Science.gov

Sample records for computer generated forces

  1. Interactive Augmentation of Computer Generated Force Behavior Based on Cooperative and Reinforcement Learning. Phase 1.

    DTIC Science & Technology

    1995-09-01

    produced a design methodology for augmenting computer generated force behavior with the NeurRule Technology concepts of cooperative and reinforcement ... learning . The Phase I results indicate that (1) Intelligent CGFs can improve task performance through on-line learning, utilizing information from

  2. Implementation of a Tactical Mission Planner for Command and Control of Computer Generated Forces in ModSAF.

    DTIC Science & Technology

    1994-09-01

    architecture is based on the Rational Behavior Model, which was constructed by Byrnes, et al. as a means of mission planning and control for autonomous ... robots . Extending this concept to address the problems of mission planning for computer generated forces allows the human greater flexibility and

  3. Evolving tactics using levels of intelligence in computer-generated forces

    NASA Astrophysics Data System (ADS)

    Porto, Vincent W.; Hardt, Michael; Fogel, David B.; Kreutz-Delgado, Kenneth; Fogel, Lawrence J.

    1999-06-01

    Simulated evolution on a computer can provide a means for generating appropriate tactics in real-time combat scenarios. Individual unit or higher-level organizations, such as tanks and platoons, can use evolutionary computation to adapt to the current and projected situations. We briefly review current knowledge in evolutionary algorithms and offer an example of applying these techniques to generate adaptive behavior in a platoon-level engagement of tanks where the mission of one platoon is changed on-the-fly. We also study the effects of increasing the intelligence of one side in a one-on-one tank engagement. The results indicate that measured performance increases with increased intelligence; however, this does not always come at the expense of the opposing side.

  4. A Real-time Strategy Agent Framework and Strategy Classifier for Computer Generated Forces

    DTIC Science & Technology

    2012-06-01

    develop branch) — Github ”, 2011. URL https://github.com/spring/spring. [Computer Program Source Code ; Online; accessed 24-Oct-2011]. [44] The Spring...masters, also created a hand- coded opening book with 4,000 positions and 700,000 grand master games in addition to an endgame database of moves fine...commercial and open source video games often apply simple, computationally-efficient AI approaches such as scripted behavior triggered by if-then-else

  5. The fifth generation computer

    SciTech Connect

    Moto-Oka, T.; Kitsuregawa, M.

    1985-01-01

    The leader of Japan's Fifth Generation computer project, known as the 'Apollo' project, and a young computer scientist elucidate in this book the process of how the idea came about, international reactions, the basic technology, prospects for realization, and the abilities of the Fifth Generation computer. Topics considered included forecasting, research programs, planning, and technology impacts.

  6. A polygonal method for haptic force generation

    SciTech Connect

    Anderson, T. |

    1996-12-31

    Algorithms for computing forces and associated surface deformations (graphical and physical) are given, which, together with a force feedback device can be used to haptically display virtual objects. The Bendable Polygon algorithm, created at Sandia National Labs and the University of New Mexico, for visual rendering of computer generated surfaces is also presented. An implementation using the EIGEN virtual reality environment, and the PHANToM (Trademark) haptic interface, is reported together with suggestions for future research.

  7. Fifth generation computers

    NASA Astrophysics Data System (ADS)

    Treleaven, Philip C.; Lima, Isabel Gouveia

    1982-06-01

    Fifth generation computers are analogous to LEGO building blocks, with each block corresponding to a microcomputer and a group of blocks working together as a computer system. These computers will represent a unification of currently separate areas of research into parallel processing and into VLSI processors. Parallel processing based on data driven and demand driven computer organisations are under investigation in well over thirty laboratories in the United States, Japan and Europe. Basically, in data driven (e.g. data flow) computers the availability of operands triggers the execution of the operation to be performed on them; whereas in demand driven (e.g. reduction) computers the requirement for a result triggers the operation that will generate the value. VLSI processors exploit very large scale integration and the new simplified chip design methodology pioneered in US universities by Mead and Conway, allowing users to design their own chips. These novel VLSI processors are implementable by simple replicated cells and use extensive pipelining and multiprocessing to achieve a high performance. Examples range from a powerful image processing device configured from identical special-purpose chips, to a large parallel computer built from replicated general-purpose microcomputers. This paper outlines these topics contributing to fifth generation computers, and speculates on their effect on computing.

  8. Force Generation by Flapping Foils

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, P. R.; Donnelly, M.

    1996-11-01

    Aquatic animals like fish use flapping caudal fins to produce axial and cross-stream forces. During WW2, German scientists had built and tested an underwater vehicle powered by similar flapping foils. We have examined the forces produced by a pair of flapping foils. We have examined the forced produced by a pair of flapping foils attached to the tail end of a small axisymmetric cylinder. The foils operate in-phase (called waving), or in anti-phase (called clapping). In a low-speed water tunnel, we have undertaken time-dependent measurements of axial and cross-stream forces and moments that are exerted by the vortex shedding process over the entire body. Phase-matched LDV measurements of vorticity-velocity vectors, as well as limited flow visualization of the periodic vortex shedding process have also been carried out. The direction of the induced velocity within a pair of shed vortices determines the nature of the forces produced, viz., thrust or drag or cross-stream forces. The clapping mode produces a widely dispersed symmetric array of vortices which results in axial forces only (thrust and rag). On the other hand, the vortex array is staggered in the waving mode and cross-stream (maneuvering) forces are then generated.

  9. Age and Individual Differences in Controlled Force Exertion Measured by a Computer-Generated Sinusoidal and Quasi-Random Display

    ERIC Educational Resources Information Center

    Nagasawa, Yoshinori; Demura, Shinichi

    2010-01-01

    This study examined age group and individual differences in controlled force exertion by emulating sinusoidal and quasi-random waveforms in 222 right-handed female adults aged 20 to 86 years. The subjects matched their submaximal grip strength by the dominant hand to changing demand values displayed as either a sinusoidal or a quasi-random…

  10. The vector of jaw muscle force as determined by computer-generated three dimensional simulation: a test of Greaves' model.

    PubMed

    Clausen, Philip; Wroe, Stephen; McHenry, Colin; Moreno, Karen; Bourke, Jason

    2008-11-14

    We present results from a detailed three-dimensional finite element analysis of the cranium and mandible of the Australian dingo (Canis lupus dingo) during a range of feeding activities and compare results with predictions based on two-dimensional methodology [Greaves, W.S., 2000. Location of the vector of jaw muscle force in mammals. Journal of Morphology 243, 293-299]. Greaves showed that the resultant muscle vector intersects the mandible line slightly posterior to the lower third molar (m3). Our work demonstrates that this is qualitatively correct, although the actual point is closer to the jaw joint. We show that it is theoretically possible for the biting side of the mandible to dislocate during unilateral biting; however, the bite point needs to be posterior to m3. Simulations show that reduced muscle activation on the non-biting side can considerably diminish the likelihood of dislocation with only a minor decrease in bite force during unilateral biting. By modulating muscle recruitment the animal may be able to maximise bite force whilst minimising the risk of dislocation.

  11. Computer generated holographic microtags

    DOEpatents

    Sweatt, William C.

    1998-01-01

    A microlithographic tag comprising an array of individual computer generated holographic patches having feature sizes between 250 and 75 nanometers. The tag is a composite hologram made up of the individual holographic patches and contains identifying information when read out with a laser of the proper wavelength and at the proper angles of probing and reading. The patches are fabricated in a steep angle Littrow readout geometry to maximize returns in the -1 diffracted order. The tags are useful as anti-counterfeiting markers because of the extreme difficulty in reproducing them.

  12. Computer generated holographic microtags

    DOEpatents

    Sweatt, W.C.

    1998-03-17

    A microlithographic tag comprising an array of individual computer generated holographic patches having feature sizes between 250 and 75 nanometers is disclosed. The tag is a composite hologram made up of the individual holographic patches and contains identifying information when read out with a laser of the proper wavelength and at the proper angles of probing and reading. The patches are fabricated in a steep angle Littrow readout geometry to maximize returns in the -1 diffracted order. The tags are useful as anti-counterfeiting markers because of the extreme difficulty in reproducing them. 5 figs.

  13. Shuttle computational grid generation

    NASA Technical Reports Server (NTRS)

    Ing, Chang

    1987-01-01

    The well known Karman-Trefftz conformal transformation, consisting of repeated applications of the same basic formula, were found to be quite successful to body, wing, and wing-body cross sections. This grid generation technique is extended to cross sections of more complex forms, and also more automatic. Computer programs were written for the selection of hinge points on cross section with angular shapes, the Karman-Trefftz tranformation of arbitrary shapes, and the special transform of hinge point on the imaginary axis. A feasibility study is performed for the future application of conformal mapping grid generation to complex three dimensional configurations. Examples such as Orbiter vehicle section and a few others were used.

  14. Finite difference computation of Casimir forces

    NASA Astrophysics Data System (ADS)

    Pinto, Fabrizio

    2016-09-01

    In this Invited paper, we begin by a historical introduction to provide a motivation for the classical problems of interatomic force computation and associated challenges. This analysis will lead us from early theoretical and experimental accomplishments to the integration of these fascinating interactions into the operation of realistic, next-generation micro- and nanodevices both for the advanced metrology of fundamental physical processes and in breakthrough industrial applications. Among several powerful strategies enabling vastly enhanced performance and entirely novel technological capabilities, we shall specifically consider Casimir force time-modulation and the adoption of non-trivial geometries. As to the former, the ability to alter the magnitude and sign of the Casimir force will be recognized as a crucial principle to implement thermodynamical nano-engines. As to the latter, we shall first briefly review various reported computational approaches. We shall then discuss the game-changing discovery, in the last decade, that standard methods of numerical classical electromagnetism can be retooled to formulate the problem of Casimir force computation in arbitrary geometries. This remarkable development will be practically illustrated by showing that such an apparently elementary method as standard finite-differencing can be successfully employed to numerically recover results known from the Lifshitz theory of dispersion forces in the case of interacting parallel-plane slabs. Other geometries will be also be explored and consideration given to the potential of non-standard finite-difference methods. Finally, we shall introduce problems at the computational frontier, such as those including membranes deformed by Casimir forces and the effects of anisotropic materials. Conclusions will highlight the dramatic transition from the enduring perception of this field as an exotic application of quantum electrodynamics to the recent demonstration of a human climbing

  15. Augmented Computer Mouse Would Measure Applied Force

    NASA Technical Reports Server (NTRS)

    Li, Larry C. H.

    1993-01-01

    Proposed computer mouse measures force of contact applied by user. Adds another dimension to two-dimensional-position-measuring capability of conventional computer mouse; force measurement designated to represent any desired continuously variable function of time and position, such as control force, acceleration, velocity, or position along axis perpendicular to computer video display. Proposed mouse enhances sense of realism and intuition in interaction between operator and computer. Useful in such applications as three-dimensional computer graphics, computer games, and mathematical modeling of dynamics.

  16. Overestimation of force during matching of externally generated forces.

    PubMed

    Walsh, Lee D; Taylor, Janet L; Gandevia, Simon C

    2011-02-01

    If a weight is applied to a finger and the subject asked to produce the same force, the subject generates a force larger than the weight. That is, subjects overestimate the force applied by an external target when matching it. Details of this force overestimation are not well understood. We show that subjects overestimate small target weights, but not larger ones. Furthermore we show for the first time that the force overestimation consists of two components. The first component is a constant. The second component depends on the precise magnitude of the weight and is only present when subjects hold the target weight against gravity. We suggest that the two components are generated in different phases of the force-matching task, are due to different processes, and must have an influence on all proprioceptive judgements of force.

  17. Proceedings of the Conference on Computer Generated Forces and Behavioral Representation (5th), Held in Orlando, Florida, on 9-11 May 1995

    DTIC Science & Technology

    1995-05-01

    Paul E. Nielsen, Michael van Lent, Robert E. Wray, in Artificial Intelligence Lab, University of Michigan Ann Arbor, Michigan W. Lewis Johnson...VA Session 4a: Command & Control Modeling I * An Automated CBS OPFOR 149 Ian Page Defence Research Agency Kent, England Gary Kendall Logica ...simulation, graph theory, and computational geometry. 25 Simulated Intelligent Forces For Air: The Soar/IFOR Project 1995 John E. Laird,1 W. Lewis

  18. Shear flow instability generated by non-homogeneous external forcing

    NASA Technical Reports Server (NTRS)

    Durbin, P. A.

    1987-01-01

    An experiment has been designed and conducted in order to ascertain whether instability waves can be generated by nonhomogeneous forcing, using a biconvex vane located outside the mixing layer whose oscillation was induced by an electromagnetic shaker through a linkage. The vane was oscillated at 20 Hz, and the resulting spectra were computed by a spectrum analyzer. The data are judged to provide an example of instability waves generated solely through nonhomogeneous forcing.

  19. T cell activation requires force generation

    PubMed Central

    Hu, Kenneth H.

    2016-01-01

    Triggering of the T cell receptor (TCR) integrates both binding kinetics and mechanical forces. To understand the contribution of the T cell cytoskeleton to these forces, we triggered T cells using a novel application of atomic force microscopy (AFM). We presented antigenic stimulation using the AFM cantilever while simultaneously imaging with optical microscopy and measuring forces on the cantilever. T cells respond forcefully to antigen after calcium flux. All forces and calcium responses were abrogated upon treatment with an F-actin inhibitor. When we emulated the forces of the T cell using the AFM cantilever, even these actin-inhibited T cells became activated. Purely mechanical stimulation was not sufficient; the exogenous forces had to couple through the TCR. These studies suggest a mechanical–chemical feedback loop in which TCR-triggered T cells generate forceful contacts with antigen-presenting cells to improve access to antigen. PMID:27241914

  20. An Improved Computational Technique for Calculating Electromagnetic Forces and Power Absorptions Generated in Spherical and Deformed Body in Levitation Melting Devices

    NASA Technical Reports Server (NTRS)

    Zong, Jin-Ho; Szekely, Julian; Schwartz, Elliot

    1992-01-01

    An improved computational technique for calculating the electromagnetic force field, the power absorption and the deformation of an electromagnetically levitated metal sample is described. The technique is based on the volume integral method, but represents a substantial refinement; the coordinate transformation employed allows the efficient treatment of a broad class of rotationally symmetrical bodies. Computed results are presented to represent the behavior of levitation melted metal samples in a multi-coil, multi-frequency levitation unit to be used in microgravity experiments. The theoretical predictions are compared with both analytical solutions and with the results or previous computational efforts for the spherical samples and the agreement has been very good. The treatment of problems involving deformed surfaces and actually predicting the deformed shape of the specimens breaks new ground and should be the major usefulness of the proposed method.

  1. Computational Modeling of Vortex Generators for Turbomachinery

    NASA Technical Reports Server (NTRS)

    Chima, R. V.

    2002-01-01

    In this work computational models were developed and used to investigate applications of vortex generators (VGs) to turbomachinery. The work was aimed at increasing the efficiency of compressor components designed for the NASA Ultra Efficient Engine Technology (UEET) program. Initial calculations were used to investigate the physical behavior of VGs. A parametric study of the effects of VG height was done using 3-D calculations of isolated VGs. A body force model was developed to simulate the effects of VGs without requiring complicated grids. The model was calibrated using 2-D calculations of the VG vanes and was validated using the 3-D results. Then three applications of VGs to a compressor rotor and stator were investigated: 1) The results of the 3-D calculations were used to simulate the use of small casing VGs used to generate rotor preswirl or counterswirl. Computed performance maps were used to evaluate the effects of VGs. 2) The body force model was used to simulate large part-span splitters on the casing ahead of the stator. Computed loss buckets showed the effects of the VGs. 3) The body force model was also used to investigate the use of tiny VGs on the stator suction surface for controlling secondary flows. Near-surface particle traces and exit loss profiles were used to evaluate the effects of the VGs.

  2. 48 CFR 53.105 - Computer generation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Computer generation. 53...) CLAUSES AND FORMS FORMS General 53.105 Computer generation. (a) Agencies may computer-generate the... be computer generated by the public. Unless prohibited by agency regulations, forms prescribed...

  3. 48 CFR 53.105 - Computer generation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 2 2011-10-01 2011-10-01 false Computer generation. 53...) CLAUSES AND FORMS FORMS General 53.105 Computer generation. (a) Agencies may computer-generate the... be computer generated by the public. Unless prohibited by agency regulations, forms prescribed...

  4. Computer-Generated Feedback on Student Writing

    ERIC Educational Resources Information Center

    Ware, Paige

    2011-01-01

    A distinction must be made between "computer-generated scoring" and "computer-generated feedback". Computer-generated scoring refers to the provision of automated scores derived from mathematical models built on organizational, syntactic, and mechanical aspects of writing. In contrast, computer-generated feedback, the focus of this article, refers…

  5. Minimizing forced outage risk in generator bidding

    NASA Astrophysics Data System (ADS)

    Das, Dibyendu

    Competition in power markets has exposed the participating companies to physical and financial uncertainties. Generator companies bid to supply power in a day-ahead market. Once their bids are accepted by the ISO they are bound to supply power. A random outage after acceptance of bids forces a generator to buy power from the expensive real-time hourly spot market and sell to the ISO at the set day-ahead market clearing price, incurring losses. A risk management technique is developed to assess this financial risk associated with forced outages of generators and then minimize it. This work presents a risk assessment module which measures the financial risk of generators bidding in an open market for different bidding scenarios. The day-ahead power market auction is modeled using a Unit Commitment algorithm and a combination of Normal and Cauchy distributions generate the real time hourly spot market. Risk profiles are derived and VaRs are calculated at 98 percent confidence level as a measure of financial risk. Risk Profiles and VaRs help the generators to analyze the forced outage risk and different factors affecting it. The VaRs and the estimated total earning for different bidding scenarios are used to develop a risk minimization module. This module will develop a bidding strategy of the generator company such that its estimated total earning is maximized keeping the VaR below a tolerable limit. This general framework of a risk management technique for the generating companies bidding in competitive day-ahead market can also help them in decisions related to building new generators.

