Sample records for computer displaying graphics

  1. Interactive graphical computer-aided design system

    NASA Technical Reports Server (NTRS)

    Edge, T. M.

    1975-01-01

    System is used for design, layout, and modification of large-scale-integrated (LSI) metal-oxide semiconductor (MOS) arrays. System is structured around small computer which provides real-time support for graphics storage display unit with keyboard, slave display unit, hard copy unit, and graphics tablet for designer/computer interface.

  2. Computer Graphics in Research: Some State -of-the-Art Systems

    ERIC Educational Resources Information Center

    Reddy, R.; And Others

    1975-01-01

    A description is given of the structure and functional characteristics of three types of interactive computer graphic systems, developed by the Department of Computer Science at Carnegie-Mellon; a high-speed programmable display capable of displaying 50,000 short vectors, flicker free; a shaded-color video display for the display of gray-scale…

  3. Animation graphic interface for the space shuttle onboard computer

    NASA Technical Reports Server (NTRS)

    Wike, Jeffrey; Griffith, Paul

    1989-01-01

    Graphics interfaces designed to operate on space qualified hardware challenge software designers to display complex information under processing power and physical size constraints. Under contract to Johnson Space Center, MICROEXPERT Systems is currently constructing an intelligent interface for the LASER DOCKING SENSOR (LDS) flight experiment. Part of this interface is a graphic animation display for Rendezvous and Proximity Operations. The displays have been designed in consultation with Shuttle astronauts. The displays show multiple views of a satellite relative to the shuttle, coupled with numeric attitude information. The graphics are generated using position data received by the Shuttle Payload and General Support Computer (PGSC) from the Laser Docking Sensor. Some of the design considerations include crew member preferences in graphic data representation, single versus multiple window displays, mission tailoring of graphic displays, realistic 3D images versus generic icon representations of real objects, the physical relationship of the observers to the graphic display, how numeric or textual information should interface with graphic data, in what frame of reference objects should be portrayed, recognizing conditions of display information-overload, and screen format and placement consistency.

  4. Distributed computation of graphics primitives on a transputer network

    NASA Technical Reports Server (NTRS)

    Ellis, Graham K.

    1988-01-01

    A method is developed for distributing the computation of graphics primitives on a parallel processing network. Off-the-shelf transputer boards are used to perform the graphics transformations and scan-conversion tasks that would normally be assigned to a single transputer based display processor. Each node in the network performs a single graphics primitive computation. Frequently requested tasks can be duplicated on several nodes. The results indicate that the current distribution of commands on the graphics network shows a performance degradation when compared to the graphics display board alone. A change to more computation per node for every communication (perform more complex tasks on each node) may cause the desired increase in throughput.

  5. Volumetric graphics in liquid using holographic femtosecond laser pulse excitations

    NASA Astrophysics Data System (ADS)

    Kumagai, Kota; Hayasaki, Yoshio

    2017-06-01

    Much attention has been paid to the development of three-dimensional volumetric displays in the fields of optics and computer graphics, and it is a dream of we display researchers. However, full-color volumetric displays are challenging because many voxels with different colors have to be formed to render volumetric graphics in real three-dimensional space. Here, we show a new volumetric display in which microbubble voxels are three-dimensionally generated in a liquid by focused femtosecond laser pulses. Use of a high-viscosity liquid, which is the key idea of this system, slows down the movement of the microbubbles, and as a result, volumetric graphics can be displayed. This "volumetric bubble display" has a wide viewing angle and simple refresh and requires no addressing wires because it involves optical access to transparent liquid and achieves full-color graphics composed on light-scattering voxels controlled by illumination light sources. In addition, a bursting of bubble graphics system using an ultrasonic vibrator also has been demonstrated. This technology will open up a wide range of applications in three-dimensional displays, augmented reality and computer graphics.

  6. Sigma 2 Graphic Display Software Program Description

    NASA Technical Reports Server (NTRS)

    Johnson, B. T.

    1973-01-01

    A general purpose, user oriented graphic support package was implemented. A comprehensive description of the two software components comprising this package is given: Display Librarian and Display Controller. These programs have been implemented in FORTRAN on the XDS Sigma 2 Computer Facility. This facility consists of an XDS Sigma 2 general purpose computer coupled to a Computek Display Terminal.

  7. A computer graphics display technique for the examination of aircraft design data

    NASA Technical Reports Server (NTRS)

    Talcott, N. A., Jr.

    1981-01-01

    An interactive computer graphics technique has been developed for quickly sorting and interpreting large amounts of aerodynamic data. It utilizes a graphic representation rather than numbers. The geometry package represents the vehicle as a set of panels. These panels are ordered in groups of ascending values (e.g., equilibrium temperatures). The groups are then displayed successively on a CRT building up to the complete vehicle. A zoom feature allows for displaying only the panels with values between certain limits. The addition of color allows a one-time display thus eliminating the need for a display build up.

  8. The TV Turtle: A LOGO Graphics System for Raster Displays. AI Memo 361.

    ERIC Educational Resources Information Center

    Lieberman, Henry

    This discussion of the advantages and limitations of raster graphics systems points out that until recently, most computer graphics systems have been oriented toward the display of line drawings, continually refreshing the screen from a display list of vectors. Developments such as plasma panel displays and rapidly declining memory prices have now…

  9. The development of an engineering computer graphics laboratory

    NASA Technical Reports Server (NTRS)

    Anderson, D. C.; Garrett, R. E.

    1975-01-01

    Hardware and software systems developed to further research and education in interactive computer graphics were described, as well as several of the ongoing application-oriented projects, educational graphics programs, and graduate research projects. The software system consists of a FORTRAN 4 subroutine package, in conjunction with a PDP 11/40 minicomputer as the primary computation processor and the Imlac PDS-1 as an intelligent display processor. The package comprises a comprehensive set of graphics routines for dynamic, structured two-dimensional display manipulation, and numerous routines to handle a variety of input devices at the Imlac.

  10. Program Aids Visualization Of Data

    NASA Technical Reports Server (NTRS)

    Truong, L. V.

    1995-01-01

    Living Color Frame System (LCFS) computer program developed to solve some problems that arise in connection with generation of real-time graphical displays of numerical data and of statuses of systems. Need for program like LCFS arises because computer graphics often applied for better understanding and interpretation of data under observation and these graphics become more complicated when animation required during run time. Eliminates need for custom graphical-display software for application programs. Written in Turbo C++.

  11. Computer Graphics Instruction in VizClass

    ERIC Educational Resources Information Center

    Grimes, Douglas; Warschauer, Mark; Hutchinson, Tara; Kuester, Falko

    2005-01-01

    "VizClass" is a university classroom environment designed to offer students in computer graphics and engineering courses up-to-date visualization technologies. Three digital whiteboards and a three-dimensional stereoscopic display provide complementary display surfaces. Input devices include touchscreens on the digital whiteboards, remote…

  12. The design and implementation of CRT displays in the TCV real-time simulation

    NASA Technical Reports Server (NTRS)

    Leavitt, J. B.; Tariq, S. I.; Steinmetz, G. G.

    1975-01-01

    The design and application of computer graphics to the Terminal Configured Vehicle (TCV) program were described. A Boeing 737-100 series aircraft was modified with a second flight deck and several computers installed in the passenger cabin. One of the elements in support of the TCV program is a sophisticated simulation system developed to duplicate the operation of the aft flight deck. This facility consists of an aft flight deck simulator, equipped with realistic flight instrumentation, a CDC 6600 computer, and an Adage graphics terminal; this terminal presents to the simulator pilot displays similar to those used on the aircraft with equivalent man-machine interactions. These two displays form the primary flight instrumentation for the pilot and are dynamic images depicting critical flight information. The graphics terminal is a high speed interactive refresh-type graphics system. To support the cockpit display, two remote CRT's were wired in parallel with two of the Adage scopes.

  13. Network, system, and status software enhancements for the autonomously managed electrical power system breadboard. Volume 4: Graphical status display

    NASA Technical Reports Server (NTRS)

    Mckee, James W.

    1990-01-01

    This volume (4 of 4) contains the description, structured flow charts, prints of the graphical displays, and source code to generate the displays for the AMPS graphical status system. The function of these displays is to present to the manager of the AMPS system a graphical status display with the hot boxes that allow the manager to get more detailed status on selected portions of the AMPS system. The development of the graphical displays is divided into two processes; the creation of the screen images and storage of them in files on the computer, and the running of the status program which uses the screen images.

  14. The use of interpractive graphic displays for interpretation of surface design parameters

    NASA Technical Reports Server (NTRS)

    Talcott, N. A., Jr.

    1981-01-01

    An interactive computer graphics technique known as the Graphic Display Data method has been developed to provide a convenient means for rapidly interpreting large amounts of surface design data. The display technique should prove valuable in such disciplines as aerodynamic analysis, structural analysis, and experimental data analysis. To demonstrate the system's features, an example is presented of the Graphic Data Display method used as an interpretive tool for radiation equilibrium temperature distributions over the surface of an aerodynamic vehicle. Color graphic displays were also examined as a logical extension of the technique to improve its clarity and to allow the presentation of greater detail in a single display.

  15. Mesoscale and severe storms (Mass) data management and analysis system

    NASA Technical Reports Server (NTRS)

    Hickey, J. S.; Karitani, S.; Dickerson, M.

    1984-01-01

    Progress on the Mesoscale and Severe Storms (MASS) data management and analysis system is described. An interactive atmospheric data base management software package to convert four types of data (Sounding, Single Level, Grid, Image) into standard random access formats is implemented and integrated with the MASS AVE80 Series general purpose plotting and graphics display data analysis software package. An interactive analysis and display graphics software package (AVE80) to analyze large volumes of conventional and satellite derived meteorological data is enhanced to provide imaging/color graphics display utilizing color video hardware integrated into the MASS computer system. Local and remote smart-terminal capability is provided by installing APPLE III computer systems within individual scientist offices and integrated with the MASS system, thus providing color video display, graphics, and characters display of the four data types.

  16. Analyzing Robotic Kinematics Via Computed Simulations

    NASA Technical Reports Server (NTRS)

    Carnahan, Timothy M.

    1992-01-01

    Computing system assists in evaluation of kinematics of conceptual robot. Displays positions and motions of robotic manipulator within work cell. Also displays interactions between robotic manipulator and other objects. Results of simulation displayed on graphical computer workstation. System includes both off-the-shelf software originally developed for automotive industry and specially developed software. Simulation system also used to design human-equivalent hand, to model optical train in infrared system, and to develop graphical interface for teleoperator simulation system.

  17. GRAPHICS MANAGER (GFXMGR): An interactive graphics software program for the Advanced Electronics Design (AED) graphics controller, Model 767

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faculjak, D.A.

    1988-03-01

    Graphics Manager (GFXMGR) is menu-driven, user-friendly software designed to interactively create, edit, and delete graphics displays on the Advanced Electronics Design (AED) graphics controller, Model 767. The software runs on the VAX family of computers and has been used successfully in security applications to create and change site layouts (maps) of specific facilities. GFXMGR greatly benefits graphics development by minimizing display-development time, reducing tedium on the part of the user, and improving system performance. It is anticipated that GFXMGR can be used to create graphics displays for many types of applications. 8 figs., 2 tabs.

  18. Computer Corner: Computer Graphics for the Vibrating String.

    ERIC Educational Resources Information Center

    Smith, David A.; Cunningham, R. Stephen

    1986-01-01

    Computer graphics are used to display the sum of the first few terms of the series solution for the problem of the vibrating string frequently discussed in introductory courses on differential equations. (MNS)

  19. Engineering computer graphics in gas turbine engine design, analysis and manufacture

    NASA Technical Reports Server (NTRS)

    Lopatka, R. S.

    1975-01-01

    A time-sharing and computer graphics facility designed to provide effective interactive tools to a large number of engineering users with varied requirements was described. The application of computer graphics displays at several levels of hardware complexity and capability is discussed, with examples of graphics systems tracing gas turbine product development, beginning with preliminary design through manufacture. Highlights of an operating system stylized for interactive engineering graphics is described.

  20. Ultrascale collaborative visualization using a display-rich global cyberinfrastructure.

    PubMed

    Jeong, Byungil; Leigh, Jason; Johnson, Andrew; Renambot, Luc; Brown, Maxine; Jagodic, Ratko; Nam, Sungwon; Hur, Hyejung

    2010-01-01

    The scalable adaptive graphics environment (SAGE) is high-performance graphics middleware for ultrascale collaborative visualization using a display-rich global cyberinfrastructure. Dozens of sites worldwide use this cyberinfrastructure middleware, which connects high-performance-computing resources over high-speed networks to distributed ultraresolution displays.

  1. A System for Generating Instructional Computer Graphics.

    ERIC Educational Resources Information Center

    Nygard, Kendall E.; Ranganathan, Babusankar

    1983-01-01

    Description of the Tektronix-Based Interactive Graphics System for Instruction (TIGSI), which was developed for generating graphics displays in computer-assisted instruction materials, discusses several applications (e.g., reinforcing learning of concepts, principles, rules, and problem-solving techniques) and presents advantages of the TIGSI…

  2. A computer graphics program for general finite element analyses

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.; Sawyer, L. M.

    1978-01-01

    Documentation for a computer graphics program for displays from general finite element analyses is presented. A general description of display options and detailed user instructions are given. Several plots made in structural, thermal and fluid finite element analyses are included to illustrate program options. Sample data files are given to illustrate use of the program.

  3. Graphical Man/Machine Communications

    DTIC Science & Technology

    Progress is reported concerning the use of computer controlled graphical displays in the areas of radiaton diffusion and hydrodynamics, general...ventricular dynamics. Progress is continuing on the use of computer graphics in architecture. Some progress in halftone graphics is reported with no basic...developments presented. Colored halftone perspective pictures are being used to represent multivariable situations. Nonlinear waveform processing is

  4. Program Aids Specification Of Multiple-Block Grids

    NASA Technical Reports Server (NTRS)

    Sorenson, R. L.; Mccann, K. M.

    1993-01-01

    3DPREP computer program aids specification of multiple-block computational grids. Highly interactive graphical preprocessing program designed for use on powerful graphical scientific computer workstation. Divided into three main parts, each corresponding to principal graphical-and-alphanumerical display. Relieves user of some burden of collecting and formatting many data needed to specify blocks and grids, and prepares input data for NASA's 3DGRAPE grid-generating computer program.

  5. Graphical Methods: A Review of Current Methods and Computer Hardware and Software. Technical Report No. 27.

    ERIC Educational Resources Information Center

    Bessey, Barbara L.; And Others

    Graphical methods for displaying data, as well as available computer software and hardware, are reviewed. The authors have emphasized the types of graphs which are most relevant to the needs of the National Center for Education Statistics (NCES) and its readers. The following types of graphs are described: tabulations, stem-and-leaf displays,…

  6. Multiprocessor graphics computation and display using transputers

    NASA Technical Reports Server (NTRS)

    Ellis, Graham K.

    1988-01-01

    A package of two-dimensional graphics routines was developed to run on a transputer-based parallel processing system. These routines were designed to enable applications programmers to easily generate and display results from the transputer network in a graphic format. The graphics procedures were designed for the lowest possible network communication overhead for increased performance. The routines were designed for ease of use and to present an intuitive approach to generating graphics on the transputer parallel processing system.

  7. General-Purpose Software For Computer Graphics

    NASA Technical Reports Server (NTRS)

    Rogers, Joseph E.

    1992-01-01

    NASA Device Independent Graphics Library (NASADIG) is general-purpose computer-graphics package for computer-based engineering and management applications which gives opportunity to translate data into effective graphical displays for presentation. Features include two- and three-dimensional plotting, spline and polynomial interpolation, control of blanking of areas, multiple log and/or linear axes, control of legends and text, control of thicknesses of curves, and multiple text fonts. Included are subroutines for definition of areas and axes of plots; setup and display of text; blanking of areas; setup of style, interpolation, and plotting of lines; control of patterns and of shading of colors; control of legends, blocks of text, and characters; initialization of devices; and setting of mixed alphabets. Written in FORTRAN 77.

  8. Guide to making time-lapse graphics using the facilities of the National Magnetic Fusion Energy Computing Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munro, J.K. Jr.

    1980-05-01

    The advent of large, fast computers has opened the way to modeling more complex physical processes and to handling very large quantities of experimental data. The amount of information that can be processed in a short period of time is so great that use of graphical displays assumes greater importance as a means of displaying this information. Information from dynamical processes can be displayed conveniently by use of animated graphics. This guide presents the basic techniques for generating black and white animated graphics, with consideration of aesthetic, mechanical, and computational problems. The guide is intended for use by someone whomore » wants to make movies on the National Magnetic Fusion Energy Computing Center (NMFECC) CDC-7600. Problems encountered by a geographically remote user are given particular attention. Detailed information is given that will allow a remote user to do some file checking and diagnosis before giving graphics files to the system for processing into film in order to spot problems without having to wait for film to be delivered. Source listings of some useful software are given in appendices along with descriptions of how to use it. 3 figures, 5 tables.« less

  9. Computer graphics applications to crew displays

    NASA Technical Reports Server (NTRS)

    Wyzkoski, J.

    1983-01-01

    Astronauts are provided much data and information via the monochrome CRT displays on the orbiter. For this project two areas were investigated for the possible introduction of computer graphics to enhance and extend the utility of these displays. One involved reviewing the current orbiter displays and identifying those which could be improved via computer graphics. As an example, the tabular data on electrical power distribution and control was enhanced by the addition of color and bar charts. The other dealt with the development of an aid to berthing a payload with the Remote Manipulator System (RMS). This aid consists of a graphics display of the top, front and side views of the payload and cargo bay and point of resolution (POR) position and attitude data for the current location of the payload. The initial implementation was on an IBM PC clone. The demonstration software installed in the Johnson Space Center Manipulator Development Facility (MD) was reviewed. Due to current hardware limitations, the MDF verision is slow, i.e., about a 40+ seond update rate and, hence, not real-time. Despite this fact, the evaluation of this additional visual cue as an RMS operator aid indicates that this display, with modifications for speed, etc., can assist the crew. Further development is appropriate.

  10. Computer architectures for computational physics work done by Computational Research and Technology Branch and Advanced Computational Concepts Group

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Slides are reproduced that describe the importance of having high performance number crunching and graphics capability. They also indicate the types of research and development underway at Ames Research Center to ensure that, in the near term, Ames is a smart buyer and user, and in the long-term that Ames knows the best possible solutions for number crunching and graphics needs. The drivers for this research are real computational physics applications of interest to Ames and NASA. They are concerned with how to map the applications, and how to maximize the physics learned from the results of the calculations. The computer graphics activities are aimed at getting maximum information from the three-dimensional calculations by using the real time manipulation of three-dimensional data on the Silicon Graphics workstation. Work is underway on new algorithms that will permit the display of experimental results that are sparse and random, the same way that the dense and regular computed results are displayed.

  11. Using the stereokinetic effect to convey depth - Computationally efficient depth-from-motion displays

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.; Proffitt, Dennis R.

    1992-01-01

    Recent developments in microelectronics have encouraged the use of 3D data bases to create compelling volumetric renderings of graphical objects. However, even with the computational capabilities of current-generation graphical systems, real-time displays of such objects are difficult, particularly when dynamic spatial transformations are involved. In this paper we discuss a type of visual stimulus (the stereokinetic effect display) that is computationally far less complex than a true three-dimensional transformation but yields an equally compelling depth impression, often perceptually indiscriminable from the true spatial transformation. Several possible applications for this technique are discussed (e.g., animating contour maps and air traffic control displays so as to evoke accurate depth percepts).

  12. Computer Instructional Aids for Undergraduate Control Education.

    ERIC Educational Resources Information Center

    Volz, Richard A.; And Others

    Engineering is coming to rely more and more heavily upon the computer for computations, analyses, and graphic displays which aid the design process. A general purpose simulation system, the Time-shared Automatic Control Laboratory (TACL), and a set of computer-aided design programs, Control Oriented Interactive Graphic Analysis and Design…

  13. An Electronic Pressure Profile Display system for aeronautic test facilities

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.

    1990-01-01

    The NASA Lewis Research Center has installed an Electronic Pressure Profile Display system. This system provides for the real-time display of pressure readings on high resolution graphics monitors. The Electronic Pressure Profile Display system will replace manometer banks currently used in aeronautic test facilities. The Electronic Pressure Profile Display system consists of an industrial type Digital Pressure Transmitter (DPI) unit which interfaces with a host computer. The host computer collects the pressure data from the DPI unit, converts it into engineering units, and displays the readings on a high resolution graphics monitor in bar graph format. Software was developed to accomplish the above tasks and also draw facility diagrams as background information on the displays. Data transfer between host computer and DPT unit is done with serial communications. Up to 64 channels are displayed with one second update time. This paper describes the system configuration, its features, and its advantages over existing systems.

  14. An electronic pressure profile display system for aeronautic test facilities

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.

    1990-01-01

    The NASA Lewis Research Center has installed an Electronic Pressure Profile Display system. This system provides for the real-time display of pressure readings on high resolution graphics monitors. The Electronic Pressure Profile Display system will replace manometer banks currently used in aeronautic test facilities. The Electronic Pressure Profile Display system consists of an industrial type Digital Pressure Transmitter (DPT) unit which interfaces with a host computer. The host computer collects the pressure data from the DPT unit, converts it into engineering units, and displays the readings on a high resolution graphics monitor in bar graph format. Software was developed to accomplish the above tasks and also draw facility diagrams as background information on the displays. Data transfer between host computer and DPT unit is done with serial communications. Up to 64 channels are displayed with one second update time. This paper describes the system configuration, its features, and its advantages over existing systems.

  15. Wide-angle display developments by computer graphics

    NASA Technical Reports Server (NTRS)

    Fetter, William A.

    1989-01-01

    Computer graphics can now expand its new subset, wide-angle projection, to be as significant a generic capability as computer graphics itself. Some prior work in computer graphics is presented which leads to an attractive further subset of wide-angle projection, called hemispheric projection, to be a major communication media. Hemispheric film systems have long been present and such computer graphics systems are in use in simulators. This is the leading edge of capabilities which should ultimately be as ubiquitous as CRTs (cathode-ray tubes). These assertions are not from degrees in science or only from a degree in graphic design, but in a history of computer graphics innovations, laying groundwork by demonstration. The author believes that it is timely to look at several development strategies, since hemispheric projection is now at a point comparable to the early stages of computer graphics, requiring similar patterns of development again.

  16. A graphics subsystem retrofit design for the bladed-disk data acquisition system. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Carney, R. R.

    1983-01-01

    A graphics subsystem retrofit design for the turbojet blade vibration data acquisition system is presented. The graphics subsystem will operate in two modes permitting the system operator to view blade vibrations on an oscilloscope type of display. The first mode is a real-time mode that displays only gross blade characteristics, such as maximum deflections and standing waves. This mode is used to aid the operator in determining when to collect detailed blade vibration data. The second mode of operation is a post-processing mode that will animate the actual blade vibrations using the detailed data collected on an earlier data collection run. The operator can vary the rate of payback to view differring characteristics of blade vibrations. The heart of the graphics subsystem is a modified version of AMD's ""super sixteen'' computer, called the graphics preprocessor computer (GPC). This computer is based on AMD's 2900 series of bit-slice components.

  17. Display system for imaging scientific telemetric information

    NASA Technical Reports Server (NTRS)

    Zabiyakin, G. I.; Rykovanov, S. N.

    1979-01-01

    A system for imaging scientific telemetric information, based on the M-6000 minicomputer and the SIGD graphic display, is described. Two dimensional graphic display of telemetric information and interaction with the computer, in analysis and processing of telemetric parameters displayed on the screen is provided. The running parameter information output method is presented. User capabilities in the analysis and processing of telemetric information imaged on the display screen and the user language are discussed and illustrated.

  18. Raster graphics display library

    NASA Technical Reports Server (NTRS)

    Grimsrud, Anders; Stephenson, Michael B.

    1987-01-01

    The Raster Graphics Display Library (RGDL) is a high level subroutine package that give the advanced raster graphics display capabilities needed. The RGDL uses FORTRAN source code routines to build subroutines modular enough to use as stand-alone routines in a black box type of environment. Six examples are presented which will teach the use of RGDL in the fastest, most complete way possible. Routines within the display library that are used to produce raster graphics are presented in alphabetical order, each on a separate page. Each user-callable routine is described by function and calling parameters. All common blocks that are used in the display library are listed and the use of each variable within each common block is discussed. A reference on the include files that are necessary to compile the display library is contained. Each include file and its purpose are listed. The link map for MOVIE.BYU version 6, a general purpose computer graphics display system that uses RGDL software, is also contained.

  19. An interactive NASTRAN preprocessor. [graphic display of undeformed structure using CDC 6000 series computer

    NASA Technical Reports Server (NTRS)

    Smith, W. W.

    1973-01-01

    A Langley Research Center version of NASTRAN Level 15.1.0 designed to provide the analyst with an added tool for debugging massive NASTRAN input data is described. The program checks all NASTRAN input data cards and displays on a CRT the graphic representation of the undeformed structure. In addition, the program permits the display and alteration of input data and allows reexecution without physically resubmitting the job. Core requirements on the CDC 6000 computer are approximately 77,000 octal words of central memory.

  20. Young Children and Turtle Graphics Programming: Generating and Debugging Simple Turtle Programs.

    ERIC Educational Resources Information Center

    Cuneo, Diane O.

    Turtle graphics is a popular vehicle for introducing children to computer programming. Children combine simple graphic commands to get a display screen cursor (called a turtle) to draw designs on the screen. The purpose of this study was to examine young children's abilities to function in a simple computer programming environment. Four- and…

  1. An introduction to real-time graphical techniques for analyzing multivariate data

    NASA Astrophysics Data System (ADS)

    Friedman, Jerome H.; McDonald, John Alan; Stuetzle, Werner

    1987-08-01

    Orion I is a graphics system used to study applications of computer graphics - especially interactive motion graphics - in statistics. Orion I is the newest of a family of "Prim" systems, whose most striking common feature is the use of real-time motion graphics to display three dimensional scatterplots. Orion I differs from earlier Prim systems through the use of modern and relatively inexpensive raster graphics and microprocessor technology. It also delivers more computing power to its user; Orion I can perform more sophisticated real-time computations than were possible on previous such systems. We demonstrate some of Orion I's capabilities in our film: "Exploring data with Orion I".

  2. Broadening the interface bandwidth in simulation based training

    NASA Technical Reports Server (NTRS)

    Somers, Larry E.

    1989-01-01

    Currently most computer based simulations rely exclusively on computer generated graphics to create the simulation. When training is involved, the method almost exclusively used to display information to the learner is text displayed on the cathode ray tube. MICROEXPERT Systems is concentrating on broadening the communications bandwidth between the computer and user by employing a novel approach to video image storage combined with sound and voice output. An expert system is used to combine and control the presentation of analog video, sound, and voice output with computer based graphics and text. Researchers are currently involved in the development of several graphics based user interfaces for NASA, the U.S. Army, and the U.S. Navy. Here, the focus is on the human factors considerations, software modules, and hardware components being used to develop these interfaces.

  3. Study of cryogenic propellant systems for loading the space shuttle. Part 2: Hydrogen systems

    NASA Technical Reports Server (NTRS)

    Steward, W. G.

    1975-01-01

    Computer simulation studies of liquid hydrogen fill and vent systems for the space shuttle are studied. The computer programs calculate maximum and minimum permissible flow rates during cooldown as limited by thermal stress considerations, fill line cooldown time, pressure drop, flow rates, vapor content, vent line pressure drop and vent line discharge temperature. The input data for these programs are selected through graphic displays which schematically depict the part of the system being analyzed. The computed output is also displayed in the form of printed messages and graphs. Digital readouts of graph coordinates may also be obtained. Procedures are given for operation of the graphic display unit and the associated minicomputer and timesharing computer.

  4. Applications of computer-graphics animation for motion-perception research

    NASA Technical Reports Server (NTRS)

    Proffitt, D. R.; Kaiser, M. K.

    1986-01-01

    The advantages and limitations of using computer animated stimuli in studying motion perception are presented and discussed. Most current programs of motion perception research could not be pursued without the use of computer graphics animation. Computer generated displays afford latitudes of freedom and control that are almost impossible to attain through conventional methods. There are, however, limitations to this presentational medium. At present, computer generated displays present simplified approximations of the dynamics in natural events. Very little is known about how the differences between natural events and computer simulations influence perceptual processing. In practice, the differences are assumed to be irrelevant to the questions under study, and that findings with computer generated stimuli will generalize to natural events.

  5. Application of AI techniques to a voice-actuated computer system for reconstructing and displaying magnetic resonance imaging data

    NASA Astrophysics Data System (ADS)

    Sherley, Patrick L.; Pujol, Alfonso, Jr.; Meadow, John S.

    1990-07-01

    To provide a means of rendering complex computer architectures languages and input/output modalities transparent to experienced and inexperienced users research is being conducted to develop a voice driven/voice response computer graphics imaging system. The system will be used for reconstructing and displaying computed tomography and magnetic resonance imaging scan data. In conjunction with this study an artificial intelligence (Al) control strategy was developed to interface the voice components and support software to the computer graphics functions implemented on the Sun Microsystems 4/280 color graphics workstation. Based on generated text and converted renditions of verbal utterances by the user the Al control strategy determines the user''s intent and develops and validates a plan. The program type and parameters within the plan are used as input to the graphics system for reconstructing and displaying medical image data corresponding to that perceived intent. If the plan is not valid the control strategy queries the user for additional information. The control strategy operates in a conversation mode and vocally provides system status reports. A detailed examination of the various AT techniques is presented with major emphasis being placed on their specific roles within the total control strategy structure. 1.

  6. Visual Displays and Contextual Presentations in Computer-Based Instruction.

    ERIC Educational Resources Information Center

    Park, Ok-choon

    1998-01-01

    Investigates the effects of two instructional strategies, visual display (animation, and static graphics with and without motion cues) and contextual presentation, in the acquisition of electronic troubleshooting skills using computer-based instruction. Study concludes that use of visual displays and contextual presentation be based on the…

  7. Study of cryogenic propellant systems for loading the space shuttle

    NASA Technical Reports Server (NTRS)

    Voth, R. O.; Steward, W. G.; Hall, W. J.

    1974-01-01

    Computer programs were written to model the liquid oxygen loading system for the space shuttle. The programs allow selection of input data through graphic displays which schematically depict the part of the system being modeled. The computed output is also displayed in the form of graphs and printed messages. Any one of six computation options may be selected. The first four of these pertain to thermal stresses, pressure surges, cooldown times, flow rates and pressures during cooldown. Options five and six deal with possible water hammer effects due to closing of valves, steady flow and transient response to changes in operating conditions after cooldown. Procedures are given for operation of the graphic display unit and minicomputer.

  8. Compiling and editing agricultural strata boundaries with remotely sensed imagery and map attribute data using graphics workstations

    NASA Technical Reports Server (NTRS)

    Cheng, Thomas D.; Angelici, Gary L.; Slye, Robert E.; Ma, Matt

    1991-01-01

    The USDA presently uses labor-intensive photographic interpretation procedures to delineate large geographical areas into manageable size sampling units for the estimation of domestic crop and livestock production. Computer software to automate the boundary delineation procedure, called the computer-assisted stratification and sampling (CASS) system, was developed using a Hewlett Packard color-graphics workstation. The CASS procedures display Thematic Mapper (TM) satellite digital imagery on a graphics display workstation as the backdrop for the onscreen delineation of sampling units. USGS Digital Line Graph (DLG) data for roads and waterways are displayed over the TM imagery to aid in identifying potential sample unit boundaries. Initial analysis conducted with three Missouri counties indicated that CASS was six times faster than the manual techniques in delineating sampling units.

  9. CHARGE Image Generator: Theory of Operation and Author Language Support. Technical Report 75-3.

    ERIC Educational Resources Information Center

    Gunwaldsen, Roger L.

    The image generator function and author language software support for the CHARGE (Color Halftone Area Graphics Environment) Interactive Graphics System are described. Designed initially for use in computer-assisted instruction (CAI) systems, the CHARGE Interactive Graphics System can provide graphic displays for various applications including…

  10. User's manual for EZPLOT version 5.5: A FORTRAN program for 2-dimensional graphic display of data

    NASA Technical Reports Server (NTRS)

    Garbinski, Charles; Redin, Paul C.; Budd, Gerald D.

    1988-01-01

    EZPLOT is a computer applications program that converts data resident on a file into a plot displayed on the screen of a graphics terminal. This program generates either time history or x-y plots in response to commands entered interactively from a terminal keyboard. Plot parameters consist of a single independent parameter and from one to eight dependent parameters. Various line patterns, symbol shapes, axis scales, text labels, and data modification techniques are available. This user's manual describes EZPLOT as it is implemented on the Ames Research Center, Dryden Research Facility ELXSI computer using DI-3000 graphics software tools.

  11. A graphics approach in the design of the dual air density Explorer satellites

    NASA Technical Reports Server (NTRS)

    Mcdougal, D. S.

    1975-01-01

    A computer program was developed to generate a graphics display of the Dual Air Density (DAD) Explorer satellites which aids in the engineering and scientific design. The program displays a two-dimensional view of both spacecraft and their surface features from any direction. The graphics have been an indispensable tool in the design, analysis, and understanding of the critical locations of the various surface features for both satellites.

  12. Computer graphics application in the engineering design integration system

    NASA Technical Reports Server (NTRS)

    Glatt, C. R.; Abel, R. W.; Hirsch, G. N.; Alford, G. E.; Colquitt, W. N.; Stewart, W. A.

    1975-01-01

    The computer graphics aspect of the Engineering Design Integration (EDIN) system and its application to design problems were discussed. Three basic types of computer graphics may be used with the EDIN system for the evaluation of aerospace vehicles preliminary designs: offline graphics systems using vellum-inking or photographic processes, online graphics systems characterized by direct coupled low cost storage tube terminals with limited interactive capabilities, and a minicomputer based refresh terminal offering highly interactive capabilities. The offline line systems are characterized by high quality (resolution better than 0.254 mm) and slow turnaround (one to four days). The online systems are characterized by low cost, instant visualization of the computer results, slow line speed (300 BAUD), poor hard copy, and the early limitations on vector graphic input capabilities. The recent acquisition of the Adage 330 Graphic Display system has greatly enhanced the potential for interactive computer aided design.

  13. Designing a Visual Factors-Based Screen Display Interface: The New Role of the Graphic Technologist.

    ERIC Educational Resources Information Center

    Faiola, Tony; DeBloois, Michael L.

    1988-01-01

    Discusses the role of the graphic technologist in preparing computer screen displays for interactive videodisc systems, and suggests screen design guidelines. Topics discussed include the grid system; typography; visual factors research; color; course mobility through branching and software menus; and a model of course integration. (22 references)…

  14. Software Aids In Graphical Depiction Of Flow Data

    NASA Technical Reports Server (NTRS)

    Stegeman, J. D.

    1995-01-01

    Interactive Data Display System (IDDS) computer program is graphical-display program designed to assist in visualization of three-dimensional flow in turbomachinery. Grid and simulation data files in PLOT3D format required for input. Able to unwrap volumetric data cone associated with centrifugal compressor and display results in easy-to-understand two- or three-dimensional plots. IDDS provides majority of visualization and analysis capability for Integrated Computational Fluid Dynamics and Experiment (ICE) system. IDDS invoked from any subsystem, or used as stand-alone package of display software. Generates contour, vector, shaded, x-y, and carpet plots. Written in C language. Input file format used by IDDS is that of PLOT3D (COSMIC item ARC-12782).

  15. Spatial issues in user interface design from a graphic design perspective

    NASA Technical Reports Server (NTRS)

    Marcus, Aaron

    1989-01-01

    The user interface of a computer system is a visual display that provides information about the status of operations on data within the computer and control options to the user that enable adjustments to these operations. From the very beginning of computer technology the user interface was a spatial display, although its spatial features were not necessarily complex or explicitly recognized by the users. All text and nonverbal signs appeared in a virtual space generally thought of as a single flat plane of symbols. Current technology of high performance workstations permits any element of the display to appear as dynamic, multicolor, 3-D signs in a virtual 3-D space. The complexity of appearance and the user's interaction with the display provide significant challenges to the graphic designer of current and future user interfaces. In particular, spatial depiction provides many opportunities for effective communication of objects, structures, processes, navigation, selection, and manipulation. Issues are presented that are relevant to the graphic designer seeking to optimize the user interface's spatial attributes for effective visual communication.

  16. Interactive display/graphics systems for remote sensor data analysis.

    NASA Technical Reports Server (NTRS)

    Eppler, W. G.; Loe, D. L.; Wilson, E. L.; Whitley, S. L.; Sachen, R. J.

    1971-01-01

    Using a color-television display system and interactive graphics equipment on-line to an IBM 360/44 computer, investigators at the Manned Spacecraft Center have developed a variety of interactive displays which aid in analyzing remote sensor data. This paper describes how such interactive displays are used to: (1) analyze data from a multispectral scanner, (2) develop automatic pattern recognition systems based on multispectral scanner measurements, and (3) analyze data from nonimaging sensors such as the infrared radiometer and microwave scatterometer.

  17. LCFM - LIVING COLOR FRAME MAKER: PC GRAPHICS GENERATION AND MANAGEMENT TOOL FOR REAL-TIME APPLICATIONS

    NASA Technical Reports Server (NTRS)

    Truong, L. V.

    1994-01-01

    Computer graphics are often applied for better understanding and interpretation of data under observation. These graphics become more complicated when animation is required during "run-time", as found in many typical modern artificial intelligence and expert systems. Living Color Frame Maker is a solution to many of these real-time graphics problems. Living Color Frame Maker (LCFM) is a graphics generation and management tool for IBM or IBM compatible personal computers. To eliminate graphics programming, the graphic designer can use LCFM to generate computer graphics frames. The graphical frames are then saved as text files, in a readable and disclosed format, which can be easily accessed and manipulated by user programs for a wide range of "real-time" visual information applications. For example, LCFM can be implemented in a frame-based expert system for visual aids in management of systems. For monitoring, diagnosis, and/or controlling purposes, circuit or systems diagrams can be brought to "life" by using designated video colors and intensities to symbolize the status of hardware components (via real-time feedback from sensors). Thus status of the system itself can be displayed. The Living Color Frame Maker is user friendly with graphical interfaces, and provides on-line help instructions. All options are executed using mouse commands and are displayed on a single menu for fast and easy operation. LCFM is written in C++ using the Borland C++ 2.0 compiler for IBM PC series computers and compatible computers running MS-DOS. The program requires a mouse and an EGA/VGA display. A minimum of 77K of RAM is also required for execution. The documentation is provided in electronic form on the distribution medium in WordPerfect format. A sample MS-DOS executable is provided on the distribution medium. The standard distribution medium for this program is one 5.25 inch 360K MS-DOS format diskette. The contents of the diskette are compressed using the PKWARE archiving tools. The utility to unarchive the files, PKUNZIP.EXE, is included. The Living Color Frame Maker tool was developed in 1992.

  18. Real-time graphics for the Space Station Freedom cupola, developed in the Systems Engineering Simulator

    NASA Technical Reports Server (NTRS)

    Red, Michael T.; Hess, Philip W.

    1989-01-01

    Among the Lyndon B. Johnson Space Center's responsibilities for Space Station Freedom is the cupola. Attached to the resource node, the cupola is a windowed structure that will serve as the space station's secondary control center. From the cupola, operations involving the mobile service center and orbital maneuvering vehicle will be conducted. The Systems Engineering Simulator (SES), located in building 16, activated a real-time man-in-the-loop cupola simulator in November 1987. The SES cupola is an engineering tool with the flexibility to evolve in both hardware and software as the final cupola design matures. Two workstations are simulated with closed-circuit television monitors, rotational and translational hand controllers, programmable display pushbuttons, and graphics display with trackball and keyboard. The displays and controls of the SES cupola are driven by a Silicon Graphics Integrated Raster Imaging System (IRIS) 4D/70 GT computer. Through the use of an interactive display builder program, SES, cupola display pages consisting of two dimensional and three dimensional graphics are constructed. These display pages interact with the SES via the IRIS real-time graphics interface. The focus is on the real-time graphics interface applications software developed on the IRIS.

  19. Real Time Computer Graphics From Body Motion

    NASA Astrophysics Data System (ADS)

    Fisher, Scott; Marion, Ann

    1983-10-01

    This paper focuses on the recent emergence and development of real, time, computer-aided body tracking technologies and their use in combination with various computer graphics imaging techniques. The convergence of these, technologies in our research results, in an interactive display environment. in which multipde, representations of a given body motion can be displayed in real time. Specific reference, to entertainment applications is described in the development of a real time, interactive stage set in which dancers can 'draw' with their bodies as they move, through the space. of the stage or manipulate virtual elements of the set with their gestures.

  20. Visual Information (6)

    DTIC Science & Technology

    1987-12-01

    definition 33., below). 7. Commercial VI Production. A completed VI production, purchased off-the- shelf; i.e., from the stocks of a vendor. 8. Computer ...Generated Graphics. The production of graphics through an electronic medium based on a computer or computer techniques. 9. Contract VI Production. A VI...displays, presentations, and exhibits prepared manually, by machine, or by computer . 16. Indirect Costs. An item of cost (or the aggregate thereof) that is

  1. Software For Clear-Air Doppler-Radar Display

    NASA Technical Reports Server (NTRS)

    Johnston, Bruce W.

    1990-01-01

    System of software developed to present plan-position-indicator scans of clear-air Doppler radar station on color graphical cathode-ray-tube display. Designed to incorporate latest accepted standards for equipment, computer programs, and meteorological data bases. Includes use of Ada programming language, of "Graphical-Kernel-System-like" graphics interface, and of Common Doppler Radar Exchange Format. Features include portability and maintainability. Use of Ada software packages produced number of software modules reused on other related projects.

  2. A study of methods to predict and measure the transmission of sound through the walls of light aircraft. A survey of techniques for visualization of noise fields

    NASA Technical Reports Server (NTRS)

    Marshall, S. E.; Bernhard, R.

    1984-01-01

    A survey of the most widely used methods for visualizing acoustic phenomena is presented. Emphasis is placed on acoustic processes in the audible frequencies. Many visual problems are analyzed on computer graphic systems. A brief description of the current technology in computer graphics is included. The visualization technique survey will serve as basis for recommending an optimum scheme for displaying acoustic fields on computer graphic systems.

  3. A user's guide for DTIZE an interactive digitizing and graphical editing computer program

    NASA Technical Reports Server (NTRS)

    Thomas, C. C.

    1981-01-01

    A guide for DTIZE, a two dimensional digitizing program with graphical editing capability, is presented. DTIZE provides the capability to simultaneously create and display a picture on the display screen. Data descriptions may be permanently saved in three different formats. DTIZE creates the picture graphics in the locator mode, thus inputting one coordinate each time the terminator button is pushed. Graphic input devices (GIN) are also used to select function command menu. These menu commands and the program's interactive prompting sequences provide a complete capability for creating, editing, and permanently recording a graphical picture file. DTIZE is written in FORTRAN IV language for the Tektronix 4081 graphic system utilizing the Plot 80 Distributed Graphics Library (DGL) subroutines. The Tektronix 4953/3954 Graphic Tablet with mouse, pen, or joystick are used as graphics input devices to create picture graphics.

  4. Enhancement of the Shared Graphics Workspace.

    DTIC Science & Technology

    1987-12-31

    participants to share videodisc images and computer graphics displayed in color and text and facsimile information displayed in black on amber. They...could annotate the information in up to five * colors and print the annotated version at both sites, using a standard fax machine. The SGWS also used a fax...system to display a document, whether text or photo, the camera scans the document, digitizes the data, and sends it via direct memory access (DMA) to

  5. Coal-seismic, desktop computer programs in BASIC; Part 7, Display and compute shear-pair seismograms

    USGS Publications Warehouse

    Hasbrouck, W.P.

    1983-01-01

    Processing of geophysical data taken with the U.S. Geological Survey's coal-seismic system is done with a desk-top, stand-alone computer. Programs for this computer are written in the extended BASIC language utilized by the Tektronix 4051 Graphic System. This report discusses and presents five computer pro grams used to display and compute shear-pair seismograms.

  6. Enabling high grayscale resolution displays and accurate response time measurements on conventional computers.

    PubMed

    Li, Xiangrui; Lu, Zhong-Lin

    2012-02-29

    Display systems based on conventional computer graphics cards are capable of generating images with 8-bit gray level resolution. However, most experiments in vision research require displays with more than 12 bits of luminance resolution. Several solutions are available. Bit++ (1) and DataPixx (2) use the Digital Visual Interface (DVI) output from graphics cards and high resolution (14 or 16-bit) digital-to-analog converters to drive analog display devices. The VideoSwitcher (3) described here combines analog video signals from the red and blue channels of graphics cards with different weights using a passive resister network (4) and an active circuit to deliver identical video signals to the three channels of color monitors. The method provides an inexpensive way to enable high-resolution monochromatic displays using conventional graphics cards and analog monitors. It can also provide trigger signals that can be used to mark stimulus onsets, making it easy to synchronize visual displays with physiological recordings or response time measurements. Although computer keyboards and mice are frequently used in measuring response times (RT), the accuracy of these measurements is quite low. The RTbox is a specialized hardware and software solution for accurate RT measurements. Connected to the host computer through a USB connection, the driver of the RTbox is compatible with all conventional operating systems. It uses a microprocessor and high-resolution clock to record the identities and timing of button events, which are buffered until the host computer retrieves them. The recorded button events are not affected by potential timing uncertainties or biases associated with data transmission and processing in the host computer. The asynchronous storage greatly simplifies the design of user programs. Several methods are available to synchronize the clocks of the RTbox and the host computer. The RTbox can also receive external triggers and be used to measure RT with respect to external events. Both VideoSwitcher and RTbox are available for users to purchase. The relevant information and many demonstration programs can be found at http://lobes.usc.edu/.

  7. Interactive computer graphics - Why's, wherefore's and examples

    NASA Technical Reports Server (NTRS)

    Gregory, T. J.; Carmichael, R. L.

    1983-01-01

    The benefits of using computer graphics in design are briefly reviewed. It is shown that computer graphics substantially aids productivity by permitting errors in design to be found immediately and by greatly reducing the cost of fixing the errors and the cost of redoing the process. The possibilities offered by computer-generated displays in terms of information content are emphasized, along with the form in which the information is transferred. The human being is ideally and naturally suited to dealing with information in picture format, and the content rate in communication with pictures is several orders of magnitude greater than with words or even graphs. Since science and engineering involve communicating ideas, concepts, and information, the benefits of computer graphics cannot be overestimated.

  8. Teaching Conversations with the XDS Sigma 7.

    ERIC Educational Resources Information Center

    Bork, Alfred M.; And Others

    A manual describes the use of graphic commands in student-computer dialogues. How to construct axes, windows, boxes and various other computer displays is explained, in particular reference to the ARDS 100 and TEKTRONIX 4002 and 4010 computer terminals. Concrete examples of displays are included. The appendix contains an explanation of the use of…

  9. Graphics and Flow Visualization of Computer Generated Flow Fields

    NASA Technical Reports Server (NTRS)

    Kathong, M.; Tiwari, S. N.

    1987-01-01

    Flow field variables are visualized using color representations described on surfaces that are interpolated from computational grids and transformed to digital images. Techniques for displaying two and three dimensional flow field solutions are addressed. The transformations and the use of an interactive graphics program for CFD flow field solutions, called PLOT3D, which runs on the color graphics IRIS workstation are described. An overview of the IRIS workstation is also described.

  10. Application of computer graphics in the design of custom orthopedic implants.

    PubMed

    Bechtold, J E

    1986-10-01

    Implementation of newly developed computer modelling techniques and computer graphics displays and software have greatly aided the orthopedic design engineer and physician in creating a custom implant with good anatomic conformity in a short turnaround time. Further advances in computerized design and manufacturing will continue to simplify the development of custom prostheses and enlarge their niche in the joint replacement market.

  11. Graphical tactile displays for visually-impaired people.

    PubMed

    Vidal-Verdú, Fernando; Hafez, Moustapha

    2007-03-01

    This paper presents an up-to-date survey of graphical tactile displays. These devices provide information through the sense of touch. At best, they should display both text and graphics (text may be considered a type of graphic). Graphs made with shapeable sheets result in bulky items awkward to store and transport; their production is expensive and time-consuming and they deteriorate quickly. Research is ongoing for a refreshable tactile display that acts as an output device for a computer or other information source and can present the information in text and graphics. The work in this field has branched into diverse areas, from physiological studies to technological aspects and challenges. Moreover, interest in these devices is now being shown by other fields such as virtual reality, minimally invasive surgery and teleoperation. It is attracting more and more people, research and money. Many proposals have been put forward, several of them succeeding in the task of presenting tactile information. However, most are research prototypes and very expensive to produce commercially. Thus the goal of an efficient low-cost tactile display for visually-impaired people has not yet been reached.

  12. The Helicopter Antenna Radiation Prediction Code (HARP)

    NASA Technical Reports Server (NTRS)

    Klevenow, F. T.; Lynch, B. G.; Newman, E. H.; Rojas, R. G.; Scheick, J. T.; Shamansky, H. T.; Sze, K. Y.

    1990-01-01

    The first nine months effort in the development of a user oriented computer code, referred to as the HARP code, for analyzing the radiation from helicopter antennas is described. The HARP code uses modern computer graphics to aid in the description and display of the helicopter geometry. At low frequencies the helicopter is modeled by polygonal plates, and the method of moments is used to compute the desired patterns. At high frequencies the helicopter is modeled by a composite ellipsoid and flat plates, and computations are made using the geometrical theory of diffraction. The HARP code will provide a user friendly interface, employing modern computer graphics, to aid the user to describe the helicopter geometry, select the method of computation, construct the desired high or low frequency model, and display the results.

  13. Interactive graphics system for IBM 1800 computer

    NASA Technical Reports Server (NTRS)

    Carleton, T. P.; Howell, D. R.; Mish, W. H.

    1972-01-01

    A FORTRAN compatible software system that has been developed to provide an interactive graphics capability for the IBM 1800 computer is described. The interactive graphics hardware consists of a Hewlett-Packard 1300A cathode ray tube, Sanders photopen, digital to analog converters, pulse counter, and necessary interface. The hardware is available from IBM as several related RPQ's. The software developed permits the application programmer to use IBM 1800 FORTRAN to develop a display on the cathode ray tube which consists of one or more independent units called pictures. The software permits a great deal of flexibility in the manipulation of these pictures and allows the programmer to use the photopen to interact with the displayed data and make decisions based on information returned by the photopen.

  14. Flexible Animation Computer Program

    NASA Technical Reports Server (NTRS)

    Stallcup, Scott S.

    1990-01-01

    FLEXAN (Flexible Animation), computer program animating structural dynamics on Evans and Sutherland PS300-series graphics workstation with VAX/VMS host computer. Typical application is animation of spacecraft undergoing structural stresses caused by thermal and vibrational effects. Displays distortions in shape of spacecraft. Program displays single natural mode of vibration, mode history, or any general deformation of flexible structure. Written in FORTRAN 77.

  15. Effective color design for displays

    NASA Astrophysics Data System (ADS)

    MacDonald, Lindsay W.

    2002-06-01

    Visual communication is a key aspect of human-computer interaction, which contributes to the satisfaction of user and application needs. For effective design of presentations on computer displays, color should be used in conjunction with the other visual variables. The general needs of graphic user interfaces are discussed, followed by five specific tasks with differing criteria for display color specification - advertising, text, information, visualization and imaging.

  16. Computer-Based Graphical Displays for Enhancing Mental Animation and Improving Reasoning in Novice Learning of Probability

    ERIC Educational Resources Information Center

    Kaplan, Danielle E.; Wu, Erin Chia-ling

    2006-01-01

    Our research suggests static and animated graphics can lead to more animated thinking and more correct problem solving in computer-based probability learning. Pilot software modules were developed for graduate online statistics courses and representation research. A study with novice graduate student statisticians compared problem solving in five…

  17. Fundamental Quantum Mechanics--A Graphic Presentation

    ERIC Educational Resources Information Center

    Wise, M. N.; Kelley, T. G.

    1977-01-01

    Describes a presentation of basic quantum mechanics for nonscience majors that relies on a computer-generated graphic display to circumvent the usual mathematical difficulties. It allows a detailed treatment of free-particle motion in a wave picture. (MLH)

  18. Data graphing methods, articles of manufacture, and computing devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Pak Chung; Mackey, Patrick S.; Cook, Kristin A.

    Data graphing methods, articles of manufacture, and computing devices are described. In one aspect, a method includes accessing a data set, displaying a graphical representation including data of the data set which is arranged according to a first of different hierarchical levels, wherein the first hierarchical level represents the data at a first of a plurality of different resolutions which respectively correspond to respective ones of the hierarchical levels, selecting a portion of the graphical representation wherein the data of the portion is arranged according to the first hierarchical level at the first resolution, modifying the graphical representation by arrangingmore » the data of the portion according to a second of the hierarchal levels at a second of the resolutions, and after the modifying, displaying the graphical representation wherein the data of the portion is arranged according to the second hierarchal level at the second resolution.« less

  19. Influence of Colour on Acquisition and Generalisation of Graphic Symbols

    ERIC Educational Resources Information Center

    Hetzroni, O. E.; Ne'eman, A.

    2013-01-01

    Background: Children with autism may benefit from using graphic symbols for their communication, language and literacy development. The purpose of this study was to investigate the influence of colour versus grey-scale displays on the identification of graphic symbols using a computer-based intervention. Method: An alternating treatment design was…

  20. A Plasma Display Terminal.

    ERIC Educational Resources Information Center

    Stifle, Jack

    A graphics terminal designed for use as a remote computer input/output terminal is described. Although the terminal is intended for use in teaching applications, it has several features which make it useful in many other computer terminal applications. These features include: a 10-inch square plasma display panel, permanent storage of information…

  1. Cockpit weather information needs

    NASA Technical Reports Server (NTRS)

    Scanlon, Charles H.

    1992-01-01

    The primary objective is to develop an advanced pilot weather interface for the flight deck and to measure its utilization and effectiveness in pilot reroute decision processes, weather situation awareness, and weather monitoring. Identical graphical weather displays for the dispatcher, air traffic control (ATC), and pilot crew should also enhance the dialogue capabilities for reroute decisions. By utilizing a broadcast data link for surface observations, forecasts, radar summaries, lightning strikes, and weather alerts, onboard weather computing facilities construct graphical displays, historical weather displays, color textual displays, and other tools to assist the pilot crew. Since the weather data is continually being received and stored by the airborne system, the pilot crew has instantaneous access to the latest information. This information is color coded to distinguish degrees of category for surface observations, ceiling and visibilities, and ground radar summaries. Automatic weather monitoring and pilot crew alerting is accomplished by the airborne computing facilities. When a new weather information is received, the displays are instantaneously changed to reflect the new information. Also, when a new surface or special observation for the intended destination is received, the pilot crew is informed so that information can be studied at the pilot's discretion. The pilot crew is also immediately alerted when a severe weather notice, AIRMET or SIGMET, is received. The cockpit weather display shares a multicolor eight inch cathode ray tube and overlaid touch panel with a pilot crew data link interface. Touch sensitive buttons and areas are used for pilot selection of graphical and data link displays. Time critical ATC messages are presented in a small window that overlays other displays so that immediate pilot alerting and action can be taken. Predeparture and reroute clearances are displayed on the graphical weather system so pilot review of weather along the route can be accomplished prior to pilot acceptance of the clearance. An ongoing multiphase test series is planned for testing and modifying the graphical weather system. Preliminary data shows that the nine test subjects considered the graphical presentation to be much better than their current weather information source for situation awareness, flight safety, and reroute decision making.

  2. Computer graphics to display plume-modeling results for nuclear emergency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krawchuk, B.; Gotham, I.; Matuszek, J.

    1985-01-01

    New York uses a color graphics display/analysis system, ANALYSE, to portray the results of the plume transport models, MATHEW/ADPIC and PATRIC. As a tool for the researcher and meteorologist, it provides a detailed look into the model results, input and performance. Used in an automatic mode and pre-programmed for use in an emergency, it provides a sequence of informative and attractive of displays to assessment staff at the State EOC through an easily-learned display module. Though successfully implemented on low-cost display and communication equipment, further technical improvements and software development would greatly enhance the system for use in an emergency.

  3. Program Helps Generate And Manage Graphics

    NASA Technical Reports Server (NTRS)

    Truong, L. V.

    1994-01-01

    Living Color Frame Maker (LCFM) computer program generates computer-graphics frames. Graphical frames saved as text files, in readable and disclosed format, easily retrieved and manipulated by user programs for wide range of real-time visual information applications. LCFM implemented in frame-based expert system for visual aids in management of systems. Monitoring, diagnosis, and/or control, diagrams of circuits or systems brought to "life" by use of designated video colors and intensities to symbolize status of hardware components (via real-time feedback from sensors). Status of systems can be displayed. Written in C++ using Borland C++ 2.0 compiler for IBM PC-series computers and compatible computers running MS-DOS.

  4. A computer-controlled scintiscanning system and associated computer graphic techniques for study of regional distribution of blood flow.

    NASA Technical Reports Server (NTRS)

    Coulam, C. M.; Dunnette, W. H.; Wood, E. H.

    1970-01-01

    Two methods whereby a digital computer may be used to regulate a scintiscanning process are discussed from the viewpoint of computer input-output software. The computer's function, in this case, is to govern the data acquisition and storage, and to display the results to the investigator in a meaningful manner, both during and subsequent to the scanning process. Several methods (such as three-dimensional maps, contour plots, and wall-reflection maps) have been developed by means of which the computer can graphically display the data on-line, for real-time monitoring purposes, during the scanning procedure and subsequently for detailed analysis of the data obtained. A computer-governed method for converting scintiscan data recorded over the dorsal or ventral surfaces of the thorax into fractions of pulmonary blood flow traversing the right and left lungs is presented.

