analytical calculations were followed by Monte Carlo simulations that included the effects of scattered radiation and detector properties. Finally, the feasibility of this technique was tested in a small animal imaging experiment using a novel iodinated liposomal contrast agent. The results illustrated the utility of dual energy imaging and determined the optimal acquisition parameters for this technique. This work was supported in part by grants from the Komen Foundation (PDF55806), the Cancer Research and Prevention Foundation, and the NIH (NCI R21 CA124584-01). CIVM is a NCRR/NCI National Resource under P41-05959/U24-CA092656.

  2. Muscle forces analysis in the shoulder mechanism during wheelchair propulsion.

    PubMed

    Lin, Hwai-Ting; Su, Fong-Chin; Wu, Hong-Wen; An, Kai-Nan

    2004-01-01

    This study combines an ergometric wheelchair, a six-camera video motion capture system and a prototype computer graphics based musculoskeletal model (CGMM) to predict shoulder joint loading, muscle contraction force per muscle and the sequence of muscular actions during wheelchair propulsion, and also to provide an animated computer graphics model of the relative interactions. Five healthy male subjects with no history of upper extremity injury participated. A conventional manual wheelchair was equipped with a six-component load cell to collect three-dimensional forces and moments experienced by the wheel, allowing real-time measurement of hand/rim force applied by subjects during normal wheelchair operation. An ExpertVision six-camera video motion capture system collected trajectory data of markers attached on anatomical positions. The CGMM was used to simulate and animate muscle action by using an optimization technique combining observed muscular motions with physiological constraints to estimate muscle contraction forces during wheelchair propulsion. The CGMM provides results that satisfactorily match the predictions of previous work, disregarding minor differences which presumably result from differing experimental conditions, measurement technologies and subjects. Specifically, the CGMM shows that the supraspinatus, infraspinatus, anterior deltoid, pectoralis major and biceps long head are the prime movers during the propulsion phase. The middle and posterior deltoid and supraspinatus muscles are responsible for arm return during the recovery phase. CGMM modelling shows that the rotator cuff and pectoralis major play an important role during wheelchair propulsion, confirming the known risk of injury for these muscles during wheelchair propulsion. The CGMM successfully transforms six-camera video motion capture data into a technically useful and visually interesting animated video model of the shoulder musculoskeletal system. The CGMM further yields accurate estimates of muscular forces during motion, indicating that this prototype modelling and analysis technique will aid in study, analysis and therapy of the mechanics and underlying pathomechanics involved in various musculoskeletal overuse syndromes.

  3. A computational pipeline for quantification of pulmonary infections in small animal models using serial PET-CT imaging.

    PubMed

    Bagci, Ulas; Foster, Brent; Miller-Jaster, Kirsten; Luna, Brian; Dey, Bappaditya; Bishai, William R; Jonsson, Colleen B; Jain, Sanjay; Mollura, Daniel J

    2013-07-23

    Infectious diseases are the second leading cause of death worldwide. In order to better understand and treat them, an accurate evaluation using multi-modal imaging techniques for anatomical and functional characterizations is needed. For non-invasive imaging techniques such as computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET), there have been many engineering improvements that have significantly enhanced the resolution and contrast of the images, but there are still insufficient computational algorithms available for researchers to use when accurately quantifying imaging data from anatomical structures and functional biological processes. Since the development of such tools may potentially translate basic research into the clinic, this study focuses on the development of a quantitative and qualitative image analysis platform that provides a computational radiology perspective for pulmonary infections in small animal models. Specifically, we designed (a) a fast and robust automated and semi-automated image analysis platform and a quantification tool that can facilitate accurate diagnostic measurements of pulmonary lesions as well as volumetric measurements of anatomical structures, and incorporated (b) an image registration pipeline to our proposed framework for volumetric comparison of serial scans. This is an important investigational tool for small animal infectious disease models that can help advance researchers' understanding of infectious diseases. We tested the utility of our proposed methodology by using sequentially acquired CT and PET images of rabbit, ferret, and mouse models with respiratory infections of Mycobacterium tuberculosis (TB), H1N1 flu virus, and an aerosolized respiratory pathogen (necrotic TB) for a total of 92, 44, and 24 scans for the respective studies with half of the scans from CT and the other half from PET. Institutional Administrative Panel on Laboratory Animal Care approvals were obtained prior to conducting this research. First, the proposed computational framework registered PET and CT images to provide spatial correspondences between images. Second, the lungs from the CT scans were segmented using an interactive region growing (IRG) segmentation algorithm with mathematical morphology operations to avoid false positive (FP) uptake in PET images. Finally, we segmented significant radiotracer uptake from the PET images in lung regions determined from CT and computed metabolic volumes of the significant uptake. All segmentation processes were compared with expert radiologists' delineations (ground truths). Metabolic and gross volume of lesions were automatically computed with the segmentation processes using PET and CT images, and percentage changes in those volumes over time were calculated. (Continued on next page)(Continued from previous page) Standardized uptake value (SUV) analysis from PET images was conducted as a complementary quantitative metric for disease severity assessment. Thus, severity and extent of pulmonary lesions were examined through both PET and CT images using the aforementioned quantification metrics outputted from the proposed framework. Each animal study was evaluated within the same subject class, and all steps of the proposed methodology were evaluated separately. We quantified the accuracy of the proposed algorithm with respect to the state-of-the-art segmentation algorithms. For evaluation of the segmentation results, dice similarity coefficient (DSC) as an overlap measure and Haussdorf distance as a shape dissimilarity measure were used. Significant correlations regarding the estimated lesion volumes were obtained both in CT and PET images with respect to the ground truths (R2=0.8922,p<0.01 and R2=0.8664,p<0.01, respectively). The segmentation accuracy (DSC (%)) was 93.4±4.5% for normal lung CT scans and 86.0±7.1% for pathological lung CT scans. Experiments showed excellent agreements (all above 85%) with expert evaluations for both structural and functional imaging modalities. Apart from quantitative analysis of each animal, we also qualitatively showed how metabolic volumes were changing over time by examining serial PET/CT scans. Evaluation of the registration processes was based on precisely defined anatomical landmark points by expert clinicians. An average of 2.66, 3.93, and 2.52 mm errors was found in rabbit, ferret, and mouse data (all within the resolution limits), respectively. Quantitative results obtained from the proposed methodology were visually related to the progress and severity of the pulmonary infections as verified by the participating radiologists. Moreover, we demonstrated that lesions due to the infections were metabolically active and appeared multi-focal in nature, and we observed similar patterns in the CT images as well. Consolidation and ground glass opacity were the main abnormal imaging patterns and consistently appeared in all CT images. We also found that the gross and metabolic lesion volume percentage follow the same trend as the SUV-based evaluation in the longitudinal analysis. We explored the feasibility of using PET and CT imaging modalities in three distinct small animal models for two diverse pulmonary infections. We concluded from the clinical findings, derived from the proposed computational pipeline, that PET-CT imaging is an invaluable hybrid modality for tracking pulmonary infections longitudinally in small animals and has great potential to become routinely used in clinics. Our proposed methodology showed that automated computed-aided lesion detection and quantification of pulmonary infections in small animal models are efficient and accurate as compared to the clinical standard of manual and semi-automated approaches. Automated analysis of images in pre-clinical applications can increase the efficiency and quality of pre-clinical findings that ultimately inform downstream experimental design in human clinical studies; this innovation will allow researchers and clinicians to more effectively allocate study resources with respect to research demands without compromising accuracy.

  4. Understanding how animal groups achieve coordinated movement.

    PubMed

    Herbert-Read, J E

    2016-10-01

    Moving animal groups display remarkable feats of coordination. This coordination is largely achieved when individuals adjust their movement in response to their neighbours' movements and positions. Recent advancements in automated tracking technologies, including computer vision and GPS, now allow researchers to gather large amounts of data on the movements and positions of individuals in groups. Furthermore, analytical techniques from fields such as statistical physics now allow us to identify the precise interaction rules used by animals on the move. These interaction rules differ not only between species, but also between individuals in the same group. These differences have wide-ranging implications, affecting how groups make collective decisions and driving the evolution of collective motion. Here, I describe how trajectory data can be used to infer how animals interact in moving groups. I give examples of the similarities and differences in the spatial and directional organisations of animal groups between species, and discuss the rules that animals use to achieve this organisation. I then explore how groups of the same species can exhibit different structures, and ask whether this results from individuals adapting their interaction rules. I then examine how the interaction rules between individuals in the same groups can also differ, and discuss how this can affect ecological and evolutionary processes. Finally, I suggest areas of future research. © 2016. Published by The Company of Biologists Ltd.

  5. An Approach to Effortless Construction of Program Animations

    ERIC Educational Resources Information Center

    Velazquez-Iturbide, J. Angel; Pareja-Flores, Cristobal; Urquiza-Fuentes, Jaime

    2008-01-01

    Program animation systems have not been as widely adopted by computer science educators as we might expect from the firm belief that they can help in enhancing computer science education. One of the most notable obstacles to their adoption is the considerable effort that the production of program animations represents for the instructor. We…

  6. Revisiting Frazier's subdeltas: enhancing datasets with dimensionality, better to understand geologic systems

    USGS Publications Warehouse

    Flocks, James

    2006-01-01

    Scientific knowledge from the past century is commonly represented by two-dimensional figures and graphs, as presented in manuscripts and maps. Using today's computer technology, this information can be extracted and projected into three- and four-dimensional perspectives. Computer models can be applied to datasets to provide additional insight into complex spatial and temporal systems. This process can be demonstrated by applying digitizing and modeling techniques to valuable information within widely used publications. The seminal paper by D. Frazier, published in 1967, identified 16 separate delta lobes formed by the Mississippi River during the past 6,000 yrs. The paper includes stratigraphic descriptions through geologic cross-sections, and provides distribution and chronologies of the delta lobes. The data from Frazier's publication are extensively referenced in the literature. Additional information can be extracted from the data through computer modeling. Digitizing and geo-rectifying Frazier's geologic cross-sections produce a three-dimensional perspective of the delta lobes. Adding the chronological data included in the report provides the fourth-dimension of the delta cycles, which can be visualized through computer-generated animation. Supplemental information can be added to the model, such as post-abandonment subsidence of the delta-lobe surface. Analyzing the regional, net surface-elevation balance between delta progradations and land subsidence is computationally intensive. By visualizing this process during the past 4,500 yrs through multi-dimensional animation, the importance of sediment compaction in influencing both the shape and direction of subsequent delta progradations becomes apparent. Visualization enhances a classic dataset, and can be further refined using additional data, as well as provide a guide for identifying future areas of study.

  7. Cardiovascular Physiology Teaching: Computer Simulations vs. Animal Demonstrations.

    ERIC Educational Resources Information Center

    Samsel, Richard W.; And Others

    1994-01-01

    At the introductory level, the computer provides an effective alternative to using animals for laboratory teaching. Computer software can simulate the operation of multiple organ systems. Advantages of software include alteration of variables that are not easily changed in vivo, repeated interventions, and cost-effective hands-on student access.…

  8. Knowledge Acquisition with Static and Animated Pictures in Computer-Based Learning.

    ERIC Educational Resources Information Center

    Schnotz, Wolfgang; Grzondziel, Harriet

    In educational settings, computers provide specific possibilities of visualizing information for instructional purposes. Besides the use of static pictures, computers can present animated pictures which allow exploratory manipulation by the learner and display the dynamic behavior of a system. This paper develops a theoretical framework for…

  9. More Ideas for Monitoring Biological Experiments with the BBC Computer: Absorption Spectra, Yeast Growth, Enzyme Reactions and Animal Behaviour.

    ERIC Educational Resources Information Center

    Openshaw, Peter

    1988-01-01

    Presented are five ideas for A-level biology experiments using a laboratory computer interface. Topics investigated include photosynthesis, yeast growth, animal movements, pulse rates, and oxygen consumption and production by organisms. Includes instructions specific to the BBC computer system. (CW)

  10. Realistic facial expression of virtual human based on color, sweat, and tears effects.

    PubMed

    Alkawaz, Mohammed Hazim; Basori, Ahmad Hoirul; Mohamad, Dzulkifli; Mohamed, Farhan

    2014-01-01

    Generating extreme appearances such as scared awaiting sweating while happy fit for tears (cry) and blushing (anger and happiness) is the key issue in achieving the high quality facial animation. The effects of sweat, tears, and colors are integrated into a single animation model to create realistic facial expressions of 3D avatar. The physical properties of muscles, emotions, or the fluid properties with sweating and tears initiators are incorporated. The action units (AUs) of facial action coding system are merged with autonomous AUs to create expressions including sadness, anger with blushing, happiness with blushing, and fear. Fluid effects such as sweat and tears are simulated using the particle system and smoothed-particle hydrodynamics (SPH) methods which are combined with facial animation technique to produce complex facial expressions. The effects of oxygenation of the facial skin color appearance are measured using the pulse oximeter system and the 3D skin analyzer. The result shows that virtual human facial expression is enhanced by mimicking actual sweating and tears simulations for all extreme expressions. The proposed method has contribution towards the development of facial animation industry and game as well as computer graphics.

  11. Realistic Facial Expression of Virtual Human Based on Color, Sweat, and Tears Effects

    PubMed Central

    Alkawaz, Mohammed Hazim; Basori, Ahmad Hoirul; Mohamad, Dzulkifli; Mohamed, Farhan

    2014-01-01

    Generating extreme appearances such as scared awaiting sweating while happy fit for tears (cry) and blushing (anger and happiness) is the key issue in achieving the high quality facial animation. The effects of sweat, tears, and colors are integrated into a single animation model to create realistic facial expressions of 3D avatar. The physical properties of muscles, emotions, or the fluid properties with sweating and tears initiators are incorporated. The action units (AUs) of facial action coding system are merged with autonomous AUs to create expressions including sadness, anger with blushing, happiness with blushing, and fear. Fluid effects such as sweat and tears are simulated using the particle system and smoothed-particle hydrodynamics (SPH) methods which are combined with facial animation technique to produce complex facial expressions. The effects of oxygenation of the facial skin color appearance are measured using the pulse oximeter system and the 3D skin analyzer. The result shows that virtual human facial expression is enhanced by mimicking actual sweating and tears simulations for all extreme expressions. The proposed method has contribution towards the development of facial animation industry and game as well as computer graphics. PMID:25136663

  12. High-contrast differentiation resolution 3D imaging of rodent brain by X-ray computed microtomography

    NASA Astrophysics Data System (ADS)

    Zikmund, T.; Novotná, M.; Kavková, M.; Tesařová, M.; Kaucká, M.; Szarowská, B.; Adameyko, I.; Hrubá, E.; Buchtová, M.; Dražanová, E.; Starčuk, Z.; Kaiser, J.

    2018-02-01

    The biomedically focused brain research is largely performed on laboratory mice considering a high homology between the human and mouse genomes. A brain has an intricate and highly complex geometrical structure that is hard to display and analyse using only 2D methods. Applying some fast and efficient methods of brain visualization in 3D will be crucial for the neurobiology in the future. A post-mortem analysis of experimental animals' brains usually involves techniques such as magnetic resonance and computed tomography. These techniques are employed to visualize abnormalities in the brains' morphology or reparation processes. The X-ray computed microtomography (micro CT) plays an important role in the 3D imaging of internal structures of a large variety of soft and hard tissues. This non-destructive technique is applied in biological studies because the lab-based CT devices enable to obtain a several-micrometer resolution. However, this technique is always used along with some visualization methods, which are based on the tissue staining and thus differentiate soft tissues in biological samples. Here, a modified chemical contrasting protocol of tissues for a micro CT usage is introduced as the best tool for ex vivo 3D imaging of a post-mortem mouse brain. This way, the micro CT provides a high spatial resolution of the brain microscopic anatomy together with a high tissue differentiation contrast enabling to identify more anatomical details in the brain. As the micro CT allows a consequent reconstruction of the brain structures into a coherent 3D model, some small morphological changes can be given into context of their mutual spatial relationships.

  13. A motion capture library for the study of identity, gender, and emotion perception from biological motion.

    PubMed

    Ma, Yingliang; Paterson, Helena M; Pollick, Frank E

    2006-02-01

    We present the methods that were used in capturing a library of human movements for use in computer-animated displays of human movement. The library is an attempt to systematically tap into and represent the wide range of personal properties, such as identity, gender, and emotion, that are available in a person's movements. The movements from a total of 30 nonprofessional actors (15 of them female) were captured while they performed walking, knocking, lifting, and throwing actions, as well as their combination in angry, happy, neutral, and sad affective styles. From the raw motion capture data, a library of 4,080 movements was obtained, using techniques based on Character Studio (plug-ins for 3D Studio MAX, AutoDesk, Inc.), MATLAB The MathWorks, Inc.), or a combination of these two. For the knocking, lifting, and throwing actions, 10 repetitions of the simple action unit were obtained for each affect, and for the other actions, two longer movement recordings were obtained for each affect. We discuss the potential use of the library for computational and behavioral analyses of movement variability, of human character animation, and of how gender, emotion, and identity are encoded and decoded from human movement.

  14. [Contrast-enhanced ultrasound in animal models].

    PubMed

    Paprottka, P M; Zengel, P; Ingrisch, M; Cyran, C C; Eichhorn, M; Reiser, M F; Nikolaou, K; Clevert, D-A

    2011-06-01

    In the past the detection of tumor perfusion was achieved solely via invasive procedures, such as intravital microscopy or with the help of costly modalities, such as multidetector computed tomography (MDCT), magnetic resonance tomography (MRT) or the combined use of positron emission tomography and computed tomography (PET/CT). Ultrasound offers the non-invasive display of organs without usage of ionizing radiation and it is widely available. However, colour-coded ultrasound and power Doppler do not allow the detection of tumor microcirculation. The introduction of contrast-enhanced ultrasound (CEUS) as well as new high-frequency ultrasound probes made it possible to detect and quantify tumor microcirculation with high resolution. CEUS has been used clinically on human beings for more than 10 years. During the last years different tumor models in experimental animals were used for the establishment of this new technique, e.g. in rats, hamsters and mice. CEUS allows the detection of functional parameters, such as the angiogenetic metabolic status of tissue pretreatment and posttreatment. Further research is required to solve the problems of absolute quantification of these perfusion parameters to allow the comparison of CEUS with other modalities (e.g. MRT and CT).

  15. Profiling Animal Toxicants by Automatically Mining Public Bioassay Data: A Big Data Approach for Computational Toxicology

    PubMed Central

    Zhang, Jun; Hsieh, Jui-Hua; Zhu, Hao

    2014-01-01

    In vitro bioassays have been developed and are currently being evaluated as potential alternatives to traditional animal toxicity models. Already, the progress of high throughput screening techniques has resulted in an enormous amount of publicly available bioassay data having been generated for a large collection of compounds. When a compound is tested using a collection of various bioassays, all the testing results can be considered as providing a unique bio-profile for this compound, which records the responses induced when the compound interacts with different cellular systems or biological targets. Profiling compounds of environmental or pharmaceutical interest using useful toxicity bioassay data is a promising method to study complex animal toxicity. In this study, we developed an automatic virtual profiling tool to evaluate potential animal toxicants. First, we automatically acquired all PubChem bioassay data for a set of 4,841 compounds with publicly available rat acute toxicity results. Next, we developed a scoring system to evaluate the relevance between these extracted bioassays and animal acute toxicity. Finally, the top ranked bioassays were selected to profile the compounds of interest. The resulting response profiles proved to be useful to prioritize untested compounds for their animal toxicity potentials and form a potential in vitro toxicity testing panel. The protocol developed in this study could be combined with structure-activity approaches and used to explore additional publicly available bioassay datasets for modeling a broader range of animal toxicities. PMID:24950175

  16. Profiling animal toxicants by automatically mining public bioassay data: a big data approach for computational toxicology.

    PubMed

    Zhang, Jun; Hsieh, Jui-Hua; Zhu, Hao

    2014-01-01

    In vitro bioassays have been developed and are currently being evaluated as potential alternatives to traditional animal toxicity models. Already, the progress of high throughput screening techniques has resulted in an enormous amount of publicly available bioassay data having been generated for a large collection of compounds. When a compound is tested using a collection of various bioassays, all the testing results can be considered as providing a unique bio-profile for this compound, which records the responses induced when the compound interacts with different cellular systems or biological targets. Profiling compounds of environmental or pharmaceutical interest using useful toxicity bioassay data is a promising method to study complex animal toxicity. In this study, we developed an automatic virtual profiling tool to evaluate potential animal toxicants. First, we automatically acquired all PubChem bioassay data for a set of 4,841 compounds with publicly available rat acute toxicity results. Next, we developed a scoring system to evaluate the relevance between these extracted bioassays and animal acute toxicity. Finally, the top ranked bioassays were selected to profile the compounds of interest. The resulting response profiles proved to be useful to prioritize untested compounds for their animal toxicity potentials and form a potential in vitro toxicity testing panel. The protocol developed in this study could be combined with structure-activity approaches and used to explore additional publicly available bioassay datasets for modeling a broader range of animal toxicities.

  17. Use of Animation in Teaching Cell Biology

    PubMed Central

    2004-01-01

    To address the different learning styles of students, and because students can access animation from off-campus computers, the use of digital animation in teaching cell biology has become increasingly popular. Sample processes from cell biology that are more clearly presented in animation than in static illustrations are identified. The value of animation is evaluated on whether the process being taught involves motion, cellular location, or sequential order of numerous events. Computer programs for developing animation and animations associated with cell biology textbooks are reviewed, and links to specific examples of animation are given. Finally, future teaching tools for all fields of biology will increasingly benefit from an expansion of animation to the use of simulation. One purpose of this review is to encourage the widespread use of animations in biology teaching by discussing the nature of digital animation. PMID:15526065

  18. Diagnostic sensitivity of ultrasound, radiography and computed tomography for gender determination in four species of lizards.

    PubMed

    Di Ianni, Francesco; Volta, Antonella; Pelizzone, Igor; Manfredi, Sabrina; Gnudi, Giacomo; Parmigiani, Enrico

    2015-01-01

    Gender determination is frequently requested by reptile breeders, especially for species with poor or absent sexual dimorphism. The aims of the current study were to describe techniques and diagnostic sensitivities of ultrasound, radiography, and computed tomography for gender determination (identification of hemipenes) in four species of lizards. Nineteen lizards of known sex, belonging to four different species (Pogona vitticeps, Uromastyx aegyptia, Tiliqua scincoides, Gerrhosaurus major) were prospectively enrolled. With informed owner consent, ultrasound, noncontrast CT, contrast radiography, and contrast CT (with contrast medium administered into the cloaca) were performed in conscious animals. Imaging studies were reviewed by three different operators, each unaware of the gender of the animals and of the results of the other techniques. The lizard was classified as a male when hemipenes were identified. Nineteen lizards were included in the study, 10 females and nine males. The hemipenes were seen on ultrasound in only two male lizards, and appeared as oval hypoechoic structures. Radiographically, hemipenes filled with contrast medium appeared as spindle-shaped opacities. Noncontrast CT identified hemipenes in only two lizards, and these appeared as spindle-shaped kinked structures with hyperattenuating content consistent with smegma. Hemipenes were correctly identified in all nine males using contrast CT (accuracy of 100%). Accuracy of contrast radiography was excellent (94.7%). Accuracy of ultrasound and of noncontrast CT was poor (64.3% and 63.1%, respectively). Findings from the current study supported the use of contrast CT or contrast radiography for gender determination in lizards. © 2014 American College of Veterinary Radiology.

  19. Optically gated beating-heart imaging

    PubMed Central

    Taylor, Jonathan M.

    2014-01-01

    The constant motion of the beating heart presents an obstacle to clear optical imaging, especially 3D imaging, in small animals where direct optical imaging would otherwise be possible. Gating techniques exploit the periodic motion of the heart to computationally “freeze” this movement and overcome motion artifacts. Optically gated imaging represents a recent development of this, where image analysis is used to synchronize acquisition with the heartbeat in a completely non-invasive manner. This article will explain the concept of optical gating, discuss a range of different implementation strategies and their strengths and weaknesses. Finally we will illustrate the usefulness of the technique by discussing applications where optical gating has facilitated novel biological findings by allowing 3D in vivo imaging of cardiac myocytes in their natural environment of the beating heart. PMID:25566083

  20. Comparison of conventional PCR, quantitative PCR, bacteriological culture and the Warthin Starry technique to detect Leptospira spp. in kidney and liver samples from naturally infected sheep from Brazil.

    PubMed

    Fornazari, Felipe; da Silva, Rodrigo Costa; Richini-Pereira, Virginia Bodelão; Beserra, Hugo Enrique Orsini; Luvizotto, Maria Cecília Rui; Langoni, Helio

    2012-09-01

    Leptospirosis is an infectious disease of worldwide importance. The development of diagnostic techniques allows sick animals to be identified, reservoirs to be eliminated and the disease prevented and controlled. The present study aimed to compare different techniques for diagnosing leptospirosis in sheep. Samples of kidney, liver and blood were collected from 465 animals that originated from a slaughterhouse. The sera were analyzed by the Microscopic Agglutination Test (MAT), and kidney and liver samples of seropositive animals were analyzed using four techniques: bacteriological culture, the Warthin Starry (WS) technique, conventional PCR (cPCR), and quantitative PCR (qPCR). With the MAT, 21 animals were positive (4.5%) to serovars Hardjo (n=12), Hebdomadis (n=5), Sentot (n=2), Wolfii (n=1) and Shermani (n=1). Titers were 100 (n=10), 200 (n=2), 400 (n=6) and 1600 (n=3). No animal was positive by bacteriological culture; four animals were positive by the WS technique in kidney samples; six animals were positive by cPCR in kidney samples; and 11 animals were positive by qPCR, eight of which in kidney samples and three in liver. The bacterial quantification revealed a median of 4.3 bacteria/μL in liver samples and 36.6 bacteria/μL in kidney samples. qPCR presented the highest sensitivity among the techniques, followed by cPCR, the WS technique and bacteriological culture. These results indicate that sheep can carry leptospires of the Sejroe serogroup, and demonstrate the efficiency of quantitative PCR to detect Leptospira spp. in tissue samples. Published by Elsevier B.V.

  1. Computer-Based Graphical Displays for Enhancing Mental Animation and Improving Reasoning in Novice Learning of Probability

    ERIC Educational Resources Information Center

    Kaplan, Danielle E.; Wu, Erin Chia-ling

    2006-01-01

    Our research suggests static and animated graphics can lead to more animated thinking and more correct problem solving in computer-based probability learning. Pilot software modules were developed for graduate online statistics courses and representation research. A study with novice graduate student statisticians compared problem solving in five…

  2. Discriminating External and Internal Causes for Heading Changes in Freely Flying Drosophila

    PubMed Central

    Sayaman, Rosalyn W.; Murray, Richard M.; Dickinson, Michael H.

    2013-01-01

    As animals move through the world in search of resources, they change course in reaction to both external sensory cues and internally-generated programs. Elucidating the functional logic of complex search algorithms is challenging because the observable actions of the animal cannot be unambiguously assigned to externally- or internally-triggered events. We present a technique that addresses this challenge by assessing quantitatively the contribution of external stimuli and internal processes. We apply this technique to the analysis of rapid turns (“saccades”) of freely flying Drosophila melanogaster. We show that a single scalar feature computed from the visual stimulus experienced by the animal is sufficient to explain a majority (93%) of the turning decisions. We automatically estimate this scalar value from the observable trajectory, without any assumption regarding the sensory processing. A posteriori, we show that the estimated feature field is consistent with previous results measured in other experimental conditions. The remaining turning decisions, not explained by this feature of the visual input, may be attributed to a combination of deterministic processes based on unobservable internal states and purely stochastic behavior. We cannot distinguish these contributions using external observations alone, but we are able to provide a quantitative bound of their relative importance with respect to stimulus-triggered decisions. Our results suggest that comparatively few saccades in free-flying conditions are a result of an intrinsic spontaneous process, contrary to previous suggestions. We discuss how this technique could be generalized for use in other systems and employed as a tool for classifying effects into sensory, decision, and motor categories when used to analyze data from genetic behavioral screens. PMID:23468601

  3. Poster - Thurs Eve-12: A needle-positioning robot co-registered with volumetric x-ray micro-computed tomography images for minimally-invasive small-animal interventions.

    PubMed

    Waspe, A C; Holdsworth, D W; Lacefield, J C; Fenster, A

    2008-07-01

    Preclinical research protocols often require the delivery of biological substances to specific targets in small animal disease models. To target biologically relevant locations in mice accurately, the needle positioning error needs to be < 200 μm. If targeting is inaccurate, experimental results can be inconclusive or misleading. We have developed a robotic manipulator that is capable of positioning a needle with a mean error < 100 μm. An apparatus and method were developed for integrating the needle-positioning robot with volumetric micro-computed tomography image guidance for interventions in small animals. Accurate image-to-robot registration is critical for integration as it enables targets identified in the image to be mapped to physical coordinates inside the animal. Registration is accomplished by injecting barium sulphate into needle tracks as the robot withdraws the needle from target points in a tissue-mimicking phantom. Registration accuracy is therefore affected by the positioning error of the robot and is assessed by measuring the point-to-line fiducial and target registration errors (FRE, TRE). Centroid points along cross-sectional slices of the track are determined using region growing segmentation followed by application of a center-of-mass algorithm. The centerline points are registered to needle trajectories in robot coordinates by applying an iterative closest point algorithm between points and lines. Implementing this procedure with four fiducial needle tracks produced a point-to-line FRE and TRE of 246 ± 58 μm and 194 ± 18 μm, respectively. The proposed registration technique produced a TRE < 200 μm, in the presence of robot positioning error, meeting design specification. © 2008 American Association of Physicists in Medicine.

  4. Using Powerpoint Animations to Teach Operations Management Techniques and Concepts

    ERIC Educational Resources Information Center

    Treleven, Mark D.; Penlesky, Richard J.; Callarman, Thomas E.; Watts, Charles A.; Bragg, Daniel J.

    2014-01-01

    This article examines the value of using complex animated PowerPoint presentations to teach operations management techniques and concepts. To provide context, literature covering the use of PowerPoint animations in business education is briefly reviewed. The specific animations employed in this study are identified and their expected benefits to…

  5. Make Your Own Animated Movies. Yellow Ball Workshop Film Techniques.

    ERIC Educational Resources Information Center

    Anderson, Yvonne

    At the Yellow Ball Workshop, children and teenagers make animated films using simple art materials and camera equipment. Based on the animation techniques developed at the workshop, complete instructions for constructing backgrounds and characters and for animating the figures are provided. Setting up and using the camera, splicing film,…

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carey, Stephen A.; Minard, Kevin R.; Trease, Lynn L.

    ABSTRACT Age-related changes in gross and microscopic structure of the nasal cavity can alter local tissue susceptibility as well as the dose of inhaled toxicant delivered to susceptible sites. This article describes a novel method for the use of magnetic resonance imaging, 3-dimensional airway modeling, and morphometric techniques to characterize the distribution and magnitude of ozone-induced nasal injury in infant monkeys. Using this method, we are able to generate age-specific, 3-dimensional, epithelial maps of the nasal airways of infant Rhesus macaques. The principal nasal lesions observed in this primate model of ozone-induced nasal toxicology were neutrophilic rhinitis, along with necrosismore » and exfoliation of the epithelium lining the anterior maxilloturbinate. These lesions, induced by acute or cyclic (episodic) exposures, were examined by light microscopy, quantified by morphometric techniques, and mapped on 3-dimensional models of the nasal airways. Here, we describe the histopathologic, imaging, and computational biology methods developed to efficiently characterize, localize, quantify, and map these nasal lesions. By combining these techniques, the location and severity of the nasal epithelial injury were correlated with epithelial type, nasal airway geometry, and local biochemical and molecular changes on an individual animal basis. These correlations are critical for accurate predictive modeling of exposure-dose-response relationships in the nasal airways, and subsequent extrapolation of nasal findings in animals to humans for developing risk assessment.« less

  7. 2-D Animation's Not Just for Mickey Mouse.

    ERIC Educational Resources Information Center

    Weinman, Lynda

    1995-01-01

    Discusses characteristics of two-dimensional (2-D) animation; highlights include character animation, painting issues, and motion graphics. Sidebars present Silicon Graphics animations tools and 2-D animation programs for the desktop computer. (DGM)

  8. Cysteamine-based cell-permeable Zn(2+)-specific molecular bioimaging materials: from animal to plant cells.

    PubMed

    Sinha, Sougata; Dey, Gourab; Kumar, Sunil; Mathew, Jomon; Mukherjee, Trinetra; Mukherjee, Subhrakanti; Ghosh, Subrata

    2013-11-27

    Structure-interaction/fluorescence relationship studies led to the development of a small chemical library of Zn(2+)-specific cysteamine-based molecular probes. The probe L5 with higher excitation/emission wavelengths, which absorbs in the visible region and emits in the green, was chosen as a model imaging material for biological studies. After successful imaging of intracellular zinc in four different kinds of cells including living organisms, plant, and animal cells, in vivo imaging potential of L5 was evaluated using plant systems. In vivo imaging of translocation of zinc through the stem of a small herb with a transparent stem, Peperomia pellucida, confirmed the stability of L5 inside biological systems and the suitability of L5 for real-time analysis. Similarly, fluorescence imaging of zinc in gram sprouts revealed the efficacy of the probe in the detection and localization of zinc in cereal crops. This imaging technique will help in knowing the efficiency of various techniques used for zinc enrichment of cereal crops. Computational analyses were carried out to better understand the structure, the formation of probe-Zn(2+) complexes, and the emission properties of these complexes.

  9. Reconstructing the behavior of walking fruit flies

    NASA Astrophysics Data System (ADS)

    Berman, Gordon; Bialek, William; Shaevitz, Joshua

    2010-03-01

    Over the past century, the fruit fly Drosophila melanogaster has arisen as almost a lingua franca in the study of animal behavior, having been utilized to study questions in fields as diverse as sleep deprivation, aging, and drug abuse, amongst many others. Accordingly, much is known about what can be done to manipulate these organisms genetically, behaviorally, and physiologically. Most of the behavioral work on this system to this point has been experiments where the flies in question have been given a choice between some discrete set of pre-defined behaviors. Our aim, however, is simply to spend some time with a cadre of flies, using techniques from nonlinear dynamics, statistical physics, and machine learning in an attempt to reconstruct and gain understanding into their behavior. More specifically, we use a multi-camera set-up combined with a motion tracking stage in order to obtain long time-series of walking fruit flies moving about a glass plate. This experimental system serves as a test-bed for analytical, statistical, and computational techniques for studying animal behavior. In particular, we attempt to reconstruct the natural modes of behavior for a fruit fly through a data-driven approach in a manner inspired by recent work in C. elegans and cockroaches.

  10. Teaching 3D computer animation to illustrators: the instructor as translator and technical director.

    PubMed

    Koning, Wobbe F

    2012-01-01

    An art instructor discusses the difficulties he's encountered teaching computer graphics skills to undergraduate art students. To help the students, he introduced an automated-rigging script for character animation.

  11. Advances in computational metabolomics and databases deepen the understanding of metabolisms.

    PubMed

    Tsugawa, Hiroshi

    2018-01-29

    Mass spectrometry (MS)-based metabolomics is the popular platform for metabolome analyses. Computational techniques for the processing of MS raw data, for example, feature detection, peak alignment, and the exclusion of false-positive peaks, have been established. The next stage of untargeted metabolomics would be to decipher the mass fragmentation of small molecules for the global identification of human-, animal-, plant-, and microbiota metabolomes, resulting in a deeper understanding of metabolisms. This review is an update on the latest computational metabolomics including known/expected structure databases, chemical ontology classifications, and mass spectrometry cheminformatics for the interpretation of mass fragmentations and for the elucidation of unknown metabolites. The importance of metabolome 'databases' and 'repositories' is also discussed because novel biological discoveries are often attributable to the accumulation of data, to relational databases, and to their statistics. Lastly, a practical guide for metabolite annotations is presented as the summary of this review. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Computed tomography and cross-sectional anatomy of the metatarsus and digits of the one-humped camel (Camelus dromedarius) and buffalo ( Bos bubalis).

    PubMed

    El-Shafey, A; Kassab, A

    2013-04-01

    The purpose of the present study was to provide a detailed computed tomography (CT) and cross-sectional anatomic reference of the normal metatarsus and digits for the camel and buffalo, as well as to compare between metatarsus and digits in these animals to outstand a basis for diagnosis of their diseases. Advantages, including depiction of detailed cross-sectional anatomy, improved contrast resolution and computer reformatting, make it a potentially valuable diagnostic technique. The hind limbs of 12 healthy adult camel and buffalo were used. Clinically relevant anatomic structures were identified and labelled at each level in the corresponding images (CT and anatomic slices). CT images were used to identify the bony and soft tissue structures of the metatarsus and digits. The knowledge of normal anatomy of the camel and buffalo metatarsus and digits would serve as initial reference to the evaluation of CT images in these species. © 2012 Blackwell Verlag GmbH.

  13. Investigating the effect of cardiac oscillations and deadspace gas mixing during apnea using computer simulation.

    PubMed

    Laviola, Marianna; Das, Anup; Chikhani, Marc; Bates, Declan G; Hardman, Jonathan G

    2017-07-01

    Gaseous mixing in the anatomical deadspace with stimulation of respiratory ventilation through cardiogenic oscillations is an important physiological mechanism at the onset of apnea, which has been credited with various beneficial effects, e.g. reduction of hypercapnia during the use of low flow ventilation techniques. In this paper, a novel method is proposed to investigate the effect of these mechanisms in silico. An existing computational model of cardio-pulmonary physiology is extended to include the apneic state, gas mixing within the anatomical deadspace, insufflation into the trachea and cardiogenic oscillations. The new model is validated against data published in an experimental animal (dog) study that reported an increase in arterial partial pressure of carbon dioxide (PaCO 2 ) during apnea. Computational simulations confirm that the model outputs accurately reproduce the available experimental data. This new model can be used to investigate the physiological mechanisms underlying clearance of carbon dioxide during apnea, and hence to develop more effective ventilation strategies for apneic patients.

  14. The GI Project: a prototype electronic textbook for high school biology.

    PubMed

    Calhoun, P S; Fishman, E K

    1997-01-01

    A prototype electronic science textbook for secondary education was developed to help bridge the gap between state-of-the-art medical technology and the basic science classroom. The prototype combines the latest in radiologic imaging techniques with a user-friendly multimedia computer program to teach the anatomy, physiology, and diseases of the gastrointestinal (GI) tract. The program includes original text, illustrations, photographs, animations, images from upper GI studies, plain radiographs, computed tomographic images, and three-dimensional reconstructions. These features are intended to create a stimulus-rich environment in which the high school science student can enjoy a variety of interactive experiences that will facilitate the learning process. The computer-based book is a new educational tool that promises to play a prominent role in the coming years. Current research suggests that computer-based books are valuable as an alternative educational medium. Although it is not yet clear what form textbooks will take in the future, computer-based books are already proving valuable as an alternative educational medium. For beginning students, they reinforce the material found in traditional textbooks and class presentations; for advanced students, they provide motivation to learn outside the traditional classroom.