  6. Do centrioles generate a polar ejection force?

    PubMed

    Wells, Jonathan

    2005-01-01

    A microtubule-dependent polar ejection force that pushes chromosomes away from spindle poles during prometaphase is observed in animal cells but not in the cells of higher plants. Elongating microtubules and kinesin-like motor molecules have been proposed as possible causes, but neither accounts for all the data. In the hypothesis proposed here a polar ejection force is generated by centrioles, which are found in animals but not in higher plants. Centrioles consist of nine microtubule triplets arranged like the blades of a tiny turbine. Instead of viewing centrioles through the spectacles of molecular reductionism and neo-Darwinism, this hypothesis assumes that they are holistically designed to be turbines. Orthogonally oriented centriolar turbines could generate oscillations in spindle microtubules that resemble the motion produced by a laboratory vortexer. The result would be a microtubule-mediated ejection force tending to move chromosomes away from the spindle axis and the poles. A rise in intracellular calcium at the onset of anaphase could regulate the polar ejection force by shutting down the centriolar turbines, but defective regulation could result in an excessive force that contributes to the chromosomal instability characteristic of most cancer cells.

  7. Nonlinear computer-generated holograms

    NASA Astrophysics Data System (ADS)

    Shapira, Asia; Juwiler, Irit; Arie, Ady

    2011-08-01

    We propose a novel technique for arbitrary wavefront shaping in quadratic nonlinear crystals by introducing the concept of computer-generated holograms (CGHs) into the nonlinear optical regime. We demonstrate the method experimentally showing a conversion of a fundamental Gaussian beam pump light into the first three Hermite--Gaussian beams at the second harmonic in a stoichiometric lithium tantalate nonlinear crystal, and we characterize its efficiency dependence on the fundamental power and the crystal temperature. Nonlinear CGHs open new possibilities in the fields of nonlinear beam shaping, mode conversion, and beam steering.

  8. FMNL formins boost lamellipodial force generation

    PubMed Central

    Kage, Frieda; Winterhoff, Moritz; Dimchev, Vanessa; Mueller, Jan; Thalheim, Tobias; Freise, Anika; Brühmann, Stefan; Kollasser, Jana; Block, Jennifer; Dimchev, Georgi; Geyer, Matthias; Schnittler, Hans-Joachim; Brakebusch, Cord; Stradal, Theresia E. B.; Carlier, Marie-France; Sixt, Michael; Käs, Josef; Faix, Jan; Rottner, Klemens

    2017-01-01

    Migration frequently involves Rac-mediated protrusion of lamellipodia, formed by Arp2/3 complex-dependent branching thought to be crucial for force generation and stability of these networks. The formins FMNL2 and FMNL3 are Cdc42 effectors targeting to the lamellipodium tip and shown here to nucleate and elongate actin filaments with complementary activities in vitro. In migrating B16-F1 melanoma cells, both formins contribute to the velocity of lamellipodium protrusion. Loss of FMNL2/3 function in melanoma cells and fibroblasts reduces lamellipodial width, actin filament density and -bundling, without changing patterns of Arp2/3 complex incorporation. Strikingly, in melanoma cells, FMNL2/3 gene inactivation almost completely abolishes protrusion forces exerted by lamellipodia and modifies their ultrastructural organization. Consistently, CRISPR/Cas-mediated depletion of FMNL2/3 in fibroblasts reduces both migration and capability of cells to move against viscous media. Together, we conclude that force generation in lamellipodia strongly depends on FMNL formin activity, operating in addition to Arp2/3 complex-dependent filament branching. PMID:28327544

  9. Computational Homogenization of Defect Driving Forces

    NASA Astrophysics Data System (ADS)

    Ricker, Sarah; Mergheim, Julia; Steinmann, Paul

    Due to the fact that many engineering materials and also biological tissues possess an underlying (heterogeneous) micro-structure it is not sufficient to simulate these materials by pre-assumed overall constitutive assumptions. Therefore, we apply a homogenization scheme, which determines the macroscopic material behavior based on analysis of the underlying micro-structure. In the work at hand focus is put on the extension of the classical computational homogenization scheme towards the homogenization of material forces. Therefore, volume forces have to incorporated which may emerge due to inhomogeneities in the material. With assistance of this material formulation and the equivalence of the J-integral and the material force at a crack tip, studies on the influence of the micro-structure onto the macroscopic crack-propagation are carried out.

  10. Computer Applications for Air Force Construction Management.

    DTIC Science & Technology

    1979-08-01

    The addition of a motor in 1920, resulted in the first electrical calculators. Charles Babbage is considered the "father" of the computer. In 1883, he...management applications. Watt (1795), Owen (early 1800’s), and Babbage (1832), made the first real- istic management applications in the field of production...network scheduling by the contractor "if" it is felt that the government can benefit by its use. 2 Captain Charles D. Sprick, Resident Air Force

  11. Age-Related Corresponding Relationships of Controlled Force Exertion Measured by a Computer-Generated Sinusoidal and Quasi-Random Display

    ERIC Educational Resources Information Center

    Nagasawa, Yoshinori; Demura, Shinichi

    2011-01-01

    This study examined age-group corresponding relationships of the controlled force exertion based on sinusoidal and quasi-random waveforms in 175 right-handed male adults aged 20 to 86 years. The subjects were divided into 3 groups based on age-level: 53 young (mean age 24.6, SD = 3.3 years), 71 middle aged (mean age 44.3, SD = 8.7 years), and 51…

  12. Determinants of contractile forces generated in disorganized actomyosin bundles.

    PubMed

    Kim, Taeyoon

    2015-04-01

    Actomyosin machinery is a fundamental engine consisting mostly of actin filaments, molecular motors, and passive cross-linkers, generating mechanical forces required for biological processes of non-muscle cells such as cell migration, cytokinesis, and morphogenesis. Although the molecular and physical properties of key elements in the actomyosin machinery have been characterized well, it still remains unclear how macroscopic force buildup and dissipation in actomyosin networks and bundles depend on the microscopic properties of individual cytoskeletal components and their local interactions. To bridge such a gap between macroscopic and microscopic scales, we have developed a three-dimensional computational model of actomyosin bundles clamped to an elastic substrate with minimal components: actin filaments, passive cross-linkers, and active motors. Our model accounts for several key features neglected by previous studies despite their significance for force generation, such as realistic structure and kinetics of the motors. Using the model, we systematically investigated how net tension in actomyosin bundles is governed via interplay between motors and cross-linkers. We demonstrated motors can generate large tension on a bundle in the absence of cross-linkers in a very inefficient, unstable manner. Cross-linkers help motors to generate their maximum potential forces as well as enhance overall connectivity, leading to much higher efficiency and stability. We showed further that the cross-linkers behave as a molecular clutch with tunable friction which has quite distinct effects on net tension depending on their cross-linking angles. We also examined the source of symmetry breaking between tensile and compressive forces during tension generation process and discussed how the length and dynamics of actin filaments and the stiffness of the elastic substrate can affect the generated tension.

  13. Proceedings of the Conference on Computer Generated Forces and Behavioral Representation (6th), Held in Orlando, Florida, on 23-25 July 1996

    DTIC Science & Technology

    1996-07-01

    from the tables. This information is then used to calculate the transmissivity. 3.2.5 Atmospheric Extinction 398 The LOWTRN model is used to compute...uniform atmospheric extinction (or transmission). The output from LOWTRN is a table that provides transmissivity at various ranges given a...particular set of input atmospheric conditions. Tables of extinction coefficients for useful sets of atmospheric conditions are precomputed and accessed

  14. Force Generation by Membrane-Associated Myosin-I

    PubMed Central

    Pyrpassopoulos, Serapion; Arpağ, Göker; Feeser, Elizabeth A.; Shuman, Henry; Tüzel, Erkan; Ostap, E. Michael

    2016-01-01

    Vertebrate myosin-IC (Myo1c) is a type-1 myosin that links cell membranes to the cytoskeleton via its actin-binding motor domain and its phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2)-binding tail domain. While it is known that Myo1c bound to PtdIns(4,5)P2 in fluid-lipid bilayers can propel actin filaments in an unloaded motility assay, its ability to develop forces against external load on actin while bound to fluid bilayers has not been explored. Using optical tweezers, we measured the diffusion coefficient of single membrane-bound Myo1c molecules by force-relaxation experiments, and the ability of ensembles of membrane-bound Myo1c molecules to develop and sustain forces. To interpret our results, we developed a computational model that recapitulates the basic features of our experimental ensemble data and suggests that Myo1c ensembles can generate forces parallel to lipid bilayers, with larger forces achieved when the myosin works away from the plane of the membrane or when anchored to slowly diffusing regions. PMID:27156719

  15. Morphological Transformation and Force Generation of Active Cytoskeletal Networks

    PubMed Central

    Maruri, Daniel; Kamm, Roger D.

    2017-01-01

    Cells assemble numerous types of actomyosin bundles that generate contractile forces for biological processes, such as cytokinesis and cell migration. One example of contractile bundles is a transverse arc that forms via actomyosin-driven condensation of actin filaments in the lamellipodia of migrating cells and exerts significant forces on the surrounding environments. Structural reorganization of a network into a bundle facilitated by actomyosin contractility is a physiologically relevant and biophysically interesting process. Nevertheless, it remains elusive how actin filaments are reoriented, buckled, and bundled as well as undergo tension buildup during the structural reorganization. In this study, using an agent-based computational model, we demonstrated how the interplay between the density of myosin motors and cross-linking proteins and the rigidity, initial orientation, and turnover of actin filaments regulates the morphological transformation of a cross-linked actomyosin network into a bundle and the buildup of tension occurring during the transformation. PMID:28114384

  16. FUNCTION GENERATOR FOR ANALOGUE COMPUTERS

    DOEpatents

    Skramstad, H.K.; Wright, J.H.; Taback, L.

    1961-12-12

    An improved analogue computer is designed which can be used to determine the final ground position of radioactive fallout particles in an atomic cloud. The computer determines the fallout pattern on the basis of known wind velocity and direction at various altitudes, and intensity of radioactivity in the mushroom cloud as a function of particle size and initial height in the cloud. The output is then displayed on a cathode-ray tube so that the average or total luminance of the tube screen at any point represents the intensity of radioactive fallout at the geographical location represented by that point. (AEC)

  17. Computer Generated Forces’ Realism Enhancement

    DTIC Science & Technology

    2010-10-01

    based” agent architecture that closely models a human psychological framework and will be built using established standards for multi - agent systems with...CGF interface. The AI component is a multi - agent system that incorporates a “needs-based” agent architecture operating in a Java Agent Development...implementation of the multi - agent system is based on the psychological model Maslow’s Hierarchy of Needs (MHN). HLA communications extend the existing simulation

  18. Turbofan noise generation. Volume 2: Computer programs

    NASA Technical Reports Server (NTRS)

    Ventres, C. S.; Theobald, M. A.; Mark, W. D.

    1982-01-01

    The use of a package of computer programs developed to calculate the in duct acoustic mods excited by a fan/stator stage operating at subsonic tip speed is described. The following three noise source mechanisms are included: (1) sound generated by the rotor blades interacting with turbulence ingested into, or generated within, the inlet duct; (2) sound generated by the stator vanes interacting with the turbulent wakes of the rotor blades; and (3) sound generated by the stator vanes interacting with the velocity deficits in the mean wakes of the rotor blades. The computations for three different noise mechanisms are coded as three separate computer program packages. The computer codes are described by means of block diagrams, tables of data and variables, and example program executions; FORTRAN listings are included.

  19. Turbofan noise generation. Volume 2: Computer programs

    NASA Astrophysics Data System (ADS)

    Ventres, C. S.; Theobald, M. A.; Mark, W. D.

    1982-07-01

    The use of a package of computer programs developed to calculate the in duct acoustic mods excited by a fan/stator stage operating at subsonic tip speed is described. The following three noise source mechanisms are included: (1) sound generated by the rotor blades interacting with turbulence ingested into, or generated within, the inlet duct; (2) sound generated by the stator vanes interacting with the turbulent wakes of the rotor blades; and (3) sound generated by the stator vanes interacting with the velocity deficits in the mean wakes of the rotor blades. The computations for three different noise mechanisms are coded as three separate computer program packages. The computer codes are described by means of block diagrams, tables of data and variables, and example program executions; FORTRAN listings are included.

  20. Computer-Generated Movies for Mission Planning

    NASA Technical Reports Server (NTRS)

    Roberts, P. H., Jr.; vanDillen, S. L.

    1973-01-01

    Computer-generated movies help the viewer to understand mission dynamics and get quantitative details. Sample movie frames demonstrate the uses and effectiveness of movies in mission planning. Tools needed for movie-making include computer programs to generate images on film and film processing to give the desired result. Planning scenes to make an effective product requires some thought and experience. Viewpoints and timing are particularly important. Lessons learned so far and problems still encountered are discussed.

  1. Pump instability phenomena generated by fluid forces

    NASA Technical Reports Server (NTRS)

    Gopalakrishnan, S.

    1985-01-01

    Rotor dynamic behavior of high energy centrifugal pumps is significantly affected by two types of fluid forces; one due to the hydraulic interaction of the impeller with the surrounding volute or diffuser and the other due to the effect of the wear rings. The available data on these forces is first reviewed. A simple one degree-of-freedom system containing these forces is analytically solved to exhibit the rotor dynamic effects. To illustrate the relative magnitude of these phenomena, an example of a multistage boiler feed pump is worked out. It is shown that the wear ring effects tend to suppress critical speed and postpone instability onset. But the volute-impeller forces tend to lower the critical speed and the instability onset speed. However, for typical boiler feed pumps under normal running clearances, the wear ring effects are much more significant than the destabilizing hydraulic interaction effects.

  2. Land of the Rising Fifth Generation Computer.

    ERIC Educational Resources Information Center

    Feigenbaum, Edward; McCorduck, Pamela

    1983-01-01

    Discusses a major, national plan (Fifth Generation Computer Systems) for Japan to become number one in the computer industry by the latter half of the 1990s. Includes comments on the likely success of and problems associated with the plan supported by Japan's Ministery of International Trade and Industry. (JN)

  3. Computer-Based Arithmetic Test Generation

    ERIC Educational Resources Information Center

    Trocchi, Robert F.

    1973-01-01

    The computer can be a welcome partner in the instructional process, but only if there is man-machine interaction. Man should not compromise system design because of available hardware; the computer must fit the system design for the result to represent an acceptable solution to instructional technology. The Arithmetic Test Generator system fits…

  4. Measurement-only topological quantum computation without forced measurements

    NASA Astrophysics Data System (ADS)

    Zheng, Huaixiu; Dua, Arpit; Jiang, Liang

    2016-12-01

    We investigate the measurement-only topological quantum computation (MOTQC) approach proposed by Bonderson et al (2008 Phys. Rev. Lett. 101 010501) where the braiding operation is shown to be equivalent to a series of topological charge ‘forced measurements’ of anyons. In a forced measurement, the charge measurement is forced to yield the desired outcome (e.g. charge 0) via repeatedly measuring charges in different bases. This is a probabilistic process with a certain success probability for each trial. In practice, the number of measurements needed will vary from run to run. We show that such an uncertainty associated with forced measurements can be removed by simulating the braiding operation using a fixed number of three measurements supplemented by a correction operator. Furthermore, we demonstrate that in practice we can avoid applying the correction operator in hardware by implementing it in software. Our findings greatly simplify the MOTQC proposal and only require the capability of performing charge measurements to implement topologically protected transformations generated by braiding exchanges without physically moving anyons.

  5. Parallel unstructured grid generation for computational aerosciences

    NASA Technical Reports Server (NTRS)

    Shephard, Mark S.

    1993-01-01

    The objective of this research project is to develop efficient parallel automatic grid generation procedures for use in computational aerosciences. This effort is focused on a parallel version of the Finite Octree grid generator. Progress made during the first six months is reported.

  6. Detecting photographic and computer generated composites

    NASA Astrophysics Data System (ADS)

    Conotter, V.; Cordin, L.

    2011-03-01

    Nowadays, sophisticated computer graphics editors lead to a significant increase in the photorealism of images. Thus, computer generated (CG) images result to be convincing and hard to be distinguished from real ones at a first glance. Here, we propose an image forensics technique able to automatically detect local forgeries, i.e., objects generated via computer graphics software inserted in natural images, and vice versa. We develop a novel hybrid classifier based on wavelet based features and sophisticated pattern noise statistics. Experimental results show the effectiveness of the proposed approach.

  7. A Report of the Computer Application Task Force.

    ERIC Educational Resources Information Center

    New Jersey State Library, Trenton.

    Ways in which computer technology can be used to support the development of a library network are proposed by the Computer Application Task Force, following the recommendations of the New Jersey Statewide Planning Group and its several task forces. A summary of three primary recommendations is followed by a general discussion of opportunities…

  8. Next generation distributed computing for cancer research.

    PubMed

    Agarwal, Pankaj; Owzar, Kouros

    2014-01-01

    Advances in next generation sequencing (NGS) and mass spectrometry (MS) technologies have provided many new opportunities and angles for extending the scope of translational cancer research while creating tremendous challenges in data management and analysis. The resulting informatics challenge is invariably not amenable to the use of traditional computing models. Recent advances in scalable computing and associated infrastructure, particularly distributed computing for Big Data, can provide solutions for addressing these challenges. In this review, the next generation of distributed computing technologies that can address these informatics problems is described from the perspective of three key components of a computational platform, namely computing, data storage and management, and networking. A broad overview of scalable computing is provided to set the context for a detailed description of Hadoop, a technology that is being rapidly adopted for large-scale distributed computing. A proof-of-concept Hadoop cluster, set up for performance benchmarking of NGS read alignment, is described as an example of how to work with Hadoop. Finally, Hadoop is compared with a number of other current technologies for distributed computing.