  5. A High Resolution Graphic Input System for Interactive Graphic Display Terminals. Appendix B.

    ERIC Educational Resources Information Center

    Van Arsdall, Paul Jon

    The search for a satisfactory computer graphics input system led to this version of an analog sheet encoder which is transparent and requires no special probes. The goal of the research was to provide high resolution touch input capabilities for an experimental minicomputer based intelligent terminal system. The technique explored is compatible…

  6. Application of computer generated color graphic techniques to the processing and display of three dimensional fluid dynamic data

    NASA Technical Reports Server (NTRS)

    Anderson, B. H.; Putt, C. W.; Giamati, C. C.

    1981-01-01

    Color coding techniques used in the processing of remote sensing imagery were adapted and applied to the fluid dynamics problems associated with turbofan mixer nozzles. The computer generated color graphics were found to be useful in reconstructing the measured flow field from low resolution experimental data to give more physical meaning to this information and in scanning and interpreting the large volume of computer generated data from the three dimensional viscous computer code used in the analysis.

  7. Program for Generating Graphs and Charts

    NASA Technical Reports Server (NTRS)

    Ackerson, C. T.

    1986-01-01

    Office Automation Pilot (OAP) Graphics Database system offers IBM personal computer user assistance in producing wide variety of graphs and charts and convenient data-base system, called chart base, for creating and maintaining data associated with graphs and charts. Thirteen different graphics packages available. Access graphics capabilities obtained in similar manner. User chooses creation, revision, or chartbase-maintenance options from initial menu; Enters or modifies data displayed on graphic chart. OAP graphics data-base system written in Microsoft PASCAL.

  8. Interactive display of molecular models using a microcomputer system

    NASA Technical Reports Server (NTRS)

    Egan, J. T.; Macelroy, R. D.

    1980-01-01

    A simple, microcomputer-based, interactive graphics display system has been developed for the presentation of perspective views of wire frame molecular models. The display system is based on a TERAK 8510a graphics computer system with a display unit consisting of microprocessor, television display and keyboard subsystems. The operating system includes a screen editor, file manager, PASCAL and BASIC compilers and command options for linking and executing programs. The graphics program, written in USCD PASCAL, involves the centering of the coordinate system, the transformation of centered model coordinates into homogeneous coordinates, the construction of a viewing transformation matrix to operate on the coordinates, clipping invisible points, perspective transformation and scaling to screen coordinates; commands available include ZOOM, ROTATE, RESET, and CHANGEVIEW. Data file structure was chosen to minimize the amount of disk storage space. Despite the inherent slowness of the system, its low cost and flexibility suggests general applicability.

  9. Software for Testing Electroactive Structural Components

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; Fox, Robert L.; Dimery, Archie D.; Bryant, Robert G.; Shams, Qamar

    2003-01-01

    A computer program generates a graphical user interface that, in combination with its other features, facilitates the acquisition and preprocessing of experimental data on the strain response, hysteresis, and power consumption of a multilayer composite-material structural component containing one or more built-in sensor(s) and/or actuator(s) based on piezoelectric materials. This program runs in conjunction with Lab-VIEW software in a computer-controlled instrumentation system. For a test, a specimen is instrumented with appliedvoltage and current sensors and with strain gauges. Once the computational connection to the test setup has been made via the LabVIEW software, this program causes the test instrumentation to step through specified configurations. If the user is satisfied with the test results as displayed by the software, the user activates an icon on a front-panel display, causing the raw current, voltage, and strain data to be digitized and saved. The data are also put into a spreadsheet and can be plotted on a graph. Graphical displays are saved in an image file for future reference. The program also computes and displays the power and the phase angle between voltage and current.

  10. Influence of colour on acquisition and generalisation of graphic symbols.

    PubMed

    Hetzroni, O E; Ne'eman, A

    2013-07-01

    Children with autism may benefit from using graphic symbols for their communication, language and literacy development. The purpose of this study was to investigate the influence of colour versus grey-scale displays on the identification of graphic symbols using a computer-based intervention. An alternating treatment design was employed to examine the learning and generalisation of 58 colour and grey-scale symbols by four preschool children with autism. The graphic symbols were taught via a meaning-based intervention using stories and educational games. Results demonstrate that all of the children were able to learn and maintain symbol identification over time for both symbol displays with no apparent differences. Differences were apparent for two of the children who exhibited better generalisation when learning grey-scale symbols first. The other two showed no noticeable difference, between displays when generalising from one display to the other. Implications and further research are discussed. © 2012 The Authors. Journal of Intellectual Disability Research © 2012 John Wiley & Sons Ltd, MENCAP & IASSID.

  11. High-speed real-time animated displays on the ADAGE (trademark) RDS 3000 raster graphics system

    NASA Technical Reports Server (NTRS)

    Kahlbaum, William M., Jr.; Ownbey, Katrina L.

    1989-01-01

    Techniques which may be used to increase the animation update rate of real-time computer raster graphic displays are discussed. They were developed on the ADAGE RDS 3000 graphic system in support of the Advanced Concepts Simulator at the NASA Langley Research Center. These techniques involve the use of a special purpose parallel processor, for high-speed character generation. The description of the parallel processor includes the Barrel Shifter which is part of the hardware and is the key to the high-speed character rendition. The final result of this total effort was a fourfold increase in the update rate of an existing primary flight display from 4 to 16 frames per second.

  12. Documentation of a graphical display program for the saturated- unsaturated transport (SUTRA) finite-element simulation model

    USGS Publications Warehouse

    Souza, W.R.

    1987-01-01

    This report documents a graphical display program for the U. S. Geological Survey finite-element groundwater flow and solute transport model. Graphic features of the program, SUTRA-PLOT (SUTRA-PLOT = saturated/unsaturated transport), include: (1) plots of the finite-element mesh, (2) velocity vector plots, (3) contour plots of pressure, solute concentration, temperature, or saturation, and (4) a finite-element interpolator for gridding data prior to contouring. SUTRA-PLOT is written in FORTRAN 77 on a PRIME 750 computer system, and requires Version 9.0 or higher of the DISSPLA graphics library. The program requires two input files: the SUTRA input data list and the SUTRA simulation output listing. The program is menu driven and specifications for individual types of plots are entered and may be edited interactively. Installation instruction, a source code listing, and a description of the computer code are given. Six examples of plotting applications are used to demonstrate various features of the plotting program. (Author 's abstract)

  13. SAMO (Sistema de Apoyo Mechanizado a la Operacion): An operational aids computer system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stormer, T.D.; Laflor, E.V.

    1989-01-01

    SAMO (Sistema de Apoyo Mechanizado a la Operacion) is a sensor-driven, computer-based, graphic display system designed by Westinghouse to aid the A. N. Asco operations staff during all modes of plant operations, including emergencies. The SAMO system is being implemented in the A. N. Asco plant in two phases that coincide with consecutive refueling outages for each of two nuclear units at the Asco site. Phase 1 of the SAMO system implements the following functions: (1) emergency operational aids, (2) postaccident monitoring, (3) plant graphics display, (4) high-speed transient analysis recording, (5) historical data collection, storage, and retrieval, (6) sequencemore » of events, and (7) posttrip review. During phase 2 of the SAMO project, the current plant computer will be removed and the functions now performed by the plant computer will be performed by the SAMO system. In addition, the following functions will be implemented: (1) normal and simple transients operational aid, (2) plant information graphics; and (3) real-time radiological off-site dose calculation.« less

  14. Flow visualization of CFD using graphics workstations

    NASA Technical Reports Server (NTRS)

    Lasinski, Thomas; Buning, Pieter; Choi, Diana; Rogers, Stuart; Bancroft, Gordon

    1987-01-01

    High performance graphics workstations are used to visualize the fluid flow dynamics obtained from supercomputer solutions of computational fluid dynamic programs. The visualizations can be done independently on the workstation or while the workstation is connected to the supercomputer in a distributed computing mode. In the distributed mode, the supercomputer interactively performs the computationally intensive graphics rendering tasks while the workstation performs the viewing tasks. A major advantage of the workstations is that the viewers can interactively change their viewing position while watching the dynamics of the flow fields. An overview of the computer hardware and software required to create these displays is presented. For complex scenes the workstation cannot create the displays fast enough for good motion analysis. For these cases, the animation sequences are recorded on video tape or 16 mm film a frame at a time and played back at the desired speed. The additional software and hardware required to create these video tapes or 16 mm movies are also described. Photographs illustrating current visualization techniques are discussed. Examples of the use of the workstations for flow visualization through animation are available on video tape.

  15. The use of computer-generated color graphic images for transient thermal analysis. [for hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Edwards, C. L. W.; Meissner, F. T.; Hall, J. B.

    1979-01-01

    Color computer graphics techniques were investigated as a means of rapidly scanning and interpreting large sets of transient heating data. The data presented were generated to support the conceptual design of a heat-sink thermal protection system (TPS) for a hypersonic research airplane. Color-coded vector and raster displays of the numerical geometry used in the heating calculations were employed to analyze skin thicknesses and surface temperatures of the heat-sink TPS under a variety of trajectory flight profiles. Both vector and raster displays proved to be effective means for rapidly identifying heat-sink mass concentrations, regions of high heating, and potentially adverse thermal gradients. The color-coded (raster) surface displays are a very efficient means for displaying surface-temperature and heating histories, and thereby the more stringent design requirements can quickly be identified. The related hardware and software developments required to implement both the vector and the raster displays for this application are also discussed.

  16. Cooperative processing user interfaces for AdaNET

    NASA Technical Reports Server (NTRS)

    Gutzmann, Kurt M.

    1991-01-01

    A cooperative processing user interface (CUI) system shares the task of graphical display generation and presentation between the user's computer and a remote host. The communications link between the two computers is typically a modem or Ethernet. The two main purposes of a CUI are reduction of the amount of data transmitted between user and host machines, and provision of a graphical user interface system to make the system easier to use.

  17. PC-CUBE: A Personal Computer Based Hypercube

    NASA Technical Reports Server (NTRS)

    Ho, Alex; Fox, Geoffrey; Walker, David; Snyder, Scott; Chang, Douglas; Chen, Stanley; Breaden, Matt; Cole, Terry

    1988-01-01

    PC-CUBE is an ensemble of IBM PCs or close compatibles connected in the hypercube topology with ordinary computer cables. Communication occurs at the rate of 115.2 K-band via the RS-232 serial links. Available for PC-CUBE is the Crystalline Operating System III (CrOS III), Mercury Operating System, CUBIX and PLOTIX which are parallel I/O and graphics libraries. A CrOS performance monitor was developed to facilitate the measurement of communication and computation time of a program and their effects on performance. Also available are CXLISP, a parallel version of the XLISP interpreter; GRAFIX, some graphics routines for the EGA and CGA; and a general execution profiler for determining execution time spent by program subroutines. PC-CUBE provides a programming environment similar to all hypercube systems running CrOS III, Mercury and CUBIX. In addition, every node (personal computer) has its own graphics display monitor and storage devices. These allow data to be displayed or stored at every processor, which has much instructional value and enables easier debugging of applications. Some application programs which are taken from the book Solving Problems on Concurrent Processors (Fox 88) were implemented with graphics enhancement on PC-CUBE. The applications range from solving the Mandelbrot set, Laplace equation, wave equation, long range force interaction, to WaTor, an ecological simulation.

  18. [Computer graphic display of retinal examination results. Software improving the quality of documenting fundus changes].

    PubMed

    Jürgens, Clemens; Grossjohann, Rico; Czepita, Damian; Tost, Frank

    2009-01-01

    Graphic documentation of retinal examination results in clinical ophthalmological practice is often depicted using pictures or in handwritten form. Popular software products used to describe changes in the fundus do not vary much from simple graphic programs that enable to insert, scale and edit basic graphic elements such as: a circle, rectangle, arrow or text. Displaying the results of retinal examinations in a unified way is difficult to achieve. Therefore, we devised and implemented modern software tools for this purpose. A computer program enabling to quickly and intuitively form graphs of the fundus, that can be digitally archived or printed was created. Especially for the needs of ophthalmological clinics, a set of standard digital symbols used to document the results of retinal examinations was developed and installed in a library of graphic symbols. These symbols are divided into the following categories: preoperative, postoperative, neovascularization, retinopathy of prematurity. The appropriate symbol can be selected with a click of the mouse and dragged-and-dropped on the canvas of the fundus. Current forms of documenting results of retinal examinations are unsatisfactory, due to the fact that they are time consuming and imprecise. Unequivocal interpretation is difficult or in some cases impossible. Using the developed computer program a sketch of the fundus can be created much more quickly than by hand drawing. Additionally the quality of the medica documentation using a system of well described and standardized symbols will be enhanced. (1) Graphic symbols used to document the results of retinal examinations are a part of everyday clinical practice. (2) The designed computer program will allow quick and intuitive graphical creation of fundus sketches that can be either digitally archived or printed.

  19. Human-display interactions: Context-specific biases

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary Kister; Proffitt, Dennis R.

    1987-01-01

    Recent developments in computer engineering have greatly enhanced the capabilities of display technology. As displays are no longer limited to simple alphanumeric output, they can present a wide variety of graphic information, using either static or dynamic presentation modes. At the same time that interface designers exploit the increased capabilities of these displays, they must be aware of the inherent limitation of these displays. Generally, these limitations can be divided into those that reflect limitations of the medium (e.g., reducing three-dimensional representations onto a two-dimensional projection) and those reflecting the perceptual and conceptual biases of the operator. The advantages and limitations of static and dynamic graphic displays are considered. Rather than enter into the discussion of whether dynamic or static displays are superior, general advantages and limitations are explored which are contextually specific to each type of display.

  20. Computer-aided Instructional System for Transmission Line Simulation.

    ERIC Educational Resources Information Center

    Reinhard, Erwin A.; Roth, Charles H., Jr.

    A computer-aided instructional system has been developed which utilizes dynamic computer-controlled graphic displays and which requires student interaction with a computer simulation in an instructional mode. A numerical scheme has been developed for digital simulation of a uniform, distortionless transmission line with resistive terminations and…

  1. The Use of a Computer-Controlled Random Access Slide Projector for Rapid Information Display.

    ERIC Educational Resources Information Center

    Muller, Mark T.

    A 35mm random access slide projector operated in conjunction with a computer terminal was adapted to meet the need for a more rapid and complex graphic display mechanism than is currently available with teletypewriter terminals. The model projector can be operated manually to provide for a maintenance checkout of the electromechanical system.…

  2. An Interactive Graphics Program for Investigating Digital Signal Processing.

    ERIC Educational Resources Information Center

    Miller, Billy K.; And Others

    1983-01-01

    Describes development of an interactive computer graphics program for use in teaching digital signal processing. The program allows students to interactively configure digital systems on a monitor display and observe their system's performance by means of digital plots on the system's outputs. A sample program run is included. (JN)

  3. A Graphical Database Interface for Casual, Naive Users.

    ERIC Educational Resources Information Center

    Burgess, Clifford; Swigger, Kathleen

    1986-01-01

    Describes the design of a database interface for infrequent users of computers which consists of a graphical display of a model of a database and a natural language query language. This interface was designed for and tested with physicians at the University of Texas Health Science Center in Dallas. (LRW)

  4. HyperGLOB/Freedom: Preparing Student Designers for a New Media.

    ERIC Educational Resources Information Center

    Slawson, Brian

    The HyperGLOB project introduced university-level graphic design students to interactive multimedia. This technology involves using the personal computer to display and manipulate a variety of electronic media simultaneously (combining elements of text and speech, music and sound, still images, motion video, and animated graphics) and allows…

  5. Span graphics display utilities handbook, first edition

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Green, J. L.; Newman, R.

    1985-01-01

    The Space Physics Analysis Network (SPAN) is a computer network connecting scientific institutions throughout the United States. This network provides an avenue for timely, correlative research between investigators, in a multidisciplinary approach to space physics studies. An objective in the development of SPAN is to make available direct and simplified procedures that scientists can use, without specialized training, to exchange information over the network. Information exchanges include raw and processes data, analysis programs, correspondence, documents, and graphite images. This handbook details procedures that can be used to exchange graphic images over SPAN. The intent is to periodically update this handbook to reflect the constantly changing facilities available on SPAN. The utilities described within reflect an earnest attempt to provide useful descriptions of working utilities that can be used to transfer graphic images across the network. Whether graphic images are representative of satellite servations or theoretical modeling and whether graphics images are of device dependent or independent type, the SPAN graphics display utilities handbook will be the users guide to graphic image exchange.

  6. The End of the Rainbow? Color Schemes for Improved Data Graphics

    NASA Astrophysics Data System (ADS)

    Light, Adam; Bartlein, Patrick J.

    2004-10-01

    Modern computer displays and printers enable the widespread use of color in scientific communication, but the expertise for designing effective graphics has not kept pace with the technology for producing them. Historically, even the most prestigious publications have tolerated high defect rates in figures and illustrations, and technological advances that make creating and reproducing graphics easier do not appear to have decreased the frequency of errors. Flawed graphics consequently beget more flawed graphics as authors emulate published examples. Color has the potential to enhance communication, but design mistakes can result in color figures that are less effective than gray scale displays of the same data. Empirical research on human subjects can build a fundamental understanding of visual perception and scientific methods can be used to evaluate existing designs, but creating effective data graphics is a design task and not fundamentally a scientific pursuit. Like writing well, creating good data graphics requires a combination of formal knowledge and artistic sensibility tempered by experience: a combination of ``substance, statistics, and design''.

  7. Computer-Aided Design and Manufacturing for Closed-Die Forging of Track Shoes and Links

    DTIC Science & Technology

    1976-07-01

    file. VII-39 CALL RESTRI(TAG) Restores a blanked item. CALL SCROLG( NLINES ,IYTOP) To adjust scroller parameters. Graphics Monitor must be in use... NLINES : Number of lines to be displayed. IYTOP: Y-coordinate of the top line. Each line is 25 units vertical. CALL TRACK To enable the tracking...5. NLINES - The number of lines reserved for the text scroller area when text is displayed along with graphic images. 6. AL - The vertical

  8. Augmenting reality in Direct View Optical (DVO) overlay applications

    NASA Astrophysics Data System (ADS)

    Hogan, Tim; Edwards, Tim

    2014-06-01

    The integration of overlay displays into rifle scopes can transform precision Direct View Optical (DVO) sights into intelligent interactive fire-control systems. Overlay displays can provide ballistic solutions within the sight for dramatically improved targeting, can fuse sensor video to extend targeting into nighttime or dirty battlefield conditions, and can overlay complex situational awareness information over the real-world scene. High brightness overlay solutions for dismounted soldier applications have previously been hindered by excessive power consumption, weight and bulk making them unsuitable for man-portable, battery powered applications. This paper describes the advancements and capabilities of a high brightness, ultra-low power text and graphics overlay display module developed specifically for integration into DVO weapon sight applications. Central to the overlay display module was the development of a new general purpose low power graphics controller and dual-path display driver electronics. The graphics controller interface is a simple 2-wire RS-232 serial interface compatible with existing weapon systems such as the IBEAM ballistic computer and the RULR and STORM laser rangefinders (LRF). The module features include multiple graphics layers, user configurable fonts and icons, and parameterized vector rendering, making it suitable for general purpose DVO overlay applications. The module is configured for graphics-only operation for daytime use and overlays graphics with video for nighttime applications. The miniature footprint and ultra-low power consumption of the module enables a new generation of intelligent DVO systems and has been implemented for resolutions from VGA to SXGA, in monochrome and color, and in graphics applications with and without sensor video.

  9. 3D Graphics For Interactive Surgical Simulation And Implant Design

    NASA Astrophysics Data System (ADS)

    Dev, P.; Fellingham, L. L.; Vassiliadis, A.; Woolson, S. T.; White, D. N.; Young, S. L.

    1984-10-01

    The combination of user-friendly, highly interactive software, 3D graphics, and the high-resolution detailed views of anatomy afforded by X-ray computer tomography and magnetic resonance imaging can provide surgeons with the ability to plan and practice complex surgeries. In addition to providing a realistic and manipulable 3D graphics display, this system can drive a milling machine in order to produce physical models of the anatomy or prosthetic devices and implants which have been designed using its interactive graphics editing facilities.

  10. Computer systems and methods for the query and visualization of multidimensional databases

    DOEpatents

    Stolte, Chris; Tang, Diane L; Hanrahan, Patrick

    2015-03-03

    A computer displays a graphical user interface on its display. The graphical user interface includes a schema information region and a data visualization region. The schema information region includes multiple operand names, each operand corresponding to one or more fields of a multi-dimensional database that includes at least one data hierarchy. The data visualization region includes a columns shelf and a rows shelf. The computer detects user actions to associate one or more first operands with the columns shelf and to associate one or more second operands with the rows shelf. The computer generates a visual table in the data visualization region in accordance with the user actions. The visual table includes one or more panes. Each pane has an x-axis defined based on data for the one or more first operands, and each pane has a y-axis defined based on data for the one or more second operands.

  11. Computer systems and methods for the query and visualization of multidimensional databases

    DOEpatents

    Stolte, Chris; Tang, Diane L.; Hanrahan, Patrick

    2015-11-10

    A computer displays a graphical user interface on its display. The graphical user interface includes a schema information region and a data visualization region. The schema information region includes a plurality of fields of a multi-dimensional database that includes at least one data hierarchy. The data visualization region includes a columns shelf and a rows shelf. The computer detects user actions to associate one or more first fields with the columns shelf and to associate one or more second fields with the rows shelf. The computer generates a visual table in the data visualization region in accordance with the user actions. The visual table includes one or more panes. Each pane has an x-axis defined based on data for the one or more first fields, and each pane has a y-axis defined based on data for the one or more second fields.

  12. Advanced display object selection methods for enhancing user-computer productivity

    NASA Technical Reports Server (NTRS)

    Osga, Glenn A.

    1993-01-01

    The User-Interface Technology Branch at NCCOSC RDT&E Division has been conducting a series of studies to address the suitability of commercial off-the-shelf (COTS) graphic user-interface (GUI) methods for efficiency and performance in critical naval combat systems. This paper presents an advanced selection algorithm and method developed to increase user performance when making selections on tactical displays. The method has also been applied with considerable success to a variety of cursor and pointing tasks. Typical GUI's allow user selection by: (1) moving a cursor with a pointing device such as a mouse, trackball, joystick, touchscreen; and (2) placing the cursor on the object. Examples of GUI objects are the buttons, icons, folders, scroll bars, etc. used in many personal computer and workstation applications. This paper presents an improved method of selection and the theoretical basis for the significant performance gains achieved with various input devices tested. The method is applicable to all GUI styles and display sizes, and is particularly useful for selections on small screens such as notebook computers. Considering the amount of work-hours spent pointing and clicking across all styles of available graphic user-interfaces, the cost/benefit in applying this method to graphic user-interfaces is substantial, with the potential for increasing productivity across thousands of users and applications.

  13. System for the diagnosis and monitoring of coronary artery disease, acute coronary syndromes, cardiomyopathy and other cardiac conditions

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T. (Inventor); Arenare, Brian (Inventor)

    2008-01-01

    Cardiac electrical data are received from a patient, manipulated to determine various useful aspects of the ECG signal, and displayed and stored in a useful form using a computer. The computer monitor displays various useful information, and in particular graphically displays various permutations of reduced amplitude zones and kurtosis that increase the rapidity and accuracy of cardiac diagnoses. New criteria for reduced amplitude zones are defined that enhance the sensitivity and specificity for detecting cardiac abnormalities.

  14. PLASMAP: an interactive computational tool for storage, retrieval and device-independent graphic display of conventional restriction maps.

    PubMed Central

    Stone, B N; Griesinger, G L; Modelevsky, J L

    1984-01-01

    We describe an interactive computational tool, PLASMAP, which allows the user to electronically store, retrieve, and display circular restriction maps. PLASMAP permits users to construct libraries of plasmid restriction maps as a set of files which may be edited in the laboratory at any time. The display feature of PLASMAP quickly generates device-independent, artist-quality, full-color or monochrome, hard copies or CRT screens of complex, conventional circular restriction maps. PMID:6320096

  15. NASTRAN data generation of helicopter fuselages using interactive graphics. [preprocessor system for finite element analysis using IBM computer

    NASA Technical Reports Server (NTRS)

    Sainsbury-Carter, J. B.; Conaway, J. H.

    1973-01-01

    The development and implementation of a preprocessor system for the finite element analysis of helicopter fuselages is described. The system utilizes interactive graphics for the generation, display, and editing of NASTRAN data for fuselage models. It is operated from an IBM 2250 cathode ray tube (CRT) console driven by an IBM 370/145 computer. Real time interaction plus automatic data generation reduces the nominal 6 to 10 week time for manual generation and checking of data to a few days. The interactive graphics system consists of a series of satellite programs operated from a central NASTRAN Systems Monitor. Fuselage structural models including the outer shell and internal structure may be rapidly generated. All numbering systems are automatically assigned. Hard copy plots of the model labeled with GRID or elements ID's are also available. General purpose programs for displaying and editing NASTRAN data are included in the system. Utilization of the NASTRAN interactive graphics system has made possible the multiple finite element analysis of complex helicopter fuselage structures within design schedules.

  16. HLYWD: a program for post-processing data files to generate selected plots or time-lapse graphics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munro, J.K. Jr.

    1980-05-01

    The program HLYWD is a post-processor of output files generated by large plasma simulation computations or of data files containing a time sequence of plasma diagnostics. It is intended to be used in a production mode for either type of application; i.e., it allows one to generate along with the graphics sequence, segments containing title, credits to those who performed the work, text to describe the graphics, and acknowledgement of funding agency. The current version is designed to generate 3D plots and allows one to select type of display (linear or semi-log scales), choice of normalization of function values formore » display purposes, viewing perspective, and an option to allow continuous rotations of surfaces. This program was developed with the intention of being relatively easy to use, reasonably flexible, and requiring a minimum investment of the user's time. It uses the TV80 library of graphics software and ORDERLIB system software on the CDC 7600 at the National Magnetic Fusion Energy Computing Center at Lawrence Livermore Laboratory in California.« less

  17. Faster, Better, Cheaper: A Decade of PC Progress.

    ERIC Educational Resources Information Center

    Crawford, Walt

    1997-01-01

    Reviews the development of personal computers and how computer components have changed in price and value. Highlights include disk drives; keyboards; displays; memory; color graphics; modems; CPU (central processing unit); storage; direct mail vendors; and future possibilities. (LRW)

  18. Robot Geometry and the High School Curriculum.

    ERIC Educational Resources Information Center

    Meyer, Walter

    1988-01-01

    Description of the field of robotics and its possible use in high school computational geometry classes emphasizes motion planning exercises and computer graphics displays. Eleven geometrical problems based on robotics are presented along with the correct solutions and explanations. (LRW)

  19. Low-Level Graphics Cues For Solicit Image Interpretation

    NASA Astrophysics Data System (ADS)

    McAnulty, Michael A.; Gemmill, Jill P.; Kegley, Kathleen A.; Chiu, Haw-Tsang

    1984-08-01

    Several straightforward techniques for displaying arbitrary solids of the sort encountered in the life sciences are presented, all variations of simple three-dimensional scatter plots. They are all targeted for a medium cost raster display (an AED-5l2 has been used here). Practically any host computer may be used to implement them. All techniques are broadly applicable and were implemented as Master Degree projects. The major hardware constraint is data transmission speed, and this is met by minimizing the amount of graphical data, ignoring enhancement of the data, and using terminal scan-conversion and aspect firmware wherever possible. Three simple rendering techniques and the use of several graphics cues are described.

  20. Design of teleoperation system with a force-reflecting real-time simulator

    NASA Technical Reports Server (NTRS)

    Hirata, Mitsunori; Sato, Yuichi; Nagashima, Fumio; Maruyama, Tsugito

    1994-01-01

    We developed a force-reflecting teleoperation system that uses a real-time graphic simulator. This system eliminates the effects of communication time delays in remote robot manipulation. The simulator provides the operator with predictive display and feedback of computed contact forces through a six-degree of freedom (6-DOF) master arm on a real-time basis. With this system, peg-in-hole tasks involving round-trip communication time delays of up to a few seconds were performed at three support levels: a real image alone, a predictive display with a real image, and a real-time graphic simulator with computed-contact-force reflection and a predictive display. The experimental results indicate the best teleoperation efficiency was achieved by using the force-reflecting simulator with two images. The shortest work time, lowest sensor maximum, and a 100 percent success rate were obtained. These results demonstrate the effectiveness of simulated-force-reflecting teleoperation efficiency.

  1. Interactive Display of Surfaces Using Subdivision Surfaces and Wavelets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duchaineau, M A; Bertram, M; Porumbescu, S

    2001-10-03

    Complex surfaces and solids are produced by large-scale modeling and simulation activities in a variety of disciplines. Productive interaction with these simulations requires that these surfaces or solids be viewable at interactive rates--yet many of these surfaced solids can contain hundreds of millions of polygondpolyhedra. Interactive display of these objects requires compression techniques to minimize storage, and fast view-dependent triangulation techniques to drive the graphics hardware. In this paper, we review recent advances in subdivision-surface wavelet compression and optimization that can be used to provide a framework for both compression and triangulation. These techniques can be used to produce suitablemore » approximations of complex surfaces of arbitrary topology, and can be used to determine suitable triangulations for display. The techniques can be used in a variety of applications in computer graphics, computer animation and visualization.« less

  2. The Evolution of Computer Based Learning Software Design: Computer Assisted Teaching Unit Experience.

    ERIC Educational Resources Information Center

    Blandford, A. E.; Smith, P. R.

    1986-01-01

    Describes the style of design of computer simulations developed by Computer Assisted Teaching Unit at Queen Mary College with reference to user interface, input and initialization, input data vetting, effective display screen use, graphical results presentation, and need for hard copy. Procedures and problems relating to academic involvement are…

  3. Process and representation in graphical displays

    NASA Technical Reports Server (NTRS)

    Gillan, Douglas J.; Lewis, Robert; Rudisill, Marianne

    1993-01-01

    Our initial model of graphic comprehension has focused on statistical graphs. Like other models of human-computer interaction, models of graphical comprehension can be used by human-computer interface designers and developers to create interfaces that present information in an efficient and usable manner. Our investigation of graph comprehension addresses two primary questions: how do people represent the information contained in a data graph?; and how do they process information from the graph? The topics of focus for graphic representation concern the features into which people decompose a graph and the representations of the graph in memory. The issue of processing can be further analyzed as two questions: what overall processing strategies do people use?; and what are the specific processing skills required?

  4. Examining Functions in Mathematics and Science Using Computer Interfacing.

    ERIC Educational Resources Information Center

    Walton, Karen Doyle

    1988-01-01

    Introduces microcomputer interfacing as a method for explaining and demonstrating various aspects of the concept of function. Provides three experiments with illustrations and typical computer graphic displays: pendulum motion, pendulum study using two pendulums, and heat absorption and radiation. (YP)

  5. Design Considerations for Computer-Based Interactive Map Display Systems

    DTIC Science & Technology

    1979-02-01

    11 Five Dimensions for Map Display System Options . . . . . . . . . . . . . . . 12 Summary of...most advanced and exotic technologies- space , optical, computer, and graphic pro- duction; the focusing of vast organizational efforts; and the results...Information retrieval: "Where are all the radar sites in sector 12 ?," "What’s the name of this hill?," "Where’s the hill named B243?" Information storage

  6. Development and Evaluation of Sterographic Display for Lung Cancer Screening

    DTIC Science & Technology

    2008-12-01

    burden. Application of GPUs – With the evolution of commodity graphics processing units (GPUs) for accelerating games on personal computers, over the...units, which are designed for rendering computer games , are readily available and can be programmed to perform the kinds of real-time calculations...575-581, 1994. 12. Anderson CM, Saloner D, Tsuruda JS, Shapeero LG, Lee RE. "Artifacts in maximun-intensity-projection display of MR angiograms

  7. Digital computer simulation of inductor-energy-storage dc-to-dc converters with closed-loop regulators

    NASA Technical Reports Server (NTRS)

    Ohri, A. K.; Owen, H. A.; Wilson, T. G.; Rodriguez, G. E.

    1974-01-01

    The simulation of converter-controller combinations by means of a flexible digital computer program which produces output to a graphic display is discussed. The procedure is an alternative to mathematical analysis of converter systems. The types of computer programming involved in the simulation are described. Schematic diagrams, state equations, and output equations are displayed for four basic forms of inductor-energy-storage dc to dc converters. Mathematical models are developed to show the relationship of the parameters.

  8. Computer animation of modal and transient vibrations

    NASA Technical Reports Server (NTRS)

    Lipman, Robert R.

    1987-01-01

    An interactive computer graphics processor is described that is capable of generating input to animate modal and transient vibrations of finite element models on an interactive graphics system. The results from NASTRAN can be postprocessed such that a three dimensional wire-frame picture, in perspective, of the finite element mesh is drawn on the graphics display. Modal vibrations of any mode shape or transient motions over any range of steps can be animated. The finite element mesh can be color-coded by any component of displacement. Viewing parameters and the rate of vibration of the finite element model can be interactively updated while the structure is vibrating.

  9. A CAMAC display module for fast bit-mapped graphics

    NASA Astrophysics Data System (ADS)

    Abdel-Aal, R. E.

    1992-10-01

    In many data acquisition and analysis facilities for nuclear physics research, utilities for the display of two-dimensional (2D) images and spectra on graphics terminals suffer from low speed, poor resolution, and limited accuracy. Development of CAMAC bit-mapped graphics modules for this purpose has been discouraged in the past by the large device count needed and the long times required to load the image data from the host computer into the CAMAC hardware; particularly since many such facilities have been designed to support fast DMA block transfers only for data acquisition into the host. This paper describes the design and implementation of a prototype CAMAC graphics display module with a resolution of 256×256 pixels at eight colours for which all components can be easily accommodated in a single-width package. Employed is a hardware technique which reduces the number of programmed CAMAC data transfer operations needed for writing 2D images into the display memory by approximately an order of magnitude, with attendant improvements in the display speed and CPU time consumption. Hardware and software details are given together with sample results. Information on the performance of the module in a typical VAX/MBD data acquisition environment is presented, including data on the mutual effects of simultaneous data acquisition traffic. Suggestions are made for further improvements in performance.

  10. A Graphics System for Pole-Zero Map Analysis.

    ERIC Educational Resources Information Center

    Beyer, William Fred, III

    Computer scientists have developed an interactive, graphical display system for pole-zero map analysis. They designed it for use as an educational tool in teaching introductory courses in automatic control systems. The facilities allow the user to specify a control system and an input function in the form of a pole-zero map and then examine the…

  11. Software Aids Visualization Of Mars Pathfinder Mission

    NASA Technical Reports Server (NTRS)

    Weidner, Richard J.

    1996-01-01

    Report describes Simulator for Imager for Mars Pathfinder (SIMP) computer program. SIMP generates "virtual reality" display of view through video camera on Mars lander spacecraft of Mars Pathfinder mission, along with display of pertinent textual and graphical data, for use by scientific investigators in planning sequences of activities for mission.

  12. High-performance floating-point image computing workstation for medical applications

    NASA Astrophysics Data System (ADS)

    Mills, Karl S.; Wong, Gilman K.; Kim, Yongmin

    1990-07-01

    The medical imaging field relies increasingly on imaging and graphics techniques in diverse applications with needs similar to (or more stringent than) those of the military, industrial and scientific communities. However, most image processing and graphics systems available for use in medical imaging today are either expensive, specialized, or in most cases both. High performance imaging and graphics workstations which can provide real-time results for a number of applications, while maintaining affordability and flexibility, can facilitate the application of digital image computing techniques in many different areas. This paper describes the hardware and software architecture of a medium-cost floating-point image processing and display subsystem for the NeXT computer, and its applications as a medical imaging workstation. Medical imaging applications of the workstation include use in a Picture Archiving and Communications System (PACS), in multimodal image processing and 3-D graphics workstation for a broad range of imaging modalities, and as an electronic alternator utilizing its multiple monitor display capability and large and fast frame buffer. The subsystem provides a 2048 x 2048 x 32-bit frame buffer (16 Mbytes of image storage) and supports both 8-bit gray scale and 32-bit true color images. When used to display 8-bit gray scale images, up to four different 256-color palettes may be used for each of four 2K x 2K x 8-bit image frames. Three of these image frames can be used simultaneously to provide pixel selectable region of interest display. A 1280 x 1024 pixel screen with 1: 1 aspect ratio can be windowed into the frame buffer for display of any portion of the processed image or images. In addition, the system provides hardware support for integer zoom and an 82-color cursor. This subsystem is implemented on an add-in board occupying a single slot in the NeXT computer. Up to three boards may be added to the NeXT for multiple display capability (e.g., three 1280 x 1024 monitors, each with a 16-Mbyte frame buffer). Each add-in board provides an expansion connector to which an optional image computing coprocessor board may be added. Each coprocessor board supports up to four processors for a peak performance of 160 MFLOPS. The coprocessors can execute programs from external high-speed microcode memory as well as built-in internal microcode routines. The internal microcode routines provide support for 2-D and 3-D graphics operations, matrix and vector arithmetic, and image processing in integer, IEEE single-precision floating point, or IEEE double-precision floating point. In addition to providing a library of C functions which links the NeXT computer to the add-in board and supports its various operational modes, algorithms and medical imaging application programs are being developed and implemented for image display and enhancement. As an extension to the built-in algorithms of the coprocessors, 2-D Fast Fourier Transform (FF1), 2-D Inverse FFF, convolution, warping and other algorithms (e.g., Discrete Cosine Transform) which exploit the parallel architecture of the coprocessor board are being implemented.

  13. Commercial Off-The-Shelf (COTS) Graphics Processing Board (GPB) Radiation Test Evaluation Report

    NASA Technical Reports Server (NTRS)

    Salazar, George A.; Steele, Glen F.

    2013-01-01

    Large round trip communications latency for deep space missions will require more onboard computational capabilities to enable the space vehicle to undertake many tasks that have traditionally been ground-based, mission control responsibilities. As a result, visual display graphics will be required to provide simpler vehicle situational awareness through graphical representations, as well as provide capabilities never before done in a space mission, such as augmented reality for in-flight maintenance or Telepresence activities. These capabilities will require graphics processors and associated support electronic components for high computational graphics processing. In an effort to understand the performance of commercial graphics card electronics operating in the expected radiation environment, a preliminary test was performed on five commercial offthe- shelf (COTS) graphics cards. This paper discusses the preliminary evaluation test results of five COTS graphics processing cards tested to the International Space Station (ISS) low earth orbit radiation environment. Three of the five graphics cards were tested to a total dose of 6000 rads (Si). The test articles, test configuration, preliminary results, and recommendations are discussed.

  14. Animated computer graphics models of space and earth sciences data generated via the massively parallel processor

    NASA Technical Reports Server (NTRS)

    Treinish, Lloyd A.; Gough, Michael L.; Wildenhain, W. David

    1987-01-01

    The capability was developed of rapidly producing visual representations of large, complex, multi-dimensional space and earth sciences data sets via the implementation of computer graphics modeling techniques on the Massively Parallel Processor (MPP) by employing techniques recently developed for typically non-scientific applications. Such capabilities can provide a new and valuable tool for the understanding of complex scientific data, and a new application of parallel computing via the MPP. A prototype system with such capabilities was developed and integrated into the National Space Science Data Center's (NSSDC) Pilot Climate Data System (PCDS) data-independent environment for computer graphics data display to provide easy access to users. While developing these capabilities, several problems had to be solved independently of the actual use of the MPP, all of which are outlined.

  15. Computer systems and methods for the query and visualization of multidimensional databases

    DOEpatents

    Stolte, Chris; Tang, Diane L; Hanrahan, Patrick

    2014-04-29

    In response to a user request, a computer generates a graphical user interface on a computer display. A schema information region of the graphical user interface includes multiple operand names, each operand name associated with one or more fields of a multi-dimensional database. A data visualization region of the graphical user interface includes multiple shelves. Upon detecting a user selection of the operand names and a user request to associate each user-selected operand name with a respective shelf in the data visualization region, the computer generates a visual table in the data visualization region in accordance with the associations between the operand names and the corresponding shelves. The visual table includes a plurality of panes, each pane having at least one axis defined based on data for the fields associated with a respective operand name.

  16. Computer systems and methods for the query and visualization of multidimensional databases

    DOEpatents

    Stolte, Chris [Palo Alto, CA; Tang, Diane L [Palo Alto, CA; Hanrahan, Patrick [Portola Valley, CA

    2011-02-01

    In response to a user request, a computer generates a graphical user interface on a computer display. A schema information region of the graphical user interface includes multiple operand names, each operand name associated with one or more fields of a multi-dimensional database. A data visualization region of the graphical user interface includes multiple shelves. Upon detecting a user selection of the operand names and a user request to associate each user-selected operand name with a respective shelf in the data visualization region, the computer generates a visual table in the data visualization region in accordance with the associations between the operand names and the corresponding shelves. The visual table includes a plurality of panes, each pane having at least one axis defined based on data for the fields associated with a respective operand name.

  17. Computer systems and methods for the query and visualization of multidimensional databases

    DOEpatents

    Stolte, Chris [Palo Alto, CA; Tang, Diane L [Palo Alto, CA; Hanrahan, Patrick [Portola Valley, CA

    2012-03-20

    In response to a user request, a computer generates a graphical user interface on a computer display. A schema information region of the graphical user interface includes multiple operand names, each operand name associated with one or more fields of a multi-dimensional database. A data visualization region of the graphical user interface includes multiple shelves. Upon detecting a user selection of the operand names and a user request to associate each user-selected operand name with a respective shelf in the data visualization region, the computer generates a visual table in the data visualization region in accordance with the associations between the operand names and the corresponding shelves. The visual table includes a plurality of panes, each pane having at least one axis defined based on data for the fields associated with a respective operand name.

  18. New computer system simplifies programming of mathematical equations

    NASA Technical Reports Server (NTRS)

    Reinfelds, J.; Seitz, R. N.; Wood, L. H.

    1966-01-01

    Automatic Mathematical Translator /AMSTRAN/ permits scientists or engineers to enter mathematical equations in their natural mathematical format and to obtain an immediate graphical display of the solution. This automatic-programming, on-line, multiterminal computer system allows experienced programmers to solve nonroutine problems.

  19. A computer graphics based model for scattering from objects of arbitrary shapes in the optical region

    NASA Technical Reports Server (NTRS)

    Goel, Narendra S.; Rozehnal, Ivan; Thompson, Richard L.

    1991-01-01

    A computer-graphics-based model, named DIANA, is presented for generation of objects of arbitrary shape and for calculating bidirectional reflectances and scattering from them, in the visible and infrared region. The computer generation is based on a modified Lindenmayer system approach which makes it possible to generate objects of arbitrary shapes and to simulate their growth, dynamics, and movement. Rendering techniques are used to display an object on a computer screen with appropriate shading and shadowing and to calculate the scattering and reflectance from the object. The technique is illustrated with scattering from canopies of simulated corn plants.

  20. Thoth: Software for data visualization & statistics

    NASA Astrophysics Data System (ADS)

    Laher, R. R.

    2016-10-01

    Thoth is a standalone software application with a graphical user interface for making it easy to query, display, visualize, and analyze tabular data stored in relational databases and data files. From imported data tables, it can create pie charts, bar charts, scatter plots, and many other kinds of data graphs with simple menus and mouse clicks (no programming required), by leveraging the open-source JFreeChart library. It also computes useful table-column data statistics. A mature tool, having underwent development and testing over several years, it is written in the Java computer language, and hence can be run on any computing platform that has a Java Virtual Machine and graphical-display capability. It can be downloaded and used by anyone free of charge, and has general applicability in science, engineering, medical, business, and other fields. Special tools and features for common tasks in astronomy and astrophysical research are included in the software.

  1. A computer graphics system for visualizing spacecraft in orbit

    NASA Technical Reports Server (NTRS)

    Eyles, Don E.

    1989-01-01

    To carry out unanticipated operations with resources already in space is part of the rationale for a permanently manned space station in Earth orbit. The astronauts aboard a space station will require an on-board, spatial display tool to assist the planning and rehearsal of upcoming operations. Such a tool can also help astronauts to monitor and control such operations as they occur, especially in cases where first-hand visibility is not possible. A computer graphics visualization system designed for such an application and currently implemented as part of a ground-based simulation is described. The visualization system presents to the user the spatial information available in the spacecraft's computers by drawing a dynamic picture containing the planet Earth, the Sun, a star field, and up to two spacecraft. The point of view within the picture can be controlled by the user to obtain a number of specific visualization functions. The elements of the display, the methods used to control the display's point of view, and some of the ways in which the system can be used are described.

  2. Best Manufacturing Practices: Report of Survey Conducted at UNISYS corporation Computer Systems Division, St. Paul, Minnesota

    DTIC Science & Technology

    1987-11-01

    assistance to the ATE test technicians by means of computer generated graphics on a 19" display terminal. The TEG presents colorized annotations on ACCA ...perform outstanding acts to meet goals. Savings and goals are auditable from reports, charts, SPC, and Oregon Matrix. COMPUTER-AIDED MANUFACTURING

  3. Electric Circuit Theory--Computer Illustrated Text.

    ERIC Educational Resources Information Center

    Riches, Brian

    1990-01-01

    Discusses the use of a computer-illustrated text (CIT) with integrated software to teach electric circuit theory to college students. Examples of software use are given, including simple animation, graphical displays, and problem-solving programs. Issues affecting electric circuit theory instruction are also addressed, including mathematical…

  4. Early Grades Ideas.

    ERIC Educational Resources Information Center

    Classroom Computer Learning, 1984

    1984-01-01

    Presents six computer-oriented classroom activities. They include: surveying a house for products using microprocessors, writing a program to display a flag, experimenting with LOGO's graphics capabilities, writing stories on the computer, using FOR/NEXT commands to create a blinking object, and teaching the Milton Bradley Big Trak to play…

  5. Analog-to-digital clinical data collection on networked workstations with graphic user interface.

    PubMed

    Lunt, D

    1991-02-01

    An innovative respiratory examination system has been developed that combines physiological response measurement, real-time graphic displays, user-driven operating sequences, and networked file archiving and review into a scientific research and clinical diagnosis tool. This newly constructed computer network is being used to enhance the research center's ability to perform patient pulmonary function examinations. Respiratory data are simultaneously acquired and graphically presented during patient breathing maneuvers and rapidly transformed into graphic and numeric reports, suitable for statistical analysis or database access. The environment consists of the hardware (Macintosh computer, MacADIOS converters, analog amplifiers), the software (HyperCard v2.0, HyperTalk, XCMDs), and the network (AppleTalk, fileservers, printers) as building blocks for data acquisition, analysis, editing, and storage. System operation modules include: Calibration, Examination, Reports, On-line Help Library, Graphic/Data Editing, and Network Storage.

  6. Pre- and postprocessing for reservoir simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, W.L.; Ingalls, L.J.; Prasad, S.J.

    1991-05-01

    This paper describes the functionality and underlying programing paradigms of Shell's simulator-related reservoir-engineering graphics system. THis system includes the simulation postprocessing programs Reservoir Display System (RDS) and Fast Reservoir Engineering Displays (FRED), a hypertext-like on-line documentation system (DOC), and a simulator input preprocessor (SIMPLSIM). RDS creates displays of reservoir simulation results. These displays represent the areal or cross-section distribution of computer reservoir parameters, such as pressure, phase saturation, or temperature. Generation of these images at real-time animation rates is discussed. FRED facilitates the creation of plot files from reservoir simulation output. The use of dynamic memory allocation, asynchronous I/O, amore » table-driven screen manager, and mixed-language (FORTRAN and C) programming are detailed. DOC is used to create and access on-line documentation for the pre-and post-processing programs and the reservoir simulators. DOC can be run by itself or can be accessed from within any other graphics or nongraphics application program. DOC includes a text editor, which is that basis for a reservoir simulation tutorial and greatly simplifies the preparation of simulator input. The use of sharable images, graphics, and the documentation file network are described. Finally, SIMPLSIM is a suite of program that uses interactive graphics in the preparation of reservoir description data for input into reservoir simulators. The SIMPLSIM user-interface manager (UIM) and its graphic interface for reservoir description are discussed.« less

  7. Procurement specification color graphic camera system

    NASA Technical Reports Server (NTRS)

    Prow, G. E.

    1980-01-01

    The performance and design requirements for a Color Graphic Camera System are presented. The system is a functional part of the Earth Observation Department Laboratory System (EODLS) and will be interfaced with Image Analysis Stations. It will convert the output of a raster scan computer color terminal into permanent, high resolution photographic prints and transparencies. Images usually displayed will be remotely sensed LANDSAT imager scenes.

  8. Three Dimensional Display Of Meteorological Scientific Data

    NASA Astrophysics Data System (ADS)

    Grotch, Stanley L.

    1988-01-01

    Even a cursory reading of any daily newspaper shows that we are in the midst of a dramatic revolution in computer graphics. Virtually every day some new piece of hardware or software is announced, adding to the tools available to the working scientist. Three dimensional graphics form a significant part of this revolution having become virtually commonplace in advertising and on television.

  9. A laboratory breadboard system for dual-arm teleoperation

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.; Szakaly, Z.; Kim, W. S.

    1990-01-01

    The computing architecture of a novel dual-arm teleoperation system is described. The novelty of this system is that: (1) the master arm is not a replica of the slave arm; it is unspecific to any manipulator and can be used for the control of various robot arms with software modifications; and (2) the force feedback to the general purpose master arm is derived from force-torque sensor data originating from the slave hand. The computing architecture of this breadboard system is a fully synchronized pipeline with unique methods for data handling, communication and mathematical transformations. The computing system is modular, thus inherently extendable. The local control loops at both sites operate at 100 Hz rate, and the end-to-end bilateral (force-reflecting) control loop operates at 200 Hz rate, each loop without interpolation. This provides high-fidelity control. This end-to-end system elevates teleoperation to a new level of capabilities via the use of sensors, microprocessors, novel electronics, and real-time graphics displays. A description is given of a graphic simulation system connected to the dual-arm teleoperation breadboard system. High-fidelity graphic simulation of a telerobot (called Phantom Robot) is used for preview and predictive displays for planning and for real-time control under several seconds communication time delay conditions. High fidelity graphic simulation is obtained by using appropriate calibration techniques.

  10. Computer Series, 37: Bits and Pieces, 14.

    ERIC Educational Resources Information Center

    Moore, John W., Ed.

    1983-01-01

    Thirteen computer/calculator programs (available from authors) are described. These include: representation of molecules as 3-D models; animated 3-D graphical display of line drawings of molecules; principles of Fourier-transform nuclear magnetic resonance; tutorial program for pH calculation; balancing chemical reactions using a hand-held…

  11. A High Performance VLSI Computer Architecture For Computer Graphics

    NASA Astrophysics Data System (ADS)

    Chin, Chi-Yuan; Lin, Wen-Tai

    1988-10-01

    A VLSI computer architecture, consisting of multiple processors, is presented in this paper to satisfy the modern computer graphics demands, e.g. high resolution, realistic animation, real-time display etc.. All processors share a global memory which are partitioned into multiple banks. Through a crossbar network, data from one memory bank can be broadcasted to many processors. Processors are physically interconnected through a hyper-crossbar network (a crossbar-like network). By programming the network, the topology of communication links among processors can be reconfigurated to satisfy specific dataflows of different applications. Each processor consists of a controller, arithmetic operators, local memory, a local crossbar network, and I/O ports to communicate with other processors, memory banks, and a system controller. Operations in each processor are characterized into two modes, i.e. object domain and space domain, to fully utilize the data-independency characteristics of graphics processing. Special graphics features such as 3D-to-2D conversion, shadow generation, texturing, and reflection, can be easily handled. With the current high density interconnection (MI) technology, it is feasible to implement a 64-processor system to achieve 2.5 billion operations per second, a performance needed in most advanced graphics applications.

  12. New space sensor and mesoscale data analysis

    NASA Technical Reports Server (NTRS)

    Hickey, John S.

    1987-01-01

    The developed Earth Science and Application Division (ESAD) system/software provides the research scientist with the following capabilities: an extensive data base management capibility to convert various experiment data types into a standard format; and interactive analysis and display package (AVE80); an interactive imaging/color graphics capability utilizing the Apple III and IBM PC workstations integrated into the ESAD computer system; and local and remote smart-terminal capability which provides color video, graphics, and Laserjet output. Recommendations for updating and enhancing the performance of the ESAD computer system are listed.

  13. Microgravity computing codes. User's guide

    NASA Astrophysics Data System (ADS)

    1982-01-01

    Codes used in microgravity experiments to compute fluid parameters and to obtain data graphically are introduced. The computer programs are stored on two diskettes, compatible with the floppy disk drives of the Apple 2. Two versions of both disks are available (DOS-2 and DOS-3). The codes are written in BASIC and are structured as interactive programs. Interaction takes place through the keyboard of any Apple 2-48K standard system with single floppy disk drive. The programs are protected against wrong commands given by the operator. The programs are described step by step in the same order as the instructions displayed on the monitor. Most of these instructions are shown, with samples of computation and of graphics.

  14. An Interactive, Versatile, Three-Dimensional Display, Manipulation and Plotting System for Biomedical Research

    ERIC Educational Resources Information Center

    Feldmann, Richard J.; And Others

    1972-01-01

    Computer graphics provides a valuable tool for the representation and a better understanding of structures, both small and large. Accurate and rapid construction, manipulation, and plotting of structures, such as macromolecules as complex as hemoglobin, are performed by a collection of computer programs and a time-sharing computer. (21 references)…

  15. Linking of the BENSON graph-plotter with the Elektronika-1001 computer

    NASA Technical Reports Server (NTRS)

    Valtts, I. Y.; Nilolaev, N. Y.; Popov, M. V.; Soglasnov, V. A.

    1980-01-01

    A device, developed by the Institute of Space Research of the Academy of Sciences of the USSR, for linking the Elektronika-100I computer with the BENSON graph-plotter is described. Programs are compiled which provide display of graphic and alphanumeric information. Instructions for their utilization are given.

  16. Full-Screen Magnification on a Budget: Using a Hardware-Based Multi-Display Graphics Card as a Screen-Magnifier

    ERIC Educational Resources Information Center

    Sales, Anthony; Evans, Shirley; Musgrove, Nick; Homfray, Richard

    2006-01-01

    Potentially, computers can balance some of the effects of visual impairment and provide equality of opportunity (Gerber, 2003). Students' individual needs entail that they and their teachers have access to a range of assistive technologies that may vary according to the task as well as to the learner. A dual output graphics card with a twin…

  17. Computer-aided light sheet flow visualization using photogrammetry

    NASA Technical Reports Server (NTRS)

    Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.

    1994-01-01

    A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and a visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) results, was chosen to interactively display the reconstructed light sheet images with the numerical surface geometry for the model or aircraft under study. The photogrammetric reconstruction technique and the image processing and computer graphics techniques and equipment are described. Results of the computer-aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images with CFD solutions in the same graphics environment is also demonstrated.

  18. Computer-Aided Light Sheet Flow Visualization

    NASA Technical Reports Server (NTRS)

    Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.

    1993-01-01

    A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) data sets, was chosen to interactively display the reconstructed light sheet images, along with the numerical surface geometry for the model or aircraft under study. A description is provided of the photogrammetric reconstruction technique, and the image processing and computer graphics techniques and equipment. Results of the computer aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images and CFD solutions in the same graphics environment is also demonstrated.

  19. Computer-aided light sheet flow visualization

    NASA Technical Reports Server (NTRS)

    Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.

    1993-01-01

    A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) data sets, was chosen to interactively display the reconstructed light sheet images, along with the numerical surface geometry for the model or aircraft under study. A description is provided of the photogrammetric reconstruction technique, and the image processing and computer graphics techniques and equipment. Results of the computer aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images and CFD solutions in the same graphics environment is also demonstrated.

  20. Three Dimensional Computer Graphics Federates for the 2012 Smackdown Simulation

    NASA Technical Reports Server (NTRS)

    Fordyce, Crystal; Govindaiah, Swetha; Muratet, Sean; O'Neil, Daniel A.; Schricker, Bradley C.

    2012-01-01

    The Simulation Interoperability Standards Organization (SISO) Smackdown is a two-year old annual event held at the 2012 Spring Simulation Interoperability Workshop (SIW). A primary objective of the Smackdown event is to provide college students with hands-on experience in developing distributed simulations using High Level Architecture (HLA). Participating for the second time, the University of Alabama in Huntsville (UAHuntsville) deployed four federates, two federates simulated a communications server and a lunar communications satellite with a radio. The other two federates generated 3D computer graphics displays for the communication satellite constellation and for the surface based lunar resupply mission. Using the Light-Weight Java Graphics Library, the satellite display federate presented a lunar-texture mapped sphere of the moon and four Telemetry Data Relay Satellites (TDRS), which received object attributes from the lunar communications satellite federate to drive their motion. The surface mission display federate was an enhanced version of the federate developed by ForwardSim, Inc. for the 2011 Smackdown simulation. Enhancements included a dead-reckoning algorithm and a visual indication of which communication satellite was in line of sight of Hadley Rille. This paper concentrates on these two federates by describing the functions, algorithms, HLA object attributes received from other federates, development experiences and recommendations for future, participating Smackdown teams.

  1. An interactive graphics program to retrieve, display, compare, manipulate, curve fit, difference and cross plot wind tunnel data

    NASA Technical Reports Server (NTRS)

    Elliott, R. D.; Werner, N. M.; Baker, W. M.

    1975-01-01

    The Aerodynamic Data Analysis and Integration System (ADAIS), developed as a highly interactive computer graphics program capable of manipulating large quantities of data such that addressable elements of a data base can be called up for graphic display, compared, curve fit, stored, retrieved, differenced, etc., was described. The general nature of the system is evidenced by the fact that limited usage has already occurred with data bases consisting of thermodynamic, basic loads, and flight dynamics data. Productivity using ADAIS of five times that for conventional manual methods of wind tunnel data analysis is routinely achieved. In wind tunnel data analysis, data from one or more runs of a particular test may be called up and displayed along with data from one or more runs of a different test. Curves may be faired through the data points by any of four methods, including cubic spline and least squares polynomial fit up to seventh order.

  2. [The importance of full graphic display in a graphic organizer to facilitate discourse comprehension].