  15. Computer-task testing of rhesus monkeys (Macaca mulatta) in the social milieu.

    PubMed

    Washburn, D A; Harper, S; Rumbaugh, D M

    1994-07-01

    Previous research has demonstrated that a behavior and performance testing paradigm, in which rhesus monkeys (Macaca mulatta) manipulate a joystick to respond to computer-generated stimuli, provides environmental enrichment and supports the psychological well-being of captive research animals. The present study was designed to determine whether computer-task activity would be affected by pair-housing animals that had previously been tested only in their single-animal home cages. No differences were observed in productivity or performance levels as a function of housing condition, even when the animals were required to "self-identify" prior to performing each trial. The data indicate that cognitive challenge and control are as preferred by the animals as social opportunities, and that, together with comfort/health considerations, each must be addressed for the assurance of psychological well-being.

  16. An Examination of the Impact of Computer-Based Animations and Visualization Sequence on Student Understanding of Hadley Cells in Atmospheric Circulation

    ERIC Educational Resources Information Center

    Harris, Daniel Wyatt

    2012-01-01

    Research examining animation use for student learning has been conducted in the last two decades across a multitude of instructional environments and content areas. The extensive construction and implementation of animations in learning resulted from the availability of powerful computing systems and the perceived advantages the novel medium…

  17. Using Videos and 3D Animations for Conceptual Learning in Basic Computer Units

    ERIC Educational Resources Information Center

    Cakiroglu, Unal; Yilmaz, Huseyin

    2017-01-01

    This article draws on a one-semester study to investigate the effect of videos and 3D animations on students' conceptual understandings about basic computer units. A quasi-experimental design was carried out in two classrooms; videos and 3D animations were used in classroom activities in one group and those were used for homework in the other…

  18. Animal-Related Computer Simulation Programs for Use in Education and Research. AWIC Series Number 1.

    ERIC Educational Resources Information Center

    Engler, Kevin P.

    Computer models have definite limitations regarding the representation of biological systems, but they do have useful applications in reducing the number of animals used to study physiological systems, especially for educational purposes. This guide lists computer models that simulate living systems and can be used to demonstrate physiological,…

  19. Production of Computer Animated Movies for Educational Purposes.

    ERIC Educational Resources Information Center

    Elberg, H. H.

    A detailed account is given in this paper of the procedures and the equipment used in producing six computer-animated instructional movies. First, the sequence of events were described in a script, which, together with the analytical expressions that were dealt with, formed the basis of a program. Then, the program was run on a computer and the…

  20. Teaching ocean wave forecasting using computer-generated visualization and animation—Part 1: sea forecasting

    NASA Astrophysics Data System (ADS)

    Whitford, Dennis J.

    2002-05-01

    Ocean waves are the most recognized phenomena in oceanography. Unfortunately, undergraduate study of ocean wave dynamics and forecasting involves mathematics and physics and therefore can pose difficulties with some students because of the subject's interrelated dependence on time and space. Verbal descriptions and two-dimensional illustrations are often insufficient for student comprehension. Computer-generated visualization and animation offer a visually intuitive and pedagogically sound medium to present geoscience, yet there are very few oceanographic examples. A two-part article series is offered to explain ocean wave forecasting using computer-generated visualization and animation. This paper, Part 1, addresses forecasting of sea wave conditions and serves as the basis for the more difficult topic of swell wave forecasting addressed in Part 2. Computer-aided visualization and animation, accompanied by oral explanation, are a welcome pedagogical supplement to more traditional methods of instruction. In this article, several MATLAB ® software programs have been written to visualize and animate development and comparison of wave spectra, wave interference, and forecasting of sea conditions. These programs also set the stage for the more advanced and difficult animation topics in Part 2. The programs are user-friendly, interactive, easy to modify, and developed as instructional tools. By using these software programs, teachers can enhance their instruction of these topics with colorful visualizations and animation without requiring an extensive background in computer programming.

  1. In Vivo Fluorescence Imaging and Tracking of Circulating Cells and Therapeutic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Markovic, Stacey

    Noninvasive enumeration of rare circulating cells in small animals is of great importance in many areas of biomedical research, but most existing enumeration techniques involve drawing and enriching blood which is known to be problematic. Recently, small animal "in vivo flow cytometry" (IVFC) techniques have been developed, where cells flowing through small arterioles are counted continuously and noninvasively in vivo. However, higher sensitivity IVFC techniques are needed for studying low-abundance (<100/mL) circulating cells. To this end, we developed a macroscopic fluorescence imaging system and automated computer vision algorithm that allows in vivo detection, enumeration and tracking of circulating fluorescently labeled cells from multiple large blood vessels in the ear of a mouse. This technique ---"computer vision IVFC" (CV-IVFC) --- allows cell detection and enumeration at concentrations of 20 cells/mL. Performance of CV-IVFC was also characterized for low-contrast imaging scenarios, representing conditions of weak cell fluorescent labeling or high background tissue autofluorescence, and showed efficient tracking and enumeration of circulating cells with 50% sensitivity in contrast conditions degraded 2 orders of magnitude compared to in vivo testing supporting the potential utility of CV-IVFC in a range of biological models. Refinement of prior work in our lab of a separate rare-cell detection platform - "diffuse fluorescence flow cytometry" (DFFC) --- implemented a "frequency encoding" scheme by modulating two excitation lasers. Fluorescent light from both lasers can be simultaneously detected and split by frequency allowing for better discrimination of noise, sensitivity, and cell localization. The system design is described in detail and preliminary data is shown. Last, we developed a broad-field transmission fluorescence imaging system to observe nanoparticle (NP) diffusion in bulk biological tissue. Novel, implantable NP spacers allow controlled, long-term release of drugs. However, kinetics of NP (drug) diffusion over time is still poorly understood. Our imaging system allowed us to quantify diffusion of free dye and NPs of different sizes in vitro and in vivo. Subsequent analysis verified that there was continuous diffusion which could be controlled based on particle size. Continued use of this imaging system will aid optimization of NP spacers.

  2. Experiment K305: Quantitative analysis of selected bone parameters. Supplement 3A: Trabecular spacing and orientation in the long bones

    NASA Technical Reports Server (NTRS)

    Judy, M. M.

    1981-01-01

    Values of mean trabecular spacing computed from optical diffraction patterns of 1:1 X-ray micrographs of tibial metaphysis and those obtained by standard image digitization techniques show excellent agreement. Upper limits on values of mean trabecular orientation deduced from diffraction patterns and the images are also in excellent agreement. Values of the ratio of mean trabecular spatial density in a region of 300 micrometers distal to the downwardly directed convexity in the cartilage growth plate to the value adjacent to the plate determined for flight animals sacrificed at recovery were significantly smaller than values for vivarium control animals. No significant differences were found in proximal regions. No significant differences in mean trabecular orientation were detected. Decreased values of trabecular spatial density and of both obsteoblastic activity and trabecular cross-sectional area noted in collateral researches suggest decreased modeling activity under weightlessness.

  3. Molecular Imaging of Influenza and Other Emerging Respiratory Viral Infections

    PubMed Central

    Lawler, James; Paragas, Jason; Jahrling, Peter B.; Mollura, Daniel J.

    2011-01-01

    Research on the pathogenesis and therapy of influenza and other emerging respiratory viral infections would be aided by methods that directly visualize pathophysiologic processes in patients and laboratory animals. At present, imaging of diseases, such as swine-origin H1N1 influenza, is largely restricted to chest radiograph and computed tomography (CT), which can detect pulmonary structural changes in severely ill patients but are more limited in characterizing the early stages of illness, differentiating inflammation from infection or tracking immune responses. In contrast, imaging modalities, such as positron emission tomography, single photon emission CT, magnetic resonance imaging, and bioluminescence imaging, which have become useful tools for investigating the pathogenesis of a range of disease processes, could be used to advance in vivo studies of respiratory viral infections in patients and animals. Molecular techniques might also be used to identify novel biomarkers of disease progression and to evaluate new therapies. PMID:21422476

  4. Morphometric analysis of rat muscle fibers following space flight and hypogravity

    NASA Technical Reports Server (NTRS)

    Chui, L. A.; Castleman, K. R.

    1982-01-01

    The effect of hypogravity on striate muscles, containing both fast twitch glycolytic and slow twitch oxidative fibers, was studied in rats aboard two Cosmos biosatellites. Results of a computer-assisted image analysis of extensor digitorum muscles from five rats, exposed to 18.5 days of hypogravity and processed for the alkaline ATPase reaction, showed a reduction of the mean fiber diameter (41.32 + or - 0.55 microns), compared to synchronous (46.32 + or - 0.55 microns) and vivarium (49 + or - 0.5 microns) controls. A further experiment studied the ratio of fast to slow twitch fibers in 25 rats exposed to 18.5 days of hypogravity and analyzed at four different periods of recovery following the space flight. Using the previous techniques, the gastrocnemius muscle showed a reduction of the total muscle fiber area in square microns and a reduction in the percentage of slow fibers of flight animals compared to the control animals.

  5. Parameterized Facial Expression Synthesis Based on MPEG-4

    NASA Astrophysics Data System (ADS)

    Raouzaiou, Amaryllis; Tsapatsoulis, Nicolas; Karpouzis, Kostas; Kollias, Stefanos

    2002-12-01

    In the framework of MPEG-4, one can include applications where virtual agents, utilizing both textual and multisensory data, including facial expressions and nonverbal speech help systems become accustomed to the actual feelings of the user. Applications of this technology are expected in educational environments, virtual collaborative workplaces, communities, and interactive entertainment. Facial animation has gained much interest within the MPEG-4 framework; with implementation details being an open research area (Tekalp, 1999). In this paper, we describe a method for enriching human computer interaction, focusing on analysis and synthesis of primary and intermediate facial expressions (Ekman and Friesen (1978)). To achieve this goal, we utilize facial animation parameters (FAPs) to model primary expressions and describe a rule-based technique for handling intermediate ones. A relation between FAPs and the activation parameter proposed in classical psychological studies is established, leading to parameterized facial expression analysis and synthesis notions, compatible with the MPEG-4 standard.

  6. Dual-modality imaging

    NASA Astrophysics Data System (ADS)

    Hasegawa, Bruce; Tang, H. Roger; Da Silva, Angela J.; Wong, Kenneth H.; Iwata, Koji; Wu, Max C.

    2001-09-01

    In comparison to conventional medical imaging techniques, dual-modality imaging offers the advantage of correlating anatomical information from X-ray computed tomography (CT) with functional measurements from single-photon emission computed tomography (SPECT) or with positron emission tomography (PET). The combined X-ray/radionuclide images from dual-modality imaging can help the clinician to differentiate disease from normal uptake of radiopharmaceuticals, and to improve diagnosis and staging of disease. In addition, phantom and animal studies have demonstrated that a priori structural information from CT can be used to improve quantification of tissue uptake and organ function by correcting the radionuclide data for errors due to photon attenuation, partial volume effects, scatter radiation, and other physical effects. Dual-modality imaging therefore is emerging as a method of improving the visual quality and the quantitative accuracy of radionuclide imaging for diagnosis of patients with cancer and heart disease.

  7. Marine bioacoustics and technology: The new world of marine acoustic ecology

    NASA Astrophysics Data System (ADS)

    Hastings, Mardi C.; Au, Whitlow W. L.

    2012-11-01

    Marine animals use sound for communication, navigation, predator avoidance, and prey detection. Thus the rise in acoustic energy associated with increasing human activity in the ocean has potential to impact the lives of marine animals. Thirty years ago marine bioacoustics primarily focused on evaluating effects of human-generated sound on hearing and behavior by testing captive animals and visually observing wild animals. Since that time rapidly changing electronic and computing technologies have yielded three tools that revolutionized how bioacousticians study marine animals. These tools are (1) portable systems for measuring electrophysiological auditory evoked potentials, (2) miniaturized tags equipped with positioning sensors and acoustic recording devices for continuous short-term acoustical observation rather than intermittent visual observation, and (3) passive acoustic monitoring (PAM) systems for remote long-term acoustic observations at specific locations. The beauty of these breakthroughs is their direct applicability to wild animals in natural habitats rather than only to animals held in captivity. Hearing capabilities of many wild species including polar bears, beaked whales, and reef fishes have now been assessed by measuring their auditory evoked potentials. Miniaturized acoustic tags temporarily attached to an animal to record its movements and acoustic environment have revealed the acoustic foraging behavior of sperm and beaked whales. Now tags are being adapted to fishes in effort to understand their behavior in the presence of noise. Moving and static PAM systems automatically detect and characterize biological and physical features of an ocean area without adding any acoustic energy to the environment. PAM is becoming a powerful technique for understanding and managing marine habitats. This paper will review the influence of these transformative tools on the knowledge base of marine bioacoustics and elucidation of relationships between marine animals and their acoustic environment, leading to a new, rapidly growing field of marine acoustic ecology.

  8. On Animating 2D Velocity Fields

    NASA Technical Reports Server (NTRS)

    Kao, David; Pang, Alex; Yan, Jerry (Technical Monitor)

    2001-01-01

    A velocity field, even one that represents a steady state flow, implies a dynamical system. Animated velocity fields is an important tool in understanding such complex phenomena. This paper looks at a number of techniques that animate velocity fields and propose two new alternatives. These are texture advection and streamline cycling. The common theme among these techniques is the use of advection on some texture to generate a realistic animation of the velocity field. Texture synthesis and selection for these methods are presented. Strengths and weaknesses of the techniques are also discussed in conjunctions with several examples.

  9. On Animating 2D Velocity Fields

    NASA Technical Reports Server (NTRS)

    Kao, David; Pang, Alex

    2000-01-01

    A velocity field. even one that represents a steady state flow implies a dynamical system. Animated velocity fields is an important tool in understanding such complex phenomena. This paper looks at a number of techniques that animate velocity fields and propose two new alternatives, These are texture advection and streamline cycling. The common theme among these techniques is the use of advection on some texture to generate a realistic animation of the velocity field. Texture synthesis and selection for these methods are presented. Strengths and weaknesses of the techniques are also discussed in conjunction with several examples.

  10. Progress in Cell Marking for Synchrotron X-ray Computed Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Christopher; Sturm, Erica; Schultke, Elisabeth

    2010-07-23

    Recently there has been an increase in research activity into finding ways of marking cells in live animals for pre-clinical trials. Development of certain drugs and other therapies crucially depend on tracking particular cells or cell types in living systems. Therefore cell marking techniques are required which will enable longitudinal studies, where individuals can be examined several times over the course of a therapy or study. The benefits of being able to study both disease and therapy progression in individuals, rather than cohorts are clear. The need for high contrast 3-D imaging, without harming or altering the biological system requiresmore » a non-invasive yet penetrating imaging technique. The technique will also have to provide an appropriate spatial and contrast resolution. X-ray computed tomography offers rapid acquisition of 3-D images and is set to become one of the principal imaging techniques in this area. Work by our group over the last few years has shown that marking cells with gold nano-particles (GNP) is an effective means of visualising marked cells in-vivo using x-ray CT. Here we report the latest results from these studies. Synchrotron X-ray CT images of brain lesions in rats taken using the SYRMEP facility at the Elettra synchrotron in 2009 have been compared with histological examination of the tissues. Some deductions are drawn about the visibility of the gold loaded cells in both light microscopy and x-ray imaging.« less

  11. Progress in Cell Marking for Synchrotron X-ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Hall, Christopher; Sturm, Erica; Schultke, Elisabeth; Arfelli, Fulvia; Menk, Ralf-Hendrik; Astolfo, Alberto; Juurlink, Bernhard H. J.

    2010-07-01

    Recently there has been an increase in research activity into finding ways of marking cells in live animals for pre-clinical trials. Development of certain drugs and other therapies crucially depend on tracking particular cells or cell types in living systems. Therefore cell marking techniques are required which will enable longitudinal studies, where individuals can be examined several times over the course of a therapy or study. The benefits of being able to study both disease and therapy progression in individuals, rather than cohorts are clear. The need for high contrast 3-D imaging, without harming or altering the biological system requires a non-invasive yet penetrating imaging technique. The technique will also have to provide an appropriate spatial and contrast resolution. X-ray computed tomography offers rapid acquisition of 3-D images and is set to become one of the principal imaging techniques in this area. Work by our group over the last few years has shown that marking cells with gold nano-particles (GNP) is an effective means of visualising marked cells in-vivo using x-ray CT. Here we report the latest results from these studies. Synchrotron X-ray CT images of brain lesions in rats taken using the SYRMEP facility at the Elettra synchrotron in 2009 have been compared with histological examination of the tissues. Some deductions are drawn about the visibility of the gold loaded cells in both light microscopy and x-ray imaging.

  12. Prompt gamma-ray imaging for small animals

    NASA Astrophysics Data System (ADS)

    Xu, Libai

    Small animal imaging is recognized as a powerful discovery tool for small animal modeling of human diseases, which is providing an important clue to complete understanding of disease mechanisms and is helping researchers develop and test new treatments. The current small animal imaging techniques include positron emission tomography (PET), single photon emission tomography (SPECT), computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound (US). A new imaging modality called prompt gamma-ray imaging (PGI) has been identified and investigated primarily by Monte Carlo simulation. Currently it is suggested for use on small animals. This new technique could greatly enhance and extend the present capabilities of PET and SPECT imaging from ingested radioisotopes to the imaging of selected non-radioactive elements, such as Gd, Cd, Hg, and B, and has the great potential to be used in Neutron Cancer Therapy to monitor neutron distribution and neutron-capture agent distribution. This approach consists of irradiating small animals in the thermal neutron beam of a nuclear reactor to produce prompt gamma rays from the elements in the sample by the radiative capture (n, gamma) reaction. These prompt gamma rays are emitted in energies that are characteristic of each element and they are also produced in characteristic coincident chains. After measuring these prompt gamma rays by surrounding spectrometry array, the distribution of each element of interest in the sample is reconstructed from the mapping of each detected signature gamma ray by either electronic collimations or mechanical collimations. In addition, the transmitted neutrons from the beam can be simultaneously used for very sensitive anatomical imaging, which provides the registration for the elemental distributions obtained from PGI. The primary approach is to use Monte Carlo simulation methods either with the specific purpose code CEARCPG, developed at NC State University or with the general purpose codes GEANT4 or MCNP5, to predict results and investigate the feasibility of this new imaging idea. Benchmark experiments have been conducted to test the capability of the code to simulate prompt gamma rays, which are produced by following the nuclear structures of each irradiated isotope, and coincidence counting techniques, which are considered the most important improvement in neutron-related gamma-ray detection applications to reduce gamma background and improve system signal-to-noise ratios. With coincidence prompt gamma rays available, two major imaging techniques, electronic collimations and mechanic collimations, are implemented in the simulation to illustrate the feasibility of imaging elemental distribution by this new technique. The expectation maximization algorithm is employed in electronic collimation to reconstruct images. The common SPECT imaging algorithms are used in mechanical collimation to get an image. Several critical topics concerning practical applications have already been discussed, such as the radiation dose to the mouse and the detection efficiency of high-energy gamma rays. The funding of this work is provided by the Center for Engineering Application of Radioisotopes (CEAR) at North Carolina State University (NCSU) and Nuclear Engineering Education Research.

  13. Real time animation of space plasma phenomena

    NASA Technical Reports Server (NTRS)

    Jordan, K. F.; Greenstadt, E. W.

    1987-01-01

    In pursuit of real time animation of computer simulated space plasma phenomena, the code was rewritten for the Massively Parallel Processor (MPP). The program creates a dynamic representation of the global bowshock which is based on actual spacecraft data and designed for three dimensional graphic output. This output consists of time slice sequences which make up the frames of the animation. With the MPP, 16384, 512 or 4 frames can be calculated simultaneously depending upon which characteristic is being computed. The run time was greatly reduced which promotes the rapid sequence of images and makes real time animation a foreseeable goal. The addition of more complex phenomenology in the constructed computer images is now possible and work proceeds to generate these images.

  14. Is Wildlife Fertility Control Always Humane?

    PubMed Central

    Hampton, Jordan O.; Hyndman, Timothy H.; Barnes, Anne; Collins, Teresa

    2015-01-01

    Simple Summary There are various fertility control methods (modalities) currently available that aim to reduce the abundance of problematic free-ranging mammalian wildlife. Here, we propose that dissimilarities in the mechanism of action indicate these methods produce great variation in animal welfare outcomes. We present a framework to assist managers in minimising animal welfare risks. Abstract Investigation of fertility control techniques to reduce reproductive rates in wildlife populations has been the source of much research. Techniques targeting wildlife fertility have been diverse. Most research into fertility control methods has focused upon efficacy, with few studies rigorously assessing animal welfare beyond opportunistic anecdote. However, fertility control techniques represent several very different mechanisms of action (modalities), each with their own different animal welfare risks. We provide a review of the mechanisms of action for fertility control methods, and consider the role of manipulation of reproductive hormones (“endocrine suppression”) for the long-term ability of animals to behave normally. We consider the potential welfare costs of animal manipulation techniques that are required to administer fertility treatments, including capture, restraint, surgery and drug delivery, and the requirement for repeated administration within the lifetime of an animal. We challenge the assumption that fertility control modalities generate similar and desirable animal welfare outcomes, and we argue that knowledge of reproductive physiology and behaviour should be more adeptly applied to wild animal management decisions. We encourage wildlife managers to carefully assess long-term behavioural risks, associated animal handling techniques, and the importance of positive welfare states when selecting fertility control methods as a means of population control. PMID:26506395

  15. Teaching Animal Physiology: A 12-Year Experience Transitioning from a Classical to Interactive Approach with Continual Assessment and Computer Alternatives

    ERIC Educational Resources Information Center

    Kaisarevic, Sonja N.; Andric, Silvana A.; Kostic, Tatjana S.

    2017-01-01

    In response to the Bologna Declaration and contemporary trends in Animal Physiology education, the Animal Physiology course at the Faculty of Sciences, University of Novi Sad, Serbia, has evolved over a 12-year period (2001-2012): from a classical two-semester course toward a one-semester course utilizing computer simulations of animal…

  16. Time-scheduled delivery of computer health animations: "Installing" healthy habits of computer use.

    PubMed

    Wang, Sy-Chyi; Chern, Jin-Yuan

    2013-06-01

    The development of modern technology brings convenience to our lives but removes physical activity from our daily routines, thereby putting our lives at risk. Extended computer use may contribute to symptoms such as visual impairment and musculoskeletal disorders. To help reduce the risk of physical inactivity and promote healthier computer use, this study developed a time-scheduled delivery of health-related animations for users sitting in front of computers for prolonged periods. In addition, we examined the effects that the program had on the computer-related health behavior intentions and actions of participants. Two waves of questionnaires were implemented for data collection before and after intervention. The results showed that the animation program indeed had a positive effect on participants' healthy computer use actions in terms of breathtaking, body massages, and body stretches. It also helped to bridge the intention-action gap of the health behaviors. The development and evaluation were documented, and users' experiences/suggestions were discussed at the end.

  17. Effects of Static Visuals and Computer-Generated Animations in Facilitating Immediate and Delayed Achievement in the EFL Classroom

    ERIC Educational Resources Information Center

    Lin, Huifen; Chen, Tsuiping; Dwyer, Francis M.

    2006-01-01

    The purpose of this experimental study was to compare the effects of using static visuals versus computer-generated animation to enhance learners' comprehension and retention of a content-based lesson in a computer-based learning environment for learning English as a foreign language (EFL). Fifty-eight students from two EFL reading sections were…

  18. Hop, Skip and Jump: Animation Software.

    ERIC Educational Resources Information Center

    Eiser, Leslie

    1986-01-01

    Discusses the features of animation software packages, reviewing eight commercially available programs. Information provided for each program includes name, publisher, current computer(s) required, cost, documentation, input device, import/export capabilities, printing possibilities, what users can originate, types of image manipulation possible,…

  19. UHMWPE Sublaminar Wires in Posterior Spinal Instrumentation: Stability and Biocompatibility Assessment in an Ovine Pilot Study.

    PubMed

    Bogie, Rob; Voss, Laura; Arts, Jacobus J; Lataster, Arno; Willems, Paul C; Brans, Boudewijn; van Rhijn, Lodewijk W; Welting, Tim J M

    2016-12-01

    An animal study. To explore ultra-high molecular weight polyethylene (UHMWPE) sublaminar wires in spinal surgery and to assess stability and biocompatibility of the UHMWPE instrumentation in an ovine model. Sublaminar wiring is a well-established technique in segmental scoliosis surgery. However, during introduction and/or removal of the metal sublaminar wires, neurological problems can occur. Abrasion after cutting metal wires for removal can lead to damage to the dural sac. Sublaminar wires have to withhold large forces and breakage of the wires can occur. Different types of sublaminar wires have been developed to address these problems. UHMWPE sublaminar wires can potentially substitute currently used metal sublaminar metal wires. In vivo testing and biocompatibility analysis of UHMWPE wires are recommended before clinical use in spinal surgery. In 6 immature sheep, pedicle screws were instrumented at lumbar level L4 and attached with titanium rods to 4 thoracolumbar vertebrae using 3- and 5-mm-wide UHMWPE sublaminar wiring constructions in 5 animals. Titanium sublaminar wires were applied in 1 animal to function as a control subject. After a follow-up period of 16 weeks, the animals were sacrificed and the spines were isolated. Radiographs and computed tomography (CT) scans were made to assess stability of the instrumentation. The vertebrae were dissected for macroscopic and histologic evaluation. None of the wires had loosened and the instrumentation remained stable. CT scans and radiographs showed no signs of failure of the instrumentation and no neurological complications occurred. Although several bony bridges were seen on CT, growth was observed at the operated levels. Biocompatibility was assessed by macroscopical and histologic analysis, showing no signs of dural or epidural inflammation. This pilot animal study shows that UHMWPE sublaminar wiring is a safe technique. The UHMWPE wires are biocompatible and provide sufficient stability in spinal instrumentation. Heterotopic ossification because of periost reactions in the ovine spine led to some restrictions in this study.

  20. Quantitative Assessment of Foot Blood Flow by Using Dynamic Volume Perfusion CT Technique: A Feasibility Study.

    PubMed

    Hur, Saebeom; Jae, Hwan Jun; Jang, Yeonggul; Min, Seung-Kee; Min, Sang-Il; Lee, Dong Yeon; Seo, Sang Gyo; Kim, Hyo-Cheol; Chung, Jin Wook; Kim, Kwang Gi; Park, Eun-Ah; Lee, Whal

    2016-04-01

    To demonstrate the feasibility of foot blood flow measurement by using dynamic volume perfusion computed tomographic (CT) technique with the upslope method in an animal experiment and a human study. The human study was approved by the institutional review board, and written informed consent was obtained from all patients. The animal study was approved by the research animal care and use committee. A perfusion CT experiment was first performed by using rabbits. A color-coded perfusion map was reconstructed by using in-house perfusion analysis software based on the upslope method, and the measured blood flow on the map was compared with the reference standard microsphere method by using correlation analysis. A total of 17 perfusion CT sessions were then performed (a) once in five human patients and (b) twice (before and after endovascular revascularization) in six human patients. Perfusion maps of blood flow were reconstructed and analyzed. The Wilcoxon signed rank test was used to prove significant differences in blood flow before and after treatment. The animal experiment demonstrated a strong correlation (R(2) = 0.965) in blood flow between perfusion CT and the microsphere method. Perfusion maps were obtained successfully in 16 human clinical sessions (94%) with the use of 32 mL of contrast medium and an effective radiation dose of 0.31 mSv (k factor for the ankle, 0.0002). The plantar dermis showed the highest blood flow among all anatomic structures of the foot, including muscle, subcutaneous tissue, tendon, and bone. After a successful revascularization procedure, the blood flow of the plantar dermis increased by 153% (P = .031). The interpretations of the color-coded perfusion map correlated well with the clinical and angiographic findings. Perfusion CT could be used to measure foot blood flow in both animals and humans. It can be a useful modality for the diagnosis of peripheral arterial disease by providing quantitative information on foot perfusion status.

  1. Principles for developing animal models of military PTSD

    PubMed Central

    Daskalakis, Nikolaos P.; Yehuda, Rachel

    2014-01-01

    The extent to which animal studies can be relevant to military posttraumatic stress disorder (PTSD) continues to be a matter of discussion. Some features of the clinical syndrome are more easily modeled than others. In the animal literature, a great deal of attention is focused on modeling the characteristics of military exposures and their impact on measurable behaviors and biological parameters. There are many issues to consider regarding the ecological validity of predator, social defeat or immobilization stress to combat-related experience. In contrast, less attention has been paid to individual variation following these exposures. Such variation is critical to understand how individual differences in the response to military trauma exposure may result to PTSD or resilience. It is important to consider potential differences in biological findings when comparing extremely exposed to non-exposed animals, versus those that result from examining individual differences. Animal models of military PTSD are also critical in advancing efforts in clinical treatment. In an ideal translational approach to study deployment related outcomes, information from humans and animals, blood and brain, should be carefully considered in tandem, possibly even computed simultaneously, to identify molecules, pathways and networks that are likely to be the key drivers of military PTSD symptoms. With the use novel biological methodologies (e.g., optogenetics) in the animal models, critical genes and pathways can be tuned up or down (rather than over-expressed or ablated completely) in discrete brain regions. Such techniques together with pre-and post-deployment human imaging will accelerate the identification of novel pharmacological and non-pharmacological intervention strategies. PMID:25206946

  2. Spotting East African mammals in open savannah from space.

    PubMed

    Yang, Zheng; Wang, Tiejun; Skidmore, Andrew K; de Leeuw, Jan; Said, Mohammed Y; Freer, Jim

    2014-01-01

    Knowledge of population dynamics is essential for managing and conserving wildlife. Traditional methods of counting wild animals such as aerial survey or ground counts not only disturb animals, but also can be labour intensive and costly. New, commercially available very high-resolution satellite images offer great potential for accurate estimates of animal abundance over large open areas. However, little research has been conducted in the area of satellite-aided wildlife census, although computer processing speeds and image analysis algorithms have vastly improved. This paper explores the possibility of detecting large animals in the open savannah of Maasai Mara National Reserve, Kenya from very high-resolution GeoEye-1 satellite images. A hybrid image classification method was employed for this specific purpose by incorporating the advantages of both pixel-based and object-based image classification approaches. This was performed in two steps: firstly, a pixel-based image classification method, i.e., artificial neural network was applied to classify potential targets with similar spectral reflectance at pixel level; and then an object-based image classification method was used to further differentiate animal targets from the surrounding landscapes through the applications of expert knowledge. As a result, the large animals in two pilot study areas were successfully detected with an average count error of 8.2%, omission error of 6.6% and commission error of 13.7%. The results of the study show for the first time that it is feasible to perform automated detection and counting of large wild animals in open savannahs from space, and therefore provide a complementary and alternative approach to the conventional wildlife survey techniques.

  3. Toward a computational theory for motion understanding: The expert animators model

    NASA Technical Reports Server (NTRS)

    Mohamed, Ahmed S.; Armstrong, William W.

    1988-01-01

    Artificial intelligence researchers claim to understand some aspect of human intelligence when their model is able to emulate it. In the context of computer graphics, the ability to go from motion representation to convincing animation should accordingly be treated not simply as a trick for computer graphics programmers but as important epistemological and methodological goal. In this paper we investigate a unifying model for animating a group of articulated bodies such as humans and robots in a three-dimensional environment. The proposed model is considered in the framework of knowledge representation and processing, with special reference to motion knowledge. The model is meant to help setting the basis for a computational theory for motion understanding applied to articulated bodies.

  4. Effective Parallel Algorithm Animation

    DTIC Science & Technology

    1994-03-01

    parallel computer. The system incorporates the 14 Parallel Processing System us" r User User UMe PMwuM Progra Propu Plropm ýData Dots Data Daft...that produce meaningful animations. The following sections outline characteristics 146 Animation 0 71 r 40 02 I 5 * *2! 4 Idle Bu~sy Send Recv 7...Event Simulation. Technical Report, Georgia Institute of Technology, 1992. 22. Garey, Michael R . and David S. Johnson. Computers and Intractability: A

  5. The Impact of Animation in CD-ROM Books on Students' Reading Behaviors and Comprehension.

    ERIC Educational Resources Information Center

    Okolo, Cindy; Hayes, Renee

    This study evaluated the use of children's literature presented via one of three conditions: an adult reading a book to the child; the child reading a CD-ROM version of a book on the computer but without animation; and the child reading the book on the computer with high levels of animation. The study, in one primary grade classroom, involved 10…

  6. A computational pipeline for quantification of pulmonary infections in small animal models using serial PET-CT imaging

    PubMed Central

    2013-01-01

    Background Infectious diseases are the second leading cause of death worldwide. In order to better understand and treat them, an accurate evaluation using multi-modal imaging techniques for anatomical and functional characterizations is needed. For non-invasive imaging techniques such as computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET), there have been many engineering improvements that have significantly enhanced the resolution and contrast of the images, but there are still insufficient computational algorithms available for researchers to use when accurately quantifying imaging data from anatomical structures and functional biological processes. Since the development of such tools may potentially translate basic research into the clinic, this study focuses on the development of a quantitative and qualitative image analysis platform that provides a computational radiology perspective for pulmonary infections in small animal models. Specifically, we designed (a) a fast and robust automated and semi-automated image analysis platform and a quantification tool that can facilitate accurate diagnostic measurements of pulmonary lesions as well as volumetric measurements of anatomical structures, and incorporated (b) an image registration pipeline to our proposed framework for volumetric comparison of serial scans. This is an important investigational tool for small animal infectious disease models that can help advance researchers’ understanding of infectious diseases. Methods We tested the utility of our proposed methodology by using sequentially acquired CT and PET images of rabbit, ferret, and mouse models with respiratory infections of Mycobacterium tuberculosis (TB), H1N1 flu virus, and an aerosolized respiratory pathogen (necrotic TB) for a total of 92, 44, and 24 scans for the respective studies with half of the scans from CT and the other half from PET. Institutional Administrative Panel on Laboratory Animal Care approvals were obtained prior to conducting this research. First, the proposed computational framework registered PET and CT images to provide spatial correspondences between images. Second, the lungs from the CT scans were segmented using an interactive region growing (IRG) segmentation algorithm with mathematical morphology operations to avoid false positive (FP) uptake in PET images. Finally, we segmented significant radiotracer uptake from the PET images in lung regions determined from CT and computed metabolic volumes of the significant uptake. All segmentation processes were compared with expert radiologists’ delineations (ground truths). Metabolic and gross volume of lesions were automatically computed with the segmentation processes using PET and CT images, and percentage changes in those volumes over time were calculated. (Continued on next page)(Continued from previous page) Standardized uptake value (SUV) analysis from PET images was conducted as a complementary quantitative metric for disease severity assessment. Thus, severity and extent of pulmonary lesions were examined through both PET and CT images using the aforementioned quantification metrics outputted from the proposed framework. Results Each animal study was evaluated within the same subject class, and all steps of the proposed methodology were evaluated separately. We quantified the accuracy of the proposed algorithm with respect to the state-of-the-art segmentation algorithms. For evaluation of the segmentation results, dice similarity coefficient (DSC) as an overlap measure and Haussdorf distance as a shape dissimilarity measure were used. Significant correlations regarding the estimated lesion volumes were obtained both in CT and PET images with respect to the ground truths (R2=0.8922,p<0.01 and R2=0.8664,p<0.01, respectively). The segmentation accuracy (DSC (%)) was 93.4±4.5% for normal lung CT scans and 86.0±7.1% for pathological lung CT scans. Experiments showed excellent agreements (all above 85%) with expert evaluations for both structural and functional imaging modalities. Apart from quantitative analysis of each animal, we also qualitatively showed how metabolic volumes were changing over time by examining serial PET/CT scans. Evaluation of the registration processes was based on precisely defined anatomical landmark points by expert clinicians. An average of 2.66, 3.93, and 2.52 mm errors was found in rabbit, ferret, and mouse data (all within the resolution limits), respectively. Quantitative results obtained from the proposed methodology were visually related to the progress and severity of the pulmonary infections as verified by the participating radiologists. Moreover, we demonstrated that lesions due to the infections were metabolically active and appeared multi-focal in nature, and we observed similar patterns in the CT images as well. Consolidation and ground glass opacity were the main abnormal imaging patterns and consistently appeared in all CT images. We also found that the gross and metabolic lesion volume percentage follow the same trend as the SUV-based evaluation in the longitudinal analysis. Conclusions We explored the feasibility of using PET and CT imaging modalities in three distinct small animal models for two diverse pulmonary infections. We concluded from the clinical findings, derived from the proposed computational pipeline, that PET-CT imaging is an invaluable hybrid modality for tracking pulmonary infections longitudinally in small animals and has great potential to become routinely used in clinics. Our proposed methodology showed that automated computed-aided lesion detection and quantification of pulmonary infections in small animal models are efficient and accurate as compared to the clinical standard of manual and semi-automated approaches. Automated analysis of images in pre-clinical applications can increase the efficiency and quality of pre-clinical findings that ultimately inform downstream experimental design in human clinical studies; this innovation will allow researchers and clinicians to more effectively allocate study resources with respect to research demands without compromising accuracy. PMID:23879987

  7. Quantitative pre-clinical screening of therapeutics for joint diseases using contrast enhanced micro-computed tomography.

    PubMed

    Willett, N J; Thote, T; Hart, M; Moran, S; Guldberg, R E; Kamath, R V

    2016-09-01

    The development of effective therapies for cartilage protection has been limited by a lack of efficient quantitative cartilage imaging modalities in pre-clinical in vivo models. Our objectives were two-fold: first, to validate a new contrast-enhanced 3D imaging analysis technique, equilibrium partitioning of an ionic contrast agent-micro computed tomography (EPIC-μCT), in a rat medial meniscal transection (MMT) osteoarthritis (OA) model; and second, to quantitatively assess the sensitivity of EPIC-μCT to detect the effects of matrix metalloproteinase inhibitor (MMPi) therapy on cartilage degeneration. Rats underwent MMT surgery and tissues were harvested at 1, 2, and 3 weeks post-surgery or rats received an MMPi or vehicle treatment and tissues harvested 3 weeks post-surgery. Parameters of disease progression were evaluated using histopathology and EPIC-μCT. Correlations and power analyses were performed to compare the techniques. EPIC-μCT was shown to provide simultaneous 3D quantification of multiple parameters, including cartilage degeneration and osteophyte formation. In MMT animals treated with MMPi, OA progression was attenuated, as measured by 3D parameters such as lesion volume and osteophyte size. A post-hoc power analysis showed that 3D parameters for EPIC-μCT were more sensitive than 2D parameters requiring fewer animals to detect a therapeutic effect of MMPi. 2D parameters were comparable between EPIC-μCT and histopathology. This study demonstrated that EPIC-μCT has high sensitivity to provide 3D structural and compositional measurements of cartilage and bone in the joint. EPIC-μCT can be used in combination with histology to provide a comprehensive analysis to screen new potential therapies. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  8. [Identification of Animal Whole Blood Based on Near Infrared Transmission Spectroscopy].