  9. Next Generation Distributed Computing for Cancer Research

    PubMed Central

    Agarwal, Pankaj; Owzar, Kouros

    2014-01-01

    Advances in next generation sequencing (NGS) and mass spectrometry (MS) technologies have provided many new opportunities and angles for extending the scope of translational cancer research while creating tremendous challenges in data management and analysis. The resulting informatics challenge is invariably not amenable to the use of traditional computing models. Recent advances in scalable computing and associated infrastructure, particularly distributed computing for Big Data, can provide solutions for addressing these challenges. In this review, the next generation of distributed computing technologies that can address these informatics problems is described from the perspective of three key components of a computational platform, namely computing, data storage and management, and networking. A broad overview of scalable computing is provided to set the context for a detailed description of Hadoop, a technology that is being rapidly adopted for large-scale distributed computing. A proof-of-concept Hadoop cluster, set up for performance benchmarking of NGS read alignment, is described as an example of how to work with Hadoop. Finally, Hadoop is compared with a number of other current technologies for distributed computing. PMID:25983539

  10. Generating The Force: The Roundout Brigade

    DTIC Science & Technology

    1992-05-20

    monograph is to determine if the downsized United States Army should retain the current roundout brigade concept. Under the roundout concept, a National...appropriate to reexamine the Army’s roundout brigade concept. This monograph will determine if the downsized U.S. Army should retain the current...provide full divisions for a major war in central Europe is no longer needed. The downsizing of the Armed Forces compels the Department of Defense to

  11. Computer Program For Generation Of Surface Grids

    NASA Technical Reports Server (NTRS)

    Ching, Raymond; Pierce, Lawrence

    1993-01-01

    S3D is useful computer program for generation of grids on surfaces of bodies having complicated shapes. Product of integration of robust and widely applicable interpolation technique with latest in computer-workstation technology. Incorporates highly efficient and easy-to-use graphical-interface software, enables real-time and interactive analyses of surface-geometry data and facilitates construction of surface grids.

  12. The Next-Generation Expeditionary Air Force

    DTIC Science & Technology

    2012-02-01

    Journal, which was selected as the journal’s second-best article for 2010 and was published in the Spanish, Portuguese , and Chinese editions of ASPJ...literature review and personal interviews provided the core research methodology for this study. A literature review identi- fied current AEF policy and...comments: Thank you for your assistance. C u t al o n g d o tt ed li n e Place Stamp Here AFRI/DE Dean, Air Force Research Institute 155 N

  13. CHARMM additive and polarizable force fields for biophysics and computer-aided drug design

    PubMed Central

    Vanommeslaeghe, K.

    2014-01-01

    Background Molecular Mechanics (MM) is the method of choice for computational studies of biomolecular systems owing to its modest computational cost, which makes it possible to routinely perform molecular dynamics (MD) simulations on chemical systems of biophysical and biomedical relevance. Scope of Review As one of the main factors limiting the accuracy of MD results is the empirical force field used, the present paper offers a review of recent developments in the CHARMM additive force field, one of the most popular bimolecular force fields. Additionally, we present a detailed discussion of the CHARMM Drude polarizable force field, anticipating a growth in the importance and utilization of polarizable force fields in the near future. Throughout the discussion emphasis is placed on the force fields’ parametrization philosophy and methodology. Major Conclusions Recent improvements in the CHARMM additive force field are mostly related to newly found weaknesses in the previous generation of additive force fields. Beyond the additive approximation is the newly available CHARMM Drude polarizable force field, which allows for MD simulations of up to 1 microsecond on proteins, DNA, lipids and carbohydrates. General Significance Addressing the limitations ensures the reliability of the new CHARMM36 additive force field for the types of calculations that are presently coming into routine computational reach while the availability of the Drude polarizable force fields offers a model that is an inherently more accurate model of the underlying physical forces driving macromolecular structures and dynamics. PMID:25149274

  14. Estimation of the forces generated by the thigh muscles for transtibial amputee gait.

    PubMed

    Voinescu, M; Soares, D P; Natal Jorge, R M; Davidescu, A; Machado, L J

    2012-04-05

    The forces generated by the muscles with origin on the human femur play a major role in transtibial amputee gait, as they are the most effective of the means that the body can use for propulsion. By estimating the forces generated by the thigh muscles of transtibial amputees, and comparing them to the forces generated by the thigh muscles of normal subjects, it is possible to better estimate the energy output needed from prosthetic devices. The purpose of this paper is to obtain the forces generated by the thigh muscles of transtibial amputees and compare these with forces obtained from the same muscles in the case of normal subjects. Two transtibial amputees and four normal subjects similar in size to the amputees were investigated. Level ground walking was chosen as the movement to be studied, since it is a common activity that most amputees engage in. Inverse dynamics and a muscle recruitment algorithm (developed by AnyBody Technology(®)) were used for generating the muscle activation patterns and for computing the muscle forces. The muscle forces were estimated as two sums: one for all posterior muscles and one for the anterior muscles, based on the position of the muscles of the thigh relative to the frontal plane of the human body. The results showed that a significantly higher force is generated by the posterior muscles of the amputees during walking, leading to a general increase of the metabolic cost necessary for one step.

  15. The generation of side force by distributed suction

    NASA Technical Reports Server (NTRS)

    Roberts, Leonard; Hong, John

    1993-01-01

    This report provides an approximate analysis of the generation of side force on a cylinder placed horizontal to the flow direction by the application of distributed suction on the rearward side of the cylinder. Relationships are derived between the side force coefficients and the required suction coefficients necessary to maintain attached flow on one side of the cylinder, thereby inducing circulation around the cylinder and a corresponding side force.

  16. X-33 Launch - Computer generated graphic

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This 45-second computer-generated launch sequence begins with a view of the X-33 launch facility located near Haystack Butte on the test range at Edwards AFB, California.The X-33 vehicle is then (hypothetically) raised into position, fueled, and launched, making its roll maneuver and then proceeding on its flightpath.

  17. BMEWS Radar Beam Generation and Projection Clear Air Force ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BMEWS Radar Beam Generation and Projection - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  18. Highbay Generator Room, looking northwest Beale Air Force Base, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Highbay Generator Room, looking northwest - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Power Plant, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  19. Optimal Force Generation with Fluid-Structure Interactions

    NASA Astrophysics Data System (ADS)

    Peng, Diing-wen

    Typical computational and experimental methods are unsuitable for studying large scale optimization problems involving complex fluid structure interactions, primarily due to their time-consuming nature. A novel experimental approach is proposed here that provides a high-fidelity and efficient alternative to discover optimal parameters arising from the passive interaction between structural elasticity and fluid dynamic forces. This approach utilizes motors, force transducers, and active controllers to emulate the effects of elasticity, eliminating the physical need to replace structural components in the experiment. A clustering genetic algorithm is then used to tune the structural parameters to achieve desired optimality conditions, resulting in approximated global optimal regions within the search bound. A prototype fluid-structure interaction experiment inspired by the lift generation of flapping wing insects is presented to highlight the capabilities of this approach. The experiment aims to maximize the average lift on a sinusoidally translating plate, by optimizing the damping ratio and natural frequency of the plate's elastic pitching dynamics. Reynolds number, chord length, and stroke length are varied between optimizations to explore their relationships to the optimal structural parameters. The results reveal that only limited ranges of stroke lengths are conducive to lift generation; there also exists consistent trends between optimal stroke length, natural frequency, and damping ratio. The measured lift, pitching angle, and torque on the plate for optimal scenarios exhibit the same frequency as the translation frequency, and the phase angles of the optimal structural parameters at this frequency are found to be independent of the stroke length. This critical phase can be then characterized by a linear function of the chord length and Reynolds number. Particle image velocimetry measurements are acquired for the kinematics generated with optimal and

  20. Instructional Uses of the Computer: Program Force

    ERIC Educational Resources Information Center

    Ostrander, P.

    1975-01-01

    Describes a program which simulates motion in two dimensions of a point mass subject to a force which is a function of position, velocity, or time. Sample applications are noted and a source of a complete list of applications and programs is given. (GH)

  1. Scaling of motor cortical excitability during unimanual force generation.

    PubMed

    Perez, Monica A; Cohen, Leonardo G

    2009-10-01

    During performance of a unimanual force generation task primary motor cortices (M1s) experience clear functional changes. Here, we evaluated the way in which M1s interact during parametric increases in right wrist flexion force in healthy volunteers. We measured the amplitude and the slope of motor evoked potentials (MEP) recruitment curves to transcranial magnetic stimulation (TMS) in the left and right flexor carpi radialis (FCR) muscles at rest and during 10%, 30% and 70% of maximal wrist flexion force. At rest, no differences were observed in the amplitude and slope of MEP recruitment curves in the left and right FCR muscles. With increasing right wrist flexion force, MEP amplitudes increased in both FCR muscles, with larger amplitudes in the right FCR. We found a significant correlation between the left and right MEP amplitudes across conditions. The slope of right and left FCR MEP recruitment curve was significantly steeper at 70% of force compared to rest and 10% of force. A significant correlation between the slope of left and right FCR MEP amplitudes was found at 70% of force only. Our results indicate a differential scaling of excitability in the corticospinal system controlling right and left FCR muscles at increasing levels of unimanual force generation. Specifically, these data highlights that at strong levels of unimanual force the increases in motor cortical excitability with increasing TMS stimulus intensities follow a similar pattern in both M1s, while at low levels of force they do not.

  2. Computer programming for generating visual stimuli.

    PubMed

    Bukhari, Farhan; Kurylo, Daniel D

    2008-02-01

    Critical to vision research is the generation of visual displays with precise control over stimulus metrics. Generating stimuli often requires adapting commercial software or developing specialized software for specific research applications. In order to facilitate this process, we give here an overview that allows nonexpert users to generate and customize stimuli for vision research. We first give a review of relevant hardware and software considerations, to allow the selection of display hardware, operating system, programming language, and graphics packages most appropriate for specific research applications. We then describe the framework of a generic computer program that can be adapted for use with a broad range of experimental applications. Stimuli are generated in the context of trial events, allowing the display of text messages, the monitoring of subject responses and reaction times, and the inclusion of contingency algorithms. This approach allows direct control and management of computer-generated visual stimuli while utilizing the full capabilities of modern hardware and software systems. The flowchart and source code for the stimulus-generating program may be downloaded from www.psychonomic.org/archive.

  3. Computer simulations of granular materials: the effects of mesoscopic forces

    NASA Astrophysics Data System (ADS)

    Kohring, G. A.

    1994-12-01

    The problem of the relatively small angles of repose reported by computer simulations of granular materials is discussed. It is shown that this problem can be partially understood as resulting from mesoscopic forces which are commonly neglected in the simulations. After including mesoscopic forces, characterized by the easily measurable surface energy, 2D computer simulations indicate that the angle of repose should increase as the size of the granular grains decreases, an effect not seen without mesoscopic forces. The exact magnitude of this effect depends upon the value of the surface energy and the coordination number of the granular pile.

  4. Use of Computer-Generated Holograms in Security Hologram Applications

    NASA Astrophysics Data System (ADS)

    Bulanovs, A.; Bakanas, R.

    2016-10-01

    The article discusses the use of computer-generated holograms (CGHs) for the application as one of the security features in the relief-phase protective holograms. An improved method of calculating CGHs is presented, based on ray-tracing approach in the case of interference of parallel rays. Software is developed for the calculation of multilevel phase CGHs and their integration in the application of security holograms. Topology of calculated computer-generated phase holograms was recorded on the photoresist by the optical greyscale lithography. Parameters of the recorded microstructures were investigated with the help of the atomic-force microscopy (AFM) and scanning electron microscopy (SEM) methods. The results of the research have shown highly protective properties of the security elements based on CGH microstructures. In our opinion, a wide use of CGHs is very promising in the structure of complex security holograms for increasing the level of protection against counterfeit.

  5. Understanding force-generating microtubule systems through in vitro reconstitution

    PubMed Central

    Kok, Maurits; Dogterom, Marileen

    2016-01-01

    ABSTRACT Microtubules switch between growing and shrinking states, a feature known as dynamic instability. The biochemical parameters underlying dynamic instability are modulated by a wide variety of microtubule-associated proteins that enable the strict control of microtubule dynamics in cells. The forces generated by controlled growth and shrinkage of microtubules drive a large range of processes, including organelle positioning, mitotic spindle assembly, and chromosome segregation. In the past decade, our understanding of microtubule dynamics and microtubule force generation has progressed significantly. Here, we review the microtubule-intrinsic process of dynamic instability, the effect of external factors on this process, and how the resulting forces act on various biological systems. Recently, reconstitution-based approaches have strongly benefited from extensive biochemical and biophysical characterization of individual components that are involved in regulating or transmitting microtubule-driven forces. We will focus on the current state of reconstituting increasingly complex biological systems and provide new directions for future developments. PMID:27715396

  6. A simulated force generator with an adaptive command structure

    NASA Astrophysics Data System (ADS)

    Hanes, P. Jeff

    2006-05-01

    The Force Laydown Automated Generator (FLAG) is a script-driven behavior model that automatically creates military formations from the platoon level up to division level for use in simulations built on the FLAMES simulation framework. The script allows users to define formation command structure, command relationships, vehicle type and equipment, and behaviors. We have used it to automatically generate more than 3000 units in a single simulation. Currently, FLAG is used in the Air Force Research Laboratory Munitions Directorate (AFRL/MN) to assist their Comprehensive Analysis Process (CAP). It produces a reasonable threat laydown of red forces for testing their blue concept weapons. Our success in the application of FLAG leads us to believe that it offers an invaluable potential for use in training environments and other applications that need a large number of reactive, adaptive forces - red or blue.

  7. Generation of spin motive force in a soliton lattice

    SciTech Connect

    Ovchinnikov, A. S. Sinitsyn, V. E.; Bostrem, I. G.; Kishine, J.

    2013-05-15

    The generation of a spin motive force in a chiral helimagnet due to the action of two crossed magnetic fields is considered. The cases of pulsed and periodic magnetic fields directed along the helical axis under a perpendicular dc field are analyzed. It is shown that, in the case of a pulsed field, the spin motive force is related to dissipation, whereas in a periodic field, there is a reactive component that is not related to damping processes.

  8. Direct measurement of the forces generated by an undulatory microswimmer

    NASA Astrophysics Data System (ADS)

    Schulman, Rafael; Backholm, Matilda; Ryu, William; Dalnoki-Veress, Kari

    2014-11-01

    C. elegans is a millimeter-sized nematode which has served as a model organism in biology for several decades, primarily due to its simple anatomy. Employing an undulatory form of locomotion, this worm is capable of propelling itself through various media. Using a micropipette deflection technique, in conjunction with high speed imaging, we directly measure the time-varying forces generated by C. elegans. We observe excellent agreement between our measured forces and the predictions of resistive force theory, through which we determine the drag coefficients of the worm. We also perform the direct force measurements at controlled distances from a single solid boundary as well as between two solid boundaries. We extract the drag coefficients of the worm to quantify the influence of the boundary on the swimming and the hydrodynamic forces involved.

  9. Computation of ground reaction force using Zero Moment Point.

    PubMed

    Dijkstra, Erik J; Gutierrez-Farewik, Elena M

    2015-11-05

    Motion analysis is a common clinical assessment and research tool that uses a camera system or motion sensors and force plates to collect kinematic and kinetic information of a subject performing an activity of interest. The use of force plates can be challenging and sometimes even impossible. Over the past decade, several computational methods have been developed that aim to preclude the use of force plates. Useful in particular for predictive simulations, where a new motion or change in control strategy inherently means different external contact loads. These methods, however, often depend on prior knowledge of common observed ground reaction force (GRF) patterns, are computationally expensive, or difficult to implement. In this study, we evaluated the use of the Zero Moment Point as a computationally inexpensive tool to obtain the GRFs for normal human gait. The method was applied on ten healthy subjects walking in a motion analysis laboratory and predicted GRFs are evaluated against the simultaneously measured force plate data. Apart from the antero-posterior forces, GRFs are well-predicted and errors fall within the error ranges from other published methods. Joint extension moments were underestimated at the ankle and hip but overestimated at the knee, attributable to the observed discrepancy in the predicted application points of the GRFs. The computationally inexpensive method evaluated in this study can reasonably well predict the GRFs for normal human gait without using prior knowledge of common gait kinetics.

  10. Malleable architecture generator for FPGA computing

    NASA Astrophysics Data System (ADS)

    Gokhale, Maya; Kaba, James; Marks, Aaron; Kim, Jang

    1996-10-01

    The malleable architecture generator (MARGE) is a tool set that translates high-level parallel C to configuration bit streams for field-programmable logic based computing systems. MARGE creates an application-specific instruction set and generates the custom hardware components required to perform exactly those computations specified by the C program. In contrast to traditional fixed-instruction processors, MARGE's dynamic instruction set creation provides for efficient use of hardware resources. MARGE processes intermediate code in which each operation is annotated by the bit lengths of the operands. Each basic block (sequence of straight line code) is mapped into a single custom instruction which contains all the operations and logic inherent in the block. A synthesis phase maps the operations comprising the instructions into register transfer level structural components and control logic which have been optimized to exploit functional parallelism and function unit reuse. As a final stage, commercial technology-specific tools are used to generate configuration bit streams for the desired target hardware. Technology- specific pre-placed, pre-routed macro blocks are utilized to implement as much of the hardware as possible. MARGE currently supports the Xilinx-based Splash-2 reconfigurable accelerator and National Semiconductor's CLAy-based parallel accelerator, MAPA. The MARGE approach has been demonstrated on systolic applications such as DNA sequence comparison.

  11. Active force generation in cross-linked filament bundles without motor proteins.

    PubMed

    Walcott, Sam; Sun, Sean X

    2010-11-01

    Cytoskeletal filaments often interact laterally through cross-linking proteins, contributing to passive cellular viscoelasticity and, perhaps surprisingly, active force generation. We present a theory, based on the formation and rupture of cross-linker bonds, that relates molecular properties of those interactions to the macroscale mechanics of filament bundles. Computing the force-velocity relation for such a bundle, we demonstrate significant contractile forces in the absence of molecular motors. This theory provides insight into cytokinesis, cytoskeletal mechanics, and stress-fiber contraction.

  12. Motility, Force Generation, and Energy Consumption of Unicellular Parasites.

    PubMed

    Hochstetter, Axel; Pfohl, Thomas

    2016-07-01

    Motility is a key factor for pathogenicity of unicellular parasites, enabling them to infiltrate and evade host cells, and perform several of their life-cycle events. State-of-the-art methods of motility analysis rely on a combination of optical tweezers with high-resolution microscopy and microfluidics. With this technology, propulsion forces, energies, and power generation can be determined so as to shed light on the motion mechanisms, chemotactic behavior, and specific survival strategies of unicellular parasites. With these new tools in hand, we can elucidate the mechanisms of motility and force generation of unicellular parasites, and identify ways to manipulate and eventually inhibit them.

  13. Aeroacoustics. [analysis of properties of sound generated by aerodynamic forces

    NASA Technical Reports Server (NTRS)

    Goldstein, M., E.

    1974-01-01

    An analysis was conducted to determine the properties of sound generated by aerodynamic forces or motions originating in a flow, such as the unsteady aerodynamic forces on propellers or by turbulent flows around an aircraft. The acoustics of moving media are reviewed and mathematical models are developed. Lighthill's acoustic analogy and the application to turbulent flows are analyzed. The effects of solid boundaries are calculated. Theories based on the solution of linearized vorticity and acoustic field equations are explained. The effects of nonuniform mean flow on the generation of sound are reported.