    PubMed

    Akio, Suzuki; Shunji, Awazu

    2010-04-01

    In order to examine the importance of fully representing graphic information items in graphic aids to facilitate comprehension of explanatory texts, we established and randomly assigned fifty university students into the following four groups: (a) participants who study the text without the aid, (b) participants who study the text with the aid, whose literal (key words) and graphic (arrows, boxes, etc.) information items are fully displayed, (c) participants who study the text with the aid, whose graphic information items are fully displayed but whose literal information items are partially displayed, and (d) participants who study the text with the aid, whose literal and graphic information items are partially displayed. The results of two kinds of comprehension tests "textbase and situation model" revealed that groups (b) and (c) outperformed groups (a) and (d). These findings suggest that graphic aids can facilitate students' text comprehension when graphic information items are fully displayed and literal information items are displayed either fully or partially; however, the aid cannot facilitate comprehension when both literal and graphic elements are displayed partially.

  3. Development of user guidelines for ECAS display design, volume 1

    NASA Technical Reports Server (NTRS)

    Dodson, D. W.; Shields, N. L., Jr.

    1978-01-01

    Experiment computer application software (ECAS) display design and command usage guidelines were developed, which if followed by spacelab experiments, would standardize methods and techniques for data presentation and commanding via ECAS. These guidelines would provide some commonality among experiments which would enhance crew training and flight operations. The guidelines are applicable to all onboard experiment displays, whether allocated by ECAS or a dedicated experiment processor. A brief description of the spacelab data display system characteristics and of the services provided by the experiment computer operating system is included. Guidelines concerning data presentation and layout of alphanumeric and graphic information are presented along with guidelines concerning keyboard commanding and command feedback.

  4. Computer Assisted Virtual Environment - CAVE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Phillip; Podgorney, Robert; Weingartner,

    Research at the Center for Advanced Energy Studies is taking on another dimension with a 3-D device known as a Computer Assisted Virtual Environment. The CAVE uses projection to display high-end computer graphics on three walls and the floor. By wearing 3-D glasses to create depth perception and holding a wand to move and rotate images, users can delve into data.

  5. Computer Assisted Virtual Environment - CAVE

    ScienceCinema

    Erickson, Phillip; Podgorney, Robert; Weingartner,

    2018-05-30

    Research at the Center for Advanced Energy Studies is taking on another dimension with a 3-D device known as a Computer Assisted Virtual Environment. The CAVE uses projection to display high-end computer graphics on three walls and the floor. By wearing 3-D glasses to create depth perception and holding a wand to move and rotate images, users can delve into data.

  6. Three-dimensional computer graphic animations for studying social approach behaviour in medaka fish: Effects of systematic manipulation of morphological and motion cues.

    PubMed

    Nakayasu, Tomohiro; Yasugi, Masaki; Shiraishi, Soma; Uchida, Seiichi; Watanabe, Eiji

    2017-01-01

    We studied social approach behaviour in medaka fish using three-dimensional computer graphic (3DCG) animations based on the morphological features and motion characteristics obtained from real fish. This is the first study which used 3DCG animations and examined the relative effects of morphological and motion cues on social approach behaviour in medaka. Various visual stimuli, e.g., lack of motion, lack of colour, alternation in shape, lack of locomotion, lack of body motion, and normal virtual fish in which all four features (colour, shape, locomotion, and body motion) were reconstructed, were created and presented to fish using a computer display. Medaka fish presented with normal virtual fish spent a long time in proximity to the display, whereas time spent near the display was decreased in other groups when compared with normal virtual medaka group. The results suggested that the naturalness of visual cues contributes to the induction of social approach behaviour. Differential effects between body motion and locomotion were also detected. 3DCG animations can be a useful tool to study the mechanisms of visual processing and social behaviour in medaka.

  7. Three-dimensional computer graphic animations for studying social approach behaviour in medaka fish: Effects of systematic manipulation of morphological and motion cues

    PubMed Central

    Nakayasu, Tomohiro; Yasugi, Masaki; Shiraishi, Soma; Uchida, Seiichi; Watanabe, Eiji

    2017-01-01

    We studied social approach behaviour in medaka fish using three-dimensional computer graphic (3DCG) animations based on the morphological features and motion characteristics obtained from real fish. This is the first study which used 3DCG animations and examined the relative effects of morphological and motion cues on social approach behaviour in medaka. Various visual stimuli, e.g., lack of motion, lack of colour, alternation in shape, lack of locomotion, lack of body motion, and normal virtual fish in which all four features (colour, shape, locomotion, and body motion) were reconstructed, were created and presented to fish using a computer display. Medaka fish presented with normal virtual fish spent a long time in proximity to the display, whereas time spent near the display was decreased in other groups when compared with normal virtual medaka group. The results suggested that the naturalness of visual cues contributes to the induction of social approach behaviour. Differential effects between body motion and locomotion were also detected. 3DCG animations can be a useful tool to study the mechanisms of visual processing and social behaviour in medaka. PMID:28399163

  8. Software Graphics Processing Unit (sGPU) for Deep Space Applications

    NASA Technical Reports Server (NTRS)

    McCabe, Mary; Salazar, George; Steele, Glen

    2015-01-01

    A graphics processing capability will be required for deep space missions and must include a range of applications, from safety-critical vehicle health status to telemedicine for crew health. However, preliminary radiation testing of commercial graphics processing cards suggest they cannot operate in the deep space radiation environment. Investigation into an Software Graphics Processing Unit (sGPU)comprised of commercial-equivalent radiation hardened/tolerant single board computers, field programmable gate arrays, and safety-critical display software shows promising results. Preliminary performance of approximately 30 frames per second (FPS) has been achieved. Use of multi-core processors may provide a significant increase in performance.

  9. A space systems perspective of graphics simulation integration

    NASA Technical Reports Server (NTRS)

    Brown, R.; Gott, C.; Sabionski, G.; Bochsler, D.

    1987-01-01

    Creation of an interactive display environment can expose issues in system design and operation not apparent from nongraphics development approaches. Large amounts of information can be presented in a short period of time. Processes can be simulated and observed before committing resources. In addition, changes in the economics of computing have enabled broader graphics usage beyond traditional engineering and design into integrated telerobotics and Artificial Intelligence (AI) applications. The highly integrated nature of space operations often tend to rely upon visually intensive man-machine communication to ensure success. Graphics simulation activities at the Mission Planning and Analysis Division (MPAD) of NASA's Johnson Space Center are focusing on the evaluation of a wide variety of graphical analysis within the context of present and future space operations. Several telerobotics and AI applications studies utilizing graphical simulation are described. The presentation includes portions of videotape illustrating technology developments involving: (1) coordinated manned maneuvering unit and remote manipulator system operations, (2) a helmet mounted display system, and (3) an automated rendezous application utilizing expert system and voice input/output technology.

  10. An Architectural Design System Based on Computer Graphics.

    ERIC Educational Resources Information Center

    MacDonald, Stephen L.; Wehrli, Robert

    The recent developments in computer hardware and software are presented to inform architects of this design tool. Technical advancements in equipment include--(1) cathode ray tube displays, (2) light pens, (3) print-out and photo copying attachments, (4) controls for comparison and selection of images, (5) chording keyboards, (6) plotters, and (7)…

  11. User's manual for Interactive Data Display System (IDDS)

    NASA Technical Reports Server (NTRS)

    Stegeman, James D.

    1992-01-01

    A computer graphics package for the visualization of three-dimensional flow in turbomachinery has been developed and tested. This graphics package, called IDDS (Interactive Data Display System), is able to 'unwrap' the volumetric data cone associated with a centrifugal compressor and display the results in an easy to understand two-dimensional manner. IDDS will provide the majority of the visualization and analysis capability for the ICE (Integrated CFD and Experiment) system. This document is intended to serve as a user's manual for IDDS in a stand-alone mode. Currently, IDDS is capable of plotting two- or three-dimensional simulation data, but work is under way to expand IDDS so that experimental data can be accepted, plotted, and compared with a simulation dataset of the actual hardware being tested.

  12. Predicted Weather Display and Decision Support Interface for Flight Deck

    NASA Technical Reports Server (NTRS)

    Johnson, Walter W. (Inventor); Wong, Dominic G. (Inventor); Koteskey, Robert W. (Inventor); Wu, Shu-Chieh (Inventor)

    2017-01-01

    A system and method for providing visual depictions of a predictive weather forecast for in-route vehicle trajectory planning. The method includes displaying weather information on a graphical display, displaying vehicle position information on the graphical display, selecting a predictive interval, displaying predictive weather information for the predictive interval on the graphical display, and displaying predictive vehicle position information for the predictive interval on the graphical display, such that the predictive vehicle position information is displayed relative to the predictive weather information, for in-route trajectory planning.

  13. PC-based control unit for a head-mounted operating microscope for augmented-reality visualization in surgical navigation

    NASA Astrophysics Data System (ADS)

    Figl, Michael; Birkfellner, Wolfgang; Watzinger, Franz; Wanschitz, Felix; Hummel, Johann; Hanel, Rudolf A.; Ewers, Rolf; Bergmann, Helmar

    2002-05-01

    Two main concepts of Head Mounted Displays (HMD) for augmented reality (AR) visualization exist, the optical and video-see through type. Several research groups have pursued both approaches for utilizing HMDs for computer aided surgery. While the hardware requirements for a video see through HMD to achieve acceptable time delay and frame rate seem to be enormous the clinical acceptance of such a device is doubtful from a practical point of view. Starting from previous work in displaying additional computer-generated graphics in operating microscopes, we have adapted a miniature head mounted operating microscope for AR by integrating two very small computer displays. To calibrate the projection parameters of this so called Varioscope AR we have used Tsai's Algorithm for camera calibration. Connection to a surgical navigation system was performed by defining an open interface to the control unit of the Varioscope AR. The control unit consists of a standard PC with a dual head graphics adapter to render and display the desired augmentation of the scene. We connected this control unit to a computer aided surgery (CAS) system by the TCP/IP interface. In this paper we present the control unit for the HMD and its software design. We tested two different optical tracking systems, the Flashpoint (Image Guided Technologies, Boulder, CO), which provided about 10 frames per second, and the Polaris (Northern Digital, Ontario, Canada) which provided at least 30 frames per second, both with a time delay of one frame.

  14. Packaging printed circuit boards: A production application of interactive graphics

    NASA Technical Reports Server (NTRS)

    Perrill, W. A.

    1975-01-01

    The structure and use of an Interactive Graphics Packaging Program (IGPP), conceived to apply computer graphics to the design of packaging electronic circuits onto printed circuit boards (PCB), were described. The intent was to combine the data storage and manipulative power of the computer with the imaginative, intuitive power of a human designer. The hardware includes a CDC 6400 computer and two CDC 777 terminals with CRT screens, light pens, and keyboards. The program is written in FORTRAN 4 extended with the exception of a few functions coded in COMPASS (assembly language). The IGPP performs four major functions for the designer: (1) data input and display, (2) component placement (automatic or manual), (3) conductor path routing (automatic or manual), and (4) data output. The most complex PCB packaged to date measured 16.5 cm by 19 cm and contained 380 components, two layers of ground planes and four layers of conductors mixed with ground planes.

  15. Standardization versus customization of glucose reporting.

    PubMed

    Rodbard, David

    2013-05-01

    Bergenstal et al. (Diabetes Technol Ther 2013;15:198-211) described an important approach toward standardization of reporting and analysis of continuous glucose monitoring and self-monitoring of blood glucose (SMBG) data. The ambulatory glucose profile (AGP), a composite display of glucose by time of day that superimposes data from multiple days, is perhaps the most informative and useful of the many graphical approaches to display glucose data. However, the AGP has limitations; some variations are desirable and useful. Synchronization with respect to meals, traditionally used in glucose profiles for SMBG data, can improve characterization of postprandial glucose excursions. Several other types of graphical display are available, and recently developed ones can augment the information provided by the AGP. There is a need to standardize the parameters describing glycemic variability and cross-validate the available computer programs that calculate glycemic variability. Clinical decision support software can identify and prioritize clinical problems, make recommendations for modifications of therapy, and explain its justification for those recommendations. The goal of standardization is challenging in view of the diversity of clinical situations and of computing and display platforms and software. Standardization is desirable but must be done in a manner that permits flexibility and fosters innovation.

  16. The effect of a graphical interpretation of a statistic trend indicator (Trigg's Tracking Variable) on the detection of simulated changes.

    PubMed

    Kennedy, R R; Merry, A F

    2011-09-01

    Anaesthesia involves processing large amounts of information over time. One task of the anaesthetist is to detect substantive changes in physiological variables promptly and reliably. It has been previously demonstrated that a graphical trend display of historical data leads to more rapid detection of such changes. We examined the effect of a graphical indication of the magnitude of Trigg's Tracking Variable, a simple statistically based trend detection algorithm, on the accuracy and latency of the detection of changes in a micro-simulation. Ten anaesthetists each viewed 20 simulations with four variables displayed as the current value with a simple graphical trend display. Values for these variables were generated by a computer model, and updated every second; after a period of stability a change occurred to a new random value at least 10 units from baseline. In 50% of the simulations an indication of the rate of change was given by a five level graphical representation of the value of Trigg's Tracking Variable. Participants were asked to indicate when they thought a change was occurring. Changes were detected 10.9% faster with the trend indicator present (mean 13.1 [SD 3.1] cycles vs 14.6 [SD 3.4] cycles, 95% confidence interval 0.4 to 2.5 cycles, P = 0.013. There was no difference in accuracy of detection (median with trend detection 97% [interquartile range 95 to 100%], without trend detection 100% [98 to 100%]), P = 0.8. We conclude that simple statistical trend detection may speed detection of changes during routine anaesthesia, even when a graphical trend display is present.

  17. GEMPAK 5.1 - A GENERAL METEOROLOGICAL PACKAGE (UNIX VERSION)

    NASA Technical Reports Server (NTRS)

    Desjardins, M. L.

    1994-01-01

    GEMPAK is a general meteorological software package developed at NASA/Goddard Space Flight Center. It includes programs to analyze and display surface, upper-air, and gridded data, including model output. There are very general programs to list, edit, and plot data on maps, to display profiles and time series, to draw and fill contours, to draw streamlines, to plot symbols for clouds, sky cover, and pressure tendency, and draw cross sections in the case of gridded data and sounding data. In addition, there are Barnes objective analysis programs to grid surface and upper-air data. The programs include the capabilities to derive meteorological parameters from those found in the dataset, to perform vertical interpolations of sounding data to different coordinate systems, and to compute an extensive set of gridded diagnostic quantities by specifying various nested combinations of scalars and vector arithmetic, algebraic, and differential operators. The GEMPAK 5.1 graphics/transformation subsystem, GEMPLT, provides device-independent graphics. GEMPLT also has the capability to display output in a variety of map projections or overlaid on satellite imagery. GEMPAK 5.1 is written in FORTRAN 77 and C-language and has been implemented on VAX computers under VMS and on computers running the UNIX operating system. During installation and normal use, this package occupies approximately 100Mb of hard disk space. The UNIX version of GEMPAK includes drivers for several graphic output systems including MIT's X Window System (X11,R4), Sun GKS, PostScript (color and monochrome), Silicon Graphics, and others. The VMS version of GEMPAK also includes drivers for several graphic output systems including PostScript (color and monochrome). The VMS version is delivered with the object code for the Transportable Applications Environment (TAE) program, version 4.1 which serves as a user interface. A color monitor is recommended for displaying maps on video display devices. Data for rendering regional maps is included with this package. The standard distribution medium for the UNIX version of GEMPAK 5.1 is a .25 inch streaming magnetic tape cartridge in UNIX tar format. The standard distribution medium for the VMS version of GEMPAK 5.1 is a 6250 BPI 9-track magnetic tape in DEC VAX BACKUP format. The VMS version is also available on a TK50 tape cartridge in DEC VAX BACKUP format. This program was developed in 1985. The current version, GEMPAK 5.1, was released in 1992. The package is delivered with source code. An extensive collection of subroutine libraries allows users to format data for use by GEMPAK, to develop new programs, and to enhance existing ones.

  18. Payload crew training scheduler (PACTS) user's manual

    NASA Technical Reports Server (NTRS)

    Shipman, D. L.

    1980-01-01

    The operation of the payload specialist training scheduler (PACTS) is discussed in this user's manual which is used to schedule payload specialists for mission training on the Spacelab experiments. The PACTS program is a fully automated interactive, computerized scheduling program equipped with tutorial displays. The tutorial displays are sufficiently detailed for use by a program analyst having no computer experience. The PACTS program is designed to operate on the UNIVAC 1108 computer system, and has the capability to load output into a PDP 11/45 Interactive Graphics Display System for printing schedules. The program has the capacity to handle up to three overlapping Spacelab missions.

  19. Apple's Macintosh.

    ERIC Educational Resources Information Center

    Miller, Michael J.

    1984-01-01

    Description of the Macintosh personal, educational, and business computer produced by Apple covers cost; physical characteristics including display devices, circuit boards, and built-in features; company-produced software; third-party produced software; memory and storage capacity; word-processing features; and graphics capabilities. (MBR)

  20. Advances in Software Tools for Pre-processing and Post-processing of Overset Grid Computations

    NASA Technical Reports Server (NTRS)

    Chan, William M.

    2004-01-01

    Recent developments in three pieces of software for performing pre-processing and post-processing work on numerical computations using overset grids are presented. The first is the OVERGRID graphical interface which provides a unified environment for the visualization, manipulation, generation and diagnostics of geometry and grids. Modules are also available for automatic boundary conditions detection, flow solver input preparation, multiple component dynamics input preparation and dynamics animation, simple solution viewing for moving components, and debris trajectory analysis input preparation. The second is a grid generation script library that enables rapid creation of grid generation scripts. A sample of recent applications will be described. The third is the OVERPLOT graphical interface for displaying and analyzing history files generated by the flow solver. Data displayed include residuals, component forces and moments, number of supersonic and reverse flow points, and various dynamics parameters.

  1. A daily living activity remote monitoring system for solitary elderly people.

    PubMed

    Maki, Hiromichi; Ogawa, Hidekuni; Matsuoka, Shingo; Yonezawa, Yoshiharu; Caldwell, W Morton

    2011-01-01

    A daily living activity remote monitoring system has been developed for supporting solitary elderly people. The monitoring system consists of a tri-axis accelerometer, six low-power active filters, a low-power 8-bit microcontroller (MC), a 1GB SD memory card (SDMC) and a 2.4 GHz low transmitting power mobile phone (PHS). The tri-axis accelerometer attached to the subject's chest can simultaneously measure dynamic and static acceleration forces produced by heart sound, respiration, posture and behavior. The heart rate, respiration rate, activity, posture and behavior are detected from the dynamic and static acceleration forces. These data are stored in the SD. The MC sends the data to the server computer every hour. The server computer stores the data and makes a graphic chart from the data. When the caregiver calls from his/her mobile phone to the server computer, the server computer sends the graphical chart via the PHS. The caregiver's mobile phone displays the chart to the monitor graphically.

  2. MOLECULAR DESIGNER: an interactive program for the display of protein structure on the IBM-PC.

    PubMed

    Hannon, G J; Jentoft, J E

    1985-09-01

    A BASIC interactive graphics program has been developed for the IBM-PC which utilizes the graphics capabilities of that computer to display and manipulate protein structure from coordinates. Structures may be generated from typed files, or from Brookhaven National Laboratories' Protein Data Bank data tapes. Once displayed, images may be rotated, translated and expanded to any desired size. Figures may be viewed as ball-and-stick or space-filling models. Calculated multiple-point perspective may also be added to the display. Docking manipulations are possible since more than a single figure may be displayed and manipulated simultaneously. Further, stereo images and red/blue three-dimensional images may be generated using the accompanying DESIPLOT program and an HP-7475A plotter. A version of the program is also currently available for the Apple Macintosh. Full implementation on the Macintosh requires 512 K and at least one disk drive. Otherwise this version is essentially identical to the IBM-PC version described herein.

  3. Pictorial communication in virtual and real environments

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R. (Editor)

    1991-01-01

    Papers about the communication between human users and machines in real and synthetic environments are presented. Individual topics addressed include: pictorial communication, distortions in memory for visual displays, cartography and map displays, efficiency of graphical perception, volumetric visualization of 3D data, spatial displays to increase pilot situational awareness, teleoperation of land vehicles, computer graphics system for visualizing spacecraft in orbit, visual display aid for orbital maneuvering, multiaxis control in telemanipulation and vehicle guidance, visual enhancements in pick-and-place tasks, target axis effects under transformed visual-motor mappings, adapting to variable prismatic displacement. Also discussed are: spatial vision within egocentric and exocentric frames of reference, sensory conflict in motion sickness, interactions of form and orientation, perception of geometrical structure from congruence, prediction of three-dimensionality across continuous surfaces, effects of viewpoint in the virtual space of pictures, visual slant underestimation, spatial constraints of stereopsis in video displays, stereoscopic stance perception, paradoxical monocular stereopsis and perspective vergence. (No individual items are abstracted in this volume)

  4. Scientific Visualization and Computational Science: Natural Partners

    NASA Technical Reports Server (NTRS)

    Uselton, Samuel P.; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    Scientific visualization is developing rapidly, stimulated by computational science, which is gaining acceptance as a third alternative to theory and experiment. Computational science is based on numerical simulations of mathematical models derived from theory. But each individual simulation is like a hypothetical experiment; initial conditions are specified, and the result is a record of the observed conditions. Experiments can be simulated for situations that can not really be created or controlled. Results impossible to measure can be computed.. Even for observable values, computed samples are typically much denser. Numerical simulations also extend scientific exploration where the mathematics is analytically intractable. Numerical simulations are used to study phenomena from subatomic to intergalactic scales and from abstract mathematical structures to pragmatic engineering of everyday objects. But computational science methods would be almost useless without visualization. The obvious reason is that the huge amounts of data produced require the high bandwidth of the human visual system, and interactivity adds to the power. Visualization systems also provide a single context for all the activities involved from debugging the simulations, to exploring the data, to communicating the results. Most of the presentations today have their roots in image processing, where the fundamental task is: Given an image, extract information about the scene. Visualization has developed from computer graphics, and the inverse task: Given a scene description, make an image. Visualization extends the graphics paradigm by expanding the possible input. The goal is still to produce images; the difficulty is that the input is not a scene description displayable by standard graphics methods. Visualization techniques must either transform the data into a scene description or extend graphics techniques to display this odd input. Computational science is a fertile field for visualization research because the results vary so widely and include things that have no known appearance. The amount of data creates additional challenges for both hardware and software systems. Evaluations of visualization should ultimately reflect the insight gained into the scientific phenomena. So making good visualizations requires consideration of characteristics of the user and the purpose of the visualization. Knowledge about human perception and graphic design is also relevant. It is this breadth of knowledge that stimulates proposals for multidisciplinary visualization teams and intelligent visualization assistant software. Visualization is an immature field, but computational science is stimulating research on a broad front.

  5. The Workstation Approach to Laboratory Computing

    PubMed Central

    Crosby, P.A.; Malachowski, G.C.; Hall, B.R.; Stevens, V.; Gunn, B.J.; Hudson, S.; Schlosser, D.

    1985-01-01

    There is a need for a Laboratory Workstation which specifically addresses the problems associated with computing in the scientific laboratory. A workstation based on the IBM PC architecture and including a front end data acquisition system which communicates with a host computer via a high speed communications link; a new graphics display controller with hardware window management and window scrolling; and an integrated software package is described.

  6. Augmented Computer Mouse Would Measure Applied Force

    NASA Technical Reports Server (NTRS)

    Li, Larry C. H.

    1993-01-01

    Proposed computer mouse measures force of contact applied by user. Adds another dimension to two-dimensional-position-measuring capability of conventional computer mouse; force measurement designated to represent any desired continuously variable function of time and position, such as control force, acceleration, velocity, or position along axis perpendicular to computer video display. Proposed mouse enhances sense of realism and intuition in interaction between operator and computer. Useful in such applications as three-dimensional computer graphics, computer games, and mathematical modeling of dynamics.

  7. Using parallel computing for the display and simulation of the space debris environment

    NASA Astrophysics Data System (ADS)

    Möckel, M.; Wiedemann, C.; Flegel, S.; Gelhaus, J.; Vörsmann, P.; Klinkrad, H.; Krag, H.

    2011-07-01

    Parallelism is becoming the leading paradigm in today's computer architectures. In order to take full advantage of this development, new algorithms have to be specifically designed for parallel execution while many old ones have to be upgraded accordingly. One field in which parallel computing has been firmly established for many years is computer graphics. Calculating and displaying three-dimensional computer generated imagery in real time requires complex numerical operations to be performed at high speed on a large number of objects. Since most of these objects can be processed independently, parallel computing is applicable in this field. Modern graphics processing units (GPUs) have become capable of performing millions of matrix and vector operations per second on multiple objects simultaneously. As a side project, a software tool is currently being developed at the Institute of Aerospace Systems that provides an animated, three-dimensional visualization of both actual and simulated space debris objects. Due to the nature of these objects it is possible to process them individually and independently from each other. Therefore, an analytical orbit propagation algorithm has been implemented to run on a GPU. By taking advantage of all its processing power a huge performance increase, compared to its CPU-based counterpart, could be achieved. For several years efforts have been made to harness this computing power for applications other than computer graphics. Software tools for the simulation of space debris are among those that could profit from embracing parallelism. With recently emerged software development tools such as OpenCL it is possible to transfer the new algorithms used in the visualization outside the field of computer graphics and implement them, for example, into the space debris simulation environment. This way they can make use of parallel hardware such as GPUs and Multi-Core-CPUs for faster computation. In this paper the visualization software will be introduced, including a comparison between the serial and the parallel method of orbit propagation. Ways of how to use the benefits of the latter method for space debris simulation will be discussed. An introduction to OpenCL will be given as well as an exemplary algorithm from the field of space debris simulation.

  8. Using parallel computing for the display and simulation of the space debris environment

    NASA Astrophysics Data System (ADS)

    Moeckel, Marek; Wiedemann, Carsten; Flegel, Sven Kevin; Gelhaus, Johannes; Klinkrad, Heiner; Krag, Holger; Voersmann, Peter

    Parallelism is becoming the leading paradigm in today's computer architectures. In order to take full advantage of this development, new algorithms have to be specifically designed for parallel execution while many old ones have to be upgraded accordingly. One field in which parallel computing has been firmly established for many years is computer graphics. Calculating and displaying three-dimensional computer generated imagery in real time requires complex numerical operations to be performed at high speed on a large number of objects. Since most of these objects can be processed independently, parallel computing is applicable in this field. Modern graphics processing units (GPUs) have become capable of performing millions of matrix and vector operations per second on multiple objects simultaneously. As a side project, a software tool is currently being developed at the Institute of Aerospace Systems that provides an animated, three-dimensional visualization of both actual and simulated space debris objects. Due to the nature of these objects it is possible to process them individually and independently from each other. Therefore, an analytical orbit propagation algorithm has been implemented to run on a GPU. By taking advantage of all its processing power a huge performance increase, compared to its CPU-based counterpart, could be achieved. For several years efforts have been made to harness this computing power for applications other than computer graphics. Software tools for the simulation of space debris are among those that could profit from embracing parallelism. With recently emerged software development tools such as OpenCL it is possible to transfer the new algorithms used in the visualization outside the field of computer graphics and implement them, for example, into the space debris simulation environment. This way they can make use of parallel hardware such as GPUs and Multi-Core-CPUs for faster computation. In this paper the visualization software will be introduced, including a comparison between the serial and the parallel method of orbit propagation. Ways of how to use the benefits of the latter method for space debris simulation will be discussed. An introduction of OpenCL will be given as well as an exemplary algorithm from the field of space debris simulation.

  9. An Exploratory Study of the Effect of Screen Size and Resolution on the Legibility of Graphics in Automated Job Performance Aids. Final Report.

    ERIC Educational Resources Information Center

    Dwyer, Daniel J.

    Designed to assess the effect of alternative display (CRT) screen sizes and resolution levels on user ability to identify and locate printed circuit (PC) board points, this study is the first in a protracted research program on the legibility of graphics in computer-based job aids. Air Force maintenance training pipeline students (35 male and 1…

  10. Generating a 2D Representation of a Complex Data Structure

    NASA Technical Reports Server (NTRS)

    James, Mark

    2006-01-01

    A computer program, designed to assist in the development and debugging of other software, generates a two-dimensional (2D) representation of a possibly complex n-dimensional (where n is an integer >2) data structure or abstract rank-n object in that other software. The nature of the 2D representation is such that it can be displayed on a non-graphical output device and distributed by non-graphical means.

  11. Three-Dimensional Media Technologies: Potentials for Study in Visual Literacy.

    ERIC Educational Resources Information Center

    Thwaites, Hal

    This paper presents an overview of three-dimensional media technologies (3Dmt). Many of the new 3Dmt are the direct result of interactions of computing, communications, and imaging technologies. Computer graphics are particularly well suited to the creation of 3D images due to the high resolution and programmable nature of the current displays.…

  12. Mikado: A graphic program

    NASA Astrophysics Data System (ADS)

    Secretan, Y.

    A discussion of the modular program Mikado is presented. Mikado was developed with the goal of creating a flexible graphic tool to display and help analyze the results of finite element fluid flow computations. Mikado works on unstructured meshes, with elements of mixed geometric type, but also offers the possibility of using structured meshes. The program can be operated by both menu and mouse (interactive), or by command file (batch). Mikado is written in FORTRAN, except for a few system dependent subroutines which are in C. It runs presently on Silicon Graphics' workstations and could be easily ported to the IBM-RISC System/6000 family of workstations.

  13. Computers for Command and Control: An Airland Battle Requirement!

    DTIC Science & Technology

    1984-05-01

    systems can enhance communications, improve data management, and support decision making through information display (SEE REVERSE) JAN 173 E~lNOS~SIISLT...organizations to improve communications, enhance data management, and support decision making through graphical display techniques and mathematical...tactical commander’s control of maneuver forces. There are many reasons for the Army’s apparent inability to develop and field these systems. Among the

  14. SolCalc: A Suite for the Calculation and the Display of Magnetic Fields Generated by Solenoid Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopes, M. L.

    2014-07-01

    SolCalc is a software suite that computes and displays magnetic fields generated by a three dimensional (3D) solenoid system. Examples of such systems are the Mu2e magnet system and Helical Solenoids for muon cooling systems. SolCalc was originally coded in Matlab, and later upgraded to a compiled version (called MEX) to improve solving speed. Matlab was chosen because its graphical capabilities represent an attractive feature over other computer languages. Solenoid geometries can be created using any text editor or spread sheets and can be displayed dynamically in 3D. Fields are computed from any given list of coordinates. The field distributionmore » on the surfaces of the coils can be displayed as well. SolCalc was benchmarked against a well-known commercial software for speed and accuracy and the results compared favorably.« less

  15. Human-Centered Design of Human-Computer-Human Dialogs in Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1998-01-01

    A series of ongoing research programs at Georgia Tech established a need for a simulation support tool for aircraft computer-based aids. This led to the design and development of the Georgia Tech Electronic Flight Instrument Research Tool (GT-EFIRT). GT-EFIRT is a part-task flight simulator specifically designed to study aircraft display design and single pilot interaction. ne simulator, using commercially available graphics and Unix workstations, replicates to a high level of fidelity the Electronic Flight Instrument Systems (EFIS), Flight Management Computer (FMC) and Auto Flight Director System (AFDS) of the Boeing 757/767 aircraft. The simulator can be configured to present information using conventional looking B757n67 displays or next generation Primary Flight Displays (PFD) such as found on the Beech Starship and MD-11.

  16. Use of a graphics processing unit (GPU) to facilitate real-time 3D graphic presentation of the patient skin-dose distribution during fluoroscopic interventional procedures

    PubMed Central

    Rana, Vijay; Rudin, Stephen; Bednarek, Daniel R.

    2012-01-01

    We have developed a dose-tracking system (DTS) that calculates the radiation dose to the patient’s skin in real-time by acquiring exposure parameters and imaging-system-geometry from the digital bus on a Toshiba Infinix C-arm unit. The cumulative dose values are then displayed as a color map on an OpenGL-based 3D graphic of the patient for immediate feedback to the interventionalist. Determination of those elements on the surface of the patient 3D-graphic that intersect the beam and calculation of the dose for these elements in real time demands fast computation. Reducing the size of the elements results in more computation load on the computer processor and therefore a tradeoff occurs between the resolution of the patient graphic and the real-time performance of the DTS. The speed of the DTS for calculating dose to the skin is limited by the central processing unit (CPU) and can be improved by using the parallel processing power of a graphics processing unit (GPU). Here, we compare the performance speed of GPU-based DTS software to that of the current CPU-based software as a function of the resolution of the patient graphics. Results show a tremendous improvement in speed using the GPU. While an increase in the spatial resolution of the patient graphics resulted in slowing down the computational speed of the DTS on the CPU, the speed of the GPU-based DTS was hardly affected. This GPU-based DTS can be a powerful tool for providing accurate, real-time feedback about patient skin-dose to physicians while performing interventional procedures. PMID:24027616

  17. Use of a graphics processing unit (GPU) to facilitate real-time 3D graphic presentation of the patient skin-dose distribution during fluoroscopic interventional procedures.

    PubMed

    Rana, Vijay; Rudin, Stephen; Bednarek, Daniel R

    2012-02-23

    We have developed a dose-tracking system (DTS) that calculates the radiation dose to the patient's skin in real-time by acquiring exposure parameters and imaging-system-geometry from the digital bus on a Toshiba Infinix C-arm unit. The cumulative dose values are then displayed as a color map on an OpenGL-based 3D graphic of the patient for immediate feedback to the interventionalist. Determination of those elements on the surface of the patient 3D-graphic that intersect the beam and calculation of the dose for these elements in real time demands fast computation. Reducing the size of the elements results in more computation load on the computer processor and therefore a tradeoff occurs between the resolution of the patient graphic and the real-time performance of the DTS. The speed of the DTS for calculating dose to the skin is limited by the central processing unit (CPU) and can be improved by using the parallel processing power of a graphics processing unit (GPU). Here, we compare the performance speed of GPU-based DTS software to that of the current CPU-based software as a function of the resolution of the patient graphics. Results show a tremendous improvement in speed using the GPU. While an increase in the spatial resolution of the patient graphics resulted in slowing down the computational speed of the DTS on the CPU, the speed of the GPU-based DTS was hardly affected. This GPU-based DTS can be a powerful tool for providing accurate, real-time feedback about patient skin-dose to physicians while performing interventional procedures.

  18. Combining 3D structure of real video and synthetic objects

    NASA Astrophysics Data System (ADS)

    Kim, Man-Bae; Song, Mun-Sup; Kim, Do-Kyoon

    1998-04-01

    This paper presents a new approach of combining real video and synthetic objects. The purpose of this work is to use the proposed technology in the fields of advanced animation, virtual reality, games, and so forth. Computer graphics has been used in the fields previously mentioned. Recently, some applications have added real video to graphic scenes for the purpose of augmenting the realism that the computer graphics lacks in. This approach called augmented or mixed reality can produce more realistic environment that the entire use of computer graphics. Our approach differs from the virtual reality and augmented reality in the manner that computer- generated graphic objects are combined to 3D structure extracted from monocular image sequences. The extraction of the 3D structure requires the estimation of 3D depth followed by the construction of a height map. Graphic objects are then combined to the height map. The realization of our proposed approach is carried out in the following steps: (1) We derive 3D structure from test image sequences. The extraction of the 3D structure requires the estimation of depth and the construction of a height map. Due to the contents of the test sequence, the height map represents the 3D structure. (2) The height map is modeled by Delaunay triangulation or Bezier surface and each planar surface is texture-mapped. (3) Finally, graphic objects are combined to the height map. Because 3D structure of the height map is already known, Step (3) is easily manipulated. Following this procedure, we produced an animation video demonstrating the combination of the 3D structure and graphic models. Users can navigate the realistic 3D world whose associated image is rendered on the display monitor.

  19. A Java-Enabled Interactive Graphical Gas Turbine Propulsion System Simulator

    NASA Technical Reports Server (NTRS)

    Reed, John A.; Afjeh, Abdollah A.

    1997-01-01

    This paper describes a gas turbine simulation system which utilizes the newly developed Java language environment software system. The system provides an interactive graphical environment which allows the quick and efficient construction and analysis of arbitrary gas turbine propulsion systems. The simulation system couples a graphical user interface, developed using the Java Abstract Window Toolkit, and a transient, space- averaged, aero-thermodynamic gas turbine analysis method, both entirely coded in the Java language. The combined package provides analytical, graphical and data management tools which allow the user to construct and control engine simulations by manipulating graphical objects on the computer display screen. Distributed simulations, including parallel processing and distributed database access across the Internet and World-Wide Web (WWW), are made possible through services provided by the Java environment.

  20. Method for Visually Integrating Multiple Data Acquisition Technologies for Real Time and Retrospective Analysis

    NASA Technical Reports Server (NTRS)

    Bogart, Edward H. (Inventor); Pope, Alan T. (Inventor)

    2000-01-01

    A system for display on a single video display terminal of multiple physiological measurements is provided. A subject is monitored by a plurality of instruments which feed data to a computer programmed to receive data, calculate data products such as index of engagement and heart rate, and display the data in a graphical format simultaneously on a single video display terminal. In addition live video representing the view of the subject and the experimental setup may also be integrated into the single data display. The display may be recorded on a standard video tape recorder for retrospective analysis.

  1. UWGSP4: an imaging and graphics superworkstation and its medical applications

    NASA Astrophysics Data System (ADS)

    Jong, Jing-Ming; Park, Hyun Wook; Eo, Kilsu; Kim, Min-Hwan; Zhang, Peng; Kim, Yongmin

    1992-05-01

    UWGSP4 is configured with a parallel architecture for image processing and a pipelined architecture for computer graphics. The system's peak performance is 1,280 MFLOPS for image processing and over 200,000 Gouraud shaded 3-D polygons per second for graphics. The simulated sustained performance is about 50% of the peak performance in general image processing. Most of the 2-D image processing functions are efficiently vectorized and parallelized in UWGSP4. A performance of 770 MFLOPS in convolution and 440 MFLOPS in FFT is achieved. The real-time cine display, up to 32 frames of 1280 X 1024 pixels per second, is supported. In 3-D imaging, the update rate for the surface rendering is 10 frames of 20,000 polygons per second; the update rate for the volume rendering is 6 frames of 128 X 128 X 128 voxels per second. The system provides 1280 X 1024 X 32-bit double frame buffers and one 1280 X 1024 X 8-bit overlay buffer for supporting realistic animation, 24-bit true color, and text annotation. A 1280 X 1024- pixel, 66-Hz noninterlaced display screen with 1:1 aspect ratio can be windowed into the frame buffer for the display of any portion of the processed image or graphics.

  2. Experimental evaluation of candidate graphical microburst alert displays

    NASA Technical Reports Server (NTRS)

    Wanke, Craig; Hansman, R. John

    1992-01-01

    The topics addressed are: (1) experimental evaluation of candidate graphical microburst displays; (2) microburst detection and alerting; (3) previous part-task simulator experiment-comparison of presentation modes; (4) presentation mode comparison-results; (5) advantages of graphical mode of presentation; (6) graphical microburst alert experiment-objectives; and graphical microburst alert experiment-overview; and (7) candidate display design.

  3. Synthetic vision in the cockpit: 3D systems for general aviation

    NASA Astrophysics Data System (ADS)

    Hansen, Andrew J.; Rybacki, Richard M.; Smith, W. Garth

    2001-08-01

    Synthetic vision has the potential to improve safety in aviation through better pilot situational awareness and enhanced navigational guidance. The technological advances enabling synthetic vision are GPS based navigation (position and attitude) systems and efficient graphical systems for rendering 3D displays in the cockpit. A benefit for military, commercial, and general aviation platforms alike is the relentless drive to miniaturize computer subsystems. Processors, data storage, graphical and digital signal processing chips, RF circuitry, and bus architectures are at or out-pacing Moore's Law with the transition to mobile computing and embedded systems. The tandem of fundamental GPS navigation services such as the US FAA's Wide Area and Local Area Augmentation Systems (WAAS) and commercially viable mobile rendering systems puts synthetic vision well with the the technological reach of general aviation. Given the appropriate navigational inputs, low cost and power efficient graphics solutions are capable of rendering a pilot's out-the-window view into visual databases with photo-specific imagery and geo-specific elevation and feature content. Looking beyond the single airframe, proposed aviation technologies such as ADS-B would provide a communication channel for bringing traffic information on-board and into the cockpit visually via the 3D display for additional pilot awareness. This paper gives a view of current 3D graphics system capability suitable for general aviation and presents a potential road map following the current trends.

  4. The display of molecular models with the Ames Interactive Modeling System (AIMS)

    NASA Technical Reports Server (NTRS)

    Egan, J. T.; Hart, J.; Burt, S. K.; Macelroy, R. D.

    1982-01-01

    A visualization of molecular models can lead to a clearer understanding of the models. Sophisticated graphics devices supported by minicomputers make it possible for the chemist to interact with the display of a very large model, altering its structure. In addition to user interaction, the need arises also for other ways of displaying information. These include the production of viewgraphs, film presentation, as well as publication quality prints of various models. To satisfy these needs, the display capability of the Ames Interactive Modeling System (AIMS) has been enhanced to provide a wide range of graphics and plotting capabilities. Attention is given to an overview of the AIMS system, graphics hardware used by the AIMS display subsystem, a comparison of graphics hardware, the representation of molecular models, graphics software used by the AIMS display subsystem, the display of a model obtained from data stored in molecule data base, a graphics feature for obtaining single frame permanent copy displays, and a feature for producing multiple frame displays.

  5. TIGER: Turbomachinery interactive grid generation

    NASA Technical Reports Server (NTRS)

    Soni, Bharat K.; Shih, Ming-Hsin; Janus, J. Mark

    1992-01-01

    A three dimensional, interactive grid generation code, TIGER, is being developed for analysis of flows around ducted or unducted propellers. TIGER is a customized grid generator that combines new technology with methods from general grid generation codes. The code generates multiple block, structured grids around multiple blade rows with a hub and shroud for either C grid or H grid topologies. The code is intended for use with a Euler/Navier-Stokes solver also being developed, but is general enough for use with other flow solvers. TIGER features a silicon graphics interactive graphics environment that displays a pop-up window, graphics window, and text window. The geometry is read as a discrete set of points with options for several industrial standard formats and NASA standard formats. Various splines are available for defining the surface geometries. Grid generation is done either interactively or through a batch mode operation using history files from a previously generated grid. The batch mode operation can be done either with a graphical display of the interactive session or with no graphics so that the code can be run on another computer system. Run time can be significantly reduced by running on a Cray-YMP.

  6. Generating Animated Displays of Spacecraft Orbits

    NASA Technical Reports Server (NTRS)

    Candey, Robert M.; Chimiak, Reine A.; Harris, Bernard T.

    2005-01-01

    Tool for Interactive Plotting, Sonification, and 3D Orbit Display (TIPSOD) is a computer program for generating interactive, animated, four-dimensional (space and time) displays of spacecraft orbits. TIPSOD utilizes the programming interface of the Satellite Situation Center Web (SSCWeb) services to communicate with the SSC logic and database by use of the open protocols of the Internet. TIPSOD is implemented in Java 3D and effects an extension of the preexisting SSCWeb two-dimensional static graphical displays of orbits. Orbits can be displayed in any or all of the following seven reference systems: true-of-date (an inertial system), J2000 (another inertial system), geographic, geomagnetic, geocentric solar ecliptic, geocentric solar magnetospheric, and solar magnetic. In addition to orbits, TIPSOD computes and displays Sibeck's magnetopause and Fairfield's bow-shock surfaces. TIPSOD can be used by the scientific community as a means of projection or interpretation. It also has potential as an educational tool.

  7. Adaptation of a Control Center Development Environment for Industrial Process Control

    NASA Technical Reports Server (NTRS)

    Killough, Ronnie L.; Malik, James M.

    1994-01-01

    In the control center, raw telemetry data is received for storage, display, and analysis. This raw data must be combined and manipulated in various ways by mathematical computations to facilitate analysis, provide diversified fault detection mechanisms, and enhance display readability. A development tool called the Graphical Computation Builder (GCB) has been implemented which provides flight controllers with the capability to implement computations for use in the control center. The GCB provides a language that contains both general programming constructs and language elements specifically tailored for the control center environment. The GCB concept allows staff who are not skilled in computer programming to author and maintain computer programs. The GCB user is isolated from the details of external subsystem interfaces and has access to high-level functions such as matrix operators, trigonometric functions, and unit conversion macros. The GCB provides a high level of feedback during computation development that improves upon the often cryptic errors produced by computer language compilers. An equivalent need can be identified in the industrial data acquisition and process control domain: that of an integrated graphical development tool tailored to the application to hide the operating system, computer language, and data acquisition interface details. The GCB features a modular design which makes it suitable for technology transfer without significant rework. Control center-specific language elements can be replaced by elements specific to industrial process control.

  8. Hybrid automated reliability predictor integrated work station (HiREL)

    NASA Technical Reports Server (NTRS)

    Bavuso, Salvatore J.

    1991-01-01

    The Hybrid Automated Reliability Predictor (HARP) integrated reliability (HiREL) workstation tool system marks another step toward the goal of producing a totally integrated computer aided design (CAD) workstation design capability. Since a reliability engineer must generally graphically represent a reliability model before he can solve it, the use of a graphical input description language increases productivity and decreases the incidence of error. The captured image displayed on a cathode ray tube (CRT) screen serves as a documented copy of the model and provides the data for automatic input to the HARP reliability model solver. The introduction of dependency gates to a fault tree notation allows the modeling of very large fault tolerant system models using a concise and visually recognizable and familiar graphical language. In addition to aiding in the validation of the reliability model, the concise graphical representation presents company management, regulatory agencies, and company customers a means of expressing a complex model that is readily understandable. The graphical postprocessor computer program HARPO (HARP Output) makes it possible for reliability engineers to quickly analyze huge amounts of reliability/availability data to observe trends due to exploratory design changes.

  9. Documentation of a multiple-technique computer program for plotting major-ion composition of natural waters

    USGS Publications Warehouse

    Briel, L.I.

    1993-01-01

    A computer program was written to produce 6 different types of water-quality diagrams--Piper, Stiff, pie, X-Y, boxplot, and Piper 3-D--from the same file of input data. The Piper 3-D diagram is a new method that projects values from the surface of a Piper plot into a triangular prism to show how variations in chemical composition can be related to variations in other water-quality variables. This program is an analytical tool to aid in the interpretation of data. This program is interactive, and the user can select from a menu the type of diagram to be produced and a large number of individual features. Alternatively, these choices can be specified in the data file, which provides a batch mode for running the program. The program does not display water-quality diagrams directly; plots are written to a file. Four different plot- file formats are available: device-independent metafiles, Adobe PostScript graphics files, and two Hewlett-Packard graphics language formats (7475 and 7586). An ASCII data-table file is also produced to document the computed values. This program is written in Fortran '77 and uses graphics subroutines from either the PRIOR AGTK or the DISSPLA graphics library. The program has been implemented on Prime series 50 and Data General Aviion computers within the USGS; portability to other computing systems depends on the availability of the graphics library.

  10. Graphics enhanced computer emulation for improved timing-race and fault tolerance control system analysis. [of Centaur liquid-fuel booster

    NASA Technical Reports Server (NTRS)

    Szatkowski, G. P.

    1983-01-01

    A computer simulation system has been developed for the Space Shuttle's advanced Centaur liquid fuel booster rocket, in order to conduct systems safety verification and flight operations training. This simulation utility is designed to analyze functional system behavior by integrating control avionics with mechanical and fluid elements, and is able to emulate any system operation, from simple relay logic to complex VLSI components, with wire-by-wire detail. A novel graphics data entry system offers a pseudo-wire wrap data base that can be easily updated. Visual subsystem operations can be selected and displayed in color on a six-monitor graphics processor. System timing and fault verification analyses are conducted by injecting component fault modes and min/max timing delays, and then observing system operation through a red line monitor.

  11. Human factors in the presentation of computer-generated information - Aspects of design and application in automated flight traffic

    NASA Technical Reports Server (NTRS)

    Roske-Hofstrand, Renate J.

    1990-01-01

    The man-machine interface and its influence on the characteristics of computer displays in automated air traffic is discussed. The graphical presentation of spatial relationships and the problems it poses for air traffic control, and the solution of such problems are addressed. Psychological factors involved in the man-machine interface are stressed.

  12. A Work Station For Control Of Changing Systems

    NASA Technical Reports Server (NTRS)

    Mandl, Daniel J.

    1988-01-01

    Touch screen and microcomputer enable flexible control of complicated systems. Computer work station equipped to produce graphical displays used as command panel and status indicator for command-and-control system. Operator uses images of control buttons displayed on touch screen to send prestored commands. Use of prestored library of commands reduces incidence of errors. If necessary, operator uses conventional keyboard to enter commands in real time to handle unforeseeable situations.

  13. Advanced Extravehicular Mobility Unit Informatics Software Design

    NASA Technical Reports Server (NTRS)

    Wright, Theodore

    2014-01-01

    This is a description of the software design for the 2013 edition of the Advanced Extravehicular Mobility Unit (AEMU) Informatics computer assembly. The Informatics system is an optional part of the space suit assembly. It adds a graphical interface for displaying suit status, timelines, procedures, and caution and warning information. In the future it will display maps with GPS position data, and video and still images captured by the astronaut.

  14. Speed in Information Processing with a Computer Driven Visual Display in a Real-time Digital Simulation. M.S. Thesis - Virginia Polytechnic Inst.

    NASA Technical Reports Server (NTRS)

    Kyle, R. G.

    1972-01-01

    Information transfer between the operator and computer-generated display systems is an area where the human factors engineer discovers little useful design data relating human performance to system effectiveness. This study utilized a computer-driven, cathode-ray-tube graphic display to quantify human response speed in a sequential information processing task. The performance criteria was response time to sixteen cell elements of a square matrix display. A stimulus signal instruction specified selected cell locations by both row and column identification. An equal probable number code, from one to four, was assigned at random to the sixteen cells of the matrix and correspondingly required one of four, matched keyed-response alternatives. The display format corresponded to a sequence of diagnostic system maintenance events, that enable the operator to verify prime system status, engage backup redundancy for failed subsystem components, and exercise alternate decision-making judgements. The experimental task bypassed the skilled decision-making element and computer processing time, in order to determine a lower bound on the basic response speed for given stimulus/response hardware arrangement.

  15. Transputer parallel processing at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Ellis, Graham K.

    1989-01-01

    The transputer parallel processing lab at NASA Lewis Research Center (LeRC) consists of 69 processors (transputers) that can be connected into various networks for use in general purpose concurrent processing applications. The main goal of the lab is to develop concurrent scientific and engineering application programs that will take advantage of the computational speed increases available on a parallel processor over the traditional sequential processor. Current research involves the development of basic programming tools. These tools will help standardize program interfaces to specific hardware by providing a set of common libraries for applications programmers. The thrust of the current effort is in developing a set of tools for graphics rendering/animation. The applications programmer currently has two options for on-screen plotting. One option can be used for static graphics displays and the other can be used for animated motion. The option for static display involves the use of 2-D graphics primitives that can be called from within an application program. These routines perform the standard 2-D geometric graphics operations in real-coordinate space as well as allowing multiple windows on a single screen.

  16. Evaluation of graphic cardiovascular display in a high-fidelity simulator.

    PubMed

    Agutter, James; Drews, Frank; Syroid, Noah; Westneskow, Dwayne; Albert, Rob; Strayer, David; Bermudez, Julio; Weinger, Matthew B

    2003-11-01

    "Human error" in anesthesia can be attributed to misleading information from patient monitors or to the physician's failure to recognize a pattern. A graphic representation of monitored data may provide better support for detection, diagnosis, and treatment. We designed a graphic display to show hemodynamic variables. Twenty anesthesiologists were asked to assume care of a simulated patient. Half the participants used the graphic cardiovascular display; the other half used a Datex As/3 monitor. One scenario was a total hip replacement with a transfusion reaction to mismatched blood. The second scenario was a radical prostatectomy with 1.5 L of blood loss and myocardial ischemia. Subjects who used the graphic display detected myocardial ischemia 2 min sooner than those who did not use the display. Treatment was initiated sooner (2.5 versus 4.9 min). There were no significant differences between groups in the hip replacement scenario. Systolic blood pressure deviated less from baseline, central venous pressure was closer to its baseline, and arterial oxygen saturation was higher at the end of the case when the graphic display was used. The study lends some support for the hypothesis that providing clinical information graphically in a display designed with emergent features and functional relationships can improve clinicians' ability to detect, diagnose, manage, and treat critical cardiovascular events in a simulated environment. A graphic representation of monitored data may provide better support for detection, diagnosis, and treatment. A user-centered design process led to a novel object-oriented graphic display of hemodynamic variables containing emergent features and functional relationships. In a simulated environment, this display appeared to support clinicians' ability to diagnose, manage, and treat a critical cardiovascular event in a simulated environment. We designed a graphic display to show hemodynamic variables. The study provides some support for the hypothesis that providing clinical information graphically in a display designed with emergent features and functional relationships can improve clinicians' ability to detect, diagnosis, mange, and treat critical cardiovascular events in a simulated environment.

  17. Payload specialist station study: Volume 2, part 3: Program analysis and planning for phase C/D

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The controls and displays (C&D) required at the Orbiter aft-flight deck (AFD) and the core C&D required at the Payload Specialist Station (PSS) are identified in this document. The AFD C&D Concept consists of a multifunction display system (MFDS) and elements of multiuse mission support equipment (MMSE). The MFDS consists of two CRTs, a display electronics unit (DEU), and a keyboard. The MMSE consists of a manual pointing controller (MPC), five digit numeric displays, 10 character alphanumeric legends, event timers, analog meters, rotary and toggle switches. The MMSE may be hardwired to the experiment, or interface with a data bus at the PSS for signal processing. The MFDS has video capability, with alphanumeric and graphic overlay features, on one CRT and alphanumeric and graphic (tricolor) capability on a second CRT. The DEU will have the capability to communicate, via redundant data buses, with both the spacelab experiment and subsystem computers.

  18. Real-time graphic display utility for nuclear safety applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, S.; Huang, X.; Taylor, J.

    2006-07-01

    With the increasing interests in the nuclear energy, new nuclear power plants will be constructed and licensed, and older generation ones will be upgraded for assuring continuing operation. The tendency of adopting the latest proven technology and the fact of older parts becoming obsolete have made the upgrades imperative. One of the areas for upgrades is the older CRT display being replaced by the latest graphics displays running under modern real time operating system (RTOS) with safety graded modern computer. HFC has developed a graphic display utility (GDU) under the QNX RTOS. A standard off-the-shelf software with a long historymore » of performance in industrial applications, QNX RTOS used for safety applications has been examined via a commercial dedication process that is consistent with the regulatory guidelines. Through a commercial survey, a design life cycle and an operating history evaluation, and necessary tests dictated by the dedication plan, it is reasonably confirmed that the QNX RTOS was essentially equivalent to what would be expected in the nuclear industry. The developed GDU operates and communicates with the existing equipment through a dedicated serial channel of a flat panel controller (FPC) module. The FPC module drives a flat panel display (FPD) monitor. A touch screen mounted on the FPD serves as the normal operator interface with the FPC/FPD monitor system. The GDU can be used not only for replacing older CRTs but also in new applications. The replacement of the older CRT does not disturb the function of the existing equipment. It not only provides modern proven technology upgrade but also improves human ergonomics. The FPC, which can be used as a standalone controller running with the GDU, is an integrated hardware and software module. It operates as a single board computer within a control system, and applies primarily to the graphics display, targeting, keyboard and mouse. During normal system operation, the GDU has two sources of data input: a serial interface with field equipment and a serial input from the FPD touch screen. The mechanism for data collection from the field equipment consists of the regular exchange of the data update request messages and target commands sent to the equipment and the update messages returned to the FPC. The data updates from field equipment control displays presented on the graphic pages. Touch screen contacts are decoded to identify physical position that was contacted. If that position corresponds with one of the buttons on the graphic page, the software uses that input to initiate the function defined for the particular button contacted. In this paper, the FPC will be illustrated as a standalone system as well as a module in a dedicated control system. The GDU design concepts and its design flow will be demonstrated. The dedication process of the QNX RTOS needed for the GDU will be highlighted. Finally, the GDU with a specific application example used in one of the nuclear power plants will be presented. (authors)« less

  19. Engineering visualization utilizing advanced animation

    NASA Technical Reports Server (NTRS)

    Sabionski, Gunter R.; Robinson, Thomas L., Jr.

    1989-01-01

    Engineering visualization is the use of computer graphics to depict engineering analysis and simulation in visual form from project planning through documentation. Graphics displays let engineers see data represented dynamically which permits the quick evaluation of results. The current state of graphics hardware and software generally allows the creation of two types of 3D graphics. The use of animated video as an engineering visualization tool is presented. The engineering, animation, and videography aspects of animated video production are each discussed. Specific issues include the integration of staffing expertise, hardware, software, and the various production processes. A detailed explanation of the animation process reveals the capabilities of this unique engineering visualization method. Automation of animation and video production processes are covered and future directions are proposed.

  20. Novel low-cost 2D/3D switchable autostereoscopic system for notebook computers and other portable devices

    NASA Astrophysics Data System (ADS)

    Eichenlaub, Jesse B.