    PubMed

    Wan, Xiong; Wang, Jian; Liu, Peng-xi; Zhang, Ting-ting

    2016-01-01

    The inspection and classification for blood products are important but complicated in import-export ports or inspection and quarantine departments. For the inspection of whole blood products, open sampling can cause pollution and virulence factors in bloods samples may even endanger inspectors. Thus non-contact classification and identification methods for whole bloods of animals are needed. Spectroscopic techniques adopted in the flowcytometry need sampling blood cells during the detection; therefore they can not meet the demand of non-contact identification and classification for whole bloods of animals. Infrared absorption spectroscopy is a technique that can be used to analyze the molecular structure and chemical bonds of detected samples under the condition of non-contact. To find a feasible spectroscopic approach of non-contact detection for the species variation in whole blood samples, a near infrared transmitted spectra (NITS, 4 497.669 - 7 506.4 cm(-1)) experiment of whole blood samples of three common animals including chickens, dogs and cats has been conducted. During the experiment, the spectroscopic resolution is 5 cm(-1), and each spectrogram is an average of 5 measured spectral data. Experimental results show that all samples have a sharp absorption peak between 5 184 and 5 215 cm(-1), and a gentle absorption peak near 7 000 cm(-1). Besides, the NITS curves of different samples of same animals are similar, and only have slight differences in the whole transmittance. A correlation coefficient (CC) is induced to distinguish the differences of the three animals' whole bloods in NITS curves, and the computed CCs between NITS curves of different samples of the same animals, are greater than 0.99, whereas CCs between NITS curves of the whole bloods of different animals are from 0.509 48 to 0.916 13. Among which CCs between NITS curves of the whole bloods of chickens and cats are from 0.857 23 to 0.912 44, CCs between NITS curves of the whole bloods of chickens and dogs are from 0.509 48 to 0.664 82, and CCs between NITS curves of the whole bloods of cats and dogs are from 0.872 75 to 0.916 13. The cat and the dog belong to the class of mammal, and the CCs between their whole bloods NITS curves are greater than those between chickens and cats, or chickens and dogs, which are hetero-class animals. Namely, the whole bloods NITS curves of the cat and the dog have higher similarity. These results of NITS provide a feasible method of non-contact identification of animal whole bloods.

  9. Towards real time 2D to 3D registration for ultrasound-guided endoscopic and laparoscopic procedures.

    PubMed

    San José Estépar, Raúl; Westin, Carl-Fredrik; Vosburgh, Kirby G

    2009-11-01

    A method to register endoscopic and laparoscopic ultrasound (US) images in real time with pre-operative computed tomography (CT) data sets has been developed with the goal of improving diagnosis, biopsy guidance, and surgical interventions in the abdomen. The technique, which has the potential to operate in real time, is based on a new phase correlation technique: LEPART, which specifies the location of a plane in the CT data which best corresponds to the US image. Validation of the method was carried out using an US phantom with cyst regions and with retrospective analysis of data sets from animal model experiments. The phantom validation study shows that local translation displacements can be recovered for each US frame with a root mean squared error of 1.56 +/- 0.78 mm in less than 5 sec, using non-optimized algorithm implementations. A new method for multimodality (preoperative CT and intraoperative US endoscopic images) registration to guide endoscopic interventions was developed and found to be efficient using clinically realistic datasets. The algorithm is inherently capable of being implemented in a parallel computing system so that full real time operation appears likely.

  10. The power of PowerPoint.

    PubMed

    Niamtu , J

    2001-08-01

    Carousel slide presentations have been used for academic and clinical presentations since the late 1950s. However, advances in computer technology have caused a paradigm shift, and digital presentations are quickly becoming standard for clinical presentations. The advantages of digital presentations include cost savings; portability; easy updating capability; Internet access; multimedia functions, such as animation, pictures, video, and sound; and customization to augment audience interest and attention. Microsoft PowerPoint has emerged as the most popular digital presentation software and is currently used by many practitioners with and without significant computer expertise. The user-friendly platform of PowerPoint enables even the novice presenter to incorporate digital presentations into his or her profession. PowerPoint offers many advanced options that, with a minimal investment of time, can be used to create more interactive and professional presentations for lectures, patient education, and marketing. Examples of advanced PowerPoint applications are presented in a stepwise manner to unveil the full power of PowerPoint. By incorporating these techniques, medical practitioners can easily personalize, customize, and enhance their PowerPoint presentations. Complications, pitfalls, and caveats are discussed to detour and prevent misadventures in digital presentations. Relevant Web sites are listed to further update, customize, and communicate PowerPoint techniques.

  11. Genomics, proteomics, MEMS and SAIF: which role for diagnostic imaging?

    PubMed

    Grassi, R; Lagalla, R; Rotondo, A

    2008-09-01

    In these three words--genomics, proteomics and nanotechnologies--is the future of medicine of the third millennium, which will be characterised by more careful attention to disease prevention, diagnosis and treatment. Molecular imaging appears to satisfy this requirement. It is emerging as a new science that brings together molecular biology and in vivo imaging and represents the key for the application of personalized medicine. Micro-PET (positron emission tomography), micro-SPECT (single photon emission computed tomography), micro-CT (computed tomography), micro-MR (magnetic resonance), micro-US (ultrasound) and optical imaging are all molecular imaging techniques, several of which are applied only in preclinical settings on animal models. Others, however, are applied routinely in both clinical and preclinical setting. Research on small animals allows investigation of the genesis and development of diseases, as well as drug efficacy and the development of personalized therapies, through the study of biological processes that precede the expression of common symptoms of a pathology. Advances in molecular imaging were made possible only by collaboration among scientists in the fields of radiology, chemistry, molecular and cell biology, physics, mathematics, pharmacology, gene therapy and oncology. Although until now researchers have traditionally limited their interactions, it is only by increasing these connections that the current gaps in terminology, methods and approaches that inhibit scientific progress can be eliminated.

  12. Present Scenario of Long Non-Coding RNAs in Plants

    PubMed Central

    Bhatia, Garima; Goyal, Neetu; Sharma, Shailesh; Upadhyay, Santosh Kumar; Singh, Kashmir

    2017-01-01

    Small non-coding RNAs have been extensively studied in plants over the last decade. In contrast, genome-wide identification of plant long non-coding RNAs (lncRNAs) has recently gained momentum. LncRNAs are now being recognized as important players in gene regulation, and their potent regulatory roles are being studied comprehensively in eukaryotes. LncRNAs were first reported in humans in 1992. Since then, research in animals, particularly in humans, has rapidly progressed, and a vast amount of data has been generated, collected, and organized using computational approaches. Additionally, numerous studies have been conducted to understand the roles of these long RNA species in several diseases. However, the status of lncRNA investigation in plants lags behind that in animals (especially humans). Efforts are being made in this direction using computational tools and high-throughput sequencing technologies, such as the lncRNA microarray technique, RNA-sequencing (RNA-seq), RNA capture sequencing, (RNA CaptureSeq), etc. Given the current scenario, significant amounts of data have been produced regarding plant lncRNAs, and this amount is likely to increase in the subsequent years. In this review we have documented brief information about lncRNAs and their status of research in plants, along with the plant-specific resources/databases for information retrieval on lncRNAs. PMID:29657289

  13. Assessing the potential information content of multicomponent visual signals: a machine learning approach

    PubMed Central

    Allen, William L.; Higham, James P.

    2015-01-01

    Careful investigation of the form of animal signals can offer novel insights into their function. Here, we deconstruct the face patterns of a tribe of primates, the guenons (Cercopithecini), and examine the information that is potentially available in the perceptual dimensions of their multicomponent displays. Using standardized colour-calibrated images of guenon faces, we measure variation in appearance both within and between species. Overall face pattern was quantified using the computer vision ‘eigenface’ technique, and eyebrow and nose-spot focal traits were described using computational image segmentation and shape analysis. Discriminant function analyses established whether these perceptual dimensions could be used to reliably classify species identity, individual identity, age and sex, and, if so, identify the dimensions that carry this information. Across the 12 species studied, we found that both overall face pattern and focal trait differences could be used to categorize species and individuals reliably, whereas correct classification of age category and sex was not possible. This pattern makes sense, as guenons often form mixed-species groups in which familiar conspecifics develop complex differentiated social relationships but where the presence of heterospecifics creates hybridization risk. Our approach should be broadly applicable to the investigation of visual signal function across the animal kingdom. PMID:25652832

  14. Dual tracer imaging of SPECT and PET probes in living mice using a sequential protocol

    PubMed Central

    Chapman, Sarah E; Diener, Justin M; Sasser, Todd A; Correcher, Carlos; González, Antonio J; Avermaete, Tony Van; Leevy, W Matthew

    2012-01-01

    Over the past 20 years, multimodal imaging strategies have motivated the fusion of Positron Emission Tomography (PET) or Single Photon Emission Computed Tomography (SPECT) scans with an X-ray computed tomography (CT) image to provide anatomical information, as well as a framework with which molecular and functional images may be co-registered. Recently, pre-clinical nuclear imaging technology has evolved to capture multiple SPECT or multiple PET tracers to further enhance the information content gathered within an imaging experiment. However, the use of SPECT and PET probes together, in the same animal, has remained a challenge. Here we describe a straightforward method using an integrated trimodal imaging system and a sequential dosing/acquisition protocol to achieve dual tracer imaging with 99mTc and 18F isotopes, along with anatomical CT, on an individual specimen. Dosing and imaging is completed so that minimal animal manipulations are required, full trimodal fusion is conserved, and tracer crosstalk including down-scatter of the PET tracer in SPECT mode is avoided. This technique will enhance the ability of preclinical researchers to detect multiple disease targets and perform functional, molecular, and anatomical imaging on individual specimens to increase the information content gathered within longitudinal in vivo studies. PMID:23145357

  15. Refinement, Reduction, and Replacement of Animal Toxicity Tests by Computational Methods.

    PubMed

    Ford, Kevin A

    2016-12-01

    Widespread public and scientific interest in promoting the care and well-being of animals used for toxicity testing has given rise to improvements in animal welfare practices and views over time, as well as laws and regulations that support means to reduce, refine, and replace animal use (known as the 3Rs) in certain toxicity studies. One way these regulations continue to achieve their aim is by promoting the research, development, and application of alternative testing approaches to characterize potential toxicities either without animals or with minimal use. An important example of an alternative approach is the use of computational toxicology models. Along with the potential capacity to reduce or replace the use of animals for the assessment of particular toxicological endpoints, computational models offer several advantages compared to in vitro and in vivo approaches, including cost-effectiveness, rapid availability of results, and the ability to fully standardize procedures. Pharmaceutical research incorporating the use of computational models has increased steadily over the past 15 years, likely driven by the motivation of companies to screen out toxic compounds in the early stages of development. Models are currently available to aid in the prediction of several important toxicological endpoints, including mutagenicity, carcinogenicity, eye irritation, hepatotoxicity, and skin sensitization, albeit with varying degrees of success. This review serves to introduce the concepts of computational toxicology and evaluate their role in the safety assessment of compounds, while also highlighting the application of in silico methods in the support of the goal and vision of the 3Rs. © The Author 2016. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research.All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Experimental Actinobacillus pleuropneumoniae challenge in swine: Comparison of computed tomographic and radiographic findings during disease

    PubMed Central

    2012-01-01

    Background In pigs, diseases of the respiratory tract like pleuropneumonia due to Actinobacillus pleuropneumoniae (App) infection have led to high economic losses for decades. Further research on disease pathogenesis, pathogen-host-interactions and new prophylactic and therapeutic approaches are needed. In most studies, a large number of experimental animals are required to assess lung alterations at different stages of the disease. In order to reduce the required number of animals but nevertheless gather information on the nature and extent of lung alterations in living pigs, a computed tomographic scoring system for quantifying gross pathological findings was developed. In this study, five healthy pigs served as control animals while 24 pigs were infected with App, the causative agent of pleuropneumonia in pigs, in an established model for respiratory tract disease. Results Computed tomographic (CT) findings during the course of App challenge were verified by radiological imaging, clinical, serological, gross pathology and histological examinations. Findings from clinical examinations and both CT and radiological imaging, were recorded on day 7 and day 21 after challenge. Clinical signs after experimental App challenge were indicative of acute to chronic disease. Lung CT findings of infected pigs comprised ground-glass opacities and consolidation. On day 7 and 21 the clinical scores significantly correlated with the scores of both imaging techniques. At day 21, significant correlations were found between clinical scores, CT scores and lung lesion scores. In 19 out of 22 challenged pigs the determined disease grades (not affected, slightly affected, moderately affected, severely affected) from CT and gross pathological examination were in accordance. Disease classification by radiography and gross pathology agreed in 11 out of 24 pigs. Conclusions High-resolution, high-contrast CT examination with no overlapping of organs is superior to radiography in the assessment of pneumonic lung lesions after App challenge. The new CT scoring system allows for quantification of gross pathological lung alterations in living pigs. However, computed tomographic findings are not informative of the etiology of respiratory disease. PMID:22546414

  17. Improving Perceptual Skills with 3-Dimensional Animations.

    ERIC Educational Resources Information Center

    Johns, Janet Faye; Brander, Julianne Marie

    1998-01-01

    Describes three-dimensional computer aided design (CAD) models for every component in a representative mechanical system; the CAD models made it easy to generate 3-D animations that are ideal for teaching perceptual skills in multimedia computer-based technical training. Fifteen illustrations are provided. (AEF)

  18. Animating functional anatomy for the web.

    PubMed

    Guttmann, G D

    2000-04-15

    The instructor sometimes has a complex task in explaining the concepts of functional anatomy and embryology to health professional students. However, animations can easily illustrate functional anatomy, clinical procedures, or the developing embryo. Web animation increases the accessibility of this information and makes it much more useful for independent student learning. A modified version of the animation can also be used for patient education. This article defines animation, provides a brief history of animation, discusses the principles of animation, illustrates and evaluates some of the video-editing or movie-making computer software programs, and shows examples of two of the author's animations. These two animations are the inferior alveolar nerve block from the mandibular nerve anesthetics unit and normal temporomandibular joint (TMJ) function from the muscles of the mastication and the TMJ function unit. The software discussed are the industry leaders and have made the job of producing computer-based animations much easier. The programs are Adobe Premiere, Adobe After Effects, Apple QuickTime and Macromedia Flash .

  19. Education System Using Interactive 3D Computer Graphics (3D-CG) Animation and Scenario Language for Teaching Materials

    ERIC Educational Resources Information Center

    Matsuda, Hiroshi; Shindo, Yoshiaki

    2006-01-01

    The 3D computer graphics (3D-CG) animation using a virtual actor's speaking is very effective as an educational medium. But it takes a long time to produce a 3D-CG animation. To reduce the cost of producing 3D-CG educational contents and improve the capability of the education system, we have developed a new education system using Virtual Actor.…

  20. Inner Ear Damage during Decompression from Deep Dives 1975-1982.

    DTIC Science & Technology

    1984-01-01

    was controlled and delivered by a computer-based system (PDP 11/04 computer; Digital Equipment Corp.). During training and testing, the animals were...decompression sickness. Initial trials with control animals had shown that the monkeys could withstand the Table 6 treatment .thout showing visible...observed shortly after the dive (Fig. 3). In this regard, the amount of exudate is similar to that observed in control animals. Moreover, bone and/or

  1. The extinct animal show: the paleoimagery tradition and computer generated imagery in factual television programs.

    PubMed

    Campbell, Vincent

    2009-03-01

    Extinct animals have always been popular subjects for the media, in both fiction, and factual output. In recent years, a distinctive new type of factual television program has emerged in which computer generated imagery is used extensively to bring extinct animals back to life. Such has been the commercial audience success of these programs that they have generated some public and academic debates about their relative status as science, documentary, and entertainment, as well as about their reflection of trends in factual television production, and the aesthetic tensions in the application of new media technologies. Such discussions ignore a crucial contextual feature of computer generated extinct animal programs, namely the established tradition of paleoimagery. This paper examines a selection of extinct animal shows in terms of the dominant frames of the paleoimagery genre. The paper suggests that such an examination has two consequences. First, it allows for a more context-sensitive evaluation of extinct animal programs, acknowledging rather than ignoring relevant representational traditions. Second, it allows for an appraisal and evaluation of public and critical reception of extinct animal programs above and beyond the traditional debates about tensions between science, documentary, entertainment, and public understanding.

  2. Computational strategies for alternative single-step Bayesian regression models with large numbers of genotyped and non-genotyped animals.

    PubMed

    Fernando, Rohan L; Cheng, Hao; Golden, Bruce L; Garrick, Dorian J

    2016-12-08

    Two types of models have been used for single-step genomic prediction and genome-wide association studies that include phenotypes from both genotyped animals and their non-genotyped relatives. The two types are breeding value models (BVM) that fit breeding values explicitly and marker effects models (MEM) that express the breeding values in terms of the effects of observed or imputed genotypes. MEM can accommodate a wider class of analyses, including variable selection or mixture model analyses. The order of the equations that need to be solved and the inverses required in their construction vary widely, and thus the computational effort required depends upon the size of the pedigree, the number of genotyped animals and the number of loci. We present computational strategies to avoid storing large, dense blocks of the MME that involve imputed genotypes. Furthermore, we present a hybrid model that fits a MEM for animals with observed genotypes and a BVM for those without genotypes. The hybrid model is computationally attractive for pedigree files containing millions of animals with a large proportion of those being genotyped. We demonstrate the practicality on both the original MEM and the hybrid model using real data with 6,179,960 animals in the pedigree with 4,934,101 phenotypes and 31,453 animals genotyped at 40,214 informative loci. To complete a single-trait analysis on a desk-top computer with four graphics cards required about 3 h using the hybrid model to obtain both preconditioned conjugate gradient solutions and 42,000 Markov chain Monte-Carlo (MCMC) samples of breeding values, which allowed making inferences from posterior means, variances and covariances. The MCMC sampling required one quarter of the effort when the hybrid model was used compared to the published MEM. We present a hybrid model that fits a MEM for animals with genotypes and a BVM for those without genotypes. Its practicality and considerable reduction in computing effort was demonstrated. This model can readily be extended to accommodate multiple traits, multiple breeds, maternal effects, and additional random effects such as polygenic residual effects.

  3. Dynamic labelling of neural connections in multiple colours by trans-synaptic fluorescence complementation

    PubMed Central

    Macpherson, Lindsey J.; Zaharieva, Emanuela E.; Kearney, Patrick J.; Alpert, Michael H.; Lin, Tzu-Yang; Turan, Zeynep; Lee, Chi-Hon; Gallio, Marco

    2015-01-01

    Determining the pattern of activity of individual connections within a neural circuit could provide insights into the computational processes that underlie brain function. Here, we develop new strategies to label active synapses by trans-synaptic fluorescence complementation in Drosophila. First, we demonstrate that a synaptobrevin-GRASP chimera functions as a powerful activity-dependent marker for synapses in vivo. Next, we create cyan and yellow variants, achieving activity-dependent, multi-colour fluorescence reconstitution across synapses (X-RASP). Our system allows for the first time retrospective labelling of synapses (rather than whole neurons) based on their activity, in multiple colours, in the same animal. As individual synapses often act as computational units in the brain, our method will promote the design of experiments that are not possible using existing techniques. Moreover, our strategies are easily adaptable to circuit mapping in any genetic system. PMID:26635273

  4. Motion planning: A journey of robots, molecules, digital actors, and other artifacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latombe, J.C.

    1999-11-01

    During the past three decades, motion planning has emerged as a crucial and productive research area in robotics. In the mid-1980s, the most advanced planners were barely able to compute collision-free paths for objects crawling in planar workspaces. Today, planners efficiently deal with robots with many degrees of freedom in complex environments. Techniques also exist to generate quasi-optimal trajectories, coordinate multiple robots, deal with dynamic and kinematic constraints, and handle dynamic environments. This paper describes some of these achievements, presents new problems that have recently emerged, discusses applications likely to motivate future research, and finally gives expectations for the comingmore » years. It stresses the fact that nonrobotics applications (e.g., graphic animation, surgical planning, computational biology) are growing in importance and are likely to shape future motion-planning research more than robotics itself.« less

  5. MARTI: man-machine animation real-time interface

    NASA Astrophysics Data System (ADS)

    Jones, Christian M.; Dlay, Satnam S.

    1997-05-01

    The research introduces MARTI (man-machine animation real-time interface) for the realization of natural human-machine interfacing. The system uses simple vocal sound-tracks of human speakers to provide lip synchronization of computer graphical facial models. We present novel research in a number of engineering disciplines, which include speech recognition, facial modeling, and computer animation. This interdisciplinary research utilizes the latest, hybrid connectionist/hidden Markov model, speech recognition system to provide very accurate phone recognition and timing for speaker independent continuous speech, and expands on knowledge from the animation industry in the development of accurate facial models and automated animation. The research has many real-world applications which include the provision of a highly accurate and 'natural' man-machine interface to assist user interactions with computer systems and communication with one other using human idiosyncrasies; a complete special effects and animation toolbox providing automatic lip synchronization without the normal constraints of head-sets, joysticks, and skilled animators; compression of video data to well below standard telecommunication channel bandwidth for video communications and multi-media systems; assisting speech training and aids for the handicapped; and facilitating player interaction for 'video gaming' and 'virtual worlds.' MARTI has introduced a new level of realism to man-machine interfacing and special effect animation which has been previously unseen.

  6. Quick, Accurate, Smart: 3D Computer Vision Technology Helps Assessing Confined Animals’ Behaviour

    PubMed Central

    Calderara, Simone; Pistocchi, Simone; Cucchiara, Rita; Podaliri-Vulpiani, Michele; Messori, Stefano; Ferri, Nicola

    2016-01-01

    Mankind directly controls the environment and lifestyles of several domestic species for purposes ranging from production and research to conservation and companionship. These environments and lifestyles may not offer these animals the best quality of life. Behaviour is a direct reflection of how the animal is coping with its environment. Behavioural indicators are thus among the preferred parameters to assess welfare. However, behavioural recording (usually from video) can be very time consuming and the accuracy and reliability of the output rely on the experience and background of the observers. The outburst of new video technology and computer image processing gives the basis for promising solutions. In this pilot study, we present a new prototype software able to automatically infer the behaviour of dogs housed in kennels from 3D visual data and through structured machine learning frameworks. Depth information acquired through 3D features, body part detection and training are the key elements that allow the machine to recognise postures, trajectories inside the kennel and patterns of movement that can be later labelled at convenience. The main innovation of the software is its ability to automatically cluster frequently observed temporal patterns of movement without any pre-set ethogram. Conversely, when common patterns are defined through training, a deviation from normal behaviour in time or between individuals could be assessed. The software accuracy in correctly detecting the dogs’ behaviour was checked through a validation process. An automatic behaviour recognition system, independent from human subjectivity, could add scientific knowledge on animals’ quality of life in confinement as well as saving time and resources. This 3D framework was designed to be invariant to the dog’s shape and size and could be extended to farm, laboratory and zoo quadrupeds in artificial housing. The computer vision technique applied to this software is innovative in non-human animal behaviour science. Further improvements and validation are needed, and future applications and limitations are discussed. PMID:27415814

  7. Children's Interpretations of Computer-Animated Dinosaurs in Live Theatre: "Dinosaurus".

    ERIC Educational Resources Information Center

    Klein, Jeanne M.

    To explore media theories of perceived reality regarding factuality, social, and physical realism, and "videocy" (or theatrical spectacle), 32 children in first, third, and fifth grades were individually interviewed after attending a production of "Dinosaurus" which included computer-animated dinosaurs. Contrary to beliefs that…

  8. Cognitive Support for Learning Computer-Based Tasks Using Animated Demonstration

    ERIC Educational Resources Information Center

    Chen, Chun-Ying

    2016-01-01

    This study investigated the influence of cognitive support for learning computer-based tasks using animated demonstration (AD) on instructional efficiency. Cognitive support included (1) segmentation and learner control introducing interactive devices that allow content sequencing through a navigational menu, and content pacing through stop and…

  9. An Exploratory Study of Animal-Assisted Interventions Utilized by Mental Health Professionals

    ERIC Educational Resources Information Center

    O'Callaghan, Dana M.; Chandler, Cynthia K.

    2011-01-01

    This study implemented an exploratory analysis to examine how a sample of mental health professionals incorporates specific animal-assisted techniques into the therapeutic process. An extensive review of literature related to animal-assisted therapy (AAT) resulted in the identification of 18 techniques and 10 intentions for the practice of AAT in…

  10. Applications of holographic on-chip microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ozcan, Aydogan

    2017-02-01

    My research focuses on the use of computation/algorithms to create new optical microscopy, sensing, and diagnostic techniques, significantly improving existing tools for probing micro- and nano-objects while also simplifying the designs of these analysis tools. In this presentation, I will introduce a set of computational microscopes which use lens-free on-chip imaging to replace traditional lenses with holographic reconstruction algorithms. Basically, 3D images of specimens are reconstructed from their "shadows" providing considerably improved field-of-view (FOV) and depth-of-field, thus enabling large sample volumes to be rapidly imaged, even at nanoscale. These new computational microscopes routinely generate <1-2 billion pixels (giga-pixels), where even single viruses can be detected with a FOV that is <100 fold wider than other techniques. At the heart of this leapfrog performance lie self-assembled liquid nano-lenses that are computationally imaged on a chip. The field-of-view of these computational microscopes is equal to the active-area of the sensor-array, easily reaching, for example, <20 mm^2 or <10 cm^2 by employing state-of-the-art CMOS or CCD imaging chips, respectively. In addition to this remarkable increase in throughput, another major benefit of this technology is that it lends itself to field-portable and cost-effective designs which easily integrate with smartphones to conduct giga-pixel tele-pathology and microscopy even in resource-poor and remote settings where traditional techniques are difficult to implement and sustain, thus opening the door to various telemedicine applications in global health. Through the development of similar computational imagers, I will also report the discovery of new 3D swimming patterns observed in human and animal sperm. One of this newly discovered and extremely rare motion is in the form of "chiral ribbons" where the planar swings of the sperm head occur on an osculating plane creating in some cases a helical ribbon and in some others a twisted ribbon. Shedding light onto the statistics and biophysics of various micro-swimmers' 3D motion, these results provide an important example of how biomedical imaging significantly benefits from emerging computational algorithms/theories, revolutionizing existing tools for observing various micro- and nano-scale phenomena in innovative, high-throughput, and yet cost-effective ways.

  11. CADRE-SS, an in Silico Tool for Predicting Skin Sensitization Potential Based on Modeling of Molecular Interactions.

    PubMed

    Kostal, Jakub; Voutchkova-Kostal, Adelina

    2016-01-19

    Using computer models to accurately predict toxicity outcomes is considered to be a major challenge. However, state-of-the-art computational chemistry techniques can now be incorporated in predictive models, supported by advances in mechanistic toxicology and the exponential growth of computing resources witnessed over the past decade. The CADRE (Computer-Aided Discovery and REdesign) platform relies on quantum-mechanical modeling of molecular interactions that represent key biochemical triggers in toxicity pathways. Here, we present an external validation exercise for CADRE-SS, a variant developed to predict the skin sensitization potential of commercial chemicals. CADRE-SS is a hybrid model that evaluates skin permeability using Monte Carlo simulations, assigns reactive centers in a molecule and possible biotransformations via expert rules, and determines reactivity with skin proteins via quantum-mechanical modeling. The results were promising with an overall very good concordance of 93% between experimental and predicted values. Comparison to performance metrics yielded by other tools available for this endpoint suggests that CADRE-SS offers distinct advantages for first-round screenings of chemicals and could be used as an in silico alternative to animal tests where permissible by legislative programs.

  12. Scalable Conjunction Processing using Spatiotemporally Indexed Ephemeris Data

    NASA Astrophysics Data System (ADS)

    Budianto-Ho, I.; Johnson, S.; Sivilli, R.; Alberty, C.; Scarberry, R.

    2014-09-01

    The collision warnings produced by the Joint Space Operations Center (JSpOC) are of critical importance in protecting U.S. and allied spacecraft against destructive collisions and protecting the lives of astronauts during space flight. As the Space Surveillance Network (SSN) improves its sensor capabilities for tracking small and dim space objects, the number of tracked objects increases from thousands to hundreds of thousands of objects, while the number of potential conjunctions increases with the square of the number of tracked objects. Classical filtering techniques such as apogee and perigee filters have proven insufficient. Novel and orders of magnitude faster conjunction analysis algorithms are required to find conjunctions in a timely manner. Stellar Science has developed innovative filtering techniques for satellite conjunction processing using spatiotemporally indexed ephemeris data that efficiently and accurately reduces the number of objects requiring high-fidelity and computationally-intensive conjunction analysis. Two such algorithms, one based on the k-d Tree pioneered in robotics applications and the other based on Spatial Hash Tables used in computer gaming and animation, use, at worst, an initial O(N log N) preprocessing pass (where N is the number of tracked objects) to build large O(N) spatial data structures that substantially reduce the required number of O(N^2) computations, substituting linear memory usage for quadratic processing time. The filters have been implemented as Open Services Gateway initiative (OSGi) plug-ins for the Continuous Anomalous Orbital Situation Discriminator (CAOS-D) conjunction analysis architecture. We have demonstrated the effectiveness, efficiency, and scalability of the techniques using a catalog of 100,000 objects, an analysis window of one day, on a 64-core computer with 1TB shared memory. Each algorithm can process the full catalog in 6 minutes or less, almost a twenty-fold performance improvement over the baseline implementation running on the same machine. We will present an overview of the algorithms and results that demonstrate the scalability of our concepts.

  13. Blend Shape Interpolation and FACS for Realistic Avatar

    NASA Astrophysics Data System (ADS)

    Alkawaz, Mohammed Hazim; Mohamad, Dzulkifli; Basori, Ahmad Hoirul; Saba, Tanzila

    2015-03-01

    The quest of developing realistic facial animation is ever-growing. The emergence of sophisticated algorithms, new graphical user interfaces, laser scans and advanced 3D tools imparted further impetus towards the rapid advancement of complex virtual human facial model. Face-to-face communication being the most natural way of human interaction, the facial animation systems became more attractive in the information technology era for sundry applications. The production of computer-animated movies using synthetic actors are still challenging issues. Proposed facial expression carries the signature of happiness, sadness, angry or cheerful, etc. The mood of a particular person in the midst of a large group can immediately be identified via very subtle changes in facial expressions. Facial expressions being very complex as well as important nonverbal communication channel are tricky to synthesize realistically using computer graphics. Computer synthesis of practical facial expressions must deal with the geometric representation of the human face and the control of the facial animation. We developed a new approach by integrating blend shape interpolation (BSI) and facial action coding system (FACS) to create a realistic and expressive computer facial animation design. The BSI is used to generate the natural face while the FACS is employed to reflect the exact facial muscle movements for four basic natural emotional expressions such as angry, happy, sad and fear with high fidelity. The results in perceiving the realistic facial expression for virtual human emotions based on facial skin color and texture may contribute towards the development of virtual reality and game environment of computer aided graphics animation systems.

  14. Excitation-resolved cone-beam x-ray luminescence tomography.

    PubMed

    Liu, Xin; Liao, Qimei; Wang, Hongkai; Yan, Zhuangzhi

    2015-07-01

    Cone-beam x-ray luminescence computed tomography (CB-XLCT), as an emerging imaging technique, plays an important role in in vivo small animal imaging studies. However, CB-XLCT suffers from low-spatial resolution due to the ill-posed nature of reconstruction. We improve the imaging performance of CB-XLCT by using a multiband excitation-resolved imaging scheme combined with principal component analysis. To evaluate the performance of the proposed method, the physical phantom experiment is performed with a custom-made XLCT/XCT imaging system. The experimental results validate the feasibility of the method, where two adjacent nanophosphors (with an edge-to-edge distance of 2.4 mm) can be located.

  15. A low-cost universal cumulative gating circuit for small and large animal clinical imaging

    NASA Astrophysics Data System (ADS)

    Gioux, Sylvain; Frangioni, John V.

    2008-02-01

    Image-assisted diagnosis and therapy is becoming more commonplace in medicine. However, most imaging techniques suffer from voluntary or involuntary motion artifacts, especially cardiac and respiratory motions, which degrade image quality. Current software solutions either induce computational overhead or reject out-of-focus images after acquisition. In this study we demonstrate a hardware-only gating circuit that accepts multiple, pseudo-periodic signals and produces a single TTL (0-5 V) imaging window of accurate phase and period. The electronic circuit Gerber files described in this article and the list of components are available online at www.frangionilab.org.

  16. Three-dimensional scanner based on fringe projection

    NASA Astrophysics Data System (ADS)

    Nouri, Taoufik

    1995-07-01

    This article presents a way of scanning 3D objects using noninvasive and contact loss techniques. The principle is to project parallel fringes on an object and then to record the object at two viewing angles. With an appropriate treatment one can reconstruct the 3D object even when it has no symmetry planes. The 3D surface data are available immediately in digital form for computer visualization and for analysis software tools. The optical setup for recording the object, the data extraction and treatment, and the reconstruction of the object are reported and commented on. Application is proposed for reconstructive/cosmetic surgery, CAD, animation, and research.

  17. An Introductory Undergraduate Course Covering Animal Cell Culture Techniques

    ERIC Educational Resources Information Center

    Mozdziak, Paul E.; Petitte, James N.; Carson, Susan D.

    2004-01-01

    Animal cell culture is a core laboratory technique in many molecular biology, developmental biology, and biotechnology laboratories. Cell culture is a relatively old technique that has been sparingly taught at the undergraduate level. The traditional methodology for acquiring cell culture training has been through trial and error, instruction when…

  18. The Effect of Electronic Storybooks on Struggling Fourth-Graders' Reading Comprehension

    ERIC Educational Resources Information Center

    Ertem, Ihsan Seyit

    2010-01-01

    This quantitative research examined the differences in struggling readers' comprehension of storybooks according to the medium of presentation. Each student was randomly assigned with one of three conditions: (1) computer presentation of storybooks with animation; (2) computer presentation of storybooks without animation; and (3) traditional print…

  19. Modelling and Simulation as a Recognizing Method in Education

    ERIC Educational Resources Information Center

    Stoffa, Veronika

    2004-01-01

    Computer animation-simulation models of complex processes and events, which are the method of instruction, can be an effective didactic device. Gaining deeper knowledge about objects modelled helps to plan simulation experiments oriented on processes and events researched. Animation experiments realized on multimedia computers can aid easier…

  20. Classical Cosmology Through Animation Stories

    NASA Astrophysics Data System (ADS)

    Mijic, Milan; Kang, E. Y. E.; Longson, T.; State LA SciVi Project, Cal

    2010-05-01

    Computer animations are a powerful tool for explanation and communication of ideas, especially to a younger generation. Our team completed a three part sequence of short, computer animated stories about the insight and discoveries that lead to the understanding of the overall structure of the universe. Our principal characters are Immanuel Kant, Henrietta Leavitt, and Edwin Hubble. We utilized animations to model and visualize the physical concepts behind each discovery and to recreate the characters, locations, and flavor of the time. The animations vary in length from 6 to 11 minutes. The instructors or presenters may wish to utilize them separately or together. The animations may be used for learning classical cosmology in a visual way in GE astronomy courses, in pre-college science classes, or in public science education setting.

  1. Measuring animal personality for use in population management in zoos: suggested methods and rationale.

    PubMed

    Watters, Jason V; Powell, David M

    2012-01-01

    The concept that animals have personalities is gaining traction in the scientific community and is well established in zoos and aquariums. Applying knowledge of animal personalities has occurred more slowly and is most often only considered informally. However, animal personalities are likely to affect the welfare animals experience in captivity and thus should be of primary concern to zoo managers. In addition, animal personality likely affects the outcomes of zoo guest experiences and potentially guests' conservation-related behavior. With over 1,000,000 animals in the care of zoos internationally and hundreds of millions of visitors annually, it would be prudent and beneficial to maximize our use of animal personality data in zoos to effect positive conservation outcomes. Understanding how to broaden population planning techniques to include measures of animal personality and the important outcomes of welfare and education value is of prime importance to the zoo industry. In order to succeed, it is necessary to employ techniques that reliably assess animal personalities and provide measures that can easily be used in population planning models. We discuss the outcomes of recent workshops designed to determine the best techniques for measuring animal personalities in the zoo setting with the goal of incorporating personality into population planning. © 2011 Wiley Periodicals, Inc.

  2. [New advances in animal transgenic technology].

    PubMed

    Sun, Zhen-Hong; Miao, Xiang-Yang; Zhu, Rui-Liang

    2010-06-01

    Animal transgenic technology is one of the fastest growing biotechnology in the 21st century. It is used to integrate foreign genes into the animal genome by genetic engineering technology so that foreign genes can be expressed and inherited to the offspring. The transgenic efficiency and precise control of gene expression are the key limiting factors on preparation of transgenic animals. A variety of transgenic techniques are available, each of which has its own advantages and disadvantages and still needs further study because of unresolved technical and safety issues. With the in-depth research, the transgenic technology will have broad application prospects in the fields of exploration of gene function, animal genetic improvement, bioreactor, animal disease models, organ transplantation and so on. This article reviews the recently developed animal gene transfer techniques, including germline stem cell mediated method to improve the efficiency, gene targeting to improve the accuracy, RNA interference (RNAi)-mediated gene silencing technology, and the induced pluripotent stem cells (iPS) transgenic technology. The new transgenic techniques can provide a better platform for the study of trans-genic animals and promote the development of medical sciences, livestock production, and other fields.

  3. Using Diffraction Tomography to Estimate Marine Animal Size

    NASA Astrophysics Data System (ADS)

    Jaffe, J. S.; Roberts, P.

    In this article we consider the development of acoustic methods which have the potential to size marine animals. The proposed technique uses scattered sound in order to invert for both animal size and shape. The technique uses the Distorted Wave Born Approximation (DWBA) in order to model sound scattered from these organisms. The use of the DWBA also provides a valuable context for formulating data analysis techniques in order to invert for parameters of the animal. Although 3-dimensional observations can be obtained from a complete set of views, due to the difficulty of collecting full 3-dimensional scatter, it is useful to simplify the inversion by approximating the animal by a few parameters. Here, the animals are modeled as 3-dimensional ellipsoids. This reduces the complexity of the problem to a determination of the 3 semi axes for the x, y and z dimensions from just a few radial spokes through the 3-dimensional Fourier Transform. In order to test the idea, simulated scatter data is taken from a 3-dimensional model of a marine animal and the resultant data are inverted in order to estimate animal shape

  4. Rethinking Extinction

    PubMed Central

    Dunsmoor, Joseph E.; Niv, Yael; Daw, Nathaniel; Phelps, Elizabeth A.

    2015-01-01

    Extinction serves as the leading theoretical framework and experimental model to describe how learned behaviors diminish through absence of anticipated reinforcement. In the past decade, extinction has moved beyond the realm of associative learning theory and behavioral experimentation in animals and has become a topic of considerable interest in the neuroscience of learning, memory, and emotion. Here, we review research and theories of extinction, both as a learning process and as a behavioral technique, and consider whether traditional understandings warrant a re-examination. We discuss the neurobiology, cognitive factors, and major computational theories, and revisit the predominant view that extinction results in new learning that interferes with expression of the original memory. Additionally, we reconsider the limitations of extinction as a technique to prevent the relapse of maladaptive behavior, and discuss novel approaches, informed by contemporary theoretical advances, that augment traditional extinction methods to target and potentially alter maladaptive memories. PMID:26447572

  5. 3D visualization of Thoraco-Lumbar Spinal Lesions in German Shepherd Dog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azpiroz, J.; Krafft, J.; Cadena, M.