  14. 48 CFR 52.253-1 - Computer Generated Forms.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 2 2011-10-01 2011-10-01 false Computer Generated Forms....253-1 Computer Generated Forms. As prescribed in FAR 53.111, insert the following clause: Computer... by the Federal Acquisition Regulation (FAR) may be submitted on a computer generated version of...

  15. 48 CFR 52.253-1 - Computer Generated Forms.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Computer Generated Forms....253-1 Computer Generated Forms. As prescribed in FAR 53.111, insert the following clause: Computer... by the Federal Acquisition Regulation (FAR) may be submitted on a computer generated version of...

  16. 48 CFR 52.253-1 - Computer Generated Forms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 2 2012-10-01 2012-10-01 false Computer Generated Forms....253-1 Computer Generated Forms. As prescribed in FAR 53.111, insert the following clause: Computer... by the Federal Acquisition Regulation (FAR) may be submitted on a computer generated version of...

  17. 48 CFR 52.253-1 - Computer Generated Forms.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 2 2013-10-01 2013-10-01 false Computer Generated Forms....253-1 Computer Generated Forms. As prescribed in FAR 53.111, insert the following clause: Computer... by the Federal Acquisition Regulation (FAR) may be submitted on a computer generated version of...

  18. 48 CFR 52.253-1 - Computer Generated Forms.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 2 2014-10-01 2014-10-01 false Computer Generated Forms....253-1 Computer Generated Forms. As prescribed in FAR 53.111, insert the following clause: Computer... by the Federal Acquisition Regulation (FAR) may be submitted on a computer generated version of...

  19. Interpolation Approach To Computer-Generated Holograms

    NASA Astrophysics Data System (ADS)

    Yatagai, Toyohiko

    1983-10-01

    A computer-generated hologram (CGH) for reconstructing independent NxN resolution points would actually require a hologram made up of NxN sampling cells. For dependent sampling points of Fourier transform CGHs, the required memory size for computation by using an interpolation technique for reconstructed image points can be reduced. We have made a mosaic hologram which consists of K x K subholograms with N x N sampling points multiplied by an appropriate weighting factor. It is shown that the mosaic hologram can reconstruct an image with NK x NK resolution points. The main advantage of the present algorithm is that a sufficiently large size hologram of NK x NK sample points is synthesized by K x K subholograms which are successively calculated from the data of N x N sample points and also successively plotted.

  20. Computer-Generated Holographic Matched Filters

    NASA Astrophysics Data System (ADS)

    Butler, Steven Frank

    This dissertation presents techniques for the use of computer-generated holograms (CGH) for matched filtering. An overview of the supporting technology is provided. Included are techniques for modifying existing CGH algorithms to serve as matched filters in an optical correlator. It shows that matched filters produced in this fashion can be modified to improve the signal-to-noise and efficiency over that possible with conventional holography. The effect and performance of these modifications are demonstrated. In addition, a correction of film non-linearity in continuous -tone filter production is developed. Computer simulations provide quantitative and qualitative demonstration of theoretical principles, with specific examples validated in optical hardware. Conventional and synthetic holograms, both bleached and unbleached, are compared.

  1. Evaluation of force generation mechanisms in natural, passive hydraulic actuators

    PubMed Central

    Le Duigou, A.; Castro, M.

    2016-01-01

    Pine cones are well known natural actuators that can move their scales upon humidity gradient. The mechanism manifests itself through a displacement easily observable by the naked eye, but coupled with stress generation. In ancient Egypt, wooden wedges were used to break soft blocks of stone by the generated swelling stress. The purpose of the present study is to evaluate the ability of pine cone scales to generate forces while being wetted. In our experiments, a blocking force of around 3N is measured depending on the position on the pine cone where the scales are extracted. A fairly good agreement is obtained when theoretical results based on bimetallic strip systems are compared with experimental data, even if overestimation is observed arising from the input data considered for dry tissues. Inspired by a simplified pine cone microstructure, a biocomposite analogue is manufactured and tested. Although an adequate blocking force can be generated, it has a lower value compared to natural pine cones which benefit from optimized swelling tissue content and interfacial bond strength between them. This study provides new insights to understand the generation of force by pine cones as well as to develop novel biocomposite functionalities. PMID:26726792

  2. Evaluation of force generation mechanisms in natural, passive hydraulic actuators

    NASA Astrophysics Data System (ADS)

    Le Duigou, A.; Castro, M.

    2016-01-01

    Pine cones are well known natural actuators that can move their scales upon humidity gradient. The mechanism manifests itself through a displacement easily observable by the naked eye, but coupled with stress generation. In ancient Egypt, wooden wedges were used to break soft blocks of stone by the generated swelling stress. The purpose of the present study is to evaluate the ability of pine cone scales to generate forces while being wetted. In our experiments, a blocking force of around 3N is measured depending on the position on the pine cone where the scales are extracted. A fairly good agreement is obtained when theoretical results based on bimetallic strip systems are compared with experimental data, even if overestimation is observed arising from the input data considered for dry tissues. Inspired by a simplified pine cone microstructure, a biocomposite analogue is manufactured and tested. Although an adequate blocking force can be generated, it has a lower value compared to natural pine cones which benefit from optimized swelling tissue content and interfacial bond strength between them. This study provides new insights to understand the generation of force by pine cones as well as to develop novel biocomposite functionalities.

  3. Force Generation and Dynamics of Individual Cilia under External Loading

    PubMed Central

    Hill, David B.; Swaminathan, Vinay; Estes, Ashley; Cribb, Jeremy; O'Brien, E. Timothy; Davis, C. William; Superfine, R.

    2010-01-01

    Abstract Motile cilia are unique multimotor systems that display coordination and periodicity while imparting forces to biological fluids. They play important roles in normal physiology, and ciliopathies are implicated in a growing number of human diseases. In this work we measure the response of individual human airway cilia to calibrated forces transmitted via spot-labeled magnetic microbeads. Cilia respond to applied forces by 1), a reduction in beat amplitude (up to an 85% reduction by 160–170 pN of force); 2), a decreased tip velocity proportionate to applied force; and 3), no significant change in beat frequency. Tip velocity reduction occurred in each beat direction, independently of the direction of applied force, indicating that the cilium is “driven” in both directions at all times. By applying a quasistatic force model, we deduce that axoneme stiffness is dominated by the rigidity of the microtubules, and that cilia can exert 62 ± 18 pN of force at the tip via the generation of 5.6 ± 1.6 pN/dynein head. PMID:20085719

  4. Positive computer-generated exercise electrocardiogram.

    PubMed

    MacKenzie, Ross

    2006-01-01

    The use of computerized averaging of the electrocardiogram (ECG) during stress testing has facilitated the removal of motion artifacts and baseline shifts. However, this process can introduce errors, which may not be appreciated by medical directors. Such errors can lead to significant ST depression in the absence of coronary artery disease. Such false-positive tests may lead to anxiety in the applicant, delays in accepting the application and unnecessary additional testing. This case study illustrates a common pitfall associated with using only a computer-generated exercise ECG for risk assessment of a life insurance applicant.

  5. Computer generated holograms for carbon nanotube arrays

    NASA Astrophysics Data System (ADS)

    Montelongo, Yunuen; Butt, Haider; Butler, Tim; Wilkinson, Timothy D.; Amaratunga, Gehan A. J.

    2013-05-01

    Multiwalled carbon nanotubes are highly diffractive structures in the optical regime. Their metallic character and large scattering cross-section allow their usage as diffractive elements in Fraunhofer holograms. This work elaborates some important features of the far field diffraction patterns produced from periodic arrays of nanotubes. A theoretical approach for the interaction of arrays of nanotubes with light is presented and a computer generated hologram is calculated by means of periodical patterns. Based on the results, fabrication of carbon nanotube arrays (in holographic patterns) was performed. Experimentally measured diffraction patterns were in good agreement with the calculations.

  6. Computer generated holograms for carbon nanotube arrays.

    PubMed

    Montelongo, Yunuen; Butt, Haider; Butler, Tim; Wilkinson, Timothy D; Amaratunga, Gehan A J

    2013-05-21

    Multiwalled carbon nanotubes are highly diffractive structures in the optical regime. Their metallic character and large scattering cross-section allow their usage as diffractive elements in Fraunhofer holograms. This work elaborates some important features of the far field diffraction patterns produced from periodic arrays of nanotubes. A theoretical approach for the interaction of arrays of nanotubes with light is presented and a computer generated hologram is calculated by means of periodical patterns. Based on the results, fabrication of carbon nanotube arrays (in holographic patterns) was performed. Experimentally measured diffraction patterns were in good agreement with the calculations.

  7. Colour vision and computer-generated images

    NASA Astrophysics Data System (ADS)

    Ramek, Michael

    2010-06-01

    Colour vision deficiencies affect approximately 8% of the male and approximately 0.4% of the female population. In this work, it is demonstrated that computer generated images oftentimes pose unnecessary problems for colour deficient viewers. Three examples, the visualization of molecular structures, graphs of mathematical functions, and colour coded images from numerical data are used to identify problematic colour combinations: red/black, green/black, red/yellow, yellow/white, fuchsia/white, and aqua/white. Alternatives for these combinations are discussed.

  8. Computer modeling of thermoelectric generator performance

    NASA Technical Reports Server (NTRS)

    Chmielewski, A. B.; Shields, V.

    1982-01-01

    Features of the DEGRA 2 computer code for simulating the operations of a spacecraft thermoelectric generator are described. The code models the physical processes occurring during operation. Input variables include the thermoelectric couple geometry and composition, the thermoelectric materials' properties, interfaces and insulation in the thermopile, the heat source characteristics, mission trajectory, and generator electrical requirements. Time steps can be specified and sublimation of the leg and hot shoe is accounted for, as are shorts between legs. Calculations are performed for conduction, Peltier, Thomson, and Joule heating, the cold junction can be adjusted for solar radition, and the legs of the thermoelectric couple are segmented to enhance the approximation accuracy. A trial run covering 18 couple modules yielded data with 0.3% accuracy with regard to test data. The model has been successful with selenide materials, SiGe, and SiN4, with output of all critical operational variables.

  9. The Shuttle Mission Simulator computer generated imagery

    NASA Technical Reports Server (NTRS)

    Henderson, T. H.

    1984-01-01

    Equipment available in the primary training facility for the Space Transportation System (STS) flight crews includes the Fixed Base Simulator, the Motion Base Simulator, the Spacelab Simulator, and the Guidance and Navigation Simulator. The Shuttle Mission Simulator (SMS) consists of the Fixed Base Simulator and the Motion Base Simulator. The SMS utilizes four visual Computer Generated Image (CGI) systems. The Motion Base Simulator has a forward crew station with six-degrees of freedom motion simulation. Operation of the Spacelab Simulator is planned for the spring of 1983. The Guidance and Navigation Simulator went into operation in 1982. Aspects of orbital visual simulation are discussed, taking into account the earth scene, payload simulation, the generation and display of 1079 stars, the simulation of sun glare, and Reaction Control System jet firing plumes. Attention is also given to landing site visual simulation, and night launch and landing simulation.

  10. Forecasting global generation of obsolete personal computers.

    PubMed

    Yu, Jinglei; Williams, Eric; Ju, Meiting; Yang, Yan

    2010-05-01

    Electronic waste (e-waste) has emerged as a new policy priority around the world. Motivations to address e-waste include rapidly growing waste streams, concern over the environmental fate of heavy metals and other substances in e-waste, and impacts of informal recycling in developing countries. Policy responses to global e-waste focus on banning international trade in end-of-life electronics, the premise being that e-waste is mainly generated in the developed world and then exported to the developing world. Sales of electronics have, however, been growing rapidly in developing nations, raising the question of whether informal recycling in developing countries driven by international trade or domestic generation. This paper addresses this question by forecasting the global generation of obsolete personal computers (PCs) using the logistic model and material flow analysis. Results show that the volume of obsolete PCs generated in developing regions will exceed that of developed regions by 2016-2018. By 2030, the obsolete PCs from developing regions will reach 400-700 million units, far more than from developed regions at 200-300 million units. Future policies to mitigate the impacts of informal recycling should address the domestic situation in developing countries.

  11. The magnitude of basset forces in unsteady multiphase flow computations

    SciTech Connect

    Li, L.; Michaelides, E.E. . Dept. of Mechanical Engineering)

    1992-09-01

    This paper reports on the equation of motion of a small spherical particle moving in a fluid which is solved numerically with the radius of the sphere and the ratio of fluid to particle densities being parameters. The Basset force term is computed and compared to the total force on the particle for the case of turbulent flow in a duct. It is found that the Basset force may be neglected in the equation of motion of the particle only when the fluid to particle density ratio is very high and the particle diameter is greater than 1[mu]m. A dimensional analysis is also performed for the case when the particle size and the characteristic flow dimension are of the same order of magnitude. In the latter case, it is deduced that the Basset force is significant whenever the flow Reynolds number is greater than one.

  12. Macromolecular Entropy Can Be Accurately Computed from Force.

    PubMed

    Hensen, Ulf; Gräter, Frauke; Henchman, Richard H

    2014-11-11

    A method is presented to evaluate a molecule's entropy from the atomic forces calculated in a molecular dynamics simulation. Specifically, diagonalization of the mass-weighted force covariance matrix produces eigenvalues which in the harmonic approximation can be related to vibrational frequencies. The harmonic oscillator entropies of each vibrational mode may be summed to give the total entropy. The results for a series of hydrocarbons, dialanine and a β hairpin are found to agree much better with values derived from thermodynamic integration than results calculated using quasiharmonic analysis. Forces are found to follow a harmonic distribution more closely than coordinate displacements and better capture the underlying potential energy surface. The method's accuracy, simplicity, and computational similarity to quasiharmonic analysis, requiring as input force trajectories instead of coordinate trajectories, makes it readily applicable to a wide range of problems.

  13. Using GPUs to Meet Next Generation Weather Model Computational Requirements

    NASA Astrophysics Data System (ADS)

    Govett, M.; Hart, L.; Henderson, T.; Middlecoff, J.; Tierney, C.

    2008-12-01

    Weather prediction goals within the Earth Science Research Laboratory at NOAA require significant increases in model resolution (~1 km) and forecast durations (~60 days) to support expected requirements in 5 years or less. However, meeting these goals will likely require at least 100k dedicated cores. Few systems will exist that could even run such a large problem, much less house a facility that could provide the necessary power and cooling requirements. To meet our goals we are exploring alternative technologies, including Graphics Processing Units (GPU), that could provide significantly more computational performance and reduced power and cooling requirements, at a lower cost than traditional high-performance computing solutions. Our current global numerical weather prediction model, the Flow following finite-volume Isocahedral Model (FIM, http://fim.noaa.gov), is still early in its development but is already demonstrating good fidelity and excellent scalability to 1000s of cores. The icosahedral grid has several complexities not present in more traditional Cartesian grids including polygons with different numbers of sides (five and six) and non-trivial computation of locations of neighboring grid cells. FIM uses an indirect addressing scheme that yields very compact code despite these complexities. We have extracted computational kernels that encompass functions likely to take the most time at higher resolutions including all that have horizontal dependencies. Kernels implement equations for computing anti-diffusive flux-corrected transport across cell edges, calculating forcing terms and time-step differencing, and re-computing time-dependent vertical coordinates. We are extending these kernels to explore performance of GPU-specific optimizations. We will present initial performance results from the computational kernels of the FIM model, as well as the challenges related to porting code with indirect memory references to the NVIDIA GPUs. Results of this

  14. First Estimates of the Radiative Forcing of Aerosols Generated from Biomass Burning using Satellite Data

    NASA Technical Reports Server (NTRS)

    Chistopher, Sundar A.; Kliche, Donna V.; Chou, Joyce; Welch, Ronald M.

    1996-01-01

    Collocated measurements from the Advanced Very High Resolution Radiometer (AVHRR) and the Earth Radiation Budget Experiment (ERBE) scanner are used to examine the radiative forcing of atmospheric aerosols generated from biomass burning for 13 images in South America. Using the AVHRR, Local Area Coverage (LAC) data, a new technique based on a combination of spectral and textural measures is developed for detecting these aerosols. Then, the instantaneous shortwave, longwave, and net radiative forcing values are computed from the ERBE instantaneous scanner data. Results for the selected samples from 13 images show that the mean instantaneous net radiative forcing for areas with heavy aerosol loading is about -36 W/sq m and that for the optically thin aerosols are about -16 W/sq m. These results, although preliminary, provide the first estimates of radiative forcing of atmospheric aerosols from biomass burning using satellite data.

  15. First Estimates of the Radiative Forcing of Aerosols Generated from Biomass Burning Using Satellite Data

    NASA Technical Reports Server (NTRS)

    Christopher, Sundar A.; Kliche, Donna A.; Chou, Joyce; Welch, Ronald M.

    1996-01-01

    Collocated measurements from the Advanced Very High Resolution Radiometer (AVHRR) and the Earth Radiation Budget Experiment (ERBE) scanner are used to examine the radiative forcing of atmospheric aerosols generated from biomass burning for 13 images in South America. Using the AVHRR, Local Area Coverage (LAC) data, a new technique based on a combination of spectral and textural measures is developed for detecting these aerosols. Then, the instantaneous shortwave, longwave, and net radiative forcing values are computed from the ERBE instantaneous scanner data. Results for the selected samples from 13 images show that the mean instantaneous net radiative forcing for areas with heavy aerosol loading is about -36 W/sq m and that for the optically thin aerosols are about -16 W/sq m. These results, although preliminary, provide the first estimates of radiative forcing of atmospheric aerosols from biomass burning using satellite data.

  16. The Effects of Forcing Modes on the Simulations of Tidally Generated Internal Bores and Solitons

    NASA Astrophysics Data System (ADS)

    Piacsek, S.; Warn-Varnas, A.; Smolarkiewicz, P.; Martin, P.