    1995-03-01

    Mounting a lenticular lens in front of a flat panel display is a well known, inexpensive, and easy way to create an autostereoscopic system. Such a lens produces half resolution 3D images because half the pixels on the LCD are seen by the left eye and half by the right eye. This may be acceptable for graphics, but it makes full resolution text, as displayed by common software, nearly unreadable. Very fine alignment tolerances normally preclude the possibility of removing and replacing the lens in order to switch between 2D and 3D applications. Lenticular lens based displays are therefore limited to use as dedicated 3D devices. DTI has devised a technique which removes this limitation, allowing switching between full resolution 2D and half resolution 3D imaging modes. A second element, in the form of a concave lenticular lens array whose shape is exactly the negative of the first lens, is mounted on a hinge so that it can be swung down over the first lens array. When so positioned the two lenses cancel optically, allowing the user to see full resolution 2D for text or numerical applications. The two lenses, having complementary shapes, naturally tend to nestle together and snap into perfect alignment when pressed together--thus obviating any need for user operated alignment mechanisms. This system represents an ideal solution for laptop and notebook computer applications. It was devised to meet the stringent requirements of a laptop computer manufacturer including very compact size, very low cost, little impact on existing manufacturing or assembly procedures, and compatibility with existing full resolution 2D text- oriented software as well as 3D graphics. Similar requirements apply to high and electronic calculators, several models of which now use LCDs for the display of graphics.

  1. ACSYNT - A standards-based system for parametric, computer aided conceptual design of aircraft

    NASA Technical Reports Server (NTRS)

    Jayaram, S.; Myklebust, A.; Gelhausen, P.

    1992-01-01

    A group of eight US aerospace companies together with several NASA and NAVY centers, led by NASA Ames Systems Analysis Branch, and Virginia Tech's CAD Laboratory agreed, through the assistance of Americal Technology Initiative, in 1990 to form the ACSYNT (Aircraft Synthesis) Institute. The Institute is supported by a Joint Sponsored Research Agreement to continue the research and development in computer aided conceptual design of aircraft initiated by NASA Ames Research Center and Virginia Tech's CAD Laboratory. The result of this collaboration, a feature-based, parametric computer aided aircraft conceptual design code called ACSYNT, is described. The code is based on analysis routines begun at NASA Ames in the early 1970's. ACSYNT's CAD system is based entirely on the ISO standard Programmer's Hierarchical Interactive Graphics System and is graphics-device independent. The code includes a highly interactive graphical user interface, automatically generated Hermite and B-Spline surface models, and shaded image displays. Numerous features to enhance aircraft conceptual design are described.

  2. Computer programs to assist in high resolution thermal denaturation and circular dichroism studies on nucleic acids

    PubMed Central

    Goodman, Thomas C.; Hardies, Stephen C.; Cortez, Carlos; Hillen, Wolfgang

    1981-01-01

    Computer programs are described that direct the collection, processing, and graphical display of numerical data obtained from high resolution thermal denaturation (1-3) and circular dichroism (4) studies. Besides these specific applications, the programs may also be useful, either directly or as programming models, in other types of spectrophotometric studies employing computers, programming languages, or instruments similar to those described here (see Materials and Methods). PMID:7335498

  3. On-line data display

    NASA Astrophysics Data System (ADS)

    Lang, Sherman Y. T.; Brooks, Martin; Gauthier, Marc; Wein, Marceli

    1993-05-01

    A data display system for embedded realtime systems has been developed for use as an operator's user interface and debugging tool. The motivation for development of the On-Line Data Display (ODD) have come from several sources. In particular the design reflects the needs of researchers developing an experimental mobile robot within our laboratory. A proliferation of specialized user interfaces revealed a need for a flexible communications and graphical data display system. At the same time the system had to be readily extensible for arbitrary graphical display formats which would be required for data visualization needs of the researchers. The system defines a communication protocol transmitting 'datagrams' between tasks executing on the realtime system and virtual devices displaying the data in a meaningful way on a graphical workstation. The communication protocol multiplexes logical channels on a single data stream. The current implementation consists of a server for the Harmony realtime operating system and an application written for the Macintosh computer. Flexibility requirements resulted in a highly modular server design, and a layered modular object- oriented design for the Macintosh part of the system. Users assign data types to specific channels at run time. Then devices are instantiated by the user and connected to channels to receive datagrams. The current suite of device types do not provide enough functionality for most users' specialized needs. Instead the system design allows the creation of new device types with modest programming effort. The protocol, design and use of the system are discussed.

  4. Combining high performance simulation, data acquisition, and graphics display computers

    NASA Technical Reports Server (NTRS)

    Hickman, Robert J.

    1989-01-01

    Issues involved in the continuing development of an advanced simulation complex are discussed. This approach provides the capability to perform the majority of tests on advanced systems, non-destructively. The controlled test environments can be replicated to examine the response of the systems under test to alternative treatments of the system control design, or test the function and qualification of specific hardware. Field tests verify that the elements simulated in the laboratories are sufficient. The digital computer is hosted by a Digital Equipment Corp. MicroVAX computer with an Aptec Computer Systems Model 24 I/O computer performing the communication function. An Applied Dynamics International AD100 performs the high speed simulation computing and an Evans and Sutherland PS350 performs on-line graphics display. A Scientific Computer Systems SCS40 acts as a high performance FORTRAN program processor to support the complex, by generating numerous large files from programs coded in FORTRAN that are required for the real time processing. Four programming languages are involved in the process, FORTRAN, ADSIM, ADRIO, and STAPLE. FORTRAN is employed on the MicroVAX host to initialize and terminate the simulation runs on the system. The generation of the data files on the SCS40 also is performed with FORTRAN programs. ADSIM and ADIRO are used to program the processing elements of the AD100 and its IOCP processor. STAPLE is used to program the Aptec DIP and DIA processors.

  5. Image selection system. [computerized data storage and retrieval system

    NASA Technical Reports Server (NTRS)

    Knutson, M. A.; Hurd, D.; Hubble, L.; Kroeck, R. M.

    1974-01-01

    An image selection (ISS) was developed for the NASA-Ames Research Center Earth Resources Aircraft Project. The ISS is an interactive, graphics oriented, computer retrieval system for aerial imagery. An analysis of user coverage requests and retrieval strategies is presented, followed by a complete system description. Data base structure, retrieval processors, command language, interactive display options, file structures, and the system's capability to manage sets of selected imagery are described. A detailed example of an area coverage request is graphically presented.

  6. GEMPAK 5.1 - A GENERAL METEOROLOGICAL PACKAGE (VAX VMS VERSION)

    NASA Technical Reports Server (NTRS)

    Des, Jardins M. L.

    1994-01-01

    GEMPAK is a general meteorological software package developed at NASA/Goddard Space Flight Center. It includes programs to analyze and display surface, upper-air, and gridded data, including model output. There are very general programs to list, edit, and plot data on maps, to display profiles and time series, to draw and fill contours, to draw streamlines, to plot symbols for clouds, sky cover, and pressure tendency, and draw cross sections in the case of gridded data and sounding data. In addition, there are Barnes objective analysis programs to grid surface and upper-air data. The programs include the capabilities to derive meteorological parameters from those found in the dataset, to perform vertical interpolations of sounding data to different coordinate systems, and to compute an extensive set of gridded diagnostic quantities by specifying various nested combinations of scalars and vector arithmetic, algebraic, and differential operators. The GEMPAK 5.1 graphics/transformation subsystem, GEMPLT, provides device-independent graphics. GEMPLT also has the capability to display output in a variety of map projections or overlaid on satellite imagery. GEMPAK 5.1 is written in FORTRAN 77 and C-language and has been implemented on VAX computers under VMS and on computers running the UNIX operating system. During installation and normal use, this package occupies approximately 100Mb of hard disk space. The UNIX version of GEMPAK includes drivers for several graphic output systems including MIT's X Window System (X11,R4), Sun GKS, PostScript (color and monochrome), Silicon Graphics, and others. The VMS version of GEMPAK also includes drivers for several graphic output systems including PostScript (color and monochrome). The VMS version is delivered with the object code for the Transportable Applications Environment (TAE) program, version 4.1 which serves as a user interface. A color monitor is recommended for displaying maps on video display devices. Data for rendering regional maps is included with this package. The standard distribution medium for the UNIX version of GEMPAK 5.1 is a .25 inch streaming magnetic tape cartridge in UNIX tar format. The standard distribution medium for the VMS version of GEMPAK 5.1 is a 6250 BPI 9-track magnetic tape in DEC VAX BACKUP format. The VMS version is also available on a TK50 tape cartridge in DEC VAX BACKUP format. This program was developed in 1985. The current version, GEMPAK 5.1, was released in 1992. The package is delivered with source code. An extensive collection of subroutine libraries allows users to format data for use by GEMPAK, to develop new programs, and to enhance existing ones.

  7. A study of real-time computer graphic display technology for aeronautical applications

    NASA Technical Reports Server (NTRS)

    Rajala, S. A.

    1981-01-01

    The development, simulation, and testing of an algorithm for anti-aliasing vector drawings is discussed. The pseudo anti-aliasing line drawing algorithm is an extension to Bresenham's algorithm for computer control of a digital plotter. The algorithm produces a series of overlapping line segments where the display intensity shifts from one segment to the other in this overlap (transition region). In this algorithm the length of the overlap and the intensity shift are essentially constants because the transition region is an aid to the eye in integrating the segments into a single smooth line.

  8. Modernization of the graphics post-processors of the Hamburg German Climate Computer Center Carbon Cycle Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, E.J.; McNeilly, G.S.

    The existing National Center for Atmospheric Research (NCAR) code in the Hamburg Oceanic Carbon Cycle Circulation Model and the Hamburg Large-Scale Geostrophic Ocean General Circulation Model was modernized and reduced in size while still producing an equivalent end result. A reduction in the size of the existing code from more than 50,000 lines to approximately 7,500 lines in the new code has made the new code much easier to maintain. The existing code in Hamburg model uses legacy NCAR (including even emulated CALCOMP subrountines) graphics to display graphical output. The new code uses only current (version 3.1) NCAR subrountines.

  9. Exploratory visualization of astronomical data on ultra-high-resolution wall displays

    NASA Astrophysics Data System (ADS)

    Pietriga, Emmanuel; del Campo, Fernando; Ibsen, Amanda; Primet, Romain; Appert, Caroline; Chapuis, Olivier; Hempel, Maren; Muñoz, Roberto; Eyheramendy, Susana; Jordan, Andres; Dole, Hervé

    2016-07-01

    Ultra-high-resolution wall displays feature a very high pixel density over a large physical surface, which makes them well-suited to the collaborative, exploratory visualization of large datasets. We introduce FITS-OW, an application designed for such wall displays, that enables astronomers to navigate in large collections of FITS images, query astronomical databases, and display detailed, complementary data and documents about multiple sources simultaneously. We describe how astronomers interact with their data using both the wall's touchsensitive surface and handheld devices. We also report on the technical challenges we addressed in terms of distributed graphics rendering and data sharing over the computer clusters that drive wall displays.

  10. Virtual network computing: cross-platform remote display and collaboration software.

    PubMed

    Konerding, D E

    1999-04-01

    VNC (Virtual Network Computing) is a computer program written to address the problem of cross-platform remote desktop/application display. VNC uses a client/server model in which an image of the desktop of the server is transmitted to the client and displayed. The client collects mouse and keyboard input from the user and transmits them back to the server. The VNC client and server can run on Windows 95/98/NT, MacOS, and Unix (including Linux) operating systems. VNC is multi-user on Unix machines (any number of servers can be run are unrelated to the primary display of the computer), while it is effectively single-user on Macintosh and Windows machines (only one server can be run, displaying the contents of the primary display of the server). The VNC servers can be configured to allow more than one client to connect at one time, effectively allowing collaboration through the shared desktop. I describe the function of VNC, provide details of installation, describe how it achieves its goal, and evaluate the use of VNC for molecular modelling. VNC is an extremely useful tool for collaboration, instruction, software development, and debugging of graphical programs with remote users.

  11. User Interface Design for Military AR Applications

    DTIC Science & Technology

    2010-12-12

    virtual objects with the real world: seeing ultrasound imagery within the patient. In: Computer graphics (SIGGRAPH ’ 92 proceedings), vol 26, pp 203–210... airborne reconnaissance and weapon delivery. In: Proceedings of symposium for image display and recording, US Air Force Avionics Laboratory, Wright

  12. Monitors.

    ERIC Educational Resources Information Center

    Powell, David

    1984-01-01

    Provides guidelines for selecting a monitor to suit specific applications, explains the process by which graphics images are produced on a CRT monitor, and describes four types of flat-panel displays being used in the newest lap-sized portable computers. A comparison chart provides prices and specifications for over 80 monitors. (MBR)

  13. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows.

    PubMed

    Excoffier, Laurent; Lischer, Heidi E L

    2010-05-01

    We present here a new version of the Arlequin program available under three different forms: a Windows graphical version (Winarl35), a console version of Arlequin (arlecore), and a specific console version to compute summary statistics (arlsumstat). The command-line versions run under both Linux and Windows. The main innovations of the new version include enhanced outputs in XML format, the possibility to embed graphics displaying computation results directly into output files, and the implementation of a new method to detect loci under selection from genome scans. Command-line versions are designed to handle large series of files, and arlsumstat can be used to generate summary statistics from simulated data sets within an Approximate Bayesian Computation framework. © 2010 Blackwell Publishing Ltd.

  14. Evaluation of the Presentation of Network Data via Visualization Tools for Network Analysts

    DTIC Science & Technology

    2014-03-01

    A. (eds.) The Human Computer Interaction Handbook, pp.544–582. Lawrence Erlbaum Associates, Mawah, NJ, 2003. 4. Goodall , John R. Introduction to...of either display type being used in the analysis of cyber security tasks. Goodall (19) is one of few whose work focused on comparing user...relating source IP address to destination IP address and time, Goodall remains the only known approach comparing tabular and graphical displays

  15. Scientific work environments in the next decade

    NASA Technical Reports Server (NTRS)

    Gomez, Julian E.

    1989-01-01

    The applications of contemporary computer graphics to scientific visualization is described, with emphasis on the nonintuitive problems. A radically different approach is proposed which centers on the idea of the scientist being in the simulation display space rather than observing it on a screen. Interaction is performed with nonstandard input devices to preserve the feeling of being immersed in the three-dimensional display space. Construction of such a system could begin now with currently available technology.

  16. Computer graphic visualization of orbiter lower surface boundary-layer transition

    NASA Technical Reports Server (NTRS)

    Throckmorton, D. A.; Hartung, L. C.

    1984-01-01

    Computer graphic techniques are applied to the processing of Shuttle Orbiter flight data in order to create a visual presentation of the extent and movement of the boundary-layer transition front over the orbiter lower surface during entry. Flight-measured surface temperature-time histories define the onset and completion of the boundary-layer transition process at any measurement location. The locus of points which define the spatial position of the boundary-layer transition front on the orbiter planform is plotted at each discrete time for which flight data are available. Displaying these images sequentially in real-time results in an animated simulation of the in-flight boundary-layer transition process.

  17. Definition Of Touch-Sensitive Zones For Graphical Displays

    NASA Technical Reports Server (NTRS)

    Monroe, Burt L., III; Jones, Denise R.

    1988-01-01

    Touch zones defined simply by touching, while editing done automatically. Development of touch-screen interactive computing system, tedious task. Interactive Editor for Definition of Touch-Sensitive Zones computer program increases efficiency of human/machine communications by enabling user to define each zone interactively, minimizing redundancy in programming and eliminating need for manual computation of boundaries of touch areas. Information produced during editing process written to data file, to which access gained when needed by application program.

  18. Crop-phenology and LANDSAT-based irrigated lands inventory in the high plains. [United States

    NASA Technical Reports Server (NTRS)

    Martinko, E. A. (Principal Investigator); Poracsky, J.; Kipp, E. R.; Krieger, H.

    1981-01-01

    Optimal LANDSAT image dates for 1980 were identified based on the weekly crop-weather reports for Colorado, New Mexico, South Dakota, Texas, Oklahoma, Kansas, Nebraska, and Wyoming. The 1979 agricultural statistics data were entered into computer files and a revised questionnaire was developed and mailed to ASCS county agents. A set of computer programs was developed to allow the preparation of computer-assisted graphic displays of much of the collected data.

  19. Exploring the Realized Niche: Simulated Ecological Mapping with a Microcomputer.

    ERIC Educational Resources Information Center

    Kent, J. W.

    1983-01-01

    Describes a computer program based upon field observations of littoral zonation modified by a small stream. The program employs user-defined color graphic characters to display simulated ecological maps representing the patterning of organisms in response to local values of niche limiting factors. (Author/JN)

  20. PLAID- A COMPUTER AIDED DESIGN SYSTEM

    NASA Technical Reports Server (NTRS)

    Brown, J. W.

    1994-01-01

    PLAID is a three-dimensional Computer Aided Design (CAD) system which enables the user to interactively construct, manipulate, and display sets of highly complex geometric models. PLAID was initially developed by NASA to assist in the design of Space Shuttle crewstation panels, and the detection of payload object collisions. It has evolved into a more general program for convenient use in many engineering applications. Special effort was made to incorporate CAD techniques and features which minimize the users workload in designing and managing PLAID models. PLAID consists of three major modules: the Primitive Object Generator (BUILD), the Composite Object Generator (COG), and the DISPLAY Processor. The BUILD module provides a means of constructing simple geometric objects called primitives. The primitives are created from polygons which are defined either explicitly by vertex coordinates, or graphically by use of terminal crosshairs or a digitizer. Solid objects are constructed by combining, rotating, or translating the polygons. Corner rounding, hole punching, milling, and contouring are special features available in BUILD. The COG module hierarchically organizes and manipulates primitives and other previously defined COG objects to form complex assemblies. The composite object is constructed by applying transformations to simpler objects. The transformations which can be applied are scalings, rotations, and translations. These transformations may be defined explicitly or defined graphically using the interactive COG commands. The DISPLAY module enables the user to view COG assemblies from arbitrary viewpoints (inside or outside the object) both in wireframe and hidden line renderings. The PLAID projection of a three-dimensional object can be either orthographic or with perspective. A conflict analysis option enables detection of spatial conflicts or collisions. DISPLAY provides camera functions to simulate a view of the model through different lenses. Other features include hardcopy plot generation, scaling and zoom options, distance tabulations, and descriptive text in different sizes and fonts. An object in the PLAID database is not just a collection of lines; rather, it is a true three-dimensional representation from which correct hidden line renditions can be computed for any specified eye point. The drawings produced in the various modules of PLAID can be stored in files for future use. The PLAID program product is available by license for a period of 10 years to domestic U.S. licensees. The licensed program product includes the PLAID source code, command procedures, sample applications, and one set of supporting documentation. Copies of the documentation may be purchased separately at the price indicated below. PLAID is written in FORTRAN 77 for single user interactive execution and has been implemented on a DEC VAX series computer operating under VMS with a recommended core memory of four megabytes. PLAID requires a Tektronix 4014 compatible graphics display terminal and optionally uses a Tektronix 4631 compatible graphics hardcopier. Plots of resulting PLAID displays may be produced using the Calcomp 960, HP 7221, or HP 7580 plotters. Digitizer tablets can also be supported. This program was developed in 1986.

  1. Analysis of severe storm data

    NASA Technical Reports Server (NTRS)

    Hickey, J. S.

    1983-01-01

    The Mesoscale Analysis and Space Sensor (MASS) Data Management and Analysis System developed by Atsuko Computing International (ACI) on the MASS HP-1000 Computer System within the Systems Dynamics Laboratory of the Marshall Space Flight Center is described. The MASS Data Management and Analysis System was successfully implemented and utilized daily by atmospheric scientists to graphically display and analyze large volumes of conventional and satellite derived meteorological data. The scientists can process interactively various atmospheric data (Sounding, Single Level, Gird, and Image) by utilizing the MASS (AVE80) share common data and user inputs, thereby reducing overhead, optimizing execution time, and thus enhancing user flexibility, useability, and understandability of the total system/software capabilities. In addition ACI installed eight APPLE III graphics/imaging computer terminals in individual scientist offices and integrated them into the MASS HP-1000 Computer System thus providing significant enhancement to the overall research environment.

  2. Generalized pipeline for preview and rendering of synthetic holograms

    NASA Astrophysics Data System (ADS)

    Pappu, Ravikanth; Sparrell, Carlton J.; Underkoffler, John S.; Kropp, Adam B.; Chen, Benjie; Plesniak, Wendy J.

    1997-04-01

    We describe a general pipeline for the computation and display of either fully-computed holograms or holographic stereograms using the same 3D database. A rendering previewer on a Silicon Graphics Onyx allows a user to specify viewing geometry, database transformations, and scene lighting. The previewer then generates one of two descriptions of the object--a series of perspective views or a polygonal model--which is then used by a fringe rendering engine to compute fringes specific to hologram type. The images are viewed on the second generation MIT Holographic Video System. This allows a viewer to compare holographic stereograms with fully-computed holograms originating from the same database and comes closer to the goal of a single pipeline being able to display the same data in different formats.

  3. LODVIEW: a computer program for the graphical evaluation of lod score results in exclusion mapping of human disease genes.

    PubMed

    Hildebrandt, F; Pohlmann, A; Omran, H

    1993-12-01

    For linkage analysis projects aimed at mapping hereditary disease genes in humans, hundreds of highly polymorphic microsatellite markers which can be typed by PCR (PCR markers) have become available. With this technical improvement, the availability of a technique allowing for transparency in the handling of rapidly generated lod score data is becoming important. We present a computer program LODVIEW for the graphical representation of lod score data. It is designed for the input of lod score data generated with the LINKAGE package or similar programs. LODVIEW consists of 24 preformatted files, one for each chromosome. Each file contains a table for the input of lod score data and a file for the graphical representation of the data, which will show automatically any entry that is made in the respective input table. The program provides the user with published PCR marker information pre-entered into a table and graph at the correct positions corresponding to the genetic distances between markers. The graphical display of LODVIEW allows for the rapid evaluation of lod score results calculated from PCR markers on each chromosome. The following information can be obtained from the graphical display at one glance: (i) Regions of exclusion (Z(theta) < -2) and nonexclusion, (ii) markers with positive lod scores, (iii) the distribution of positive and negative lod scores among the families examined (indication of genetic heterogeneity), (iv) multipoint lod scores, and (v) the availability of PCR markers in regions of interest. The program is continually updated for novel PCR marker information from the literature. The program will help to efficiently monitor and direct the progress of exclusion mapping projects.

  4. Graduated profiling: enumerating and generating perceptual colormaps for uncalibrated computer displays

    NASA Astrophysics Data System (ADS)

    Kalvin, Alan D.

    2002-06-01

    The importance of using perceptual colormaps for visualizing numerical data is well established in the fields of scientific visualization, computer graphics and color science and related areas of research. In practice however, the use of perceptual colormaps tends to be the exception rather than the rule. In general it is difficult for end-users to find suitable colormaps. In addition, even when such colormaps are available, the inherent variability in color reproduction among computer displays makes it very difficult for the users to verify that these colormaps do indeed preserve their perceptual characteristics when used on different displays. Generally, verification requires display profiling (evaluating the display's color reproduction characteristics), using a colorimeter or a similar type of measuring device. With the growth of the Internet, and the resulting proliferation of remote, client-based displays, the profiling problem has become even more difficult, and in many cases, impossible. We present a method for enumerating and generating perceptual colormaps in such a way that ensures that the perceptual characteristics of the colormaps are maintained for over a wide range of different displays. This method constructs colormaps that are guaranteed to be 'perceptually correct' for a given display by using whatever partial profile information of the display is available. We use the term 'graduated profiling' to describe this method of partial profiling.

  5. Shield system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finch, D.R.; Chandler, J.R.; Church, J.P.

    1979-01-01

    The SHIELD system is a powerful new computational tool for calculation of isotopic inventory, radiation sources, decay heat, and shielding assessment in part of the nuclear fuel cycle. The integrated approach used in this system permitss the communication and management of large fields of numbers efficiently thus permitting the user to address the technical rather than computer aspects of a problem. Emphasis on graphical outputs permits large fields of resulting numbers to be efficiently displayed.

  6. Natural Resource Information System. Volume 2: System operating procedures and instructions

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A total computer software system description is provided for the prototype Natural Resource Information System designed to store, process, and display data of maximum usefulness to land management decision making. Program modules are described, as are the computer file design, file updating methods, digitizing process, and paper tape conversion to magnetic tape. Operating instructions for the system, data output, printed output, and graphic output are also discussed.

  7. The Software Design Document: More than a User's Manual.

    ERIC Educational Resources Information Center

    Bowers, Dennis

    1989-01-01

    Discusses the value of creating design documentation for computer software so that it may serve as a model for similar design efforts. Components of the software design document are described, including program flowcharts, graphic representation of screen displays, storyboards, and evaluation procedures. An example is given using HyperCard. (three…

  8. Virtual Titrator: A Student-Oriented Instrument.

    ERIC Educational Resources Information Center

    Ritter, David; Johnson, Michael

    1997-01-01

    Describes a titrator system, constructed from a computer-interfaced pH-meter, that was designed to increase student involvement in the process. Combines automatic data collection with real-time graphical display and interactive controls to focus attention on the process rather than on bits of data. Improves understanding of concepts and…

  9. A computerized system for portrayal of landscape alterations

    Treesearch

    A. E. Stevenson; J. A. Conley; J. B. Carey

    1979-01-01

    The growing public awareness of and participation in the visual resource decision process has stimulated interest to find improved means of accurately and realistically displaying proposed alterations. The traditional artist renderings often lack the accuracy and objectivity needed for critical decisions. One approach, using computer graphics, led to the MOSAIC system...

  10. Using Matlab in a Multivariable Calculus Course.

    ERIC Educational Resources Information Center

    Schlatter, Mark D.

    The benefits of high-level mathematics packages such as Matlab include both a computer algebra system and the ability to provide students with concrete visual examples. This paper discusses how both capabilities of Matlab were used in a multivariate calculus class. Graphical user interfaces which display three-dimensional surfaces, contour plots,…

  11. NLM microcomputer-based tutorials (for microcomputers). Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkins, M.

    1990-04-01

    The package consists of TOXLEARN--a microcomputer-based training package for TOXLINE (Toxicology Information Online), CHEMLEARN-a microcomputer-based training package for CHEMLINE (Chemical Information Online), MEDTUTOR--a microcomputer-based training package for MEDLINE (Medical Information Online), and ELHILL LEARN--a microcomputer-based training package for the ELHILL search and retrieval software that supports the above-mentioned databases...Software Description: The programs were developed under PILOTplus using the NLM LEARN Programmer. They run on IBM-PC, XT, AT, PS/2, and fully compatible computers. The programs require 512K RAM memory, one disk drive, and DOS 2.0 or higher. The software supports most monochrome, color graphics, enhanced color graphics, or visual graphics displays.

  12. Computer animation of NASTRAN displacements on IRIS 4D-series workstations: CANDI/ANIMATE postprocessing of NASHUA results

    NASA Technical Reports Server (NTRS)

    Fales, Janine L.

    1991-01-01

    The capabilities of the postprocessing program CANDI (Color Animation of Nastran DIsplacements) were expanded to accept results from axisymmetric analysis. An auxiliary program, ANIMATE, was developed to allow color display of CANDI output on the IRIS 4D-series workstations. The user can interactively manipulate the graphics display by three-dimensional rotations, translations, and scaling through the use of the keyboard and/or dials box. The user can also specify what portion of the model is displayed. These developments are limited to the display of complex displacements calculated with the NASHUA/NASTRAN procedure for structural acoustics analysis.

  13. Payload and General Support Computer (PGSC) Detailed Test Objective (DTO) number 795 postflight report: STS-41

    NASA Technical Reports Server (NTRS)

    Adolf, Jurine A.; Beberness, Benjamin J.; Holden, Kritina L.

    1991-01-01

    Since 1983, the Space Transportation System (STS) had routinely flown the GRiD 1139 (80286) laptop computer as a portable onboard computing resource. In the spring of 1988, the GRiD 1530, an 80386 based machine, was chosen to replace the GRiD 1139. Human factors ground evaluations and detailed test objectives (DTO) examined the usability of the available display types under different lighting conditions and various angle deviations. All proved unsuitable due to either flight qualification of usability problems. In 1990, an Electroluminescent (EL) display for the GRiD 1530 became flight qualified and another DTO was undertaken to examine this display on-orbit. Under conditions of indirect sunlight and low ambient light, the readability of the text and graphics was only limited by the observer's distance from the display. Although a problem of direct sunlight viewing still existed, there were no problems with large angular deviations nor dark adaptation. No further evaluations were deemed necessary. The GRiD 1530 with the EL display was accepted by the STS program as the new standard for the PGSC.

  14. MORPH-I (Ver 1.0) a software package for the analysis of scanning electron micrograph (binary formatted) images for the assessment of the fractal dimension of enclosed pore surfaces

    USGS Publications Warehouse

    Mossotti, Victor G.; Eldeeb, A. Raouf; Oscarson, Robert

    1998-01-01

    MORPH-I is a set of C-language computer programs for the IBM PC and compatible minicomputers. The programs in MORPH-I are used for the fractal analysis of scanning electron microscope and electron microprobe images of pore profiles exposed in cross-section. The program isolates and traces the cross-sectional profiles of exposed pores and computes the Richardson fractal dimension for each pore. Other programs in the set provide for image calibration, display, and statistical analysis of the computed dimensions for highly complex porous materials. Requirements: IBM PC or compatible; minimum 640 K RAM; mathcoprocessor; SVGA graphics board providing mode 103 display.

  15. Solving the "Hidden Line" Problem

    NASA Technical Reports Server (NTRS)

    1984-01-01

    David Hedgley Jr., a mathematician at Dryden Flight Research Center, has developed an accurate computer program that considers whether a line in a graphic model of a three dimensional object should or should not be visible. The Hidden Line Computer Code, program automatically removes superfluous lines and permits the computer to display an object from specific viewpoints, just as the human eye would see it. Users include Rowland Institute for Science in Cambridge, MA, several departments of Lockheed Georgia Co., and Nebraska Public Power District (NPPD).

  16. A graphical user interface for RAId, a knowledge integrated proteomics analysis suite with accurate statistics.

    PubMed

    Joyce, Brendan; Lee, Danny; Rubio, Alex; Ogurtsov, Aleksey; Alves, Gelio; Yu, Yi-Kuo

    2018-03-15

    RAId is a software package that has been actively developed for the past 10 years for computationally and visually analyzing MS/MS data. Founded on rigorous statistical methods, RAId's core program computes accurate E-values for peptides and proteins identified during database searches. Making this robust tool readily accessible for the proteomics community by developing a graphical user interface (GUI) is our main goal here. We have constructed a graphical user interface to facilitate the use of RAId on users' local machines. Written in Java, RAId_GUI not only makes easy executions of RAId but also provides tools for data/spectra visualization, MS-product analysis, molecular isotopic distribution analysis, and graphing the retrieval versus the proportion of false discoveries. The results viewer displays and allows the users to download the analyses results. Both the knowledge-integrated organismal databases and the code package (containing source code, the graphical user interface, and a user manual) are available for download at https://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads/raid.html .

  17. Computer graphics testbed to simulate and test vision systems for space applications

    NASA Technical Reports Server (NTRS)

    Cheatham, John B.; Wu, Chris K.; Lin, Y. H.

    1991-01-01

    A system was developed for displaying computer graphics images of space objects and the use of the system was demonstrated as a testbed for evaluating vision systems for space applications. In order to evaluate vision systems, it is desirable to be able to control all factors involved in creating the images used for processing by the vision system. Considerable time and expense is involved in building accurate physical models of space objects. Also, precise location of the model relative to the viewer and accurate location of the light source require additional effort. As part of this project, graphics models of space objects such as the Solarmax satellite are created that the user can control the light direction and the relative position of the object and the viewer. The work is also aimed at providing control of hue, shading, noise and shadows for use in demonstrating and testing imaging processing techniques. The simulated camera data can provide XYZ coordinates, pitch, yaw, and roll for the models. A physical model is also being used to provide comparison of camera images with the graphics images.

  18. An advanced programmable/reconfigurable color graphics display system for crew station technology research

    NASA Technical Reports Server (NTRS)

    Montoya, R. J.; England, J. N.; Hatfield, J. J.; Rajala, S. A.

    1981-01-01

    The hardware configuration, software organization, and applications software for the NASA IKONAS color graphics display system are described. The systems were created at the Langley Research Center Display Device Laboratory to develop, evaluate, and demonstrate advanced generic concepts, technology, and systems integration techniques for electronic crew station systems of future civil aircraft. A minicomputer with 64K core memory acts as a host for a raster scan graphics display generator. The architectures of the hardware system and the graphics display system are provided. The applications software features a FORTRAN-based model of an aircraft, a display system, and the utility program for real-time communications. The model accepts inputs from a two-dimensional joystick and outputs a set of aircraft states. Ongoing and planned work for image segmentation/generation, specialized graphics procedures, and higher level language user interface are discussed.

  19. Really Large Scale Computer Graphic Projection Using Lasers and Laser Substitutes

    NASA Astrophysics Data System (ADS)

    Rother, Paul

    1989-07-01

    This paper reflects on past laser projects to display vector scanned computer graphic images onto very large and irregular surfaces. Since the availability of microprocessors and high powered visible lasers, very large scale computer graphics projection have become a reality. Due to the independence from a focusing lens, lasers easily project onto distant and irregular surfaces and have been used for amusement parks, theatrical performances, concert performances, industrial trade shows and dance clubs. Lasers have been used to project onto mountains, buildings, 360° globes, clouds of smoke and water. These methods have proven successful in installations at: Epcot Theme Park in Florida; Stone Mountain Park in Georgia; 1984 Olympics in Los Angeles; hundreds of Corporate trade shows and thousands of musical performances. Using new ColorRayTM technology, the use of costly and fragile lasers is no longer necessary. Utilizing fiber optic technology, the functionality of lasers can be duplicated for new and exciting projection possibilities. The use of ColorRayTM technology has enjoyed worldwide recognition in conjunction with Pink Floyd and George Michaels' world wide tours.

  20. Color vision testing with a computer graphics system: preliminary results.

    PubMed

    Arden, G; Gündüz, K; Perry, S

    1988-06-01

    We report a method for computer enhancement of color vision tests. In our graphics system 256 colors are selected from a much larger range and displayed on a screen divided into 768 x 288 pixels. Eight-bit digital-to-analogue converters drive a high quality monitor with separate inputs to the red, green, and blue amplifiers and calibrated gun chromaticities. The graphics are controlled by a PASCAL program written for a personal computer, which calculates the values of the red, green, and blue signals and specifies them in Commité Internationale d'Eclairage X, Y, and Z fundamentals, so changes in chrominance occur without changes in luminance. The system for measuring color contrast thresholds with gratings is more than adequate in normal observers. In patients with mild retinal damage in whom other tests of visual function are normal, this method of testing color vision shows specific increases in contrast thresholds along tritan color-confusion lines. By the time the Hardy-Rand-Rittler and Farnsworth-Munsell 100-hue tests disclose abnormalities, gross defects in color contrast threshold can be seen with our system.

  1. A revised version of Graphic Normative Analysis Program (GNAP) with examples of petrologic problem solving

    USGS Publications Warehouse

    Stuckless, J.S.; VanTrump, G.

    1979-01-01

    A revised version of Graphic Normative Analysis Program (GNAP) has been developed to allow maximum flexibility in the evaluation of chemical data by the occasional computer user. GNAP calculates ClPW norms, Thornton and Tuttle's differentiation index, Barth's cations, Niggli values and values for variables defined by the user. Calculated values can be displayed graphically in X-Y plots or ternary diagrams. Plotting can be done on a line printer or Calcomp plotter with either weight percent or mole percent data. Modifications in the original program give the user some control over normative calculations for each sample. The number of user-defined variables that can be created from the data has been increased from ten to fifteen. Plotting and calculations can be based on the original data, data adjusted to sum to 100 percent, or data adjusted to sum to 100 percent without water. Analyses for which norms were previously not computable are now computed with footnotes that show excesses or deficiencies in oxides (or volatiles) not accounted for by the norm. This report contains a listing of the computer program, an explanation of the use of the program, and the two sample problems.

  2. The Gene Construction Kit: a new computer program for manipulating and presenting DNA constructs.

    PubMed

    Gross, R H

    1990-06-01

    The Gene Construction Kit is a new tool for manipulating and displaying DNA sequence information. Constructs can be displayed either graphically or as formatted sequence. Segments of DNA can be cut out with restriction enzymes and pasted into other sites. The program keeps track of staggered ends and notifies the user of incompatibilities and offers a choice of ligation options. Each segment of a construct can have its own defined thickness, pattern, direction and color. The sequence listing can be displayed in any font and style in user defined grouping. Nucleotide positions can be displayed as can restriction sites and protein sequences. The DNA can be displayed as either single- or double-stranded. Restriction sites can be readily marked. Alternative views of the DNA can be maintained and the history of the construct automatically stored. Gel electrophoresis patterns can be generated and can be used in cloning project design. Extensive comments can be stored with the construct and can be searched rapidly for key words. High quality illustrations showing multiple editable constructs with added graphics and text information can be generated for slides, posters or publication.

  3. Graphics simulation and training aids for advanced teleoperation

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Schenker, Paul S.; Bejczy, Antal K.

    1993-01-01

    Graphics displays can be of significant aid in accomplishing a teleoperation task throughout all three phases of off-line task analysis and planning, operator training, and online operation. In the first phase, graphics displays provide substantial aid to investigate work cell layout, motion planning with collision detection and with possible redundancy resolution, and planning for camera views. In the second phase, graphics displays can serve as very useful tools for introductory training of operators before training them on actual hardware. In the third phase, graphics displays can be used for previewing planned motions and monitoring actual motions in any desired viewing angle, or, when communication time delay prevails, for providing predictive graphics overlay on the actual camera view of the remote site to show the non-time-delayed consequences of commanded motions in real time. This paper addresses potential space applications of graphics displays in all three operational phases of advanced teleoperation. Possible applications are illustrated with techniques developed and demonstrated in the Advanced Teleoperation Laboratory at JPL. The examples described include task analysis and planning of a simulated Solar Maximum Satellite Repair task, a novel force-reflecting teleoperation simulator for operator training, and preview and predictive displays for on-line operations.

  4. Computer animation for minimally invasive surgery: computer system requirements and preferred implementations

    NASA Astrophysics Data System (ADS)

    Pieper, Steven D.; McKenna, Michael; Chen, David; McDowall, Ian E.

    1994-04-01

    We are interested in the application of computer animation to surgery. Our current project, a navigation and visualization tool for knee arthroscopy, relies on real-time computer graphics and the human interface technologies associated with virtual reality. We believe that this new combination of techniques will lead to improved surgical outcomes and decreased health care costs. To meet these expectations in the medical field, the system must be safe, usable, and cost-effective. In this paper, we outline some of the most important hardware and software specifications in the areas of video input and output, spatial tracking, stereoscopic displays, computer graphics models and libraries, mass storage and network interfaces, and operating systems. Since this is a fairly new combination of technologies and a new application, our justification for our specifications are drawn from the current generation of surgical technology and by analogy to other fields where virtual reality technology has been more extensively applied and studied.

  5. XEphem: Interactive Astronomical Ephemeris

    NASA Astrophysics Data System (ADS)

    Downey, Elwood Charles

    2011-12-01

    XEphem is a scientific-grade interactive astronomical ephemeris package for UNIX-like systems. Written in C, X11 and Motif, it is easily ported to systems. Among other things, XEphem: computes heliocentric, geocentric and topocentric information for all objects; has built-in support for all planets; the moons of Mars, Jupiter, Saturn, Uranus and Earth; central meridian longitude of Mars and Jupiter; Saturn's rings; and Jupiter's Great Red Spot; allows user-defined objects including stars, deepsky objects, asteroids, comets and Earth satellites; provides special efficient handling of large catalogs including Tycho, Hipparcos, GSC; displays data in configurable tabular formats in conjunction with several interactive graphical views; displays a night-at-a-glance 24 hour graphic showing when any selected objects are up; displays 3-D stereo Solar System views that are particularly well suited for visualizing comet trajectories; quickly finds all close pairs of objects in the sky; and sorts and prints all catalogs with very flexible criteria for creating custom observing lists. Its capabilities are listed more fully in the user manual introduction.

  6. Applications of remote sensing in resource management in Nebraska

    NASA Technical Reports Server (NTRS)

    Drew, J. V.

    1975-01-01

    A computer-generated graphic display of land use data was developed. The level II inventory data for Sarpy County, Nebraska, was placed on magnetic tape. This data could then be displayed in a map format for comparative analysis of amount and distribution of the various categories of land use. The presentation scale can be varied and thus utilized as a direct guide for cartographic purposes during preparation for publication. In addition, the inventory and classification system was further refined.

  7. Adaptation of Control Center Software to Commerical Real-Time Display Applications

    NASA Technical Reports Server (NTRS)

    Collier, Mark D.

    1994-01-01

    NASA-Marshall Space Flight Center (MSFC) is currently developing an enhanced Huntsville Operation Support Center (HOSC) system designed to support multiple spacecraft missions. The Enhanced HOSC is based upon a distributed computing architecture using graphic workstation hardware and industry standard software including POSIX, X Windows, Motif, TCP/IP, and ANSI C. Southwest Research Institute (SwRI) is currently developing a prototype of the Display Services application for this system. Display Services provides the capability to generate and operate real-time data-driven graphic displays. This prototype is a highly functional application designed to allow system end users to easily generate complex data-driven displays. The prototype is easy to use, flexible, highly functional, and portable. Although this prototype is being developed for NASA-MSFC, the general-purpose real-time display capability can be reused in similar mission and process control environments. This includes any environment depending heavily upon real-time data acquisition and display. Reuse of the prototype will be a straight-forward transition because the prototype is portable, is designed to add new display types easily, has a user interface which is separated from the application code, and is very independent of the specifics of NASA-MSFC's system. Reuse of this prototype in other environments is a excellent alternative to creation of a new custom application, or for environments with a large number of users, to purchasing a COTS package.

  8. ELAS - SCIENCE & TECHNOLOGY LABORATORY APPLICATIONS SOFTWARE (SILICON GRAPHICS VERSION)

    NASA Technical Reports Server (NTRS)

    Walters, D.

    1994-01-01

    The Science and Technology Laboratory Applications Software (ELAS) was originally designed to analyze and process digital imagery data, specifically remotely-sensed scanner data. This capability includes the processing of Landsat multispectral data; aircraft-acquired scanner data; digitized topographic data; and numerous other ancillary data, such as soil types and rainfall information, that can be stored in digitized form. ELAS has the subsequent capability to geographically reference this data to dozens of standard, as well as user created projections. As an integrated image processing system, ELAS offers the user of remotely-sensed data a wide range of capabilities in the areas of land cover analysis and general purpose image analysis. ELAS is designed for flexible use and operation and includes its own FORTRAN operating subsystem and an expandable set of FORTRAN application modules. Because all of ELAS resides in one "logical" FORTRAN program, data inputs and outputs, directives, and module switching are convenient for the user. There are over 230 modules presently available to aid the user in performing a wide range of land cover analyses and manipulation. The file management modules enable the user to allocate, define, access, and specify usage for all types of files (ELAS files, subfiles, external files etc.). Various other modules convert specific types of satellite, aircraft, and vector-polygon data into files that can be used by other ELAS modules. The user also has many module options which aid in displaying image data, such as magnification/reduction of the display; true color display; and several memory functions. Additional modules allow for the building and manipulation of polygonal areas of the image data. Finally, there are modules which allow the user to select and classify the image data. An important feature of the ELAS subsystem is that its structure allows new applications modules to be easily integrated in the future. ELAS has as a standard the flexibility to process data elements exceeding 8 bits in length, including floating point (noninteger) elements and 16 or 32 bit integers. Thus it is able to analyze and process "non-standard" nonimage data. The VAX (ERL-10017) and Concurrent (ERL-10013) versions of ELAS 9.0 are written in FORTRAN and ASSEMBLER for DEC VAX series computers running VMS and Concurrent computers running MTM. The Sun (SSC-00019), Masscomp (SSC-00020), and Silicon Graphics (SSC-00021) versions of ELAS 9.0 are written in FORTRAN 77 and C-LANGUAGE for Sun4 series computers running SunOS, Masscomp computers running UNIX, and Silicon Graphics IRIS computers running IRIX. The Concurrent version requires at least 15 bit addressing and a direct memory access channel. The VAX and Concurrent versions of ELAS both require floating-point hardware, at least 1Mb of RAM, and approximately 70Mb of disk space. Both versions also require a COMTAL display device in order to display images. For the Sun, Masscomp, and Silicon Graphics versions of ELAS, the disk storage required is approximately 115Mb, and a minimum of 8Mb of RAM is required for execution. The Sun version of ELAS requires either the X-Window System Version 11 Revision 4 or Sun OpenWindows Version 2. The Masscomp version requires a GA1000 display device and the associated "gp" library. The Silicon Graphics version requires Silicon Graphics' GL library. ELAS display functions will not work with a monochrome monitor. The standard distribution medium for the VAX version (ERL10017) is a set of two 9-track 1600 BPI magnetic tapes in DEC VAX BACKUP format. This version is also available on a TK50 tape cartridge in DEC VAX BACKUP format. The standard distribution medium for the Concurrent version (ERL-10013) is a set of two 9-track 1600 BPI magnetic tapes in Concurrent BACKUP format. The standard distribution medium for the Sun version (SSC-00019) is a .25 inch streaming magnetic tape cartridge in UNIX tar format. The standard distribution medium for the Masscomp version, (SSC-00020) is a .25 inch streaming magnetic tape cartridge in UNIX tar format. The standard distribution medium for the Silicon Graphics version (SSC-00021) is a .25 inch streaming magnetic IRIS tape cartridge in UNIX tar format. Version 9.0 was released in 1991. Sun4, SunOS, and Open Windows are trademarks of Sun Microsystems, Inc. MIT X Window System is licensed by Massachusetts Institute of Technology.

  9. COM-GEOM Interactive Display Debugger (CIDD)

    DTIC Science & Technology

    1984-08-01

    necessery and Identify by block nlum.ber) Target Description GIFT interactive Computer Graphics SolIi d Geone t ry Combintatorial Gecometry * COM-GLOM 120...program was written to speed up the process of formulating the Com-Geom data used by the Geometric Information for Targets ( GIFT ) 1,2 computer code...Polyhedron Lawrence W. Bain, Mathew J. Reisinger, "The GIFT Code User Manual; Volume I, Introduction and Input Requirements (u)," BRL Report No. 1802

  10. Total reduction of distorted echelle spectrograms - An automatic procedure. [for computer controlled microdensitometer

    NASA Technical Reports Server (NTRS)

    Peterson, R. C.; Title, A. M.

    1975-01-01

    A total reduction procedure, notable for its use of a computer-controlled microdensitometer for semi-automatically tracing curved spectra, is applied to distorted high-dispersion echelle spectra recorded by an image tube. Microdensitometer specifications are presented and the FORTRAN, TRACEN and SPOTS programs are outlined. The intensity spectrum of the photographic or electrographic plate is plotted on a graphic display. The time requirements are discussed in detail.

  11. Computer-Aided System Engineering and Analysis (CASE/A) Programmer's Manual, Version 5.0

    NASA Technical Reports Server (NTRS)

    Knox, J. C.

    1996-01-01

    The Computer Aided System Engineering and Analysis (CASE/A) Version 5.0 Programmer's Manual provides the programmer and user with information regarding the internal structure of the CASE/A 5.0 software system. CASE/A 5.0 is a trade study tool that provides modeling/simulation capabilities for analyzing environmental control and life support systems and active thermal control systems. CASE/A has been successfully used in studies such as the evaluation of carbon dioxide removal in the space station. CASE/A modeling provides a graphical and command-driven interface for the user. This interface allows the user to construct a model by placing equipment components in a graphical layout of the system hardware, then connect the components via flow streams and define their operating parameters. Once the equipment is placed, the simulation time and other control parameters can be set to run the simulation based on the model constructed. After completion of the simulation, graphical plots or text files can be obtained for evaluation of the simulation results over time. Additionally, users have the capability to control the simulation and extract information at various times in the simulation (e.g., control equipment operating parameters over the simulation time or extract plot data) by using "User Operations (OPS) Code." This OPS code is written in FORTRAN with a canned set of utility subroutines for performing common tasks. CASE/A version 5.0 software runs under the VAX VMS(Trademark) environment. It utilizes the Tektronics 4014(Trademark) graphics display system and the VTIOO(Trademark) text manipulation/display system.

  12. Implementation of Networking-by-Touch to Small Unit, Network-Enabled Operations

    DTIC Science & Technology

    2010-09-01

    Monitoring – Telemanipulation ............... 54  5.  Entertainment and Educational Applications...................... 55  6.  Tactile Displays Embedded...military situational awareness systems, text and graphics applications, medical applications, entertainment and educational applications...25] ) Electromechanical transducer Electromagnetic field sensors Computer driver 21 Now, consider another simple scenario: John loves music

  13. Solutions of the epidemic of EIAV infection by HPM

    NASA Astrophysics Data System (ADS)

    Balamuralitharan, S.; Geethamalini, S.

    2018-04-01

    In this article, Homotopy Perturbation Method (HPM) is to process of estimate to the arrangements to a model for Equine Infectious Anemia Virus (EIAV) disease. This technique allows a direct scheme for solving the problem. MATLAB is operated to complete the computations. Graphical results are displayed and discussed quantitatively and simplicity of the method.

  14. Exploring Classroom Interaction with Dynamic Social Network Analysis

    ERIC Educational Resources Information Center

    Bokhove, Christian

    2018-01-01

    This article reports on an exploratory project in which technology and dynamic social network analysis (SNA) are used for modelling classroom interaction. SNA focuses on the links between social actors, draws on graphic imagery to reveal and display the patterning of those links, and develops mathematical and computational models to describe and…

  15. Matching Feedback and Cognitive Style in Visual CAI Tasks.

    ERIC Educational Resources Information Center

    Hedberg, John G.; McNamara, Suzanne E.

    The effects of different types of feedback in computer assisted instruction were studied in 30 college students with different cognitive styles. The program, written in Apple Pilot and administered on an Apple IIE microcomputer, consisted of 16 problem solving tasks; for each, a graphic display and a textual question were presented. Two feedback…

  16. Spatial 3D infrastructure: display-independent software framework, high-speed rendering electronics, and several new displays

    NASA Astrophysics Data System (ADS)

    Chun, Won-Suk; Napoli, Joshua; Cossairt, Oliver S.; Dorval, Rick K.; Hall, Deirdre M.; Purtell, Thomas J., II; Schooler, James F.; Banker, Yigal; Favalora, Gregg E.

    2005-03-01

    We present a software and hardware foundation to enable the rapid adoption of 3-D displays. Different 3-D displays - such as multiplanar, multiview, and electroholographic displays - naturally require different rendering methods. The adoption of these displays in the marketplace will be accelerated by a common software framework. The authors designed the SpatialGL API, a new rendering framework that unifies these display methods under one interface. SpatialGL enables complementary visualization assets to coexist through a uniform infrastructure. Also, SpatialGL supports legacy interfaces such as the OpenGL API. The authors" first implementation of SpatialGL uses multiview and multislice rendering algorithms to exploit the performance of modern graphics processing units (GPUs) to enable real-time visualization of 3-D graphics from medical imaging, oil & gas exploration, and homeland security. At the time of writing, SpatialGL runs on COTS workstations (both Windows and Linux) and on Actuality"s high-performance embedded computational engine that couples an NVIDIA GeForce 6800 Ultra GPU, an AMD Athlon 64 processor, and a proprietary, high-speed, programmable volumetric frame buffer that interfaces to a 1024 x 768 x 3 digital projector. Progress is illustrated using an off-the-shelf multiview display, Actuality"s multiplanar Perspecta Spatial 3D System, and an experimental multiview display. The experimental display is a quasi-holographic view-sequential system that generates aerial imagery measuring 30 mm x 25 mm x 25 mm, providing 198 horizontal views.

  17. Graphical techniques to assist in pointing and control studies of orbiting spacecraft

    NASA Technical Reports Server (NTRS)

    Howell, L. W.; Ruf, J. H.

    1986-01-01

    Computer generated graphics are developed to assist in the modeling and assessment of pointing and control systems of orbiting spacecraft. Three-dimensional diagrams are constructed of the Earth and of geometrical models which resemble the spacecraft of interest. Orbital positioning of the spacecraft model relative to the Earth and the orbital ground track are then displayed. A star data base is also available which may be used for telescope pointing and star tracker field-of-views to visually assist in spacecraft pointing and control studies. A geometrical model of the Hubble Space Telescope (HST) is constructed and placed in Earth orbit to demonstrate the use of these programs. Simulated star patterns are then displayed corresponding to the primary mirror's FOV and the telescope's star trackers for various telescope orientations with respect to the celestial sphere.

  18. Forward/up directional incompatibilities during cursor placement within graphical user interfaces.

    PubMed

    Phillips, James G; Triggs, Thomas J; Meehan, James W

    2005-05-15

    Within graphical user interfaces, an indirect relationship between display and control may lead to directional incompatibilities when a forward mouse movement codes upward cursor motions. However, this should not occur for left/right movements or direct cursor controllers (e.g. touch sensitive screens). In a four-choice reaction time task, 12 participants performed movements from a central start location to a target situated at one of four cardinal points (top, bottom, left, right). A 2 x 2 x 2 design varied directness of controller (moving cursor on computer screen or pen on graphics tablet), compatibility of orientation of cursor controller with screen (horizontal or vertical) and axis of desired cursor motion (left/right or up/down). Incompatibility between orientation of controller and motion of cursor did not affect response latencies, possibly because both forward and upward movements are away from the midline and go up the visual field. However, directional incompatibilities between display and controller led to slower movement with prolonged accelerative phases. Indirect relationships between display and control led to less efficient movements with prolonged decelerative phases and a tendency to undershoot movements along the bottom/top axis. More direct cursor control devices, such as touch sensitive screens, should enhance the efficiency of aspects of cursor trajectories.

  19. Software For Graphical Representation Of A Network

    NASA Technical Reports Server (NTRS)

    Mcallister, R. William; Mclellan, James P.

    1993-01-01

    System Visualization Tool (SVT) computer program developed to provide systems engineers with means of graphically representing networks. Generates diagrams illustrating structures and states of networks defined by users. Provides systems engineers powerful tool simplifing analysis of requirements and testing and maintenance of complex software-controlled systems. Employs visual models supporting analysis of chronological sequences of requirements, simulation data, and related software functions. Applied to pneumatic, hydraulic, and propellant-distribution networks. Used to define and view arbitrary configurations of such major hardware components of system as propellant tanks, valves, propellant lines, and engines. Also graphically displays status of each component. Advantage of SVT: utilizes visual cues to represent configuration of each component within network. Written in Turbo Pascal(R), version 5.0.

  20. Techniques for efficient, real-time, 3D visualization of multi-modality cardiac data using consumer graphics hardware.

    PubMed

    Levin, David; Aladl, Usaf; Germano, Guido; Slomka, Piotr

    2005-09-01

    We exploit consumer graphics hardware to perform real-time processing and visualization of high-resolution, 4D cardiac data. We have implemented real-time, realistic volume rendering, interactive 4D motion segmentation of cardiac data, visualization of multi-modality cardiac data and 3D display of multiple series cardiac MRI. We show that an ATI Radeon 9700 Pro can render a 512x512x128 cardiac Computed Tomography (CT) study at 0.9 to 60 frames per second (fps) depending on rendering parameters and that 4D motion based segmentation can be performed in real-time. We conclude that real-time rendering and processing of cardiac data can be implemented on consumer graphics cards.

  1. A computer graphics display and data compression technique

    NASA Technical Reports Server (NTRS)

    Teague, M. J.; Meyer, H. G.; Levenson, L. (Editor)

    1974-01-01

    The computer program discussed is intended for the graphical presentation of a general dependent variable X that is a function of two independent variables, U and V. The required input to the program is the variation of the dependent variable with one of the independent variables for various fixed values of the other. The computer program is named CRP, and the output is provided by the SD 4060 plotter. Program CRP is an extremely flexible program that offers the user a wide variety of options. The dependent variable may be presented in either a linear or a logarithmic manner. Automatic centering of the plot is provided in the ordinate direction, and the abscissa is scaled automatically for a logarithmic plot. A description of the carpet plot technique is given along with the coordinates system used in the program. Various aspects of the program logic are discussed and detailed documentation of the data card format is presented.

  2. Parallel rendering

    NASA Technical Reports Server (NTRS)

    Crockett, Thomas W.

    1995-01-01

    This article provides a broad introduction to the subject of parallel rendering, encompassing both hardware and software systems. The focus is on the underlying concepts and the issues which arise in the design of parallel rendering algorithms and systems. We examine the different types of parallelism and how they can be applied in rendering applications. Concepts from parallel computing, such as data decomposition, task granularity, scalability, and load balancing, are considered in relation to the rendering problem. We also explore concepts from computer graphics, such as coherence and projection, which have a significant impact on the structure of parallel rendering algorithms. Our survey covers a number of practical considerations as well, including the choice of architectural platform, communication and memory requirements, and the problem of image assembly and display. We illustrate the discussion with numerous examples from the parallel rendering literature, representing most of the principal rendering methods currently used in computer graphics.

  3. Solar physics applications of computer graphics and image processing

    NASA Technical Reports Server (NTRS)

    Altschuler, M. D.

    1985-01-01

    Computer graphics devices coupled with computers and carefully developed software provide new opportunities to achieve insight into the geometry and time evolution of scalar, vector, and tensor fields and to extract more information quickly and cheaply from the same image data. Two or more different fields which overlay in space can be calculated from the data (and the physics), then displayed from any perspective, and compared visually. The maximum regions of one field can be compared with the gradients of another. Time changing fields can also be compared. Images can be added, subtracted, transformed, noise filtered, frequency filtered, contrast enhanced, color coded, enlarged, compressed, parameterized, and histogrammed, in whole or section by section. Today it is possible to process multiple digital images to reveal spatial and temporal correlations and cross correlations. Data from different observatories taken at different times can be processed, interpolated, and transformed to a common coordinate system.

  4. Creation and application of three-dimensional computer-graphic animations for introduction to radiological physics and technology.