    2006-09-08

    Computed tomography (CT) has been found to be an excellent imaging modality due to its sensitivity to characterize the morphology of the spine in dogs. This technique is considered to be particularly helpful for diagnosing spinal cord atrophy and spinal stenosis. The three-dimensional visualization of organs and bones can significantly improve the diagnosis of certain diseases in dogs. CT images were acquired of a German shepherd's dog spinal cord to generate stacks and digitally process them to arrange them in a volume image. All imaging experiments were acquired using standard clinical protocols on a clinical CT scanner. The three-dimensional visualizationmore » allowed us to observe anatomical structures that otherwise are not possible to observe with two-dimensional images. The combination of an imaging modality like CT together with imaging processing techniques can be a powerful tool for the diagnosis of a number of animal diseases.« less

  6. BEYOND THE PRINT—VIRTUAL PALEONTOLOGY IN SCIENCE PUBLISHING, OUTREACH, AND EDUCATION

    PubMed Central

    LAUTENSCHLAGER, STEPHAN; RÜCKLIN, MARTIN

    2015-01-01

    Virtual paleontology unites a variety of computational techniques and methods for the visualization and analysis of fossils. Due to their great potential and increasing availability, these methods have become immensely popular in the last decade. However, communicating the wealth of digital information and results produced by the various techniques is still exacerbated by traditional methods of publication. Transferring and processing three-dimensional information, such as interactive models or animations, into scientific publications still poses a challenge. Here, we present different methods and applications to communicate digital data in academia, outreach and education. Three-dimensional PDFs, QR codes, anaglyph stereo imaging, and rapid prototyping—methods routinely used in the engineering, entertainment, or medical industries—are outlined and evaluated for their potential in science publishing and public engagement. Although limitations remain, these are simple, mostly cost-effective, and powerful tools to create novel and innovative resources for education, public engagement, or outreach. PMID:26306051

  7. 3D visualization of Thoraco-Lumbar Spinal Lesions in German Shepherd Dog

    NASA Astrophysics Data System (ADS)

    Azpiroz, J.; Krafft, J.; Cadena, M.; Rodríguez, A. O.

    2006-09-01

    Computed tomography (CT) has been found to be an excellent imaging modality due to its sensitivity to characterize the morphology of the spine in dogs. This technique is considered to be particularly helpful for diagnosing spinal cord atrophy and spinal stenosis. The three-dimensional visualization of organs and bones can significantly improve the diagnosis of certain diseases in dogs. CT images were acquired of a German shepherd's dog spinal cord to generate stacks and digitally process them to arrange them in a volume image. All imaging experiments were acquired using standard clinical protocols on a clinical CT scanner. The three-dimensional visualization allowed us to observe anatomical structures that otherwise are not possible to observe with two-dimensional images. The combination of an imaging modality like CT together with imaging processing techniques can be a powerful tool for the diagnosis of a number of animal diseases.

  8. Comparative analysis of gingival phenotype in animal and human experimental models using optical coherence tomography in a non-invasive approach

    NASA Astrophysics Data System (ADS)

    Mota, Cláudia C. B. O.; Fernandes, Luana O.; Melo, Luciana S. A.; Feitosa, Daniela S.; Cimões, Renata; Gomes, Anderson S. L.

    2015-06-01

    Imaging methods are widely used in diagnostic and among the diversity of modalities, optical coherence tomography (OCT) is nowadays commercially available and considered the most innovative technique used for imaging applications, in both medical and non-medical applications. In this study, we exploit the OCT technique in the oral cavity for identification and differentiation between free and attached gingiva, as well as determining the gingival phenotype, an important factor to determination of periodontal prognosis in patients. For the animal studies, five porcine jaws were analyzed using a Swept Source SS-OCT system operating at 1325nm and stereomicroscope, as gold pattern. The SSOCT at 1325nm was chosen due to the longer central wavelength, that allows to deeper penetration imaging, and the faster image acquisition, an essential factor for clinical setting. For the patient studies, a total of 30 males and female were examined using the SS-OCT at 1325nm and computer controlled periodontal probing. 2D and 3D images of tooth/gingiva interface were performed, and quantitative measurements of the gingival sulcus could be noninvasively obtained. Through the image analysis of the animals jaws, it was possible to quantify the free gingiva and the attached gingiva, the calculus deposition over teeth surface and also the subgingival calculus. For the patient's studies, we demonstrated that the gingival phenotype could be measured without the periodontal probe introduction at the gingival sulcus, confirming that OCT can be potentially useful in clinic for direct observation and quantification of gingival phenotype in a non-invasive approach.

  9. Simple PowerPoint Animation

    NASA Astrophysics Data System (ADS)

    Takahashi, Leo

    2011-03-01

    The use of animation as a teaching tool has long been of interest to the readers of and contributors to this journal.1-5 While the sophisticated techniques presented in the cited papers are excellent and useful, there is one overlooked technique that may be of interest to the teacher who wants something quick and simple to enhance classroom presentations: PowerPoint animation.

  10. Distributions of emissions intensity for individual beef cattle reared on pasture-based production systems.

    PubMed

    McAuliffe, G A; Takahashi, T; Orr, R J; Harris, P; Lee, M R F

    2018-01-10

    Life Cycle Assessment (LCA) of livestock production systems is often based on inventory data for farms typical of a study region. As information on individual animals is often unavailable, livestock data may already be aggregated at the time of inventory analysis, both across individual animals and across seasons. Even though various computational tools exist to consider the effect of genetic and seasonal variabilities in livestock-originated emissions intensity, the degree to which these methods can address the bias suffered by representative animal approaches is not well-understood. Using detailed on-farm data collected on the North Wyke Farm Platform (NWFP) in Devon, UK, this paper proposes a novel approach of life cycle impact assessment that complements the existing LCA methodology. Field data, such as forage quality and animal performance, were measured at high spatial and temporal resolutions and directly transferred into LCA processes. This approach has enabled derivation of emissions intensity for each individual animal and, by extension, its intra-farm distribution, providing a step towards reducing uncertainty related to agricultural production inherent in LCA studies for food. Depending on pasture management strategies, the total emissions intensity estimated by the proposed method was higher than the equivalent value recalculated using a representative animal approach by 0.9-1.7 kg CO 2 -eq/kg liveweight gain, or up to 10% of system-wide emissions. This finding suggests that emissions intensity values derived by the latter technique may be underestimated due to insufficient consideration given to poorly performing animals, whose emissions becomes exponentially greater as average daily gain decreases. Strategies to mitigate life-cycle environmental impacts of pasture-based beef productions systems are also discussed.

  11. Enhancing the use of Argos satellite data for home range and long distance migration studies of marine animals.

    PubMed

    Hoenner, Xavier; Whiting, Scott D; Hindell, Mark A; McMahon, Clive R

    2012-01-01

    Accurately quantifying animals' spatial utilisation is critical for conservation, but has long remained an elusive goal due to technological impediments. The Argos telemetry system has been extensively used to remotely track marine animals, however location estimates are characterised by substantial spatial error. State-space models (SSM) constitute a robust statistical approach to refine Argos tracking data by accounting for observation errors and stochasticity in animal movement. Despite their wide use in ecology, few studies have thoroughly quantified the error associated with SSM predicted locations and no research has assessed their validity for describing animal movement behaviour. We compared home ranges and migratory pathways of seven hawksbill sea turtles (Eretmochelys imbricata) estimated from (a) highly accurate Fastloc GPS data and (b) locations computed using common Argos data analytical approaches. Argos 68(th) percentile error was <1 km for LC 1, 2, and 3 while markedly less accurate (>4 km) for LC ≤ 0. Argos error structure was highly longitudinally skewed and was, for all LC, adequately modelled by a Student's t distribution. Both habitat use and migration routes were best recreated using SSM locations post-processed by re-adding good Argos positions (LC 1, 2 and 3) and filtering terrestrial points (mean distance to migratory tracks ± SD = 2.2 ± 2.4 km; mean home range overlap and error ratio = 92.2% and 285.6 respectively). This parsimonious and objective statistical procedure however still markedly overestimated true home range sizes, especially for animals exhibiting restricted movements. Post-processing SSM locations nonetheless constitutes the best analytical technique for remotely sensed Argos tracking data and we therefore recommend using this approach to rework historical Argos datasets for better estimation of animal spatial utilisation for research and evidence-based conservation purposes.

  12. Single-Photon Computed Tomography With Large Position-Sensitive Phototubes*

    NASA Astrophysics Data System (ADS)

    Feldmann, John; Ranck, Amoreena; Saunders, Robert S.; Welsh, Robert E.; Bradley, Eric L.; Saha, Margaret S.; Kross, Brian; Majewski, Stan; Popov, Vladimir; Weisenberger, Andrew G.; Wojcik, Randolph

    2000-10-01

    Position-sensitive photomultiplier tubes (PSPMTs) coupled to pixelated CsI(Tl) scintillators have been used with parallel-hole collimators to view the metabolism in small animals of radiopharmaceuticals tagged with ^125I. We report here our preliminary results analyzed using a tomography program^1 written in IDL programming language. The PSPMTs are mounted on a rotating gantry so as to view the subject animal from any azimuth. Preliminary results to test the tomography algorithm have been obtained by placing a variety of plastic mouse-brain phantoms (loaded with Na^125I) in front of one of the detectors and rotating the phantom in steps through 360 degrees. Results of this simulation taken with a variety of collimator hole sizes will be compared and discussed. Extentions of this technique to the use of very small PSPMTs (Hamamatsu M-64) which are capable of a very close approach to those parts of the animal of greatest interest will be described. *Supported in part by The Department of Energy, The National Science Foundation, The American Diabetes Association, The Howard Hughes Foundation and The Jeffress Trust. 1. Tomography algorithm kindly provided by Dr. S. Meikle of The Royal Prince Albert Hospital, Sydney, Australia

  13. A Machine Learning Approach to Automated Gait Analysis for the Noldus Catwalk System.

    PubMed

    Frohlich, Holger; Claes, Kasper; De Wolf, Catherine; Van Damme, Xavier; Michel, Anne

    2018-05-01

    Gait analysis of animal disease models can provide valuable insights into in vivo compound effects and thus help in preclinical drug development. The purpose of this paper is to establish a computational gait analysis approach for the Noldus Catwalk system, in which footprints are automatically captured and stored. We present a - to our knowledge - first machine learning based approach for the Catwalk system, which comprises a step decomposition, definition and extraction of meaningful features, multivariate step sequence alignment, feature selection, and training of different classifiers (gradient boosting machine, random forest, and elastic net). Using animal-wise leave-one-out cross validation we demonstrate that with our method we can reliable separate movement patterns of a putative Parkinson's disease animal model and several control groups. Furthermore, we show that we can predict the time point after and the type of different brain lesions and can even forecast the brain region, where the intervention was applied. We provide an in-depth analysis of the features involved into our classifiers via statistical techniques for model interpretation. A machine learning method for automated analysis of data from the Noldus Catwalk system was established. Our works shows the ability of machine learning to discriminate pharmacologically relevant animal groups based on their walking behavior in a multivariate manner. Further interesting aspects of the approach include the ability to learn from past experiments, improve with more data arriving and to make predictions for single animals in future studies.

  14. AORTIC COARCTATION: RECENT DEVELOPMENTS IN EXPERIMENTAL AND COMPUTATIONAL METHODS TO ASSESS TREATMENTS FOR THIS SIMPLE CONDITION

    PubMed Central

    LaDisa, John F.; Taylor, Charles A.; Feinstein, Jeffrey A.

    2010-01-01

    Coarctation of the aorta (CoA) is often considered a relatively simple disease, but long-term outcomes suggest otherwise as life expectancies are decades less than in the average population and substantial morbidity often exists. What follows is an expanded version of collective work conducted by the authors’ and numerous collaborators that was presented at the 1st International Conference on Computational Simulation in Congenital Heart Disease pertaining to recent advances for CoA. The work begins by focusing on what is known about blood flow, pressure and indices of wall shear stress (WSS) in patients with normal vascular anatomy from both clinical imaging and the use of computational fluid dynamics (CFD) techniques. Hemodynamic alterations observed in CFD studies from untreated CoA patients and those undergoing surgical or interventional treatment are subsequently discussed. The impact of surgical approach, stent design and valve morphology are also presented for these patient populations. Finally, recent work from a representative experimental animal model of CoA that may offer insight into proposed mechanisms of long-term morbidity in CoA is presented. PMID:21152106

  15. A fast image registration approach of neural activities in light-sheet fluorescence microscopy images

    NASA Astrophysics Data System (ADS)

    Meng, Hui; Hui, Hui; Hu, Chaoen; Yang, Xin; Tian, Jie

    2017-03-01

    The ability of fast and single-neuron resolution imaging of neural activities enables light-sheet fluorescence microscopy (LSFM) as a powerful imaging technique in functional neural connection applications. The state-of-art LSFM imaging system can record the neuronal activities of entire brain for small animal, such as zebrafish or C. elegans at single-neuron resolution. However, the stimulated and spontaneous movements in animal brain result in inconsistent neuron positions during recording process. It is time consuming to register the acquired large-scale images with conventional method. In this work, we address the problem of fast registration of neural positions in stacks of LSFM images. This is necessary to register brain structures and activities. To achieve fast registration of neural activities, we present a rigid registration architecture by implementation of Graphics Processing Unit (GPU). In this approach, the image stacks were preprocessed on GPU by mean stretching to reduce the computation effort. The present image was registered to the previous image stack that considered as reference. A fast Fourier transform (FFT) algorithm was used for calculating the shift of the image stack. The calculations for image registration were performed in different threads while the preparation functionality was refactored and called only once by the master thread. We implemented our registration algorithm on NVIDIA Quadro K4200 GPU under Compute Unified Device Architecture (CUDA) programming environment. The experimental results showed that the registration computation can speed-up to 550ms for a full high-resolution brain image. Our approach also has potential to be used for other dynamic image registrations in biomedical applications.

  16. Planetary-Scale Geospatial Data Analysis Techniques in Google's Earth Engine Platform (Invited)

    NASA Astrophysics Data System (ADS)

    Hancher, M.

    2013-12-01

    Geoscientists have more and more access to new tools for large-scale computing. With any tool, some tasks are easy and other tasks hard. It is natural to look to new computing platforms to increase the scale and efficiency of existing techniques, but there is a more exiting opportunity to discover and develop a new vocabulary of fundamental analysis idioms that are made easy and effective by these new tools. Google's Earth Engine platform is a cloud computing environment for earth data analysis that combines a public data catalog with a large-scale computational facility optimized for parallel processing of geospatial data. The data catalog includes a nearly complete archive of scenes from Landsat 4, 5, 7, and 8 that have been processed by the USGS, as well as a wide variety of other remotely-sensed and ancillary data products. Earth Engine supports a just-in-time computation model that enables real-time preview during algorithm development and debugging as well as during experimental data analysis and open-ended data exploration. Data processing operations are performed in parallel across many computers in Google's datacenters. The platform automatically handles many traditionally-onerous data management tasks, such as data format conversion, reprojection, resampling, and associating image metadata with pixel data. Early applications of Earth Engine have included the development of Google's global cloud-free fifteen-meter base map and global multi-decadal time-lapse animations, as well as numerous large and small experimental analyses by scientists from a range of academic, government, and non-governmental institutions, working in a wide variety of application areas including forestry, agriculture, urban mapping, and species habitat modeling. Patterns in the successes and failures of these early efforts have begun to emerge, sketching the outlines of a new set of simple and effective approaches to geospatial data analysis.

  17. A novel fiber-free technique for brain activity imaging in multiple freely behaving mice

    NASA Astrophysics Data System (ADS)

    Inagaki, Shigenori; Agetsuma, Masakazu; Nagai, Takeharu

    2018-02-01

    Brain functions and related psychiatric disorders have been investigated by recording electrophysiological field potential. When recording it, a conventional method requires fiber-based apparatus connected to the brain, which however hampers the simultaneous measurement in multiple animals (e.g. by a tangle of fibers). Here, we propose a fiber-free recording technique in conjunction with a ratiometric bioluminescent voltage indicator. Our method allows investigation of electrophysiological filed potential dynamics in multiple freely behaving animals simultaneously over a long time period. Therefore, this fiber-free technique opens up the way to investigate a new mechanism of brain function that governs social behaviors and animal-to-animal interaction.

  18. The virtual lover: variable and easily guided 3D fish animations as an innovative tool in mate-choice experiments with sailfin mollies-II. Validation

    PubMed Central

    Müller, Klaus; Smielik, Ievgen; Hütwohl, Jan-Marco; Kuhnert, Klaus-Dieter; Witte, Klaudia

    2017-01-01

    Abstract The use of computer animation in behavioral research is a state-of-the-art method for designing and presenting animated animals to live test animals. The major advantages of computer animations are: (1) the creation of animated animal stimuli with high variability of morphology and even behavior; (2) animated stimuli provide highly standardized, controlled and repeatable testing procedures; and (3) they allow a reduction in the number of live test animals regarding the 3Rs principle. But the use of animated animals should be attended by a thorough validation for each test species to verify that behavior measured with live animals toward virtual animals can also be expected with natural stimuli. Here we present results on the validation of a custom-made simulation for animated 3D sailfin mollies Poecilia latipinna and show that responses of live test females were as strong to an animated fish as to a video or a live male fish. Movement of an animated stimulus was important but female response was stronger toward a swimming 3D fish stimulus than to a “swimming” box. Moreover, male test fish were able to discriminate between animated male and female stimuli; hence, rendering the animated 3D fish a useful tool in mate-choice experiments with sailfin mollies. PMID:29491964

  19. The virtual lover: variable and easily guided 3D fish animations as an innovative tool in mate-choice experiments with sailfin mollies-II. Validation.

    PubMed

    Gierszewski, Stefanie; Müller, Klaus; Smielik, Ievgen; Hütwohl, Jan-Marco; Kuhnert, Klaus-Dieter; Witte, Klaudia

    2017-02-01

    The use of computer animation in behavioral research is a state-of-the-art method for designing and presenting animated animals to live test animals. The major advantages of computer animations are: (1) the creation of animated animal stimuli with high variability of morphology and even behavior; (2) animated stimuli provide highly standardized, controlled and repeatable testing procedures; and (3) they allow a reduction in the number of live test animals regarding the 3Rs principle. But the use of animated animals should be attended by a thorough validation for each test species to verify that behavior measured with live animals toward virtual animals can also be expected with natural stimuli. Here we present results on the validation of a custom-made simulation for animated 3D sailfin mollies Poecilia latipinna and show that responses of live test females were as strong to an animated fish as to a video or a live male fish. Movement of an animated stimulus was important but female response was stronger toward a swimming 3D fish stimulus than to a "swimming" box. Moreover, male test fish were able to discriminate between animated male and female stimuli; hence, rendering the animated 3D fish a useful tool in mate-choice experiments with sailfin mollies.

  20. Technical and conceptual considerations for using animated stimuli in studies of animal behavior.

    PubMed

    Chouinard-Thuly, Laura; Gierszewski, Stefanie; Rosenthal, Gil G; Reader, Simon M; Rieucau, Guillaume; Woo, Kevin L; Gerlai, Robert; Tedore, Cynthia; Ingley, Spencer J; Stowers, John R; Frommen, Joachim G; Dolins, Francine L; Witte, Klaudia

    2017-02-01

    Rapid technical advances in the field of computer animation (CA) and virtual reality (VR) have opened new avenues in animal behavior research. Animated stimuli are powerful tools as they offer standardization, repeatability, and complete control over the stimulus presented, thereby "reducing" and "replacing" the animals used, and "refining" the experimental design in line with the 3Rs. However, appropriate use of these technologies raises conceptual and technical questions. In this review, we offer guidelines for common technical and conceptual considerations related to the use of animated stimuli in animal behavior research. Following the steps required to create an animated stimulus, we discuss (I) the creation, (II) the presentation, and (III) the validation of CAs and VRs. Although our review is geared toward computer-graphically designed stimuli, considerations on presentation and validation also apply to video playbacks. CA and VR allow both new behavioral questions to be addressed and existing questions to be addressed in new ways, thus we expect a rich future for these methods in both ultimate and proximate studies of animal behavior.

  1. Technical and conceptual considerations for using animated stimuli in studies of animal behavior

    PubMed Central

    Rosenthal, Gil G.; Reader, Simon M.; Rieucau, Guillaume; Woo, Kevin L.; Gerlai, Robert; Tedore, Cynthia; Ingley, Spencer J.; Stowers, John R.; Frommen, Joachim G.; Dolins, Francine L.; Witte, Klaudia

    2017-01-01

    Abstract Rapid technical advances in the field of computer animation (CA) and virtual reality (VR) have opened new avenues in animal behavior research. Animated stimuli are powerful tools as they offer standardization, repeatability, and complete control over the stimulus presented, thereby “reducing” and “replacing” the animals used, and “refining” the experimental design in line with the 3Rs. However, appropriate use of these technologies raises conceptual and technical questions. In this review, we offer guidelines for common technical and conceptual considerations related to the use of animated stimuli in animal behavior research. Following the steps required to create an animated stimulus, we discuss (I) the creation, (II) the presentation, and (III) the validation of CAs and VRs. Although our review is geared toward computer-graphically designed stimuli, considerations on presentation and validation also apply to video playbacks. CA and VR allow both new behavioral questions to be addressed and existing questions to be addressed in new ways, thus we expect a rich future for these methods in both ultimate and proximate studies of animal behavior. PMID:29491958

  2. Addressing Student Misconceptions Concerning Electron Flow in Aqueous Solutions with Instruction Including Computer Animations and Conceptual Change Strategies.

    ERIC Educational Resources Information Center

    Sanger, Michael J.; Greenbowe, Thomas J.

    2000-01-01

    Investigates the effects of both computer animations of microscopic chemical processes occurring in a galvanic cell and conceptual-change instruction based on chemical demonstrations on students' conceptions of current flow in electrolyte solutions. Finds that conceptual change instruction was effective at dispelling student misconceptions but…

  3. Sign Language for K-8 Mathematics by 3D Interactive Animation

    ERIC Educational Resources Information Center

    Adamo-Villani, Nicoletta; Doublestein, John; Martin, Zachary

    2005-01-01

    We present a new highly interactive computer animation tool to increase the mathematical skills of deaf children. We aim at increasing the effectiveness of (hearing) parents in teaching arithmetic to their deaf children, and the opportunity of deaf children to learn arithmetic via interactive media. Using state-of-the-art computer animation…

  4. Known and Unknown Weaknesses in Software Animated Demonstrations (Screencasts): A Study in Self-Paced Learning Settings

    ERIC Educational Resources Information Center

    Palaigeorgiou, George; Despotakis, Theofanis

    2010-01-01

    Learning about computers continues to be regarded as a rather informal and complex landscape dominated by individual exploratory and opportunistic approaches, even for students and instructors in Computer Science Departments. During the last two decades, software animated demonstrations (SADs), also known as screencasts, have attracted particular…

  5. Animation of finite element models and results

    NASA Technical Reports Server (NTRS)

    Lipman, Robert R.

    1992-01-01

    This is not intended as a complete review of computer hardware and software that can be used for animation of finite element models and results, but is instead a demonstration of the benefits of visualization using selected hardware and software. The role of raw computational power, graphics speed, and the use of videotape are discussed.

  6. Computer-Animated Instruction and Students' Conceptual Change in Electrochemistry: Preliminary Qualitative Analysis

    ERIC Educational Resources Information Center

    Talib, Othman; Matthews, Robert; Secombe, Margaret

    2005-01-01

    This paper discusses the potential of applying computer-animated instruction (CAnI) as an effective conceptual change strategy in teaching electrochemistry in comparison to conventional lecture-based instruction (CLI). The core assumption in this study is that conceptual change in learners is an active, constructive process that is enhanced by the…

  7. Pulmonary fat embolism after reamed and unreamed nailing of femoral fractures.

    PubMed

    Högel, F; Gerlach, U V; Südkamp, N P; Müller, C A

    2010-12-01

    To determine whether reamed or unreamed intramedullary nailing of femoral fractures results in higher incidence of pulmonary fat embolism, three different methods of intramedullary nailing were compared in sheep. To analyze the presence of bone marrow fat embolism in pulmonary arteries, histological evaluation was undertaken using a quantitative computer-assisted measurement system. In this experimental model of 27 female Swiss alpine sheep, an osteotomy of the proximal femur was conducted in each animal. Then, the animals were divided into three groups according to the method of treatment: two different reamed intramedullary nailing techniques and an unreamed nailing technique were used. In the first group "ER" (experimental reamer; n=9), the nail was inserted after reaming with an experimental reamer; in the second group "CR" (conventional reamer; n=7), the intramedullary nail was inserted after reaming with the conventional AO-reamer. In the third group "UN" (unreamed; n=8) unreamed nailing was performed. During the operation procedure intramedullary pressure was measured in the distal fragment. After sacrificing the animals, quantitative histological analyses of bone marrow fat embolism in pulmonary arteries were done using osmium tetroxide fixation and staining of the fat. The measurement of intramedullary pressure showed significantly lower values for reamed nailing than for the unreamed technique. The quantitative histological evaluation of lung vessels concerning bone marrow fat embolism revealed a statistically significant difference between reamed and unreamed insertion of the nail: 7.77%±6.93 (ER) and 6.66%±5.61 (CR) vs. 16.25%±10.05 (UN) (p<0.05) of the assessed lung vessels were filled with fat emboli. However, no difference was found between the traditional and experimental reamer. Intramedullary nailing after reaming is a safe procedure with low systemic embolisation when compared to the unreamed insertion of the nail. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Designing effective animations for computer science instruction

    NASA Astrophysics Data System (ADS)

    Grillmeyer, Oliver

    This study investigated the potential for animations of Scheme functions to help novice computer science students understand difficult programming concepts. These animations used an instructional framework inspired by theories of constructivism and knowledge integration. The framework had students make predictions, reflect, and specify examples to animate to promote autonomous learning and result in more integrated knowledge. The framework used animated pivotal cases to help integrate disconnected ideas and restructure students' incomplete ideas by illustrating weaknesses in their existing models. The animations scaffolded learners, making the thought processes of experts more visible by modeling complex and tacit information. The animation design was guided by prior research and a methodology of design and refinement. Analysis of pilot studies led to the development of four design concerns to aid animation designers: clearly illustrate the mapping between objects in animations with the actual objects they represent, show causal connections between elements, draw attention to the salient features of the modeled system, and create animations that reduce complexity. Refined animations based on these design concerns were compared to computer-based tools, text-based instruction, and simpler animations that do not embody the design concerns. Four studies comprised this dissertation work. Two sets of animated presentations of list creation functions were compared to control groups. No significant differences were found in support of animations. Three different animated models of traces of recursive functions ranging from concrete to abstract representations were compared. No differences in learning gains were found between the three models in test performance. Three models of animations of applicative operators were compared with students using the replacement modeler and the Scheme interpreter. Significant differences were found favoring animations that addressed causality and salience in their design. Lastly, two binary tree search algorithm animations designed to reduce complexity were compared with hand-tracing of calls. Students made fewer mistakes in predicting the tree traversal when guided by the animations. However, the posttest findings were inconsistent. In summary, animations designed based on the design concerns did not consistently add value to instruction in the form investigated in this research.

  9. Induction of Social Behavior in Zebrafish: Live Versus Computer Animated Fish as Stimuli

    PubMed Central

    Qin, Meiying; Wong, Albert; Seguin, Diane

    2014-01-01

    Abstract The zebrafish offers an excellent compromise between system complexity and practical simplicity and has been suggested as a translational research tool for the analysis of human brain disorders associated with abnormalities of social behavior. Unlike laboratory rodents zebrafish are diurnal, thus visual cues may be easily utilized in the analysis of their behavior and brain function. Visual cues, including the sight of conspecifics, have been employed to induce social behavior in zebrafish. However, the method of presentation of these cues and the question of whether computer animated images versus live stimulus fish have differential effects have not been systematically analyzed. Here, we compare the effects of five stimulus presentation types: live conspecifics in the experimental tank or outside the tank, playback of video-recorded live conspecifics, computer animated images of conspecifics presented by two software applications, the previously employed General Fish Animator, and a new application Zebrafish Presenter. We report that all stimuli were equally effective and induced a robust social response (shoaling) manifesting as reduced distance between stimulus and experimental fish. We conclude that presentation of live stimulus fish, or 3D images, is not required and 2D computer animated images are sufficient to induce robust and consistent social behavioral responses in zebrafish. PMID:24575942

  10. Induction of social behavior in zebrafish: live versus computer animated fish as stimuli.

    PubMed

    Qin, Meiying; Wong, Albert; Seguin, Diane; Gerlai, Robert

    2014-06-01

    The zebrafish offers an excellent compromise between system complexity and practical simplicity and has been suggested as a translational research tool for the analysis of human brain disorders associated with abnormalities of social behavior. Unlike laboratory rodents zebrafish are diurnal, thus visual cues may be easily utilized in the analysis of their behavior and brain function. Visual cues, including the sight of conspecifics, have been employed to induce social behavior in zebrafish. However, the method of presentation of these cues and the question of whether computer animated images versus live stimulus fish have differential effects have not been systematically analyzed. Here, we compare the effects of five stimulus presentation types: live conspecifics in the experimental tank or outside the tank, playback of video-recorded live conspecifics, computer animated images of conspecifics presented by two software applications, the previously employed General Fish Animator, and a new application Zebrafish Presenter. We report that all stimuli were equally effective and induced a robust social response (shoaling) manifesting as reduced distance between stimulus and experimental fish. We conclude that presentation of live stimulus fish, or 3D images, is not required and 2D computer animated images are sufficient to induce robust and consistent social behavioral responses in zebrafish.

  11. Fort Collins Science Center: Species and Habitats of Federal Interest

    USGS Publications Warehouse

    Stevens, Patty

    2004-01-01

    Ecosystem changes directly affect a wide variety of plant and animal species, floral and faunal communities, and groups of species such as amphibians and grassland birds. Appropriate management of public lands plays a crucial role in the conservation and recovery of endangered species and can be a key element in preventing a species from being listed under the Endangered Species Act. The Species and Habitats of Federal Interest Branch of the Fort Collins Science Center (FORT) conducts research on the ecology, habitat requirements, distribution and abundance, population dynamics, and genetics and systematics of many species facing threatened or endangered status or of special concern to resource management agencies. FORT scientists develop reintroduction and restoration techniques, technologies for monitoring populations, and novel methods to analyze data on population trends and habitat requirements. FORT expertise encompasses both traditional and specialized natural resource disciplines within wildlife biology, including population dynamics, animal behavior, plant and community ecology, inventory and monitoring, statistics and computer applications, conservation genetics, stable isotope analysis, and curatorial expertise.

  12. Image processing methods used to simulate flight over remotely sensed data

    NASA Technical Reports Server (NTRS)

    Mortensen, H. B.; Hussey, K. J.; Mortensen, R. A.

    1988-01-01

    It has been demonstrated that image processing techniques can provide an effective means of simulating flight over remotely sensed data (Hussey et al. 1986). This paper explains the methods used to simulate and animate three-dimensional surfaces from two-dimensional imagery. The preprocessing techniques used on the input data, the selection of the animation sequence, the generation of the animation frames, and the recording of the animation is covered. The software used for all steps is discussed.

  13. Systems for animal exposure in full-scale fire tests

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Cumming, H. J.; Kourtides, D. A.; Parker, J. A.

    1977-01-01

    Two systems for exposing animals in full-scale fire tests are described. Both systems involve the simultaneous exposure of two animal species, mice and rats, in modular units; determination of mortality, morbidity, and behavioral response; and analysis of the blood for carboxyhemoglobin. The systems described represent two of many possible options for obtaining bioassay data from full-scale fire tests. In situations where the temperatures to which the test animals are exposed can not be controlled, analytical techniques may be more appropriate than bioassay techniques.

  14. Hunting strategies used in the semi-arid region of northeastern Brazil

    PubMed Central

    Alves, Rômulo RN; Mendonça, Lívia ET; Confessor, Maine VA; Vieira, Washington LS; Lopez, Luiz CS

    2009-01-01

    Hunting for wild animals is stimulated by the many different human uses of faunal resources, and these animals constitute important subsistence items in local communities in the Caatinga region. In order to gain access to these resources, hunters have developed a series of techniques and strategies that are described in the present work. The principal hunting techniques encountered were: waiting, especially directed towards hunting diurnal birds; calling ("arremedo"), a technique in which the hunters imitate the animal's call to attract it to close range; hunting with dogs, a technique mostly used for capturing mammals; tracking, a technique used by only a few hunters who can recognize and follow animal tracks; and "facheado", in which the hunters go out at night with lanterns to catch birds in their nests. Additionally, many animal species are captured using mechanical traps. The types of traps used by the interviewees were: dead-fall traps ("quixó"), iron-jaw snap traps ("arataca"), wooden cages with bait ("arapuca"), iron-cage traps ("gaiola'), "visgo", multi-compartment bird cages ("alçapão"), buried ground traps with pivoted tops ("fojo"), and nooses and cages for carnivorous. The choice of which technique to use depends on the habits of the species being hunted, indicating that the hunters possess a wide knowledge of the biology of these animals. From a conservation perspective, active hunting techniques (waiting, imitation, hunting with dogs, and "facheado") have the greatest impact on the local fauna. The use of firearm and dogs brought greater efficiency to hunting activities. Additional studies concerning these hunting activities will be useful to contribute to proposals for management plans regulating hunting in the region – with the objective of attaining sustainable use of faunal resources of great importance to the local human communities. PMID:19386121

  15. MCAT to XCAT: The Evolution of 4-D Computerized Phantoms for Imaging Research: Computer models that take account of body movements promise to provide evaluation and improvement of medical imaging devices and technology.

    PubMed

    Paul Segars, W; Tsui, Benjamin M W

    2009-12-01

    Recent work in the development of computerized phantoms has focused on the creation of ideal "hybrid" models that seek to combine the realism of a patient-based voxelized phantom with the flexibility of a mathematical or stylized phantom. We have been leading the development of such computerized phantoms for use in medical imaging research. This paper will summarize our developments dating from the original four-dimensional (4-D) Mathematical Cardiac-Torso (MCAT) phantom, a stylized model based on geometric primitives, to the current 4-D extended Cardiac-Torso (XCAT) and Mouse Whole-Body (MOBY) phantoms, hybrid models of the human and laboratory mouse based on state-of-the-art computer graphics techniques. This paper illustrates the evolution of computerized phantoms toward more accurate models of anatomy and physiology. This evolution was catalyzed through the introduction of nonuniform rational b-spline (NURBS) and subdivision (SD) surfaces, tools widely used in computer graphics, as modeling primitives to define a more ideal hybrid phantom. With NURBS and SD surfaces as a basis, we progressed from a simple geometrically based model of the male torso (MCAT) containing only a handful of structures to detailed, whole-body models of the male and female (XCAT) anatomies (at different ages from newborn to adult), each containing more than 9000 structures. The techniques we applied for modeling the human body were similarly used in the creation of the 4-D MOBY phantom, a whole-body model for the mouse designed for small animal imaging research. From our work, we have found the NURBS and SD surface modeling techniques to be an efficient and flexible way to describe the anatomy and physiology for realistic phantoms. Based on imaging data, the surfaces can accurately model the complex organs and structures in the body, providing a level of realism comparable to that of a voxelized phantom. In addition, they are very flexible. Like stylized models, they can easily be manipulated to model anatomical variations and patient motion. With the vast improvement in realism, the phantoms developed in our lab can be combined with accurate models of the imaging process (SPECT, PET, CT, magnetic resonance imaging, and ultrasound) to generate simulated imaging data close to that from actual human or animal subjects. As such, they can provide vital tools to generate predictive imaging data from many different subjects under various scanning parameters from which to quantitatively evaluate and improve imaging devices and techniques. From the MCAT to XCAT, we will demonstrate how NURBS and SD surface modeling have resulted in a major evolutionary advance in the development of computerized phantoms for imaging research.

  16. Computer-animated model of accommodation and presbyopia.

    PubMed

    Goldberg, Daniel B

    2015-02-01

    To understand, demonstrate, and further research the mechanisms of accommodation and presbyopia. Private practice, Little Silver, New Jersey, USA. Experimental study. The CAMA 2.0 computer-animated model of accommodation and presbyopia was produced in collaboration with an experienced medical animator using Autodesk Maya animation software and Adobe After Effects. The computer-animated model demonstrates the configuration and synchronous movements of all accommodative elements. A new classification of the zonular apparatus based on structure and function is proposed. There are 3 divisions of zonular fibers; that is, anterior, crossing, and posterior. The crossing zonular fibers form a scaffolding to support the lens; the anterior and posterior zonular fibers work reciprocally to achieve focused vision. The model demonstrates the important support function of Weiger ligament. Dynamic movement of the ora serrata demonstrates that the forces of ciliary muscle contraction store energy for disaccommodation in the elastic choroid. The flow of aqueous and vitreous provides strong evidence for our understanding of the hydrodynamic interactions during the accommodative cycle. The interaction may result from the elastic stretch in the choroid transmitted to the vitreous rather than from vitreous pressue. The model supports the concept that presbyopia results from loss of elasticity and increasing ocular rigidity in both the lenticular and extralenticular structures. The computer-animated model demonstrates the structures of accommodation moving in synchrony and might enhance understanding of the mechanisms of accommodation and presbyopia. Dr. Goldberg is a consultant to Acevision, Inc., and Bausch & Lomb. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  17. Animals in Science Education--Ethics and Alternatives.

    ERIC Educational Resources Information Center

    Langley, G. R.

    1991-01-01

    Summarizes the animal rights argument that objects to the use or killing of animals for educational purposes. Reviews and evaluates alternative approaches that include the nonanimal options of videotaped experiments, self-experimentation, and computer simulations. (MDH)

  18. Incorporating Laptop Technologies into an Animal Sciences Curriculum

    ERIC Educational Resources Information Center

    Birrenkott, Glenn; Bertrand, Jean A.; Bolt, Brian

    2005-01-01

    Teaching animal sciences, like most agricultural disciplines, requires giving students hands-on learning opportunities in remote and often computer-unfriendly sites such as animal farms. How do faculty integrate laptop use into such an environment?

  19. Applying and evaluating computer-animated tutors

    NASA Astrophysics Data System (ADS)

    Massaro, Dominic W.; Bosseler, Alexis; Stone, Patrick S.; Connors, Pamela

    2002-05-01

    We have developed computer-assisted speech and language tutors for deaf, hard of hearing, and autistic children. Our language-training program utilizes our computer-animated talking head, Baldi, as the conversational agent, who guides students through a variety of exercises designed to teach vocabulary and grammer, to improve speech articulation, and to develop linguistic and phonological awareness. Baldi is an accurate three-dimensional animated talking head appropriately aligned with either synthesized or natural speech. Baldi has a tongue and palate, which can be displayed by making his skin transparent. Two specific language-training programs have been evaluated to determine if they improve word learning and speech articulation. The results indicate that the programs are effective in teaching receptive and productive language. Advantages of utilizing a computer-animated agent as a language tutor are the popularity of computers and embodied conversational agents with autistic kids, the perpetual availability of the program, and individualized instruction. Students enjoy working with Baldi because he offers extreme patience, he doesn't become angry, tired, or bored, and he is in effect a perpetual teaching machine. The results indicate that the psychology and technology of Baldi holds great promise in language learning and speech therapy. [Work supported by NSF Grant Nos. CDA-9726363 and BCS-9905176 and Public Health Service Grant No. PHS R01 DC00236.

  20. The Implementation of Blended Learning Using Android-Based Tutorial Video in Computer Programming Course II

    NASA Astrophysics Data System (ADS)

    Huda, C.; Hudha, M. N.; Ain, N.; Nandiyanto, A. B. D.; Abdullah, A. G.; Widiaty, I.