    2008-12-01

    Numerical experiments were performed on the generation of internal waves by barotropic tidal currents flowing over strongly varying topography, such as sills in straits. The studies concentrated on two aspects of the simulations: (a) the amplitude of the generated waves as functions of tidal velocities, and (b) amplitudes obtained with different modes of forcing prescriptions, such as boundary vs. volume forcing, or analytic vs. model-generated currents. The tidal velocities were obtained from three tidal components, the M2, K1 and O1 tides, and the model currents were computed with a hydrostatic model. In the boundary-forcing approach, the current variations are prescribed as normal inflow at the respective boundaries. In the volume-forcing approach, the currents are prescribed at all interior points, with the model currents already adapted to the interior topography, but the analytic sinusoidal currents had to undergo a flux-conservation modification. Simulations over both idealized topographies, and the sills of the Luzon Strait and South China Sea were carried out. Propagation comparisons were also made with those of the "shape-preserving", analytically constructed type solitons (solutions of the KDV equation).. For tidal currents in the 10-30 cm/sec range, the generated perturbation densities typically ranged peak-to-peak from 1.6 to 3.5 kg/m3, and the vertical velocities from 25 to 70 cm/sec. The analytic solitons maintained their amplitudes during propagation better than the tidally-generated signals.

  17. Wavefront reconstruction using computer-generated holograms

    NASA Astrophysics Data System (ADS)

    Schulze, Christian; Flamm, Daniel; Schmidt, Oliver A.; Duparré, Michael

    2012-02-01

    We propose a new method to determine the wavefront of a laser beam, based on modal decomposition using computer-generated holograms (CGHs). Thereby the beam under test illuminates the CGH with a specific, inscribed transmission function that enables the measurement of modal amplitudes and phases by evaluating the first diffraction order of the hologram. Since we use an angular multiplexing technique, our method is innately capable of real-time measurements of amplitude and phase, yielding the complete information about the optical field. A measurement of the Stokes parameters, respectively of the polarization state, provides the possibility to calculate the Poynting vector. Two wavefront reconstruction possibilities are outlined: reconstruction from the phase for scalar beams and reconstruction from the Poynting vector for inhomogeneously polarized beams. To quantify single aberrations, the reconstructed wavefront is decomposed into Zernike polynomials. Our technique is applied to beams emerging from different kinds of multimode optical fibers, such as step-index, photonic crystal and multicore fibers, whereas in this work results are exemplarily shown for a step-index fiber and compared to a Shack-Hartmann measurement that serves as a reference.

  18. Computer-generated holograms recorded in bacteriorhodopsin

    NASA Astrophysics Data System (ADS)

    Guessous, Fouad; Juchem, Thorsten; Hampp, Norbert A.

    2004-06-01

    Computer-generated holograms (CGH's) of phase modulation type have been designed and fabricated in the biological material Bacteriorhodopsin (BR). BR is a photochromic retinal protein which may be used in optical data storage and security applications. Using the permanent light-inducible refractive index change of BR, we demonstrate that both analog and digital optical data can be stored in this material in a write-once-read-many (WORM) mode. The calculation and the optimization of the phase function of the CGH's have been accomplished with iterative Fourier transform algorithm methods (IFTA) such as error reduction algorithms. In the fabrication procedure the optimized phase functions of the CGH's have been recorded in BR which was coated onto a glass substrate. A direct laser writing process employing the 532 nm line of a cw-Nd:YAG laser was used for recording the CGH as a modulation of the absorption coefficient as well as of the refractive index. The design and fabrication method of the CGHs with a pixel pitch of 20 μm and a total size of 10 mm x 10 mm are presented.

  19. Computational optical palpation: micro-scale force mapping using finite-element methods (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wijesinghe, Philip; Sampson, David D.; Kennedy, Brendan F.

    2016-03-01

    Accurate quantification of forces, applied to, or generated by, tissue, is key to understanding many biomechanical processes, fabricating engineered tissues, and diagnosing diseases. Many techniques have been employed to measure forces; in particular, tactile imaging - developed to spatially map palpation-mimicking forces - has shown potential in improving the diagnosis of cancer on the macro-scale. However, tactile imaging often involves the use of discrete force sensors, such as capacitive or piezoelectric sensors, whose spatial resolution is often limited to 1-2 mm. Our group has previously presented a type of tactile imaging, termed optical palpation, in which the change in thickness of a compliant layer in contact with tissue is measured using optical coherence tomography, and surface forces are extracted, with a micro-scale spatial resolution, using a one-dimensional spring model. We have also recently combined optical palpation with compression optical coherence elastography (OCE) to quantify stiffness. A main limitation of this work, however, is that a one-dimensional spring model is insufficient in describing the deformation of mechanically heterogeneous tissue with uneven boundaries, generating significant inaccuracies in measured forces. Here, we present a computational, finite-element method, which we term computational optical palpation. In this technique, by knowing the non-linear mechanical properties of the layer, and from only the axial component of displacement measured by phase-sensitive OCE, we can estimate, not only the axial forces, but the three-dimensional traction forces at the layer-tissue interface. We use a non-linear, three-dimensional model of deformation, which greatly increases the ability to accurately measure force and stiffness in complex tissues.

  20. Frequency spectra of magnetostrictive and Lorentz forces generated in ferromagnetic materials by a CW excited EMAT

    NASA Astrophysics Data System (ADS)

    Rouge, C.; Lhémery, A.; Aristégui, C.

    2014-04-01

    Magnetostriction arises in ferromagnetic materials subjected to magnetization, e.g., when an EMAT (Electro-Magnetic Acoustic Transducer) is used to generate ultrasonic waves. In such a case, the magnetostriction force must be taken into account as a transduction process that adds up to the Lorentz force. When the static magnetic field is high compared to the dynamic field, both forces are driven by the excitation frequency. For lower static relative values of the magnetic fields, the Lorentz force comprises both the excitation frequency and its first harmonic. In this work, a model is derived to predict the frequency content of the magnetostrictive force that comprises several harmonics. The discrete frequency spectrum strongly depends on both the static field and the relative amplitude of the dynamic field. The only material input data needed to predict it is the curve of macroscopic magnetostrictive strain that can be measured in the direction of an imposed magnetic field. Then, the various frequency-dependent distributions of Lorentz and magnetostriction body forces can be transformed into equivalent surface stresses. Examples of computation are given for different static and dynamic magnetic fields to study their influence on the frequency content of waves generated in ferromagnetic materials.

  1. Computational tools for calculating alternative muscle force patterns during motion: a comparison of possible solutions.

    PubMed

    Martelli, Saulo; Calvetti, Daniela; Somersalo, Erkki; Viceconti, Marco; Taddei, Fulvia

    2013-08-09

    Comparing the available electromyography (EMG) and the related uncertainties with the space of muscle forces potentially driving the same motion can provide insights into understanding human motion in healthy and pathological neuromotor conditions. However, it is not clear how effective the available computational tools are in completely sample the possible muscle forces. In this study, we compared the effectiveness of Metabolica and the Null-Space algorithm at generating a comprehensive spectrum of possible muscle forces for a representative motion frame. The hip force peak during a selected walking trial was identified using a lower-limb musculoskeletal model. The joint moments, the muscle lever arms, and the muscle force constraints extracted from the model constituted the indeterminate equilibrium equation at the joints. Two spectra, each containing 200,000 muscle force samples, were calculated using Metabolica and the Null-Space algorithm. The full hip force range was calculated using optimization and compared with the hip force ranges derived from the Metabolica and the Null-Space spectra. The Metabolica spectrum spanned a much larger force range than the NS spectrum, reaching 811N difference for the gluteus maximus intermediate bundle. The Metabolica hip force range exhibited a 0.3-0.4 BW error on the upper and lower boundaries of the full hip force range (3.4-11.3 BW), whereas the full range was imposed in the NS spectrum. The results suggest that Metabolica is well suited for exhaustively sample the spectrum of possible muscle recruitment strategy. Future studies will investigate the muscle force range in healthy and pathological neuromotor conditions.

  2. Explorations in Space and Time: Computer-Generated Astronomy Films

    ERIC Educational Resources Information Center

    Meeks, M. L.

    1973-01-01

    Discusses the use of the computer animation technique to travel through space and time and watch models of astronomical systems in motion. Included is a list of eight computer-generated demonstration films entitled Explorations in Space and Time.'' (CC)

  3. A method of billing third generation computer users

    NASA Technical Reports Server (NTRS)

    Anderson, P. N.; Hyter, D. R.

    1973-01-01

    A method is presented for charging users for the processing of their applications on third generation digital computer systems is presented. For background purposes, problems and goals in billing on third generation systems are discussed. Detailed formulas are derived based on expected utilization and computer component cost. These formulas are then applied to a specific computer system (UNIVAC 1108). The method, although possessing some weaknesses, is presented as a definite improvement over use of second generation billing methods.

  4. Force- and moment-generating capacities of muscles in the distal forelimb of the horse.

    PubMed

    Brown, Nicholas A T; Pandy, Marcus G; Kawcak, Christopher E; McIlwraith, C Wayne

    2003-07-01

    A detailed musculoskeletal model of the distal equine forelimb was developed to study the influence of musculoskeletal geometry (i.e. muscle paths) and muscle physiology (i.e. force-length properties) on the force- and moment-generating capacities of muscles crossing the carpal and metacarpophalangeal joints. The distal forelimb skeleton was represented as a five degree-of-freedom kinematic linkage comprised of eight bones (humerus, radius and ulna combined, proximal carpus, distal carpus, metacarpus, proximal phalanx, intermediate phalanx and distal phalanx) and seven joints (elbow, radiocarpal, intercarpal, carpometacarpal, metacarpophalangeal (MCP), proximal interphalangeal (pastern) and distal interphalangeal (coffin)). Bone surfaces were reconstructed from computed tomography scans obtained from the left forelimb of a Thoroughbred horse. The model was actuated by nine muscle-tendon units. Each unit was represented as a three-element Hill-type muscle in series with an elastic tendon. Architectural parameters specifying the force-producing properties of each muscle-tendon unit were found by dissecting seven forelimbs from five Thoroughbred horses. Maximum isometric moments were calculated for a wide range of joint angles by fully activating the extensor and flexor muscles crossing the carpus and MCP joint. Peak isometric moments generated by the flexor muscles were an order of magnitude greater than those generated by the extensor muscles at both the carpus and the MCP joint. For each flexor muscle in the model, the shape of the maximum isometric joint moment-angle curve was dominated by the variation in muscle force. By contrast, the moment-angle curves for the muscles that extend the MCP joint were determined mainly by the variation in muscle moment arms. The suspensory and check ligaments contributed more than half of the total support moment developed about the MCP joint in the model. When combined with appropriate in vivo measurements of joint kinematics

  5. Generation of living cell arrays for atomic force microscopy studies.

    PubMed

    Formosa, Cécile; Pillet, Flavien; Schiavone, Marion; Duval, Raphaël E; Ressier, Laurence; Dague, Etienne

    2015-01-01

    Atomic force microscopy (AFM) is a useful tool for studying the morphology or the nanomechanical and adhesive properties of live microorganisms under physiological conditions. However, to perform AFM imaging, living cells must be immobilized firmly enough to withstand the lateral forces exerted by the scanning tip, but without denaturing them. This protocol describes how to immobilize living cells, ranging from spores of bacteria to yeast cells, into polydimethylsiloxane (PDMS) stamps, with no chemical or physical denaturation. This protocol generates arrays of living cells, allowing statistically relevant measurements to be obtained from AFM measurements, which can increase the relevance of results. The first step of the protocol is to generate a microstructured silicon master, from which many microstructured PDMS stamps can be replicated. Living cells are finally assembled into the microstructures of these PDMS stamps using a convective and capillary assembly. The complete procedure can be performed in 1 week, although the first step is done only once, and thus repeats can be completed within 1 d.

  6. Evidence for an electrostatic mechanism of force generation by the bacteriophage T4 DNA packaging motor

    NASA Astrophysics Data System (ADS)

    Migliori, Amy D.; Keller, Nicholas; Alam, Tanfis I.; Mahalingam, Marthandan; Rao, Venigalla B.; Arya, Gaurav; Smith, Douglas E.

    2014-06-01

    How viral packaging motors generate enormous forces to translocate DNA into viral capsids remains unknown. Recent structural studies of the bacteriophage T4 packaging motor have led to a proposed mechanism wherein the gp17 motor protein translocates DNA by transitioning between extended and compact states, orchestrated by electrostatic interactions between complimentarily charged residues across the interface between the N- and C-terminal subdomains. Here we show that site-directed alterations in these residues cause force dependent impairments of motor function including lower translocation velocity, lower stall force and higher frequency of pauses and slips. We further show that the measured impairments correlate with computed changes in free-energy differences between the two states. These findings support the proposed structural mechanism and further suggest an energy landscape model of motor activity that couples the free-energy profile of motor conformational states with that of the ATP hydrolysis cycle.

  7. Force Generation, Polymerization Dynamics and Nucleation of Actin Filaments

    NASA Astrophysics Data System (ADS)

    Wang, Ruizhe

    We study force generation and actin filament dynamics using stochastic and deterministic methods. First, we treat force generation of bundled actin filaments by polymerization via molecular-level stochastic simulations. In the widely-used Brownian Ratchet model, actin filaments grow freely whenever the tip-obstacle gap created by thermal fluctuation exceeds the monomer size. We name this model the Perfect Brownian Ratchet (PBR) model. In the PBR model, actin monomer diffusion is treated implicitly. We perform a series of simulations based on the PBR, in which obstacle motion is treated explicitly; in most previous studies, obstacle motion has been treated implicitly. We find that the cooperativity of filaments is generally weak in the PBR model, meaning that more filaments would grow more slowly given the same force per filament. Closed-form formulas are also developed, which match the simulation results. These portable and accurate formulas provide guidance for experiments and upper and lower bounds for theoretical analyses. We also studied a variation of the PBR, called the Diffusing Brownian Ratchet (DBR) model, in which both actin monomer and obstacle diffusion are treated explicitly. We find that the growth rate of multiple filaments is even lower, compared with that in PBR. This finding challenges the widely-accepted PBR assumption and suggests that pushing the study of actin dynamics down to the sub-nanometer level yields new insights. We subsequently used a rate equation approach to model the effect of local depletion of actin monomers on the nucleation of actin filaments on biomimetic beads, and how the effect is regulated by capping protein (CP). We find that near the bead surface, a higher CP concentration increases local actin concentration, which leads to an enhanced activities of actin filaments' nucleation. Our model analysis matches the experimental results and lends support to an important but undervalued hypothesis proposed by Carlier and

  8. Direct computation of parameters for accurate polarizable force fields

    SciTech Connect

    Verstraelen, Toon Vandenbrande, Steven; Ayers, Paul W.

    2014-11-21

    We present an improved electronic linear response model to incorporate polarization and charge-transfer effects in polarizable force fields. This model is a generalization of the Atom-Condensed Kohn-Sham Density Functional Theory (DFT), approximated to second order (ACKS2): it can now be defined with any underlying variational theory (next to KS-DFT) and it can include atomic multipoles and off-center basis functions. Parameters in this model are computed efficiently as expectation values of an electronic wavefunction, obviating the need for their calibration, regularization, and manual tuning. In the limit of a complete density and potential basis set in the ACKS2 model, the linear response properties of the underlying theory for a given molecular geometry are reproduced exactly. A numerical validation with a test set of 110 molecules shows that very accurate models can already be obtained with fluctuating charges and dipoles. These features greatly facilitate the development of polarizable force fields.

  9. Magnetic resonance force microscopy and a solid state quantum computer.

    SciTech Connect

    Pelekhov, D. V.; Martin, I.; Suter, A.; Reagor, D. W.; Hammel, P. C.

    2001-01-01

    A Quantum Computer (QC) is a device that utilizes the principles of Quantum Mechanics to perform computations. Such a machine would be capable of accomplishing tasks not achievable by means of any conventional digital computer, for instance factoring large numbers. Currently it appears that the QC architecture based on an array of spin quantum bits (qubits) embedded in a solid-state matrix is one of the most promising approaches to fabrication of a scalable QC. However, the fabrication and operation of a Solid State Quantum Computer (SSQC) presents very formidable challenges; primary amongst these are: (1) the characterization and control of the fabrication process of the device during its construction and (2) the readout of the computational result. Magnetic Resonance Force Microscopy (MRFM)--a novel scanning probe technique based on mechanical detection of magnetic resonance-provides an attractive means of addressing these requirements. The sensitivity of the MRFM significantly exceeds that of conventional magnetic resonance measurement methods, and it has the potential for single electron spin detection. Moreover, the MRFM is capable of true 3D subsurface imaging. These features will make MRFM an invaluable tool for the implementation of a spin-based QC. Here we present the general principles of MRFM operation, the current status of its development and indicate future directions for its improvement.

  10. The RANDOM computer program: A linear congruential random number generator

    NASA Technical Reports Server (NTRS)

    Miles, R. F., Jr.

    1986-01-01

    The RANDOM Computer Program is a FORTRAN program for generating random number sequences and testing linear congruential random number generators (LCGs). The linear congruential form of random number generator is discussed, and the selection of parameters of an LCG for a microcomputer described. This document describes the following: (1) The RANDOM Computer Program; (2) RANDOM.MOD, the computer code needed to implement an LCG in a FORTRAN program; and (3) The RANCYCLE and the ARITH Computer Programs that provide computational assistance in the selection of parameters for an LCG. The RANDOM, RANCYCLE, and ARITH Computer Programs are written in Microsoft FORTRAN for the IBM PC microcomputer and its compatibles. With only minor modifications, the RANDOM Computer Program and its LCG can be run on most micromputers or mainframe computers.

  11. Third Generation Educational Use of Computer Games

    ERIC Educational Resources Information Center

    Egenfeldt-Nielsen, Simon

    2007-01-01

    This article outlines the characteristics and problems related to edutainment and of the associated research studies demonstrating that learning outcomes looks promising. The article suggests that we are moving towards a new generation of educational use of games that is more inclusive. This new generation relies on constructivist learning…

  12. 2nd Generation QUATARA Flight Computer Project

    NASA Technical Reports Server (NTRS)

    Falker, Jay; Keys, Andrew; Fraticelli, Jose Molina; Capo-Iugo, Pedro; Peeples, Steven

    2015-01-01

    Single core flight computer boards have been designed, developed, and tested (DD&T) to be flown in small satellites for the last few years. In this project, a prototype flight computer will be designed as a distributed multi-core system containing four microprocessors running code in parallel. This flight computer will be capable of performing multiple computationally intensive tasks such as processing digital and/or analog data, controlling actuator systems, managing cameras, operating robotic manipulators and transmitting/receiving from/to a ground station. In addition, this flight computer will be designed to be fault tolerant by creating both a robust physical hardware connection and by using a software voting scheme to determine the processor's performance. This voting scheme will leverage on the work done for the Space Launch System (SLS) flight software. The prototype flight computer will be constructed with Commercial Off-The-Shelf (COTS) components which are estimated to survive for two years in a low-Earth orbit.