    PubMed

    Hasegawa, Tomoyuki; Kojima, Haruna; Masu, Chisato; Fukushima, Yasuhiro; Kojima, Hironori; Konokawa, Kiminori; Isobe, Tomonori; Sato, Eisuke; Murayama, Hideo; Maruyama, Koichi; Umeda, Tokuo

    2010-01-01

    Physics-related subjects are important in the educational fields of radiological physics and technology. However, conventional teaching tools, for example texts, equations, and two-dimensional figures, are not very effective in attracting the interest of students. Therefore, we have created several multimedia educational materials covering radiological physics and technology. Each educational presentation includes several segments of high-quality computer-graphic animations designed to attract students' interest. We used personal computers (PCs) and commercial software to create and compile these. Undergraduate and graduate students and teachers and related professionals contributed to the design and creation of the educational materials as part of student research. The educational materials can be displayed on a PC monitor and manipulated with popular free software. Opinion surveys conducted in undergraduate courses at Kitasato University support the effectiveness of our educational tools in helping students gain a better understanding of the subjects offered and in raising their interest.

  5. PLOT3D/AMES, SGI IRIS VERSION (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. In each of these areas, the IRIS implementation of PLOT3D offers advanced features which aid visualization efforts. Shading and hidden line/surface removal can be used to enhance depth perception and other aspects of the graphical displays. A mouse can be used to translate, rotate, or zoom in on views. Files for several types of output can be produced. Two animation options are even offered: creation of simple animation sequences without the need for other software; and, creation of files for use in GAS (Graphics Animation System, ARC-12379), an IRIS program which offers more complex rendering and animation capabilities and can record images to digital disk, video tape, or 16-mm film. The version 3.6b+ SGI implementations of PLOT3D (ARC-12783) and PLOT3D/TURB3D (ARC-12782) were developed for use on Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstations. These programs are each distributed on one .25 inch magnetic tape cartridge in IRIS TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, and Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); (2) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC-12777,ARC-12781); (3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo and GMR3D are trademarks of Hewlett-Packard, Incorporated. UNIX is a registered trademark of AT&T.

  6. PLOT3D/AMES, SGI IRIS VERSION (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. In each of these areas, the IRIS implementation of PLOT3D offers advanced features which aid visualization efforts. Shading and hidden line/surface removal can be used to enhance depth perception and other aspects of the graphical displays. A mouse can be used to translate, rotate, or zoom in on views. Files for several types of output can be produced. Two animation options are even offered: creation of simple animation sequences without the need for other software; and, creation of files for use in GAS (Graphics Animation System, ARC-12379), an IRIS program which offers more complex rendering and animation capabilities and can record images to digital disk, video tape, or 16-mm film. The version 3.6b+ SGI implementations of PLOT3D (ARC-12783) and PLOT3D/TURB3D (ARC-12782) were developed for use on Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstations. These programs are each distributed on one .25 inch magnetic tape cartridge in IRIS TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, and Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); (2) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC-12777,ARC-12781); (3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo and GMR3D are trademarks of Hewlett-Packard, Incorporated. UNIX is a registered trademark of AT&T.

  7. Deep Space Network (DSN), Network Operations Control Center (NOCC) computer-human interfaces

    NASA Technical Reports Server (NTRS)

    Ellman, Alvin; Carlton, Magdi

    1993-01-01

    The technical challenges, engineering solutions, and results of the NOCC computer-human interface design are presented. The use-centered design process was as follows: determine the design criteria for user concerns; assess the impact of design decisions on the users; and determine the technical aspects of the implementation (tools, platforms, etc.). The NOCC hardware architecture is illustrated. A graphical model of the DSN that represented the hierarchical structure of the data was constructed. The DSN spacecraft summary display is shown. Navigation from top to bottom is accomplished by clicking the appropriate button for the element about which the user desires more detail. The telemetry summary display and the antenna color decision table are also shown.

  8. RIP-REMOTE INTERACTIVE PARTICLE-TRACER

    NASA Technical Reports Server (NTRS)

    Rogers, S. E.

    1994-01-01

    Remote Interactive Particle-tracing (RIP) is a distributed-graphics program which computes particle traces for computational fluid dynamics (CFD) solution data sets. A particle trace is a line which shows the path a massless particle in a fluid will take; it is a visual image of where the fluid is going. The program is able to compute and display particle traces at a speed of about one trace per second because it runs on two machines concurrently. The data used by the program is contained in two files. The solution file contains data on density, momentum and energy quantities of a flow field at discrete points in three-dimensional space, while the grid file contains the physical coordinates of each of the discrete points. RIP requires two computers. A local graphics workstation interfaces with the user for program control and graphics manipulation, and a remote machine interfaces with the solution data set and performs time-intensive computations. The program utilizes two machines in a distributed mode for two reasons. First, the data to be used by the program is usually generated on the supercomputer. RIP avoids having to convert and transfer the data, eliminating any memory limitations of the local machine. Second, as computing the particle traces can be computationally expensive, RIP utilizes the power of the supercomputer for this task. Although the remote site code was developed on a CRAY, it is possible to port this to any supercomputer class machine with a UNIX-like operating system. Integration of a velocity field from a starting physical location produces the particle trace. The remote machine computes the particle traces using the particle-tracing subroutines from PLOT3D/AMES, a CFD post-processing graphics program available from COSMIC (ARC-12779). These routines use a second-order predictor-corrector method to integrate the velocity field. Then the remote program sends graphics tokens to the local machine via a remote-graphics library. The local machine interprets the graphics tokens and draws the particle traces. The program is menu driven. RIP is implemented on the silicon graphics IRIS 3000 (local workstation) with an IRIX operating system and on the CRAY2 (remote station) with a UNICOS 1.0 or 2.0 operating system. The IRIS 4D can be used in place of the IRIS 3000. The program is written in C (67%) and FORTRAN 77 (43%) and has an IRIS memory requirement of 4 MB. The remote and local stations must use the same user ID. PLOT3D/AMES unformatted data sets are required for the remote machine. The program was developed in 1988.

  9. AWE: Aviation Weather Data Visualization Environment

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly; Lodha, Suresh K.

    2000-01-01

    The two official sources for aviation weather reports both provide weather information to a pilot in a textual format. A number of systems have recently become available to help pilots with the visualization task by providing much of the data graphically. However, two types of aviation weather data are still not being presented graphically. These are airport-specific current weather reports (known as meteorological observations, or METARs) and forecast weather reports (known as terminal area forecasts, or TAFs). Our system, Aviation Weather Environment (AWE), presents intuitive graphical displays for both METARs and TAFs, as well as winds aloft forecasts. We start with a computer-generated textual aviation weather briefing. We map this briefing onto a cartographic grid specific to the pilot's area of interest. The pilot is able to obtain aviation-specific weather for the entire area or for his specific route. The route, altitude, true airspeed, and proposed departure time can each be modified in AWE. Integral visual display of these three elements of weather reports makes AWE a useful planning tool, as well as a weather briefing tool.

  10. HiRel: Hybrid Automated Reliability Predictor (HARP) integrated reliability tool system, (version 7.0). Volume 4: HARP Output (HARPO) graphics display user's guide

    NASA Technical Reports Server (NTRS)

    Sproles, Darrell W.; Bavuso, Salvatore J.

    1994-01-01

    The Hybrid Automated Reliability Predictor (HARP) integrated Reliability (HiRel) tool system for reliability/availability prediction offers a toolbox of integrated reliability/availability programs that can be used to customize the user's application in a workstation or nonworkstation environment. HiRel consists of interactive graphical input/output programs and four reliability/availability modeling engines that provide analytical and simulative solutions to a wide host of highly reliable fault-tolerant system architectures and is also applicable to electronic systems in general. The tool system was designed at the outset to be compatible with most computing platforms and operating systems and some programs have been beta tested within the aerospace community for over 8 years. This document is a user's guide for the HiRel graphical postprocessor program HARPO (HARP Output). HARPO reads ASCII files generated by HARP. It provides an interactive plotting capability that can be used to display alternate model data for trade-off analyses. File data can also be imported to other commercial software programs.

  11. Methods and apparatus for graphical display and editing of flight plans

    NASA Technical Reports Server (NTRS)

    Gibbs, Michael J. (Inventor); Adams, Jr., Mike B. (Inventor); Chase, Karl L. (Inventor); Lewis, Daniel E. (Inventor); McCrobie, Daniel E. (Inventor); Omen, Debi Van (Inventor)

    2002-01-01

    Systems and methods are provided for an integrated graphical user interface which facilitates the display and editing of aircraft flight-plan data. A user (e.g., a pilot) located within the aircraft provides input to a processor through a cursor control device and receives visual feedback via a display produced by a monitor. The display includes various graphical elements associated with the lateral position, vertical position, flight-plan and/or other indicia of the aircraft's operational state as determined from avionics data and/or various data sources. Through use of the cursor control device, the user may modify the flight-plan and/or other such indicia graphically in accordance with feedback provided by the display. In one embodiment, the display includes a lateral view, a vertical profile view, and a hot-map view configured to simplify the display and editing of the aircraft's flight-plan data.

  12. Semiautomated Management Of Arriving Air Traffic

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz; Nedell, William

    1992-01-01

    System of computers, graphical workstations, and computer programs developed for semiautomated management of approach and arrival of numerous aircraft at airport. System comprises three subsystems: traffic-management advisor, used for controlling traffic into terminal area; descent advisor generates information integrated into plan-view display of traffic on monitor; and final-approach-spacing tool used to merge traffic converging on final approach path while making sure aircraft are properly spaced. Not intended to restrict decisions of air-traffic controllers.

  13. A Graphics Environment Supporting the Rapid Prototyping of Pictorial Cockpit Displays

    DTIC Science & Technology

    1986-12-01

    0 - niDi cO 3 FIL .OF I A GRAPHICS ENVIRONMENT SUPPORTING THE RAPID PROTOTYPING OF PICTORIAL COCKPIT DISPLAYS THESIS Alan J. Braaten Captain, USAF...COCKPIT DISPLAYS THESIS Alan J. Braaten Captain, USAF AFIT/GCS/IA/86D- 1 Appram:ed for public release; distribution unlimited AFIT/GCS/MA/80- 1 A...GRAPHICS ENVIROWNT SUPPORTING THE RAPID PROTOTYPING OF PICTORIAL COCKPIT DISPLAYS THESIS Preented to the Faculty Of the School of Engineering of the Air

  14. Applications of graphics to support a testbed for autonomous space vehicle operations

    NASA Technical Reports Server (NTRS)

    Schmeckpeper, K. R.; Aldridge, J. P.; Benson, S.; Horner, S.; Kullman, A.; Mulder, T.; Parrott, W.; Roman, D.; Watts, G.; Bochsler, Daniel C.

    1989-01-01

    Researchers describe their experience using graphics tools and utilities while building an application, AUTOPS, that uses a graphical Machintosh (TM)-like interface for the input and display of data, and animation graphics to enhance the presentation of results of autonomous space vehicle operations simulations. AUTOPS is a test bed for evaluating decisions for intelligent control systems for autonomous vehicles. Decisions made by an intelligent control system, e.g., a revised mission plan, might be displayed to the user in textual format or he can witness the effects of those decisions via out of window graphics animations. Although a textual description conveys essentials, a graphics animation conveys the replanning results in a more convincing way. Similarily, iconic and menu-driven screen interfaces provide the user with more meaningful options and displays. Presented here are experiences with the SunView and TAE Plus graphics tools used for interface design, and the Johnson Space Center Interactive Graphics Laboratory animation graphics tools used for generating out out of the window graphics.

  15. Computational Modeling to Limit the Impact Displays and Indicator Lights Have on Habitable Volume Operational Lighting Constraints

    NASA Technical Reports Server (NTRS)

    Clark, T. A.; Brainard, G.; Salazar, G.; Johnston, S.; Schwing, B.; Litaker, H.; Kolomenski, A.; Venus, D.; Tran, K.; Hanifin, J.; hide

    2017-01-01

    NASA has demonstrated an interest in improving astronaut health and performance through the installment of a new lighting countermeasure on the International Space Station. The Solid State Lighting Assembly (SSLA) system is designed to positively influence astronaut health by providing a daily change to light spectrum to improve circadian entrainment. Unfortunately, existing NASA standards and requirements define ambient light level requirements for crew sleep and other tasks, yet the number of light-emitting diode (LED) indicators and displays within a habitable volume is currently uncontrolled. Because each of these light sources has its own unique spectral properties, the additive lighting environment ends up becoming something different from what was planned or researched. Restricting the use of displays and indicators is not a solution because these systems provide beneficial feedback to the crew. The research team for this grant used computer-based computational modeling and real-world lighting mockups to document the impact that light sources other than the ambient lighting system contribute to the ambient spectral lighting environment. In particular, the team was focused on understanding the impacts of long-term tasks located in front of avionics or computer displays. The team also wanted to understand options for mitigating the changes to the ambient light spectrum in the interest of maintaining the performance of a lighting countermeasure. The project utilized a variety of physical and computer-based simulations to determine direct relationships between system implementation and light spectrum. Using real-world data, computer models were built in the commercially available optics analysis software Zemax Optics Studio(c). The team also built a mockup test facility that had the same volume and configuration as one of the Zemax models. The team collected over 1200 spectral irradiance measurements, each representing a different configuration of the mockup. Analysis of the data showed a measurable impact on ambient light spectrum. This data showed that obvious design techniques exist that can be used to bind the ambient light spectrum closer to the planned spectral operating environment for the observer's eye point. The following observations should be considered when designing an operational environment that is dominated by computer displays. When more light is directed into the field of view of the observer, the greater the impact it will make on various human factors issues that depend on spectral shape and intensity. Because viewing angle has a large part to play in the amount of light flux on the crewmember's retina, beam shape, combined with light source location is an important factor for determining percent probable incident flux on the observer from any combination of light sources. Computer graphics design and display lumen output are major factors influencing the amount of spectrally intense light projected into the environment and in the viewer's direction. Use of adjustable white point display software was useful only if the predominant background color was white and if it matched the ambient light system's color. Display graphics that used a predominantly black background had the least influence on unplanned spectral energy projected into the environment. Percent reflectance makes a difference in total energy reflected back into an environment, and within certain architectural geometries, reflectance can be used to control the amount of a light spectrum that is allowed to perpetuate in the environment. Data showed that room volume and distance from significant light sources influence the total spectrum in a room. Smaller environments had a homogenizing effect on total light spectrum, whereas light from multiple sources in larger environments was less mixed. The findings indicated above should be considered when making recommendations for practice or standards for architectural systems. The ambient lighting system, surface reflectance, and display and indicator implementation all factor into the users' spectral environment. A variety of low-cost solutions exist to mitigate the impact of light from non-architectural lighting systems, and much potential for system automation and integration of display systems with the ambient environment. This team believes that proper planning can be used to avoid integration problems and also believes that human-in-the-loop evaluations, real-world test and measurement, and computer modeling can be used to determine how changes to a process, display graphics, and architecture will help maintain the planned spectral operating lighting environment.

  16. Data engineering systems: Computerized modeling and data bank capabilities for engineering analysis

    NASA Technical Reports Server (NTRS)

    Kopp, H.; Trettau, R.; Zolotar, B.

    1984-01-01

    The Data Engineering System (DES) is a computer-based system that organizes technical data and provides automated mechanisms for storage, retrieval, and engineering analysis. The DES combines the benefits of a structured data base system with automated links to large-scale analysis codes. While the DES provides the user with many of the capabilities of a computer-aided design (CAD) system, the systems are actually quite different in several respects. A typical CAD system emphasizes interactive graphics capabilities and organizes data in a manner that optimizes these graphics. On the other hand, the DES is a computer-aided engineering system intended for the engineer who must operationally understand an existing or planned design or who desires to carry out additional technical analysis based on a particular design. The DES emphasizes data retrieval in a form that not only provides the engineer access to search and display the data but also links the data automatically with the computer analysis codes.

  17. MICROPROCESSOR-BASED DATA-ACQUISITION SYSTEM FOR A BOREHOLE RADAR.

    USGS Publications Warehouse

    Bradley, Jerry A.; Wright, David L.

    1987-01-01

    An efficient microprocessor-based system is described that permits real-time acquisition, stacking, and digital recording of data generated by a borehole radar system. Although the system digitizes, stacks, and records independently of a computer, it is interfaced to a desktop computer for program control over system parameters such as sampling interval, number of samples, number of times the data are stacked prior to recording on nine-track tape, and for graphics display of the digitized data. The data can be transferred to the desktop computer during recording, or it can be played back from a tape at a latter time. Using the desktop computer, the operator observes results while recording data and generates hard-copy graphics in the field. Thus, the radar operator can immediately evaluate the quality of data being obtained, modify system parameters, study the radar logs before leaving the field, and rerun borehole logs if necessary. The system has proven to be reliable in the field and has increased productivity both in the field and in the laboratory.

  18. PLOT3D/AMES, UNIX SUPERCOMPUTER AND SGI IRIS VERSION (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. In addition to providing the advantages of performing complex calculations on a supercomputer, the Supercomputer/IRIS implementation of PLOT3D offers advanced 3-D, view manipulation, and animation capabilities. Shading and hidden line/surface removal can be used to enhance depth perception and other aspects of the graphical displays. A mouse can be used to translate, rotate, or zoom in on views. Files for several types of output can be produced. Two animation options are available. Simple animation sequences can be created on the IRIS, or,if an appropriately modified version of ARCGRAPH (ARC-12350) is accesible on the supercomputer, files can be created for use in GAS (Graphics Animation System, ARC-12379), an IRIS program which offers more complex rendering and animation capabilities and options for recording images to digital disk, video tape, or 16-mm film. The version 3.6b+ Supercomputer/IRIS implementations of PLOT3D (ARC-12779) and PLOT3D/TURB3D (ARC-12784) are suitable for use on CRAY 2/UNICOS, CONVEX, and ALLIANT computers with a remote Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstation. These programs are distributed on .25 inch magnetic tape cartridges in IRIS TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstations (ARC-12783, ARC-12782); (2) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC12777, ARC-12781); (3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 - which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo, DN10000, and GMR3D are trademarks of Hewlett-Packard, Incorporated. System V is a trademark of Bell Labs, Incorporated. BSD4.3 is a trademark of the University of California at Berkeley. UNIX is a registered trademark of AT&T.

  19. PLOT3D/AMES, UNIX SUPERCOMPUTER AND SGI IRIS VERSION (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. In addition to providing the advantages of performing complex calculations on a supercomputer, the Supercomputer/IRIS implementation of PLOT3D offers advanced 3-D, view manipulation, and animation capabilities. Shading and hidden line/surface removal can be used to enhance depth perception and other aspects of the graphical displays. A mouse can be used to translate, rotate, or zoom in on views. Files for several types of output can be produced. Two animation options are available. Simple animation sequences can be created on the IRIS, or,if an appropriately modified version of ARCGRAPH (ARC-12350) is accesible on the supercomputer, files can be created for use in GAS (Graphics Animation System, ARC-12379), an IRIS program which offers more complex rendering and animation capabilities and options for recording images to digital disk, video tape, or 16-mm film. The version 3.6b+ Supercomputer/IRIS implementations of PLOT3D (ARC-12779) and PLOT3D/TURB3D (ARC-12784) are suitable for use on CRAY 2/UNICOS, CONVEX, and ALLIANT computers with a remote Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstation. These programs are distributed on .25 inch magnetic tape cartridges in IRIS TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstations (ARC-12783, ARC-12782); (2) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC12777, ARC-12781); (3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 - which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo, DN10000, and GMR3D are trademarks of Hewlett-Packard, Incorporated. System V is a trademark of Bell Labs, Incorporated. BSD4.3 is a trademark of the University of California at Berkeley. UNIX is a registered trademark of AT&T.

  20. Processing And Display Of Medical Three Dimensional Arrays Of Numerical Data Using Octree Encoding

    NASA Astrophysics Data System (ADS)

    Amans, Jean-Louis; Darier, Pierre

    1986-05-01

    imaging modalities such as X-Ray computerized Tomography (CT), Nuclear Medecine and Nuclear Magnetic Resonance can produce three-dimensional (3-D) arrays of numerical data of medical object internal structures. The analysis of 3-D data by synthetic generation of realistic images is an important area of computer graphics and imaging.

  1. The Application and Evaluation of PLATO IV in AF Technical Training.

    ERIC Educational Resources Information Center

    Mockovak, William P.; And Others

    The Air Force has been plagued with the rising cost of technical training and has increasingly turned to computer-assisted instruction (CAI) for better cost effectiveness. Toward this aim a trial of PLATO IV, a CAI system utilizing a graphic display and centered at the University of Illinois, was initiated at the Chanute and Sheppard training…

  2. USSR Report, Cybernetics, Computers and Automation Technology

    DTIC Science & Technology

    1985-08-28

    alphanumerical dis- plays SM 7206 and SM 7401, graphics displays SM 7300 and SM 7301, modems SM 8105, SM 8107 and SM 8108, and so on. Today it is...3 are written in assembler and PL-1. They require 56k to 200 k memory for operation. S0RT-7/SM sorting subsystem was developed in conjunction with

  3. Specification for installation of the crew activity planning system coaxial cable communication system

    NASA Technical Reports Server (NTRS)

    Allen, M. A.; Roman, G. S.

    1979-01-01

    The specification used to install a broadband coaxial cable communication system to support remote terminal operations on the Crew Activity Planning system at the Lyndon B. Johnson Space Center are reported. The system supports high speed communications between a Harris Slash 8 computer and one or more Sanders Graphic 7 displays.

  4. Information Presentation and Control in a Modern Air Traffic Control Tower Simulator

    NASA Technical Reports Server (NTRS)

    Haines, Richard F.; Doubek, Sharon; Rabin, Boris; Harke, Stanton

    1996-01-01

    The proper presentation and management of information in America's largest and busiest (Level V) air traffic control towers calls for an in-depth understanding of many different human-computer considerations: user interface design for graphical, radar, and text; manual and automated data input hardware; information/display output technology; reconfigurable workstations; workload assessment; and many other related subjects. This paper discusses these subjects in the context of the Surface Development and Test Facility (SDTF) currently under construction at NASA's Ames Research Center, a full scale, multi-manned, air traffic control simulator which will provide the "look and feel" of an actual airport tower cab. Special emphasis will be given to the human-computer interfaces required for the different kinds of information displayed at the various controller and supervisory positions and to the computer-aided design (CAD) and other analytic, computer-based tools used to develop the facility.

  5. Network Control Center User Planning System (NCC UPS)

    NASA Astrophysics Data System (ADS)

    Dealy, Brian

    1991-09-01

    NCC UPS is presented in the form of the viewgraphs. The following subject areas are covered: UPS overview; NCC UPS role; major NCC UPS functional requirements; interactive user access levels; UPS interfaces; interactive user subsystem; interface navigation; scheduling screen hierarchy; interactive scheduling input panels; autogenerated schedule request panel; schedule data tabular display panel; schedule data graphic display panel; graphic scheduling aid design; and schedule data graphic display.

  6. Network Control Center User Planning System (NCC UPS)

    NASA Technical Reports Server (NTRS)

    Dealy, Brian

    1991-01-01

    NCC UPS is presented in the form of the viewgraphs. The following subject areas are covered: UPS overview; NCC UPS role; major NCC UPS functional requirements; interactive user access levels; UPS interfaces; interactive user subsystem; interface navigation; scheduling screen hierarchy; interactive scheduling input panels; autogenerated schedule request panel; schedule data tabular display panel; schedule data graphic display panel; graphic scheduling aid design; and schedule data graphic display.

  7. Co-located haptic and 3D graphic interface for medical simulations.

    PubMed

    Berkelman, Peter; Miyasaka, Muneaki; Bozlee, Sebastian

    2013-01-01

    We describe a system which provides high-fidelity haptic feedback in the same physical location as a 3D graphical display, in order to enable realistic physical interaction with virtual anatomical tissue during modelled procedures such as needle driving, palpation, and other interventions performed using handheld instruments. The haptic feedback is produced by the interaction between an array of coils located behind a thin flat LCD screen, and permanent magnets embedded in the instrument held by the user. The coil and magnet configuration permits arbitrary forces and torques to be generated on the instrument in real time according to the dynamics of the simulated tissue by activating the coils in combination. A rigid-body motion tracker provides position and orientation feedback of the handheld instrument to the computer simulation, and the 3D display is produced using LCD shutter glasses and a head-tracking system for the user.

  8. Telemetry Monitoring and Display Using LabVIEW

    NASA Technical Reports Server (NTRS)

    Wells, George; Baroth, Edmund C.

    1993-01-01

    The Measurement Technology Center of the Instrumentation Section configures automated data acquisition systems to meet the diverse needs of JPL's experimental research community. These systems are based on personal computers or workstations (Apple, IBM/Compatible, Hewlett-Packard, and Sun Microsystems) and often include integrated data analysis, visualization and experiment control functions in addition to data acquisition capabilities. These integrated systems may include sensors, signal conditioning, data acquisition interface cards, software, and a user interface. Graphical programming is used to simplify configuration of such systems. Employment of a graphical programming language is the most important factor in enabling the implementation of data acquisition, analysis, display and visualization systems at low cost. Other important factors are the use of commercial software packages and off-the-shelf data acquisition hardware where possible. Understanding the experimenter's needs is also critical. An interactive approach to user interface construction and training of operators is also important. One application was created as a result of a competative effort between a graphical programming language team and a text-based C language programming team to verify the advantages of using a graphical programming language approach. With approximately eight weeks of funding over a period of three months, the text-based programming team accomplished about 10% of the basic requirements, while the Macintosh/LabVIEW team accomplished about 150%, having gone beyond the original requirements to simulate a telemetry stream and provide utility programs. This application verified that using graphical programming can significantly reduce software development time. As a result of this initial effort, additional follow-on work was awarded to the graphical programming team.

  9. The 28-entity IGES test file results using ComputerVision CADDS 4X

    NASA Technical Reports Server (NTRS)

    Kuan, Anchyi; Shah, Saurin; Smith, Kevin

    1987-01-01

    The investigation was based on the following steps: (1) Read the 28 Entity IGES (Initial Graphics Exchange Specification) Test File into the CAD data base with the IGES post-processor; (2) Make the modifications to the displayed geometries, which should produce the normalized front view and the drawing entity defined display; (3) Produce the drawing entity defined display of the file as it appears in the CAD system after modification to the geometry; (4) Translate the file back to IGES format using IGES pre-processor; (5) Read the IGES file produced by the pre-processor back into the CAD data base; (6) Produce another drawing entity defined display of the CAD display; and (7) Compare the plots resulting from steps 3 and 6 - they should be identical to each other.

  10. An Investigation of the Relative Safety of Alternative Navigational System Designs for the New Sunshine Skyway Bridge: A CAORF (Computer Aided Operations Research Facility) Simulation.

    DTIC Science & Technology

    1985-09-01

    physical states of the operator, ment may not result in a safe vessel transit. *" such as poor health or fatigue; and (3) workload, stress and time...with respect to the display format used, e.g., graphic or tion systems investigated were very similar to the types of digital, and the specific...The research that has been provided a predicted area of danger format superimposed 13 on a display providing exact ownship position information

  11. A comparison of communication modes for delivery of air traffic control clearance amendments in transport category aircraft

    NASA Technical Reports Server (NTRS)

    Chandra, D.; Bussolari, S. R.; Hansman, R. J.

    1989-01-01

    A user centered evaluation is performed on the use of flight deck automation for display and control of aircraft horizontal flight path. A survey was distributed to pilots with a wide range of experience with the use of flight management computers in transport category aircraft to determine the acceptability and use patterns as reflected by the need for information displayed on the electronic horizontal situation indicator. A summary of survey results and planned part-task simulation to compare three communication modes (verbal, alphanumeric, graphic) are presented.

  12. IDEA: Interactive Display for Evolutionary Analyses.

    PubMed

    Egan, Amy; Mahurkar, Anup; Crabtree, Jonathan; Badger, Jonathan H; Carlton, Jane M; Silva, Joana C

    2008-12-08

    The availability of complete genomic sequences for hundreds of organisms promises to make obtaining genome-wide estimates of substitution rates, selective constraints and other molecular evolution variables of interest an increasingly important approach to addressing broad evolutionary questions. Two of the programs most widely used for this purpose are codeml and baseml, parts of the PAML (Phylogenetic Analysis by Maximum Likelihood) suite. A significant drawback of these programs is their lack of a graphical user interface, which can limit their user base and considerably reduce their efficiency. We have developed IDEA (Interactive Display for Evolutionary Analyses), an intuitive graphical input and output interface which interacts with PHYLIP for phylogeny reconstruction and with codeml and baseml for molecular evolution analyses. IDEA's graphical input and visualization interfaces eliminate the need to edit and parse text input and output files, reducing the likelihood of errors and improving processing time. Further, its interactive output display gives the user immediate access to results. Finally, IDEA can process data in parallel on a local machine or computing grid, allowing genome-wide analyses to be completed quickly. IDEA provides a graphical user interface that allows the user to follow a codeml or baseml analysis from parameter input through to the exploration of results. Novel options streamline the analysis process, and post-analysis visualization of phylogenies, evolutionary rates and selective constraint along protein sequences simplifies the interpretation of results. The integration of these functions into a single tool eliminates the need for lengthy data handling and parsing, significantly expediting access to global patterns in the data.

  13. IDEA: Interactive Display for Evolutionary Analyses

    PubMed Central

    Egan, Amy; Mahurkar, Anup; Crabtree, Jonathan; Badger, Jonathan H; Carlton, Jane M; Silva, Joana C

    2008-01-01

    Background The availability of complete genomic sequences for hundreds of organisms promises to make obtaining genome-wide estimates of substitution rates, selective constraints and other molecular evolution variables of interest an increasingly important approach to addressing broad evolutionary questions. Two of the programs most widely used for this purpose are codeml and baseml, parts of the PAML (Phylogenetic Analysis by Maximum Likelihood) suite. A significant drawback of these programs is their lack of a graphical user interface, which can limit their user base and considerably reduce their efficiency. Results We have developed IDEA (Interactive Display for Evolutionary Analyses), an intuitive graphical input and output interface which interacts with PHYLIP for phylogeny reconstruction and with codeml and baseml for molecular evolution analyses. IDEA's graphical input and visualization interfaces eliminate the need to edit and parse text input and output files, reducing the likelihood of errors and improving processing time. Further, its interactive output display gives the user immediate access to results. Finally, IDEA can process data in parallel on a local machine or computing grid, allowing genome-wide analyses to be completed quickly. Conclusion IDEA provides a graphical user interface that allows the user to follow a codeml or baseml analysis from parameter input through to the exploration of results. Novel options streamline the analysis process, and post-analysis visualization of phylogenies, evolutionary rates and selective constraint along protein sequences simplifies the interpretation of results. The integration of these functions into a single tool eliminates the need for lengthy data handling and parsing, significantly expediting access to global patterns in the data. PMID:19061522

  14. Computerized symptom and quality-of-life assessment for patients with cancer part II: acceptability and usability.

    PubMed

    Mullen, Kristin H; Berry, Donna L; Zierler, Brenda K

    2004-09-01

    To determine the acceptability and usability of a computerized quality-of-life (QOL) and symptom assessment tool and the graphically displayed QOL and symptom output in an ambulatory radiation oncology clinic. Descriptive, cross-sectional. Radiation oncology clinic located in an urban university medical center. 45 patients with cancer being evaluated for radiation therapy and 10 clinicians, who submitted 12 surveys. Acceptability of the computerized assessment was measured with an online, 16-item, Likert-style survey delivered as 45 patients undergoing radiation therapy completed a 25-item QOL and symptom assessment. Usability of the graphic output was assessed with clinician completion of a four-item paper survey. Acceptability and usability of computerized patient assessment. The patient acceptability survey indicated that 70% (n = 28) liked computers and 10% (n = 4) did not. The program was easy to use for 79% (n = 26), easy to understand for 91% (n = 30), and enjoyable for 71% (n = 24). Seventy-six percent (n = 25) believed that the amount of time needed to complete the computerized survey was acceptable. Sixty-six percent (n = 21) responded that they were satisfied with the program, and none of the participants chose the very dissatisfied response. Eighty-three percent (n = 10) of the clinicians found the graphic output helpful in promoting communication with patients, 75% (n = 9) found the output report helpful in identifying appropriate areas of QOL deficits or concerns, and 83% (n = 10) indicated that the output helped guide clinical interactions with patients. The computer-based QOL and symptom assessment tool is acceptable to patients, and the graphically displayed QOL and symptom output is useful to radiation oncology nurses and physicians. Wider application of computerized patient-generated data can continue in various cancer settings and be tested for clinical and organizational outcomes.

  15. The Design of an Experimental Apparatus to Measure the Motions of a Towed Submersible Environmental Sensor Vehicle.

    DTIC Science & Technology

    1983-06-01

    obtained by the vertical excitation apparatus, keeping the horizontal excitation apparatus .4 at zero frequ ncy. The model c.g. moves in a sinusoidal...point between the support plates and the rail module, foam rubber pads were inserted.. These pads increased the coefficient of friction and reduced the...involved the CADIG 4051 Tektronix computer data SI acquistion and graphic display system. The Tektronix 4050 series computers can be used as stand alone

  16. Integrated IMA (Information Mission Areas) IC (Information Center) Guide

    DTIC Science & Technology

    1989-06-01

    COMPUTER AIDED DESIGN / COMPUTER AIDED MANUFACTURE 8-8 8.3.7 LIQUID CRYSTAL DISPLAY PANELS 8-8 8.3.8 ARTIFICIAL INTELLIGENCE APPLIED TO VI 8-9 8.4...2 10.3.1 DESKTOP PUBLISHING 10-3 10.3.2 INTELLIGENT COPIERS 10-5 10.3.3 ELECTRONIC ALTERNATIVES TO PRINTED DOCUMENTS 10-5 10.3.4 ELECTRONIC FORMS...Optical Disk LCD Units Storage Image Scanners Graphics Forms Output Generation Copiers Devices Software Optical Disk Intelligent Storage Copiers Work Group

  17. POLLUX: a program for simulated cloning, mutagenesis and database searching of DNA constructs.

    PubMed

    Dayringer, H E; Sammons, S A

    1991-04-01

    Computer support for research in biotechnology has developed rapidly and has provided several tools to aid the researcher. This report describes the capabilities of new computer software developed in this laboratory to aid in the documentation and planning of experiments in molecular biology. The program, POLLUX, provides a graphical medium for the entry, edit and manipulation of DNA constructs and a textual format for display and edit of construct descriptive data. Program operation and procedures are designed to mimic the actual laboratory experiments with respect to capability and the order in which they are performed. Flexible control over the content of the computer-generated displays and program facilities is provided by a mouse-driven menu interface. Programmed facilities for mutagenesis, simulated cloning and searching of the database from networked workstations are described.

  18. Communication and perception of uncertainty via graphics in disciplinary and interdisciplinary climate change research

    NASA Astrophysics Data System (ADS)

    Lackner, Bettina C.; Kirchengast, Gottfried

    2015-04-01

    Besides written and spoken language, graphical displays play an important role in communicating scientific findings or explaining scientific methods, both within one and between various disciplines. Uncertainties and probabilities are generally difficult to communicate, especially via graphics. Graphics including uncertainty sometimes need detailed written or oral descriptions to be understood. "Good" graphics should ease scientific communication, especially amongst different disciplines. One key objective of the Doctoral Programme "Climate Change: Uncertainties, Thresholds and Coping Strategies" (http://dk-climate-change.uni-graz.at/en/), located at the University of Graz, is to reach a better understanding of climate change uncertainties by bridging research in multiple disciplines, including physical climate sciences, geosciences, systems and sustainability sciences, environmental economics, and climate ethics. This asks for efforts into the formulation of a "common language", not only as to words, but also as to graphics. The focus of this work is on two topics: (1) What different kinds of uncertainties (e.g., data uncertainty, model uncertainty) are included in the graphics of the recent IPCC reports of all three working groups (WGs) and in what ways do uncertainties get illustrated? (2) How are these graphically displayed uncertainties perceived by researchers of a similar research discipline and from researchers of different disciplines than the authors of the graphics? To answer the first question, the IPCC graphics including uncertainties are grouped and analyzed with respect to different kinds of uncertainties to filter out most of the commonly used types of displays. The graphics will also be analyzed with respect to their WG origin, as we assume that graphics from researchers rooted in, e.g., physical climate sciences and geosciences (mainly IPCC WG 1) differ from those of researchers rooted in, e.g., economics or system sciences (mainly WG 3). In a subsequent analysis, some basic types of graphics displaying uncertainty are selected to serve as input for the construction of "makeshift graphics" (displaying only the main features but including no detailed title or caption). These makeshift graphics are then used to assess how the displayed features are perceived and understood by researchers of various disciplines. In this initial study, this analysis will be based on results of a workshop including the wide diversity of researchers within the FWF-DK Climate Change. We will present first results of this work.

  19. Pre and post processing using the IBM 3277 display station graphics attachment (RPQ7H0284)

    NASA Technical Reports Server (NTRS)

    Burroughs, S. H.; Lawlor, M. B.; Miller, I. M.

    1978-01-01

    A graphical interactive procedure operating under TSO and utilizing two CRT display terminals is shown to be an effective means of accomplishing mesh generation, establishing boundary conditions, and reviewing graphic output for finite element analysis activity.

  20. The influence of graphic format on breast cancer risk communication.

    PubMed

    Schapira, Marilyn M; Nattinger, Ann B; McAuliffe, Timothy L

    2006-09-01

    Graphic displays can enhance quantitative risk communication. However, empiric data regarding the effect of graphic format on risk perception is lacking. We evaluate the effect of graphic format elements on perceptions of risk magnitude and perceived truth of data. Preferences for format also were assessed. Participants (254 female primary care patients) viewed a series of hypothetical risk communications regarding the lifetime risk of breast cancer. Identical numeric risk information was presented using different graphic formats. Risk was perceived to be of lower magnitude when communicated with a bar graph as compared with a pictorial display (p < 0.0001), or with consecutively versus randomly highlighted symbols in a pictorial display (p = 0.0001). Data were perceived to be more true when presented with random versus consecutive highlights in a pictorial display (p < 0.01). A pictorial display was preferred to a bar graph format for the presentation of breast cancer risk estimates alone (p = 0.001). When considering breast cancer risk in comparison to heart disease, stroke, and osteoporosis, however, bar graphs were preferred pictorial displays (p < 0.001). In conclusion, elements of graphic format used to convey quantitative risk information effects key domains of risk perception. One must be cognizant of these effects when designing risk communication strategies.

  1. Weather information network including graphical display

    NASA Technical Reports Server (NTRS)

    Leger, Daniel R. (Inventor); Burdon, David (Inventor); Son, Robert S. (Inventor); Martin, Kevin D. (Inventor); Harrison, John (Inventor); Hughes, Keith R. (Inventor)

    2006-01-01

    An apparatus for providing weather information onboard an aircraft includes a processor unit and a graphical user interface. The processor unit processes weather information after it is received onboard the aircraft from a ground-based source, and the graphical user interface provides a graphical presentation of the weather information to a user onboard the aircraft. Preferably, the graphical user interface includes one or more user-selectable options for graphically displaying at least one of convection information, turbulence information, icing information, weather satellite information, SIGMET information, significant weather prognosis information, and winds aloft information.

  2. Satellite Imagery Via Personal Computer

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Automatic Picture Transmission (APT) was incorporated by NASA in the Tiros 8 weather satellite. APT included an advanced satellite camera that immediately transmitted a picture as well as low cost receiving equipment. When an advanced scanning radiometer was later introduced, ground station display equipment would not readily adjust to the new format until GSFC developed an APT Digital Scan Converter that made them compatible. A NASA Technical Note by Goddard's Vermillion and Kamoski described how to build a converter. In 1979, Electro-Services, using this technology, built the first microcomputer weather imaging system in the U.S. The company changed its name to Satellite Data Systems, Inc. and now manufactures the WeatherFax facsimile display graphics system which converts a personal computer into a weather satellite image acquisition and display workstation. Hardware, antennas, receivers, etc. are also offered. Customers include U.S. Weather Service, schools, military, etc.

  3. Halftoning method for the generation of motion stimuli

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.; Stone, Leland S.

    1989-01-01

    This paper describes a novel computer-graphic technique for the generation of a broad class of motion stimuli for vision research, which uses color table animation in conjunction with a single base image. Using this technique, contrast and temporal frequency can be varied with a negligible amount of computation, once a single-base image is produced. Since only two-bit planes are needed to display a single drifting grating, an eight-bit/pixel display can be used to generate four-component plaids, in which each component of the plaid has independently programmable contrast and temporal frequency. Because the contrast and temporal frequencies of the various components are mutually independent, a large number of two-dimensional stimulus motions can be produced from a single image file.

  4. ELAS - SCIENCE & TECHNOLOGY LABORATORY APPLICATIONS SOFTWARE (CONCURRENT VERSION)

    NASA Technical Reports Server (NTRS)

    Pearson, R. W.

    1994-01-01

    The Science and Technology Laboratory Applications Software (ELAS) was originally designed to analyze and process digital imagery data, specifically remotely-sensed scanner data. This capability includes the processing of Landsat multispectral data; aircraft-acquired scanner data; digitized topographic data; and numerous other ancillary data, such as soil types and rainfall information, that can be stored in digitized form. ELAS has the subsequent capability to geographically reference this data to dozens of standard, as well as user created projections. As an integrated image processing system, ELAS offers the user of remotely-sensed data a wide range of capabilities in the areas of land cover analysis and general purpose image analysis. ELAS is designed for flexible use and operation and includes its own FORTRAN operating subsystem and an expandable set of FORTRAN application modules. Because all of ELAS resides in one "logical" FORTRAN program, data inputs and outputs, directives, and module switching are convenient for the user. There are over 230 modules presently available to aid the user in performing a wide range of land cover analyses and manipulation. The file management modules enable the user to allocate, define, access, and specify usage for all types of files (ELAS files, subfiles, external files etc.). Various other modules convert specific types of satellite, aircraft, and vector-polygon data into files that can be used by other ELAS modules. The user also has many module options which aid in displaying image data, such as magnification/reduction of the display; true color display; and several memory functions. Additional modules allow for the building and manipulation of polygonal areas of the image data. Finally, there are modules which allow the user to select and classify the image data. An important feature of the ELAS subsystem is that its structure allows new applications modules to be easily integrated in the future. ELAS has as a standard the flexibility to process data elements exceeding 8 bits in length, including floating point (noninteger) elements and 16 or 32 bit integers. Thus it is able to analyze and process "non-standard" nonimage data. The VAX (ERL-10017) and Concurrent (ERL-10013) versions of ELAS 9.0 are written in FORTRAN and ASSEMBLER for DEC VAX series computers running VMS and Concurrent computers running MTM. The Sun (SSC-00019), Masscomp (SSC-00020), and Silicon Graphics (SSC-00021) versions of ELAS 9.0 are written in FORTRAN 77 and C-LANGUAGE for Sun4 series computers running SunOS, Masscomp computers running UNIX, and Silicon Graphics IRIS computers running IRIX. The Concurrent version requires at least 15 bit addressing and a direct memory access channel. The VAX and Concurrent versions of ELAS both require floating-point hardware, at least 1Mb of RAM, and approximately 70Mb of disk space. Both versions also require a COMTAL display device in order to display images. For the Sun, Masscomp, and Silicon Graphics versions of ELAS, the disk storage required is approximately 115Mb, and a minimum of 8Mb of RAM is required for execution. The Sun version of ELAS requires either the X-Window System Version 11 Revision 4 or Sun OpenWindows Version 2. The Masscomp version requires a GA1000 display device and the associated "gp" library. The Silicon Graphics version requires Silicon Graphics' GL library. ELAS display functions will not work with a monochrome monitor. The standard distribution medium for the VAX version (ERL10017) is a set of two 9-track 1600 BPI magnetic tapes in DEC VAX BACKUP format. This version is also available on a TK50 tape cartridge in DEC VAX BACKUP format. The standard distribution medium for the Concurrent version (ERL-10013) is a set of two 9-track 1600 BPI magnetic tapes in Concurrent BACKUP format. The standard distribution medium for the Sun version (SSC-00019) is a .25 inch streaming magnetic tape cartridge in UNIX tar format. The standard distribution medium for the Masscomp version, (SSC-00020) is a .25 inch streaming magnetic tape cartridge in UNIX tar format. The standard distribution medium for the Silicon Graphics version (SSC-00021) is a .25 inch streaming magnetic IRIS tape cartridge in UNIX tar format. Version 9.0 was released in 1991. Sun4, SunOS, and Open Windows are trademarks of Sun Microsystems, Inc. MIT X Window System is licensed by Massachusetts Institute of Technology.

  5. ELAS - SCIENCE & TECHNOLOGY LABORATORY APPLICATIONS SOFTWARE (SUN VERSION)

    NASA Technical Reports Server (NTRS)

    Walters, D.

    1994-01-01

    The Science and Technology Laboratory Applications Software (ELAS) was originally designed to analyze and process digital imagery data, specifically remotely-sensed scanner data. This capability includes the processing of Landsat multispectral data; aircraft-acquired scanner data; digitized topographic data; and numerous other ancillary data, such as soil types and rainfall information, that can be stored in digitized form. ELAS has the subsequent capability to geographically reference this data to dozens of standard, as well as user created projections. As an integrated image processing system, ELAS offers the user of remotely-sensed data a wide range of capabilities in the areas of land cover analysis and general purpose image analysis. ELAS is designed for flexible use and operation and includes its own FORTRAN operating subsystem and an expandable set of FORTRAN application modules. Because all of ELAS resides in one "logical" FORTRAN program, data inputs and outputs, directives, and module switching are convenient for the user. There are over 230 modules presently available to aid the user in performing a wide range of land cover analyses and manipulation. The file management modules enable the user to allocate, define, access, and specify usage for all types of files (ELAS files, subfiles, external files etc.). Various other modules convert specific types of satellite, aircraft, and vector-polygon data into files that can be used by other ELAS modules. The user also has many module options which aid in displaying image data, such as magnification/reduction of the display; true color display; and several memory functions. Additional modules allow for the building and manipulation of polygonal areas of the image data. Finally, there are modules which allow the user to select and classify the image data. An important feature of the ELAS subsystem is that its structure allows new applications modules to be easily integrated in the future. ELAS has as a standard the flexibility to process data elements exceeding 8 bits in length, including floating point (noninteger) elements and 16 or 32 bit integers. Thus it is able to analyze and process "non-standard" nonimage data. The VAX (ERL-10017) and Concurrent (ERL-10013) versions of ELAS 9.0 are written in FORTRAN and ASSEMBLER for DEC VAX series computers running VMS and Concurrent computers running MTM. The Sun (SSC-00019), Masscomp (SSC-00020), and Silicon Graphics (SSC-00021) versions of ELAS 9.0 are written in FORTRAN 77 and C-LANGUAGE for Sun4 series computers running SunOS, Masscomp computers running UNIX, and Silicon Graphics IRIS computers running IRIX. The Concurrent version requires at least 15 bit addressing and a direct memory access channel. The VAX and Concurrent versions of ELAS both require floating-point hardware, at least 1Mb of RAM, and approximately 70Mb of disk space. Both versions also require a COMTAL display device in order to display images. For the Sun, Masscomp, and Silicon Graphics versions of ELAS, the disk storage required is approximately 115Mb, and a minimum of 8Mb of RAM is required for execution. The Sun version of ELAS requires either the X-Window System Version 11 Revision 4 or Sun OpenWindows Version 2. The Masscomp version requires a GA1000 display device and the associated "gp" library. The Silicon Graphics version requires Silicon Graphics' GL library. ELAS display functions will not work with a monochrome monitor. The standard distribution medium for the VAX version (ERL10017) is a set of two 9-track 1600 BPI magnetic tapes in DEC VAX BACKUP format. This version is also available on a TK50 tape cartridge in DEC VAX BACKUP format. The standard distribution medium for the Concurrent version (ERL-10013) is a set of two 9-track 1600 BPI magnetic tapes in Concurrent BACKUP format. The standard distribution medium for the Sun version (SSC-00019) is a .25 inch streaming magnetic tape cartridge in UNIX tar format. The standard distribution medium for the Masscomp version, (SSC-00020) is a .25 inch streaming magnetic tape cartridge in UNIX tar format. The standard distribution medium for the Silicon Graphics version (SSC-00021) is a .25 inch streaming magnetic IRIS tape cartridge in UNIX tar format. Version 9.0 was released in 1991. Sun4, SunOS, and Open Windows are trademarks of Sun Microsystems, Inc. MIT X Window System is licensed by Massachusetts Institute of Technology.

  6. ELAS - SCIENCE & TECHNOLOGY LABORATORY APPLICATIONS SOFTWARE (MASSCOMP VERSION)

    NASA Technical Reports Server (NTRS)

    Walters, D.

    1994-01-01

    The Science and Technology Laboratory Applications Software (ELAS) was originally designed to analyze and process digital imagery data, specifically remotely-sensed scanner data. This capability includes the processing of Landsat multispectral data; aircraft-acquired scanner data; digitized topographic data; and numerous other ancillary data, such as soil types and rainfall information, that can be stored in digitized form. ELAS has the subsequent capability to geographically reference this data to dozens of standard, as well as user created projections. As an integrated image processing system, ELAS offers the user of remotely-sensed data a wide range of capabilities in the areas of land cover analysis and general purpose image analysis. ELAS is designed for flexible use and operation and includes its own FORTRAN operating subsystem and an expandable set of FORTRAN application modules. Because all of ELAS resides in one "logical" FORTRAN program, data inputs and outputs, directives, and module switching are convenient for the user. There are over 230 modules presently available to aid the user in performing a wide range of land cover analyses and manipulation. The file management modules enable the user to allocate, define, access, and specify usage for all types of files (ELAS files, subfiles, external files etc.). Various other modules convert specific types of satellite, aircraft, and vector-polygon data into files that can be used by other ELAS modules. The user also has many module options which aid in displaying image data, such as magnification/reduction of the display; true color display; and several memory functions. Additional modules allow for the building and manipulation of polygonal areas of the image data. Finally, there are modules which allow the user to select and classify the image data. An important feature of the ELAS subsystem is that its structure allows new applications modules to be easily integrated in the future. ELAS has as a standard the flexibility to process data elements exceeding 8 bits in length, including floating point (noninteger) elements and 16 or 32 bit integers. Thus it is able to analyze and process "non-standard" nonimage data. The VAX (ERL-10017) and Concurrent (ERL-10013) versions of ELAS 9.0 are written in FORTRAN and ASSEMBLER for DEC VAX series computers running VMS and Concurrent computers running MTM. The Sun (SSC-00019), Masscomp (SSC-00020), and Silicon Graphics (SSC-00021) versions of ELAS 9.0 are written in FORTRAN 77 and C-LANGUAGE for Sun4 series computers running SunOS, Masscomp computers running UNIX, and Silicon Graphics IRIS computers running IRIX. The Concurrent version requires at least 15 bit addressing and a direct memory access channel. The VAX and Concurrent versions of ELAS both require floating-point hardware, at least 1Mb of RAM, and approximately 70Mb of disk space. Both versions also require a COMTAL display device in order to display images. For the Sun, Masscomp, and Silicon Graphics versions of ELAS, the disk storage required is approximately 115Mb, and a minimum of 8Mb of RAM is required for execution. The Sun version of ELAS requires either the X-Window System Version 11 Revision 4 or Sun OpenWindows Version 2. The Masscomp version requires a GA1000 display device and the associated "gp" library. The Silicon Graphics version requires Silicon Graphics' GL library. ELAS display functions will not work with a monochrome monitor. The standard distribution medium for the VAX version (ERL10017) is a set of two 9-track 1600 BPI magnetic tapes in DEC VAX BACKUP format. This version is also available on a TK50 tape cartridge in DEC VAX BACKUP format. The standard distribution medium for the Concurrent version (ERL-10013) is a set of two 9-track 1600 BPI magnetic tapes in Concurrent BACKUP format. The standard distribution medium for the Sun version (SSC-00019) is a .25 inch streaming magnetic tape cartridge in UNIX tar format. The standard distribution medium for the Masscomp version, (SSC-00020) is a .25 inch streaming magnetic tape cartridge in UNIX tar format. The standard distribution medium for the Silicon Graphics version (SSC-00021) is a .25 inch streaming magnetic IRIS tape cartridge in UNIX tar format. Version 9.0 was released in 1991. Sun4, SunOS, and Open Windows are trademarks of Sun Microsystems, Inc. MIT X Window System is licensed by Massachusetts Institute of Technology.

  7. ELAS - SCIENCE & TECHNOLOGY LABORATORY APPLICATIONS SOFTWARE (DEC VAX VERSION)

    NASA Technical Reports Server (NTRS)

    Junkin, B. G.

    1994-01-01

    The Science and Technology Laboratory Applications Software (ELAS) was originally designed to analyze and process digital imagery data, specifically remotely-sensed scanner data. This capability includes the processing of Landsat multispectral data; aircraft-acquired scanner data; digitized topographic data; and numerous other ancillary data, such as soil types and rainfall information, that can be stored in digitized form. ELAS has the subsequent capability to geographically reference this data to dozens of standard, as well as user created projections. As an integrated image processing system, ELAS offers the user of remotely-sensed data a wide range of capabilities in the areas of land cover analysis and general purpose image analysis. ELAS is designed for flexible use and operation and includes its own FORTRAN operating subsystem and an expandable set of FORTRAN application modules. Because all of ELAS resides in one "logical" FORTRAN program, data inputs and outputs, directives, and module switching are convenient for the user. There are over 230 modules presently available to aid the user in performing a wide range of land cover analyses and manipulation. The file management modules enable the user to allocate, define, access, and specify usage for all types of files (ELAS files, subfiles, external files etc.). Various other modules convert specific types of satellite, aircraft, and vector-polygon data into files that can be used by other ELAS modules. The user also has many module options which aid in displaying image data, such as magnification/reduction of the display; true color display; and several memory functions. Additional modules allow for the building and manipulation of polygonal areas of the image data. Finally, there are modules which allow the user to select and classify the image data. An important feature of the ELAS subsystem is that its structure allows new applications modules to be easily integrated in the future. ELAS has as a standard the flexibility to process data elements exceeding 8 bits in length, including floating point (noninteger) elements and 16 or 32 bit integers. Thus it is able to analyze and process "non-standard" nonimage data. The VAX (ERL-10017) and Concurrent (ERL-10013) versions of ELAS 9.0 are written in FORTRAN and ASSEMBLER for DEC VAX series computers running VMS and Concurrent computers running MTM. The Sun (SSC-00019), Masscomp (SSC-00020), and Silicon Graphics (SSC-00021) versions of ELAS 9.0 are written in FORTRAN 77 and C-LANGUAGE for Sun4 series computers running SunOS, Masscomp computers running UNIX, and Silicon Graphics IRIS computers running IRIX. The Concurrent version requires at least 15 bit addressing and a direct memory access channel. The VAX and Concurrent versions of ELAS both require floating-point hardware, at least 1Mb of RAM, and approximately 70Mb of disk space. Both versions also require a COMTAL display device in order to display images. For the Sun, Masscomp, and Silicon Graphics versions of ELAS, the disk storage required is approximately 115Mb, and a minimum of 8Mb of RAM is required for execution. The Sun version of ELAS requires either the X-Window System Version 11 Revision 4 or Sun OpenWindows Version 2. The Masscomp version requires a GA1000 display device and the associated "gp" library. The Silicon Graphics version requires Silicon Graphics' GL library. ELAS display functions will not work with a monochrome monitor. The standard distribution medium for the VAX version (ERL10017) is a set of two 9-track 1600 BPI magnetic tapes in DEC VAX BACKUP format. This version is also available on a TK50 tape cartridge in DEC VAX BACKUP format. The standard distribution medium for the Concurrent version (ERL-10013) is a set of two 9-track 1600 BPI magnetic tapes in Concurrent BACKUP format. The standard distribution medium for the Sun version (SSC-00019) is a .25 inch streaming magnetic tape cartridge in UNIX tar format. The standard distribution medium for the Masscomp version, (SSC-00020) is a .25 inch streaming magnetic tape cartridge in UNIX tar format. The standard distribution medium for the Silicon Graphics version (SSC-00021) is a .25 inch streaming magnetic IRIS tape cartridge in UNIX tar format. Version 9.0 was released in 1991. Sun4, SunOS, and Open Windows are trademarks of Sun Microsystems, Inc. MIT X Window System is licensed by Massachusetts Institute of Technology.

  8. Using FastX on the Peregrine System | High-Performance Computing | NREL

    Science.gov Websites

    with full 3D hardware acceleration. The traditional method of displaying graphics applications to a remote X server (indirect rendering) supports 3D hardware acceleration, but this approach causes all of the OpenGL commands and 3D data to be sent over the network to be rendered on the client machine. With

  9. A graphics-oriented personal computer-based microscope charting system for neuroanatomical and neurochemical studies.

    PubMed

    Tourtellotte, W G; Lawrence, D T; Getting, P A; Van Hoesen, G W

    1989-07-01

    This report describes a computerized microscope charting system based on the IBM personal computer or compatible. Stepping motors are used to control the movement of the microscope stage and to encode its position by hand manipulation of a joystick. Tissue section contours and the location of cells labeled with various compounds are stored by the computer, plotted at any magnification and manipulated into composites created from several charted sections. The system has many advantages: (1) it is based on an industry standardized computer that is affordable and familiar; (2) compact and commercially available stepping motor microprocessors control the stage movement. These controllers increase reliability, simplify implementation, and increase efficiency by relieving the computer of time consuming control tasks; (3) the system has an interactive graphics interface allowing the operator to view the image during data collection. Regions of the graphics display can be enlarged during the charting process to provide higher resolution and increased accuracy; (4) finally, the digitized data are stored at 0.5 micron resolution and can be routed directly to a multi-pen plotter or exported to a computer-aided design (CAD) program to generate a publication-quality montage composed of several computerized chartings. The system provides a useful tool for the acquisition and qualitative analysis of data representing stained cells or chemical markers in tissue. The modular design, together with data storage at high resolution, allows for potential analytical enhancements involving planimetric, stereologic and 3-D serial section reconstruction.

  10. Design and development of an automated, portable and handheld tablet personal computer-based data acquisition system for monitoring electromyography signals during rehabilitation.