    2018-01-01

    Computer programming course is theoretical. Sufficient practice is necessary to facilitate conceptual understanding and encouraging creativity in designing computer programs/animation. The development of tutorial video in an Android-based blended learning is needed for students’ guide. Using Android-based instructional material, students can independently learn anywhere and anytime. The tutorial video can facilitate students’ understanding about concepts, materials, and procedures of programming/animation making in detail. This study employed a Research and Development method adapting Thiagarajan’s 4D model. The developed Android-based instructional material and tutorial video were validated by experts in instructional media and experts in physics education. The expert validation results showed that the Android-based material was comprehensive and very feasible. The tutorial video was deemed feasible as it received average score of 92.9%. It was also revealed that students’ conceptual understanding, skills, and creativity in designing computer program/animation improved significantly.

  1. Engineering perceptions of female and male K-12 students: effects of a multimedia overview on elementary, middle-, and high-school students

    NASA Astrophysics Data System (ADS)

    Johnson, Amy M.; Ozogul, Gamze; DiDonato, Matt D.; Reisslein, Martin

    2013-10-01

    Computer-based multimedia presentations employing animated agents (avatars) can positively impact perceptions about engineering; the current research advances our understanding of this effect to pre-college populations, the main target for engineering outreach. The study examines the effectiveness of a brief computer-based intervention with animated agents in improving perceptions about engineering. Five hundred sixty-five elementary, middle-, and high-school students in the southwestern USA viewed a short computer-based multimedia overview of four engineering disciplines (electrical, chemical, biomedical, and environmental) with embedded animated agents. Students completed identical surveys measuring five subscales of engineering perceptions immediately before and after the intervention. Analyses of pre- and post-surveys demonstrated that the computer presentation significantly improved perceptions for each student group, and that effects were stronger for elementary school students, compared to middle- and high-school students.

  2. Prior image constrained image reconstruction in emerging computed tomography applications

    NASA Astrophysics Data System (ADS)

    Brunner, Stephen T.

    Advances have been made in computed tomography (CT), especially in the past five years, by incorporating prior images into the image reconstruction process. In this dissertation, we investigate prior image constrained image reconstruction in three emerging CT applications: dual-energy CT, multi-energy photon-counting CT, and cone-beam CT in image-guided radiation therapy. First, we investigate the application of Prior Image Constrained Compressed Sensing (PICCS) in dual-energy CT, which has been called "one of the hottest research areas in CT." Phantom and animal studies are conducted using a state-of-the-art 64-slice GE Discovery 750 HD CT scanner to investigate the extent to which PICCS can enable radiation dose reduction in material density and virtual monochromatic imaging. Second, we extend the application of PICCS from dual-energy CT to multi-energy photon-counting CT, which has been called "one of the 12 topics in CT to be critical in the next decade." Numerical simulations are conducted to generate multiple energy bin images for a photon-counting CT acquisition and to investigate the extent to which PICCS can enable radiation dose efficiency improvement. Third, we investigate the performance of a newly proposed prior image constrained scatter correction technique to correct scatter-induced shading artifacts in cone-beam CT, which, when used in image-guided radiation therapy procedures, can assist in patient localization, and potentially, dose verification and adaptive radiation therapy. Phantom studies are conducted using a Varian 2100 EX system with an on-board imager to investigate the extent to which the prior image constrained scatter correction technique can mitigate scatter-induced shading artifacts in cone-beam CT. Results show that these prior image constrained image reconstruction techniques can reduce radiation dose in dual-energy CT by 50% in phantom and animal studies in material density and virtual monochromatic imaging, can lead to radiation dose efficiency improvement in multi-energy photon-counting CT, and can mitigate scatter-induced shading artifacts in cone-beam CT in full-fan and half-fan modes.

  3. Procedural wound geometry and blood flow generation for medical training simulators

    NASA Astrophysics Data System (ADS)

    Aras, Rifat; Shen, Yuzhong; Li, Jiang

    2012-02-01

    Efficient application of wound treatment procedures is vital in both emergency room and battle zone scenes. In order to train first responders for such situations, physical casualty simulation kits, which are composed of tens of individual items, are commonly used. Similar to any other training scenarios, computer simulations can be effective means for wound treatment training purposes. For immersive and high fidelity virtual reality applications, realistic 3D models are key components. However, creation of such models is a labor intensive process. In this paper, we propose a procedural wound geometry generation technique that parameterizes key simulation inputs to establish the variability of the training scenarios without the need of labor intensive remodeling of the 3D geometry. The procedural techniques described in this work are entirely handled by the graphics processing unit (GPU) to enable interactive real-time operation of the simulation and to relieve the CPU for other computational tasks. The visible human dataset is processed and used as a volumetric texture for the internal visualization of the wound geometry. To further enhance the fidelity of the simulation, we also employ a surface flow model for blood visualization. This model is realized as a dynamic texture that is composed of a height field and a normal map and animated at each simulation step on the GPU. The procedural wound geometry and the blood flow model are applied to a thigh model and the efficiency of the technique is demonstrated in a virtual surgery scene.

  4. The effects of 3D interactive animated graphics on student learning and attitudes in computer-based instruction

    NASA Astrophysics Data System (ADS)

    Moon, Hye Sun

    Visuals are most extensively used as instructional tools in education to present spatially-based information. Recent computer technology allows the generation of 3D animated visuals to extend the presentation in computer-based instruction. Animated visuals in 3D representation not only possess motivational value that promotes positive attitudes toward instruction but also facilitate learning when the subject matter requires dynamic motion and 3D visual cue. In this study, three questions are explored: (1) how 3D graphics affects student learning and attitude, in comparison with 2D graphics; (2) how animated graphics affects student learning and attitude, in comparison with static graphics; and (3) whether the use of 3D graphics, when they are supported by interactive animation, is the most effective visual cues to improve learning and to develop positive attitudes. A total of 145 eighth-grade students participated in a 2 x 2 factorial design study. The subjects were randomly assigned to one of four computer-based instructions: 2D static; 2D animated; 3D static; and 3D animated. The results indicated that: (1) Students in the 3D graphic condition exhibited more positive attitudes toward instruction than those in the 2D graphic condition. No group differences were found between the posttest score of 3D graphic condition and that of 2D graphic condition. However, students in the 3D graphic condition took less time for information retrieval on posttest than those in the 2D graphic condition. (2) Students in the animated graphic condition exhibited slightly more positive attitudes toward instruction than those in the static graphic condition. No group differences were found between the posttest score of animated graphic condition and that of static graphic condition. However, students in the animated graphic condition took less time for information retrieval on posttest than those in the static graphic condition. (3) Students in the 3D animated graphic condition exhibited more positive attitudes toward instruction than those in other treatment conditions (2D static, 2D animated, and 3D static conditions). No group differences were found in the posttest scores among four treatment conditions. However, students in the 3D animated condition took less time for information retrieval on posttest than those in other treatment conditions.

  5. Computer Animated Representations to Optically Observe Numerical Evaluations (CARTOONE). Computer Generated Animations of Solid Bodies.

    DTIC Science & Technology

    1983-04-01

    20. it diferent hrem Report) IS. SUPPLEMENTARY NOTES It. KEY WORDS (Conthu on revere* side if neceeemy md Identify by bock number) Computer Generated...ABSTRACT (Continue an revere side If neceeary end Identity by block mmbr) This report documents the work done in-house by personnel of ASD/ENFTC to develop a...unfamiliar with the system. This report contains a User’s Guide and documents the work done to develop CARTOONE. The work was accomplished from

  6. Effectiveness of Computer Animation and Geometrical Instructional Model on Mathematics Achievement and Retention among Junior Secondary School Students

    ERIC Educational Resources Information Center

    Gambari, A. I.; Falode, C. O.; Adegbenro, D. A.

    2014-01-01

    This study investigated the effectiveness of computer animation and geometry instructional model on mathematics achievement and retention on Junior Secondary School Students in Minna, Nigeria. It also examined the influence of gender on students' achievement and retention. The research was a pre-test post-test experimental and control group…

  7. 3-D Computer Animation vs. Live-Action Video: Differences in Viewers' Response to Instructional Vignettes

    ERIC Educational Resources Information Center

    Smith, Dennie; McLaughlin, Tim; Brown, Irving

    2012-01-01

    This study explored computer animation vignettes as a replacement for live-action video scenarios of classroom behavior situations previously used as an instructional resource in teacher education courses in classroom management strategies. The focus of the research was to determine if the embedded behavioral information perceived in a live-action…

  8. Effects of Computer Animation Instructional Package on Students' Achievement in Practical Biology

    ERIC Educational Resources Information Center

    Hamzat, Abdulrasaq; Bello, Ganiyu; Abimbola, Isaac Olakanmi

    2017-01-01

    This study examined the effects of computer animation instructional package on secondary school students' achievement in practical biology in Ilorin, Nigeria. The study adopted a pre-test, post-test, control group, non-randomised and nonequivalent quasi-experimental design, with a 2x2x3 factorial design. Two intact classes from two secondary…

  9. Interactive Computer Simulation and Animation for Improving Student Learning of Particle Kinetics

    ERIC Educational Resources Information Center

    Fang, N.; Guo, Y.

    2016-01-01

    Computer simulation and animation (CSA) has been receiving growing attention and wide application in engineering education in recent years. A new interactive CSA module was developed in the present study to improve student learning of particle kinetics in an undergraduate engineering dynamics course. The unique feature of this CSA module is that…

  10. Using Computer Animation and Illustration Activities to Improve High School Students' Achievement in Molecular Genetics

    ERIC Educational Resources Information Center

    Marbach-Ad, Gili; Rotbain, Yosi; Stavy, Ruth

    2008-01-01

    Our main goal in this study was to determine whether the use of computer animation and illustration activities in high school can contribute to student achievement in molecular genetics. Three comparable groups of eleventh- and twelfth-grade students participated: the control group (116 students) was taught in the traditional lecture format,…

  11. The Socioemotional Effects of a Computer-Simulated Animal on Children's Empathy and Humane Attitudes

    ERIC Educational Resources Information Center

    Tsai, Yueh-Feng Lily; Kaufman, David M.

    2009-01-01

    This study investigated the potential of using a computer-simulated animal in a handheld virtual pet videogame to improve children's empathy and humane attitudes. Also investigated was whether sex differences existed in children's development of empathy and humane attitudes resulting from play, as well as their feelings for a virtual pet. The…

  12. A relative quantitative assessment of myocardial perfusion by first-pass technique: animal study

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Zhang, Zhang; Yu, Xuefang; Zhou, Kenneth J.

    2015-03-01

    The purpose of this study is to quantitatively assess the myocardial perfusion by first-pass technique in swine model. Numerous techniques based on the analysis of Computed Tomography (CT) Hounsfield Unit (HU) density have emerged. Although these methods proposed to be able to assess haemodynamically significant coronary artery stenosis, their limitations are noticed. There are still needs to develop some new techniques. Experiments were performed upon five (5) closed-chest swine. Balloon catheters were placed into the coronary artery to simulate different degrees of luminal stenosis. Myocardial Blood Flow (MBF) was measured using color microsphere technique. Fractional Flow Reserve (FFR) was measured using pressure wire. CT examinations were performed twice during First-pass phase under adenosine-stress condition. CT HU Density (HUDCT) and CT HU Density Ratio (HUDRCT) were calculated using the acquired CT images. Our study presents that HUDRCT shows a good (y=0.07245+0.09963x, r2=0.898) correlation with MBF and FFR. In receiver operating characteristic (ROC) curve analyses, HUDRCT provides excellent diagnostic performance for the detection of significant ischemia during adenosine-stress as defined by FFR indicated by the value of Area Under the Curve (AUC) of 0.927. HUDRCT has the potential to be developed as a useful indicator of quantitative assessment of myocardial perfusion.

  13. Analytical methods for quantifying greenhouse gas flux in animal production systems.

    PubMed

    Powers, W; Capelari, M

    2016-08-01

    Given increased interest by all stakeholders to better understand the contribution of animal agriculture to climate change, it is important that appropriate methodologies be used when measuring greenhouse gas (GHG) emissions from animal agriculture. Similarly, a fundamental understanding of the differences between methods is necessary to appropriately compare data collected using different approaches and design meaningful experiments. Sources of carbon dioxide, methane, and nitrous oxide emissions in animal production systems includes the animals, feed storage areas, manure deposition and storage areas, and feed and forage production fields. These 3 gases make up the primary GHG emissions from animal feeding operations. Each of the different GHG may be more or less prominent from each emitting source. Similarly, the species dictates the importance of methane emissions from the animals themselves. Measures of GHG flux from animals are often made using respiration chambers, head boxes, tracer gas techniques, or in vitro gas production techniques. In some cases, a combination of techniques are used (i.e., head boxes in combination with tracer gas). The prominent methods for measuring GHG emissions from housing include the use of tracer gas techniques or direct or indirect ventilation measures coupled with concentration measures of gases of interest. Methods for collecting and measuring GHG emissions from manure storage and/or production lots include the use of downwind measures, often using photoacoustic or open path Fourier transform infrared spectroscopy, combined with modeling techniques or the use of static chambers or flux hood methods. Similar methods can be deployed for determining GHG emissions from fields. Each method identified has its own benefits and challenges to use for the stated application. Considerations for use include intended goal, equipment investment and maintenance, frequency and duration of sampling needed to achieve desired representativeness of emissions over time, accuracy and precision of the method, and environmental influences on the method. In the absence of a perfect method for all situations, full knowledge of the advantages and disadvantages of each method is extremely important during the development of the experimental design and interpretation of results. The selection of the suitable technique depends on the animal production system, resource availability, and objective for measurements.

  14. Breed traceability of buffalo meat using microsatellite genotyping technique.

    PubMed

    Kannur, Bheemashankar H; Fairoze, Md Nadeem; Girish, P S; Karabasanavar, Nagappa; Rudresh, B H

    2017-02-01

    Although buffalo has emerged as a major meat producing animal in Asia, major research on breed traceability has so far been focused on cattle (beef). This research gap on buffalo breed traceability has impelled development and validation of buffalo breed traceability using a set of eight microsatellite (STR) markers in seven Indian buffalo breeds (Bhadawari, Jaffaarabadi, Murrah, Mehsana, Nagpuri, Pandharpuri and Surti). Probability of sharing same profile by two individuals at a specific locus was computed considering different STR numbers, allele pooling in breed and population. Match probabilities per breed were considered and six most polymorphic loci were genotyped. Out of eight microsatellite markers studied, markers CSSMO47, DRB3 and CSSM060 were found most polymorphic. Developed technique was validated with known and unknown, blood and meat samples; wherein, samples were genetically traced in 24 out of 25 samples tested. Results of this study showed potential applications of the methodology and encourage other researchers to address the problem of buffalo traceability so as to create a world-wide archive of breed specific genotypes. This work is the first report of breed traceability of buffalo meat utilizing microsatellite genotyping technique.

  15. Studying Biotechnological Methods Using Animations: The Teacher's Role

    ERIC Educational Resources Information Center

    Yarden, Hagit; Yarden, Anat

    2011-01-01

    Animation has great potential for improving the way people learn. A number of studies in different scientific disciplines have shown that instruction involving computer animations can facilitate the understanding of processes at the molecular level. However, using animation alone does not ensure learning. Students sometimes miss essential features…

  16. Topological analysis of group fragmentation in multiagent systems

    NASA Astrophysics Data System (ADS)

    DeLellis, Pietro; Porfiri, Maurizio; Bollt, Erik M.

    2013-02-01

    In social animals, the presence of conflicts of interest or multiple leaders can promote the emergence of two or more subgroups. Such subgroups are easily recognizable by human observers, yet a quantitative and objective measure of group fragmentation is currently lacking. In this paper, we explore the feasibility of detecting group fragmentation by embedding the raw data from the individuals' motions on a low-dimensional manifold and analyzing the topological features of this manifold. To perform the embedding, we employ the isomap algorithm, which is a data-driven machine learning tool extensively used in computer vision. We implement this procedure on a data set generated by a modified à la Vicsek model, where agents are partitioned into two or more subsets and an independent leader is assigned to each subset. The dimensionality of the embedding manifold is shown to be a measure of the number of emerging subgroups in the selected observation window and a cluster analysis is proposed to aid the interpretation of these findings. To explore the feasibility of using this approach to characterize group fragmentation in real time and thus reduce the computational cost in data processing and storage, we propose an interpolation method based on an inverse mapping from the embedding space to the original space. The effectiveness of the interpolation technique is illustrated on a test-bed example with potential impact on the regulation of collective behavior of animal groups using robotic stimuli.

  17. Efficient use of bit planes in the generation of motion stimuli

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.; Stone, Leland S.

    1988-01-01

    The production of animated motion sequences on computer-controlled display systems presents a technical problem because large images cannot be transferred from disk storage to image memory at conventional frame rates. A technique is described in which a single base image can be used to generate a broad class of motion stimuli without the need for such memory transfers. This technique was applied to the generation of drifting sine-wave gratings (and by extension, sine wave plaids). For each drifting grating, sine and cosine spatial phase components are first reduced to 1 bit/pixel using a digital halftoning technique. The resulting pairs of 1-bit images are then loaded into pairs of bit planes of the display memory. To animate the patterns, the display hardware's color lookup table is modified on a frame-by-frame basis; for each frame the lookup table is set to display a weighted sum of the spatial sine and cosine phase components. Because the contrasts and temporal frequencies of the various components are mutually independent in each frame, the sine and cosine components can be counterphase modulated in temporal quadrature, yielding a single drifting grating. Using additional bit planes, multiple drifting gratings can be combined to form sine-wave plaid patterns. A large number of resultant plaid motions can be produced from a single image file because the temporal frequencies of all the components can be varied independently. For a graphics device having 8 bits/pixel, up to four drifting gratings may be combined, each having independently variable contrast and speed.

  18. Quantitative imaging of gold nanoparticle distribution in a tumor-bearing mouse using benchtop x-ray fluorescence computed tomography

    PubMed Central

    Manohar, Nivedh; Reynoso, Francisco J.; Diagaradjane, Parmeswaran; Krishnan, Sunil; Cho, Sang Hyun

    2016-01-01

    X-ray fluorescence computed tomography (XFCT) is a technique that can identify, quantify, and locate elements within objects by detecting x-ray fluorescence (characteristic x-rays) stimulated by an excitation source, typically derived from a synchrotron. However, the use of a synchrotron limits practicality and accessibility of XFCT for routine biomedical imaging applications. Therefore, we have developed the ability to perform XFCT on a benchtop setting with ordinary polychromatic x-ray sources. Here, we report our postmortem study that demonstrates the use of benchtop XFCT to accurately image the distribution of gold nanoparticles (GNPs) injected into a tumor-bearing mouse. The distribution of GNPs as determined by benchtop XFCT was validated using inductively coupled plasma mass spectrometry. This investigation shows drastically enhanced sensitivity and specificity of GNP detection and quantification with benchtop XFCT, up to two orders of magnitude better than conventional x-ray CT. The results also reaffirm the unique capabilities of benchtop XFCT for simultaneous determination of the spatial distribution and concentration of nonradioactive metallic probes, such as GNPs, within the context of small animal imaging. Overall, this investigation identifies a clear path toward in vivo molecular imaging using benchtop XFCT techniques in conjunction with GNPs and other metallic probes. PMID:26912068

  19. Small Animal Retinal Imaging

    NASA Astrophysics Data System (ADS)

    Choi, WooJhon; Drexler, Wolfgang; Fujimoto, James G.

    Developing and validating new techniques and methods for small animal imaging is an important research area because there are many small animal models of retinal diseases such as diabetic retinopathy, age-related macular degeneration, and glaucoma [1-6]. Because the retina is a multilayered structure with distinct abnormalities occurring in different intraretinal layers at different stages of disease progression, there is a need for imaging techniques that enable visualization of these layers individually at different time points. Although postmortem histology and ultrastructural analysis can be performed for investigating microscopic changes in the retina in small animal models, this requires sacrificing animals, which makes repeated assessment of the same animal at different time points impossible and increases the number of animals required. Furthermore, some retinal processes such as neurovascular coupling cannot be fully characterized postmortem.

  20. Communication in red fox dyads: a computer simulation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, Gerald Gene

    1973-06-01

    For any two animals, three major factors limit communication. These are (1) whether appropriate signal mechanisms are available to them, (2) whether the animals are motivated to communicate, and (3) whether their movements and locations are such that signal can pass between them. In this study, signal mechanisms and motivation were not considered as variables, but the role of animal movement in limiting communication was. A computer simulation study of amounts of communication which occur in red fox (Vulpes vulpes) dyads when various means of signalling are used, and when. the animals move about and signal with - various emissionmore » intensities and at various time intervals is reported.« less

  1. Children's Preferences for Film Form and Technique.

    ERIC Educational Resources Information Center

    Cox, Carole

    1982-01-01

    Describes the methodology and results of a study of the preferences of fourth- and fifth-grade children for film form and technique. Indicates that children prefer narrative/live action films, followed by narrative/animation, nonnarrative/live action, and nonnarrative/animation. (HTH)

  2. Computer animations of color markings reveal the function of visual threat signals in Neolamprologus pulcher

    PubMed Central

    Taborsky, Michael; Villa, Fabienne; Frommen, Joachim G.

    2017-01-01

    Abstract Visual signals, including changes in coloration and color patterns, are frequently used by animals to convey information. During contests, body coloration and its changes can be used to assess an opponent’s state or motivation. Communication of aggressive propensity is particularly important in group‐living animals with a stable dominance hierarchy, as the outcome of aggressive interactions determines the social rank of group members. Neolamprologus pulcher is a cooperatively breeding cichlid showing frequent within-group aggression. Both sexes exhibit two vertical black stripes on the operculum that vary naturally in shape and darkness. During frontal threat displays these patterns are actively exposed to the opponent, suggesting a signaling function. To investigate the role of operculum stripes during contests we manipulated their darkness in computer animated pictures of the fish. We recorded the responses in behavior and stripe darkness of test subjects to which these animated pictures were presented. Individuals with initially darker stripes were more aggressive against the animations and showed more operculum threat displays. Operculum stripes of test subjects became darker after exposure to an animation exhibiting a pale operculum than after exposure to a dark operculum animation, highlighting the role of the darkness of this color pattern in opponent assessment. We conclude that (i) the black stripes on the operculum of N. pulcher are a reliable signal of aggression and dominance, (ii) these markings play an important role in opponent assessment, and (iii) 2D computer animations are well suited to elicit biologically meaningful short-term aggressive responses in this widely used model system of social evolution. PMID:29491962

  3. Computer animations of color markings reveal the function of visual threat signals in Neolamprologus pulcher.

    PubMed

    Balzarini, Valentina; Taborsky, Michael; Villa, Fabienne; Frommen, Joachim G

    2017-02-01

    Visual signals, including changes in coloration and color patterns, are frequently used by animals to convey information. During contests, body coloration and its changes can be used to assess an opponent's state or motivation. Communication of aggressive propensity is particularly important in group-living animals with a stable dominance hierarchy, as the outcome of aggressive interactions determines the social rank of group members. Neolamprologus pulcher is a cooperatively breeding cichlid showing frequent within-group aggression. Both sexes exhibit two vertical black stripes on the operculum that vary naturally in shape and darkness. During frontal threat displays these patterns are actively exposed to the opponent, suggesting a signaling function. To investigate the role of operculum stripes during contests we manipulated their darkness in computer animated pictures of the fish. We recorded the responses in behavior and stripe darkness of test subjects to which these animated pictures were presented. Individuals with initially darker stripes were more aggressive against the animations and showed more operculum threat displays. Operculum stripes of test subjects became darker after exposure to an animation exhibiting a pale operculum than after exposure to a dark operculum animation, highlighting the role of the darkness of this color pattern in opponent assessment. We conclude that (i) the black stripes on the operculum of N. pulcher are a reliable signal of aggression and dominance, (ii) these markings play an important role in opponent assessment, and (iii) 2D computer animations are well suited to elicit biologically meaningful short-term aggressive responses in this widely used model system of social evolution.

  4. Animals as Mobile Biological Sensors for Forest Fire Detection

    PubMed Central

    2007-01-01

    This paper proposes a mobile biological sensor system that can assist in early detection of forest fires one of the most dreaded natural disasters on the earth. The main idea presented in this paper is to utilize animals with sensors as Mobile Biological Sensors (MBS). The devices used in this system are animals which are native animals living in forests, sensors (thermo and radiation sensors with GPS features) that measure the temperature and transmit the location of the MBS, access points for wireless communication and a central computer system which classifies of animal actions. The system offers two different methods, firstly: access points continuously receive data about animals' location using GPS at certain time intervals and the gathered data is then classified and checked to see if there is a sudden movement (panic) of the animal groups: this method is called animal behavior classification (ABC). The second method can be defined as thermal detection (TD): the access points get the temperature values from the MBS devices and send the data to a central computer to check for instant changes in the temperatures. This system may be used for many purposes other than fire detection, namely animal tracking, poaching prevention and detecting instantaneous animal death. PMID:28903281

  5. Computer-assisted versus conventional free fibula flap technique for craniofacial reconstruction: an outcomes comparison.

    PubMed

    Seruya, Mitchel; Fisher, Mark; Rodriguez, Eduardo D

    2013-11-01

    There has been rising interest in computer-aided design/computer-aided manufacturing for preoperative planning and execution of osseous free flap reconstruction. The purpose of this study was to compare outcomes between computer-assisted and conventional fibula free flap techniques for craniofacial reconstruction. A two-center, retrospective review was carried out on patients who underwent fibula free flap surgery for craniofacial reconstruction from 2003 to 2012. Patients were categorized by the type of reconstructive technique: conventional (between 2003 and 2009) or computer-aided design/computer-aided manufacturing (from 2010 to 2012). Demographics, surgical factors, and perioperative and long-term outcomes were compared. A total of 68 patients underwent microsurgical craniofacial reconstruction: 58 conventional and 10 computer-aided design and manufacturing fibula free flaps. By demographics, patients undergoing the computer-aided design/computer-aided manufacturing method were significantly older and had a higher rate of radiotherapy exposure compared with conventional patients. Intraoperatively, the median number of osteotomies was significantly higher (2.0 versus 1.0, p=0.002) and the median ischemia time was significantly shorter (120 minutes versus 170 minutes, p=0.004) for the computer-aided design/computer-aided manufacturing technique compared with conventional techniques; operative times were shorter for patients undergoing the computer-aided design/computer-aided manufacturing technique, although this did not reach statistical significance. Perioperative and long-term outcomes were equivalent for the two groups, notably, hospital length of stay, recipient-site infection, partial and total flap loss, and rate of soft-tissue and bony tissue revisions. Microsurgical craniofacial reconstruction using a computer-assisted fibula flap technique yielded significantly shorter ischemia times amidst a higher number of osteotomies compared with conventional techniques. Therapeutic, III.

  6. Studying Biotechnological Methods Using Animations: The Teacher's Role

    NASA Astrophysics Data System (ADS)

    Yarden, Hagit; Yarden, Anat

    2011-12-01

    Animation has great potential for improving the way people learn. A number of studies in different scientific disciplines have shown that instruction involving computer animations can facilitate the understanding of processes at the molecular level. However, using animation alone does not ensure learning. Students sometimes miss essential features when they watch only animations, mainly due to the cognitive load involved. Moreover, students seem to attribute a great deal of authority to the computer and may develop misconceptions by taking animations of abstract concepts too literally. In this study, we attempted to explore teachers' perceptions concerning the use of animations in the classroom while studying biotechnological methods, as well as the teachers' contribution to the enactment of animations in class. Thirty high-school biotechnology teachers participated in a professional development workshop, aimed at investigating how teachers plan for and support learning with animation while studying biotechnological methods in class. From that sample, two teachers agreed to participate in two case studies aimed at characterizing teachers' contribution to the enactment of animations in class while studying biotechnological methods. Our findings reveal marked teacher contribution in the following three aspects: establishing the "hands-on" point of view, helping students deal with the cognitive load that accompanies the use of animation, and implementing constructivist aspects of knowledge construction while studying using animations.

  7. Polarization-difference imaging: a biologically inspired technique for observation through scattering media

    NASA Astrophysics Data System (ADS)

    Rowe, M. P.; Pugh, E. N., Jr.; Tyo, J. S.; Engheta, N.

    1995-03-01

    Many animals have visual systems that exploit the polarization of light, and some of these systems are thought to compute difference signals in parallel from arrays of photoreceptors optimally tuned to orthogonal polarizations. We hypothesize that such polarization-difference systems can improve the visibility of objects in scattering media by serving as common-mode rejection amplifiers that reduce the effects of background scattering and amplify the signal from targets whose polarization-difference magnitude is distinct from the background. We present experimental results obtained with a target in a highly scattering medium, demonstrating that a manmade polarization-difference system can render readily visible surface features invisible to conventional imaging.

  8. Software Products

    NASA Technical Reports Server (NTRS)

    1993-01-01

    MAST is a decision support system to help in the management of dairy herds. Data is collected on dairy herds around the country and processed at regional centers. One center is Cornell University, where Dr. Lawrence Jones and his team developed MAST. The system draws conclusions from the data and summarizes it graphically. CLIPS, which is embedded in MAST, gives the system the ability to make decisions without user interaction. With this technique, dairy managers can identify herd problems quickly, resulting in improved animal health and higher milk quality. CLIPS (C Language Integrated Production System) was developed by NASA's Johnson Space Center. It is a shell for developing expert systems designed to permit research, development and delivery on conventional computers.

  9. Mass spectrometry.

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Johanson, G. A.

    1972-01-01

    Review of the current state of mass spectrometry, indicating its unique importance for advanced scientific research. Mass spectrometry applications in computer techniques, gas chromatography, ion cyclotron resonance, molecular fragmentation and ionization, and isotope labeling are covered. Details are given on mass spectrometry applications in bio-organic chemistry and biomedical research. As the subjects of these applications are indicated alkaloids, carbohydrates, lipids, terpenes, quinones, nucleic acid components, peptides, antibiotics, and human and animal metabolisms. Particular attention is given to the mass spectra of organo-inorganic compounds, inorganic mass spectrometry, surface phenomena such as secondary ion and electron emission, and elemental and isotope analysis. Further topics include mass spectrometry in organic geochemistry, applications in geochronology and cosmochemistry, and organic mass spectrometry.

  10. Effects of Lecture Method Supplemented with Music and Computer Animation on Senior Secondary School Students' Academic Achievement in Electrochemistry

    ERIC Educational Resources Information Center

    Akpoghol, T. V.; Ezeudu, F. O.; Adzape, J. N.; Otor, E. E.

    2016-01-01

    The study investigated the effects of Lecture Method Supplemented with Music (LMM) and Computer Animation (LMC) on senior secondary school students' academic achievement in electrochemistry in Makurdi metropolis. Six research questions and six hypotheses guided the study. The design of the study was quasi experimental, specifically the pre-test,…

  11. Relative Effect of Lecture Method Supplemented with Music and Computer Animation on Senior Secondary School Students' Retention in Electrochemistry

    ERIC Educational Resources Information Center

    Akpoghol, T. V.; Ezeudu, F. O.; Adzape, J. N.; Otor, E. E.

    2016-01-01

    The study investigated the effects of Lecture Method Supplemented with Music (LMM) and Computer Animation (LMC) on senior secondary school students' retention in electrochemistry in Makurdi metropolis. Three research questions and three hypotheses guided the study. The design of the study was quasi experimental, specifically the pre-test,…

  12. When Static Media Promote Active Learning: Annotated Illustrations Versus Narrated Animations in Multimedia Instruction

    ERIC Educational Resources Information Center

    Mayer, Richard E.; Hegarty, Mary; Mayer, Sarah; Campbell, Julie

    2005-01-01

    In 4 experiments, students received a lesson consisting of computer-based animation and narration or a lesson consisting of paper-based static diagrams and text. The lessons used the same words and graphics in the paper-based and computer-based versions to explain the process of lightning formation (Experiment 1), how a toilet tank works…

  13. The Use of Interactive Computer Animations Based on POE as a Presentation Tool in Primary Science Teaching

    ERIC Educational Resources Information Center

    Akpinar, Ercan

    2014-01-01

    This study investigates the effects of using interactive computer animations based on predict-observe-explain (POE) as a presentation tool on primary school students' understanding of the static electricity concepts. A quasi-experimental pre-test/post-test control group design was utilized in this study. The experiment group consisted of 30…

  14. Student Misinterpretations and Misconceptions Based on Their Explanations of Two Computer Animations of Varying Complexity Depicting the Same Oxidation-Reduction Reaction

    ERIC Educational Resources Information Center

    Rosenthal, Deborah P.; Sanger, Michael J.

    2012-01-01

    A group of 55 students were shown unnarrated versions of two different particulate-level computer animations of varying complexity depicting the oxidation-reduction reaction of aqueous silver nitrate and solid copper metal. These students were asked to explain their understanding of the chemical reaction based on their interpretations of these…

  15. Development and refinement of computer-assisted planning and execution system for use in face-jaw-teeth transplantation to improve skeletal and dento-occlusal outcomes.

    PubMed

    Hashemi, Sepehr; Armand, Mehran; Gordon, Chad R

    2016-10-01

    To describe the development and refinement of the computer-assisted planning and execution (CAPE) system for use in face-jaw-teeth transplants (FJTTs). Although successful, some maxillofacial transplants result in suboptimal hybrid occlusion and may require subsequent surgical orthognathic revisions. Unfortunately, the use of traditional dental casts and splints pose several compromising shortcomings in the context of FJTT and hybrid occlusion. Computer-assisted surgery may overcome these challenges. Therefore, the use of computer-assisted orthognathic techniques and functional planning may prevent the need for such revisions and improve facial-skeletal outcomes. A comprehensive CAPE system for use in FJTT was developed through a multicenter collaboration and refined using plastic models, live miniature swine surgery, and human cadaver models. The system marries preoperative surgical planning and intraoperative execution by allowing on-table navigation of the donor fragment relative to recipient cranium, and real-time reporting of patient's cephalometric measurements relative to a desired dental-skeletal outcome. FJTTs using live-animal and cadaveric models demonstrate the CAPE system to be accurate in navigation and beneficial in improving hybrid occlusion and other craniofacial outcomes. Future refinement of the CAPE system includes integration of more commonly performed orthognathic/maxillofacial procedures.

  16. A campaign to end animal testing: introducing the PETA International Science Consortium Ltd.

    PubMed

    Stoddart, Gilly; Brown, Jeffrey

    2014-12-01

    The successful development and validation of non-animal techniques, or the analysis of existing data to satisfy regulatory requirements, provide no guarantee that this information will be used in place of animal experiments. In order to advocate for the replacement of animal-based testing requirements, the PETA International Science Consortium Ltd (PISC) liaises with industry, regulatory and research agencies to establish and promote clear paths to validation and regulatory use of non-animal techniques. PISC and its members use an approach that identifies, promotes and verifies the implementation of good scientific practices in place of testing on animals. Examples of how PISC and its members have applied this approach to minimise the use of animals for the Registration, Evaluation, Authorisation and Restriction of Chemicals regulation in the EU and testing of cosmetics on animals in India, are described. 2014 FRAME.

  17. User-centred design and experience prototyping: Design and implementation of pre-handwriting intervention to children with coordination difficulties/dyspraxia

    NASA Astrophysics Data System (ADS)

    Othman, Muhammad Fakri; Senan, Norhalina; Suparjoh, Suriawati; Keay-Bright, Wendy

    2017-10-01

    We have proposed a method to assist children with coordination difficulties or dyspraxia to improve their pre-handwriting skills. We have chosen an animation technique called `Rotoscopy', a method that normally been used in animation and film production and adapted it to Rotoscopy Pre-handwriting Interface (RPI) prototypes using the interactive whiteboard (IWB) as interaction device. The motivation of this research is to discover how efficient if Rotoscopy is used beyond its normal purposes; and how it gives benefits in terms of behavioural and motivational aspects rather than commercial and profit point of view. Implementation of RPI prototypes has taken place through series of workshops with a teacher and a group of children with handwriting difficulties at a special education school in Caerphilly, Cardiff, United Kingdom. In the workshops children were given pre-handwriting activities in two different environments. They have been trained to use RPI prototypes and IWB, as well as pen and paper tasks. Their activities and action have been observed and recorded using video camera. Evaluation method is based-on video analysis of children's pre-handwriting result and their reaction and motivation during the workshop. It was learnt that majority of children who used RPI prototypes and IWB have produced better results in terms of accuracy of the drawing as compared to results of pen and paper activities. Furthermore the children were more motivated to use the prototypes and IWB rather than using pen and paper. The study's contribution to knowledge includes offering a new way to improve children's pre-handwriting skills using computer animation technique and touch-based devices.

  18. [Development of computer aided forming techniques in manufacturing scaffolds for bone tissue engineering].

    PubMed

    Wei, Xuelei; Dong, Fuhui

    2011-12-01

    To review recent advance in the research and application of computer aided forming techniques for constructing bone tissue engineering scaffolds. The literature concerning computer aided forming techniques for constructing bone tissue engineering scaffolds in recent years was reviewed extensively and summarized. Several studies over last decade have focused on computer aided forming techniques for bone scaffold construction using various scaffold materials, which is based on computer aided design (CAD) and bone scaffold rapid prototyping (RP). CAD include medical CAD, STL, and reverse design. Reverse design can fully simulate normal bone tissue and could be very useful for the CAD. RP techniques include fused deposition modeling, three dimensional printing, selected laser sintering, three dimensional bioplotting, and low-temperature deposition manufacturing. These techniques provide a new way to construct bone tissue engineering scaffolds with complex internal structures. With rapid development of molding and forming techniques, computer aided forming techniques are expected to provide ideal bone tissue engineering scaffolds.

  19. Single isotope evaluation of pulmonary capillary protein leak (ARDS model) using computerized gamma scintigraphy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tatum, J.L.; Strash, A.M.; Sugerman, H.J.

    Using a canine oleic acid model, a computerized gamma scintigraphic technique was evaluated to determine 1) ability to detect pulmonary capillary protein leak in a model temporally consistent with clinical adult respiratory distress syndrome (ARDS), 2) the possibility of providing a quantitative index of leak, and 3) the feasibility of closely spaced repeat evaluations. Study animals received oleic acid (controls, n . 10; 0.05 ml/kg, n . 10; 0.10 ml/kg, n . 12; 0.15 ml/kg, n . 6) 3 hours prior to a tracer dose of technetium-99m (/sup 99/mTc) HSA. One animal in each dose group also received two repeatmore » tracer injections spaced a minimum of 45 minutes apart. Digital images were obtained with a conventional gamma camera interfaced to a dedicated medical computer. Lung: heart ratio versus time curves were generated, and a slope index was calculated for each curve. Slope index values for all doses were significantly greater than control values (P(t) less than 0.0001). Each incremental dose increase was also significantly greater than the previous dose level. Oleic acid dose versus slope index fitted a linear regression model with r . 0.94. Repeat dosing produced index values with standard deviations less than the group sample standard deviations. We feel this technique may have application in the clinical study of pulmonary permeability edema.« less

  20. Software Validation via Model Animation

    NASA Technical Reports Server (NTRS)

    Dutle, Aaron M.; Munoz, Cesar A.; Narkawicz, Anthony J.; Butler, Ricky W.