  13. Generation of random numbers on graphics processors: forced indentation in silico of the bacteriophage HK97.

    PubMed

    Zhmurov, A; Rybnikov, K; Kholodov, Y; Barsegov, V

    2011-05-12

    The use of graphics processing units (GPUs) in simulation applications offers a significant speed gain as compared to computations on central processing units (CPUs). Many simulation methods require a large number of independent random variables generated at each step. We present two approaches for implementation of random number generators (RNGs) on a GPU. In the one-RNG-per-thread approach, one RNG produces a stream of random numbers in each thread of execution, whereas the one-RNG-for-all-threads method builds on the ability of different threads to communicate, thus, sharing random seeds across an entire GPU device. We used these approaches to implement Ran2, Hybrid Taus, and Lagged Fibonacci algorithms on a GPU. We profiled the performance of these generators in terms of the computational time, memory usage, and the speedup factor (CPU time/GPU time). These generators have been incorporated into the program for Langevin simulations of biomolecules fully implemented on the GPU. The ∼250-fold computational speedup on the GPU allowed us to carry out single-molecule dynamic force measurements in silico to explore the mechanical properties of the bacteriophage HK97 in the experimental subsecond time scale. We found that the nanomechanical response of HK97 depends on the conditions of force application, including the rate of change and geometry of the mechanical perturbation. Hence, using the GPU-based implementation of RNGs, presented here, in conjunction with Langevin simulations, makes it possible to directly compare the results of dynamic force measurements in vitro and in silico.

  14. Compensation for Transport Delays Produced by Computer Image Generation Systems. Cooperative Training Series.

    ERIC Educational Resources Information Center

    Ricard, G. L.; And Others

    The cooperative Navy/Air Force project described is aimed at the problem of image-flutter encountered when visual displays that present computer generated images are used for the simulation of certain flying situations. Two experiments are described which extend laboratory work on delay compensation schemes to the simulation of formation flight in…

  15. Using lateral capillary forces to compute by self-assembly.

    PubMed

    Rothemund, P W

    2000-02-01

    Investigations of DNA computing have highlighted a fundamental connection between self-assembly (SA) and computation: in principle, any computation can be performed by a suitable self-assembling system. In practice, exploration of this connection is limited by our ability to control the geometry and specificity of binding interactions. Recently, a system has been developed that uses surface tension to assemble plastic tiles according to shape complementarity and likeness of wetting [Bowden, N., Terfort, A., Carbeck, J. & Whitesides, G. M. (1997) Science 276, 233-235]. Here the capacity of this system to compute by SA is explored. Tiles were prepared to test the system's ability to generate three structures of increasing complexity: a periodic checkerboard tiling, an aperiodic Penrose tiling, and a computational tiling that simulates a one-dimensional cellular automaton. Matching rules for these tilings were enforced by coating tiles with patterns of hydrophobic and hydrophilic patches or wetting codes. Energetic, kinetic, and mechanistic details of SA explain differences between experimental structures and mathematically ideal ones. In particular, the growth mechanism observed appears incompatible with computations that make use of a chosen input.

  16. Computer-Generated Diagrams for the Classroom.

    ERIC Educational Resources Information Center

    Carle, Mark A.; Greenslade, Thomas B., Jr.

    1986-01-01

    Describes 10 computer programs used to draw diagrams usually drawn on chalkboards, such as addition of three vectors, vector components, range of a projectile, lissajous figures, beats, isotherms, Snell's law, waves passing through a lens, magnetic field due to Helmholtz coils, and three curves. Several programming tips are included. (JN)

  17. Effect of gust on force generation around a robotic hummingbird wing

    NASA Astrophysics Data System (ADS)

    Marquez, Eloy; Tian, Ruijun; Shu, Fangjun

    2012-11-01

    Among the computational, theoretical and experimental studies on the high efficiency flapping flight, many are focused on the mystery of hovering. Most of these studies were conducted under steady in flow conditions. However, real-life ornithopters in the field have to routinely tackle gust and directional changes of the wind. These sudden perturbations could produce significant effect on humming bird hovering due to the small Reynolds numbers. Our experimental work was performed in a water channel using a two degree-of-freedom humming bird model. The dynamic response of the hovering motion to gust from different directions was investigated. PIV was used to measure the effect of the gust on the surrounding flow field including vortex evolution. In addition, a six-component force/torque sensor was used to measure the real-time lift and drag forces generated by the wing with and without gust. Results show that gust changes the magnitude of lift force in one stroke. However, the time-averaged lift force keeps approximately constant. Supported by Army High Performance Computing Center.

  18. Air Force Weapons Laboratory Computational Requirements for 1976 Through 1980

    DTIC Science & Technology

    1976-01-01

    Air Force Weapons Laboratory , Attn: DYS, Kirtland AFB, NM 87117...final report was prepared by the Air Force Weapons Laboratory , Kirtland Air Force Base, New Mexico under Job Order 06CB. Dr. Clifford E. Rhoades, Jr... Force Base, New Mexico 87117 62601F, 06CB II. CONTROLLING OFFICE NAME AND ADDRESS Ai"- Force Weapons Laboratory / Jan 1076 Kirtland Air Force Base,

  19. Computational Simulation of Explosively Generated Pulsed Power Devices

    DTIC Science & Technology

    2013-03-21

    COMPUTATIONAL SIMULATION OF EXPLOSIVELY GENERATED PULSED POWER DEVICES THESIS Mollie C. Drumm, Captain, USAF AFIT-ENY-13-M-11 DEPARTMENT OF THE AIR...copyright protection in the United States. AFIT-ENY-13-M-11 COMPUTATIONAL SIMULATION OF EXPLOSIVELY GENERATED PULSED POWER DEVICES THESIS Presented to the...OF EXPLOSIVELY GENERATED PULSED POWER DEVICES Mollie C. Drumm, BS Captain, USAF Approved: Dr. Robert B. Greendyke (Chairman) Date Capt. David Liu

  20. Computer Controlled MHD Power Consolidation and Pulse Generation System

    DTIC Science & Technology

    2007-11-02

    4465 Publication Date: Aug 01,1990 Title: Computer Controlled MHD Power Consolidation and Pulse Generation System Personal Author: Johnson, R...of Copies In Library: 000001 Record ID: 26725 : Computer Controlled MHD Power Consolidation and Pulse Generation System Final Technical Progress...Four-pulse CI System For A Diagonally Connected MHD Generator 14 9 Diagonal Output Voltage for Rsource =10 ohms, Rload = 1 ohm 16 10 Diagonal

  1. SRG - SCHEDULE REPORT GENERATOR COMPUTER PROGRAM

    NASA Technical Reports Server (NTRS)

    Collazo, F. F.

    1994-01-01

    The Schedule Organizer, SO (COSMIC Program MSC-21525), Schedule Tracker, ST (COSMIC Program MSC-21526), and Schedule Report Generator, SRG, are programs that manipulate data base files in ways that are advantageous to scheduling applications. Originally designed for the Space Shuttle flight schedule, the program can be easily modified for other scheduling situations. Schedule Organizer provides a simple method for generating distribution lists. These distribution lists contain readers' names for each task schedule defined by the input files. Schedule Tracker provides an effective method for tracking tasks that are 'past due' and/or 'near term'. ST generates reports for each responsible staff member with one or more assigned tasks that fall within the two listed categories. This enables an engineering manager to monitor tasks assigned to staff by running ST on a weekly basis. ST only lists tasks on reports that have become past due or are schedule for recent completion (near term). Schedule Reports Generator provides a simple method for generating periodic schedule reports. SRG enables an engineering manager to monitor tasks assigned to staff members on a weekly basis. SRG sorts three types of reports using one or more data fields as sort keys. One type is sorted using the calendar year as the primary key and the end date as the secondary key. Another type is sorted by flight number. A third type of report, Waterfall plots, is also generated by SRG using the end date as the sorting key. SRG requires as input a single file or two concatenated files with up to 400 single line entries. The user constructs the input file by using the LSE editor VAX utility prior to the execution of the program. The user is able to modify the current functional description text lines just displayed. ST and SRG use the same data base file as input. The common data base file has a maximum number of 400 entries. The time span of all three programs is nineteen months. Both of these maximum

  2. F-actin cross-linking enhances the stability of force generation in disordered actomyosin networks

    NASA Astrophysics Data System (ADS)

    Jung, Wonyeong; Murrell, Michael P.; Kim, Taeyoon

    2015-12-01

    Myosin molecular motors and actin cross-linking proteins (ACPs) are known to mediate the generation and transmission of mechanical forces within the cortical F-actin cytoskeleton that drive major cellular processes such as cell division and migration. However, how motors and ACPs interact collectively over diverse timescales to modulate the time-dependent mechanical properties of the cytoskeleton remains unclear. In this study, we present a three-dimensional agent-based computational model of the cortical actomyosin network to quantitatively determine the effects of motor activity and the density and kinetics of ACPs on the accumulation and maintenance of mechanical tension within a disordered actomyosin network. We found that motors accumulate large stress quickly by behaving as temporary cross-linkers although this stress is relaxed over time unless there are sufficient passive ACPs to stabilize the network. Stabilization by ACPs helps motors to generate forces up to their maximum potential, leading to significant enhancement of the efficiency and stability of stress generation. Thus, we demonstrated that the force-dependent kinetics of ACP dissociation plays a critical role for the accumulation and sustainment of stress and the structural remodeling of networks.

  3. Interactive Grid Generation on Small Computers

    DTIC Science & Technology

    1990-01-31

    boundary which can generally be given as a continuum which then involves an infinite number of points, it has been called a transfinite interpolation to...to 31 Jan 90 4. TITL AND SUBTITLE S. FUNDING NUMBERS INTERACTIVE GRID GENERATION ON SMALL COIIPUTERS F49620-89-C-0096 65502F 3005/Al 0 AUTH RLS) Peter...R. Eiseman AD-A221 234 7. PERFORMING ORGANIZATION NAME(S) AND AOORESS(ES) S. PERFORMING ORGANIZATION Program Development Corporation REPORT NUMBER

  4. Illumination for Computer-Generated Images

    DTIC Science & Technology

    1973-07-01

    goal has been reached by the two following systems. An early hardware implementation of a hidden-surface algorithm done by Rougelot et al [18] at...of the object is also made a function of the distance between the point and the light source. To illustrate Warnock’s model, several pictures are...are indistinguishable, because they are painted with the same shade. On the right picture, generated with the addition of the distance parameter, a

  5. Random Number Generation for High Performance Computing

    DTIC Science & Technology

    2015-01-01

    REPORT TYPE 17. LIMITATION OF ABSTRACT 15. NUMBER OF PAGES 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 5c. PROGRAM ELEMENT NUMBER...of Distinct Pseudorandom Number Streams Based on Program Context," and "A Statistical Test Method to Quantify Inter-Streams Based on Program Context...regarding the development and implementation of the context aware pseudorandom number generator test program . Provide subject matter expertise (testing

  6. Computational Catalysis Using the Artificial Force Induced Reaction Method.

    PubMed

    Sameera, W M C; Maeda, Satoshi; Morokuma, Keiji

    2016-04-19

    The artificial force induced reaction (AFIR) method in the global reaction route mapping (GRRM) strategy is an automatic approach to explore all important reaction paths of complex reactions. Most traditional methods in computational catalysis require guess reaction paths. On the other hand, the AFIR approach locates local minima (LMs) and transition states (TSs) of reaction paths without a guess, and therefore finds unanticipated as well as anticipated reaction paths. The AFIR method has been applied for multicomponent organic reactions, such as the aldol reaction, Passerini reaction, Biginelli reaction, and phase-transfer catalysis. In the presence of several reactants, many equilibrium structures are possible, leading to a number of reaction pathways. The AFIR method in the GRRM strategy determines all of the important equilibrium structures and subsequent reaction paths systematically. As the AFIR search is fully automatic, exhaustive trial-and-error and guess-and-check processes by the user can be eliminated. At the same time, the AFIR search is systematic, and therefore a more accurate and comprehensive description of the reaction mechanism can be determined. The AFIR method has been used for the study of full catalytic cycles and reaction steps in transition metal catalysis, such as cobalt-catalyzed hydroformylation and iron-catalyzed carbon-carbon bond formation reactions in aqueous media. Some AFIR applications have targeted the selectivity-determining step of transition-metal-catalyzed asymmetric reactions, including stereoselective water-tolerant lanthanide Lewis acid-catalyzed Mukaiyama aldol reactions. In terms of establishing the selectivity of a reaction, systematic sampling of the transition states is critical. In this direction, AFIR is very useful for performing a systematic and automatic determination of TSs. In the presence of a comprehensive description of the transition states, the selectivity of the reaction can be calculated more accurately

  7. Development of Computer-Generated Forces for Air Force Security Forces Distributed Mission Training

    DTIC Science & Technology

    2002-10-01

    the Program Engineer on the Catapult Launch Systems Trainer program. His strengths are in modeling and simulation R&D, primarily in the areas of...reports “ Snakes in the Eagle’s Nest” (Vick, 1995) and “Check Six Begins on the Ground” (Shlapak & Vick,1995) are primary training references for... Snakes in the eagle’s nest: A history of ground attacks on air bases (MR-553-AF). Santa Monica, CA: Rand Corp. Weeks, J., Garza, J., Archuleta, M

  8. Computer simulation of photophoretic force on rapidly vaporizing heterogeneous droplet

    SciTech Connect

    Sitarski, M.A. )

    1994-01-01

    The theoretical/computational study is focused on the photophoretic (radiometric) effect caused by nonuniform absorption of anisotropic, high-temperature thermal radiation within a layered droplet. Transient values of the photophoretic force acting on the shrinking droplet are estimated by numerical integration of the momentum flux carried by vapor molecules interacting with the droplet's surface of nonuniform temperature. The corresponding stress tensor of the surrounding nonequilibrium gas is calculated by application of the results of the kinetic theory of evaporation of small droplet suspended in its own vapor. The radiant heat dissipation within the microheterogeneous, layered droplet is simulated by an application of the Monte Carlo method. Specific computations are performed for small droplets of ultrafine coal-water slurry (CWS) suspended in superheated steam and irradiated from one side to a high-temperature blackbody radiation. The conditions are simulating the situation of primary atomized CWS droplets facing the thermal radiation of a flame front during the first few msec in a gas turbine combustor. 26 refs., 2 figs.

  9. Generate rigorous pyrolysis models for olefins production by computer

    SciTech Connect

    Klein, M.T.; Broadbelt, L.J.; Grittman, D.H.

    1997-04-01

    With recent advances in the automation of the model-building process for large networks of kinetic equations, it may become feasible to generate computer pyrolysis models for naphthas and gas oil feedstocks. The potential benefit of a rigorous mechanistic model for these relatively complex liquid feedstocks is great, due to diverse characterizations and yield spectrums. An ethane pyrolysis example is used to illustrate the computer generation of reaction mechanism models.

  10. Computer-Generated Phase Diagrams for Binary Mixtures.

    ERIC Educational Resources Information Center

    Jolls, Kenneth R.; And Others

    1983-01-01

    Computer programs that generate projections of thermodynamic phase surfaces through computer graphics were used to produce diagrams representing properties of water and steam and the pressure-volume-temperature behavior of most of the common equations of state. The program, program options emphasizing thermodynamic features of interest, and…

  11. Force Generation by Molecular-Motor-Powered Microtubule Bundles; Implications for Neuronal Polarization and Growth

    PubMed Central

    Jakobs, Maximilian; Franze, Kristian; Zemel, Assaf

    2015-01-01

    The heavily cross-linked microtubule (MT) bundles found in neuronal processes play a central role in the initiation, growth and maturation of axons and dendrites; however, a quantitative understanding of their mechanical function is still lacking. We here developed computer simulations to investigate the dynamics of force generation in 1D bundles of MTs that are cross-linked and powered by molecular motors. The motion of filaments and the forces they exert are investigated as a function of the motor type (unipolar or bipolar), MT density and length, applied load, and motor connectivity. We demonstrate that only unipolar motors (e.g., kinesin-1) can provide the driving force for bundle expansion, while bipolar motors (e.g., kinesin-5) oppose it. The force generation capacity of the bundles is shown to depend sharply on the fraction of unipolar motors due to a percolation transition that must occur in the bundle. Scaling laws between bundle length, force, MT length and motor fraction are presented. In addition, we investigate the dynamics of growth in the presence of a constant influx of MTs. Beyond a short equilibration period, the bundles grow linearly in time. In this growth regime, the bundle extends as one mass forward with most filaments sliding with the growth velocity. The growth velocity is shown to be dictated by the inward flux of MTs, to inversely scale with the load and to be independent of the free velocity of the motors. These findings provide important molecular-level insights into the mechanical function of the MT cytoskeleton in normal axon growth and regeneration after injury. PMID:26617489

  12. Force Generation by Molecular-Motor-Powered Microtubule Bundles; Implications for Neuronal Polarization and Growth.

    PubMed

    Jakobs, Maximilian; Franze, Kristian; Zemel, Assaf

    2015-01-01

    The heavily cross-linked microtubule (MT) bundles found in neuronal processes play a central role in the initiation, growth and maturation of axons and dendrites; however, a quantitative understanding of their mechanical function is still lacking. We here developed computer simulations to investigate the dynamics of force generation in 1D bundles of MTs that are cross-linked and powered by molecular motors. The motion of filaments and the forces they exert are investigated as a function of the motor type (unipolar or bipolar), MT density and length, applied load, and motor connectivity. We demonstrate that only unipolar motors (e.g., kinesin-1) can provide the driving force for bundle expansion, while bipolar motors (e.g., kinesin-5) oppose it. The force generation capacity of the bundles is shown to depend sharply on the fraction of unipolar motors due to a percolation transition that must occur in the bundle. Scaling laws between bundle length, force, MT length and motor fraction are presented. In addition, we investigate the dynamics of growth in the presence of a constant influx of MTs. Beyond a short equilibration period, the bundles grow linearly in time. In this growth regime, the bundle extends as one mass forward with most filaments sliding with the growth velocity. The growth velocity is shown to be dictated by the inward flux of MTs, to inversely scale with the load and to be independent of the free velocity of the motors. These findings provide important molecular-level insights into the mechanical function of the MT cytoskeleton in normal axon growth and regeneration after injury.