    PubMed

    Ahamed, Nizam U; Sundaraj, Kenneth; Poo, Tarn S

    2013-03-01

    This article describes the design of a robust, inexpensive, easy-to-use, small, and portable online electromyography acquisition system for monitoring electromyography signals during rehabilitation. This single-channel (one-muscle) system was connected via the universal serial bus port to a programmable Windows operating system handheld tablet personal computer for storage and analysis of the data by the end user. The raw electromyography signals were amplified in order to convert them to an observable scale. The inherent noise of 50 Hz (Malaysia) from power lines electromagnetic interference was then eliminated using a single-hybrid IC notch filter. These signals were sampled by a signal processing module and converted into 24-bit digital data. An algorithm was developed and programmed to transmit the digital data to the computer, where it was reassembled and displayed in the computer using software. Finally, the following device was furnished with the graphical user interface to display the online muscle strength streaming signal in a handheld tablet personal computer. This battery-operated system was tested on the biceps brachii muscles of 20 healthy subjects, and the results were compared to those obtained with a commercial single-channel (one-muscle) electromyography acquisition system. The results obtained using the developed device when compared to those obtained from a commercially available physiological signal monitoring system for activities involving muscle contractions were found to be comparable (the comparison of various statistical parameters) between male and female subjects. In addition, the key advantage of this developed system over the conventional desktop personal computer-based acquisition systems is its portability due to the use of a tablet personal computer in which the results are accessible graphically as well as stored in text (comma-separated value) form.

  11. The Computer as a Tool for Learning

    PubMed Central

    Starkweather, John A.

    1986-01-01

    Experimenters from the beginning recognized the advantages computers might offer in medical education. Several medical schools have gained experience in such programs in automated instruction. Television images and graphic display combined with computer control and user interaction are effective for teaching problem solving. The National Board of Medical Examiners has developed patient-case simulation for examining clinical skills, and the National Library of Medicine has experimented with combining media. Advances from the field of artificial intelligence and the availability of increasingly powerful microcomputers at lower cost will aid further development. Computers will likely affect existing educational methods, adding new capabilities to laboratory exercises, to self-assessment and to continuing education. PMID:3544511

  12. User's manual for master: Modeling of aerodynamic surfaces by 3-dimensional explicit representation. [input to three dimensional computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Gibson, S. G.

    1983-01-01

    A system of computer programs was developed to model general three dimensional surfaces. Surfaces are modeled as sets of parametric bicubic patches. There are also capabilities to transform coordinates, to compute mesh/surface intersection normals, and to format input data for a transonic potential flow analysis. A graphical display of surface models and intersection normals is available. There are additional capabilities to regulate point spacing on input curves and to compute surface/surface intersection curves. Input and output data formats are described; detailed suggestions are given for user input. Instructions for execution are given, and examples are shown.

  13. FIT: Computer Program that Interactively Determines Polynomial Equations for Data which are a Function of Two Independent Variables

    NASA Technical Reports Server (NTRS)

    Arbuckle, P. D.; Sliwa, S. M.; Roy, M. L.; Tiffany, S. H.

    1985-01-01

    A computer program for interactively developing least-squares polynomial equations to fit user-supplied data is described. The program is characterized by the ability to compute the polynomial equations of a surface fit through data that are a function of two independent variables. The program utilizes the Langley Research Center graphics packages to display polynomial equation curves and data points, facilitating a qualitative evaluation of the effectiveness of the fit. An explanation of the fundamental principles and features of the program, as well as sample input and corresponding output, are included.

  14. Antenna pattern study, task 2

    NASA Technical Reports Server (NTRS)

    Harper, Warren

    1989-01-01

    Two electromagnetic scattering codes, NEC-BSC and ESP3, were delivered and installed on a NASA VAX computer for use by Marshall Space Flight Center antenna design personnel. The existing codes and certain supplementary software were updated, the codes installed on a computer that will be delivered to the customer, to provide capability for graphic display of the data to be computed by the use of the codes and to assist the customer in the solution of specific problems that demonstrate the use of the codes. With the exception of one code revision, all of these tasks were performed.

  15. System maintenance manual for master modeling of aerodynamic surfaces by three-dimensional explicit representation

    NASA Technical Reports Server (NTRS)

    Gibson, A. F.

    1983-01-01

    A system of computer programs has been developed to model general three-dimensional surfaces. Surfaces are modeled as sets of parametric bicubic patches. There are also capabilities to transform coordinate to compute mesh/surface intersection normals, and to format input data for a transonic potential flow analysis. A graphical display of surface models and intersection normals is available. There are additional capabilities to regulate point spacing on input curves and to compute surface intersection curves. Internal details of the implementation of this system are explained, and maintenance procedures are specified.

  16. The Evaluation of a Pulmonary Display to Detect Adverse Respiratory Events Using High Resolution Human Simulator

    PubMed Central

    Wachter, S. Blake; Johnson, Ken; Albert, Robert; Syroid, Noah; Drews, Frank; Westenskow, Dwayne

    2006-01-01

    Objective Authors developed a picture-graphics display for pulmonary function to present typical respiratory data used in perioperative and intensive care environments. The display utilizes color, shape and emergent alerting to highlight abnormal pulmonary physiology. The display serves as an adjunct to traditional operating room displays and monitors. Design To evaluate the prototype, nineteen clinician volunteers each managed four adverse respiratory events and one normal event using a high-resolution patient simulator which included the new displays (intervention subjects) and traditional displays (control subjects). Between-group comparisons included (i) time to diagnosis and treatment for each adverse respiratory event; (ii) the number of unnecessary treatments during the normal scenario; and (iii) self-reported workload estimates while managing study events. Measurements Two expert anesthesiologists reviewed video-taped transcriptions of the volunteers to determine time to treat and time to diagnosis. Time values were then compared between groups using a Mann-Whitney-U Test. Estimated workload for both groups was assessed using the NASA-TLX and compared between groups using an ANOVA. P-values < 0.05 were considered significant. Results Clinician volunteers detected and treated obstructed endotracheal tubes and intrinsic PEEP problems faster with graphical rather than conventional displays (p < 0.05). During the normal scenario simulation, 3 clinicians using the graphical display, and 5 clinicians using the conventional display gave unnecessary treatments. Clinician-volunteers reported significantly lower subjective workloads using the graphical display for the obstructed endotracheal tube scenario (p < 0.001) and the intrinsic PEEP scenario (p < 0.03). Conclusion Authors conclude that the graphical pulmonary display may serve as a useful adjunct to traditional displays in identifying adverse respiratory events. PMID:16929038

  17. Facility requirements for cockpit traffic display research

    NASA Technical Reports Server (NTRS)

    Chappell, S. L.; Kreifeldt, J. G.

    1982-01-01

    It is pointed out that much research is being conducted regarding the use of a cockpit display of traffic information (CDTI) for safe and efficient air traffic flow. A CDTI is a graphic display which shows the pilot the position of other aircraft relative to his or her aircraft. The present investigation is concerned with the facility requirements for the CDTI research. The facilities currently used for this research vary in fidelity from one CDTI-equipped simulator with computer-generated traffic, to four simulators with autopilot-like controls, all having a CDTI. Three groups of subjects were employed in the conducted study. Each of the groups included one controller, and three airline and four general aviation pilots.

  18. VPython: Writing Real-time 3D Physics Programs

    NASA Astrophysics Data System (ADS)

    Chabay, Ruth

    2001-06-01

    VPython (http://cil.andrew.cmu.edu/projects/visual) combines the Python programming language with an innovative 3D graphics module called Visual, developed by David Scherer. Designed to make 3D physics simulations accessible to novice programmers, VPython allows the programmer to write a purely computational program without any graphics code, and produces an interactive realtime 3D graphical display. In a program 3D objects are created and their positions modified by computational algorithms. Running in a separate thread, the Visual module monitors the positions of these objects and renders them many times per second. Using the mouse, one can zoom and rotate to navigate through the scene. After one hour of instruction, students in an introductory physics course at Carnegie Mellon University, including those who have never programmed before, write programs in VPython to model the behavior of physical systems and to visualize fields in 3D. The Numeric array processing module allows the construction of more sophisticated simulations and models as well. VPython is free and open source. The Visual module is based on OpenGL, and runs on Windows, Linux, and Macintosh.

  19. The use of interactive computer vision and robot hand controllers for enhancing manufacturing safety

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville I.; Jacobus, Charles J.; Peurach, Thomas M.; Mitchell, Brian T.

    1994-01-01

    Current available robotic systems provide limited support for CAD-based model-driven visualization, sensing algorithm development and integration, and automated graphical planning systems. This paper describes ongoing work which provides the functionality necessary to apply advanced robotics to automated manufacturing and assembly operations. An interface has been built which incorporates 6-DOF tactile manipulation, displays for three dimensional graphical models, and automated tracking functions which depend on automated machine vision. A set of tools for single and multiple focal plane sensor image processing and understanding has been demonstrated which utilizes object recognition models. The resulting tool will enable sensing and planning from computationally simple graphical objects. A synergistic interplay between human and operator vision is created from programmable feedback received from the controller. This approach can be used as the basis for implementing enhanced safety in automated robotics manufacturing, assembly, repair and inspection tasks in both ground and space applications. Thus, an interactive capability has been developed to match the modeled environment to the real task environment for safe and predictable task execution.

  20. The use of interactive computer vision and robot hand controllers for enhancing manufacturing safety

    NASA Astrophysics Data System (ADS)

    Marzwell, Neville I.; Jacobus, Charles J.; Peurach, Thomas M.; Mitchell, Brian T.

    1994-02-01

    Current available robotic systems provide limited support for CAD-based model-driven visualization, sensing algorithm development and integration, and automated graphical planning systems. This paper describes ongoing work which provides the functionality necessary to apply advanced robotics to automated manufacturing and assembly operations. An interface has been built which incorporates 6-DOF tactile manipulation, displays for three dimensional graphical models, and automated tracking functions which depend on automated machine vision. A set of tools for single and multiple focal plane sensor image processing and understanding has been demonstrated which utilizes object recognition models. The resulting tool will enable sensing and planning from computationally simple graphical objects. A synergistic interplay between human and operator vision is created from programmable feedback received from the controller. This approach can be used as the basis for implementing enhanced safety in automated robotics manufacturing, assembly, repair and inspection tasks in both ground and space applications. Thus, an interactive capability has been developed to match the modeled environment to the real task environment for safe and predictable task execution.

  1. Interactive Forecasting with the National Weather Service River Forecast System

    NASA Technical Reports Server (NTRS)

    Smith, George F.; Page, Donna

    1993-01-01

    The National Weather Service River Forecast System (NWSRFS) consists of several major hydrometeorologic subcomponents to model the physics of the flow of water through the hydrologic cycle. The entire NWSRFS currently runs in both mainframe and minicomputer environments, using command oriented text input to control the system computations. As computationally powerful and graphically sophisticated scientific workstations became available, the National Weather Service (NWS) recognized that a graphically based, interactive environment would enhance the accuracy and timeliness of NWS river and flood forecasts. Consequently, the operational forecasting portion of the NWSRFS has been ported to run under a UNIX operating system, with X windows as the display environment on a system of networked scientific workstations. In addition, the NWSRFS Interactive Forecast Program was developed to provide a graphical user interface to allow the forecaster to control NWSRFS program flow and to make adjustments to forecasts as necessary. The potential market for water resources forecasting is immense and largely untapped. Any private company able to market the river forecasting technologies currently developed by the NWS Office of Hydrology could provide benefits to many information users and profit from providing these services.

  2. A study of kinematic cues and anticipatory performance in tennis using computational manipulation and computer graphics.

    PubMed

    Ida, Hirofumi; Fukuhara, Kazunobu; Kusubori, Seiji; Ishii, Motonobu

    2011-09-01

    Computer graphics of digital human models can be used to display human motions as visual stimuli. This study presents our technique for manipulating human motion with a forward kinematics calculation without violating anatomical constraints. A motion modulation of the upper extremity was conducted by proportionally modulating the anatomical joint angular velocity calculated by motion analysis. The effect of this manipulation was examined in a tennis situation--that is, the receiver's performance of predicting ball direction when viewing a digital model of the server's motion derived by modulating the angular velocities of the forearm or that of the elbow during the forward swing. The results showed that the faster the server's forearm pronated, the more the receiver's anticipation of the ball direction tended to the left side of the serve box. In contrast, the faster the server's elbow extended, the more the receiver's anticipation of the ball direction tended to the right. This suggests that tennis players are sensitive to the motion modulation of their opponent's racket-arm.

  3. Computer-composite mapping for geologists

    USGS Publications Warehouse

    van Driel, J.N.

    1980-01-01

    A computer program for overlaying maps has been tested and evaluated as a means for producing geologic derivative maps. Four maps of the Sugar House Quadrangle, Utah, were combined, using the Multi-Scale Data Analysis and Mapping Program, in a single composite map that shows the relative stability of the land surface during earthquakes. Computer-composite mapping can provide geologists with a powerful analytical tool and a flexible graphic display technique. Digitized map units can be shown singly, grouped with different units from the same map, or combined with units from other source maps to produce composite maps. The mapping program permits the user to assign various values to the map units and to specify symbology for the final map. Because of its flexible storage, easy manipulation, and capabilities of graphic output, the composite-mapping technique can readily be applied to mapping projects in sedimentary and crystalline terranes, as well as to maps showing mineral resource potential. ?? 1980 Springer-Verlag New York Inc.

  4. Millisecond precision psychological research in a world of commodity computers: new hardware, new problems?

    PubMed

    Plant, Richard R; Turner, Garry

    2009-08-01

    Since the publication of Plant, Hammond, and Turner (2004), which highlighted a pressing need for researchers to pay more attention to sources of error in computer-based experiments, the landscape has undoubtedly changed, but not necessarily for the better. Readily available hardware has improved in terms of raw speed; multi core processors abound; graphics cards now have hundreds of megabytes of RAM; main memory is measured in gigabytes; drive space is measured in terabytes; ever larger thin film transistor displays capable of single-digit response times, together with newer Digital Light Processing multimedia projectors, enable much greater graphic complexity; and new 64-bit operating systems, such as Microsoft Vista, are now commonplace. However, have millisecond-accurate presentation and response timing improved, and will they ever be available in commodity computers and peripherals? In the present article, we used a Black Box ToolKit to measure the variability in timing characteristics of hardware used commonly in psychological research.

  5. Design Graphics

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A mathematician, David R. Hedgley, Jr. developed a computer program that considers whether a line in a graphic model of a three-dimensional object should or should not be visible. Known as the Hidden Line Computer Code, the program automatically removes superfluous lines and displays an object from a specific viewpoint, just as the human eye would see it. An example of how one company uses the program is the experience of Birdair which specializes in production of fabric skylights and stadium covers. The fabric called SHEERFILL is a Teflon coated fiberglass material developed in cooperation with DuPont Company. SHEERFILL glazed structures are either tension structures or air-supported tension structures. Both are formed by patterned fabric sheets supported by a steel or aluminum frame or cable network. Birdair uses the Hidden Line Computer Code, to illustrate a prospective structure to an architect or owner. The program generates a three- dimensional perspective with the hidden lines removed. This program is still used by Birdair and continues to be commercially available to the public.

  6. Operator vision aids for space teleoperation assembly and servicing

    NASA Technical Reports Server (NTRS)

    Brooks, Thurston L.; Ince, Ilhan; Lee, Greg

    1992-01-01

    This paper investigates concepts for visual operator aids required for effective telerobotic control. Operator visual aids, as defined here, mean any operational enhancement that improves man-machine control through the visual system. These concepts were derived as part of a study of vision issues for space teleoperation. Extensive literature on teleoperation, robotics, and human factors was surveyed to definitively specify appropriate requirements. This paper presents these visual aids in three general categories of camera/lighting functions, display enhancements, and operator cues. In the area of camera/lighting functions concepts are discussed for: (1) automatic end effector or task tracking; (2) novel camera designs; (3) computer-generated virtual camera views; (4) computer assisted camera/lighting placement; and (5) voice control. In the technology area of display aids, concepts are presented for: (1) zone displays, such as imminent collision or indexing limits; (2) predictive displays for temporal and spatial location; (3) stimulus-response reconciliation displays; (4) graphical display of depth cues such as 2-D symbolic depth, virtual views, and perspective depth; and (5) view enhancements through image processing and symbolic representations. Finally, operator visual cues (e.g., targets) that help identify size, distance, shape, orientation and location are discussed.

  7. A graphical workstation based part-task flight simulator for preliminary rapid evaluation of advanced displays

    NASA Technical Reports Server (NTRS)

    Wanke, Craig; Kuchar, James; Hahn, Edward; Pritchett, A.; Hansman, R. John

    1994-01-01

    Advances in avionics and display technology are significantly changing the cockpit environment in current transport aircraft. The MIT Aeronautical Systems Lab (ASL) developed a part-task flight simulator specifically to study the effects of these new technologies on flight crew situational awareness and performance. The simulator is based on a commercially-available graphics workstation, and can be rapidly reconfigured to meet the varying demands of experimental studies. The simulator was successfully used to evaluate graphical microbursts alerting displays, electronic instrument approach plates, terrain awareness and alerting displays, and ATC routing amendment delivery through digital datalinks.

  8. INCA- INTERACTIVE CONTROLS ANALYSIS

    NASA Technical Reports Server (NTRS)

    Bauer, F. H.

    1994-01-01

    The Interactive Controls Analysis (INCA) program was developed to provide a user friendly environment for the design and analysis of linear control systems, primarily feedback control systems. INCA is designed for use with both small and large order systems. Using the interactive graphics capability, the INCA user can quickly plot a root locus, frequency response, or time response of either a continuous time system or a sampled data system. The system configuration and parameters can be easily changed, allowing the INCA user to design compensation networks and perform sensitivity analysis in a very convenient manner. A journal file capability is included. This stores an entire sequence of commands, generated during an INCA session into a file which can be accessed later. Also included in INCA are a context-sensitive help library, a screen editor, and plot windows. INCA is robust to VAX-specific overflow problems. The transfer function is the basic unit of INCA. Transfer functions are automatically saved and are available to the INCA user at any time. A powerful, user friendly transfer function manipulation and editing capability is built into the INCA program. The user can do all transfer function manipulations and plotting without leaving INCA, although provisions are made to input transfer functions from data files. By using a small set of commands, the user may compute and edit transfer functions, and then examine these functions by using the ROOT_LOCUS, FREQUENCY_RESPONSE, and TIME_RESPONSE capabilities. Basic input data, including gains, are handled as single-input single-output transfer functions. These functions can be developed using the function editor or by using FORTRAN- like arithmetic expressions. In addition to the arithmetic functions, special functions are available to 1) compute step, ramp, and sinusoid functions, 2) compute closed loop transfer functions, 3) convert from S plane to Z plane with optional advanced Z transform, and 4) convert from Z plane to W plane and back. These capabilities allow the INCA user to perform block diagram algebraic manipulations quickly for functions in the S, Z, and W domains. Additionally, a versatile digital control capability has been included in INCA. Special plane transformations allow the user to easily convert functions from one domain to another. Other digital control capabilities include: 1) totally independent open loop frequency response analyses on a continuous plant, discrete control system with a delay, 2) advanced Z-transform capability for systems with delays, and 3) multirate sampling analyses. The current version of INCA includes Dynamic Functions (which change when a parameter changes), standard filter generation, PD and PID controller generation, incorporation of the QZ-algorithm (function addition, inverse Laplace), and describing functions that allow the user to calculate the gain and phase characteristics of a nonlinear device. The INCA graphic modes provide the user with a convenient means to document and study frequency response, time response, and root locus analyses. General graphics features include: 1) zooming and dezooming, 2) plot documentation, 3) a table of analytic computation results, 4) multiple curves on the same plot, and 5) displaying frequency and gain information for a specific point on a curve. Additional capabilities in the frequency response mode include: 1) a full complement of graphical methods Bode magnitude, Bode phase, Bode combined magnitude and phase, Bode strip plots, root contour plots, Nyquist, Nichols, and Popov plots; 2) user selected plot scaling; and 3) gain and phase margin calculation and display. In the time response mode, additional capabilities include: 1) support for inverse Laplace and inverse Z transforms, 2) support for various input functions, 3) closed loop response evaluation, 4) loop gain sensitivity analyses, 5) intersample time response for discrete systems using the advanced Z transform, and 6) closed loop time response using mixed plane (S, Z, W) operations with delay. A Graphics mode command was added to the current version of INCA, version 3.13, to produce Metafiles (graphic files) of the currently displayed plot. The metafile can be displayed and edited using the QPLOT Graphics Editor and Replotter for Metafiles (GERM) program included with the INCA package. The INCA program is written in Pascal and FORTRAN for interactive or batch execution and has been implemented on a DEC VAX series computer under VMS. Both source code and executable code are supplied for INCA. Full INCA graphics capabilities are supported for various Tektronix 40xx and 41xx terminals; DEC VT graphics terminals; many PC and Macintosh terminal emulators; TEK014 hardcopy devices such as the LN03 Laserprinter; and bit map graphics external hardcopy devices. Also included for the TEK4510 rasterizer users are a multiple copy feature, a wide line feature, and additional graphics fonts. The INCA program was developed in 1985, Version 2.04 was released in 1986, Version 3.00 was released in 1988, and Version 3.13 was released in 1989. An INCA version 2.0X conversion program is included.

  9. GCLAS: a graphical constituent loading analysis system

    USGS Publications Warehouse

    McKallip, T.E.; Koltun, G.F.; Gray, J.R.; Glysson, G.D.

    2001-01-01

    The U. S. Geological Survey has developed a program called GCLAS (Graphical Constituent Loading Analysis System) to aid in the computation of daily constituent loads transported in stream flow. Due to the relative paucity with which most water-quality data are collected, computation of daily constituent loads is moderately to highly dependent on human interpretation of the relation between stream hydraulics and constituent transport. GCLAS provides a visual environment for evaluating the relation between hydraulic and other covariate time series and the constituent chemograph. GCLAS replaces the computer program Sedcalc, which is the most recent USGS sanctioned tool for constructing sediment chemographs and computing suspended-sediment loads. Written in a portable language, GCLAS has an interactive graphical interface that permits easy entry of estimated values and provides new tools to aid in making those estimates. The use of a portable language for program development imparts a degree of computer platform independence that was difficult to obtain in the past, making implementation more straightforward within the USGS' s diverse computing environment. Some of the improvements introduced in GCLAS include (1) the ability to directly handle periods of zero or reverse flow, (2) the ability to analyze and apply coefficient adjustments to concentrations as a function of time, streamflow, or both, (3) the ability to compute discharges of constituents other than suspended sediment, (4) the ability to easily view data related to the chemograph at different levels of detail, and (5) the ability to readily display covariate time series data to provide enhanced visual cues for drawing the constituent chemograph.

  10. 3D graphics, virtual reality, and motion-onset visual evoked potentials in neurogaming.

    PubMed

    Beveridge, R; Wilson, S; Coyle, D

    2016-01-01

    A brain-computer interface (BCI) offers movement-free control of a computer application and is achieved by reading and translating the cortical activity of the brain into semantic control signals. Motion-onset visual evoked potentials (mVEP) are neural potentials employed in BCIs and occur when motion-related stimuli are attended visually. mVEP dynamics are correlated with the position and timing of the moving stimuli. To investigate the feasibility of utilizing the mVEP paradigm with video games of various graphical complexities including those of commercial quality, we conducted three studies over four separate sessions comparing the performance of classifying five mVEP responses with variations in graphical complexity and style, in-game distractions, and display parameters surrounding mVEP stimuli. To investigate the feasibility of utilizing contemporary presentation modalities in neurogaming, one of the studies compared mVEP classification performance when stimuli were presented using the oculus rift virtual reality headset. Results from 31 independent subjects were analyzed offline. The results show classification performances ranging up to 90% with variations in conditions in graphical complexity having limited effect on mVEP performance; thus, demonstrating the feasibility of using the mVEP paradigm within BCI-based neurogaming. © 2016 Elsevier B.V. All rights reserved.

  11. High resolution image processing on low-cost microcomputers

    NASA Technical Reports Server (NTRS)

    Miller, R. L.

    1993-01-01

    Recent advances in microcomputer technology have resulted in systems that rival the speed, storage, and display capabilities of traditionally larger machines. Low-cost microcomputers can provide a powerful environment for image processing. A new software program which offers sophisticated image display and analysis on IBM-based systems is presented. Designed specifically for a microcomputer, this program provides a wide-range of functions normally found only on dedicated graphics systems, and therefore can provide most students, universities and research groups with an affordable computer platform for processing digital images. The processing of AVHRR images within this environment is presented as an example.

  12. Preliminary development of an intelligent computer assistant for engine monitoring

    NASA Technical Reports Server (NTRS)

    Disbrow, James D.; Duke, Eugene L.; Ray, Ronald J.

    1989-01-01

    As part of the F-18 high-angle-of-attack vehicle program, an AI method was developed for the real time monitoring of the propulsion system and for the identification of recovery procedures for the F404 engine. The aim of the development program is to provide enhanced flight safety and to reduce the duties of the propulsion engineers. As telemetry data is received, the results are continually displayed in a number of different color graphical formats. The system makes possible the monitoring of the engine state and the individual parameters. Anomaly information is immediately displayed to the engineer.

  13. Insider Alert 1.0 Beta Version

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbott, Robert

    2004-02-01

    Insider Alert 1.0 Beta Version supports interactive selection and graphical display of data generated by the Sandia Cognitive Framework, which simulates the examination of security data by experts of various specialties. Insider Alert also encompasses the configuration and data files input to the Cognitive Framework for this application. Insider Alert 1.0 Beta Version is a computer program for analyzing data indicative of possible espionage or improper handling of data by employees at Sandia National Laboratories (or other facilities with comparable policies and procedures for managing sensitive information) It prioritizes and displays information for review by security analysts.

  14. Stereoscopic 3D graphics generation

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Liu, Jianping; Zan, Y.

    1997-05-01

    Stereoscopic display technology is one of the key techniques of areas such as simulation, multimedia, entertainment, virtual reality, and so on. Moreover, stereoscopic 3D graphics generation is an important part of stereoscopic 3D display system. In this paper, at first, we describe the principle of stereoscopic display and summarize some methods to generate stereoscopic 3D graphics. Secondly, to overcome the problems which came from the methods of user defined models (such as inconvenience, long modifying period and so on), we put forward the vector graphics files defined method. Thus we can design more directly; modify the model simply and easily; generate more conveniently; furthermore, we can make full use of graphics accelerator card and so on. Finally, we discuss the problem of how to speed up the generation.

  15. A System for Video Surveillance and Monitoring CMU VSAM Final Report

    DTIC Science & Technology

    1999-11-30

    motion-based skeletonization, neural network , spatio-temporal salience Patterns inside image chips, spurious motion rejection, model -based... network of sensors with respect to the model coordinate system, computation of 3D geolocation estimates, and graphical display of object hypotheses...rithms have been developed. The first uses view dependent visual properties to train a neural network classifier to recognize four classes: single

  16. Color image display and visual perception in computer graphics

    NASA Astrophysics Data System (ADS)

    Bouatouch, Kadi; Tellier, Pierre

    1996-03-01

    This paper put an emphasis on the importance of two points which are crucial when the aim is physically based lighting simulation. The first one is the spectral approach which considers emitted, reflected, diffused and transmitted light as wavelength dependent. The second corresponds to the different steps aiming at converting into RGB components the radiance arriving at the viewpoint through the pixels of a screen.

  17. Graphical Displays Assist In Analysis Of Failures

    NASA Technical Reports Server (NTRS)

    Pack, Ginger; Wadsworth, David; Razavipour, Reza

    1995-01-01

    Failure Environment Analysis Tool (FEAT) computer program enables people to see and better understand effects of failures in system. Uses digraph models to determine what will happen to system if set of failure events occurs and to identify possible causes of selected set of failures. Digraphs or engineering schematics used. Also used in operations to help identify causes of failures after they occur. Written in C language.

  18. Design and characterization of an ultraresolution seamlessly tiled display for data visualization

    NASA Astrophysics Data System (ADS)

    Bordes, Nicole; Bleha, William P.; Pailthorpe, Bernard

    2003-09-01

    The demand for more pixels in digital displays is beginning to be met as manufacturers increase the native resolution of projector chips. Tiling several projectors still offers one solution to augment the pixel capacity of a display. However problems of color and illumination uniformity across projectors need to be addressed as well as the computer software required to drive such devices. In this paper we present the results obtained on a desktop size tiled projector array of three D-ILA projectors sharing a common illumination source. The composite image on a 3 x 1 array, is 3840 by 1024 pixels with a resolution of about 80 dpi. The system preserves desktop resolution, is compact and can fit in a normal room or laboratory. A fiber optic beam splitting system and a single set of red, green and blue dichroic filters are the key to color and illumination uniformity. The D-ILA chips inside each projector can be adjusted individually to set or change characteristics such as contrast, brightness or gamma curves. The projectors were matched carefully and photometric variations were corrected, leading to a seamless tiled image. Photometric measurements were performed to characterize the display and losses through the optical paths, and are reported here. This system is driven by a small PC computer cluster fitted with graphics cards and is running Linux. The Chromium API can be used for tiling graphics tiles across the display and interfacing to users' software applications. There is potential for scaling the design to accommodate larger arrays, up to 4x5 projectors, increasing display system capacity to 50 Megapixels. Further increases, beyond 100 Megapixels can be anticipated with new generation D-ILA chips capable of projecting QXGA (2k x 1.5k), with ongoing evolution as QUXGA (4k x 2k) becomes available.

  19. Utilization of a CRT display light pen in the design of feedback control systems

    NASA Technical Reports Server (NTRS)

    Thompson, J. G.; Young, K. R.

    1972-01-01

    A hierarchical structure of the interlinked programs was developed to provide a flexible computer-aided design tool. A graphical input technique and a data structure are considered which provide the capability of entering the control system model description into the computer in block diagram form. An information storage and retrieval system was developed to keep track of the system description, and analysis and simulation results, and to provide them to the correct routines for further manipulation or display. Error analysis and diagnostic capabilities are discussed, and a technique was developed to reduce a transfer function to a set of nested integrals suitable for digital simulation. A general, automated block diagram reduction procedure was set up to prepare the system description for the analysis routines.

  20. Computer programming for generating visual stimuli.

    PubMed

    Bukhari, Farhan; Kurylo, Daniel D

    2008-02-01

    Critical to vision research is the generation of visual displays with precise control over stimulus metrics. Generating stimuli often requires adapting commercial software or developing specialized software for specific research applications. In order to facilitate this process, we give here an overview that allows nonexpert users to generate and customize stimuli for vision research. We first give a review of relevant hardware and software considerations, to allow the selection of display hardware, operating system, programming language, and graphics packages most appropriate for specific research applications. We then describe the framework of a generic computer program that can be adapted for use with a broad range of experimental applications. Stimuli are generated in the context of trial events, allowing the display of text messages, the monitoring of subject responses and reaction times, and the inclusion of contingency algorithms. This approach allows direct control and management of computer-generated visual stimuli while utilizing the full capabilities of modern hardware and software systems. The flowchart and source code for the stimulus-generating program may be downloaded from www.psychonomic.org/archive.

  1. Scheduling time-critical graphics on multiple processors

    NASA Technical Reports Server (NTRS)

    Meyer, Tom W.; Hughes, John F.

    1995-01-01

    This paper describes an algorithm for the scheduling of time-critical rendering and computation tasks on single- and multiple-processor architectures, with minimal pipelining. It was developed to manage scientific visualization scenes consisting of hundreds of objects, each of which can be computed and displayed at thousands of possible resolution levels. The algorithm generates the time-critical schedule using progressive-refinement techniques; it always returns a feasible schedule and, when allowed to run to completion, produces a near-optimal schedule which takes advantage of almost the entire multiple-processor system.

  2. An examination of techniques for reformatting digital cartographic data. Part 2: the vector-to raster process.

    USGS Publications Warehouse

    Peuquet, D.J.

    1981-01-01

    Current graphic devices suitable for high-speed computer input and output of cartographic data are tending more and more to be raster-oriented, such as the rotating drum scanner and the color raster display. However, the majority of commonly used manipulative techniques in computer-assisted cartography and automated spatial data handling continue to require that the data be in vector format. The current article is the second part of a two-part paper that examines the state of the art in these conversion techniques. - from Author

  3. Minimal-resource computer program for automatic generation of ocean wave ray or crest diagrams in shoaling waters

    NASA Technical Reports Server (NTRS)

    Poole, L. R.; Lecroy, S. R.; Morris, W. D.

    1977-01-01

    A computer program for studying linear ocean wave refraction is described. The program features random-access modular bathymetry data storage. Three bottom topography approximation techniques are available in the program which provide varying degrees of bathymetry data smoothing. Refraction diagrams are generated automatically and can be displayed graphically in three forms: Ray patterns with specified uniform deepwater ray density, ray patterns with controlled nearshore ray density, or crest patterns constructed by using a cubic polynomial to approximate crest segments between adjacent rays.

  4. Exploration computer applications to primary dispersion halos: Kougarok tin prospect, Seward Peninsula, Alaska, USA

    USGS Publications Warehouse

    Reid, Jeffrey C.

    1989-01-01

    Computer processing and high resolution graphics display of geochemical data were used to quickly, accurately, and efficiently obtain important decision-making information for tin (cassiterite) exploration, Seward Peninsula, Alaska (USA). Primary geochemical dispersion patterns were determined for tin-bearing intrusive granite phases of Late Cretaceous age with exploration bedrock lithogeochemistry at the Kougarok tin prospect. Expensive diamond drilling footage was required to reach exploration objectives. Recognition of element distribution and dispersion patterns was useful in subsurface interpretation and correlation, and to aid location of other holes.

  5. The recovery and utilization of space suit range-of-motion data

    NASA Technical Reports Server (NTRS)

    Reinhardt, AL; Walton, James S.

    1988-01-01

    A technique for recovering data for the range of motion of a subject wearing a space suit is described along with the validation of this technique on an EVA space suit. Digitized data are automatically acquired from video images of the subject; three-dimensional trajectories are recovered from these data, and can be displayed using three-dimensional computer graphics. Target locations are recovered using a unique video processor and close-range photogrammetry. It is concluded that such data can be used in such applications as the animation of anthropometric computer models.

  6. NASA LeRC/Akron University Graduate Cooperative Fellowship Program and Graduate Student Researchers Program

    NASA Technical Reports Server (NTRS)

    Fertis, D. G.; Simon, A. L.

    1981-01-01

    The requisite methodology to solve linear and nonlinear problems associated with the static and dynamic analysis of rotating machinery, their static and dynamic behavior, and the interaction between the rotating and nonrotating parts of an engine is developed. Linear and nonlinear structural engine problems are investigated by developing solution strategies and interactive computational methods whereby the man and computer can communicate directly in making analysis decisions. Representative examples include modifying structural models, changing material, parameters, selecting analysis options and coupling with interactive graphical display for pre- and postprocessing capability.

  7. SPACEBAR: Kinematic design by computer graphics

    NASA Technical Reports Server (NTRS)

    Ricci, R. J.

    1975-01-01

    The interactive graphics computer program SPACEBAR, conceived to reduce the time and complexity associated with the development of kinematic mechanisms on the design board, was described. This program allows the direct design and analysis of mechanisms right at the terminal screen. All input variables, including linkage geometry, stiffness, and applied loading conditions, can be fed into or changed at the terminal and may be displayed in three dimensions. All mechanism configurations can be cycled through their range of travel and viewed in their various geometric positions. Output data includes geometric positioning in orthogonal coordinates of each node point in the mechanism, velocity and acceleration of the node points, and internal loads and displacements of the node points and linkages. All analysis calculations take at most a few seconds to complete. Output data can be viewed at the scope and also printed at the discretion of the user.

  8. APEX_SCOPE: A graphical user interface for visualization of multi-modal data in inter-disciplinary studies.

    PubMed

    Kanbar, Lara J; Shalish, Wissam; Precup, Doina; Brown, Karen; Sant'Anna, Guilherme M; Kearney, Robert E

    2017-07-01

    In multi-disciplinary studies, different forms of data are often collected for analysis. For example, APEX, a study on the automated prediction of extubation readiness in extremely preterm infants, collects clinical parameters and cardiorespiratory signals. A variety of cardiorespiratory metrics are computed from these signals and used to assign a cardiorespiratory pattern at each time. In such a situation, exploratory analysis requires a visualization tool capable of displaying these different types of acquired and computed signals in an integrated environment. Thus, we developed APEX_SCOPE, a graphical tool for the visualization of multi-modal data comprising cardiorespiratory signals, automated cardiorespiratory metrics, automated respiratory patterns, manually classified respiratory patterns, and manual annotations by clinicians during data acquisition. This MATLAB-based application provides a means for collaborators to view combinations of signals to promote discussion, generate hypotheses and develop features.

  9. SpectraPLOT, Visualization Package with a User-Friendly Graphical Interface

    NASA Astrophysics Data System (ADS)

    Sebald, James; Macfarlane, Joseph; Golovkin, Igor

    2017-10-01

    SPECT3D is a collisional-radiative spectral analysis package designed to compute detailed emission, absorption, or x-ray scattering spectra, filtered images, XRD signals, and other synthetic diagnostics. The spectra and images are computed for virtual detectors by post-processing the results of hydrodynamics simulations in 1D, 2D, and 3D geometries. SPECT3D can account for a variety of instrumental response effects so that direct comparisons between simulations and experimental measurements can be made. SpectraPLOT is a user-friendly graphical interface for viewing a wide variety of results from SPECT3D simulations, and applying various instrumental effects to the simulated images and spectra. We will present SpectraPLOT's ability to display a variety of data, including spectra, images, light curves, streaked spectra, space-resolved spectra, and drilldown plasma property plots, for an argon-doped capsule implosion experiment example. Future SpectraPLOT features and enhancements will also be discussed.

  10. Spike-train acquisition, analysis and real-time experimental control using a graphical programming language (LabView).

    PubMed

    Nordstrom, M A; Mapletoft, E A; Miles, T S

    1995-11-01

    A solution is described for the acquisition on a personal computer of standard pulses derived from neuronal discharge, measurement of neuronal discharge times, real-time control of stimulus delivery based on specified inter-pulse interval conditions in the neuronal spike train, and on-line display and analysis of the experimental data. The hardware consisted of an Apple Macintosh IIci computer and a plug-in card (National Instruments NB-MIO16) that supports A/D, D/A, digital I/O and timer functions. The software was written in the object-oriented graphical programming language LabView. Essential elements of the source code of the LabView program are presented and explained. The use of the system is demonstrated in an experiment in which the reflex responses to muscle stretch are assessed for a single motor unit in the human masseter muscle.

  11. Using Cross-Sectional Imaging to Convey Organ Relationships: An Integrated Learning Environment for Students of Gross Anatomy

    PubMed Central

    Forman, Bruce H.; Eccles, Randy; Piggins, Judith; Raila, Wayne; Estey, Greg; Barnett, G. Octo

    1990-01-01

    We have developed a visually oriented, computer-controlled learning environment designed for use by students of gross anatomy. The goals of this module are to reinforce the concepts of organ relationships and topography by using computed axial tomographic (CAT) images accessed from a videodisc integrated with color graphics and to introduce students to cross-sectional radiographic anatomy. We chose to build the program around CAT scan images because they not only provide excellent structural detail but also offer an anatomic orientation (transverse) that complements that used in the dissection laboratory (basically a layer-by-layer, anterior-to-posterior, or coronal approach). Our system, built using a Microsoft Windows-386 based authoring environment which we designed and implemented, integrates text, video images, and graphics into a single screen display. The program allows both user browsing of information, facilitated by hypertext links, and didactic sessions including mini-quizzes for self-assessment.

  12. Preprocessor and postprocessor computer programs for a radial-flow finite-element model

    USGS Publications Warehouse

    Pucci, A.A.; Pope, D.A.

    1987-01-01

    Preprocessing and postprocessing computer programs that enhance the utility of the U.S. Geological Survey radial-flow model have been developed. The preprocessor program: (1) generates a triangular finite element mesh from minimal data input, (2) produces graphical displays and tabulations of data for the mesh , and (3) prepares an input data file to use with the radial-flow model. The postprocessor program is a version of the radial-flow model, which was modified to (1) produce graphical output for simulation and field results, (2) generate a statistic for comparing the simulation results with observed data, and (3) allow hydrologic properties to vary in the simulated region. Examples of the use of the processor programs for a hypothetical aquifer test are presented. Instructions for the data files, format instructions, and a listing of the preprocessor and postprocessor source codes are given in the appendixes. (Author 's abstract)

  13. Visual analytics as a translational cognitive science.

    PubMed

    Fisher, Brian; Green, Tera Marie; Arias-Hernández, Richard

    2011-07-01

    Visual analytics is a new interdisciplinary field of study that calls for a more structured scientific approach to understanding the effects of interaction with complex graphical displays on human cognitive processes. Its primary goal is to support the design and evaluation of graphical information systems that better support cognitive processes in areas as diverse as scientific research and emergency management. The methodologies that make up this new field are as yet ill defined. This paper proposes a pathway for development of visual analytics as a translational cognitive science that bridges fundamental research in human/computer cognitive systems and design and evaluation of information systems in situ. Achieving this goal will require the development of enhanced field methods for conceptual decomposition of human/computer cognitive systems that maps onto laboratory studies, and improved methods for conducting laboratory investigations that might better map onto real-world cognitive processes in technology-rich environments. Copyright © 2011 Cognitive Science Society, Inc.

  14. Rotational and Translational Components of Motion Parallax: Observers' Sensitivity and Implications for Three-Dimensional Computer Graphics

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.; Montegut, Michael J.; Proffitt, Dennis R.

    1995-01-01

    The motion of objects during motion parallax can be decomposed into 2 observer-relative components: translation and rotation. The depth ratio of objects in the visual field is specified by the inverse ratio of their angular displacement (from translation) or equivalently by the inverse ratio of their rotations. Despite the equal mathematical status of these 2 information sources, it was predicted that observers would be far more sensitive to the translational than rotational component. Such a differential sensitivity is implicitly assumed by the computer graphics technique billboarding, in which 3-dimensional (3-D) objects are drawn as planar forms (i.e., billboards) maintained normal to the line of sight. In 3 experiments, observers were found to be consistently less sensitive to rotational anomalies. The implications of these findings for kinetic depth effect displays and billboarding techniques are discussed.

  15. The change in critical technologies for computational physics

    NASA Technical Reports Server (NTRS)

    Watson, Val

    1990-01-01

    It is noted that the types of technology required for computational physics are changing as the field matures. Emphasis has shifted from computer technology to algorithm technology and, finally, to visual analysis technology as areas of critical research for this field. High-performance graphical workstations tied to a supercommunicator with high-speed communications along with the development of especially tailored visualization software has enabled analysis of highly complex fluid-dynamics simulations. Particular reference is made here to the development of visual analysis tools at NASA's Numerical Aerodynamics Simulation Facility. The next technology which this field requires is one that would eliminate visual clutter by extracting key features of simulations of physics and technology in order to create displays that clearly portray these key features. Research in the tuning of visual displays to human cognitive abilities is proposed. The immediate transfer of technology to all levels of computers, specifically the inclusion of visualization primitives in basic software developments for all work stations and PCs, is recommended.

  16. A graphical workstation based part-task flight simulator for preliminary rapid evaluation of advanced displays

    NASA Technical Reports Server (NTRS)

    Wanke, Craig; Kuchar, James; Hahn, Edward; Pritchett, Amy; Hansman, R. J.

    1992-01-01

    Advances in avionics and display technology are significantly changing the cockpit environment in current transport aircraft. The MIT Aeronautical Systems Lab (ASL) has developed a part-task flight simulator specifically to study the effects of these new technologies on flight crew situational awareness and performance. The simulator is based on a commercially-available graphics workstation, and can be rapidly reconfigured to meet the varying demands of experimental studies. The simulator has been successfully used to evaluate graphical microburst alerting displays, electronic instrument approach plates, terrain awareness and alerting displays, and ATC routing amendment delivery through digital datalinks.

  17. Computer graphics and the graphic artist

    NASA Technical Reports Server (NTRS)

    Taylor, N. L.; Fedors, E. G.; Pinelli, T. E.

    1985-01-01

    A centralized computer graphics system is being developed at the NASA Langley Research Center. This system was required to satisfy multiuser needs, ranging from presentation quality graphics prepared by a graphic artist to 16-mm movie simulations generated by engineers and scientists. While the major thrust of the central graphics system was directed toward engineering and scientific applications, hardware and software capabilities to support the graphic artists were integrated into the design. This paper briefly discusses the importance of computer graphics in research; the central graphics system in terms of systems, software, and hardware requirements; the application of computer graphics to graphic arts, discussed in terms of the requirements for a graphic arts workstation; and the problems encountered in applying computer graphics to the graphic arts. The paper concludes by presenting the status of the central graphics system.

  18. The Real Time Display Builder (RTDB)

    NASA Technical Reports Server (NTRS)

    Kindred, Erick D.; Bailey, Samuel A., Jr.

    1989-01-01

    The Real Time Display Builder (RTDB) is a prototype interactive graphics tool that builds logic-driven displays. These displays reflect current system status, implement fault detection algorithms in real time, and incorporate the operational knowledge of experienced flight controllers. RTDB utilizes an object-oriented approach that integrates the display symbols with the underlying operational logic. This approach allows the user to specify the screen layout and the driving logic as the display is being built. RTDB is being developed under UNIX in C utilizing the MASSCOMP graphics environment with appropriate functional separation to ease portability to other graphics environments. RTDB grew from the need to develop customized real-time data-driven Space Shuttle systems displays. One display, using initial functionality of the tool, was operational during the orbit phase of STS-26 Discovery. RTDB is being used to produce subsequent displays for the Real Time Data System project currently under development within the Mission Operations Directorate at NASA/JSC. The features of the tool, its current state of development, and its applications are discussed.

  19. Development of High-speed Visualization System of Hypocenter Data Using CUDA-based GPU computing

    NASA Astrophysics Data System (ADS)

    Kumagai, T.; Okubo, K.; Uchida, N.; Matsuzawa, T.; Kawada, N.; Takeuchi, N.

    2014-12-01

    After the Great East Japan Earthquake on March 11, 2011, intelligent visualization of seismic information is becoming important to understand the earthquake phenomena. On the other hand, to date, the quantity of seismic data becomes enormous as a progress of high accuracy observation network; we need to treat many parameters (e.g., positional information, origin time, magnitude, etc.) to efficiently display the seismic information. Therefore, high-speed processing of data and image information is necessary to handle enormous amounts of seismic data. Recently, GPU (Graphic Processing Unit) is used as an acceleration tool for data processing and calculation in various study fields. This movement is called GPGPU (General Purpose computing on GPUs). In the last few years the performance of GPU keeps on improving rapidly. GPU computing gives us the high-performance computing environment at a lower cost than before. Moreover, use of GPU has an advantage of visualization of processed data, because GPU is originally architecture for graphics processing. In the GPU computing, the processed data is always stored in the video memory. Therefore, we can directly write drawing information to the VRAM on the video card by combining CUDA and the graphics API. In this study, we employ CUDA and OpenGL and/or DirectX to realize full-GPU implementation. This method makes it possible to write drawing information to the VRAM on the video card without PCIe bus data transfer: It enables the high-speed processing of seismic data. The present study examines the GPU computing-based high-speed visualization and the feasibility for high-speed visualization system of hypocenter data.

  20. A flexible flight display research system using a ground-based interactive graphics terminal

    NASA Technical Reports Server (NTRS)

    Hatfield, J. J.; Elkins, H. C.; Batson, V. M.; Poole, W. L.

    1975-01-01

    Requirements and research areas for the air transportation system of the 1980 to 1990's were reviewed briefly to establish the need for a flexible flight display generation research tool. Specific display capabilities required by aeronautical researchers are listed and a conceptual system for providing these capabilities is described. The conceptual system uses a ground-based interactive graphics terminal driven by real-time radar and telemetry data to generate dynamic, experimental flight displays. These displays are scan converted to television format, processed, and transmitted to the cockpits of evaluation aircraft. The attendant advantages of a Flight Display Research System (FDRS) designed to employ this concept are presented. The detailed implementation of an FDRS is described. The basic characteristics of the interactive graphics terminal and supporting display electronic subsystems are presented and the resulting system capability is summarized. Finally, the system status and utilization are reviewed.

  1. A teleoperation training simulator with visual and kinesthetic force virtual reality

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Schenker, Paul

    1992-01-01

    A force-reflecting teleoperation training simulator with a high-fidelity real-time graphics display has been developed for operator training. A novel feature of this simulator is that it enables the operator to feel contact forces and torques through a force-reflecting controller during the execution of the simulated peg-in-hole task, providing the operator with the feel of visual and kinesthetic force virtual reality. A peg-in-hole task is used in our simulated teleoperation trainer as a generic teleoperation task. A quasi-static analysis of a two-dimensional peg-in-hole task model has been extended to a three-dimensional model analysis to compute contact forces and torques for a virtual realization of kinesthetic force feedback. The simulator allows the user to specify force reflection gains and stiffness (compliance) values of the manipulator hand for both the three translational and the three rotational axes in Cartesian space. Three viewing modes are provided for graphics display: single view, two split views, and stereoscopic view.

  2. Nonlinear vibration of a hemispherical dome under external water pressure

    NASA Astrophysics Data System (ADS)

    Ross, C. T. F.; McLennan, A.; Little, A. P. F.

    2011-07-01

    The aim of this study was to analyse the behaviour of a hemi-spherical dome when vibrated under external water pressure, using the commercial computer package ANSYS 11.0. In order to achieve this aim, the dome was modelled and vibrated in air and then in water, before finally being vibrated under external water pressure. The results collected during each of the analyses were compared to the previous studies, and this demonstrated that ANSYS was a suitable program and produced accurate results for this type of analysis, together with excellent graphical displays. The analysis under external water pressure, clearly demonstrated that as external water pressure was increased, the resonant frequencies decreased and a type of dynamic buckling became likely; because the static buckling eigenmode was similar to the vibration eigenmode. ANSYS compared favourably with the in-house software, but had the advantage that it produced graphical displays. This also led to the identification of previously undetected meridional modes of vibration; which were not detected with the in-house software.

  3. LUMIS Interactive graphics operating instructions and system specifications

    NASA Technical Reports Server (NTRS)

    Bryant, N. A.; Yu, T. C.; Landini, A. J.

    1976-01-01

    The LUMIS program has designed an integrated geographic information system to assist program managers and planning groups in metropolitan regions. Described is the system designed to interactively interrogate a data base, display graphically a portion of the region enclosed in the data base, and perform cross tabulations of variables within each city block, block group, or census tract. The system is designed to interface with U. S. Census DIME file technology, but can accept alternative districting conventions. The system is described on three levels: (1) introduction to the systems's concept and potential applications; (2) the method of operating the system on an interactive terminal; and (3) a detailed system specification for computer facility personnel.

  4. SimGraph: A Flight Simulation Data Visualization Workstation

    NASA Technical Reports Server (NTRS)

    Kaplan, Joseph A.; Kenney, Patrick S.

    1997-01-01

    Today's modern flight simulation research produces vast amounts of time sensitive data, making a qualitative analysis of the data difficult while it remains in a numerical representation. Therefore, a method of merging related data together and presenting it to the user in a more comprehensible format is necessary. Simulation Graphics (SimGraph) is an object-oriented data visualization software package that presents simulation data in animated graphical displays for easy interpretation. Data produced from a flight simulation is presented by SimGraph in several different formats, including: 3-Dimensional Views, Cockpit Control Views, Heads-Up Displays, Strip Charts, and Status Indicators. SimGraph can accommodate the addition of new graphical displays to allow the software to be customized to each user s particular environment. A new display can be developed and added to SimGraph without having to design a new application, allowing the graphics programmer to focus on the development of the graphical display. The SimGraph framework can be reused for a wide variety of visualization tasks. Although it was created for the flight simulation facilities at NASA Langley Research Center, SimGraph can be reconfigured to almost any data visualization environment. This paper describes the capabilities and operations of SimGraph.

  5. The Rendezvous Monitoring Display Capabilities of the Rendezvous and Proximity Operations Program

    NASA Technical Reports Server (NTRS)

    Brazzel, Jack; Spehar, Pete; Clark, Fred; Foster, Chris; Eldridge, Erin

    2013-01-01

    The Rendezvous and Proximity Operations Program (RPOP) is a laptop computer- based relative navigation tool and piloting aid that was developed during the Space Shuttle program. RPOP displays a graphical representation of the relative motion between the target and chaser vehicles in a rendezvous, proximity operations and capture scenario. After being used in over 60 Shuttle rendezvous missions, some of the RPOP display concepts have become recognized as a minimum standard for cockpit displays for monitoring the rendezvous task. To support International Space Station (ISS) based crews in monitoring incoming visiting vehicles, RPOP has been modified to allow crews to compare the Cygnus visiting vehicle s onboard navigated state to processed range measurements from an ISS-based, crew-operated Hand Held Lidar sensor. This paper will discuss the display concepts of RPOP that have proven useful in performing and monitoring rendezvous and proximity operations.

  6. Advanced data acquisition and display techniques for laser velocimetry

    NASA Technical Reports Server (NTRS)

    Kjelgaard, Scott O.; Weston, Robert P.

    1991-01-01

    The Basic Aerodynamics Research Tunnel (BART) has been equipped with state-of-the-art instrumentation for acquiring the data needed for code validation. This paper describes the three-component LDV and the workstation-based data-acquisition system (DAS) which has been developed for the BART. The DAS allows the use of automation and the quick integration of advanced instrumentation, while minimizing the software development time required between investigations. The paper also includes a description of a graphics software library developed to support the windowing environment of the DAS. The real-time displays generated using the graphics library help the researcher ensure the test is proceeding properly. The graphics library also supports the requirements of posttest data analysis. The use of the DAS and graphics libraries is illustrated by presenting examples of the real-time and postprocessing display graphics for LDV investigations.

  7. Rapid Assessment of Agility for Conceptual Design Synthesis

    NASA Technical Reports Server (NTRS)

    Biezad, Daniel J.

    1996-01-01

    This project consists of designing and implementing a real-time graphical interface for a workstation-based flight simulator. It is capable of creating a three-dimensional out-the-window scene of the aircraft's flying environment, with extensive information about the aircraft's state displayed in the form of a heads-up-display (HUD) overlay. The code, written in the C programming language, makes calls to Silicon Graphics' Graphics Library (GL) to draw the graphics primitives. Included in this report is a detailed description of the capabilities of the code, including graphical examples, as well as a printout of the code itself

  8. User's manual for the two-dimensional transputer graphics toolkit

    NASA Technical Reports Server (NTRS)

    Ellis, Graham K.

    1988-01-01

    The user manual for the 2-D graphics toolkit for a transputer based parallel processor is presented. The toolkit consists of a package of 2-D display routines that can be used for the simulation visualizations. It supports multiple windows, double buffered screens for animations, and simple graphics transformations such as translation, rotation, and scaling. The display routines are written in occam to take advantage of the multiprocessing features available on transputers. The package is designed to run on a transputer separate from the graphics board.

  9. Dose factor entry and display tool for BNCT radiotherapy

    DOEpatents

    Wessol, Daniel E.; Wheeler, Floyd J.; Cook, Jeremy L.

    1999-01-01

    A system for use in Boron Neutron Capture Therapy (BNCT) radiotherapy planning where a biological distribution is calculated using a combination of conversion factors and a previously calculated physical distribution. Conversion factors are presented in a graphical spreadsheet so that a planner can easily view and modify the conversion factors. For radiotherapy in multi-component modalities, such as Fast-Neutron and BNCT, it is necessary to combine each conversion factor component to form an effective dose which is used in radiotherapy planning and evaluation. The Dose Factor Entry and Display System is designed to facilitate planner entry of appropriate conversion factors in a straightforward manner for each component. The effective isodose is then immediately computed and displayed over the appropriate background (e.g. digitized image).

  10. Numerical Simulation Of Cutting Of Gear Teeth

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.; Huston, Ronald L.; Mavriplis, Dimitrios

    1994-01-01

    Shapes of gear teeth produced by gear cutters of specified shape simulated computationally, according to approach based on principles of differential geometry. Results of computer simulation displayed as computer graphics and/or used in analyses of design, manufacturing, and performance of gears. Applicable to both standard and non-standard gear-tooth forms. Accelerates and facilitates analysis of alternative designs of gears and cutters. Simulation extended to study generation of surfaces other than gears. Applied to cams, bearings, and surfaces of arbitrary rolling elements as well as to gears. Possible to develop analogous procedures for simulating manufacture of skin surfaces like automobile fenders, airfoils, and ship hulls.

  11. ESDAPT - APT PROGRAMMING EDITOR AND INTERPRETER

    NASA Technical Reports Server (NTRS)

    Premack, T.

    1994-01-01

    ESDAPT is a graphical programming environment for developing APT (Automatically Programmed Tool) programs for controlling numerically controlled machine tools. ESDAPT has a graphical user interface that provides the user with an APT syntax sensitive text editor and windows for displaying geometry and tool paths. APT geometry statement can also be created using menus and screen picks. ESDAPT interprets APT geometry statements and displays the results in its view windows. Tool paths are generated by batching the APT source to an APT processor (COSMIC P-APT recommended). The tool paths are then displayed in the view windows. Hardcopy output of the view windows is in color PostScript format. ESDAPT is written in C-language, yacc, lex, and XView for use on Sun4 series computers running SunOS. ESDAPT requires 4Mb of disk space, 7Mb of RAM, and MIT's X Window System, Version 11 Release 4, or OpenWindows version 3 for execution. Program documentation in PostScript format and an executable for OpenWindows version 3 are provided on the distribution media. The standard distribution medium for ESDAPT is a .25 inch streaming magnetic tape cartridge (Sun QIC-24) in UNIX tar format. This program was developed in 1992.

  12. Computer-Based Tools for Evaluating Graphical User Interfaces

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.