    2015-01-01

    This paper explores a new approach to validating software implementations that have been produced from formally-verified algorithms. Although visual inspection gives some confidence that the implementations faithfully reflect the formal models, it does not provide complete assurance that the software is correct. The proposed approach, which is based on animation of formal specifications, compares the outputs computed by the software implementations on a given suite of input values to the outputs computed by the formal models on the same inputs, and determines if they are equal up to a given tolerance. The approach is illustrated on a prototype air traffic management system that computes simple kinematic trajectories for aircraft. Proofs for the mathematical models of the system's algorithms are carried out in the Prototype Verification System (PVS). The animation tool PVSio is used to evaluate the formal models on a set of randomly generated test cases. Output values computed by PVSio are compared against output values computed by the actual software. This comparison improves the assurance that the translation from formal models to code is faithful and that, for example, floating point errors do not greatly affect correctness and safety properties.

  1. Building an organic computing device with multiple interconnected brains

    PubMed Central

    Pais-Vieira, Miguel; Chiuffa, Gabriela; Lebedev, Mikhail; Yadav, Amol; Nicolelis, Miguel A. L.

    2015-01-01

    Recently, we proposed that Brainets, i.e. networks formed by multiple animal brains, cooperating and exchanging information in real time through direct brain-to-brain interfaces, could provide the core of a new type of computing device: an organic computer. Here, we describe the first experimental demonstration of such a Brainet, built by interconnecting four adult rat brains. Brainets worked by concurrently recording the extracellular electrical activity generated by populations of cortical neurons distributed across multiple rats chronically implanted with multi-electrode arrays. Cortical neuronal activity was recorded and analyzed in real time, and then delivered to the somatosensory cortices of other animals that participated in the Brainet using intracortical microstimulation (ICMS). Using this approach, different Brainet architectures solved a number of useful computational problems, such as discrete classification, image processing, storage and retrieval of tactile information, and even weather forecasting. Brainets consistently performed at the same or higher levels than single rats in these tasks. Based on these findings, we propose that Brainets could be used to investigate animal social behaviors as well as a test bed for exploring the properties and potential applications of organic computers. PMID:26158615

  2. A computational approach to animal breeding.

    PubMed

    Berger-Wolf, Tanya Y; Moore, Cristopher; Saia, Jared

    2007-02-07

    We propose a computational model of mating strategies for controlled animal breeding programs. A mating strategy in a controlled breeding program is a heuristic with some optimization criteria as a goal. Thus, it is appropriate to use the computational tools available for analysis of optimization heuristics. In this paper, we propose the first discrete model of the controlled animal breeding problem and analyse heuristics for two possible objectives: (1) breeding for maximum diversity and (2) breeding a target individual. These two goals are representative of conservation biology and agricultural livestock management, respectively. We evaluate several mating strategies and provide upper and lower bounds for the expected number of matings. While the population parameters may vary and can change the actual number of matings for a particular strategy, the order of magnitude of the number of expected matings and the relative competitiveness of the mating heuristics remains the same. Thus, our simple discrete model of the animal breeding problem provides a novel viable and robust approach to designing and comparing breeding strategies in captive populations.

  3. When static media promote active learning: annotated illustrations versus narrated animations in multimedia instruction.

    PubMed

    Mayer, Richard E; Hegarty, Mary; Mayer, Sarah; Campbell, Julie

    2005-12-01

    In 4 experiments, students received a lesson consisting of computer-based animation and narration or a lesson consisting of paper-based static diagrams and text. The lessons used the same words and graphics in the paper-based and computer-based versions to explain the process of lightning formation (Experiment 1), how a toilet tank works (Experiment 2), how ocean waves work (Experiment 3), and how a car's braking system works (Experiment 4). On subsequent retention and transfer tests, the paper group performed significantly better than the computer group on 4 of 8 comparisons, and there was no significant difference on the rest. These results support the static media hypothesis, in which static illustrations with printed text reduce extraneous processing and promote germane processing as compared with narrated animations.

  4. Using computer agents to explain medical documents to patients with low health literacy.

    PubMed

    Bickmore, Timothy W; Pfeifer, Laura M; Paasche-Orlow, Michael K

    2009-06-01

    Patients are commonly presented with complex documents that they have difficulty understanding. The objective of this study was to design and evaluate an animated computer agent to explain research consent forms to potential research participants. Subjects were invited to participate in a simulated consent process for a study involving a genetic repository. Explanation of the research consent form by the computer agent was compared to explanation by a human and a self-study condition in a randomized trial. Responses were compared according to level of health literacy. Participants were most satisfied with the consent process and most likely to sign the consent form when it was explained by the computer agent, regardless of health literacy level. Participants with adequate health literacy demonstrated the highest level of comprehension with the computer agent-based explanation compared to the other two conditions. However, participants with limited health literacy showed poor comprehension levels in all three conditions. Participants with limited health literacy reported several reasons, such as lack of time constraints, ability to re-ask questions, and lack of bias, for preferring the computer agent-based explanation over a human-based one. Animated computer agents can perform as well as or better than humans in the administration of informed consent. Animated computer agents represent a viable method for explaining health documents to patients.

  5. A new approach to tag design in dolphin telemetry: Computer simulations to minimise deleterious effects

    NASA Astrophysics Data System (ADS)

    Pavlov, V. V.; Wilson, R. P.; Lucke, K.

    2007-02-01

    Remote-sensors and transmitters are powerful devices for studying cetaceans at sea. However, despite substantial progress in microelectronics and miniaturisation of systems, dolphin tags are imperfectly designed; additional drag from tags increases swim costs, compromises swimming capacity and manoeuvrability, and leads to extra loads on the animal's tissue. We propose a new approach to tag design, elaborating basic principles and incorporating design stages to minimise device effects by using computer-aided design. Initially, the operational conditions of the device are defined by quantifying the shape, hydrodynamics and range of the natural deformation of the dolphin body at the tag attachment site (such as close to the dorsal fin). Then, parametric models of both of the dorsal fin and a tag are created using the derived data. The link between parameters of the fin and a tag model allows redesign of tag models according to expected changes of fin geometry (difference in fin shape related with species, sex, and age peculiarities, simulation of the bend of the fin during manoeuvres). A final virtual modelling stage uses iterative improvement of a tag model in a computer fluid dynamics (CFD) environment to enhance tag performance. This new method is considered as a suitable tool of tag design before creation of the physical model of a tag and testing with conventional wind/water tunnel technique. Ultimately, tag materials are selected to conform to the conditions identified by the modelling process and thus help create a physical model of a tag, which should minimise its impact on the animal carrier and thus increase the reliability and quality of the data obtained.

  6. Promise of new imaging technologies for assessing ovarian function.

    PubMed

    Singh, Jaswant; Adams, Gregg P; Pierson, Roger A

    2003-10-15

    Advancements in imaging technologies over the last two decades have ushered a quiet revolution in research approaches to the study of ovarian structure and function. The most significant changes in our understanding of the ovary have resulted from the use of ultrasonography which has enabled sequential analyses in live animals. Computer-assisted image analysis and mathematical modeling of the dynamic changes within the ovary has permitted exciting new avenues of research with readily quantifiable endpoints. Spectral, color-flow and power Doppler imaging now facilitate physiologic interpretations of vascular dynamics over time. Similarly, magnetic resonance imaging (MRI) is emerging as a research tool in ovarian imaging. New technologies, such as three-dimensional ultrasonography and MRI, ultrasound-based biomicroscopy and synchrotron-based techniques each have the potential to enhance our real-time picture of ovarian function to the near-cellular level. Collectively, information available in ultrasonography, MRI, computer-assisted image analysis and mathematical modeling heralds a new era in our understanding of the basic processes of female and male reproduction.

  7. Advanced Modeling in Excel: from Water Jets to Big Bang

    NASA Astrophysics Data System (ADS)

    Ignatova, Olga; Chyzhyk, D.; Willis, C.; Kazachkov, A.

    2006-12-01

    An international students’ project is presented focused on application of Open Office and Excel spreadsheets for modeling of projectile-motion type dynamical systems. Variation of the parameters of plotted and animated families of jets flowing at different angles out of the holes in the wall of water-filled reservoir [1,2] revealed unexpected peculiarities of the envelopes, vertices, intersections and landing points of virtual trajectories. Comparison with real-life systems and rigorous calculations were performed to prove predictions of computer experiments. By same technique, the kinematics of fireworks was analyzed. On this basis two-dimensional ‘firework’ computer model of Big Bang was designed and studied, its relevance and limitations checked. 1.R.Ehrlich, Turning the World Inside Out, (Princeton University Press, Princeton, NJ, 1990), pp. 98-100. 2.A.Kazachkov, Yu.Bogdan, N.Makarovsky, N.Nedbailo. A Bucketful of Physics, in R.Pinto, S.Surinach (eds), International Conference Physics Teacher Education Beyond 2000. Selected Contributions (Elsevier Editions, Paris, 2001), pp.563-564. Sponsored by Courtney Willis.

  8. Computational systems biology and dose-response modeling in relation to new directions in toxicity testing.

    PubMed

    Zhang, Qiang; Bhattacharya, Sudin; Andersen, Melvin E; Conolly, Rory B

    2010-02-01

    The new paradigm envisioned for toxicity testing in the 21st century advocates shifting from the current animal-based testing process to a combination of in vitro cell-based studies, high-throughput techniques, and in silico modeling. A strategic component of the vision is the adoption of the systems biology approach to acquire, analyze, and interpret toxicity pathway data. As key toxicity pathways are identified and their wiring details elucidated using traditional and high-throughput techniques, there is a pressing need to understand their qualitative and quantitative behaviors in response to perturbation by both physiological signals and exogenous stressors. The complexity of these molecular networks makes the task of understanding cellular responses merely by human intuition challenging, if not impossible. This process can be aided by mathematical modeling and computer simulation of the networks and their dynamic behaviors. A number of theoretical frameworks were developed in the last century for understanding dynamical systems in science and engineering disciplines. These frameworks, which include metabolic control analysis, biochemical systems theory, nonlinear dynamics, and control theory, can greatly facilitate the process of organizing, analyzing, and understanding toxicity pathways. Such analysis will require a comprehensive examination of the dynamic properties of "network motifs"--the basic building blocks of molecular circuits. Network motifs like feedback and feedforward loops appear repeatedly in various molecular circuits across cell types and enable vital cellular functions like homeostasis, all-or-none response, memory, and biological rhythm. These functional motifs and associated qualitative and quantitative properties are the predominant source of nonlinearities observed in cellular dose response data. Complex response behaviors can arise from toxicity pathways built upon combinations of network motifs. While the field of computational cell biology has advanced rapidly with increasing availability of new data and powerful simulation techniques, a quantitative orientation is still lacking in life sciences education to make efficient use of these new tools to implement the new toxicity testing paradigm. A revamped undergraduate curriculum in the biological sciences including compulsory courses in mathematics and analysis of dynamical systems is required to address this gap. In parallel, dissemination of computational systems biology techniques and other analytical tools among practicing toxicologists and risk assessment professionals will help accelerate implementation of the new toxicity testing vision.

  9. Animals as Mobile Biological Sensors for Forest Fire Detection.

    PubMed

    Sahin, Yasar Guneri

    2007-12-04

    This paper proposes a mobile biological sensor system that can assist in earlydetection of forest fires one of the most dreaded natural disasters on the earth. The main ideapresented in this paper is to utilize animals with sensors as Mobile Biological Sensors(MBS). The devices used in this system are animals which are native animals living inforests, sensors (thermo and radiation sensors with GPS features) that measure thetemperature and transmit the location of the MBS, access points for wireless communicationand a central computer system which classifies of animal actions. The system offers twodifferent methods, firstly: access points continuously receive data about animals' locationusing GPS at certain time intervals and the gathered data is then classified and checked tosee if there is a sudden movement (panic) of the animal groups: this method is called animalbehavior classification (ABC). The second method can be defined as thermal detection(TD): the access points get the temperature values from the MBS devices and send the datato a central computer to check for instant changes in the temperatures. This system may beused for many purposes other than fire detection, namely animal tracking, poachingprevention and detecting instantaneous animal death.

  10. Children and Computers Abstracts.

    ERIC Educational Resources Information Center

    Rothenberg, Dianne, Ed.

    1992-01-01

    Abstracts of reports of eight research studies on computer uses in children's education are presented. Topics covered include (1) LOGO computer language; (2) computer graphics for art instruction; (3) animation; (4) problem solving; (5) children's use of symbols; (6) an evaluation of a Chapter 1 program involving children's computer use; (7) peer…

  11. Anthropomorphism influences perception of computer-animated characters’ actions

    PubMed Central

    Hodgins, Jessica; Kawato, Mitsuo

    2007-01-01

    Computer-animated characters are common in popular culture and have begun to be used as experimental tools in social cognitive neurosciences. Here we investigated how appearance of these characters’ influences perception of their actions. Subjects were presented with different characters animated either with motion data captured from human actors or by interpolating between poses (keyframes) designed by an animator, and were asked to categorize the motion as biological or artificial. The response bias towards ‘biological’, derived from the Signal Detection Theory, decreases with characters’ anthropomorphism, while sensitivity is only affected by the simplest rendering style, point-light displays. fMRI showed that the response bias correlates positively with activity in the mentalizing network including left temporoparietal junction and anterior cingulate cortex, and negatively with regions sustaining motor resonance. The absence of significant effect of the characters on the brain activity suggests individual differences in the neural responses to unfamiliar artificial agents. While computer-animated characters are invaluable tools to investigate the neural bases of social cognition, further research is required to better understand how factors such as anthropomorphism affect their perception, in order to optimize their appearance for entertainment, research or therapeutic purposes. PMID:18985142

  12. The economics of optimal health and productivity in the commercial dairy.

    PubMed

    Galligan, D T

    1999-08-01

    Dairy production practices are changing; in order to remain viable, producers must optimise the health and productivity of dairy herds in economic terms. Health care is important in economic terms because disease can substantially reduce the productivity of individual animals. Preventive disease control programmes can thus result in economic gains for the dairy producer. The author describes new approaches to preventing postpartum diseases and dealing with fertility problems which can result from these diseases. Other aspects of dairy production are also changing, employing new technologies where these are judged to be profitable. Innovations include: the use of bovine somatotropin; systematic breeding/culling programmes; new mathematical modelling techniques to determine optimum feed composition and to define optimal growth levels for accelerated heifer-rearing programmes; the use of computers to collect, store and analyse data on animal production and health; and semen selection programmes. Increasing awareness of bio-security is also vital, not least because of the large investment present in dairy herds. Whatever practices are employed, they must offer economic returns to producers that compete with alternative uses of capital. Optimal levels of disease control must be determined for a particular production situation, taking into account not only the economic health of the producer, but also the well-being of the animals.

  13. The Effect of Using Computer Animations and Activities about Teaching Patterns in Primary Mathematics

    ERIC Educational Resources Information Center

    Aktas, Mine; Bulut, Mehmet; Yuksel, Tugba

    2011-01-01

    In this study it is investigated that teaching of different pattern types by using computer animations and activities. The sample of this study was 28 eighth grade students in second semester of 2010-2011 educational years. They are at public school in Ankara. The one group pre-test post-test design was used for research methodology. Data were…

  14. Read My Lips: The Importance of the Face in a Computer-Animated Tutor for Vocabulary Learning by Children with Autism

    ERIC Educational Resources Information Center

    Massaro, Dominic W.; Bosseler, Alexis

    2006-01-01

    A computer-animated tutor, Baldi, has been successful in teaching vocabulary and grammar to children with autism and those with hearing problems. The present study assessed to what extent the face facilitated this learning process relative to the voice alone. Baldi was implemented in a Language Wizard/Tutor, which allows easy creation and…

  15. The benefits of 3D modelling and animation in medical teaching.

    PubMed

    Vernon, Tim; Peckham, Daniel

    2002-12-01

    Three-dimensional models created using materials such as wax, bronze and ivory, have been used in the teaching of medicine for many centuries. Today, computer technology allows medical illustrators to create virtual three-dimensional medical models. This paper considers the benefits of using still and animated output from computer-generated models in the teaching of medicine, and examines how three-dimensional models are made.

  16. The Effects of Computer Simulation and Animation (CSA) on Students' Cognitive Processes: A Comparative Case Study in an Undergraduate Engineering Course

    ERIC Educational Resources Information Center

    Fang, N.; Tajvidi, M.

    2018-01-01

    This study focuses on the investigation of the effects of computer simulation and animation (CSA) on students' cognitive processes in an undergraduate engineering course. The revised Bloom's taxonomy, which consists of six categories in the cognitive process domain, was employed in this study. Five of the six categories were investigated,…

  17. Application of computer virtual simulation technology in 3D animation production

    NASA Astrophysics Data System (ADS)

    Mo, Can

    2017-11-01

    In the continuous development of computer technology, the application system of virtual simulation technology has been further optimized and improved. It also has been widely used in various fields of social development, such as city construction, interior design, industrial simulation and tourism teaching etc. This paper mainly introduces the virtual simulation technology used in 3D animation. Based on analyzing the characteristics of virtual simulation technology, the application ways and means of this technology in 3D animation are researched. The purpose is to provide certain reference for the 3D effect promotion days after.

  18. Self-Motion Perception: Assessment by Real-Time Computer Generated Animations

    NASA Technical Reports Server (NTRS)

    Parker, Donald E.

    1999-01-01

    Our overall goal is to develop materials and procedures for assessing vestibular contributions to spatial cognition. The specific objective of the research described in this paper is to evaluate computer-generated animations as potential tools for studying self-orientation and self-motion perception. Specific questions addressed in this study included the following. First, does a non- verbal perceptual reporting procedure using real-time animations improve assessment of spatial orientation? Are reports reliable? Second, do reports confirm expectations based on stimuli to vestibular apparatus? Third, can reliable reports be obtained when self-motion description vocabulary training is omitted?

  19. Digital computer technique for setup and checkout of an analog computer

    NASA Technical Reports Server (NTRS)

    Ambaruch, R.

    1968-01-01

    Computer program technique, called Analog Computer Check-Out Routine Digitally /ACCORD/, generates complete setup and checkout data for an analog computer. In addition, the correctness of the analog program implementation is validated.

  20. Satellite and ground radiotracking of elk

    NASA Technical Reports Server (NTRS)

    Craighead, F. C., Jr.; Craighead, J. J.; Cote, C. E.; Buechner, H. K.

    1972-01-01

    Radiotracking and monitoring of free-living animals in natural environments is providing an effective new technique for acquiring information on biological processes, including animal orientation and navigation. To test the practicability of extending the technique by using satellite systems for tracking animals, a female elk was instrumented with an electronic collar. It contained both the Interrogation Recording Location System (IRLS) transponder and a Craighead-Varney ground-tracking transmitter. The elk was successfully tracked and monitored by satellite during month of April 1970. This was the first time an animal had been tracked by satellite on the surface of the earth.

  1. Rhinoceros Feet Step Out of a Rule-of-Thumb: A Wildlife Imaging Pioneering Approach of Synchronized Computed Tomography-Digital Radiography

    PubMed Central

    Saragusty, Joseph; Göritz, Frank; Potier, Romain; Mulot, Baptiste; Maillot, Alexis; Etienne, Pascal; Bernardino, Rui; Fernandes, Teresa; Mews, Jurgen; Hildebrandt, Thomas Bernd

    2014-01-01

    Currently, radiography is the only imaging technique used to diagnose bone pathology in wild animals situated under “field conditions”. Nevertheless, while chronic foot disease in captive mega-herbivores is widely reported, foot radiographic imaging is confronted with scarcity of studies. Numerous hindrances lead to such limited numbers and it became very clear that the traditional perspective on bone imaging in domestic animals based on extensive studies and elaborated statistical evaluations cannot be extrapolated to their non-domestic relatives. For these reasons, the authors initiated a multi-modality imaging study and established a pioneering approach of synchronized computed tomography (CT) and digital radiography (DR), based on X-ray projections derived from three-dimensional CT reconstructed images. Whereas this approach can be applied in any clinical field, as a case of outstanding importance and great concern for zoological institutions, we selected foot bone pathologies in captive rhinoceroses to demonstrate the manifold applications of the method. Several advances were achieved, endowing the wildlife clinician with all-important tools: prototype DR exposure protocols and a modus operandi for foot positioning, advancing both traditional projections and, for the first-time, species-related radiographic views; assessment of radiographic diagnostic value for the whole foot and, in premiere, for each autopodial bone; together with additional insights into radiographic appearance of bone anatomy and pathology with a unique, simultaneous CT-DR correlation. Based on its main advantages in availing a wide range of keystone data in wildlife imaging from a limited number of examined subjects and combining advantages of CT as the golden standard method for bone diseases' diagnostic with DR's clinical feasibility under field conditions, synchronized CT-DR presents a new perspective on wildlife's health management. With this we hope to provide veterinary clinicians with concrete imaging techniques and substantial diagnostic tools, which facilitate straightforward attainment and interpretation of field radiography images taken worldwide. PMID:24963807

  2. Rhinoceros feet step out of a rule-of-thumb: a wildlife imaging pioneering approach of synchronized computed tomography-digital radiography.

    PubMed

    Galateanu, Gabriela; Hermes, Robert; Saragusty, Joseph; Göritz, Frank; Potier, Romain; Mulot, Baptiste; Maillot, Alexis; Etienne, Pascal; Bernardino, Rui; Fernandes, Teresa; Mews, Jurgen; Hildebrandt, Thomas Bernd

    2014-01-01

    Currently, radiography is the only imaging technique used to diagnose bone pathology in wild animals situated under "field conditions". Nevertheless, while chronic foot disease in captive mega-herbivores is widely reported, foot radiographic imaging is confronted with scarcity of studies. Numerous hindrances lead to such limited numbers and it became very clear that the traditional perspective on bone imaging in domestic animals based on extensive studies and elaborated statistical evaluations cannot be extrapolated to their non-domestic relatives. For these reasons, the authors initiated a multi-modality imaging study and established a pioneering approach of synchronized computed tomography (CT) and digital radiography (DR), based on X-ray projections derived from three-dimensional CT reconstructed images. Whereas this approach can be applied in any clinical field, as a case of outstanding importance and great concern for zoological institutions, we selected foot bone pathologies in captive rhinoceroses to demonstrate the manifold applications of the method. Several advances were achieved, endowing the wildlife clinician with all-important tools: prototype DR exposure protocols and a modus operandi for foot positioning, advancing both traditional projections and, for the first-time, species-related radiographic views; assessment of radiographic diagnostic value for the whole foot and, in premiere, for each autopodial bone; together with additional insights into radiographic appearance of bone anatomy and pathology with a unique, simultaneous CT-DR correlation. Based on its main advantages in availing a wide range of keystone data in wildlife imaging from a limited number of examined subjects and combining advantages of CT as the golden standard method for bone diseases' diagnostic with DR's clinical feasibility under field conditions, synchronized CT-DR presents a new perspective on wildlife's health management. With this we hope to provide veterinary clinicians with concrete imaging techniques and substantial diagnostic tools, which facilitate straightforward attainment and interpretation of field radiography images taken worldwide.

  3. Micro-Computed Tomography Evaluation of Human Fat Grafts in Nude Mice

    PubMed Central

    Chung, Michael T.; Hyun, Jeong S.; Lo, David D.; Montoro, Daniel T.; Hasegawa, Masakazu; Levi, Benjamin; Januszyk, Michael; Longaker, Michael T.

    2013-01-01

    Background Although autologous fat grafting has revolutionized the field of soft tissue reconstruction and augmentation, long-term maintenance of fat grafts is unpredictable. Recent studies have reported survival rates of fat grafts to vary anywhere between 10% and 80% over time. The present study evaluated the long-term viability of human fat grafts in a murine model using a novel imaging technique allowing for in vivo volumetric analysis. Methods Human fat grafts were prepared from lipoaspirate samples using the Coleman technique. Fat was injected subcutaneously into the scalp of 10 adult Crl:NU-Foxn1nu CD-1 male mice. Micro-computed tomography (CT) was performed immediately following injection and then weekly thereafter. Fat volume was rendered by reconstructing a three-dimensional (3D) surface through cubic-spline interpolation. Specimens were also harvested at various time points and sections were prepared and stained with hematoxylin and eosin (H&E), for macrophages using CD68 and for the cannabinoid receptor 1 (CB1). Finally, samples were explanted at 8- and 12-week time points to validate calculated micro-CT volumes. Results Weekly CT scanning demonstrated progressive volume loss over the time course. However, volumetric analysis at the 8- and 12-week time points stabilized, showing an average of 62.2% and 60.9% survival, respectively. Gross analysis showed the fat graft to be healthy and vascularized. H&E analysis and staining for CD68 showed minimal inflammatory reaction with viable adipocytes. Immunohistochemical staining with anti-human CB1 antibodies confirmed human origin of the adipocytes. Conclusions Studies assessing the fate of autologous fat grafts in animals have focused on nonimaging modalities, including histological and biochemical analyses, which require euthanasia of the animals. In this study, we have demonstrated the ability to employ micro-CT for 3D reconstruction and volumetric analysis of human fat grafts in a mouse model. Importantly, this model provides a platform for subsequent study of fat manipulation and soft tissue engineering. PMID:22916732

  4. A method for evaluating the murine pulmonary vasculature using micro-computed tomography.

    PubMed

    Phillips, Michael R; Moore, Scott M; Shah, Mansi; Lee, Clara; Lee, Yueh Z; Faber, James E; McLean, Sean E

    2017-01-01

    Significant mortality and morbidity are associated with alterations in the pulmonary vasculature. While techniques have been described for quantitative morphometry of whole-lung arterial trees in larger animals, no methods have been described in mice. We report a method for the quantitative assessment of murine pulmonary arterial vasculature using high-resolution computed tomography scanning. Mice were harvested at 2 weeks, 4 weeks, and 3 months of age. The pulmonary artery vascular tree was pressure perfused to maximal dilation with a radio-opaque casting material with viscosity and pressure set to prevent capillary transit and venous filling. The lungs were fixed and scanned on a specimen computed tomography scanner at 8-μm resolution, and the vessels were segmented. Vessels were grouped into categories based on lumen diameter and branch generation. Robust high-resolution segmentation was achieved, permitting detailed quantitation of pulmonary vascular morphometrics. As expected, postnatal lung development was associated with progressive increase in small-vessel number and arterial branching complexity. These methods for quantitative analysis of the pulmonary vasculature in postnatal and adult mice provide a useful tool for the evaluation of mouse models of disease that affect the pulmonary vasculature. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. A resource facility for kinetic analysis: modeling using the SAAM computer programs.

    PubMed

    Foster, D M; Boston, R C; Jacquez, J A; Zech, L

    1989-01-01

    Kinetic analysis and integrated system modeling have contributed significantly to understanding the physiology and pathophysiology of metabolic systems in humans and animals. Many experimental biologists are aware of the usefulness of these techniques and recognize that kinetic modeling requires special expertise. The Resource Facility for Kinetic Analysis (RFKA) provides this expertise through: (1) development and application of modeling technology for biomedical problems, and (2) development of computer-based kinetic modeling methodologies concentrating on the computer program Simulation, Analysis, and Modeling (SAAM) and its conversational version, CONversational SAAM (CONSAM). The RFKA offers consultation to the biomedical community in the use of modeling to analyze kinetic data and trains individuals in using this technology for biomedical research. Early versions of SAAM were widely applied in solving dosimetry problems; many users, however, are not familiar with recent improvements to the software. The purpose of this paper is to acquaint biomedical researchers in the dosimetry field with RFKA, which, together with the joint National Cancer Institute-National Heart, Lung and Blood Institute project, is overseeing SAAM development and applications. In addition, RFKA provides many service activities to the SAAM user community that are relevant to solving dosimetry problems.

  6. Performance of computer vision in vivo flow cytometry with low fluorescence contrast

    NASA Astrophysics Data System (ADS)

    Markovic, Stacey; Li, Siyuan; Niedre, Mark

    2015-03-01

    Detection and enumeration of circulating cells in the bloodstream of small animals are important in many areas of preclinical biomedical research, including cancer metastasis, immunology, and reproductive medicine. Optical in vivo flow cytometry (IVFC) represents a class of technologies that allow noninvasive and continuous enumeration of circulating cells without drawing blood samples. We recently developed a technique termed computer vision in vivo flow cytometry (CV-IVFC) that uses a high-sensitivity fluorescence camera and an automated computer vision algorithm to interrogate relatively large circulating blood volumes in the ear of a mouse. We detected circulating cells at concentrations as low as 20 cells/mL. In the present work, we characterized the performance of CV-IVFC with low-contrast imaging conditions with (1) weak cell fluorescent labeling using cell-simulating fluorescent microspheres with varying brightness and (2) high background tissue autofluorescence by varying autofluorescence properties of optical phantoms. Our analysis indicates that CV-IVFC can robustly track and enumerate circulating cells with at least 50% sensitivity even in conditions with two orders of magnitude degraded contrast than our previous in vivo work. These results support the significant potential utility of CV-IVFC in a wide range of in vivo biological models.

  7. Humane killing of animals for disease control purposes.

    PubMed

    Thornber, P M; Rubira, R J; Styles, D K

    2014-04-01

    Killing for disease control purposes is an emotional issue for everyone concerned. Large-scale euthanasia or depopulation of animals may be necessary for the emergency control or eradication of animal diseases, to remove animals from a compromised situation (e.g. following flood, storm, fire, drought or a feed contamination event), to effect welfare depopulation when there is an oversupply due to a dysfunctional or closed marketing channel, or to depopulate and dispose of animals with minimal handling to decrease the risk of a zoonotic disease infecting humans. The World Organisation for Animal Health (OIE) developed international standards to provide advice on humane killing for various species and situations. Some fundamental issues are defined, such as competency of animal handling and implementation of humane killing techniques. Some of these methods have been used for many years, but novel approaches for the mass killing of particular species are being explored. Novel vaccines and new diagnostic techniques that differentiate between vaccinated and infected animals will save many animals from being killed as part of biosecurity response measures. Unfortunately, the destruction of affected livestock will still be required to control diseases whilst vaccination programmes are activated or where effective vaccines are not available. This paper reviews the principles of humane destruction and depopulation and explores available techniques with their associated advantages and disadvantages. It also identifies some current issues that merit consideration, such as legislative conflicts (emergency disease legislation versus animal welfare legislation, occupational health and safety), media issues, opinions on the future approaches to killing for disease control, and animal welfare.

  8. The electromagnetic modeling of thin apertures using the finite-difference time-domain technique

    NASA Technical Reports Server (NTRS)

    Demarest, Kenneth R.

    1987-01-01

    A technique which computes transient electromagnetic responses of narrow apertures in complex conducting scatterers was implemented as an extension of previously developed Finite-Difference Time-Domain (FDTD) computer codes. Although these apertures are narrow with respect to the wavelengths contained within the power spectrum of excitation, this technique does not require significantly more computer resources to attain the increased resolution at the apertures. In the report, an analytical technique which utilizes Babinet's principle to model the apertures is developed, and an FDTD computer code which utilizes this technique is described.

  9. Microfluidic perfusion culture.

    PubMed

    Hattori, Koji; Sugiura, Shinji; Kanamori, Toshiyuki

    2014-01-01

    Microfluidic perfusion culture is a novel technique to culture animal cells in a small-scale microchamber with medium perfusion. Polydimethylsiloxane (PDMS) is the most popular material to fabricate a microfluidic perfusion culture chip. Photolithography and replica molding techniques are generally used for fabrication of a microfluidic perfusion culture chip. Pressure-driven perfusion culture system is convenient technique to carry out the perfusion culture of animal cells in a microfluidic device. Here, we describe a general theory on microfluid network design, microfabrication technique, and experimental technique for pressure-driven perfusion culture in an 8 × 8 microchamber array on a glass slide-sized microchip made out of PDMS.

  10. A dual closed-loop control system for mechanical ventilation.

    PubMed

    Tehrani, Fleur; Rogers, Mark; Lo, Takkin; Malinowski, Thomas; Afuwape, Samuel; Lum, Michael; Grundl, Brett; Terry, Michael

    2004-04-01

    Closed-loop mechanical ventilation has the potential to provide more effective ventilatory support to patients with less complexity than conventional ventilation. The purpose of this study was to investigate the effectiveness of an automatic technique for mechanical ventilation. Two closed-loop control systems for mechanical ventilation are combined in this study. In one of the control systems several physiological data are used to automatically adjust the frequency and tidal volume of breaths of a patient. This method, which is patented under US Patent number 4986268, uses the criterion of minimal respiratory work rate to provide the patient with a natural pattern of breathing. The inputs to the system include data representing CO2 and O2 levels of the patient as well as respiratory compliance and airway resistance. The I:E ratio is adjusted on the basis of the respiratory time constant to allow for effective emptying of the lungs in expiration and to avoid intrinsic positive end expiratory pressure (PEEP). This system is combined with another closed-loop control system for automatic adjustment of the inspired fraction of oxygen of the patient. This controller uses the feedback of arterial oxygen saturation of the patient and combines a rapid stepwise control procedure with a proportional-integral-derivative (PID) control algorithm to automatically adjust the oxygen concentration in the patient's inspired gas. The dual closed-loop control system has been examined by using mechanical lung studies, computer simulations and animal experiments. In the mechanical lung studies, the ventilation controller adjusted the breathing frequency and tidal volume in a clinically appropriate manner in response to changes in respiratory mechanics. The results of computer simulations and animal studies under induced disturbances showed that blood gases were returned to the normal physiologic range in less than 25 s by the control system. In the animal experiments understeady-state conditions, the maximum standard deviations of arterial oxygen saturation and the end-tidal partial pressure of CO2 were +/- 1.76% and +/- 1.78 mmHg, respectively. The controller maintained the arterial blood gases within normal limits under steady-state conditions and the transient response of the system was robust under various disturbances. The results of the study have showed that the proposed dual closed-loop technique has effectively controlled mechanical ventilation under different test conditions.

  11. Comparative Analysis Between Computed and Conventional Inferior Alveolar Nerve Block Techniques.

    PubMed

    Araújo, Gabriela Madeira; Barbalho, Jimmy Charles Melo; Dias, Tasiana Guedes de Souza; Santos, Thiago de Santana; Vasconcellos, Ricardo José de Holanda; de Morais, Hécio Henrique Araújo

    2015-11-01

    The aim of this randomized, double-blind, controlled trial was to compare the computed and conventional inferior alveolar nerve block techniques in symmetrically positioned inferior third molars. Both computed and conventional anesthetic techniques were performed in 29 healthy patients (58 surgeries) aged between 18 and 40 years. The anesthetic of choice was 2% lidocaine with 1: 200,000 epinephrine. The Visual Analogue Scale assessed the pain variable after anesthetic infiltration. Patient satisfaction was evaluated using the Likert Scale. Heart and respiratory rates, mean time to perform technique, and the need for additional anesthesia were also evaluated. Pain variable means were higher for the conventional technique as compared with computed, 3.45 ± 2.73 and 2.86 ± 1.96, respectively, but no statistically significant differences were found (P > 0.05). Patient satisfaction showed no statistically significant differences. The average computed technique runtime and the conventional were 3.85 and 1.61 minutes, respectively, showing statistically significant differences (P <0.001). The computed anesthetic technique showed lower mean pain perception, but did not show statistically significant differences when contrasted to the conventional technique.

  12. An overview of a Lagrangian method for analysis of animal wake dynamics.

    PubMed

    Peng, Jifeng; Dabiri, John O

    2008-01-01

    The fluid dynamic analysis of animal wakes is becoming increasingly popular in studies of animal swimming and flying, due in part to the development of quantitative flow visualization techniques such as digital particle imaging velocimetry (DPIV). In most studies, quasi-steady flow is assumed and the flow analysis is based on velocity and/or vorticity fields measured at a single time instant during the stroke cycle. The assumption of quasi-steady flow leads to neglect of unsteady (time-dependent) wake vortex added-mass effects, which can contribute significantly to the instantaneous locomotive forces. In this paper we review a Lagrangian approach recently introduced to determine unsteady wake vortex structure by tracking the trajectories of individual fluid particles in the flow, rather than by analyzing the velocity/vorticity fields at fixed locations and single instants in time as in the Eulerian perspective. Once the momentum of the wake vortex and its added mass are determined, the corresponding unsteady locomotive forces can be quantified. Unlike previous studies that estimated the time-averaged forces over the stroke cycle, this approach enables study of how instantaneous locomotive forces evolve over time. The utility of this method for analyses of DPIV velocity measurements is explored, with the goal of demonstrating its applicability to data that are typically available to investigators studying animal swimming and flying. The methods are equally applicable to computational fluid dynamics studies where velocity field calculations are available.

  13. Galileo Outreach Compilation

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This NASA JPL (Jet Propulsion Laboratory) video production is a compilation of the best short movies and computer simulation/animations of the Galileo spacecraft's journey to Jupiter. A limited number of actual shots are presented of Jupiter and its natural satellites. Most of the video is comprised of computer animations of the spacecraft's trajectory, encounters with the Galilean satellites Io, Europa and Ganymede, as well as their atmospheric and surface structures. Computer animations of plasma wave observations of Ganymede's magnetosphere, a surface gravity map of Io, the Galileo/Io flyby, the Galileo space probe orbit insertion around Jupiter, and actual shots of Jupiter's Great Red Spot are presented. Panoramic views of our Earth (from orbit) and moon (from orbit) as seen from Galileo as well as actual footage of the Space Shuttle/Galileo liftoff and Galileo's space probe separation are also included.

  14. A Survey of Techniques for Approximate Computing

    DOE PAGES

    Mittal, Sparsh

    2016-03-18

    Approximate computing trades off computation quality with the effort expended and as rising performance demands confront with plateauing resource budgets, approximate computing has become, not merely attractive, but even imperative. Here, we present a survey of techniques for approximate computing (AC). We discuss strategies for finding approximable program portions and monitoring output quality, techniques for using AC in different processing units (e.g., CPU, GPU and FPGA), processor components, memory technologies etc., and programming frameworks for AC. Moreover, we classify these techniques based on several key characteristics to emphasize their similarities and differences. Finally, the aim of this paper is tomore » provide insights to researchers into working of AC techniques and inspire more efforts in this area to make AC the mainstream computing approach in future systems.« less

  15. Book review: Research techniques in animal ecology: Controversies and consequences, by Luigi Boitani and Todd K. Fuller

    USGS Publications Warehouse

    Johnson, D.H.

    2001-01-01

    Review of: Research Techniques in Animal Ecology: Controversies and Consequences. Edited by Luigi Boitani and Todd K. Fuller. Columbia University Press, New York, USA. 2000. xxxii + 442 pp., index. $75.00, ISBN 0231113404 (cloth); $32.00, ISBN 0231113412 (paper).

  16. Automation process for morphometric analysis of volumetric CT data from pulmonary vasculature in rats.

    PubMed

    Shingrani, Rahul; Krenz, Gary; Molthen, Robert

    2010-01-01

    With advances in medical imaging scanners, it has become commonplace to generate large multidimensional datasets. These datasets require tools for a rapid, thorough analysis. To address this need, we have developed an automated algorithm for morphometric analysis incorporating A Visualization Workshop computational and image processing libraries for three-dimensional segmentation, vascular tree generation and structural hierarchical ordering with a two-stage numeric optimization procedure for estimating vessel diameters. We combine this new technique with our mathematical models of pulmonary vascular morphology to quantify structural and functional attributes of lung arterial trees. Our physiological studies require repeated measurements of vascular structure to determine differences in vessel biomechanical properties between animal models of pulmonary disease. Automation provides many advantages including significantly improved speed and minimized operator interaction and biasing. The results are validated by comparison with previously published rat pulmonary arterial micro-CT data analysis techniques, in which vessels were manually mapped and measured using intense operator intervention. Published by Elsevier Ireland Ltd.