  13. Explicit polarization: a quantum mechanical framework for developing next generation force fields.

    PubMed

    Gao, Jiali; Truhlar, Donald G; Wang, Yingjie; Mazack, Michael J M; Löffler, Patrick; Provorse, Makenzie R; Rehak, Pavel

    2014-09-16

    Conspectus Molecular mechanical force fields have been successfully used to model condensed-phase and biological systems for a half century. By means of careful parametrization, such classical force fields can be used to provide useful interpretations of experimental findings and predictions of certain properties. Yet, there is a need to further improve computational accuracy for the quantitative prediction of biomolecular interactions and to model properties that depend on the wave functions and not just the energy terms. A new strategy called explicit polarization (X-Pol) has been developed to construct the potential energy surface and wave functions for macromolecular and liquid-phase simulations on the basis of quantum mechanics rather than only using quantum mechanical results to fit analytic force fields. In this spirit, this approach is called a quantum mechanical force field (QMFF). X-Pol is a general fragment method for electronic structure calculations based on the partition of a condensed-phase or macromolecular system into subsystems ("fragments") to achieve computational efficiency. Here, intrafragment energy and the mutual electronic polarization of interfragment interactions are treated explicitly using quantum mechanics. X-Pol can be used as a general, multilevel electronic structure model for macromolecular systems, and it can also serve as a new-generation force field. As a quantum chemical model, a variational many-body (VMB) expansion approach is used to systematically improve interfragment interactions, including exchange repulsion, charge delocalization, dispersion, and other correlation energies. As a quantum mechanical force field, these energy terms are approximated by empirical functions in the spirit of conventional molecular mechanics. This Account first reviews the formulation of X-Pol, in the full variationally correct version, in the faster embedded version, and with systematic many-body improvements. We discuss illustrative examples

  14. Explicit Polarization: A Quantum Mechanical Framework for Developing Next Generation Force Fields

    PubMed Central

    2015-01-01

    Conspectus Molecular mechanical force fields have been successfully used to model condensed-phase and biological systems for a half century. By means of careful parametrization, such classical force fields can be used to provide useful interpretations of experimental findings and predictions of certain properties. Yet, there is a need to further improve computational accuracy for the quantitative prediction of biomolecular interactions and to model properties that depend on the wave functions and not just the energy terms. A new strategy called explicit polarization (X-Pol) has been developed to construct the potential energy surface and wave functions for macromolecular and liquid-phase simulations on the basis of quantum mechanics rather than only using quantum mechanical results to fit analytic force fields. In this spirit, this approach is called a quantum mechanical force field (QMFF). X-Pol is a general fragment method for electronic structure calculations based on the partition of a condensed-phase or macromolecular system into subsystems (“fragments”) to achieve computational efficiency. Here, intrafragment energy and the mutual electronic polarization of interfragment interactions are treated explicitly using quantum mechanics. X-Pol can be used as a general, multilevel electronic structure model for macromolecular systems, and it can also serve as a new-generation force field. As a quantum chemical model, a variational many-body (VMB) expansion approach is used to systematically improve interfragment interactions, including exchange repulsion, charge delocalization, dispersion, and other correlation energies. As a quantum mechanical force field, these energy terms are approximated by empirical functions in the spirit of conventional molecular mechanics. This Account first reviews the formulation of X-Pol, in the full variationally correct version, in the faster embedded version, and with systematic many-body improvements. We discuss illustrative

  15. Task III: Development of an Effective Computational Methodology for Body Force Representation of High-speed Rotor 37

    NASA Technical Reports Server (NTRS)

    Tan, Choon-Sooi; Suder, Kenneth (Technical Monitor)

    2003-01-01

    A framework for an effective computational methodology for characterizing the stability and the impact of distortion in high-speed multi-stage compressor is being developed. The methodology consists of using a few isolated-blade row Navier-Stokes solutions for each blade row to construct a body force database. The purpose of the body force database is to replace each blade row in a multi-stage compressor by a body force distribution to produce same pressure rise and flow turning. To do this, each body force database is generated in such a way that it can respond to the changes in local flow conditions. Once the database is generated, no hrther Navier-Stokes computations are necessary. The process is repeated for every blade row in the multi-stage compressor. The body forces are then embedded as source terms in an Euler solver. The method is developed to have the capability to compute the performance in a flow that has radial as well as circumferential non-uniformity with a length scale larger than a blade pitch; thus it can potentially be used to characterize the stability of a compressor under design. It is these two latter features as well as the accompanying procedure to obtain the body force representation that distinguish the present methodology from the streamline curvature method. The overall computational procedures have been developed. A dimensional analysis was carried out to determine the local flow conditions for parameterizing the magnitudes of the local body force representation of blade rows. An Euler solver was modified to embed the body forces as source terms. The results from the dimensional analysis show that the body forces can be parameterized in terms of the two relative flow angles, the relative Mach number, and the Reynolds number. For flow in a high-speed transonic blade row, they can be parameterized in terms of the local relative Mach number alone.

  16. Ab initio based polarizable force field generation and application to liquid silica and magnesia

    NASA Astrophysics Data System (ADS)

    Beck, Philipp; Brommer, Peter; Roth, Johannes; Trebin, Hans-Rainer

    2011-12-01

    We extend the program potfit, which generates effective atomic interaction potentials from ab initio data, to electrostatic interactions and induced dipoles. The potential parametrization algorithm uses the Wolf direct, pairwise summation method with spherical truncation. The polarizability of oxygen atoms is modeled with the Tangney-Scandolo interatomic force field approach. Due to the Wolf summation, the computational effort in simulation scales linearly in the number of particles, despite the presence of electrostatic interactions. Thus, this model allows to perform large-scale molecular dynamics simulations of metal oxides with realistic potentials. Details of the implementation are given, and the generation of potentials for SiO2 and MgO is demonstrated. The approach is validated by simulations of microstructural, thermodynamic, and vibrational properties of liquid silica and magnesia.

  17. Fast computation of computer-generated hologram using Xeon Phi coprocessor

    NASA Astrophysics Data System (ADS)

    Murano, Koki; Shimobaba, Tomoyoshi; Sugiyama, Atsushi; Takada, Naoki; Kakue, Takashi; Oikawa, Minoru; Ito, Tomoyoshi

    2014-10-01

    We report fast computation of computer-generated holograms (CGHs) using Xeon Phi coprocessors, which have massively x86-based processors on one chip, recently released by Intel. CGHs can generate arbitrary light wavefronts, and therefore, are promising technology for many applications: for example, three-dimensional displays, diffractive optical elements, and the generation of arbitrary beams. CGHs incur enormous computational cost. In this paper, we describe the implementations of several CGH generating algorithms on the Xeon Phi, and the comparisons in terms of the performance and the ease of programming between the Xeon Phi, a CPU and graphics processing unit (GPU).

  18. Investigation of Acoustic Fields Generated by Eddy Currents Using an Atomic Force Microscope (Postprint)

    DTIC Science & Technology

    2012-08-01

    AFRL-RX-WP-JA-2014-0230 INVESTIGATION OF ACOUSTIC FIELDS GENERATED BY EDDY CURRENTS USING AN ATOMIC FORCE MICROSCOPE (POSTPRINT) V...Institute of Physics AIR FORCE RESEARCH LABORATORY MATERIALS AND MANUFACTURING DIRECTORATE WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7750 AIR... FORCE MATERIEL COMMAND UNITED STATES AIR FORCE NOTICE AND SIGNATURE PAGE Using Government drawings, specifications, or other data included in

  19. Assessing computer waste generation in Chile using material flow analysis.

    PubMed

    Steubing, Bernhard; Böni, Heinz; Schluep, Mathias; Silva, Uca; Ludwig, Christian

    2010-03-01

    The quantities of e-waste are expected to increase sharply in Chile. The purpose of this paper is to provide a quantitative data basis on generated e-waste quantities. A material flow analysis was carried out assessing the generation of e-waste from computer equipment (desktop and laptop PCs as well as CRT and LCD-monitors). Import and sales data were collected from the Chilean Customs database as well as from publications by the International Data Corporation. A survey was conducted to determine consumers' choices with respect to storage, re-use and disposal of computer equipment. The generation of e-waste was assessed in a baseline as well as upper and lower scenarios until 2020. The results for the baseline scenario show that about 10,000 and 20,000 tons of computer waste may be generated in the years 2010 and 2020, respectively. The cumulative e-waste generation will be four to five times higher in the upcoming decade (2010-2019) than during the current decade (2000-2009). By 2020, the shares of LCD-monitors and laptops will increase more rapidly replacing other e-waste including the CRT-monitors. The model also shows the principal flows of computer equipment from production and sale to recycling and disposal. The re-use of computer equipment plays an important role in Chile. An appropriate recycling scheme will have to be introduced to provide adequate solutions for the growing rate of e-waste generation.

  20. Improved finite-difference computation of the van der Waals force: One-dimensional case

    SciTech Connect

    Pinto, Fabrizio

    2009-10-15

    We present an improved demonstration of the calculation of Casimir forces in one-dimensional systems based on the recently proposed numerical imaginary frequency Green's function computation approach. The dispersion force on two thick lossy dielectric slabs separated by an empty gap and placed within a perfectly conducting cavity is obtained from the Green's function of the modified Helmholtz equation by means of an ordinary finite-difference method. In order to demonstrate the possibility to develop algorithms to explore complex geometries in two and three dimensions to higher order in the mesh spacing, we generalize existing classical electromagnetism algebraic methods to generate the difference equations for dielectric boundaries not coinciding with any grid points. Diagnostic tests are presented to monitor the accuracy of our implementation of the method and follow-up applications in higher dimensions are introduced.

  1. User's Manual for FOMOCO Utilities-Force and Moment Computation Tools for Overset Grids

    NASA Technical Reports Server (NTRS)

    Chan, William M.; Buning, Pieter G.

    1996-01-01

    In the numerical computations of flows around complex configurations, accurate calculations of force and moment coefficients for aerodynamic surfaces are required. When overset grid methods are used, the surfaces on which force and moment coefficients are sought typically consist of a collection of overlapping surface grids. Direct integration of flow quantities on the overlapping grids would result in the overlapped regions being counted more than once. The FOMOCO Utilities is a software package for computing flow coefficients (force, moment, and mass flow rate) on a collection of overset surfaces with accurate accounting of the overlapped zones. FOMOCO Utilities can be used in stand-alone mode or in conjunction with the Chimera overset grid compressible Navier-Stokes flow solver OVERFLOW. The software package consists of two modules corresponding to a two-step procedure: (1) hybrid surface grid generation (MIXSUR module), and (2) flow quantities integration (OVERINT module). Instructions on how to use this software package are described in this user's manual. Equations used in the flow coefficients calculation are given in Appendix A.

  2. Computer generated hologram from point cloud using graphics processor.

    PubMed

    Chen, Rick H-Y; Wilkinson, Timothy D

    2009-12-20

    Computer generated holography is an extremely demanding and complex task when it comes to providing realistic reconstructions with full parallax, occlusion, and shadowing. We present an algorithm designed for data-parallel computing on modern graphics processing units to alleviate the computational burden. We apply Gaussian interpolation to create a continuous surface representation from discrete input object points. The algorithm maintains a potential occluder list for each individual hologram plane sample to keep the number of visibility tests to a minimum. We experimented with two approximations that simplify and accelerate occlusion computation. It is observed that letting several neighboring hologram plane samples share visibility information on object points leads to significantly faster computation without causing noticeable artifacts in the reconstructed images. Computing a reduced sample set via nonuniform sampling is also found to be an effective acceleration technique.

  3. Field measurement of basal forces generated by erosive debris flows

    USGS Publications Warehouse

    McCoy, S.W.; Tucker, G.E.; Kean, J.W.; Coe, J.A.

    2013-01-01

    It has been proposed that debris flows cut bedrock valleys in steeplands worldwide, but field measurements needed to constrain mechanistic models of this process remain sparse due to the difficulty of instrumenting natural flows. Here we present and analyze measurements made using an automated sensor network, erosion bolts, and a 15.24 cm by 15.24 cm force plate installed in the bedrock channel floor of a steep catchment. These measurements allow us to quantify the distribution of basal forces from natural debris‒flow events that incised bedrock. Over the 4 year monitoring period, 11 debris‒flow events scoured the bedrock channel floor. No clear water flows were observed. Measurements of erosion bolts at the beginning and end of the study indicated that the bedrock channel floor was lowered by 36 to 64 mm. The basal force during these erosive debris‒flow events had a large‒magnitude (up to 21 kN, which was approximately 50 times larger than the concurrent time‒averaged mean force), high‒frequency (greater than 1 Hz) fluctuating component. We interpret these fluctuations as flow particles impacting the bed. The resulting variability in force magnitude increased linearly with the time‒averaged mean basal force. Probability density functions of basal normal forces were consistent with a generalized Pareto distribution, rather than the exponential distribution that is commonly found in experimental and simulated monodispersed granular flows and which has a lower probability of large forces. When the bed sediment thickness covering the force plate was greater than ~ 20 times the median bed sediment grain size, no significant fluctuations about the time‒averaged mean force were measured, indicating that a thin layer of sediment (~ 5 cm in the monitored cases) can effectively shield the subjacent bed from erosive impacts. Coarse‒grained granular surges and water‒rich, intersurge flow had very similar basal force distributions despite

  4. The role of the cytoskeleton in cellular force generation in 2D and 3D environments

    NASA Astrophysics Data System (ADS)

    Kraning-Rush, Casey M.; Carey, Shawn P.; Califano, Joseph P.; Smith, Brooke N.; Reinhart-King, Cynthia A.

    2011-02-01

    To adhere and migrate, cells generate forces through the cytoskeleton that are transmitted to the surrounding matrix. While cellular force generation has been studied on 2D substrates, less is known about cytoskeletal-mediated traction forces of cells embedded in more in vivo-like 3D matrices. Recent studies have revealed important differences between the cytoskeletal structure, adhesion, and migration of cells in 2D and 3D. Because the cytoskeleton mediates force, we sought to directly compare the role of the cytoskeleton in modulating cell force in 2D and 3D. MDA-MB-231 cells were treated with agents that perturbed actin, microtubules, or myosin, and analyzed for changes in cytoskeletal organization and force generation in both 2D and 3D. To quantify traction stresses in 2D, traction force microscopy was used; in 3D, force was assessed based on single cell-mediated collagen fibril reorganization imaged using confocal reflectance microscopy. Interestingly, even though previous studies have observed differences in cell behaviors like migration in 2D and 3D, our data indicate that forces generated on 2D substrates correlate with forces within 3D matrices. Disruption of actin, myosin or microtubules in either 2D or 3D microenvironments disrupts cell-generated force. These data suggest that despite differences in cytoskeletal organization in 2D and 3D, actin, microtubules and myosin contribute to contractility and matrix reorganization similarly in both microenvironments.

  5. Parallel grid generation algorithm for distributed memory computers

    NASA Technical Reports Server (NTRS)

    Moitra, Stuti; Moitra, Anutosh

    1994-01-01

    A parallel grid-generation algorithm and its implementation on the Intel iPSC/860 computer are described. The grid-generation scheme is based on an algebraic formulation of homotopic relations. Methods for utilizing the inherent parallelism of the grid-generation scheme are described, and implementation of multiple levELs of parallelism on multiple instruction multiple data machines are indicated. The algorithm is capable of providing near orthogonality and spacing control at solid boundaries while requiring minimal interprocessor communications. Results obtained on the Intel hypercube for a blended wing-body configuration are used to demonstrate the effectiveness of the algorithm. Fortran implementations bAsed on the native programming model of the iPSC/860 computer and the Express system of software tools are reported. Computational gains in execution time speed-up ratios are given.

  6. Generative Representations for Computer-Automated Evolutionary Design

    NASA Technical Reports Server (NTRS)

    Hornby, Gregory S.

    2006-01-01

    With the increasing computational power of computers, software design systems are progressing from being tools for architects and designers to express their ideas to tools capable of creating designs under human guidance. One of the main limitations for these computer-automated design systems is the representation with which they encode designs. If the representation cannot encode a certain design, then the design system cannot produce it. To be able to produce new types of designs, and not just optimize pre-defined parameterizations, evolutionary design systems must use generative representations. Generative representations are assembly procedures, or algorithms, for constructing a design thereby allowing for truly novel design solutions to be encoded. In addition, by enabling modularity, regularity and hierarchy, the level of sophistication that can be evolved is increased. We demonstrate the advantages of generative representations on two different design domains: the evolution of spacecraft antennas and the evolution of 3D objects.

  7. Generative Representations for Computer-Automated Design Systems

    NASA Technical Reports Server (NTRS)

    Hornby, Gregory S.

    2004-01-01

    With the increasing computational power of Computers, software design systems are progressing from being tools for architects and designers to express their ideas to tools capable of creating designs under human guidance. One of the main limitations for these computer-automated design programs is the representation with which they encode designs. If the representation cannot encode a certain design, then the design program cannot produce it. Similarly, a poor representation makes some types of designs extremely unlikely to be created. Here we define generative representations as those representations which can create and reuse organizational units within a design and argue that reuse is necessary for design systems to scale to more complex and interesting designs. To support our argument we describe GENRE, an evolutionary design program that uses both a generative and a non-generative representation, and compare the results of evolving designs with both types of representations.

  8. Fast calculation method for computer-generated cylindrical holograms.

    PubMed

    Yamaguchi, Takeshi; Fujii, Tomohiko; Yoshikawa, Hiroshi

    2008-07-01

    Since a general flat hologram has a limited viewable area, we usually cannot see the other side of a reconstructed object. There are some holograms that can solve this problem. A cylindrical hologram is well known to be viewable in 360 deg. Most cylindrical holograms are optical holograms, but there are few reports of computer-generated cylindrical holograms. The lack of computer-generated cylindrical holograms is because the spatial resolution of output devices is not great enough; therefore, we have to make a large hologram or use a small object to fulfill the sampling theorem. In addition, in calculating the large fringe, the calculation amount increases in proportion to the hologram size. Therefore, we propose what we believe to be a new calculation method for fast calculation. Then, we print these fringes with our prototype fringe printer. As a result, we obtain a good reconstructed image from a computer-generated cylindrical hologram.