    1997-01-01

    The user interface is the component of a software system that connects two very complex system: humans and computers. Each of these two systems impose certain requirements on the final product. The user is the judge of the usability and utility of the system; the computer software and hardware are the tools with which the interface is constructed. Mistakes are sometimes made in designing and developing user interfaces because the designers and developers have limited knowledge about human performance (e.g., problem solving, decision making, planning, and reasoning). Even those trained in user interface design make mistakes because they are unable to address all of the known requirements and constraints on design. Evaluation of the user inter-face is therefore a critical phase of the user interface development process. Evaluation should not be considered the final phase of design; but it should be part of an iterative design cycle with the output of evaluation being feed back into design. The goal of this research was to develop a set of computer-based tools for objectively evaluating graphical user interfaces. The research was organized into three phases. The first phase resulted in the development of an embedded evaluation tool which evaluates the usability of a graphical user interface based on a user's performance. An expert system to assist in the design and evaluation of user interfaces based upon rules and guidelines was developed during the second phase. During the final phase of the research an automatic layout tool to be used in the initial design of graphical inter- faces was developed. The research was coordinated with NASA Marshall Space Flight Center's Mission Operations Laboratory's efforts in developing onboard payload display specifications for the Space Station.

  13. GIS and RDBMS Used with Offline FAA Airspace Databases

    NASA Technical Reports Server (NTRS)

    Clark, J.; Simmons, J.; Scofield, E.; Talbott, B.

    1994-01-01

    A geographic information system (GIS) and relational database management system (RDBMS) were used in a Macintosh environment to access, manipulate, and display off-line FAA databases of airport and navigational aid locations, airways, and airspace boundaries. This proof-of-concept effort used data available from the Adaptation Controlled Environment System (ACES) and Digital Aeronautical Chart Supplement (DACS) databases to allow FAA cartographers and others to create computer-assisted charts and overlays as reference material for air traffic controllers. These products were created on an engineering model of the future GRASP (GRaphics Adaptation Support Position) workstation that will be used to make graphics and text products for the Advanced Automation System (AAS), which will upgrade and replace the current air traffic control system. Techniques developed during the prototyping effort have shown the viability of using databases to create graphical products without the need for an intervening data entry step.

  14. Blasting, graphical interfaces and Unix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knudsen, S.; Preece, D.S.

    1993-11-01

    A discrete element computer program, DMC (Distinct Motion Code) was developed to simulate blast-induced rock motion. To simplify the complex task of entering material and explosive design parameters as well as bench configuration, a full-featured graphical interface has been developed. DMC is currently executed on both Sun SPARCstation 2 and Sun SPARCstation 10 platforms and routinely used to model bench and crater blasting problems. This paper will document the design and development of the full-featured interface to DMC. The development of the interface will be tracked through the various stages, highlighting the adjustments made to allow the necessary parameters tomore » be entered in terms and units that field blasters understand. The paper also discusses a novel way of entering non-integer numbers and the techniques necessary to display blasting parameters in an understandable visual manner. A video presentation will demonstrate the graphics interface and explains its use.« less

  15. Blasting, graphical interfaces and Unix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knudsen, S.; Preece, D.S.

    1994-12-31

    A discrete element computer program, DMC (Distinct Motion Code) was developed to simulate blast-induced rock motion. To simplify the complex task of entering material and explosive design parameters as well as bench configuration, a full-featured graphical interface has been developed. DMC is currently executed on both Sun SPARCstation 2 and Sun SPARCstation 10 platforms and routinely used to model bench and crater blasting problems. This paper will document the design and development of the full-featured interface to DMC. The development of the interface will be tracked through the various stages, highlighting the adjustments made to allow the necessary parameters tomore » be entered in terms and units that field blasters understand. The paper also discusses a novel way of entering non-integer numbers and the techniques necessary to display blasting parameters in an understandable visual manner. A video presentation will demonstrate the graphics interface and explains its use.« less

  16. ROCOPT: A user friendly interactive code to optimize rocket structural components

    NASA Technical Reports Server (NTRS)

    Rule, William K.

    1989-01-01

    ROCOPT is a user-friendly, graphically-interfaced, microcomputer-based computer program (IBM compatible) that optimizes rocket components by minimizing the structural weight. The rocket components considered are ring stiffened truncated cones and cylinders. The applied loading is static, and can consist of any combination of internal or external pressure, axial force, bending moment, and torque. Stress margins are calculated by means of simple closed form strength of material type equations. Stability margins are determined by approximate, orthotropic-shell, closed-form equations. A modified form of Powell's method, in conjunction with a modified form of the external penalty method, is used to determine the minimum weight of the structure subject to stress and stability margin constraints, as well as user input constraints on the structural dimensions. The graphical interface guides the user through the required data prompts, explains program options and graphically displays results for easy interpretation.

  17. Apple Image Processing Educator

    NASA Technical Reports Server (NTRS)

    Gunther, F. J.

    1981-01-01

    A software system design is proposed and demonstrated with pilot-project software. The system permits the Apple II microcomputer to be used for personalized computer-assisted instruction in the digital image processing of LANDSAT images. The programs provide data input, menu selection, graphic and hard-copy displays, and both general and detailed instructions. The pilot-project results are considered to be successful indicators of the capabilities and limits of microcomputers for digital image processing education.

  18. AFTOMS Technology Issues and Alternatives Report

    DTIC Science & Technology

    1989-12-01

    color , resolu- power requirements, physi- tion; memory , processor speed; cal and weather rugged- IAN interfaces, etc,) f,: these ness. display...Telephone and Telegraph 3 CD-I Compact Disk - Interactive CD-ROM Compact Disk-Read Only Memory CGM Computer Graphics Metafile CNWDI Critical Nuclear...Database Management System RFP Request For Proposal 3 RFS Remote File System ROM Read Only Memory 3 S SA-ALC San Antonio Air Logistics Center 3 SAC

  19. From Specific Information Extraction to Inferences: A Hierarchical Framework of Graph Comprehension

    DTIC Science & Technology

    2004-09-01

    The skill to interpret the information displayed in graphs is so important to have, the National Council of Teachers of Mathematics has created...guidelines to ensure that students learn these skills ( NCTM : Standards for Mathematics , 2003). These guidelines are based primarily on the extraction of...graphical perception. Human Computer Interaction, 8, 353-388. NCTM : Standards for Mathematics . (2003, 2003). Peebles, D., & Cheng, P. C.-H. (2002

  20. Three-Dimensional Displays In The Future Flight Station

    NASA Astrophysics Data System (ADS)

    Bridges, Alan L.

    1984-10-01

    This review paper summarizes the development and applications of computer techniques for the representation of three-dimensional data in the future flight station. It covers the development of the Lockheed-NASA Advanced Concepts Flight Station (ACFS) research simulators. These simulators contain: A Pilot's Desk Flight Station (PDFS) with five 13- inch diagonal, color, cathode ray tubes on the main instrument panel; a computer-generated day and night visual system; a six-degree-of-freedom motion base; and a computer complex. This paper reviews current research, development, and evaluation of easily modifiable display systems and software requirements for three-dimensional displays that may be developed for the PDFS. This includes the analysis and development of a 3-D representation of the entire flight profile. This 3-D flight path, or "Highway-in-the-Sky", will utilize motion and perspective cues to tightly couple the human responses of the pilot to the aircraft control systems. The use of custom logic, e.g., graphics engines, may provide the processing power and architecture required for 3-D computer-generated imagery (CGI) or visual scene simulation (VSS). Diffraction or holographic head-up displays (HUDs) will also be integrated into the ACFS simulator to permit research on the requirements and use of these "out-the-window" projection systems. Future research may include the retrieval of high-resolution, perspective view terrain maps which could then be overlaid with current weather information or other selectable cultural features.

  1. Emergent features and perceptual objects: re-examining fundamental principles in analogical display design.

    PubMed

    Holt, Jerred; Bennett, Kevin B; Flach, John M

    2015-01-01

    Two sets of design principles for analogical visual displays, based on the concepts of emergent features and perceptual objects, are described. An interpretation of previous empirical findings for three displays (bar graph, polar graphic, alphanumeric) is provided from both perspectives. A fourth display (configural coordinate) was designed using principles of ecological interface design (i.e. direct perception). An experiment was conducted to evaluate performance (accuracy and latency of state identification) with these four displays. Numerous significant effects were obtained and a clear rank ordering of performance emerged (from best to worst): configural coordinate, bar graph, alphanumeric and polar graphic. These findings are consistent with principles of design based on emergent features; they are inconsistent with principles based on perceptual objects. Some limitations of the configural coordinate display are discussed and a redesign is provided. Practitioner Summary: Principles of ecological interface design, which emphasise the quality of very specific mappings between domain, display and observer constraints, are described; these principles are applicable to the design of all analogical graphical displays.

  2. Graphical display of histopathology data from toxicology studies for drug discovery and development: An industry perspective.

    PubMed

    Brown, Alan P; Drew, Philip; Knight, Brian; Marc, Philippe; Troth, Sean; Wuersch, Kuno; Zandee, Joyce

    2016-12-01

    Histopathology data comprise a critical component of pharmaceutical toxicology studies and are typically presented as finding incidence counts and severity scores per organ, and tabulated on multiple pages which can be challenging for review and aggregation of results. However, the SEND (Standard for Exchange of Nonclinical Data) standard provides a means for collecting and managing histopathology data in a uniform fashion which can allow informatics systems to archive, display and analyze data in novel ways. Various software applications have become available to convert histopathology data into graphical displays for analyses. A subgroup of the FDA-PhUSE Nonclinical Working Group conducted intra-industry surveys regarding the use of graphical displays of histopathology data. Visual cues, use-cases, the value of cross-domain and cross-study visualizations, and limitations were topics for discussion in the context of the surveys. The subgroup came to the following conclusions. Graphical displays appear advantageous as a communication tool to both pathologists and non-pathologists, and provide an efficient means for communicating pathology findings to project teams. Graphics can support hypothesis-generation which could include cross-domain interactive visualizations and/-or aggregating large datasets from multiple studies to observe and/or display patterns and trends. Incorporation of the SEND standard will provide a platform by which visualization tools will be able to aggregate, select and display information from complex and disparate datasets. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Human Machine Interface Programming and Testing

    NASA Technical Reports Server (NTRS)

    Foster, Thomas Garrison

    2013-01-01

    Human Machine Interface (HMI) Programming and Testing is about creating graphical displays to mimic mission critical ground control systems in order to provide NASA engineers with the ability to monitor the health management of these systems in real time. The Health Management System (HMS) is an online interactive human machine interface system that monitors all Kennedy Ground Control Subsystem (KGCS) hardware in the field. The Health Management System is essential to NASA engineers because it allows remote control and monitoring of the health management systems of all the Programmable Logic Controllers (PLC) and associated field devices. KGCS will have equipment installed at the launch pad, Vehicle Assembly Building, Mobile Launcher, as well as the Multi-Purpose Processing Facility. I am designing graphical displays to monitor and control new modules that will be integrated into the HMS. The design of the display screen will closely mimic the appearance and functionality of the actual modules. There are many different field devices used to monitor health management and each device has its own unique set of health management related data, therefore each display must also have its own unique way to display this data. Once the displays are created, the RSLogix5000 application is used to write software that maps all the required data read from the hardware to the graphical display. Once this data is mapped to its corresponding display item, the graphical display and hardware device will be connected through the same network in order to test all possible scenarios and types of data the graphical display was designed to receive. Test Procedures will be written to thoroughly test out the displays and ensure that they are working correctly before being deployed to the field. Additionally, the Kennedy Ground Controls Subsystem's user manual will be updated to explain to the NASA engineers how to use the new module displays.

  4. Mass data graphics requirements for symbol generators: example 2D airport navagation and 3D terrain function

    NASA Astrophysics Data System (ADS)

    Schiefele, Jens; Bader, Joachim; Kastner, S.; Wiesemann, Thorsten; von Viebahn, Harro

    2002-07-01

    Next generation of cockpit display systems will display mass data. Mass data includes terrain, obstacle, and airport databases. Display formats will be two and eventually 3D. A prerequisite for the introduction of these new functions is the availability of certified graphics hardware. The paper describes functionality and required features of an aviation certified 2D/3D graphics board. This graphics board should be based on low-level and hi-level API calls. These graphic calls should be very similar to OpenGL. All software and the API must be aviation certified. As an example application, a 2D airport navigation function and a 3D terrain visualization is presented. The airport navigation format is based on highly precise airport database following EUROCAE ED-99/RTCA DO-272 specifications. Terrain resolution is based on EUROCAE ED-98/RTCA DO-276 requirements.

  5. Tool for Statistical Analysis and Display of Landing Sites

    NASA Technical Reports Server (NTRS)

    Wawrzyniak, Geoffrey; Kennedy, Brian; Knocke, Philip; Michel, John

    2006-01-01

    MarsLS is a software tool for analyzing statistical dispersion of spacecraft-landing sites and displaying the results of its analyses. Originally intended for the Mars Explorer Rover (MER) mission, MarsLS is also applicable to landing sites on Earth and non-MER sites on Mars. MarsLS is a collection of interdependent MATLAB scripts that utilize the MATLAB graphical-user-interface software environment to display landing-site data (see figure) on calibrated image-maps of the Martian or other terrain. The landing-site data comprise latitude/longitude pairs generated by Monte Carlo runs of other computer programs that simulate entry, descent, and landing. Using these data, MarsLS can compute a landing-site ellipse a standard means of depicting the area within which the spacecraft can be expected to land with a given probability. MarsLS incorporates several features for the user s convenience, including capabilities for drawing lines and ellipses, overlaying kilometer or latitude/longitude grids, drawing and/or specifying lines and/or points, entering notes, defining and/or displaying polygons to indicate hazards or areas of interest, and evaluating hazardous and/or scientifically interesting areas. As part of such an evaluation, MarsLS can compute the probability of landing in a specified polygonal area.

  6. The visual communication of risk.

    PubMed

    Lipkus, I M; Hollands, J G

    1999-01-01

    This paper 1) provides reasons why graphics should be effective aids to communicate risk; 2) reviews the use of visuals, especially graphical displays, to communicate risk; 3) discusses issues to consider when designing graphs to communicate risk; and 4) provides suggestions for future research. Key articles and materials were obtained from MEDLINE(R) and PsychInfo(R) databases, from reference article citations, and from discussion with experts in risk communication. Research has been devoted primarily to communicating risk magnitudes. Among the various graphical displays, the risk ladder appears to be a promising tool for communicating absolute and relative risks. Preliminary evidence suggests that people understand risk information presented in histograms and pie charts. Areas that need further attention include 1) applying theoretical models to the visual communication of risk, 2) testing which graphical displays can be applied best to different risk communication tasks (e.g., which graphs best convey absolute or relative risks), 3) communicating risk uncertainty, and 4) testing whether the lay public's perceptions and understanding of risk varies by graphical format and whether the addition of graphical displays improves comprehension substantially beyond numerical or narrative translations of risk and, if so, by how much. There is a need to ascertain the extent to which graphics and other visuals enhance the public's understanding of disease risk to facilitate decision-making and behavioral change processes. Nine suggestions are provided to help achieve these ends.

  7. Wrist display concept demonstration based on 2-in. color AMOLED

    NASA Astrophysics Data System (ADS)

    Meyer, Frederick M.; Longo, Sam J.; Hopper, Darrel G.

    2004-09-01

    The wrist watch needs an upgrade. Recent advances in optoelectronics, microelectronics, and communication theory have established a technology base that now make the multimedia Dick Tracy watch attainable during the next decade. As a first step towards stuffing the functionality of an entire personnel computer (PC) and television receiver under a watch face, we have set a goal of providing wrist video capability to warfighters. Commercial sector work on the wrist form factor already includes all the functionality of a personal digital assistant (PDA) and full PC operating system. Our strategy is to leverage these commercial developments. In this paper we describe our use of a 2.2 in. diagonal color active matrix light emitting diode (AMOLED) device as a wrist-mounted display (WMD) to present either full motion video or computer generated graphical image formats.

  8. Human problem solving performance in a fault diagnosis task

    NASA Technical Reports Server (NTRS)

    Rouse, W. B.

    1978-01-01

    It is proposed that humans in automated systems will be asked to assume the role of troubleshooter or problem solver and that the problems which they will be asked to solve in such systems will not be amenable to rote solution. The design of visual displays for problem solving in such situations is considered, and the results of two experimental investigations of human problem solving performance in the diagnosis of faults in graphically displayed network problems are discussed. The effects of problem size, forced-pacing, computer aiding, and training are considered. Results indicate that human performance deviates from optimality as problem size increases. Forced-pacing appears to cause the human to adopt fairly brute force strategies, as compared to those adopted in self-paced situations. Computer aiding substantially lessens the number of mistaken diagnoses by performing the bookkeeping portions of the task.

  9. Fiber Optic Communication System For Medical Images

    NASA Astrophysics Data System (ADS)

    Arenson, Ronald L.; Morton, Dan E.; London, Jack W.

    1982-01-01

    This paper discusses a fiber optic communication system linking ultrasound devices, Computerized tomography scanners, Nuclear Medicine computer system, and a digital fluoro-graphic system to a central radiology research computer. These centrally archived images are available for near instantaneous recall at various display consoles. When a suitable laser optical disk is available for mass storage, more extensive image archiving will be added to the network including digitized images of standard radiographs for comparison purposes and for remote display in such areas as the intensive care units, the operating room, and selected outpatient departments. This fiber optic system allows for a transfer of high resolution images in less than a second over distances exceeding 2,000 feet. The advantages of using fiber optic cables instead of typical parallel or serial communication techniques will be described. The switching methodology and communication protocols will also be discussed.

  10. Continuation of research into software for space operations support: Conversion of the display manager to X Windows/Motif, volume 2

    NASA Technical Reports Server (NTRS)

    Collier, Mark D.; Killough, Ronnie; Martin, Nancy L.

    1990-01-01

    NASA is currently using a set of applications called the Display Builder and Display Manager. They run on Concurrent systems and heavily depend on the Graphic Kernel System (GKS). At this time however, these two applications would more appropriately be developed in X Windows, in which a low X is used for all actual text and graphics display and a standard widget set (such as Motif) is used for the user interface. Use of the X Windows will increase performance, improve the user interface, enhance portability, and improve reliability. Prototype of X Window/Motif based Display Manager provides the following advantages over a GKS based application: improved performance by using a low level X Windows, display of graphic and text will be more efficient; improved user interface by using Motif; Improved portability by operating on both Concurrent and Sun workstations; and Improved reliability.

  11. Interactive Educational Tool for Turbofan and Afterburning Turbojet Engines

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.

    1997-01-01

    A workstation-based, interactive educational computer program has been developed at the NASA Lewis Research Center to aid in the teaching and understanding of turbine engine design and analysis. This tool has recently been extended to model the performance of two-spool turbofans and afterburning turbojets. The program solves for the flow conditions through the engine by using classical one-dimensional thermodynamic analysis found in various propulsion textbooks. Either an approximately thermally perfect or calorically perfect gas can be used in the thermodynamic analysis. Students can vary the design conditions through a graphical user interface; engine performance is calculated immediately. A variety of graphical formats are used to present results, including numerical results, moving bar charts, and student-generated temperature versus entropy (Ts), pressure versus specific volume (pv), and engine performance plots. The package includes user-controlled printed output, restart capability, online help screens, and a browser that displays teacher-prepared lessons in turbomachinery. The program runs on a variety of workstations or a personal computer using the UNIX operating system and X-based graphics. It is being tested at several universities in the midwestern United States; the source and executables are available free from the author.

  12. State-Chart Autocoder

    NASA Technical Reports Server (NTRS)

    Clark, Kenneth; Watney, Garth; Murray, Alexander; Benowitz, Edward

    2007-01-01

    A computer program translates Unified Modeling Language (UML) representations of state charts into source code in the C, C++, and Python computing languages. ( State charts signifies graphical descriptions of states and state transitions of a spacecraft or other complex system.) The UML representations constituting the input to this program are generated by using a UML-compliant graphical design program to draw the state charts. The generated source code is consistent with the "quantum programming" approach, which is so named because it involves discrete states and state transitions that have features in common with states and state transitions in quantum mechanics. Quantum programming enables efficient implementation of state charts, suitable for real-time embedded flight software. In addition to source code, the autocoder program generates a graphical-user-interface (GUI) program that, in turn, generates a display of state transitions in response to events triggered by the user. The GUI program is wrapped around, and can be used to exercise the state-chart behavior of, the generated source code. Once the expected state-chart behavior is confirmed, the generated source code can be augmented with a software interface to the rest of the software with which the source code is required to interact.

  13. Parallelized multi–graphics processing unit framework for high-speed Gabor-domain optical coherence microscopy

    PubMed Central

    Tankam, Patrice; Santhanam, Anand P.; Lee, Kye-Sung; Won, Jungeun; Canavesi, Cristina; Rolland, Jannick P.

    2014-01-01

    Abstract. Gabor-domain optical coherence microscopy (GD-OCM) is a volumetric high-resolution technique capable of acquiring three-dimensional (3-D) skin images with histological resolution. Real-time image processing is needed to enable GD-OCM imaging in a clinical setting. We present a parallelized and scalable multi-graphics processing unit (GPU) computing framework for real-time GD-OCM image processing. A parallelized control mechanism was developed to individually assign computation tasks to each of the GPUs. For each GPU, the optimal number of amplitude-scans (A-scans) to be processed in parallel was selected to maximize GPU memory usage and core throughput. We investigated five computing architectures for computational speed-up in processing 1000×1000 A-scans. The proposed parallelized multi-GPU computing framework enables processing at a computational speed faster than the GD-OCM image acquisition, thereby facilitating high-speed GD-OCM imaging in a clinical setting. Using two parallelized GPUs, the image processing of a 1×1×0.6  mm3 skin sample was performed in about 13 s, and the performance was benchmarked at 6.5 s with four GPUs. This work thus demonstrates that 3-D GD-OCM data may be displayed in real-time to the examiner using parallelized GPU processing. PMID:24695868

  14. Parallelized multi-graphics processing unit framework for high-speed Gabor-domain optical coherence microscopy.

    PubMed

    Tankam, Patrice; Santhanam, Anand P; Lee, Kye-Sung; Won, Jungeun; Canavesi, Cristina; Rolland, Jannick P

    2014-07-01

    Gabor-domain optical coherence microscopy (GD-OCM) is a volumetric high-resolution technique capable of acquiring three-dimensional (3-D) skin images with histological resolution. Real-time image processing is needed to enable GD-OCM imaging in a clinical setting. We present a parallelized and scalable multi-graphics processing unit (GPU) computing framework for real-time GD-OCM image processing. A parallelized control mechanism was developed to individually assign computation tasks to each of the GPUs. For each GPU, the optimal number of amplitude-scans (A-scans) to be processed in parallel was selected to maximize GPU memory usage and core throughput. We investigated five computing architectures for computational speed-up in processing 1000×1000 A-scans. The proposed parallelized multi-GPU computing framework enables processing at a computational speed faster than the GD-OCM image acquisition, thereby facilitating high-speed GD-OCM imaging in a clinical setting. Using two parallelized GPUs, the image processing of a 1×1×0.6  mm3 skin sample was performed in about 13 s, and the performance was benchmarked at 6.5 s with four GPUs. This work thus demonstrates that 3-D GD-OCM data may be displayed in real-time to the examiner using parallelized GPU processing.

  15. Electronic holography using binary phase modulation

    NASA Astrophysics Data System (ADS)

    Matoba, Osamu

    2014-06-01

    A 3D display system by using a phase-only distribution is presented. Especially, binary phase distribution is used to reconstruct a 3D object for wide viewing zone angle. To obtain the phase distribution to be displayed on a phase-mode spatial light modulator, both of experimental and numerical processes are available. In this paper, we present a numerical process by using a computer graphics data. A random phase distribution is attached to all polygons of an input 3D object to reconstruct a 3D object well from the binary phase distribution. Numerical and experimental results are presented to show the effectiveness of the proposed system.

  16. Experiences with hypercube operating system instrumentation

    NASA Technical Reports Server (NTRS)

    Reed, Daniel A.; Rudolph, David C.

    1989-01-01

    The difficulties in conceptualizing the interactions among a large number of processors make it difficult both to identify the sources of inefficiencies and to determine how a parallel program could be made more efficient. This paper describes an instrumentation system that can trace the execution of distributed memory parallel programs by recording the occurrence of parallel program events. The resulting event traces can be used to compile summary statistics that provide a global view of program performance. In addition, visualization tools permit the graphic display of event traces. Visual presentation of performance data is particularly useful, indeed, necessary for large-scale parallel computers; the enormous volume of performance data mandates visual display.

  17. Program For Generating Interactive Displays

    NASA Technical Reports Server (NTRS)

    Costenbader, Jay; Moleski, Walt; Szczur, Martha; Howell, David; Engelberg, Norm; Li, Tin P.; Misra, Dharitri; Miller, Philip; Neve, Leif; Wolf, Karl; hide

    1991-01-01

    Sun/Unix version of Transportable Applications Environment Plus (TAE+) computer program provides integrated, portable software environment for developing and running interactive window, text, and graphical-object-based application software systems. Enables programmer or nonprogrammer to construct easily custom software interface between user and application program and to move resulting interface program and its application program to different computers. Plus viewed as productivity tool for application developers and application end users, who benefit from resultant consistent and well-designed user interface sheltering them from intricacies of computer. Available in form suitable for following six different groups of computers: DEC VAX station and other VMS VAX computers, Macintosh II computers running AUX, Apollo Domain Series 3000, DEC VAX and reduced-instruction-set-computer workstations running Ultrix, Sun 3- and 4-series workstations running Sun OS and IBM RT/PC and PS/2 compute

  18. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The Apollo implementation of PLOT3D uses some of the capabilities of Apollo's 3-dimensional graphics hardware, but does not take advantage of the shading and hidden line/surface removal capabilities of the Apollo DN10000. Although this implementation does not offer a capability for putting text on plots, it does support the use of a mouse to translate, rotate, or zoom in on views. The version 3.6b+ Apollo implementations of PLOT3D (ARC-12789) and PLOT3D/TURB3D (ARC-12785) were developed for use on Apollo computers running UNIX System V with BSD 4.3 extensions and the graphics library GMR3D Version 2.0. The standard distribution media for each of these programs is a 9-track, 6250 bpi magnetic tape in TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: 1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, and Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); 2) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC-12777, ARC-12781); 3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstations (ARC-12783, ARC-12782). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo and GMR3D are trademarks of Hewlett-Packard, Incorporated. UNIX is a registered trademark of AT&T.

  19. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The Apollo implementation of PLOT3D uses some of the capabilities of Apollo's 3-dimensional graphics hardware, but does not take advantage of the shading and hidden line/surface removal capabilities of the Apollo DN10000. Although this implementation does not offer a capability for putting text on plots, it does support the use of a mouse to translate, rotate, or zoom in on views. The version 3.6b+ Apollo implementations of PLOT3D (ARC-12789) and PLOT3D/TURB3D (ARC-12785) were developed for use on Apollo computers running UNIX System V with BSD 4.3 extensions and the graphics library GMR3D Version 2.0. The standard distribution media for each of these programs is a 9-track, 6250 bpi magnetic tape in TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: 1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, and Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); 2) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC-12777, ARC-12781); 3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstations (ARC-12783, ARC-12782). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo and GMR3D are trademarks of Hewlett-Packard, Incorporated. UNIX is a registered trademark of AT&T.

  20. Development of a Low Cost Graphics Terminal.

    ERIC Educational Resources Information Center

    Lehr, Ted

    1985-01-01

    Describes modifications made to expand the capabilities of a display unit (Lear Siegler ADM-3A) to include medium resolution graphics. The modifying circuitry is detailed along with software subroutined written in Z-80 machine language for controlling the video display. (JN)

  1. Tangible display systems: bringing virtual surfaces into the real world

    NASA Astrophysics Data System (ADS)

    Ferwerda, James A.

    2012-03-01

    We are developing tangible display systems that enable natural interaction with virtual surfaces. Tangible display systems are based on modern mobile devices that incorporate electronic image displays, graphics hardware, tracking systems, and digital cameras. Custom software allows the orientation of a device and the position of the observer to be tracked in real-time. Using this information, realistic images of surfaces with complex textures and material properties illuminated by environment-mapped lighting, can be rendered to the screen at interactive rates. Tilting or moving in front of the device produces realistic changes in surface lighting and material appearance. In this way, tangible displays allow virtual surfaces to be observed and manipulated as naturally as real ones, with the added benefit that surface geometry and material properties can be modified in real-time. We demonstrate the utility of tangible display systems in four application areas: material appearance research; computer-aided appearance design; enhanced access to digital library and museum collections; and new tools for digital artists.

  2. DISPLAY3D. A Graphics Preprocessor for CHIEF

    DTIC Science & Technology

    1990-12-27

    graphics devices, the user may write a graphics program th.,.t can read DISPLAY3D output files, or use one of the commercial plotting packages...COMMON/NBPRTC/IRHSPT, NARSPT, NPTBLK FRQPT COMMON/NBPRTS/SYMTPT CHARACTER*3 SYMTPT DIMENSION CC(10), TRNS(3), IELTS (8,300) real xl(1000) ,yl(leee...C Prompt the user for filename. C--- ------------------------------------------------------- WRITE (6,1) ’Enter filename used in CID or

  3. PLOT3D/AMES, GENERIC UNIX VERSION USING DISSPLA (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The UNIX/DISSPLA implementation of PLOT3D supports 2-D polygons as well as 2-D and 3-D lines, but does not support graphics features requiring 3-D polygons (shading and hidden line removal, for example). Views can be manipulated using keyboard commands. This version of PLOT3D is potentially able to produce files for a variety of output devices; however, site-specific capabilities will vary depending on the device drivers supplied with the user's DISSPLA library. The version 3.6b+ UNIX/DISSPLA implementations of PLOT3D (ARC-12788) and PLOT3D/TURB3D (ARC-12778) were developed for use on computers running UNIX SYSTEM 5 with BSD 4.3 extensions. The standard distribution media for each ofthese programs is a 9track, 6250 bpi magnetic tape in TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); (2) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D (ARC-12783, ARC-12782); (3) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC-12777, ARC-12781); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo and GMR3D are trademarks of Hewlett-Packard, Incorporated. System 5 is a trademark of Bell Labs, Incorporated. BSD4.3 is a trademark of the University of California at Berkeley. UNIX is a registered trademark of AT&T.

  4. PLOT3D/AMES, GENERIC UNIX VERSION USING DISSPLA (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The UNIX/DISSPLA implementation of PLOT3D supports 2-D polygons as well as 2-D and 3-D lines, but does not support graphics features requiring 3-D polygons (shading and hidden line removal, for example). Views can be manipulated using keyboard commands. This version of PLOT3D is potentially able to produce files for a variety of output devices; however, site-specific capabilities will vary depending on the device drivers supplied with the user's DISSPLA library. The version 3.6b+ UNIX/DISSPLA implementations of PLOT3D (ARC-12788) and PLOT3D/TURB3D (ARC-12778) were developed for use on computers running UNIX SYSTEM 5 with BSD 4.3 extensions. The standard distribution media for each ofthese programs is a 9track, 6250 bpi magnetic tape in TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); (2) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D (ARC-12783, ARC-12782); (3) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC-12777, ARC-12781); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo and GMR3D are trademarks of Hewlett-Packard, Incorporated. System 5 is a trademark of Bell Labs, Incorporated. BSD4.3 is a trademark of the University of California at Berkeley. UNIX is a registered trademark of AT&T.

  5. Fast distributed large-pixel-count hologram computation using a GPU cluster.

    PubMed

    Pan, Yuechao; Xu, Xuewu; Liang, Xinan

    2013-09-10

    Large-pixel-count holograms are one essential part for big size holographic three-dimensional (3D) display, but the generation of such holograms is computationally demanding. In order to address this issue, we have built a graphics processing unit (GPU) cluster with 32.5 Tflop/s computing power and implemented distributed hologram computation on it with speed improvement techniques, such as shared memory on GPU, GPU level adaptive load balancing, and node level load distribution. Using these speed improvement techniques on the GPU cluster, we have achieved 71.4 times computation speed increase for 186M-pixel holograms. Furthermore, we have used the approaches of diffraction limits and subdivision of holograms to overcome the GPU memory limit in computing large-pixel-count holograms. 745M-pixel and 1.80G-pixel holograms were computed in 343 and 3326 s, respectively, for more than 2 million object points with RGB colors. Color 3D objects with 1.02M points were successfully reconstructed from 186M-pixel hologram computed in 8.82 s with all the above three speed improvement techniques. It is shown that distributed hologram computation using a GPU cluster is a promising approach to increase the computation speed of large-pixel-count holograms for large size holographic display.

  6. Ink Jet For Business Graphic Application

    NASA Astrophysics Data System (ADS)

    Hooper, Dana H.

    1987-04-01

    This talk covers the use of Computer generated color output in the preparation of professional, memorable presentations. The focus is on this application and today's business graphic marketplace. To provide a background, on overview of the factors and trends influencing the market for color hard copy output is essential. The availability of lower cost computing technology, improved graphic software and user interfaces and the availability of color copiers is combining with the latest generation of color ink jet printers to cause a strong growth in the use of color hardcopy devices in the business graphics marketplace. The market is expected to grow at a compound annual growth rate in excess of 25% and reach a level of 5 Billion by 1990. Color lasography and ink jet technology based products are expected to increase share significantly primarily at the expense of pen plotters. Essential to the above mentioned growth is the latest generation of products. The Xerox 4020 Color Ink Jet Printer embodies the latest ink jet technology and is a good example of this new generation of products. The printer brings highly reliable color to a broad range of business users. The 4020 is driven by over 50 software packages allowing users compatibility and supporting a variety of applications. The 4020 is easy to operate and maintain and capable of producing excellent hardcopy and transparencies at an attractive price point. Several specific applications areas were discussed. Images were typically created on an IBM PC or compatible with a graphics application package and output to the Xerox 4020 Color Ink Jet Printer. Bar charts, line graphs, pie charts, integrated text and graphics, reports and maps were displayed with a brief description. Additionally, the use of color in brainscanning to discern and communicate information and in computer generated Art demonstrate the wide variety of potential applications. Images may be output to paper or to transparency for overhead presentation. The future of color in the business graphics market looks bright and will continue to be strongly influenced by future product introductions.

  7. Three-directional motion-compensation mask-based novel look-up table on graphics processing units for video-rate generation of digital holographic videos of three-dimensional scenes.

    PubMed

    Kwon, Min-Woo; Kim, Seung-Cheol; Kim, Eun-Soo

    2016-01-20

    A three-directional motion-compensation mask-based novel look-up table method is proposed and implemented on graphics processing units (GPUs) for video-rate generation of digital holographic videos of three-dimensional (3D) scenes. Since the proposed method is designed to be well matched with the software and memory structures of GPUs, the number of compute-unified-device-architecture kernel function calls can be significantly reduced. This results in a great increase of the computational speed of the proposed method, allowing video-rate generation of the computer-generated hologram (CGH) patterns of 3D scenes. Experimental results reveal that the proposed method can generate 39.8 frames of Fresnel CGH patterns with 1920×1080 pixels per second for the test 3D video scenario with 12,088 object points on dual GPU boards of NVIDIA GTX TITANs, and they confirm the feasibility of the proposed method in the practical application fields of electroholographic 3D displays.

  8. Mono-stereo-autostereo: the evolution of 3-dimensional neurosurgical planning.

    PubMed

    Stadie, Axel T; Kockro, Ralf A

    2013-01-01

    In the past decade, surgery planning has changed significantly. The main reason is the improvements in computer graphical rendering power and display technology, which turned the plain graphics of the mid-1990s into interactive stereoscopic objects. To report our experiences with 2 virtual reality systems used for planning neurosurgical operations. A series of 208 operations were planned with the Dextroscope (Bracco AMT, Singapore) requiring the use of liquid crystal display shutter glasses. The participating neurosurgeons answered a questionnaire after the planning procedure and postoperatively. In a second prospective series of 33 patients, we used an autostereoscopic monitor system (MD20-3-D; Setred SA, Sweden) to plan intracranial operations. A questionnaire regarding the value of surgery planning was answered preoperatively and postoperatively. The Dextroscope could be integrated into daily surgical routine. Surgeons regarded their understanding of the pathoanatomical situation as improved, leading to enhanced intraoperative orientation and confidence compared with conventional planning. The autostereoscopic Setred system was regarded as helpful in establishing the surgical strategy and analyzing the pathoanatomical situation compared with conventional planning. Both systems were perceived as a backup in case of failure of the standard navigation system. Improvement of display and interaction techniques adds to the realism of the planning process and enables precise structural understanding preoperatively. This minimizes intraoperative guesswork and exploratory dissection. Autostereoscopic display techniques will further increase the value and acceptance of 3-dimensional planning and intraoperative navigation.

  9. SES cupola interactive display design environment

    NASA Technical Reports Server (NTRS)

    Vu, Bang Q.; Kirkhoff, Kevin R.

    1989-01-01

    The Systems Engineering Simulator, located at the Lyndon B. Johnson Space Center in Houston, Texas, is tasked with providing a real-time simulator for developing displays and controls targeted for the Space Station Freedom. These displays and controls will exist inside an enclosed workstation located on the space station. The simulation is currently providing the engineering analysis environment for NASA and contractor personnel to design, prototype, and test alternatives for graphical presentation of data to an astronaut while he performs specified tasks. A highly desirable aspect of this environment is to have the capability to rapidly develop and bring on-line a number of different displays for use in determining the best utilization of graphics techniques in achieving maximum efficiency of the test subject fulfilling his task. The Systems Engineering Simulator now has available a tool which assists in the rapid development of displays for these graphic workstations. The Display Builder was developed in-house to provide an environment which allows easy construction and modification of displays within minutes of receiving requirements for specific tests.

  10. Computer hardware and software for robotic control

    NASA Technical Reports Server (NTRS)

    Davis, Virgil Leon

    1987-01-01

    The KSC has implemented an integrated system that coordinates state-of-the-art robotic subsystems. It is a sensor based real-time robotic control system performing operations beyond the capability of an off-the-shelf robot. The integrated system provides real-time closed loop adaptive path control of position and orientation of all six axes of a large robot; enables the implementation of a highly configurable, expandable testbed for sensor system development; and makes several smart distributed control subsystems (robot arm controller, process controller, graphics display, and vision tracking) appear as intelligent peripherals to a supervisory computer coordinating the overall systems.

  11. Windows Program For Driving The TDU-850 Printer

    NASA Technical Reports Server (NTRS)

    Parrish, Brett T.

    1995-01-01

    Program provides WYSIWYG compatibility between video display and printout. PDW is Microsoft Windows printer-driver computer program for use with Raytheon TDU-850 printer. Provides previously unavailable linkage between printer and IBM PC-compatible computers running Microsoft Windows. Enhances capabilities of Raytheon TDU-850 hardcopier by emulating all textual and graphical features normally supported by laser/ink-jet printers and makes printer compatible with any Microsoft Windows application. Also provides capabilities not found in laser/ink-jet printer drivers by providing certain Windows applications with ability to render high quality, true gray-scale photographic hardcopy on TDU-850. Written in C language.

  12. LaRC design analysis report for National Transonic Facility for 304 stainless steel tunnel shell. Volume 1S: Finite difference analysis of cone/cylinder junction

    NASA Technical Reports Server (NTRS)

    Ramsey, J. W., Jr.; Taylor, J. T.; Wilson, J. F.; Gray, C. E., Jr.; Leatherman, A. D.; Rooker, J. R.; Allred, J. W.

    1976-01-01

    The results of extensive computer (finite element, finite difference and numerical integration), thermal, fatigue, and special analyses of critical portions of a large pressurized, cryogenic wind tunnel (National Transonic Facility) are presented. The computer models, loading and boundary conditions are described. Graphic capability was used to display model geometry, section properties, and stress results. A stress criteria is presented for evaluation of the results of the analyses. Thermal analyses were performed for major critical and typical areas. Fatigue analyses of the entire tunnel circuit are presented.

  13. Computer registration of radioactive indicator-dilution curves.

    PubMed

    Shepherd, A P; Perry, M A; Alexander, G M; Granger, D N; Riedel, G L; Kvietys, P R; Franke, C P

    1983-12-01

    A system is described for recording indicator-dilution curves produced by gamma radiation-emitting tracers. The system consists of a flow-through cuvette in a well counter, appropriate commercially available gamma radiation-detecting equipment, an Apple II computer, and a two-channel pulse-counting interface of our own design. With the counting interface and the software described here, an investigator can simultaneously record two indicator-dilution curves produced by gamma emitters. Instead of having to wait hours or days for results, the investigator can watch the data being recorded and display the results in graphic form almost immediately after each injection.

  14. Identifying opportune landing sites in degraded visual environments with terrain and cultural databases

    NASA Astrophysics Data System (ADS)

    Moody, Marc; Fisher, Robert; Little, J. Kristin

    2014-06-01

    Boeing has developed a degraded visual environment navigational aid that is flying on the Boeing AH-6 light attack helicopter. The navigational aid is a two dimensional software digital map underlay generated by the Boeing™ Geospatial Embedded Mapping Software (GEMS) and fully integrated with the operational flight program. The page format on the aircraft's multi function displays (MFD) is termed the Approach page. The existing work utilizes Digital Terrain Elevation Data (DTED) and OpenGL ES 2.0 graphics capabilities to compute the pertinent graphics underlay entirely on the graphics processor unit (GPU) within the AH-6 mission computer. The next release will incorporate cultural databases containing Digital Vertical Obstructions (DVO) to warn the crew of towers, buildings, and power lines when choosing an opportune landing site. Future IRAD will include Light Detection and Ranging (LIDAR) point cloud generating sensors to provide 2D and 3D synthetic vision on the final approach to the landing zone. Collision detection with respect to terrain, cultural, and point cloud datasets may be used to further augment the crew warning system. The techniques for creating the digital map underlay leverage the GPU almost entirely, making this solution viable on most embedded mission computing systems with an OpenGL ES 2.0 capable GPU. This paper focuses on the AH-6 crew interface process for determining a landing zone and flying the aircraft to it.

  15. Robot computer problem solving system

    NASA Technical Reports Server (NTRS)

    Merriam, E. W.; Becker, J. D.

    1973-01-01

    A robot computer problem solving system which represents a robot exploration vehicle in a simulated Mars environment is described. The model exhibits changes and improvements made on a previously designed robot in a city environment. The Martian environment is modeled in Cartesian coordinates; objects are scattered about a plane; arbitrary restrictions on the robot's vision have been removed; and the robot's path contains arbitrary curves. New environmental features, particularly the visual occlusion of objects by other objects, were added to the model. Two different algorithms were developed for computing occlusion. Movement and vision capabilities of the robot were established in the Mars environment, using LISP/FORTRAN interface for computational efficiency. The graphical display program was redesigned to reflect the change to the Mars-like environment.

  16. Algorithms for Haptic Rendering of 3D Objects

    NASA Technical Reports Server (NTRS)

    Basdogan, Cagatay; Ho, Chih-Hao; Srinavasan, Mandayam

    2003-01-01

    Algorithms have been developed to provide haptic rendering of three-dimensional (3D) objects in virtual (that is, computationally simulated) environments. The goal of haptic rendering is to generate tactual displays of the shapes, hardnesses, surface textures, and frictional properties of 3D objects in real time. Haptic rendering is a major element of the emerging field of computer haptics, which invites comparison with computer graphics. We have already seen various applications of computer haptics in the areas of medicine (surgical simulation, telemedicine, haptic user interfaces for blind people, and rehabilitation of patients with neurological disorders), entertainment (3D painting, character animation, morphing, and sculpting), mechanical design (path planning and assembly sequencing), and scientific visualization (geophysical data analysis and molecular manipulation).

  17. Real-time display of flow-pressure-volume loops.

    PubMed

    Morozoff, P E; Evans, R W

    1992-01-01

    Graphic display of respiratory waveforms can be valuable for monitoring the progress of ventilated patients. A system has been developed that can display flow-pressure-volume loops as derived from a patient's respiratory circuit in real time. It can also display, store, print, and retrieve ventilatory waveforms. Five loops can be displayed at once: current, previous, reference, "ideal," and previously saved. Two components, the data-display device (DDD) and the data-collection device (DCD), comprise the system. An IBM 286/386 computer with a graphics card (VGA) and bidirectional parallel port is used for the DDD; an eight-bit microprocessor card and an A/D convertor card make up the DCD. A real-time multitasking operating system was written to control the DDD, while the DCD operates from in-line assembly code. The DCD samples the pressure and flow sensors at 100 Hz and looks for a complete flow waveform pattern based on flow slope. These waveforms are then passed to the DDD via the mutual parallel port. Within the DDD a process integrates the flow to create a volume signal and performs a multilinear regression on the pressure, flow, and volume data to calculate the elastance, resistance, pressure offset, and coefficient of determination. Elastance, resistance, and offset are used to calculate Pr and Pc where: Pr[k] = P[k]-offset-(elastance.V[k]) and Pc[k] = P[k]-offset-(resistance.F[k]). Volume vs. Pc and flow vs. Pr can be displayed in real time. Patient data from previous clinical tests were loaded into the device to verify the software calculations. An analog waveform generator was used to simulate flow and pressure waveforms that validated the system.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. An interactive modeling program for the generation of planar polygons for boundary type solids representations of wire frame models

    NASA Technical Reports Server (NTRS)

    Ozsoy, T.; Ochs, J. B.

    1984-01-01

    The development of a general link between three dimensional wire frame models and rigid solid models is discussed. An interactive computer graphics program was developed to serve as a front end to an algorithm (COSMIC Program No. ARC-11446) which offers a general solution to the hidden line problem where the input data is either line segments of n-sided planar polygons of the most general type with internal boundaries. The program provides a general interface to CAD/CAM data bases and is implemented for models created on the Unigraphics VAX 11/780-based CAD/CAM systems with the display software written for DEC's VS11 color graphics devices.

  19. Process and representation in graphical displays

    NASA Technical Reports Server (NTRS)

    Gillan, Douglas J.; Lewis, Robert; Rudisill, Marianne

    1990-01-01

    How people comprehend graphics is examined. Graphical comprehension involves the cognitive representation of information from a graphic display and the processing strategies that people apply to answer questions about graphics. Research on representation has examined both the features present in a graphic display and the cognitive representation of the graphic. The key features include the physical components of a graph, the relation between the figure and its axes, and the information in the graph. Tests of people's memory for graphs indicate that both the physical and informational aspect of a graph are important in the cognitive representation of a graph. However, the physical (or perceptual) features overshadow the information to a large degree. Processing strategies also involve a perception-information distinction. In order to answer simple questions (e.g., determining the value of a variable, comparing several variables, and determining the mean of a set of variables), people switch between two information processing strategies: (1) an arithmetic, look-up strategy in which they use a graph much like a table, looking up values and performing arithmetic calculations; and (2) a perceptual strategy in which they use the spatial characteristics of the graph to make comparisons and estimations. The user's choice of strategies depends on the task and the characteristics of the graph. A theory of graphic comprehension is presented.

  20. Development and usage of a false color display technique for presenting Seasat-A scatterometer data

    NASA Technical Reports Server (NTRS)

    Jackson, C. B.

    1980-01-01

    A computer generated false color program which creates digital multicolor graphics to display geophysical surface parameters measured by the Seasat-A satellite scatterometer (SASS) is described. The data is incrementally scaled over the range of acceptable values and each increment and its data points are assigned a color. The advantage of the false color display is that it visually infers cool or weak data versus hot or intense data by using the rainbow of colors. For example, with wind speeds, levels of yellow and red could be used to imply high winds while green and blue could imply calmer air. The SASS data is sorted into geographic regions and the final false color images are projected onto various world maps with superimposed land/water boundaries.

  1. A PC-based single-ADC multi-parameter data acquisition system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodring, M.; Kegel, G.H.R.; Egan, J.J.

    1995-10-01

    A personal computer (PC) based mult parameter data acquisition system using the Microsoft Window operating environment has been designed and constructed. An IBI AT compatible personal computer with an Intel 486DX5 microprocessor was combined with a National Instruments ATIDIO 32 digital I/O card, a single Canberra 8713 ADC with 13-bit resolution and a modified Canberra 8223 8-input analog multiplexer to acquil data from experiments carried out at the UML Van de Graa accelerator. The accelerator data acquisition (ADAC) computer environment was programmed in Microsoft Visual BASIC for use i Windows. ADAC allows event-mode data acquisition with up to eight parametersmore » (modifiable to 64) and the simultaneous display parameters during acquisition. Additional features of ADAC include replay of event-mode data and graphical analysis/display of data. TV ADAC environment is easy to upgrade or expand, inexpensive 1 implement, and is specifically designed to meet the needs of nuclei spectroscopy.« less

  2. Crop-phenology and LANDSAT-based irrigated lands inventory in the high plains. [Texas, New Mexico, Oklahma, Kansas, Colorado, Nebraska, Wyoming, and South Dakota

    NASA Technical Reports Server (NTRS)

    Martinko, E. A. (Principal Investigator); Poracsky, J.; Kipp, E. R.; Krieger, H.

    1981-01-01

    Crop calendars for 1979 and 1980 were investigated in support of an effort to develop techniques for mapping the High Plains aquifer region. Optimal LANDSAT image dates for 1980 were preliminarily identified based on ESS weekly crop weather reports and 1979 ESS agricultural statistics were entered into the computer. A questionnaire was compiled and sent to ASCS county agents with the approval of the Extension Directors in each state involved. Data from returning questionnaires were tabulated and development started on a set of computer programs to allow the preparation of computer assisted graphic displays of much of the collected data.

  3. Event visualization in ATLAS

    NASA Astrophysics Data System (ADS)

    Bianchi, R. M.; Boudreau, J.; Konstantinidis, N.; Martyniuk, A. C.; Moyse, E.; Thomas, J.; Waugh, B. M.; Yallup, D. P.; ATLAS Collaboration

    2017-10-01

    At the beginning, HEP experiments made use of photographical images both to record and store experimental data and to illustrate their findings. Then the experiments evolved and needed to find ways to visualize their data. With the availability of computer graphics, software packages to display event data and the detector geometry started to be developed. Here, an overview of the usage of event display tools in HEP is presented. Then the case of the ATLAS experiment is considered in more detail and two widely used event display packages are presented, Atlantis and VP1, focusing on the software technologies they employ, as well as their strengths, differences and their usage in the experiment: from physics analysis to detector development, and from online monitoring to outreach and communication. Towards the end, the other ATLAS visualization tools will be briefly presented as well. Future development plans and improvements in the ATLAS event display packages will also be discussed.

  4. JAVA Stereo Display Toolkit

    NASA Technical Reports Server (NTRS)

    Edmonds, Karina

    2008-01-01

    This toolkit provides a common interface for displaying graphical user interface (GUI) components in stereo using either specialized stereo display hardware (e.g., liquid crystal shutter or polarized glasses) or anaglyph display (red/blue glasses) on standard workstation displays. An application using this toolkit will work without modification in either environment, allowing stereo software to reach a wider audience without sacrificing high-quality display on dedicated hardware. The toolkit is written in Java for use with the Swing GUI Toolkit and has cross-platform compatibility. It hooks into the graphics system, allowing any standard Swing component to be displayed in stereo. It uses the OpenGL graphics library to control the stereo hardware and to perform the rendering. It also supports anaglyph and special stereo hardware using the same API (application-program interface), and has the ability to simulate color stereo in anaglyph mode by combining the red band of the left image with the green/blue bands of the right image. This is a low-level toolkit that accomplishes simply the display of components (including the JadeDisplay image display component). It does not include higher-level functions such as disparity adjustment, 3D cursor, or overlays all of which can be built using this toolkit.

  5. Graphic Display of Larger Sentence Dependency Structures.

    ERIC Educational Resources Information Center

    Craven, Timothy C.

    1991-01-01

    Outlines desirable qualities for graphic representation of sentence dependency structures in texts more than a few sentences in length. Several different display formats prototyped in the TEXNET experimental text structure management system are described, illustrated, and compared, and automatic structure manipulations are discussed. (36…

  6. Cartographic symbol library considering symbol relations based on anti-aliasing graphic library

    NASA Astrophysics Data System (ADS)

    Mei, Yang; Li, Lin

    2007-06-01

    Cartographic visualization represents geographic information with a map form, which enables us retrieve useful geospatial information. In digital environment, cartographic symbol library is the base of cartographic visualization and is an essential component of Geographic Information System as well. Existing cartographic symbol libraries have two flaws. One is the display quality and the other one is relations adjusting. Statistic data presented in this paper indicate that the aliasing problem is a major factor on the symbol display quality on graphic display devices. So, effective graphic anti-aliasing methods based on a new anti-aliasing algorithm are presented and encapsulated in an anti-aliasing graphic library with the form of Component Object Model. Furthermore, cartographic visualization should represent feature relation in the way of correctly adjusting symbol relations besides displaying an individual feature. But current cartographic symbol libraries don't have this capability. This paper creates a cartographic symbol design model to implement symbol relations adjusting. Consequently the cartographic symbol library based on this design model can provide cartographic visualization with relations adjusting capability. The anti-aliasing graphic library and the cartographic symbol library are sampled and the results prove that the two libraries both have better efficiency and effect.

  7. Planetary Education and Outreach Using the NOAA Science on a Sphere

    NASA Technical Reports Server (NTRS)

    Simon-Miller, A. A.; Williams, D. R.; Smith, S. M.; Friedlander, J. S.; Mayo, L. A.; Clark, P. E.; Henderson, M. A.

    2011-01-01

    Science On a Sphere (SOS) is a large visualization system, developed by the National Oceanic and Atmospheric Administration (NOAH), that uses computers running Redhat Linux and four video projectors to display animated data onto the outside of a sphere. Said another way, SOS is a stationary globe that can show dynamic, animated images in spherical form. Visualization of cylindrical data maps show planets, their atmosphere, oceans, and land, in very realistic form. The SOS system uses 4 video projectors to display images onto the sphere. Each projector is driven by a separate computer, and a fifth computer is used to control the operation of the display computers. Each computer is a relatively powerful PC with a high-end graphics card. The video projectors have native XGA resolution. The projectors are placed at the corners of a 30' x 30' square with a 68" carbon fiber sphere suspended in the center of the square. The equator of the sphere is typically located 86" off the floor. SOS uses common image formats such as JPEG, or TIFF in a very specific, but simple form; the images are plotted on an equatorial cylindrical equidistant projection, or as it is commonly known, a latitude/longitude grid, where the image is twice as wide as it is high (rectangular). 2048x] 024 is the minimum usable spatial resolution without some noticeable pixelation. Labels and text can be applied within the image, or using a timestamp-like feature within the SOS system software. There are two basic modes of operation for SOS: displaying a single image or an animated sequence of frames. The frame or frames can be setup to rotate or tilt, as in a planetary rotation. Sequences of images that animate through time produce a movie visualization, with or without an overlain soundtrack. After the images are processed, SOS will display the images in sequence and play them like a movie across the entire sphere surface. Movies can be of any arbitrary length, limited mainly by disk space and can be animated at frame rates up to 30 frames per second. Transitions, special effects, and other computer graphics techniques can be added to a sequence through the use of off-the-shelf software, like Final Cut Pro. However, one drawback is that the Sphere cannot be used in the same manner as a flat movie screen; images cannot be pushed to a "side", a highlighted area must be viewable to all sides of the room simultaneously, and some transitions do not work as well as others. We discuss these issues and workarounds in our poster.

  8. Graphic Server: A real time system for displaying and monitoring telemetry data of several satellites

    NASA Technical Reports Server (NTRS)

    Douard, Stephane

    1994-01-01

    Known as a Graphic Server, the system presented was designed for the control ground segment of the Telecom 2 satellites. It is a tool used to dynamically display telemetry data within graphic pages, also known as views. The views are created off-line through various utilities and then, on the operator's request, displayed and animated in real time as data is received. The system was designed as an independent component, and is installed in different Telecom 2 operational control centers. It enables operators to monitor changes in the platform and satellite payloads in real time. It has been in operation since December 1991.

  9. Graphical Interface for the Study of Gas-Phase Reaction Kinetics: Cyclopentene Vapor Pyrolysis

    NASA Astrophysics Data System (ADS)

    Marcotte, Ronald E.; Wilson, Lenore D.

    2001-06-01

    The undergraduate laboratory experiment on the pyrolysis of gaseous cyclopentene has been modernized to improve safety, speed, and precision and to better reflect the current practice of physical chemistry. It now utilizes virtual instrument techniques to create a graphical computer interface for the collection and display of experimental data. An electronic pressure gauge has replaced the mercury manometer formerly needed in proximity to the 500 °C pyrolysis oven. Students have much better real-time information available to them and no longer require multiple lab periods to get rate constants and acceptable Arrhenius parameters. The time saved on manual data collection is used to give the students a tour of the computer interfacing hardware and software and a hands-on introduction to gas-phase reagent preparation using a research-grade high-vacuum system. This includes loading the sample, degassing it by the freeze-pump-thaw technique, handling liquid nitrogen and working through the logic necessary for each reconfiguration of the diffusion pump section and the submanifolds.

  10. DataView: a computational visualisation system for multidisciplinary design and analysis

    NASA Astrophysics Data System (ADS)

    Wang, Chengen

    2016-01-01

    Rapidly processing raw data and effectively extracting underlining information from huge volumes of multivariate data become essential to all decision-making processes in sectors like finance, government, medical care, climate analysis, industries, science, etc. Remarkably, visualisation is recognised as a fundamental technology that props up human comprehension, cognition and utilisation of burgeoning amounts of heterogeneous data. This paper presents a computational visualisation system, named DataView, which has been developed for graphically displaying and capturing outcomes of multiphysics problem-solvers widely used in engineering fields. The DataView is functionally composed of techniques for table/diagram representation, and graphical illustration of scalar, vector and tensor fields. The field visualisation techniques are implemented on the basis of a range of linear and non-linear meshes, which flexibly adapts to disparate data representation schemas adopted by a variety of disciplinary problem-solvers. The visualisation system has been successfully applied to a number of engineering problems, of which some illustrations are presented to demonstrate effectiveness of the visualisation techniques.

  11. Three Dimensional Measurements And Display Using A Robot Arm

    NASA Astrophysics Data System (ADS)

    Swift, Thomas E.