  17. A Review of Endoscopic Simulation: Current Evidence on Simulators and Curricula.

    PubMed

    King, Neil; Kunac, Anastasia; Merchant, Aziz M

    2016-01-01

    Upper and lower endoscopy is an important tool that is being utilized more frequently by general surgeons. Training in therapeutic endoscopic techniques has become a mandatory requirement for general surgery residency programs in the United States. The Fundamentals of Endoscopic Surgery has been developed to train and assess competency in these advanced techniques. Simulation has been shown to increase the skill and learning curve of trainees in other surgical disciplines. Several types of endoscopy simulators are commercially available; mechanical trainers, animal based, and virtual reality or computer-based simulators all have their benefits and limitations. However they have all been shown to improve trainee's endoscopic skills. Endoscopic simulators will play a critical role as part of a comprehensive curriculum designed to train the next generation of surgeons. We reviewed recent literature related to the various types of endoscopic simulators and their use in an educational curriculum, and discuss the relevant findings. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  18. Myoanatomy of the velvet worm leg revealed by laboratory-based nanofocus X-ray source tomography.

    PubMed

    Müller, Mark; de Sena Oliveira, Ivo; Allner, Sebastian; Ferstl, Simone; Bidola, Pidassa; Mechlem, Korbinian; Fehringer, Andreas; Hehn, Lorenz; Dierolf, Martin; Achterhold, Klaus; Gleich, Bernhard; Hammel, Jörg U; Jahn, Henry; Mayer, Georg; Pfeiffer, Franz

    2017-11-21

    X-ray computed tomography (CT) is a powerful noninvasive technique for investigating the inner structure of objects and organisms. However, the resolution of laboratory CT systems is typically limited to the micrometer range. In this paper, we present a table-top nanoCT system in conjunction with standard processing tools that is able to routinely reach resolutions down to 100 nm without using X-ray optics. We demonstrate its potential for biological investigations by imaging a walking appendage of Euperipatoides rowelli , a representative of Onychophora-an invertebrate group pivotal for understanding animal evolution. Comparative analyses proved that the nanoCT can depict the external morphology of the limb with an image quality similar to scanning electron microscopy, while simultaneously visualizing internal muscular structures at higher resolutions than confocal laser scanning microscopy. The obtained nanoCT data revealed hitherto unknown aspects of the onychophoran limb musculature, enabling the 3D reconstruction of individual muscle fibers, which was previously impossible using any laboratory-based imaging technique.

  19. The basolateral amygdala in reward learning and addiction

    PubMed Central

    Wassum, Kate M.; Izquierdo, Alicia

    2015-01-01

    Sophisticated behavioral paradigms partnered with the emergence of increasingly selective techniques to target the basolateral amygdala (BLA) have resulted in an enhanced understanding of the role of this nucleus in learning and using reward information. Due to the wide variety of behavioral approaches many questions remain on the circumscribed role of BLA in appetitive behavior. In this review, we integrate conclusions of BLA function in reward-related behavior using traditional interference techniques (lesion, pharmacological inactivation) with those using newer methodological approaches in experimental animals that allow in vivo manipulation of cell type-specific populations and neural recordings. Secondly, from a review of appetitive behavioral tasks in rodents and monkeys and recent computational models of reward procurement, we derive evidence for BLA as a neural integrator of reward value, history, and cost parameters. Taken together, BLA codes specific and temporally dynamic outcome representations in a distributed network to orchestrate adaptive responses. We provide evidence that experiences with opiates and psychostimulants alter these outcome representations in BLA, resulting in long-term modified action. PMID:26341938

  20. Virtual international experiences in veterinary medicine: an evaluation of students' attitudes toward computer-based learning.

    PubMed

    French, Brigitte C; Hird, David W; Romano, Patrick S; Hayes, Rick H; Nijhof, Ard M; Jongejan, Frans; Mellor, Dominic J; Singer, Randall S; Fine, Amanda E; Gay, John M; Davis, Radford G; Conrad, Patricia A

    2007-01-01

    While many studies have evaluated whether or not factual information can be effectively communicated using computer-aided tools, none has focused on establishing and changing students' attitudes toward international animal-health issues. The study reported here was designed to assess whether educational modules on an interactive computer CD elicited a change in veterinary students' interest in and attitudes toward international animal-health issues. Volunteer veterinary students at seven universities (first-year students at three universities, second-year at one, third-year at one, and fourth-year at two) were given by random assignment either an International Animal Health (IAH) CD or a control CD, ParasitoLog (PL). Participants completed a pre-CD survey to establish baseline information on interest and attitudes toward both computers and international animal-health issues. Four weeks later, a post-CD questionnaire was distributed. On the initial survey, most students expressed an interest in working in the field of veterinary medicine in another country. Responses to the three pre-CD questions relating to attitudes toward the globalization of veterinary medicine, interest in foreign animal disease, and inclusion of a core course on international health issues in the veterinary curriculum were all positive, with average values above 3 (on a five-point scale where 5 represented strong agreement or interest). Almost all students considered it beneficial to learn about animal-health issues in other countries. After students reviewed the IAH CD, we found a decrease at four universities, an increase at one university, and no change at the remaining two universities in students' interest in working in some area of international veterinary medicine. However, none of the differences was statistically significant.

  1. Computer animated relaxation therapy in children between 7 and 13 years with tension-type headache: a pilot study.

    PubMed

    Tornoe, Birte; Skov, Liselotte

    2012-03-01

    This pilot study evaluated the effect of computer animated relaxation therapy in children between 7 and 13 years with tension-type headache and the children's experiences with the therapy. The therapy consisted of an uncontrolled nine-session course in modified progressive relaxation therapy assisted by computer animated surface EMG provided from the trapezius muscles and with the physiotherapist as a participant observer. Outcome measures were (a) headache frequency and intensity, (b) pericranial tenderness, (c) tension patterns, and (d) evaluations assessed at baseline and at 3 months follow up. Nine children, mean age 10.9 (SD 1.7) years, diagnosed with frequent episodic or chronic tension-type headache completed the course. The results showed a mean improvement of 45% for headache frequency at 3 months follow up versus baseline and a significant reduction in headache frequency for all participants and in Total Tenderness Score for children with frequent episodic tension-type headache. The children expressed a growing understanding of body reactions and an acquired ability to deactivate and regulate these reactions. Computer animated SEMG seems an applicable learning strategy for young headache sufferers. This study suggests that children below the age of 13 need both the dialog and guidance from a participant observer in order to achieve body awareness.

  2. Anniversary Paper: History and status of CAD and quantitative image analysis: The role of Medical Physics and AAPM

    PubMed Central

    Giger, Maryellen L.; Chan, Heang-Ping; Boone, John

    2008-01-01

    The roles of physicists in medical imaging have expanded over the years, from the study of imaging systems (sources and detectors) and dose to the assessment of image quality and perception, the development of image processing techniques, and the development of image analysis methods to assist in detection and diagnosis. The latter is a natural extension of medical physicists’ goals in developing imaging techniques to help physicians acquire diagnostic information and improve clinical decisions. Studies indicate that radiologists do not detect all abnormalities on images that are visible on retrospective review, and they do not always correctly characterize abnormalities that are found. Since the 1950s, the potential use of computers had been considered for analysis of radiographic abnormalities. In the mid-1980s, however, medical physicists and radiologists began major research efforts for computer-aided detection or computer-aided diagnosis (CAD), that is, using the computer output as an aid to radiologists—as opposed to a completely automatic computer interpretation—focusing initially on methods for the detection of lesions on chest radiographs and mammograms. Since then, extensive investigations of computerized image analysis for detection or diagnosis of abnormalities in a variety of 2D and 3D medical images have been conducted. The growth of CAD over the past 20 years has been tremendous—from the early days of time-consuming film digitization and CPU-intensive computations on a limited number of cases to its current status in which developed CAD approaches are evaluated rigorously on large clinically relevant databases. CAD research by medical physicists includes many aspects—collecting relevant normal and pathological cases; developing computer algorithms appropriate for the medical interpretation task including those for segmentation, feature extraction, and classifier design; developing methodology for assessing CAD performance; validating the algorithms using appropriate cases to measure performance and robustness; conducting observer studies with which to evaluate radiologists in the diagnostic task without and with the use of the computer aid; and ultimately assessing performance with a clinical trial. Medical physicists also have an important role in quantitative imaging, by validating the quantitative integrity of scanners and developing imaging techniques, and image analysis tools that extract quantitative data in a more accurate and automated fashion. As imaging systems become more complex and the need for better quantitative information from images grows, the future includes the combined research efforts from physicists working in CAD with those working on quantitative imaging systems to readily yield information on morphology, function, molecular structure, and more—from animal imaging research to clinical patient care. A historical review of CAD and a discussion of challenges for the future are presented here, along with the extension to quantitative image analysis. PMID:19175137

  3. Anniversary Paper: History and status of CAD and quantitative image analysis: The role of Medical Physics and AAPM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giger, Maryellen L.; Chan, Heang-Ping; Boone, John

    2008-12-15

    The roles of physicists in medical imaging have expanded over the years, from the study of imaging systems (sources and detectors) and dose to the assessment of image quality and perception, the development of image processing techniques, and the development of image analysis methods to assist in detection and diagnosis. The latter is a natural extension of medical physicists' goals in developing imaging techniques to help physicians acquire diagnostic information and improve clinical decisions. Studies indicate that radiologists do not detect all abnormalities on images that are visible on retrospective review, and they do not always correctly characterize abnormalities thatmore » are found. Since the 1950s, the potential use of computers had been considered for analysis of radiographic abnormalities. In the mid-1980s, however, medical physicists and radiologists began major research efforts for computer-aided detection or computer-aided diagnosis (CAD), that is, using the computer output as an aid to radiologists--as opposed to a completely automatic computer interpretation--focusing initially on methods for the detection of lesions on chest radiographs and mammograms. Since then, extensive investigations of computerized image analysis for detection or diagnosis of abnormalities in a variety of 2D and 3D medical images have been conducted. The growth of CAD over the past 20 years has been tremendous--from the early days of time-consuming film digitization and CPU-intensive computations on a limited number of cases to its current status in which developed CAD approaches are evaluated rigorously on large clinically relevant databases. CAD research by medical physicists includes many aspects--collecting relevant normal and pathological cases; developing computer algorithms appropriate for the medical interpretation task including those for segmentation, feature extraction, and classifier design; developing methodology for assessing CAD performance; validating the algorithms using appropriate cases to measure performance and robustness; conducting observer studies with which to evaluate radiologists in the diagnostic task without and with the use of the computer aid; and ultimately assessing performance with a clinical trial. Medical physicists also have an important role in quantitative imaging, by validating the quantitative integrity of scanners and developing imaging techniques, and image analysis tools that extract quantitative data in a more accurate and automated fashion. As imaging systems become more complex and the need for better quantitative information from images grows, the future includes the combined research efforts from physicists working in CAD with those working on quantitative imaging systems to readily yield information on morphology, function, molecular structure, and more--from animal imaging research to clinical patient care. A historical review of CAD and a discussion of challenges for the future are presented here, along with the extension to quantitative image analysis.« less

  4. A New Java Animation in Peer-Reviewed "JCE" Webware

    ERIC Educational Resources Information Center

    Coleman, William F.; Fedosky, Edward W.

    2006-01-01

    "Computer Simulations of Salt Solubility" by Victor M. S. Gil provides an animated, visual interpretation of the different solubilities of related salts based on simple entropy changes associated with dissolution such as configurational disorder and thermal disorder. This animation can help improve students' conceptual understanding of…

  5. Monte Carlo-based treatment planning system calculation engine for microbeam radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Rovira, I.; Sempau, J.; Prezado, Y.

    Purpose: Microbeam radiation therapy (MRT) is a synchrotron radiotherapy technique that explores the limits of the dose-volume effect. Preclinical studies have shown that MRT irradiations (arrays of 25-75-{mu}m-wide microbeams spaced by 200-400 {mu}m) are able to eradicate highly aggressive animal tumor models while healthy tissue is preserved. These promising results have provided the basis for the forthcoming clinical trials at the ID17 Biomedical Beamline of the European Synchrotron Radiation Facility (ESRF). The first step includes irradiation of pets (cats and dogs) as a milestone before treatment of human patients. Within this context, accurate dose calculations are required. The distinct featuresmore » of both beam generation and irradiation geometry in MRT with respect to conventional techniques require the development of a specific MRT treatment planning system (TPS). In particular, a Monte Carlo (MC)-based calculation engine for the MRT TPS has been developed in this work. Experimental verification in heterogeneous phantoms and optimization of the computation time have also been performed. Methods: The penelope/penEasy MC code was used to compute dose distributions from a realistic beam source model. Experimental verification was carried out by means of radiochromic films placed within heterogeneous slab-phantoms. Once validation was completed, dose computations in a virtual model of a patient, reconstructed from computed tomography (CT) images, were performed. To this end, decoupling of the CT image voxel grid (a few cubic millimeter volume) to the dose bin grid, which has micrometer dimensions in the transversal direction of the microbeams, was performed. Optimization of the simulation parameters, the use of variance-reduction (VR) techniques, and other methods, such as the parallelization of the simulations, were applied in order to speed up the dose computation. Results: Good agreement between MC simulations and experimental results was achieved, even at the interfaces between two different media. Optimization of the simulation parameters and the use of VR techniques saved a significant amount of computation time. Finally, parallelization of the simulations improved even further the calculation time, which reached 1 day for a typical irradiation case envisaged in the forthcoming clinical trials in MRT. An example of MRT treatment in a dog's head is presented, showing the performance of the calculation engine. Conclusions: The development of the first MC-based calculation engine for the future TPS devoted to MRT has been accomplished. This will constitute an essential tool for the future clinical trials on pets at the ESRF. The MC engine is able to calculate dose distributions in micrometer-sized bins in complex voxelized CT structures in a reasonable amount of time. Minimization of the computation time by using several approaches has led to timings that are adequate for pet radiotherapy at synchrotron facilities. The next step will consist in its integration into a user-friendly graphical front-end.« less

  6. Monte Carlo-based treatment planning system calculation engine for microbeam radiation therapy.

    PubMed

    Martinez-Rovira, I; Sempau, J; Prezado, Y

    2012-05-01

    Microbeam radiation therapy (MRT) is a synchrotron radiotherapy technique that explores the limits of the dose-volume effect. Preclinical studies have shown that MRT irradiations (arrays of 25-75-μm-wide microbeams spaced by 200-400 μm) are able to eradicate highly aggressive animal tumor models while healthy tissue is preserved. These promising results have provided the basis for the forthcoming clinical trials at the ID17 Biomedical Beamline of the European Synchrotron Radiation Facility (ESRF). The first step includes irradiation of pets (cats and dogs) as a milestone before treatment of human patients. Within this context, accurate dose calculations are required. The distinct features of both beam generation and irradiation geometry in MRT with respect to conventional techniques require the development of a specific MRT treatment planning system (TPS). In particular, a Monte Carlo (MC)-based calculation engine for the MRT TPS has been developed in this work. Experimental verification in heterogeneous phantoms and optimization of the computation time have also been performed. The penelope/penEasy MC code was used to compute dose distributions from a realistic beam source model. Experimental verification was carried out by means of radiochromic films placed within heterogeneous slab-phantoms. Once validation was completed, dose computations in a virtual model of a patient, reconstructed from computed tomography (CT) images, were performed. To this end, decoupling of the CT image voxel grid (a few cubic millimeter volume) to the dose bin grid, which has micrometer dimensions in the transversal direction of the microbeams, was performed. Optimization of the simulation parameters, the use of variance-reduction (VR) techniques, and other methods, such as the parallelization of the simulations, were applied in order to speed up the dose computation. Good agreement between MC simulations and experimental results was achieved, even at the interfaces between two different media. Optimization of the simulation parameters and the use of VR techniques saved a significant amount of computation time. Finally, parallelization of the simulations improved even further the calculation time, which reached 1 day for a typical irradiation case envisaged in the forthcoming clinical trials in MRT. An example of MRT treatment in a dog's head is presented, showing the performance of the calculation engine. The development of the first MC-based calculation engine for the future TPS devoted to MRT has been accomplished. This will constitute an essential tool for the future clinical trials on pets at the ESRF. The MC engine is able to calculate dose distributions in micrometer-sized bins in complex voxelized CT structures in a reasonable amount of time. Minimization of the computation time by using several approaches has led to timings that are adequate for pet radiotherapy at synchrotron facilities. The next step will consist in its integration into a user-friendly graphical front-end.

  7. Perspective on Models in Theoretical and Practical Traditions of Knowledge: The Example of Otto Engine Animations

    ERIC Educational Resources Information Center

    Haglund, Jesper; Stromdahl, Helge

    2012-01-01

    Nineteen informants (n = 19) were asked to study and comment two computer animations of the Otto combustion engine. One animation was non-interactive and realistic in the sense of depicting a physical engine. The other animation was more idealised, interactive and synchronised with a dynamic PV-graph. The informants represented practical and…

  8. A multi-criteria approach to camera motion design for volume data animation.

    PubMed

    Hsu, Wei-Hsien; Zhang, Yubo; Ma, Kwan-Liu

    2013-12-01

    We present an integrated camera motion design and path generation system for building volume data animations. Creating animations is an essential task in presenting complex scientific visualizations. Existing visualization systems use an established animation function based on keyframes selected by the user. This approach is limited in providing the optimal in-between views of the data. Alternatively, computer graphics and virtual reality camera motion planning is frequently focused on collision free movement in a virtual walkthrough. For semi-transparent, fuzzy, or blobby volume data the collision free objective becomes insufficient. Here, we provide a set of essential criteria focused on computing camera paths to establish effective animations of volume data. Our dynamic multi-criteria solver coupled with a force-directed routing algorithm enables rapid generation of camera paths. Once users review the resulting animation and evaluate the camera motion, they are able to determine how each criterion impacts path generation. In this paper, we demonstrate how incorporating this animation approach with an interactive volume visualization system reduces the effort in creating context-aware and coherent animations. This frees the user to focus on visualization tasks with the objective of gaining additional insight from the volume data.

  9. 9 CFR 590.10 - Authority.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Authority. 590.10 Section 590.10 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS... permit experimentation so that new procedures, equipment, and processing techniques may be tested to...

  10. 9 CFR 590.10 - Authority.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Authority. 590.10 Section 590.10 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS... permit experimentation so that new procedures, equipment, and processing techniques may be tested to...

  11. 9 CFR 590.10 - Authority.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Authority. 590.10 Section 590.10 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS... permit experimentation so that new procedures, equipment, and processing techniques may be tested to...

  12. 9 CFR 590.10 - Authority.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Authority. 590.10 Section 590.10 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS... permit experimentation so that new procedures, equipment, and processing techniques may be tested to...

  13. The Translational Role of Diffusion Tensor Image Analysis in Animal Models of Developmental Pathologies

    PubMed Central

    Oguz, Ipek; McMurray, Matthew S.; Styner, Martin; Johns, Josephine M.

    2013-01-01

    Diffusion Tensor Magnetic Resonance Imaging (DTI) has proven itself a powerful technique for clinical investigation of the neurobiological targets and mechanisms underlying developmental pathologies. The success of DTI in clinical studies has demonstrated its great potential for understanding translational animal models of clinical disorders, and preclinical animal researchers are beginning to embrace this new technology to study developmental pathologies. In animal models, genetics can be effectively controlled, drugs consistently administered, subject compliance ensured, and image acquisition times dramatically increased to reduce between-subject variability and improve image quality. When pairing these strengths with the many positive attributes of DTI, such as the ability to investigate microstructural brain organization and connectivity, it becomes possible to delve deeper into the study of both normal and abnormal development. The purpose of this review is to provide new preclinical investigators with an introductory source of information about the analysis of data resulting from small animal DTI studies to facilitate the translation of these studies to clinical data. In addition to an in depth review of translational analysis techniques, we present a number of relevant clinical and animal studies using DTI to investigate developmental insults in order to further illustrate techniques and to highlight where small animal DTI could potentially provide a wealth of translational data to inform clinical researchers. PMID:22627095

  14. OOM - OBJECT ORIENTATION MANIPULATOR, VERSION 6.1

    NASA Technical Reports Server (NTRS)

    Goza, S. P.

    1994-01-01

    The Object Orientation Manipulator (OOM) is an application program for creating, rendering, and recording three-dimensional computer-generated still and animated images. This is done using geometrically defined 3D models, cameras, and light sources, referred to collectively as animation elements. OOM does not provide the tools necessary to construct 3D models; instead, it imports binary format model files generated by the Solid Surface Modeler (SSM). Model files stored in other formats must be converted to the SSM binary format before they can be used in OOM. SSM is available as MSC-21914 or as part of the SSM/OOM bundle, COS-10047. Among OOM's features are collision detection (with visual and audio feedback), the capability to define and manipulate hierarchical relationships between animation elements, stereographic display, and ray-traced rendering. OOM uses Euler angle transformations for calculating the results of translation and rotation operations. OOM provides an interactive environment for the manipulation and animation of models, cameras, and light sources. Models are the basic entity upon which OOM operates and are therefore considered the primary animation elements. Cameras and light sources are considered secondary animation elements. A camera, in OOM, is simply a location within the three-space environment from which the contents of the environment are observed. OOM supports the creation and full animation of cameras. Light sources can be defined, positioned and linked to models, but they cannot be animated independently. OOM can simultaneously accommodate as many animation elements as the host computer's memory permits. Once the required animation elements are present, the user may position them, orient them, and define any initial relationships between them. Once the initial relationships are defined, the user can display individual still views for rendering and output, or define motion for the animation elements by using the Interp Animation Editor. The program provides the capability to save still images, animated sequences of frames, and the information that describes the initialization process for an OOM session. OOM provides the same rendering and output options for both still and animated images. OOM is equipped with a robust model manipulation environment featuring a full screen viewing window, a menu-oriented user interface, and an interpolative Animation Editor. It provides three display modes: solid, wire frame, and simple, that allow the user to trade off visual authenticity for update speed. In the solid mode, each model is drawn based on the shading characteristics assigned to it when it was built. All of the shading characteristics supported by SSM are recognized and properly rendered in this mode. If increasing model complexity impedes the operation of OOM in this mode, then wireframe and simple modes are available. These provide substantially faster screen updates than solid mode. The creation and placement of cameras and light sources is under complete control of the user. One light source is provided in the default element set. It is modeled as a direct light source providing a type of lighting analogous to that provided by the Sun. OOM can accommodate as many light sources as the memory of the host computer permits. Animation is created in OOM using a technique called key frame interpolation. First, various program functions are used to load models, load or create light sources and cameras, and specify initial positions for each element. When these steps are completed, the Interp function is used to create an animation sequence for each element to be animated. An animation sequence consists of a user-defined number of frames (screen images) with some subset of those being defined as key frames. The motion of the element between key frames is interpolated automatically by the software. Key frames thus act as transition points in the motion of an element. This saves the user from having to individually define element data at each frame of a sequence. Animation frames and still images can be output to videotape recorders, film recorders, color printers, and disk files. OOM is written in C-language for implementation on SGI IRIS 4D series workstations running the IRIX operating system. A minimum of 8Mb of RAM is recommended for this program. The standard distribution medium for OOM is a .25 inch streaming magnetic IRIX tape cartridge in UNIX tar format. OOM is also offered as a bundle with a related program, SSM (Solid Surface Modeler). Please see the abstract for SSM/OOM (COS-10047) for information about the bundled package. OOM was released in 1993.

  15. Information Visualization Techniques for Effective Cross-Discipline Communication

    NASA Astrophysics Data System (ADS)

    Fisher, Ward

    2013-04-01

    Collaboration between research groups in different fields is a common occurrence, but it can often be frustrating due to the absence of a common vocabulary. This lack of a shared context can make expressing important concepts and discussing results difficult. This problem may be further exacerbated when communicating to an audience of laypeople. Without a clear frame of reference, simple concepts are often rendered difficult-to-understand at best, and unintelligible at worst. An easy way to alleviate this confusion is with the use of clear, well-designed visualizations to illustrate an idea, process or conclusion. There exist a number of well-described machine-learning and statistical techniques which can be used to illuminate the information present within complex high-dimensional datasets. Once the information has been separated from the data, clear communication becomes a matter of selecting an appropriate visualization. Ideally, the visualization is information-rich but data-scarce. Anything from a simple bar chart, to a line chart with confidence intervals, to an animated set of 3D point-clouds can be used to render a complex idea as an easily understood image. Several case studies will be presented in this work. In the first study, we will examine how a complex statistical analysis was applied to a high-dimensional dataset, and how the results were succinctly communicated to an audience of microbiologists and chemical engineers. Next, we will examine a technique used to illustrate the concept of the singular value decomposition, as used in the field of computer vision, to a lay audience of undergraduate students from mixed majors. We will then examine a case where a simple animated line plot was used to communicate an approach to signal decomposition, and will finish with a discussion of the tools available to create these visualizations.

  16. Mitigation of eddy current heating during magnetic nanoparticle hyperthermia therapy.

    PubMed

    Stigliano, Robert V; Shubitidze, Fridon; Petryk, James D; Shoshiashvili, Levan; Petryk, Alicia A; Hoopes, P Jack

    2016-11-01

    Magnetic nanoparticle hyperthermia therapy is a promising technology for cancer treatment, involving delivering magnetic nanoparticles (MNPs) into tumours then activating them using an alternating magnetic field (AMF). The system produces not only a magnetic field, but also an electric field which penetrates normal tissue and induces eddy currents, resulting in unwanted heating of normal tissues. Magnitude of the eddy current depends, in part, on the AMF source and the size of the tissue exposed to the field. The majority of in vivo MNP hyperthermia therapy studies have been performed in small animals, which, due to the spatial distribution of the AMF relative to the size of the animals, do not reveal the potential toxicity of eddy current heating in larger tissues. This has posed a non-trivial challenge for researchers attempting to scale up to clinically relevant volumes of tissue. There is a relative dearth of studies focused on decreasing the maximum temperature resulting from eddy current heating to increase therapeutic ratio. This paper presents two simple, clinically applicable techniques for decreasing maximum temperature induced by eddy currents. Computational and experimental results are presented to understand the underlying physics of eddy currents induced in conducting, biological tissues and leverage these insights to mitigate eddy current heating during MNP hyperthermia therapy. Phantom studies show that the displacement and motion techniques reduce maximum temperature due to eddy currents by 74% and 19% in simulation, and by 77% and 33% experimentally. Further study is required to optimise these methods for particular scenarios; however, these results suggest larger volumes of tissue could be treated, and/or higher field strengths and frequencies could be used to attain increased MNP heating when these eddy current mitigation techniques are employed.

  17. A functional model for characterizing long-distance movement behaviour

    USGS Publications Warehouse

    Buderman, Frances E.; Hooten, Mevin B.; Ivan, Jacob S.; Shenk, Tanya M.

    2016-01-01

    Advancements in wildlife telemetry techniques have made it possible to collect large data sets of highly accurate animal locations at a fine temporal resolution. These data sets have prompted the development of a number of statistical methodologies for modelling animal movement.Telemetry data sets are often collected for purposes other than fine-scale movement analysis. These data sets may differ substantially from those that are collected with technologies suitable for fine-scale movement modelling and may consist of locations that are irregular in time, are temporally coarse or have large measurement error. These data sets are time-consuming and costly to collect but may still provide valuable information about movement behaviour.We developed a Bayesian movement model that accounts for error from multiple data sources as well as movement behaviour at different temporal scales. The Bayesian framework allows us to calculate derived quantities that describe temporally varying movement behaviour, such as residence time, speed and persistence in direction. The model is flexible, easy to implement and computationally efficient.We apply this model to data from Colorado Canada lynx (Lynx canadensis) and use derived quantities to identify changes in movement behaviour.

  18. Knowledge-based vision and simple visual machines.

    PubMed Central

    Cliff, D; Noble, J

    1997-01-01

    The vast majority of work in machine vision emphasizes the representation of perceived objects and events: it is these internal representations that incorporate the 'knowledge' in knowledge-based vision or form the 'models' in model-based vision. In this paper, we discuss simple machine vision systems developed by artificial evolution rather than traditional engineering design techniques, and note that the task of identifying internal representations within such systems is made difficult by the lack of an operational definition of representation at the causal mechanistic level. Consequently, we question the nature and indeed the existence of representations posited to be used within natural vision systems (i.e. animals). We conclude that representations argued for on a priori grounds by external observers of a particular vision system may well be illusory, and are at best place-holders for yet-to-be-identified causal mechanistic interactions. That is, applying the knowledge-based vision approach in the understanding of evolved systems (machines or animals) may well lead to theories and models that are internally consistent, computationally plausible, and entirely wrong. PMID:9304684

  19. Technique to eliminate computational instability in multibody simulations employing the Lagrange multiplier

    NASA Technical Reports Server (NTRS)

    Watts, G.

    1992-01-01

    A programming technique to eliminate computational instability in multibody simulations that use the Lagrange multiplier is presented. The computational instability occurs when the attached bodies drift apart and violate the constraints. The programming technique uses the constraint equation, instead of integration, to determine the coordinates that are not independent. Although the equations of motion are unchanged, a complete derivation of the incorporation of the Lagrange multiplier into the equation of motion for two bodies is presented. A listing of a digital computer program which uses the programming technique to eliminate computational instability is also presented. The computer program simulates a solid rocket booster and parachute connected by a frictionless swivel.

  20. Insights from Novel Noninvasive CT and ECG Imaging Modalities on Electromechanical Myocardial Activation in a Canine Model of Ischemic Dyssynchronous Heart Failure.

    PubMed

    Dawoud, Fady; Schuleri, Karl H; Spragg, David D; Horáček, B Milan; Berger, Ronald D; Halperin, Henry R; Lardo, Albert C

    2016-12-01

    The interplay between electrical activation and mechanical contraction patterns is hypothesized to be central to reduced effectiveness of cardiac resynchronization therapy (CRT). Furthermore, complex scar substrates render CRT less effective. We used novel cardiac computed tomography (CT) and noninvasive electrocardiographic imaging (ECGI) techniques in an ischemic dyssynchronous heart failure (DHF) animal model to evaluate electrical and mechanical coupling of cardiac function, tissue viability, and venous accessibility of target pacing regions. Ischemic DHF was induced in 6 dogs using coronary occlusion, left bundle ablation and tachy RV pacing. Full body ECG was recorded during native rhythm followed by volumetric first-pass and delayed enhancement CT. Regional electrical activation were computed and overlaid with segmented venous anatomy and scar regions. Reconstructed electrical activation maps show consistency with LBBB starting on the RV and spreading in a "U-shaped" pattern to the LV. Previously reported lines of slow conduction are seen parallel to anterior or inferior interventricular grooves. Mechanical contraction showed large septal to lateral wall delay (80 ± 38 milliseconds vs. 123 ± 31 milliseconds, P = 0.0001). All animals showed electromechanical correlation except dog 5 with largest scar burden. Electromechanical decoupling was largest in basal lateral LV segments. We demonstrated a promising application of CT in combination with ECGI to gain insight into electromechanical function in ischemic dyssynchronous heart failure that can provide useful information to study regional substrate of CRT candidates. © 2016 Wiley Periodicals, Inc.

  1. G4DARI: Geant4/GATE based Monte Carlo simulation interface for dosimetry calculation in radiotherapy.

    PubMed

    Slimani, Faiçal A A; Hamdi, Mahdjoub; Bentourkia, M'hamed

    2018-05-01

    Monte Carlo (MC) simulation is widely recognized as an important technique to study the physics of particle interactions in nuclear medicine and radiation therapy. There are different codes dedicated to dosimetry applications and widely used today in research or in clinical application, such as MCNP, EGSnrc and Geant4. However, such codes made the physics easier but the programming remains a tedious task even for physicists familiar with computer programming. In this paper we report the development of a new interface GEANT4 Dose And Radiation Interactions (G4DARI) based on GEANT4 for absorbed dose calculation and for particle tracking in humans, small animals and complex phantoms. The calculation of the absorbed dose is performed based on 3D CT human or animal images in DICOM format, from images of phantoms or from solid volumes which can be made from any pure or composite material to be specified by its molecular formula. G4DARI offers menus to the user and tabs to be filled with values or chemical formulas. The interface is described and as application, we show results obtained in a lung tumor in a digital mouse irradiated with seven energy beams, and in a patient with glioblastoma irradiated with five photon beams. In conclusion, G4DARI can be easily used by any researcher without the need to be familiar with computer programming, and it will be freely available as an application package. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Quantification of atherosclerosis with MRI and image processing in spontaneously hyperlipidemic rabbits.

    PubMed

    Hänni, Mari; Edvardsson, H; Wågberg, M; Pettersson, K; Smedby, O

    2004-01-01

    The need for a quantitative method to assess atherosclerosis in vivo is well known. This study tested, in a familiar animal model of atherosclerosis, a combination of magnetic resonance imaging (MRI) and image processing. Six spontaneously hyperlipidemic (Watanabe) rabbits were examined with a knee coil in a 1.5-T clinical MRI scanner. Inflow angio (2DI) and proton density weighted (PDW) images were acquired to examine 10 cm of the aorta immediately cranial to the aortic bifurcation. Examination of the thoracic aorta was added in four animals. To identify the inner and outer boundary of the arterial wall, a dynamic contour algorithm (Gradient Vector Flow snakes) was applied to the 2DI and PDW images, respectively, after which the vessel wall area was calculated. The results were compared with histopathological measurements of intima and intima-media cross-sectional area. The correlation coefficient between wall area measurements with MRI snakes and intima-media area was 0.879 when computed individual-wise for abdominal aortas, 0.958 for thoracic aortas, and 0.834 when computed segment-wise. When the algorithm was applied to the PDW images only, somewhat lower correlations were obtained. The MRI yielded significantly higher values than histopathology, which excludes the adventitia. Magnetic resonance imaging, in combination with dynamic contours, may be a suitable technique for quantitative assessment of atherosclerosis in vivo. Using two sequences for the measurement seems to be superior to using a single sequence.

  3. Utilizing high throughput screening data for predictive toxicology models: protocols and application to MLSCN assays

    NASA Astrophysics Data System (ADS)

    Guha, Rajarshi; Schürer, Stephan C.

    2008-06-01

    Computational toxicology is emerging as an encouraging alternative to experimental testing. The Molecular Libraries Screening Center Network (MLSCN) as part of the NIH Molecular Libraries Roadmap has recently started generating large and diverse screening datasets, which are publicly available in PubChem. In this report, we investigate various aspects of developing computational models to predict cell toxicity based on cell proliferation screening data generated in the MLSCN. By capturing feature-based information in those datasets, such predictive models would be useful in evaluating cell-based screening results in general (for example from reporter assays) and could be used as an aid to identify and eliminate potentially undesired compounds. Specifically we present the results of random forest ensemble models developed using different cell proliferation datasets and highlight protocols to take into account their extremely imbalanced nature. Depending on the nature of the datasets and the descriptors employed we were able to achieve percentage correct classification rates between 70% and 85% on the prediction set, though the accuracy rate dropped significantly when the models were applied to in vivo data. In this context we also compare the MLSCN cell proliferation results with animal acute toxicity data to investigate to what extent animal toxicity can be correlated and potentially predicted by proliferation results. Finally, we present a visualization technique that allows one to compare a new dataset to the training set of the models to decide whether the new dataset may be reliably predicted.

  4. Application of Functional Near-Infrared Spectroscopy to the Study of Brain Function in Humans and Animal Models

    PubMed Central

    Kim, Hak Yeong; Seo, Kain; Jeon, Hong Jin; Lee, Unjoo; Lee, Hyosang

    2017-01-01

    Functional near-infrared spectroscopy (fNIRS) is a noninvasive optical imaging technique that indirectly assesses neuronal activity by measuring changes in oxygenated and deoxygenated hemoglobin in tissues using near-infrared light. fNIRS has been used not only to investigate cortical activity in healthy human subjects and animals but also to reveal abnormalities in brain function in patients suffering from neurological and psychiatric disorders and in animals that exhibit disease conditions. Because of its safety, quietness, resistance to motion artifacts, and portability, fNIRS has become a tool to complement conventional imaging techniques in measuring hemodynamic responses while a subject performs diverse cognitive and behavioral tasks in test settings that are more ecologically relevant and involve social interaction. In this review, we introduce the basic principles of fNIRS and discuss the application of this technique in human and animal studies. PMID:28835022

  5. An overview of 3D software visualization.

    PubMed

    Teyseyre, Alfredo R; Campo, Marcelo R

    2009-01-01

    Software visualization studies techniques and methods for graphically representing different aspects of software. Its main goal is to enhance, simplify and clarify the mental representation a software engineer has of a computer system. During many years, visualization in 2D space has been actively studied, but in the last decade, researchers have begun to explore new 3D representations for visualizing software. In this article, we present an overview of current research in the area, describing several major aspects like: visual representations, interaction issues, evaluation methods and development tools. We also perform a survey of some representative tools to support different tasks, i.e., software maintenance and comprehension, requirements validation and algorithm animation for educational purposes, among others. Finally, we conclude identifying future research directions.

  6. Real time 3D scanner: investigations and results

    NASA Astrophysics Data System (ADS)

    Nouri, Taoufik; Pflug, Leopold

    1993-12-01

    This article presents a concept of reconstruction of 3-D objects using non-invasive and touch loss techniques. The principle of this method is to display parallel interference optical fringes on an object and then to record the object under two angles of view. According to an appropriated treatment one reconstructs the 3-D object even when the object has no symmetrical plan. The 3-D surface data is available immediately in digital form for computer- visualization and for analysis software tools. The optical set-up for recording the 3-D object, the 3-D data extraction and treatment, as well as the reconstruction of the 3-D object are reported and commented on. This application is dedicated for reconstructive/cosmetic surgery, CAD, animation and research purposes.

  7. Animator

    ERIC Educational Resources Information Center

    Tech Directions, 2008

    2008-01-01

    Art and animation work is the most significant part of electronic game development, but is also found in television commercials, computer programs, the Internet, comic books, and in just about every visual media imaginable. It is the part of the project that makes an abstract design idea concrete and visible. Animators create the motion of life in…

  8. Biologically inspired robots elicit a robust fear response in zebrafish

    NASA Astrophysics Data System (ADS)

    Ladu, Fabrizio; Bartolini, Tiziana; Panitz, Sarah G.; Butail, Sachit; Macrı, Simone; Porfiri, Maurizio

    2015-03-01

    We investigate the behavioral response of zebrafish to three fear-evoking stimuli. In a binary choice test, zebrafish are exposed to a live allopatric predator, a biologically-inspired robot, and a computer-animated image of the live predator. A target tracking algorithm is developed to score zebrafish behavior. Unlike computer-animated images, the robotic and live predator elicit a robust avoidance response. Importantly, the robotic stimulus elicits more consistent inter-individual responses than the live predator. Results from this effort are expected to aid in hypothesis-driven studies on zebrafish fear response, by offering a valuable approach to maximize data-throughput and minimize animal subjects.

  9. Computer animation of modal and transient vibrations

    NASA Technical Reports Server (NTRS)

    Lipman, Robert R.

    1987-01-01

    An interactive computer graphics processor is described that is capable of generating input to animate modal and transient vibrations of finite element models on an interactive graphics system. The results from NASTRAN can be postprocessed such that a three dimensional wire-frame picture, in perspective, of the finite element mesh is drawn on the graphics display. Modal vibrations of any mode shape or transient motions over any range of steps can be animated. The finite element mesh can be color-coded by any component of displacement. Viewing parameters and the rate of vibration of the finite element model can be interactively updated while the structure is vibrating.

  10. Some Observations on Veterinary Undergraduate Training in Surgical Techniques.

    ERIC Educational Resources Information Center

    Whittick, William G.

    1978-01-01

    The undergraduate surgery course of the Faculty of Veterinary Medicine and Animal Science, Universiti Pertanian Malaysia, is described with focus on its experential method of teaching surgical techniques. Also discussed are the benefits of veterinary school cooperation with a large city Society for the Prevention of Cruelty to Animals (SPCA). (JMD)

  11. A Novel Augmented Reality-Based Navigation System in Perforator Flap Transplantation - A Feasibility Study.

    PubMed

    Jiang, Taoran; Zhu, Ming; Zan, Tao; Gu, Bin; Li, Qingfeng

    2017-08-01

    In perforator flap transplantation, dissection of the perforator is an important but difficult procedure because of the high variability in vascular anatomy. Preoperative imaging techniques could provide substantial information about vascular anatomy; however, it cannot provide direct guidance for surgeons during the operation. In this study, a navigation system (NS) was established to overlie a vascular map on surgical sites to further provide a direct guide for perforator flap transplantation. The NS was established based on computed tomographic angiography and augmented reality techniques. A virtual vascular map was reconstructed according to computed tomographic angiography data and projected onto real patient images using ARToolKit software. Additionally, a screw-fixation marker holder was created to facilitate registration. With the use of a tracking and display system, we conducted the NS on an animal model and measured the system error on a rapid prototyping model. The NS assistance allowed for correct identification, as well as a safe and precise dissection of the perforator. The mean value of the system error was determined to be 3.474 ± 1.546 mm. Augmented reality-based NS can provide precise navigation information by directly displaying a 3-dimensional individual anatomical virtual model onto the operative field in real time. It will allow rapid identification and safe dissection of a perforator in free flap transplantation surgery.

  12. Ultrasonic technique for imaging tissue vibrations: preliminary results.

    PubMed

    Sikdar, Siddhartha; Beach, Kirk W; Vaezy, Shahram; Kim, Yongmin

    2005-02-01

    We propose an ultrasound (US)-based technique for imaging vibrations in the blood vessel walls and surrounding tissue caused by eddies produced during flow through narrowed or punctured arteries. Our approach is to utilize the clutter signal, normally suppressed in conventional color flow imaging, to detect and characterize local tissue vibrations. We demonstrate the feasibility of visualizing the origin and extent of vibrations relative to the underlying anatomy and blood flow in real-time and their quantitative assessment, including measurements of the amplitude, frequency and spatial distribution. We present two signal-processing algorithms, one based on phase decomposition and the other based on spectral estimation using eigen decomposition for isolating vibrations from clutter, blood flow and noise using an ensemble of US echoes. In simulation studies, the computationally efficient phase-decomposition method achieved 96% sensitivity and 98% specificity for vibration detection and was robust to broadband vibrations. Somewhat higher sensitivity (98%) and specificity (99%) could be achieved using the more computationally intensive eigen decomposition-based algorithm. Vibration amplitudes as low as 1 mum were measured accurately in phantom experiments. Real-time tissue vibration imaging at typical color-flow frame rates was implemented on a software-programmable US system. Vibrations were studied in vivo in a stenosed femoral bypass vein graft in a human subject and in a punctured femoral artery and incised spleen in an animal model.

  13. What We Know About the Brain Structure-Function Relationship.

    PubMed

    Batista-García-Ramó, Karla; Fernández-Verdecia, Caridad Ivette

    2018-04-18

    How the human brain works is still a question, as is its implication with brain architecture: the non-trivial structure–function relationship. The main hypothesis is that the anatomic architecture conditions, but does not determine, the neural network dynamic. The functional connectivity cannot be explained only considering the anatomical substrate. This involves complex and controversial aspects of the neuroscience field and that the methods and methodologies to obtain structural and functional connectivity are not always rigorously applied. The goal of the present article is to discuss about the progress made to elucidate the structure–function relationship of the Central Nervous System, particularly at the brain level, based on results from human and animal studies. The current novel systems and neuroimaging techniques with high resolutive physio-structural capacity have brought about the development of an integral framework of different structural and morphometric tools such as image processing, computational modeling and graph theory. Different laboratories have contributed with in vivo, in vitro and computational/mathematical models to study the intrinsic neural activity patterns based on anatomical connections. We conclude that multi-modal techniques of neuroimaging are required such as an improvement on methodologies for obtaining structural and functional connectivity. Even though simulations of the intrinsic neural activity based on anatomical connectivity can reproduce much of the observed patterns of empirical functional connectivity, future models should be multifactorial to elucidate multi-scale relationships and to infer disorder mechanisms.

  14. The Handicap Principle for Trust in Computer Security, the Semantic Web and Social Networking

    NASA Astrophysics Data System (ADS)

    Ma, Zhanshan (Sam); Krings, Axel W.; Hung, Chih-Cheng

    Communication is a fundamental function of life, and it exists in almost all living things: from single-cell bacteria to human beings. Communication, together with competition and cooperation,arethree fundamental processes in nature. Computer scientists are familiar with the study of competition or 'struggle for life' through Darwin's evolutionary theory, or even evolutionary computing. They may be equally familiar with the study of cooperation or altruism through the Prisoner's Dilemma (PD) game. However, they are likely to be less familiar with the theory of animal communication. The objective of this article is three-fold: (i) To suggest that the study of animal communication, especially the honesty (reliability) of animal communication, in which some significant advances in behavioral biology have been achieved in the last three decades, should be on the verge to spawn important cross-disciplinary research similar to that generated by the study of cooperation with the PD game. One of the far-reaching advances in the field is marked by the publication of "The Handicap Principle: a Missing Piece of Darwin's Puzzle" by Zahavi (1997). The 'Handicap' principle [34][35], which states that communication signals must be costly in some proper way to be reliable (honest), is best elucidated with evolutionary games, e.g., Sir Philip Sidney (SPS) game [23]. Accordingly, we suggest that the Handicap principle may serve as a fundamental paradigm for trust research in computer science. (ii) To suggest to computer scientists that their expertise in modeling computer networks may help behavioral biologists in their study of the reliability of animal communication networks. This is largely due to the historical reason that, until the last decade, animal communication was studied with the dyadic paradigm (sender-receiver) rather than with the network paradigm. (iii) To pose several open questions, the answers to which may bear some refreshing insights to trust research in computer science, especially secure and resilient computing, the semantic web, and social networking. One important thread unifying the three aspects is the evolutionary game theory modeling or its extensions with survival analysis and agreement algorithms [19][20], which offer powerful game models for describing time-, space-, and covariate-dependent frailty (uncertainty and vulnerability) and deception (honesty).

  15. The science of rotator cuff tears: translating animal models to clinical recommendations using simulation analysis.

    PubMed

    Mannava, Sandeep; Plate, Johannes F; Tuohy, Christopher J; Seyler, Thorsten M; Whitlock, Patrick W; Curl, Walton W; Smith, Thomas L; Saul, Katherine R

    2013-07-01

    The purpose of this article is to review basic science studies using various animal models for rotator cuff research and to describe structural, biomechanical, and functional changes to muscle following rotator cuff tears. The use of computational simulations to translate the findings from animal models to human scale is further detailed. A comprehensive review was performed of the basic science literature describing the use of animal models and simulation analysis to examine muscle function following rotator cuff injury and repair in the ageing population. The findings from various studies of rotator cuff pathology emphasize the importance of preventing permanent muscular changes with detrimental results. In vivo muscle function, electromyography, and passive muscle-tendon unit properties were studied before and after supraspinatus tenotomy in a rodent rotator cuff injury model (acute vs chronic). Then, a series of simulation experiments were conducted using a validated computational human musculoskeletal shoulder model to assess both passive and active tension of rotator cuff repairs based on surgical positioning. Outcomes of rotator cuff repair may be improved by earlier surgical intervention, with lower surgical repair tensions and fewer electromyographic neuromuscular changes. An integrated approach of animal experiments, computer simulation analyses, and clinical studies may allow us to gain a fundamental understanding of the underlying pathology and interpret the results for clinical translation.

  16. A new polyvinyl alcohol hydrogel vascular model (KEZLEX) for microvascular anastomosis training

    PubMed Central

    Mutoh, Tatsushi; Ishikawa, Tatsuya; Ono, Hidenori; Yasui, Nobuyuki

    2010-01-01

    Background: Microvascular anastomosis is a challenging neurosurgical technique that requires extensive training for one to master it. We developed a new vascular model (KEZLEX, Ono and Co., Ltd., Tokyo, Japan) as a non-animal, realistic tool for practicing microvascular anastomosis under realistic circumstances. Methods: The model was manufactured from polyvinyl alcohol hydrogel to provide 1.0–3.0 mm diameter (available for 0.5-mm pitch), 6–8 cm long tubes that have qualitatively similar surface characteristics, visibility, and stiffness to human donor and recipient arteries for various bypass surgeries based on three-dimensional computed tomography/magnetic resonance imaging scanning data reconstruction using visible human data set and vessel casts. Results: Trainees can acquire basic microsuturing techniques for end-to-end, end-to-side, and side-to-side anastomoses with handling similar to that for real arteries. To practice standard deep bypass techniques under realistic circumstances, the substitute vessel can be fixed to specific locations of a commercially available brain model with pins. Conclusion: Our vascular prosthesis model is simple and easy to set up for repeated practice, and will contribute to facilitate “off-the-job” training by trainees. PMID:21170365

  17. Diagnostic imaging advances in murine models of colitis.

    PubMed

    Brückner, Markus; Lenz, Philipp; Mücke, Marcus M; Gohar, Faekah; Willeke, Peter; Domagk, Dirk; Bettenworth, Dominik

    2016-01-21

    Inflammatory bowel diseases (IBD) such as Crohn's disease and ulcerative colitis are chronic-remittent inflammatory disorders of the gastrointestinal tract still evoking challenging clinical diagnostic and therapeutic situations. Murine models of experimental colitis are a vital component of research into human IBD concerning questions of its complex pathogenesis or the evaluation of potential new drugs. To monitor the course of colitis, to the present day, classical parameters like histological tissue alterations or analysis of mucosal cytokine/chemokine expression often require euthanasia of animals. Recent advances mean revolutionary non-invasive imaging techniques for in vivo murine colitis diagnostics are increasingly available. These novel and emerging imaging techniques not only allow direct visualization of intestinal inflammation, but also enable molecular imaging and targeting of specific alterations of the inflamed murine mucosa. For the first time, in vivo imaging techniques allow for longitudinal examinations and evaluation of intra-individual therapeutic response. This review discusses the latest developments in the different fields of ultrasound, molecularly targeted contrast agent ultrasound, fluorescence endoscopy, confocal laser endomicroscopy as well as tomographic imaging with magnetic resonance imaging, computed tomography and fluorescence-mediated tomography, discussing their individual limitations and potential future diagnostic applications in the management of human patients with IBD.

  18. Comparison of gravimetric and a double-indicator dilution technique for assessment of extra-vascular lung water in endotoxaemia.

    PubMed

    Rossi, P; Oldner, A; Wanecek, M; Leksell, L G; Rudehill, A; Konrad, D; Weitzberg, E

    2003-03-01

    To compare a molecular double-indicator dilution technique with the gravimetrical reference method for measurement of extra-vascular lung water in porcine endotoxin shock. Open comparative experimental study. Animal research laboratory. In fourteen anaesthetised, mechanically ventilated landrace pigs, central and pulmonary haemodynamics as well as pulmonary gas exchange were measured. Extra-vascular lung water was quantitated gravimetrically as well as with a molecular double indicator dilution technique. Eight of these animals were subjected to endotoxaemia, the rest serving as sham controls. No difference in extra-vascular lung water was observed between the two methods in sham animals. Furthermore, extra-vascular lung water assessed with the molecular double-indicator dilution technique at the initiation of endotoxin infusion did not differ significantly from the corresponding values for sham animals. Endotoxaemia induced a hypodynamic shock with concurrent pulmonary hypertension and a pronounced deterioration in gas exchange. No increase in extra-vascular lung water was detected with the molecular double-indicator dilution technique in response to endotoxin, whereas this parameter was significantly higher when assessed with the gravimetric method. The molecular double-indicator dilution technique showed similar results as the gravimetrical method for assessment of extra-vascular lung water in non-endotoxaemic conditions. However, during endotoxin-induced lung injury the molecular double indicator dilution technique failed to detect the significant increase in extra-vascular lung water as measured by the gravimetric method. These data suggest that the molecular double indicator dilution technique may be of limited value during sepsis-induced lung injury.

  19. Feasibility study of an intensity-modulated radiation model for the study of erectile dysfunction.

    PubMed

    Koontz, Bridget F; Yan, Hui; Kimura, Masaki; Vujaskovic, Zeljko; Donatucci, Craig; Yin, Fang-Fang

    2011-02-01

    Preclinical studies of radiotherapy (RT) induced erectile dysfunction (ED) have been limited by radiation toxicity when using large fields. To develop a protocol of rat prostate irradiation using techniques mimicking the current clinical standard of intensity modulated radiotherapy (IMRT). Quality assurance (QA) testing of plan accuracy, animal health 9 weeks after RT, and intracavernosal pressure (ICP) measurement on cavernosal nerve stimulation. Computed tomography-based planning was used to develop a stereotactic radiosurgery (SRS) treatment plan for five young adult male Sprague-Dawley rats. Two treatment planning strategies were utilized to deliver 20 Gy in a single fraction: three-dimensional dynamic conformal arc and intensity-modulated arc (RapidArc). QA testing was performed for each plan type. Treatment was delivered using a NovalisTX (Varian Medical Systems) with high-definition multi-leaf collimators using on-board imaging prior to treatment. Each animal was evaluated for ED 2 months after treatment by nerve stimulation and ICP measurement. The mean prostate volume and target volume (5 mm expansion of prostate) for the five animals was 0.36 and 0.66 cm3, respectively. Both conformal and RapidArc plans provided at least 95% coverage of the target volume, with rapid dose fall-off. QA plans demonstrated strong agreement between doses of calculated and delivered plans, although the conformal arc plan was more homogenous in treatment delivery. Treatment was well tolerated by the animals with no toxicity out to 9 weeks. Compared with control animals, significant reduction in ICP/mean arterial pressure, maximum ICP, and ICP area under the curve were noted. Tightly conformal dynamic arc prostate irradiation is feasible and results in minimal toxicity and measurable changes in erectile function. © 2010 International Society for Sexual Medicine.

  20. Effects of magnetic resonance-guided high-intensity focused ultrasound ablation on bone mechanical properties and modeling.

    PubMed

    Yeo, Sin Yuin; Arias Moreno, Andrés J; van Rietbergen, Bert; Ter Hoeve, Natalie D; van Diest, Paul J; Grüll, Holger

    2015-01-01

    Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) is a promising technique for palliative treatment of bone pain. In this study, the effects of MR-HIFU ablation on bone mechanics and modeling were investigated. A total of 12 healthy rat femurs were ablated using 10 W for 46 ± 4 s per sonication with 4 sonications for each femur. At 7 days after treatments, all animals underwent MR and single photon emission computed tomography/computed tomography (SPECT/CT) imaging. Then, six animals were euthanized. At 1 month following ablations, the remaining six animals were scanned again with MR and SPECT/CT prior to euthanization. Thereafter, both the HIFU-treated and contralateral control bones of three animals from each time interval were processed for histology, whereas the remaining bones were subjected to micro-CT (μCT), three-point bending tests, and micro-finite element (micro-FE) analyses. At 7 days after HIFU ablations, edema formation around the treated bones coupled with bone marrow and cortical bone necrosis was observed on MRI and histological images. SPECT/CT and μCT images revealed presence of bone modeling through an increased uptake of (99m)Tc-MDP and formation of woven bone, respectively. At 31 days after ablations, as illustrated by imaging and histology, healing of the treated bone and the surrounding soft tissue was noted, marked by decreased in amount of tissue damage, formation of scar tissue, and sub-periosteal reaction. The results of three-point bending tests showed no significant differences in elastic stiffness, ultimate load, and yield load between the HIFU-treated and contralateral control bones at 7 days and 1 month after treatments. Similarly, the elastic stiffness and Young's moduli determined by micro-FE analyses at both time intervals were not statistically different. Multimodality imaging and histological data illustrated the presence of HIFU-induced bone damage at the cellular level, which activated the bone repair mechanisms. Despite that, these changes did not have a mechanical impact on the bone.

  1. Measuring Speed Using a Computer--Several Techniques.

    ERIC Educational Resources Information Center

    Pearce, Jon M.

    1988-01-01

    Introduces three different techniques to facilitate the measurement of speed and the associated kinematics and dynamics using a computer. Discusses sensing techniques using optical or ultrasonic sensors, interfacing with a computer, software routines for the interfaces, and other applications. Provides circuit diagrams, pictures, and a program to…

  2. Small Animal Massage Therapy: A Brief Review and Relevant Observations.

    PubMed

    Formenton, Maira Rezende; Pereira, Marco Aurélio Amador; Fantoni, Denise Tabacchi

    2017-12-01

    Massage therapy is becoming increasingly popular in human and animal physiotherapy and rehabilitation. Wider application of the technique led to research efforts aimed at providing scientific support to anecdotal beneficial effects, particularly pain relief. Recent studies have shown that massage therapy alters dopamine and serotonin levels, decreases noradrenaline levels, and modulates the immune system. Psychological effects such as reduction of stress and anxiety, with improvement of depressive patients, have been reported in humans. This article set out to review the major aspects of massage therapy based on recent publications on the topic, and to extrapolate concepts and practical aspects described in human physiotherapy to the veterinary patient, particularly the applicability of different techniques in Small Animal Medicine. Indications of massage therapy in small animals include pain relief, orthopedic rehabilitation, Canine Sports Medicine, intensive care, and management of nonspecific edema. Techniques described in this article were originally intended for use in humans and scientific data supporting anecdotal, beneficial effects in domestic animals are still lacking; this fruitful area for research is therefore open to veterinary professionals. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Computed tomography-based tissue-engineered scaffolds in craniomaxillofacial surgery.

    PubMed

    Smith, M H; Flanagan, C L; Kemppainen, J M; Sack, J A; Chung, H; Das, S; Hollister, S J; Feinberg, S E

    2007-09-01

    Tissue engineering provides an alternative modality allowing for decreased morbidity of donor site grafting and decreased rejection of less compatible alloplastic tissues. Using image-based design and computer software, a precisely sized and shaped scaffold for osseous tissue regeneration can be created via selective laser sintering. Polycaprolactone has been used to create a condylar ramus unit (CRU) scaffold for application in temporomandibular joint reconstruction in a Yucatan minipig animal model. Following sacrifice, micro-computed tomography and histology was used to demonstrate the efficacy of this particular scaffold design. A proof-of-concept surgery has demonstrated cartilaginous tissue regeneration along the articulating surface with exuberant osseous tissue formation. Bone volumes and tissue mineral density at both the 1 and 3 month time points demonstrated significant new bone growth interior and exterior to the scaffold. Computationally designed scaffolds can support masticatory function in a large animal model as well as both osseous and cartilage regeneration. Our group is continuing to evaluate multiple implant designs in both young and mature Yucatan minipig animals. 2007 John Wiley & Sons, Ltd.

  4. Digital dissection - using contrast-enhanced computed tomography scanning to elucidate hard- and soft-tissue anatomy in the Common Buzzard Buteo buteo.

    PubMed

    Lautenschlager, Stephan; Bright, Jen A; Rayfield, Emily J

    2014-04-01

    Gross dissection has a long history as a tool for the study of human or animal soft- and hard-tissue anatomy. However, apart from being a time-consuming and invasive method, dissection is often unsuitable for very small specimens and often cannot capture spatial relationships of the individual soft-tissue structures. The handful of comprehensive studies on avian anatomy using traditional dissection techniques focus nearly exclusively on domestic birds, whereas raptorial birds, and in particular their cranial soft tissues, are essentially absent from the literature. Here, we digitally dissect, identify, and document the soft-tissue anatomy of the Common Buzzard (Buteo buteo) in detail, using the new approach of contrast-enhanced computed tomography using Lugol's iodine. The architecture of different muscle systems (adductor, depressor, ocular, hyoid, neck musculature), neurovascular, and other soft-tissue structures is three-dimensionally visualised and described in unprecedented detail. The three-dimensional model is further presented as an interactive PDF to facilitate the dissemination and accessibility of anatomical data. Due to the digital nature of the data derived from the computed tomography scanning and segmentation processes, these methods hold the potential for further computational analyses beyond descriptive and illustrative proposes. © 2013 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.

  5. Techniques for Computation of Frequency Limited H∞ Norm

    NASA Astrophysics Data System (ADS)

    Haider, Shafiq; Ghafoor, Abdul; Imran, Muhammad; Fahad Mumtaz, Malik

    2018-01-01

    Traditional H ∞ norm depicts peak system gain over infinite frequency range, but many applications like filter design, model order reduction and controller design etc. require computation of peak system gain over specific frequency interval rather than infinite range. In present work, new computationally efficient techniques for computation of H ∞ norm over frequency limited interval are proposed. Proposed techniques link norm computation with maximum singular value of the system in limited frequency interval. Numerical examples are incorporated to validate the proposed concept.

  6. Animals In Synchrotrons: Overcoming Challenges For High-Resolution, Live, Small-Animal Imaging

    NASA Astrophysics Data System (ADS)

    Donnelley, Martin; Parsons, David; Morgan, Kaye; Siu, Karen

    2010-07-01

    Physiological studies in small animals can be complicated, but the complexity is increased dramatically when performing live-animal synchrotron X-ray imaging studies. Our group has extensive experience in high-resolution live-animal imaging at the Japanese SPring-8 synchrotron, primarily examining airways in two-dimensions. These experiments normally image an area of 1.8 mm×1.2 mm at a pixel resolution of 0.45 μm and are performed with live, intact, anaesthetized mice. There are unique challenges in this experimental setting. Importantly, experiments must be performed in an isolated imaging hutch not specifically designed for small-animal imaging. This requires equipment adapted to remotely monitor animals, maintain their anesthesia, and deliver test substances while collecting images. The horizontal synchrotron X-ray beam has a fixed location and orientation that limits experimental flexibility. The extremely high resolution makes locating anatomical regions-of-interest slow and can result in a high radiation dose, and at this level of magnification small animal movements produce motion-artifacts that can render acquired images unusable. Here we describe our experimental techniques and how we have overcome several challenges involved in performing live mouse synchrotron imaging. Experiments have tested different mouse strains, with hairless strains minimizing overlying skin and hair artifacts. Different anesthetics have also be trialed due to the limited choices available at SPring-8. Tracheal-intubation methods have been refined and controlled-ventilation is now possible using a specialized small-animal ventilator. With appropriate animal restraint and respiratory-gating, motion-artifacts have been minimized. The animal orientation (supine vs. head-high) also appears to affect animal physiology, and can alter image quality. Our techniques and image quality at SPring-8 have dramatically improved and in the near future we plan to translate this experience to the Imaging and Medical Beamline at the Australian Synchrotron. Overcoming these challenges has permitted increasingly sophisticated imaging of animals with synchrotron X-rays, and we expect a bright future for these techniques.

  7. Animals In Synchrotrons: Overcoming Challenges For High-Resolution, Live, Small-Animal Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donnelley, Martin; Parsons, David; Women's and Children's Health Research Institute, Adelaide, South Australia

    Physiological studies in small animals can be complicated, but the complexity is increased dramatically when performing live-animal synchrotron X-ray imaging studies. Our group has extensive experience in high-resolution live-animal imaging at the Japanese SPring-8 synchrotron, primarily examining airways in two-dimensions. These experiments normally image an area of 1.8 mmx1.2 mm at a pixel resolution of 0.45 {mu}m and are performed with live, intact, anaesthetized mice.There are unique challenges in this experimental setting. Importantly, experiments must be performed in an isolated imaging hutch not specifically designed for small-animal imaging. This requires equipment adapted to remotely monitor animals, maintain their anesthesia, andmore » deliver test substances while collecting images. The horizontal synchrotron X-ray beam has a fixed location and orientation that limits experimental flexibility. The extremely high resolution makes locating anatomical regions-of-interest slow and can result in a high radiation dose, and at this level of magnification small animal movements produce motion-artifacts that can render acquired images unusable. Here we describe our experimental techniques and how we have overcome several challenges involved in performing live mouse synchrotron imaging.Experiments have tested different mouse strains, with hairless strains minimizing overlying skin and hair artifacts. Different anesthetics have also be trialed due to the limited choices available at SPring-8. Tracheal-intubation methods have been refined and controlled-ventilation is now possible using a specialized small-animal ventilator. With appropriate animal restraint and respiratory-gating, motion-artifacts have been minimized. The animal orientation (supine vs. head-high) also appears to affect animal physiology, and can alter image quality. Our techniques and image quality at SPring-8 have dramatically improved and in the near future we plan to translate this experience to the Imaging and Medical Beamline at the Australian Synchrotron.Overcoming these challenges has permitted increasingly sophisticated imaging of animals with synchrotron X-rays, and we expect a bright future for these techniques.« less

  8. Using Design & Animation Concepts to Produce Animated Instructional Resources That Can Facilitate Open Distance Learning in Science and Technology Education

    ERIC Educational Resources Information Center

    Kwasu, Isaac Ali; Yalams, Simon Madugu; Ema, Ema

    2016-01-01

    This paper presents an outline on how teachers can use "The Design Process and Animation Techniques to produce animated instructional resources (AIR) which, can be used to facilitate Open Distance Learning in especially Science and Technology Education. A model of the Animated Instructional Resource was developed for the teaching of Human…

  9. Radiotracer imaging studies in hepatic encephalopathy: ISHEN practice guidelines.

    PubMed

    Berding, Georg; Banati, Richard B; Buchert, Ralph; Chierichetti, Franca; Grover, Vijay P B; Kato, Akinobu; Keiding, Susanne; Taylor-Robinson, Simon D

    2009-05-01

    There is lack of consensus on radiotracer usage in hepatic encephalopathy (HE). We have focused our attention on three main areas: (i) radiotracer imaging in animal models of HE, (ii) methodological issues of radiotracer imaging in HE and (iii) radiotracer imaging studies on the pathophysiology and (new) therapies in HE. We suggest the following: 1. Positron emission tomography (PET) and single photon emission computed tomography lend themselves to the study of animal models of HE, but the models that are suitable depend on the specific research question. Magnetic resonance imaging (MRI) may be a useful alternative technique. 2. Owing to the cost of the technique, there is a need for multicentre human PET studies to overcome the problem of underpowered small studies being undertaken in individual research centres. There should be a unified PET protocol with central, anonymised data analysis in one centre, using validated methodology, on behalf of all participating centres. Such studies would be useful for the assessment of early intervention in patients with subtle neuropsychiatric symptoms, or for clarification of the effect of liver transplantation on HE. 3. While radiotracer imaging modalities remain useful research tools for the study of pathogenesis and for the assessment of treatment effects, there is no consensus on the use of imaging in routine clinical practice for diagnosis and prognosis. The most promising objective tools appear to be magnetic resonance spectroscopy (MRS) and volumetric MRI, which can be performed in multiple centres without the difficulties that radiotracer imaging entail.

  10. Optical imaging probes in oncology

    PubMed Central

    Martelli, Cristina; Dico, Alessia Lo; Diceglie, Cecilia; Lucignani, Giovanni; Ottobrini, Luisa

    2016-01-01

    Cancer is a complex disease, characterized by alteration of different physiological molecular processes and cellular features. Keeping this in mind, the possibility of early identification and detection of specific tumor biomarkers by non-invasive approaches could improve early diagnosis and patient management. Different molecular imaging procedures provide powerful tools for detection and non-invasive characterization of oncological lesions. Clinical studies are mainly based on the use of computed tomography, nuclear-based imaging techniques and magnetic resonance imaging. Preclinical imaging in small animal models entails the use of dedicated instruments, and beyond the already cited imaging techniques, it includes also optical imaging studies. Optical imaging strategies are based on the use of luminescent or fluorescent reporter genes or injectable fluorescent or luminescent probes that provide the possibility to study tumor features even by means of fluorescence and luminescence imaging. Currently, most of these probes are used only in animal models, but the possibility of applying some of them also in the clinics is under evaluation. The importance of tumor imaging, the ease of use of optical imaging instruments, the commercial availability of a wide range of probes as well as the continuous description of newly developed probes, demonstrate the significance of these applications. The aim of this review is providing a complete description of the possible optical imaging procedures available for the non-invasive assessment of tumor features in oncological murine models. In particular, the characteristics of both commercially available and newly developed probes will be outlined and discussed. PMID:27145373

  11. Computer sciences

    NASA Technical Reports Server (NTRS)

    Smith, Paul H.

    1988-01-01

    The Computer Science Program provides advanced concepts, techniques, system architectures, algorithms, and software for both space and aeronautics information sciences and computer systems. The overall goal is to provide the technical foundation within NASA for the advancement of computing technology in aerospace applications. The research program is improving the state of knowledge of fundamental aerospace computing principles and advancing computing technology in space applications such as software engineering and information extraction from data collected by scientific instruments in space. The program includes the development of special algorithms and techniques to exploit the computing power provided by high performance parallel processors and special purpose architectures. Research is being conducted in the fundamentals of data base logic and improvement techniques for producing reliable computing systems.

  12. A technique for extracting blood samples from mice in fire toxicity tests

    NASA Technical Reports Server (NTRS)

    Bucci, T. J.; Hilado, C. J.; Lopez, M. T.

    1976-01-01

    The extraction of adequate blood samples from moribund and dead mice has been a problem because of the small quantity of blood in each animal and the short time available between the animals' death and coagulation of the blood. These difficulties are particularly critical in fire toxicity tests because removal of the test animals while observing proper safety precautions for personnel is time-consuming. Techniques for extracting blood samples from mice were evaluated, and a technique was developed to obtain up to 0.8 ml of blood from a single mouse after death. The technique involves rapid exposure and cutting of the posterior vena cava and accumulation of blood in the peritoneal space. Blood samples of 0.5 ml or more from individual mice have been consistently obtained as much as 16 minutes after apparent death. Results of carboxyhemoglobin analyses of blood appeared reproducible and consistent with carbon monoxide concentrations in the exposure chamber.

  13. Legal, ethical, and procedural bases for the use of aseptic techniques to implant electronic devices

    USGS Publications Warehouse

    Mulcahy, Daniel M.

    2013-01-01

    The popularity of implanting electronic devices such as transmitters and data loggers into captive and free-ranging animals has increased greatly in the past two decades. The devices have become smaller, more reliable, and more capable (Printz 2004; Wilson and Gifford 2005; Metcalfe et al. 2012). Compared with externally mounted devices, implanted devices are largely invisible to external viewers such as tourists and predators; exist in a physically protected, thermally stable environment in mammals and birds; and greatly reduce drag and risk of entanglement. An implanted animal does not outgrow its device or attachment method as can happen with collars and harnesses, which allows young animals to be more safely equipped. However, compared with mounting external devices, implantation requires greater technical ability to perform the necessary anesthesia, analgesia, and surgery. More than 83% of publications in the 1990s that used radiotelemetry on animals assumed that there were no adverse effects on the animal (Godfrey and Bryant 2003). It is likely that some studies using implanted electronic devices have not been published due to a high level of unexpected mortality or to aberrant behavior or disappearance of the implanted animals, a phenomenon known as the “file drawer” problem (Rosenthal 1979; Scargle 2000). The near absence of such studies from the published record may be providing a false sense of security that procedures being used are more innocuous than they actually are. Similarly, authors sometimes state that it was unlikely that device implantation was problematic because study animals appeared to behave normally, or authors state that previous investigators used the same technique and saw no problems. Such statements are suppositions if no supporting data are provided or if the animals were equipped because there was no other way to follow their activity. Moreover, such suppositions ignore other adverse effects that affect behavior indirectly, and animals often mask the signs of infection to avoid attracting predators (Wobeser 2006). Guidance specific to sterilization of electronic devices for implantation is limited in the wildlife record (Burger et al. 1994; Mulcahy 2003). Few biologists have been formally trained in aseptic technique, but most biologists know that electronic devices should be treated in some way to reduce the chance for infection of the host animal by bacteria, viruses, parasites, and fungi. Most biologists (73%) who implant devices into fishes believe aseptic techniques are important (Wagner and Cooke 2005). However, I maintain that many biologists find it difficult to place the concept of asepsis into practice in their work because of confusion about what constitutes aseptic technique, a lack of surgical knowledge and training, the perception of increased costs, or the belief that aseptic surgeries are impractical or unnecessary for their application. Some have even argued that, while compromising surgical techniques in the field might result in complications or mortalities, the money saved would allow for a compensatory increase in sample size (Anderson and Talcott 2006). In this paper I define aseptic surgical techniques, document the legal and professional guidance for performing aseptic surgeries on wild animals, and present options for sterilizing electronic devices and surgical instruments for field use.

  14. Are There Feasible Alternatives to Laboratory Animals?

    ERIC Educational Resources Information Center

    Rowan, A. N.

    1976-01-01

    Discusses several alternatives to the use of laboratory animals in investigating biomedical problems. Alternatives include tissue culture, use of plant and bacterial material, redesigning experiments, and construction of mathematical and computer models. (CS)

  15. Interactive computer simulations of knee-replacement surgery.

    PubMed

    Gunther, Stephen B; Soto, Gabriel E; Colman, William W

    2002-07-01

    Current surgical training programs in the United States are based on an apprenticeship model. This model is outdated because it does not provide conceptual scaffolding, promote collaborative learning, or offer constructive reinforcement. Our objective was to create a more useful approach by preparing students and residents for operative cases using interactive computer simulations of surgery. Total-knee-replacement surgery (TKR) is an ideal procedure to model on the computer because there is a systematic protocol for the procedure. Also, this protocol is difficult to learn by the apprenticeship model because of the multiple instruments that must be used in a specific order. We designed an interactive computer tutorial to teach medical students and residents how to perform knee-replacement surgery. We also aimed to reinforce the specific protocol of the operative procedure. Our final goal was to provide immediate, constructive feedback. We created a computer tutorial by generating three-dimensional wire-frame models of the surgical instruments. Next, we applied a surface to the wire-frame models using three-dimensional modeling. Finally, the three-dimensional models were animated to simulate the motions of an actual TKR. The tutorial is a step-by-step tutorial that teaches and tests the correct sequence of steps in a TKR. The student or resident must select the correct instruments in the correct order. The learner is encouraged to learn the stepwise surgical protocol through repetitive use of the computer simulation. Constructive feedback is acquired through a grading system, which rates the student's or resident's ability to perform the task in the correct order. The grading system also accounts for the time required to perform the simulated procedure. We evaluated the efficacy of this teaching technique by testing medical students who learned by the computer simulation and those who learned by reading the surgical protocol manual. Both groups then performed TKR on manufactured bone models using real instruments. Their technique was graded with the standard protocol. The students who learned on the computer simulation performed the task in a shorter time and with fewer errors than the control group. They were also more engaged in the learning process. Surgical training programs generally lack a consistent approach to preoperative education related to surgical procedures. This interactive computer tutorial has allowed us to make a quantum leap in medical student and resident teaching in our orthopedic department because the students actually participate in the entire process. Our technique provides a linear, sequential method of skill acquisition and direct feedback, which is ideally suited for learning stepwise surgical protocols. Since our initial evaluation has shown the efficacy of this program, we have implemented this teaching tool into our orthopedic curriculum. Our plans for future work with this simulator include modeling procedures involving other anatomic areas of interest, such as the hip and shoulder.

  16. The Effect of Audio and Animation in Multimedia Instruction

    ERIC Educational Resources Information Center

    Koroghlanian, Carol; Klein, James D.

    2004-01-01

    This study investigated the effects of audio, animation, and spatial ability in a multimedia computer program for high school biology. Participants completed a multimedia program that presented content by way of text or audio with lean text. In addition, several instructional sequences were presented either with static illustrations or animations.…

  17. "Snow Soup" Students Take on Animation Creation

    ERIC Educational Resources Information Center

    Nikirk, Martin

    2009-01-01

    This article describes the process of producing "Snow Soup"--the 2009 Adobe Flash animation produced by the Computer Game Development and Animation seniors of Washington County Technical High School in Hagerstown, Maryland, for libraries in their area. In addition to the Flash product, the students produced two related Game Maker games, a printed…

  18. Using Live Tissue Laboratories to Promote Clinical Reasoning in Doctor of Physical Therapy Students

    ERIC Educational Resources Information Center

    Moore, W. Allen; Noonan, Ann Cassidy

    2010-01-01

    Recently, the use of animal laboratories has decreased in medical and basic science programs due to lack of trained faculty members, student concerns about animal welfare, and the increased availability of inexpensive alternatives such as computer simulations and videos. Animal laboratories, however, have several advantages over alternative forms…

  19. Bio-Organic Reaction Animations (BioORA): Student Performance, Student Perceptions, and Instructor Feedback

    ERIC Educational Resources Information Center

    Gunersel, Adalet Baris; Fleming, Steven

    2014-01-01

    Research shows that computer animations are especially helpful in fields such as chemistry and in this mixed-methods study, we investigate the educational effectiveness of Bio-Organic Reaction Animations (BioORA), a 3-D software, in four undergraduate biochemistry classes at different universities. Statistically significant findings indicate that…

  20. Safety Precautions and Operating Procedures in an (A)BSL-4 Laboratory: 4. Medical Imaging Procedures.

    PubMed

    Byrum, Russell; Keith, Lauren; Bartos, Christopher; St Claire, Marisa; Lackemeyer, Matthew G; Holbrook, Michael R; Janosko, Krisztina; Barr, Jason; Pusl, Daniela; Bollinger, Laura; Wada, Jiro; Coe, Linda; Hensley, Lisa E; Jahrling, Peter B; Kuhn, Jens H; Lentz, Margaret R

    2016-10-03

    Medical imaging using animal models for human diseases has been utilized for decades; however, until recently, medical imaging of diseases induced by high-consequence pathogens has not been possible. In 2014, the National Institutes of Health, National Institute of Allergy and Infectious Diseases, Integrated Research Facility at Fort Detrick opened an Animal Biosafety Level 4 (ABSL-4) facility to assess the clinical course and pathology of infectious diseases in experimentally infected animals. Multiple imaging modalities including computed tomography (CT), magnetic resonance imaging, positron emission tomography, and single photon emission computed tomography are available to researchers for these evaluations. The focus of this article is to describe the workflow for safely obtaining a CT image of a live guinea pig in an ABSL-4 facility. These procedures include animal handling, anesthesia, and preparing and monitoring the animal until recovery from sedation. We will also discuss preparing the imaging equipment, performing quality checks, communication methods from "hot side" (containing pathogens) to "cold side," and moving the animal from the holding room to the imaging suite.

Top