    1984-02-01

    The purpose of this paper is to describe a project which makes three dimensional measurements of an object using a robot arm. A program was written to determine the X-Y-Z coordinates of the end point of a Minimover-5 robot arm which was interfaced to a TRS-80 Model III microcomputer. This program was used in conjunction with computer graphics subroutines that draw a projected three dimensional object.. The robot arm was direc-ted to touch points on an object and then lines were drawn on the screen of the microcomputer between consecutive points as they were entered. A representation of the entire object is in this way constructed on the screen. The three dimensional graphics subroutines have the ability to rotate the projected object about any of the three axes, and to scale the object to any size. This project has applications in the computer-aided design and manufacturing fields because it can accurately measure the features of an irregularly shaped object.

  12. A method for fast energy estimation and visualization of protein-ligand interaction

    NASA Astrophysics Data System (ADS)

    Tomioka, Nobuo; Itai, Akiko; Iitaka, Yoichi

    1987-10-01

    A new computational and graphical method for facilitating ligand-protein docking studies is developed on a three-dimensional computer graphics display. Various physical and chemical properties inside the ligand binding pocket of a receptor protein, whose structure is elucidated by X-ray crystal analysis, are calculated on three-dimensional grid points and are stored in advance. By utilizing those tabulated data, it is possible to estimate the non-bonded and electrostatic interaction energy and the number of possible hydrogen bonds between protein and ligand molecules in real time during an interactive docking operation. The method also provides a comprehensive visualization of the local environment inside the binding pocket. With this method, it becomes easier to find a roughly stable geometry of ligand molecules, and one can therefore make a rapid survey of the binding capability of many drug candidates. The method will be useful for drug design as well as for the examination of protein-ligand interactions.

  13. Representing spatial information in a computational model for network management

    NASA Technical Reports Server (NTRS)

    Blaisdell, James H.; Brownfield, Thomas F.

    1994-01-01

    While currently available relational database management systems (RDBMS) allow inclusion of spatial information in a data model, they lack tools for presenting this information in an easily comprehensible form. Computer-aided design (CAD) software packages provide adequate functions to produce drawings, but still require manual placement of symbols and features. This project has demonstrated a bridge between the data model of an RDBMS and the graphic display of a CAD system. It is shown that the CAD system can be used to control the selection of data with spatial components from the database and then quickly plot that data on a map display. It is shown that the CAD system can be used to extract data from a drawing and then control the insertion of that data into the database. These demonstrations were successful in a test environment that incorporated many features of known working environments, suggesting that the techniques developed could be adapted for practical use.

  14. Software systems for modeling articulated figures

    NASA Technical Reports Server (NTRS)

    Phillips, Cary B.

    1989-01-01

    Research in computer animation and simulation of human task performance requires sophisticated geometric modeling and user interface tools. The software for a research environment should present the programmer with a powerful but flexible substrate of facilities for displaying and manipulating geometric objects, yet insure that future tools have a consistent and friendly user interface. Jack is a system which provides a flexible and extensible programmer and user interface for displaying and manipulating complex geometric figures, particularly human figures in a 3D working environment. It is a basic software framework for high-performance Silicon Graphics IRIS workstations for modeling and manipulating geometric objects in a general but powerful way. It provides a consistent and user-friendly interface across various applications in computer animation and simulation of human task performance. Currently, Jack provides input and control for applications including lighting specification and image rendering, anthropometric modeling, figure positioning, inverse kinematics, dynamic simulation, and keyframe animation.

  15. LOFT data acquisition and visual display system (DAVDS) presentation program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bullock, M.G.; Miyasaki, F.S.

    1976-03-01

    The Data Acquisition and Visual Display System (DAVDS) at the Loss-of-Fluid Test Facility (LOFT) has 742 data channel recording capability of which 576 are recorded digitally. The purpose of this computer program is to graphically present the data acquired and/or processed by the LOFT DAVDS. This program takes specially created plot data buffers of up to 1024 words and generates time history plots on the system electrostatic printer-plotter. The data can be extracted from two system input devices: Magnetic disk or digital magnetic tape. Versatility has been designed in the program by providing the user three methods of scaling plots:more » Automatic, control record, and manual. Time required to produce a plot on the system electrostatic printer-plotter varies from 30 to 90 seconds depending on the options selected. The basic computer and program details are described.« less

  16. The Use of Interactive Raster Graphics in the Display and Manipulation of Multidimensional Data

    NASA Technical Reports Server (NTRS)

    Anderson, D. C.

    1981-01-01

    Techniques for the review, display, and manipulation of multidimensional data are developed and described. Multidimensional data is meant in this context to describe scalar data associated with a three dimensional geometry or otherwise too complex to be well represented by traditional graphs. Raster graphics techniques are used to display a shaded image of a three dimensional geometry. The use of color to represent scalar data associated with the geometries in shaded images is explored. Distinct hues are associated with discrete data ranges, thus emulating the traditional representation of data with isarithms, or lines of constant numerical value. Data ranges are alternatively associated with a continuous spectrum of hues to show subtler data trends. The application of raster graphics techniques to the display of bivariate functions is explored.

  17. Graphics: A Catalyst to Institutional Identity

    ERIC Educational Resources Information Center

    Lahti, Robert E.

    1971-01-01

    Graphic impressions (stationery, publications, bookstore items, displays, campus signage) is one of four communication mechanisms available to a college. Harper College in Illinois offers an example of a uniform graphics approach. A graphics designer has the role of publicizing a college to its community. (CA)

  18. An Investigation of Interval Management Displays

    NASA Technical Reports Server (NTRS)

    Swieringa, Kurt A.; Wilson, Sara R.; Shay, Rick

    2015-01-01

    NASA's first Air Traffic Management (ATM) Technology Demonstration (ATD-1) was created to transition the most mature ATM technologies from the laboratory to the National Airspace System. One selected technology is Interval Management (IM), which uses onboard aircraft automation to compute speeds that help the flight crew achieve and maintain precise spacing behind a preceding aircraft. Since ATD-1 focuses on a near-term environment, the ATD-1 flight demonstration prototype requires radio voice communication to issue an IM clearance. Retrofit IM displays will enable pilots to both enter information into the IM avionics and monitor IM operation. These displays could consist of an interface to enter data from an IM clearance and also an auxiliary display that presents critical information in the primary field-of-view. A human-in-the-loop experiment was conducted to examine usability and acceptability of retrofit IM displays, which flight crews found acceptable. Results also indicate the need for salient alerting when new speeds are generated and the desire to have a primary field of view display available that can display text and graphic trend indicators.

  19. WORM - WINDOWED OBSERVATION OF RELATIVE MOTION

    NASA Technical Reports Server (NTRS)

    Bauer, F.

    1994-01-01

    The Windowed Observation of Relative Motion, WORM, program is primarily intended for the generation of simple X-Y plots from data created by other programs. It allows the user to label, zoom, and change the scale of various plots. Three dimensional contour and line plots are provided, although with more limited capabilities. The input data can be in binary or ASCII format, although all data must be in the same format. A great deal of control over the details of the plot is provided, such as gridding, size of tick marks, colors, log/semilog capability, time tagging, and multiple and phase plane plots. Many color and monochrome graphics terminals and hard copy printer/plotters are supported. The WORM executive commands, menu selections and macro files can be used to develop plots and tabular data, query the WORM Help library, retrieve data from input files, and invoke VAX DCL commands. WORM generated plots are displayed on local graphics terminals and can be copied using standard hard copy capabilities. Some of the graphics features of WORM include: zooming and dezooming various portions of the plot; plot documentation including curve labeling and function listing; multiple curves on the same plot; windowing of multiple plots and insets of the same plot; displaying a specific on a curve; and spinning the curve left, right, up, and down. WORM is written in PASCAL for interactive execution and has been implemented on a DEC VAX computer operating under VMS 4.7 with a virtual memory requirement of approximately 392K of 8 bit bytes. It uses the QPLOT device independent graphics library included with WORM. It was developed in 1988.

  20. Real-time processing for full-range Fourier-domain optical-coherence tomography with zero-filling interpolation using multiple graphic processing units.

    PubMed

    Watanabe, Yuuki; Maeno, Seiya; Aoshima, Kenji; Hasegawa, Haruyuki; Koseki, Hitoshi

    2010-09-01

    The real-time display of full-range, 2048?axial pixelx1024?lateral pixel, Fourier-domain optical-coherence tomography (FD-OCT) images is demonstrated. The required speed was achieved by using dual graphic processing units (GPUs) with many stream processors to realize highly parallel processing. We used a zero-filling technique, including a forward Fourier transform, a zero padding to increase the axial data-array size to 8192, an inverse-Fourier transform back to the spectral domain, a linear interpolation from wavelength to wavenumber, a lateral Hilbert transform to obtain the complex spectrum, a Fourier transform to obtain the axial profiles, and a log scaling. The data-transfer time of the frame grabber was 15.73?ms, and the processing time, which includes the data transfer between the GPU memory and the host computer, was 14.75?ms, for a total time shorter than the 36.70?ms frame-interval time using a line-scan CCD camera operated at 27.9?kHz. That is, our OCT system achieved a processed-image display rate of 27.23 frames/s.

  1. Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit.

    PubMed

    Lee, Kenneth K C; Mariampillai, Adrian; Yu, Joe X Z; Cadotte, David W; Wilson, Brian C; Standish, Beau A; Yang, Victor X D

    2012-07-01

    Advances in swept source laser technology continues to increase the imaging speed of swept-source optical coherence tomography (SS-OCT) systems. These fast imaging speeds are ideal for microvascular detection schemes, such as speckle variance (SV), where interframe motion can cause severe imaging artifacts and loss of vascular contrast. However, full utilization of the laser scan speed has been hindered by the computationally intensive signal processing required by SS-OCT and SV calculations. Using a commercial graphics processing unit that has been optimized for parallel data processing, we report a complete high-speed SS-OCT platform capable of real-time data acquisition, processing, display, and saving at 108,000 lines per second. Subpixel image registration of structural images was performed in real-time prior to SV calculations in order to reduce decorrelation from stationary structures induced by the bulk tissue motion. The viability of the system was successfully demonstrated in a high bulk tissue motion scenario of human fingernail root imaging where SV images (512 × 512 pixels, n = 4) were displayed at 54 frames per second.

  2. Sequence Similarity Presenter: a tool for the graphic display of similarities of long sequences for use in presentations.

    PubMed

    Fröhlich, K U

    1994-04-01

    A new method for the presentation of alignments of long sequences is described. The degree of identity for the aligned sequences is averaged for sections of a fixed number of residues. The resulting values are converted to shades of gray, with white corresponding to lack of identity and black corresponding to perfect identity. A sequence alignment is represented as a bar filled with varying shades of gray. The display is compact and allows for a fast and intuitive recognition of the distribution of regions with a high similarity. It is well suited for the presentation of alignments of long sequences, e.g. of protein superfamilies, in plenary lectures. The method is implemented as a HyperCard stack for Apple Macintosh computers. Several options for the modification of the output are available (e.g. background reduction, size of the summation window, consideration of amino acid similarity, inclusion of graphic markers to indicate specific domains). The output is a PostScript file which can be printed, imported as EPS or processed further with Adobe Illustrator.

  3. Automated system function allocation and display format: Task information processing requirements

    NASA Technical Reports Server (NTRS)

    Czerwinski, Mary P.

    1993-01-01

    An important consideration when designing the interface to an intelligent system concerns function allocation between the system and the user. The display of information could be held constant, or 'fixed', leaving the user with the task of searching through all of the available information, integrating it, and classifying the data into a known system state. On the other hand, the system, based on its own intelligent diagnosis, could display only relevant information in order to reduce the user's search set. The user would still be left the task of perceiving and integrating the data and classifying it into the appropriate system state. Finally, the system could display the patterns of data. In this scenario, the task of integrating the data is carried out by the system, and the user's information processing load is reduced, leaving only the tasks of perception and classification of the patterns of data. Humans are especially adept at this form of display processing. Although others have examined the relative effectiveness of alphanumeric and graphical display formats, it is interesting to reexamine this issue together with the function allocation problem. Currently, Johnson Space Center is the test site for an intelligent Thermal Control System (TCS), TEXSYS, being tested for use with Space Station Freedom. Expert TCS engineers, as well as novices, were asked to classify several displays of TEXSYS data into various system states (including nominal and anomalous states). Three different display formats were used: fixed, subset, and graphical. The hypothesis tested was that the graphical displays would provide for fewer errors and faster classification times by both experts and novices, regardless of the kind of system state represented within the display. The subset displays were hypothesized to be the second most effective display format/function allocation condition, based on the fact that the search set is reduced in these displays. Both the subset and the graphic display conditions were hypothesized to be processed more efficiently than the fixed display conditions.

  4. Advanced Spacesuit Informatics Software Design for Power, Avionics and Software Version 2.0

    NASA Technical Reports Server (NTRS)

    Wright, Theodore W.

    2016-01-01

    A description of the software design for the 2016 edition of the Informatics computer assembly of the NASAs Advanced Extravehicular Mobility Unit (AEMU), also called the Advanced Spacesuit. The Informatics system is an optional part of the spacesuit assembly. It adds a graphical interface for displaying suit status, timelines, procedures, and warning information. It also provides an interface to the suit mounted camera for recording still images, video, and audio field notes.

  5. Topographic Information Requirements and Computer-Graphic Display Techniques for Nap-of-the-Earth Flight.

    DTIC Science & Technology

    1979-12-01

    required of the Army aviator. The successful accomplishment of many of these activities depends upon the aviator’s ability to extract information from maps...Cruise NOE VBI Determine Position VB2 Crew Coordination (Topographic) VB3 Radio Communication VI . TERM4INATION C. Post-Flight VIC1 Debriefing 11LA 1I...NOE FUNCTION: VBI DETERMINE POSITION INFORMATION REQUIREMENT SPECIFICS SOURCE COMMENTS See Function IIIAl ! FUNCTION: VB2 CREW COORDINATION

  6. Natural Resource Information System. Volume 1: Overall description

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A prototype computer-based Natural Resource Information System was designed which could store, process, and display data of maximum usefulness to land management decision making. The system includes graphic input and display, the use of remote sensing as a data source, and it is useful at multiple management levels. A survey established current decision making processes and functions, information requirements, and data collection and processing procedures. The applications of remote sensing data and processing requirements were established. Processing software was constructed and a data base established using high-altitude imagery and map coverage of selected areas of SE Arizona. Finally a demonstration of system processing functions was conducted utilizing material from the data base.

  7. A microprocessor-based control system for the Vienna PDS microdensitometer

    NASA Technical Reports Server (NTRS)

    Jenkner, H.; Stoll, M.; Hron, J.

    1984-01-01

    The Motorola Exorset 30 system, based on a Motorola 6809 microprocessor which serves as control processor for the microdensitometer is presented. User communication and instrument control are implemented in this syatem; data transmission to a host computer is provided via standard interfaces. The Vienna PDS system (VIPS) software was developed in BASIC and M6809 assembler. It provides efficient user interaction via function keys and argument input in a menu oriented environment. All parameters can be stored on, and retrieved from, minifloppy disks, making it possible to set up large scanning tasks. Extensive user information includes continuously updated status and coordinate displays, as well as a real time graphic display during scanning.

  8. Algorithmic support for graphic images rotation in avionics

    NASA Astrophysics Data System (ADS)

    Kniga, E. V.; Gurjanov, A. V.; Shukalov, A. V.; Zharinov, I. O.

    2018-05-01

    The avionics device designing has an actual problem of development and research algorithms to rotate the images which are being shown in the on-board display. The image rotation algorithms are a part of program software of avionics devices, which are parts of the on-board computers of the airplanes and helicopters. Images to be rotated have the flight location map fragments. The image rotation in the display system can be done as a part of software or mechanically. The program option is worse than the mechanic one in its rotation speed. The comparison of some test images of rotation several algorithms is shown which are being realized mechanically with the program environment Altera QuartusII.

  9. MIDAS - A microcomputer-based image display and analysis system with full Landsat frame processing capabilities

    NASA Technical Reports Server (NTRS)

    Hofman, L. B.; Erickson, W. K.; Donovan, W. E.

    1984-01-01

    Image Display and Analysis Systems (MIDAS) developed at NASA/Ames for the analysis of Landsat MSS images is described. The MIDAS computer power and memory, graphics, resource-sharing, expansion and upgrade, environment and maintenance, and software/user-interface requirements are outlined; the implementation hardware (including 32-bit microprocessor, 512K error-correcting RAM, 70 or 140-Mbyte formatted disk drive, 512 x 512 x 24 color frame buffer, and local-area-network transceiver) and applications software (ELAS, CIE, and P-EDITOR) are characterized; and implementation problems, performance data, and costs are examined. Planned improvements in MIDAS hardware and design goals and areas of exploration for MIDAS software are discussed.

  10. Accelerating Monte Carlo simulations with an NVIDIA ® graphics processor

    NASA Astrophysics Data System (ADS)

    Martinsen, Paul; Blaschke, Johannes; Künnemeyer, Rainer; Jordan, Robert

    2009-10-01

    Modern graphics cards, commonly used in desktop computers, have evolved beyond a simple interface between processor and display to incorporate sophisticated calculation engines that can be applied to general purpose computing. The Monte Carlo algorithm for modelling photon transport in turbid media has been implemented on an NVIDIA ® 8800 GT graphics card using the CUDA toolkit. The Monte Carlo method relies on following the trajectory of millions of photons through the sample, often taking hours or days to complete. The graphics-processor implementation, processing roughly 110 million scattering events per second, was found to run more than 70 times faster than a similar, single-threaded implementation on a 2.67 GHz desktop computer. Program summaryProgram title: Phoogle-C/Phoogle-G Catalogue identifier: AEEB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 51 264 No. of bytes in distributed program, including test data, etc.: 2 238 805 Distribution format: tar.gz Programming language: C++ Computer: Designed for Intel PCs. Phoogle-G requires a NVIDIA graphics card with support for CUDA 1.1 Operating system: Windows XP Has the code been vectorised or parallelized?: Phoogle-G is written for SIMD architectures RAM: 1 GB Classification: 21.1 External routines: Charles Karney Random number library. Microsoft Foundation Class library. NVIDA CUDA library [1]. Nature of problem: The Monte Carlo technique is an effective algorithm for exploring the propagation of light in turbid media. However, accurate results require tracing the path of many photons within the media. The independence of photons naturally lends the Monte Carlo technique to implementation on parallel architectures. Generally, parallel computing can be expensive, but recent advances in consumer grade graphics cards have opened the possibility of high-performance desktop parallel-computing. Solution method: In this pair of programmes we have implemented the Monte Carlo algorithm described by Prahl et al. [2] for photon transport in infinite scattering media to compare the performance of two readily accessible architectures: a standard desktop PC and a consumer grade graphics card from NVIDIA. Restrictions: The graphics card implementation uses single precision floating point numbers for all calculations. Only photon transport from an isotropic point-source is supported. The graphics-card version has no user interface. The simulation parameters must be set in the source code. The desktop version has a simple user interface; however some properties can only be accessed through an ActiveX client (such as Matlab). Additional comments: The random number library used has a LGPL ( http://www.gnu.org/copyleft/lesser.html) licence. Running time: Runtime can range from minutes to months depending on the number of photons simulated and the optical properties of the medium. References:http://www.nvidia.com/object/cuda_home.html. S. Prahl, M. Keijzer, Sl. Jacques, A. Welch, SPIE Institute Series 5 (1989) 102.

  11. Structural zooming research and development of an interactive computer graphical interface for stress analysis of cracks

    NASA Technical Reports Server (NTRS)

    Gerstle, Walter

    1989-01-01

    Engineering problems sometimes involve the numerical solution of boundary value problems over domains containing geometric feature with widely varying scales. Often, a detailed solution is required at one or more of these features. Small details in large structures may have profound effects upon global performance. Conversely, large-scale conditions may effect local performance. Many man-hours and CPU-hours are currently spent in modeling such problems. With the structural zooming technique, it is now possible to design an integrated program which allows the analyst to interactively focus upon a small region of interest, to modify the local geometry, and then to obtain highly accurate responses in that region which reflect both the properties of the overall structure and the local detail. A boundary integral equation analysis program, called BOAST, was recently developed for the stress analysis of cracks. This program can accurately analyze two-dimensional linear elastic fracture mechanics problems with far less computational effort than existing finite element codes. An interactive computer graphical interface to BOAST was written. The graphical interface would have several requirements: it would be menu-driven, with mouse input; all aspects of input would be entered graphically; the results of a BOAST analysis would be displayed pictorially but also the user would be able to probe interactively to get numerical values of displacement and stress at desired locations within the analysis domain; the entire procedure would be integrated into a single, easy to use package; and it would be written using calls to the graphic package called HOOPS. The program is nearing completion. All of the preprocessing features are working satisfactorily and were debugged. The postprocessing features are under development, and rudimentary postprocessing should be available by the end of the summer. The program was developed and run on a VAX workstation, and must be ported to the SUN workstation. This activity is currently underway.

  12. A New Continent of Ideas

    NASA Technical Reports Server (NTRS)

    1990-01-01

    While a new technology called 'virtual reality' is still at the 'ground floor' level, one of its basic components, 3D computer graphics is already in wide commercial use and expanding. Other components that permit a human operator to 'virtually' explore an artificial environment and to interact with it are being demonstrated routinely at Ames and elsewhere. Virtual reality might be defined as an environment capable of being virtually entered - telepresence, it is called - or interacted with by a human. The Virtual Interface Environment Workstation (VIEW) is a head-mounted stereoscopic display system in which the display may be an artificial computer-generated environment or a real environment relayed from remote video cameras. Operator can 'step into' this environment and interact with it. The DataGlove has a series of fiber optic cables and sensors that detect any movement of the wearer's fingers and transmit the information to a host computer; a computer generated image of the hand will move exactly as the operator is moving his gloved hand. With appropriate software, the operator can use the glove to interact with the computer scene by grasping an object. The DataSuit is a sensor equipped full body garment that greatly increases the sphere of performance for virtual reality simulations.

  13. Deep Space Network (DSN), Network Operations Control Center (NOCC) computer-human interfaces

    NASA Technical Reports Server (NTRS)

    Ellman, Alvin; Carlton, Magdi

    1993-01-01

    The Network Operations Control Center (NOCC) of the DSN is responsible for scheduling the resources of DSN, and monitoring all multi-mission spacecraft tracking activities in real-time. Operations performs this job with computer systems at JPL connected to over 100 computers at Goldstone, Australia and Spain. The old computer system became obsolete, and the first version of the new system was installed in 1991. Significant improvements for the computer-human interfaces became the dominant theme for the replacement project. Major issues required innovating problem solving. Among these issues were: How to present several thousand data elements on displays without overloading the operator? What is the best graphical representation of DSN end-to-end data flow? How to operate the system without memorizing mnemonics of hundreds of operator directives? Which computing environment will meet the competing performance requirements? This paper presents the technical challenges, engineering solutions, and results of the NOCC computer-human interface design.

  14. Real-time dynamic display of registered 4D cardiac MR and ultrasound images using a GPU

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Huang, X.; Eagleson, R.; Guiraudon, G.; Peters, T. M.

    2007-03-01

    In minimally invasive image-guided surgical interventions, different imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), and real-time three-dimensional (3D) ultrasound (US), can provide complementary, multi-spectral image information. Multimodality dynamic image registration is a well-established approach that permits real-time diagnostic information to be enhanced by placing lower-quality real-time images within a high quality anatomical context. For the guidance of cardiac procedures, it would be valuable to register dynamic MRI or CT with intraoperative US. However, in practice, either the high computational cost prohibits such real-time visualization of volumetric multimodal images in a real-world medical environment, or else the resulting image quality is not satisfactory for accurate guidance during the intervention. Modern graphics processing units (GPUs) provide the programmability, parallelism and increased computational precision to begin to address this problem. In this work, we first outline our research on dynamic 3D cardiac MR and US image acquisition, real-time dual-modality registration and US tracking. Then we describe image processing and optimization techniques for 4D (3D + time) cardiac image real-time rendering. We also present our multimodality 4D medical image visualization engine, which directly runs on a GPU in real-time by exploiting the advantages of the graphics hardware. In addition, techniques such as multiple transfer functions for different imaging modalities, dynamic texture binding, advanced texture sampling and multimodality image compositing are employed to facilitate the real-time display and manipulation of the registered dual-modality dynamic 3D MR and US cardiac datasets.

  15. PLOT3D/AMES, DEC VAX VMS VERSION USING DISSPLA (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P. G.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The VAX/VMS/DISSPLA implementation of PLOT3D supports 2-D polygons as well as 2-D and 3-D lines, but does not support graphics features requiring 3-D polygons (shading and hidden line removal, for example). Views can be manipulated using keyboard commands. This version of PLOT3D is potentially able to produce files for a variety of output devices; however, site-specific capabilities will vary depending on the device drivers supplied with the user's DISSPLA library. If ARCGRAPH (ARC-12350) is installed on the user's VAX, the VMS/DISSPLA version of PLOT3D can also be used to create files for use in GAS (Graphics Animation System, ARC-12379), an IRIS program capable of animating and recording images on film. The version 3.6b+ VMS/DISSPLA implementations of PLOT3D (ARC-12777) and PLOT3D/TURB3D (ARC-12781) were developed for use on VAX computers running VMS Version 5.0 and DISSPLA Version 11.0. The standard distribution media for each of these programs is a 9-track, 6250 bpi magnetic tape in DEC VAX BACKUP format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, and Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); (2) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D (ARC-12783, ARC12782); (3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo and GMR3D are trademarks of Hewlett-Packard, Incorporated. UNIX is a registered trademark of AT&T.

  16. PLOT3D/AMES, DEC VAX VMS VERSION USING DISSPLA (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The VAX/VMS/DISSPLA implementation of PLOT3D supports 2-D polygons as well as 2-D and 3-D lines, but does not support graphics features requiring 3-D polygons (shading and hidden line removal, for example). Views can be manipulated using keyboard commands. This version of PLOT3D is potentially able to produce files for a variety of output devices; however, site-specific capabilities will vary depending on the device drivers supplied with the user's DISSPLA library. If ARCGRAPH (ARC-12350) is installed on the user's VAX, the VMS/DISSPLA version of PLOT3D can also be used to create files for use in GAS (Graphics Animation System, ARC-12379), an IRIS program capable of animating and recording images on film. The version 3.6b+ VMS/DISSPLA implementations of PLOT3D (ARC-12777) and PLOT3D/TURB3D (ARC-12781) were developed for use on VAX computers running VMS Version 5.0 and DISSPLA Version 11.0. The standard distribution media for each of these programs is a 9-track, 6250 bpi magnetic tape in DEC VAX BACKUP format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, and Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); (2) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D (ARC-12783, ARC12782); (3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo and GMR3D are trademarks of Hewlett-Packard, Incorporated. UNIX is a registered trademark of AT&T.

  17. AirShow 1.0 CFD Software Users' Guide

    NASA Technical Reports Server (NTRS)

    Mohler, Stanley R., Jr.

    2005-01-01

    AirShow is visualization post-processing software for Computational Fluid Dynamics (CFD). Upon reading binary PLOT3D grid and solution files into AirShow, the engineer can quickly see how hundreds of complex 3-D structured blocks are arranged and numbered. Additionally, chosen grid planes can be displayed and colored according to various aerodynamic flow quantities such as Mach number and pressure. The user may interactively rotate and translate the graphical objects using the mouse. The software source code was written in cross-platform Java, C++, and OpenGL, and runs on Unix, Linux, and Windows. The graphical user interface (GUI) was written using Java Swing. Java also provides multiple synchronized threads. The Java Native Interface (JNI) provides a bridge between the Java code and the C++ code where the PLOT3D files are read, the OpenGL graphics are rendered, and numerical calculations are performed. AirShow is easy to learn and simple to use. The source code is available for free from the NASA Technology Transfer and Partnership Office.

  18. Management and display of four-dimensional environmental data sets using McIDAS

    NASA Technical Reports Server (NTRS)

    Hibbard, William L.; Santek, David; Suomi, Verner E.

    1990-01-01

    Over the past four years, great strides have been made in the areas of data management and display of 4-D meteorological data sets. A survey was conducted of available and planned 4-D meteorological data sources. The data types were evaluated for their impact on the data management and display system. The requirements were analyzed for data base management generated by the 4-D data display system. The suitability of the existing data base management procedures and file structure were evaluated in light of the new requirements. Where needed, new data base management tools and file procedures were designed and implemented. The quality of the basic 4-D data sets was assured. The interpolation and extrapolation techniques of the 4-D data were investigated. The 4-D data from various sources were combined to make a uniform and consistent data set for display purposes. Data display software was designed to create abstract line graphic 3-D displays. Realistic shaded 3-D displays were created. Animation routines for these displays were developed in order to produce a dynamic 4-D presentation. A prototype dynamic color stereo workstation was implemented. A computer functional design specification was produced based on interactive studies and user feedback.

  19. Engineering graphics data entry for space station data base

    NASA Technical Reports Server (NTRS)

    Lacovara, R. C.

    1986-01-01

    The entry of graphical engineering data into the Space Station Data Base was examined. Discussed were: representation of graphics objects; representation of connectivity data; graphics capture hardware; graphics display hardware; site-wide distribution of graphics, and consolidation of tools and hardware. A fundamental assumption was that existing equipment such as IBM based graphics capture software and VAX networked facilities would be exploited. Defensible conclusions reached after study and simulations of use of these systems at the engineering level are: (1) existing IBM based graphics capture software is an adequate and economical means of entry of schematic and block diagram data for present and anticipated electronic systems for Space Station; (2) connectivity data from the aforementioned system may be incorporated into the envisioned Space Station Data Base with modest effort; (3) graphics and connectivity data captured on the IBM based system may be exported to the VAX network in a simple and direct fashion; (4) graphics data may be displayed site-wide on VT-125 terminals and lookalikes; (5) graphics hard-copy may be produced site-wide on various dot-matrix printers; and (6) the system may provide integrated engineering services at both the engineering and engineering management level.

  20. A review of contemporary methods for the presentation of scientific uncertainty.

    PubMed

    Makinson, K A; Hamby, D M; Edwards, J A

    2012-12-01

    Graphic methods for displaying uncertainty are often the most concise and informative way to communicate abstract concepts. Presentation methods currently in use for the display and interpretation of scientific uncertainty are reviewed. Numerous subjective and objective uncertainty display methods are presented, including qualitative assessments, node and arrow diagrams, standard statistical methods, box-and-whisker plots,robustness and opportunity functions, contribution indexes, probability density functions, cumulative distribution functions, and graphical likelihood functions.

  1. Displaying Colors of Specified Chrominance on a Color Graphics Display.

    DTIC Science & Technology

    1982-12-01

    coordinates (such as Commission Internationale de l’Eclairage CIEXYZ coordinates). This report contains the description of a procedure for displaying...colors of known chrominance as specified by CIEXYZ coordinates. The procedure makes use of models of a color graphics system intensity (bits) to lumi...coordinates (e.g., CIELUV -1976 CT contrast equations as described in Robertson, 1977). Thus, the results of most efforts to specify a set of colors to

  2. A new strategic neurosurgical planning tool for brainstem cavernous malformations using interactive computer graphics with multimodal fusion images.

    PubMed

    Kin, Taichi; Nakatomi, Hirofumi; Shojima, Masaaki; Tanaka, Minoru; Ino, Kenji; Mori, Harushi; Kunimatsu, Akira; Oyama, Hiroshi; Saito, Nobuhito

    2012-07-01

    In this study, the authors used preoperative simulation employing 3D computer graphics (interactive computer graphics) to fuse all imaging data for brainstem cavernous malformations. The authors evaluated whether interactive computer graphics or 2D imaging correlated better with the actual operative field, particularly in identifying a developmental venous anomaly (DVA). The study population consisted of 10 patients scheduled for surgical treatment of brainstem cavernous malformations. Data from preoperative imaging (MRI, CT, and 3D rotational angiography) were automatically fused using a normalized mutual information method, and then reconstructed by a hybrid method combining surface rendering and volume rendering methods. With surface rendering, multimodality and multithreshold techniques for 1 tissue were applied. The completed interactive computer graphics were used for simulation of surgical approaches and assumed surgical fields. Preoperative diagnostic rates for a DVA associated with brainstem cavernous malformation were compared between conventional 2D imaging and interactive computer graphics employing receiver operating characteristic (ROC) analysis. The time required for reconstruction of 3D images was 3-6 hours for interactive computer graphics. Observation in interactive mode required approximately 15 minutes. Detailed anatomical information for operative procedures, from the craniotomy to microsurgical operations, could be visualized and simulated three-dimensionally as 1 computer graphic using interactive computer graphics. Virtual surgical views were consistent with actual operative views. This technique was very useful for examining various surgical approaches. Mean (±SEM) area under the ROC curve for rate of DVA diagnosis was significantly better for interactive computer graphics (1.000±0.000) than for 2D imaging (0.766±0.091; p<0.001, Mann-Whitney U-test). The authors report a new method for automatic registration of preoperative imaging data from CT, MRI, and 3D rotational angiography for reconstruction into 1 computer graphic. The diagnostic rate of DVA associated with brainstem cavernous malformation was significantly better using interactive computer graphics than with 2D images. Interactive computer graphics was also useful in helping to plan the surgical access corridor.

  3. Fast algorithm for the rendering of three-dimensional surfaces

    NASA Astrophysics Data System (ADS)

    Pritt, Mark D.

    1994-02-01

    It is often desirable to draw a detailed and realistic representation of surface data on a computer graphics display. One such representation is a 3D shaded surface. Conventional techniques for rendering shaded surfaces are slow, however, and require substantial computational power. Furthermore, many techniques suffer from aliasing effects, which appear as jagged lines and edges. This paper describes an algorithm for the fast rendering of shaded surfaces without aliasing effects. It is much faster than conventional ray tracing and polygon-based rendering techniques and is suitable for interactive use. On an IBM RISC System/6000TM workstation it renders a 1000 X 1000 surface in about 7 seconds.

  4. Depth compensating calculation method of computer-generated holograms using symmetry and similarity of zone plates

    NASA Astrophysics Data System (ADS)

    Wei, Hui; Gong, Guanghong; Li, Ni

    2017-10-01

    Computer-generated hologram (CGH) is a promising 3D display technology while it is challenged by heavy computation load and vast memory requirement. To solve these problems, a depth compensating CGH calculation method based on symmetry and similarity of zone plates is proposed and implemented on graphics processing unit (GPU). An improved LUT method is put forward to compute the distances between object points and hologram pixels in the XY direction. The concept of depth compensating factor is defined and used for calculating the holograms of points with different depth positions instead of layer-based methods. The proposed method is suitable for arbitrary sampling objects with lower memory usage and higher computational efficiency compared to other CGH methods. The effectiveness of the proposed method is validated by numerical and optical experiments.

  5. Internet design preferences of patients with cancer.

    PubMed

    Chernecky, Cynthia; Macklin, Denise; Walter, Jennifer

    2006-07-01

    To describe computer experience and preferences for multimedia design. Prospective, descriptive. Physician office and outpatient cancer centers in an urban area in the southeastern United States. Convenience sample of 22 volunteer patients with cancer from four racial groups. A questionnaire on computer experiences was followed by a hands-on computer session with questions regarding preferences for seven interface items. Data termination occurred when sample size was obtained. Design of Internet education site for patients. Variables include preferences, computer, cancer, multimedia, and education. Eighty-two percent had personal computers, 41% used a computer daily, and 95% believed that computers would be a good avenue for learning about cancer care. Preferences included display colors in blue and green hues; colored buttons; easy-to-read text; graphics with a simple design and large, clear pictures; serif font in dark type; light-colored background; and larger photo size in a rectangle shape. Most popular graphic icons as metaphors were 911 for emergency, picture of skull and crossbones for danger, and a picture of a string on an index finger representing reminder. The simple layout most preferred for appearances was one that included text and pictures, read from left to right, and was symmetrical in its placement of pictures and text on the page. Preferences are necessary to maintain interest and support navigation through computer designs to enhance the translation of knowledge to patients. Development of multimedia based on patient preferences will enhance education, learning, and, ultimately, quality patient care.

  6. Bird's Eye View - A 3-D Situational Awareness Tool for the Space Station

    NASA Technical Reports Server (NTRS)

    Dershowitz, Adam; Chamitoff, Gregory

    2002-01-01

    Even as space-qualified computer hardware lags well behind the latest home computers, the possibility of using high-fidelity interactive 3-D graphics for displaying important on board information has finally arrived, and is being used on board the International Space Station (ISS). With the quantity and complexity of space-flight telemetry, 3-D displays can greatly enhance the ability of users, both onboard and on the ground, to interpret data quickly and accurately. This is particularly true for data related to vehicle attitude, position, configuration, and relation to other objects on the ground or in-orbit Bird's Eye View (BEV) is a 3-D real-time application that provides a high degree of Situational Awareness for the crew. Its purpose is to instantly convey important motion-related parameters to the crew and mission controllers by presenting 3-D simulated camera views of the International Space Station (ISS) in its actual environment Driven by actual telemetry, and running on board, as well as on the ground, the user can visualize the Space Station relative to the Earth, Sun, stars, various reference frames, and selected targets, such as ground-sites or communication satellites. Since the actual ISS configuration (geometry) is also modeled accurately, everything from the alignment of the solar panels to the expected view from a selected window can be visualized accurately. A virtual representation of the Space Station in real time has many useful applications. By selecting different cameras, the crew or mission control can monitor the station's orientation in space, position over the Earth, transition from day to night, direction to the Sun, the view from a particular window, or the motion of the robotic arm. By viewing the vehicle attitude and solar panel orientations relative to the Sun, the power status of the ISS can be easily visualized and understood. Similarly, the thermal impacts of vehicle attitude can be analyzed and visually confirmed. Communication opportunities can be displayed, and line-of-sight blockage due to interference by the vehicle structure (or the Earth) can be seen easily. Additional features in BEV display targets on the ground and in-orbit, including cities, communication sites, landmarks, satellites, and special sites of scientific interest for Earth observation and photography. Any target can be selected and tracked. This gives the user a continual line-of-sight to the target of current interest, and real-time knowledge about its visibility. Similarly, the vehicle ground-track, and an option to show "visibility circles" around displayed ground sites, provide continuous insight regarding current and future visibility to any target BEV was designed with inputs from many disciplines in the flight control and operations community both at NASA and from the International Partners. As such, BEV is setting the standards for interactive 3-D graphics for spacecraft applications. One important contribution of BEV is a generic graphical interface for camera control that can be used for any 3-D applications. This interface has become part of the International Display and Graphics Standards for the 16-nation ISS partnership. Many other standards related to camera properties, and the display of 3-D data, also have been defined by BEV. Future enhancements to BEV will include capabilities related to simulating ahead of the current time. This will give the user tools for analyzing off-nominal and future scenarios, as well as for planning future operations.

  7. Design, testing, and delivery of an interactive graphics display subsystem

    NASA Technical Reports Server (NTRS)

    Holmes, B.

    1973-01-01

    An interactive graphics display system was designed to be used in locating components on a printed circuit card and outputting data concerning their thermal values. The manner in which this was accomplished in terms of both hardware and software is described. An analysis of the accuracy of this approach is also included.

  8. Condensed Representation of Sentences in Graphic Displays of Text Structures.

    ERIC Educational Resources Information Center

    Craven, Timothy C.

    1990-01-01

    Discusses ways in which sentences may be represented in a condensed form in graphic displays of a sentence dependency structure. A prototype of a text structure management system, TEXNET, is described; a quantitative evaluation of automatic abbreviation schemes is presented; full-text compression is discussed; and additional research is suggested.…

  9. Graphical displays for effective reporting of evidence quality tables in research syntheses.

    PubMed

    Mignini, Luciano; Champaneria, Rita; Mishanina, Ekaterina; Khan, Khalid S

    2016-03-09

    When generating guidelines, quality of the evidence is tabulated to capture its several domains, often using the GRADE (Grading of Recommendations Assessment, Development and Evaluation) approach. We developed a graphic display to capture deficiencies, outliers and similarities across comparisons contained in GRADE tables. Based on a systematic literature review capturing the effects of 32 different therapeutic comparisons on dysmenorrhoea, we synthesised evidence quality in tables and graphs. We evaluated time taken to accurately assess evident quality and preference for tables vs. graphs. The plots provided visually striking displays of strengths and weaknesses of the evidence across the spectrum of comparisons on a single page. Equivalent tabulated information spread over 4 pages. Participants preferred and interpreted graphs quicker and more accurately than tables. The graphic approach we developed makes interpreting evidence easier. Large tables are dry and cumbersome to read and assimilate. When guideline statements are accompanied by these plots, they have the scope for improving the credibility of the recommendations made, as the strength of the evidence used can be clearly seen. Further empirical research will establish the place for graphic displays.

  10. NASADIG - NASA DEVICE INDEPENDENT GRAPHICS LIBRARY (AMDAHL VERSION)

    NASA Technical Reports Server (NTRS)

    Rogers, J. E.

    1994-01-01

    The NASA Device Independent Graphics Library, NASADIG, can be used with many computer-based engineering and management applications. The library gives the user the opportunity to translate data into effective graphic displays for presentation. The software offers many features which allow the user flexibility in creating graphics. These include two-dimensional plots, subplot projections in 3D-space, surface contour line plots, and surface contour color-shaded plots. Routines for three-dimensional plotting, wireframe surface plots, surface plots with hidden line removal, and surface contour line plots are provided. Other features include polar and spherical coordinate plotting, world map plotting utilizing either cylindrical equidistant or Lambert equal area projection, plot translation, plot rotation, plot blowup, splines and polynomial interpolation, area blanking control, multiple log/linear axes, legends and text control, curve thickness control, and multiple text fonts (18 regular, 4 bold). NASADIG contains several groups of subroutines. Included are subroutines for plot area and axis definition; text set-up and display; area blanking; line style set-up, interpolation, and plotting; color shading and pattern control; legend, text block, and character control; device initialization; mixed alphabets setting; and other useful functions. The usefulness of many routines is dependent on the prior definition of basic parameters. The program's control structure uses a serial-level construct with each routine restricted for activation at some prescribed level(s) of problem definition. NASADIG provides the following output device drivers: Selanar 100XL, VECTOR Move/Draw ASCII and PostScript files, Tektronix 40xx, 41xx, and 4510 Rasterizer, DEC VT-240 (4014 mode), IBM AT/PC compatible with SmartTerm 240 emulator, HP Lasergrafix Film Recorder, QMS 800/1200, DEC LN03+ Laserprinters, and HP LaserJet (Series III). NASADIG is written in FORTRAN and is available for several platforms. NASADIG 5.7 is available for DEC VAX series computers running VMS 5.0 or later (MSC-21801), Cray X-MP and Y-MP series computers running UNICOS (COS-10049), and Amdahl 5990 mainframe computers running UTS (COS-10050). NASADIG 5.1 is available for UNIX-based operating systems (MSC-22001). The UNIX version has been successfully implemented on Sun4 series computers running SunOS, SGI IRIS computers running IRIX, Hewlett Packard 9000 computers running HP-UX, and Convex computers running Convex OS (MSC-22001). The standard distribution medium for MSC-21801 is a set of two 6250 BPI 9-track magnetic tapes in DEC VAX BACKUP format. It is also available on a set of two TK50 tape cartridges in DEC VAX BACKUP format. The standard distribution medium for COS-10049 and COS-10050 is a 6250 BPI 9-track magnetic tape in UNIX tar format. Other distribution media and formats may be available upon request. The standard distribution medium for MSC-22001 is a .25 inch streaming magnetic tape cartridge (Sun QIC-24) in UNIX tar format. Alternate distribution media and formats are available upon request. With minor modification, the UNIX source code can be ported to other platforms including IBM PC/AT series computers and compatibles. NASADIG is also available bundled with TRASYS, the Thermal Radiation Analysis System (COS-10026, DEC VAX version; COS-10040, CRAY version).

  11. NASADIG - NASA DEVICE INDEPENDENT GRAPHICS LIBRARY (UNIX VERSION)

    NASA Technical Reports Server (NTRS)

    Rogers, J. E.

    1994-01-01

    The NASA Device Independent Graphics Library, NASADIG, can be used with many computer-based engineering and management applications. The library gives the user the opportunity to translate data into effective graphic displays for presentation. The software offers many features which allow the user flexibility in creating graphics. These include two-dimensional plots, subplot projections in 3D-space, surface contour line plots, and surface contour color-shaded plots. Routines for three-dimensional plotting, wireframe surface plots, surface plots with hidden line removal, and surface contour line plots are provided. Other features include polar and spherical coordinate plotting, world map plotting utilizing either cylindrical equidistant or Lambert equal area projection, plot translation, plot rotation, plot blowup, splines and polynomial interpolation, area blanking control, multiple log/linear axes, legends and text control, curve thickness control, and multiple text fonts (18 regular, 4 bold). NASADIG contains several groups of subroutines. Included are subroutines for plot area and axis definition; text set-up and display; area blanking; line style set-up, interpolation, and plotting; color shading and pattern control; legend, text block, and character control; device initialization; mixed alphabets setting; and other useful functions. The usefulness of many routines is dependent on the prior definition of basic parameters. The program's control structure uses a serial-level construct with each routine restricted for activation at some prescribed level(s) of problem definition. NASADIG provides the following output device drivers: Selanar 100XL, VECTOR Move/Draw ASCII and PostScript files, Tektronix 40xx, 41xx, and 4510 Rasterizer, DEC VT-240 (4014 mode), IBM AT/PC compatible with SmartTerm 240 emulator, HP Lasergrafix Film Recorder, QMS 800/1200, DEC LN03+ Laserprinters, and HP LaserJet (Series III). NASADIG is written in FORTRAN and is available for several platforms. NASADIG 5.7 is available for DEC VAX series computers running VMS 5.0 or later (MSC-21801), Cray X-MP and Y-MP series computers running UNICOS (COS-10049), and Amdahl 5990 mainframe computers running UTS (COS-10050). NASADIG 5.1 is available for UNIX-based operating systems (MSC-22001). The UNIX version has been successfully implemented on Sun4 series computers running SunOS, SGI IRIS computers running IRIX, Hewlett Packard 9000 computers running HP-UX, and Convex computers running Convex OS (MSC-22001). The standard distribution medium for MSC-21801 is a set of two 6250 BPI 9-track magnetic tapes in DEC VAX BACKUP format. It is also available on a set of two TK50 tape cartridges in DEC VAX BACKUP format. The standard distribution medium for COS-10049 and COS-10050 is a 6250 BPI 9-track magnetic tape in UNIX tar format. Other distribution media and formats may be available upon request. The standard distribution medium for MSC-22001 is a .25 inch streaming magnetic tape cartridge (Sun QIC-24) in UNIX tar format. Alternate distribution media and formats are available upon request. With minor modification, the UNIX source code can be ported to other platforms including IBM PC/AT series computers and compatibles. NASADIG is also available bundled with TRASYS, the Thermal Radiation Analysis System (COS-10026, DEC VAX version; COS-10040, CRAY version).

  12. Concentrator optical characterization using computer mathematical modelling and point source testing

    NASA Technical Reports Server (NTRS)

    Dennison, E. W.; John, S. L.; Trentelman, G. F.

    1984-01-01

    The optical characteristics of a paraboloidal solar concentrator are analyzed using the intercept factor curve (a format for image data) to describe the results of a mathematical model and to represent reduced data from experimental testing. This procedure makes it possible not only to test an assembled concentrator, but also to evaluate single optical panels or to conduct non-solar tests of an assembled concentrator. The use of three-dimensional ray tracing computer programs to calculate the mathematical model is described. These ray tracing programs can include any type of optical configuration from simple paraboloids to array of spherical facets and can be adapted to microcomputers or larger computers, which can graphically display real-time comparison of calculated and measured data.

  13. Assessment of Effectiveness of Geologic Isolation Systems. Variable thickness transient ground-water flow model. Volume 2. Users' manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reisenauer, A.E.

    1979-12-01

    A system of computer codes to aid in the preparation and evaluation of ground-water model input, as well as in the computer codes and auxillary programs developed and adapted for use in modeling major ground-water aquifers is described. The ground-water model is interactive, rather than a batch-type model. Interactive models have been demonstrated to be superior to batch in the ground-water field. For example, looking through reams of numerical lists can be avoided with the much superior graphical output forms or summary type numerical output. The system of computer codes permits the flexibility to develop rapidly the model-required data filesmore » from engineering data and geologic maps, as well as efficiently manipulating the voluminous data generated. Central to these codes is the Ground-water Model, which given the boundary value problem, produces either the steady-state or transient time plane solutions. A sizeable part of the codes available provide rapid evaluation of the results. Besides contouring the new water potentials, the model allows graphical review of streamlines of flow, travel times, and detailed comparisons of surfaces or points at designated wells. Use of the graphics scopes provide immediate, but temporary displays which can be used for evaluation of input and output and which can be reproduced easily on hard copy devices, such as a line printer, Calcomp plotter and image photographs.« less

  14. LabVIEW Graphical User Interface for a New High Sensitivity, High Resolution Micro-Angio-Fluoroscopic and ROI-CBCT System

    PubMed Central

    Keleshis, C; Ionita, CN; Yadava, G; Patel, V; Bednarek, DR; Hoffmann, KR; Verevkin, A; Rudin, S

    2008-01-01

    A graphical user interface based on LabVIEW software was developed to enable clinical evaluation of a new High-Sensitivity Micro-Angio-Fluoroscopic (HSMAF) system for real-time acquisition, display and rapid frame transfer of high-resolution region-of-interest images. The HSMAF detector consists of a CsI(Tl) phosphor, a light image intensifier (LII), and a fiber-optic taper coupled to a progressive scan, frame-transfer, charged-coupled device (CCD) camera which provides real-time 12 bit, 1k × 1k images capable of greater than 10 lp/mm resolution. Images can be captured in continuous or triggered mode, and the camera can be programmed by a computer using Camera Link serial communication. A graphical user interface was developed to control the camera modes such as gain and pixel binning as well as to acquire, store, display, and process the images. The program, written in LabVIEW, has the following capabilities: camera initialization, synchronized image acquisition with the x-ray pulses, roadmap and digital subtraction angiography acquisition (DSA), flat field correction, brightness and contrast control, last frame hold in fluoroscopy, looped playback of the acquired images in angiography, recursive temporal filtering and LII gain control. Frame rates can be up to 30 fps in full-resolution mode. The user friendly implementation of the interface along with the high framerate acquisition and display for this unique high-resolution detector should provide angiographers and interventionalists with a new capability for visualizing details of small vessels and endovascular devices such as stents and hence enable more accurate diagnoses and image guided interventions. (Support: NIH Grants R01NS43924, R01EB002873) PMID:18836570

  15. LabVIEW Graphical User Interface for a New High Sensitivity, High Resolution Micro-Angio-Fluoroscopic and ROI-CBCT System.

    PubMed

    Keleshis, C; Ionita, Cn; Yadava, G; Patel, V; Bednarek, Dr; Hoffmann, Kr; Verevkin, A; Rudin, S

    2008-01-01

    A graphical user interface based on LabVIEW software was developed to enable clinical evaluation of a new High-Sensitivity Micro-Angio-Fluoroscopic (HSMAF) system for real-time acquisition, display and rapid frame transfer of high-resolution region-of-interest images. The HSMAF detector consists of a CsI(Tl) phosphor, a light image intensifier (LII), and a fiber-optic taper coupled to a progressive scan, frame-transfer, charged-coupled device (CCD) camera which provides real-time 12 bit, 1k × 1k images capable of greater than 10 lp/mm resolution. Images can be captured in continuous or triggered mode, and the camera can be programmed by a computer using Camera Link serial communication. A graphical user interface was developed to control the camera modes such as gain and pixel binning as well as to acquire, store, display, and process the images. The program, written in LabVIEW, has the following capabilities: camera initialization, synchronized image acquisition with the x-ray pulses, roadmap and digital subtraction angiography acquisition (DSA), flat field correction, brightness and contrast control, last frame hold in fluoroscopy, looped playback of the acquired images in angiography, recursive temporal filtering and LII gain control. Frame rates can be up to 30 fps in full-resolution mode. The user friendly implementation of the interface along with the high framerate acquisition and display for this unique high-resolution detector should provide angiographers and interventionalists with a new capability for visualizing details of small vessels and endovascular devices such as stents and hence enable more accurate diagnoses and image guided interventions. (Support: NIH Grants R01NS43924, R01EB002873).

  16. Human sense utilization method on real-time computer graphics

    NASA Astrophysics Data System (ADS)

    Maehara, Hideaki; Ohgashi, Hitoshi; Hirata, Takao

    1997-06-01

    We are developing an adjustment method of real-time computer graphics, to obtain effective ones which give audience various senses intended by producer, utilizing human sensibility technologically. Generally, production of real-time computer graphics needs much adjustment of various parameters, such as 3D object models/their motions/attributes/view angle/parallax etc., in order that the graphics gives audience superior effects as reality of materials, sense of experience and so on. And it is also known it costs much to adjust such various parameters by trial and error. A graphics producer often evaluates his graphics to improve it. For example, it may lack 'sense of speed' or be necessary to be given more 'sense of settle down,' to improve it. On the other hand, we can know how the parameters in computer graphics affect such senses by means of statistically analyzing several samples of computer graphics which provide different senses. We paid attention to these two facts, so that we designed an adjustment method of the parameters by inputting phases of sense into a computer. By the way of using this method, it becomes possible to adjust real-time computer graphics more effectively than by conventional way of trial and error.

  17. The impact of numeric and graphic displays of ST-segment deviation levels on cardiologists' decisions of reperfusion therapy for patients with acute coronary occlusion.

    PubMed

    Nimmermark, Magnus O; Wang, John J; Maynard, Charles; Cohen, Mauricio; Gilcrist, Ian; Heitner, John; Hudson, Michael; Palmeri, Sebastian; Wagner, Galen S; Pahlm, Olle

    2011-01-01

    The study purpose is to determine whether numeric and/or graphic ST measurements added to the display of the 12-lead electrocardiogram (ECG) would influence cardiologists' decision to provide myocardial reperfusion therapy. Twenty ECGs with borderline ST-segment deviation during elective percutaneous coronary intervention and 10 controls before balloon inflation were included. Only 5 of the 20 ECGs during coronary balloon occlusion met the 2007 American Heart Association guidelines for ST-elevation myocardial infarction (STEMI). Fifteen cardiologists read 4 sets of these ECGs as the basis for a "yes/no" reperfusion therapy decision. Sets 1 and 4 were the same 12-lead ECGs alone. Set 2 also included numeric ST-segment measurements, and set 3 included both numeric and graphically displayed ST measurements ("ST Maps"). The mean (range) positive reperfusion decisions were 10.6 (2-15), 11.4 (1-19), 9.7 (2-14), and 10.7 (1-15) for sets 1 to 4, respectively. The accuracies of the observers for the 5 STEMI ECGs were 67%, 69%, and 77% for the standard format, the ST numeric format, and the ST graphic format, respectively. The improved detection rate (77% vs 67%) with addition of both numeric and graphic displays did achieve statistical significance (P < .025). The corresponding specificities for the 10 control ECGs were 85%, 79%, and 89%, respectively. In conclusion, a wide variation of reperfusion decisions was observed among clinical cardiologists, and their decisions were not altered by adding ST deviation measurements in numeric and/or graphic displays. Acute coronary occlusion detection rate was low for ECGs meeting STEMI criteria, and this was improved by adding ST-segment measurements in numeric and graphic forms. These results merit further study of the clinical value of this technique for improved acute coronary occlusion treatment decision support. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Development of an Adaptable Display and Diagnostic System for the Evaluation of Tropical Cyclone Forecasts

    NASA Astrophysics Data System (ADS)

    Kucera, P. A.; Burek, T.; Halley-Gotway, J.

    2015-12-01

    NCAR's Joint Numerical Testbed Program (JNTP) focuses on the evaluation of experimental forecasts of tropical cyclones (TCs) with the goal of developing new research tools and diagnostic evaluation methods that can be transitioned to operations. Recent activities include the development of new TC forecast verification methods and the development of an adaptable TC display and diagnostic system. The next generation display and diagnostic system is being developed to support evaluation needs of the U.S. National Hurricane Center (NHC) and broader TC research community. The new hurricane display and diagnostic capabilities allow forecasters and research scientists to more deeply examine the performance of operational and experimental models. The system is built upon modern and flexible technology that includes OpenLayers Mapping tools that are platform independent. The forecast track and intensity along with associated observed track information are stored in an efficient MySQL database. The system provides easy-to-use interactive display system, and provides diagnostic tools to examine forecast track stratified by intensity. Consensus forecasts can be computed and displayed interactively. The system is designed to display information for both real-time and for historical TC cyclones. The display configurations are easily adaptable to meet the needs of the end-user preferences. Ongoing enhancements include improving capabilities for stratification and evaluation of historical best tracks, development and implementation of additional methods to stratify and compute consensus hurricane track and intensity forecasts, and improved graphical display tools. The display is also being enhanced to incorporate gridded forecast, satellite, and sea surface temperature fields. The presentation will provide an overview of the display and diagnostic system development and demonstration of the current capabilities.

  19. Design of an interactive accounting tutor. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Macko, J.

    1970-01-01

    A project to design an interactive program to teach accounting techniques is described. The four major goals of the project are discussed and a review of the literature on teaching machines and computer-assisted-instruction is included. The system is implemented on the CTSS time sharing system at M.I.T. and uses an ARDS graphic display. The software design of the system is described in detail. A typical session with the tutor is also described. Appendices include complete system documentation.

  20. An Interactive System For Fourier Analysis Of Artichoke Flower Shape.

    NASA Astrophysics Data System (ADS)

    Impedovo, Sebastiano; Fanelli, Anna M.; Ligouras, Panagiotis

    1984-06-01

    In this paper we present an interactive system which allows the Fourier analysis of the artichoke flower-head profile. The system consistsof a DEC pdp 11/34 computer with both a a track-following device and a Tektronix 4010/1 graphic and alpha numeric display on-line. Some experiments have been carried out taking into account some different parental types of artichoke flower-head samples. It is shown here that a narrow band of only eight harmonics is sufficient to classify different artichoke flower shapes.

Top