  9. Pseudo-random number generator for the Sigma 5 computer

    NASA Technical Reports Server (NTRS)

    Carroll, S. N.

    1983-01-01

    A technique is presented for developing a pseudo-random number generator based on the linear congruential form. The two numbers used for the generator are a prime number and a corresponding primitive root, where the prime is the largest prime number that can be accurately represented on a particular computer. The primitive root is selected by applying Marsaglia's lattice test. The technique presented was applied to write a random number program for the Sigma 5 computer. The new program, named S:RANDOM1, is judged to be superior to the older program named S:RANDOM. For applications requiring several independent random number generators, a table is included showing several acceptable primitive roots. The technique and programs described can be applied to any computer having word length different from that of the Sigma 5.

  10. Crafting a Balanced System of Assessment in Wisconsin. Recommendations of the Next Generation Assessment Task Force

    ERIC Educational Resources Information Center

    Wisconsin Department of Public Instruction, 2009

    2009-01-01

    The Next Generation Assessment Task Force was convened to formulate Wisconsin's path forward. Task force members listened to leaders from business and technology sectors as well as leaders from PK-12 and higher education. This summary shares the process, definitions, assumptions, and recommendations of the task force. This paper aims to use these…

  11. A novel three-filament model of force generation in eccentric contraction of skeletal muscles.

    PubMed

    Schappacher-Tilp, Gudrun; Leonard, Timothy; Desch, Gertrud; Herzog, Walter

    2015-01-01

    We propose and examine a three filament model of skeletal muscle force generation, thereby extending classical cross-bridge models by involving titin-actin interaction upon active force production. In regions with optimal actin-myosin overlap, the model does not alter energy and force predictions of cross-bridge models for isometric contractions. However, in contrast to cross-bridge models, the three filament model accurately predicts history-dependent force generation in half sarcomeres for eccentric and concentric contractions, and predicts the activation-dependent forces for stretches beyond actin-myosin filament overlap.

  12. New Generations: Sequencing Machines and Their Computational Challenges

    PubMed Central

    Schwartz, David C.; Waterman, Michael S.

    2011-01-01

    New generation sequencing systems are changing how molecular biology is practiced. The widely promoted $1000 genome will be a reality with attendant changes for healthcare, including personalized medicine. More broadly the genomes of many new organisms with large samplings from populations will be commonplace. What is less appreciated is the explosive demands on computation, both for CPU cycles and storage as well as the need for new computational methods. In this article we will survey some of these developments and demands. PMID:22121326

  13. New Generations: Sequencing Machines and Their Computational Challenges.

    PubMed

    Schwartz, David C; Waterman, Michael S

    2010-01-01

    New generation sequencing systems are changing how molecular biology is practiced. The widely promoted $1000 genome will be a reality with attendant changes for healthcare, including personalized medicine. More broadly the genomes of many new organisms with large samplings from populations will be commonplace. What is less appreciated is the explosive demands on computation, both for CPU cycles and storage as well as the need for new computational methods. In this article we will survey some of these developments and demands.

  14. Easy Volcanic Aerosol (EVA v1.0): an idealized forcing generator for climate simulations

    NASA Astrophysics Data System (ADS)

    Toohey, Matthew; Stevens, Bjorn; Schmidt, Hauke; Timmreck, Claudia

    2016-11-01

    Stratospheric sulfate aerosols from volcanic eruptions have a significant impact on the Earth's climate. To include the effects of volcanic eruptions in climate model simulations, the Easy Volcanic Aerosol (EVA) forcing generator provides stratospheric aerosol optical properties as a function of time, latitude, height, and wavelength for a given input list of volcanic eruption attributes. EVA is based on a parameterized three-box model of stratospheric transport and simple scaling relationships used to derive mid-visible (550 nm) aerosol optical depth and aerosol effective radius from stratospheric sulfate mass. Precalculated look-up tables computed from Mie theory are used to produce wavelength-dependent aerosol extinction, single scattering albedo, and scattering asymmetry factor values. The structural form of EVA and the tuning of its parameters are chosen to produce best agreement with the satellite-based reconstruction of stratospheric aerosol properties following the 1991 Pinatubo eruption, and with prior millennial-timescale forcing reconstructions, including the 1815 eruption of Tambora. EVA can be used to produce volcanic forcing for climate models which is based on recent observations and physical understanding but internally self-consistent over any timescale of choice. In addition, EVA is constructed so as to allow for easy modification of different aspects of aerosol properties, in order to be used in model experiments to help advance understanding of what aspects of the volcanic aerosol are important for the climate system.

  15. Computer-generated animation for analysis and design

    NASA Technical Reports Server (NTRS)

    Feeser, L. J.

    1975-01-01

    The development of computer-generated animation techniques was reviewed and some examples of the current state of the art were described. A number of ways in which computer-generated animation can be used were examined in relation to the suitability for the engineering task at hand. The examples described are primarily concerned with attempting to combine two different types of simulation: that of superposition of an engineering design on the surrounding real world, and an evaluation of this simulation both from an engineering design and an aesthetic point of view.

  16. An empirical generative framework for computational modeling of language acquisition.

    PubMed

    Waterfall, Heidi R; Sandbank, Ben; Onnis, Luca; Edelman, Shimon

    2010-06-01

    This paper reports progress in developing a computer model of language acquisition in the form of (1) a generative grammar that is (2) algorithmically learnable from realistic corpus data, (3) viable in its large-scale quantitative performance and (4) psychologically real. First, we describe new algorithmic methods for unsupervised learning of generative grammars from raw CHILDES data and give an account of the generative performance of the acquired grammars. Next, we summarize findings from recent longitudinal and experimental work that suggests how certain statistically prominent structural properties of child-directed speech may facilitate language acquisition. We then present a series of new analyses of CHILDES data indicating that the desired properties are indeed present in realistic child-directed speech corpora. Finally, we suggest how our computational results, behavioral findings, and corpus-based insights can be integrated into a next-generation model aimed at meeting the four requirements of our modeling framework.

  17. Computer generation of structural models of amorphous Si and Ge

    NASA Astrophysics Data System (ADS)

    Wooten, F.; Winer, K.; Weaire, D.

    1985-04-01

    We have developed and applied a computer algorithm that generates realistic random-network models of a-Si with periodic boundary conditions. These are the first models to have correlation functions that show no serious deiscrepancy with experiment. The algorithm provides a much-needed systematic approach to model construction that can be used to generate models of a large class of amorphous materials.

  18. Integrated Analysis of Contractile Kinetics, Force Generation, and Electrical Activity in Single Human Stem Cell-Derived Cardiomyocytes.

    PubMed

    Kijlstra, Jan David; Hu, Dongjian; Mittal, Nikhil; Kausel, Eduardo; van der Meer, Peter; Garakani, Arman; Domian, Ibrahim J

    2015-12-08

    The quantitative analysis of cardiomyocyte function is essential for stem cell-based approaches for the in vitro study of human cardiac physiology and pathophysiology. We present a method to comprehensively assess the function of single human pluripotent stem cell-derived cardiomyocyte (hPSC-CMs) through simultaneous quantitative analysis of contraction kinetics, force generation, and electrical activity. We demonstrate that statistical analysis of movies of contracting hPSC-CMs can be used to quantify changes in cellular morphology over time and compute contractile kinetics. Using a biomechanical model that incorporates substrate stiffness, we calculate cardiomyocyte force generation at single-cell resolution and validate this approach with conventional traction force microscopy. The addition of fluorescent calcium indicators or membrane potential dyes allows the simultaneous analysis of contractility and calcium handling or action potential morphology. Accordingly, our approach has the potential for broad application in the study of cardiac disease, drug discovery, and cardiotoxicity screening.

  19. Integrated Analysis of Contractile Kinetics, Force Generation, and Electrical Activity in Single Human Stem Cell-Derived Cardiomyocytes

    PubMed Central

    Kijlstra, Jan David; Hu, Dongjian; Mittal, Nikhil; Kausel, Eduardo; van der Meer, Peter; Garakani, Arman; Domian, Ibrahim J.

    2015-01-01

    Summary The quantitative analysis of cardiomyocyte function is essential for stem cell-based approaches for the in vitro study of human cardiac physiology and pathophysiology. We present a method to comprehensively assess the function of single human pluripotent stem cell-derived cardiomyocyte (hPSC-CMs) through simultaneous quantitative analysis of contraction kinetics, force generation, and electrical activity. We demonstrate that statistical analysis of movies of contracting hPSC-CMs can be used to quantify changes in cellular morphology over time and compute contractile kinetics. Using a biomechanical model that incorporates substrate stiffness, we calculate cardiomyocyte force generation at single-cell resolution and validate this approach with conventional traction force microscopy. The addition of fluorescent calcium indicators or membrane potential dyes allows the simultaneous analysis of contractility and calcium handling or action potential morphology. Accordingly, our approach has the potential for broad application in the study of cardiac disease, drug discovery, and cardiotoxicity screening. PMID:26626178

  20. One-eighth look-up table method for effectively generating computer-generated hologram patterns

    NASA Astrophysics Data System (ADS)

    Cho, Sungjin; Ju, Byeong-Kwon; Kim, Nam-Young; Park, Min-Chul

    2014-05-01

    To generate ideal digital holograms, a computer-generated hologram (CGH) has been regarded as a solution. However, it has an unavoidable problem in that the computational burden for generating CGH is very large. Recently, many studies have been conducted to investigate different solutions in order to reduce the computational complexity of CGH by using particular methods such as look-up tables (LUTs) and parallel processing. Each method has a positive effectiveness about reducing computational time for generating CGH. However, it appears to be difficult to apply both methods simultaneously because of heavy memory consumption of the LUT technique. Therefore, we proposed a one-eighth LUT method where the memory usage of the LUT is reduced, making it possible to simultaneously apply both of the fast computing methods for the computation of CGH. With the one-eighth LUT method, only one-eighth of the zone plates were stored in the LUT. All of the zone plates were accessed by indexing method. Through this method, we significantly reduced memory usage of LUT. Also, we confirmed the feasibility of reducing the computational time of the CGH by using general-purpose graphic processing units while reducing the memory usage.

  1. Future trends in computer waste generation in India.

    PubMed

    Dwivedy, Maheshwar; Mittal, R K

    2010-11-01

    The objective of this paper is to estimate the future projection of computer waste in India and to subsequently analyze their flow at the end of their useful phase. For this purpose, the study utilizes the logistic model-based approach proposed by Yang and Williams to forecast future trends in computer waste. The model estimates future projection of computer penetration rate utilizing their first lifespan distribution and historical sales data. A bounding analysis on the future carrying capacity was simulated using the three parameter logistic curve. The observed obsolete generation quantities from the extrapolated penetration rates are then used to model the disposal phase. The results of the bounding analysis indicate that in the year 2020, around 41-152 million units of computers will become obsolete. The obsolete computer generation quantities are then used to estimate the End-of-Life outflows by utilizing a time-series multiple lifespan model. Even a conservative estimate of the future recycling capacity of PCs will reach upwards of 30 million units during 2025. Apparently, more than 150 million units could be potentially recycled in the upper bound case. However, considering significant future investment in the e-waste recycling sector from all stakeholders in India, we propose a logistic growth in the recycling rate and estimate the requirement of recycling capacity between 60 and 400 million units for the lower and upper bound case during 2025. Finally, we compare the future obsolete PC generation amount of the US and India.

  2. Computer-Generated Geometry Instruction: A Preliminary Study

    ERIC Educational Resources Information Center

    Kang, Helen W.; Zentall, Sydney S.

    2011-01-01

    This study hypothesized that increased intensity of graphic information, presented in computer-generated instruction, could be differentially beneficial for students with hyperactivity and inattention by improving their ability to sustain attention and hold information in-mind. To this purpose, 18 2nd-4th grade students, recruited from general…

  3. Advanced Computer Image Generation Techniques Exploiting Perceptual Characteristics. Final Report.

    ERIC Educational Resources Information Center

    Stenger, Anthony J.; And Others

    This study suggests and identifies computer image generation (CIG) algorithms for visual simulation that improve the training effectiveness of CIG simulators and identifies areas of basic research in visual perception that are significant for improving CIG technology. The first phase of the project entailed observing three existing CIG simulators.…

  4. Decluttering Methods for Computer-Generated Graphic Displays

    NASA Technical Reports Server (NTRS)

    Schultz, E. Eugene, Jr.

    1986-01-01

    Symbol simplification and contrasting enhance viewer's ability to detect particular symbol. Report describes experiments designed to indicate how various decluttering methods affect viewer's abilities to distinguish essential from nonessential features on computer-generated graphic displays. Results indicate partial removal of nonessential graphic features through symbol simplification effective in decluttering as total removal of nonessential graphic features.

  5. A Parallel Computational Fluid Dynamics Unstructured Grid Generator

    DTIC Science & Technology

    1993-12-01

    Vol 11. 953-961. Philadelphia: SIAM, 1993. Holey, J. Andrew and Oscar H. Ibarra . "Triangulation, Veronoi Diagram, and Convex Hull in k-Space on Mesh...rIdhner, Rainald, Jose Camberos, and Marshall Merriam. "Parallel Unstructured Grid Generation," in Unstructured Scientific Computation on Scalable

  6. SNAP: A computer program for generating symbolic network functions

    NASA Technical Reports Server (NTRS)

    Lin, P. M.; Alderson, G. E.

    1970-01-01

    The computer program SNAP (symbolic network analysis program) generates symbolic network functions for networks containing R, L, and C type elements and all four types of controlled sources. The program is efficient with respect to program storage and execution time. A discussion of the basic algorithms is presented, together with user's and programmer's guides.

  7. An Empirical Generative Framework for Computational Modeling of Language Acquisition

    ERIC Educational Resources Information Center

    Waterfall, Heidi R.; Sandbank, Ben; Onnis, Luca; Edelman, Shimon

    2010-01-01

    This paper reports progress in developing a computer model of language acquisition in the form of (1) a generative grammar that is (2) algorithmically learnable from realistic corpus data, (3) viable in its large-scale quantitative performance and (4) psychologically real. First, we describe new algorithmic methods for unsupervised learning of…

  8. Computer Generated Optical Illusions: A Teaching and Research Tool.

    ERIC Educational Resources Information Center

    Bailey, Bruce; Harman, Wade

    Interactive computer-generated simulations that highlight psychological principles were investigated in this study in which 33 female and 19 male undergraduate college student volunteers of median age 21 matched line and circle sizes in six variations of Ponzo's illusion. Prior to working with the illusions, data were collected based on subjects'…

  9. Keyboard reaction force and finger flexor electromyograms during computer keyboard work.

    PubMed

    Martin, B J; Armstrong, T J; Foulke, J A; Natarajan, S; Klinenberg, E; Serina, E; Rempel, D

    1996-12-01

    This study examines the relationship between forearm EMGs and keyboard reaction forces in 10 people during keyboard tasks performed at a comfortable speed. A linear fit of EMG force data for each person and finger was calculated during static fingertip loading. An average r2 of .71 was observed for forces below 50% of the maximal voluntary contraction (MVC). These regressions were used to characterize EMG data in force units during the typing task. Averaged peak reaction forces measured during typing ranged from 3.33 N (thumb) to 1.84 N (little finger), with an overall average of 2.54 N, which represents about 10% MVC and 5.4 times the key switch make force (0.47 N). Individual peak or mean finger forces obtained from EMG were greater (1.2 to 3.2 times) than force measurements; hence the range of r2 for EMG force was .10 to .46. A closer correspondence between EMG and peak force was obtained using EMG averaged across all fingers. For 5 of the participants the force computed from EMG was within +/-20% of the reaction force. For the other 5 participants forces were overestimated. For 9 participants the difference between EMG estimated force and the reaction force was less than 13% MVC. It is suggested that the difference between EMG and finger force partly results from the amount of muscle load not captured by the measured applied force.

  10. Transcranial magnetic stimulation during voluntary action: directional facilitation of outputs and relationships to force generation.

    PubMed

    Cros, Didier; Soto, Oscar; Chiappa, Keith H

    2007-12-14

    Single-pulse transcranial magnetic stimulation (TMS) of the human motor cortex evokes simple muscle jerks whose physiological significance is unclear. Indeed, in subjects performing a motor task, there is uncertainty as to whether TMS-evoked outputs reflect the ongoing behavior or, alternatively, a disrupted motor plan. Considering force direction and magnitude to reflect qualitative and quantitative features of the motor plan respectively, we studied the relationships between voluntary forces and those evoked by TMS. In five healthy adults, we recorded the isometric forces acting a hand joint and the electromyographic activity in the first dorsal interosseous (FDI) muscle. Responses obtained at rest were highly invariant. Evoked responses obtained while subjects generated static and dynamic contractions were highly codirectional with the voluntary forces. Such directional relationships were independent of stimulation intensity, stimulated cortical volume, or magnitude of voluntary force exerted. Dynamic force generation was associated with a marked increase in the magnitude of the evoked force that was linearly related to the rate of force generation. The timing of central conduction was different depending on functional role of the target muscle, as either agonist or joint fixator. These results indicate that the architecture of motor plans remain grossly undisrupted by cortical stimulation applied during voluntary motor behavior. The significant magnitude modulation of responses during dynamic force generation suggests an essential role of the corticospinal system in the specification of force changes. Finally, the corticospinal activation depends on the functional role assumed by the target muscle, either postural or agonist.

  11. Structural Optimization of a Force Balance Using a Computational Experiment Design

    NASA Technical Reports Server (NTRS)

    Parker, P. A.; DeLoach, R.

    2002-01-01

    This paper proposes a new approach to force balance structural optimization featuring a computational experiment design. Currently, this multi-dimensional design process requires the designer to perform a simplification by executing parameter studies on a small subset of design variables. This one-factor-at-a-time approach varies a single variable while holding all others at a constant level. Consequently, subtle interactions among the design variables, which can be exploited to achieve the design objectives, are undetected. The proposed method combines Modern Design of Experiments techniques to direct the exploration of the multi-dimensional design space, and a finite element analysis code to generate the experimental data. To efficiently search for an optimum combination of design variables and minimize the computational resources, a sequential design strategy was employed. Experimental results from the optimization of a non-traditional force balance measurement section are presented. An approach to overcome the unique problems associated with the simultaneous optimization of multiple response criteria is described. A quantitative single-point design procedure that reflects the designer's subjective impression of the relative importance of various design objectives, and a graphical multi-response optimization procedure that provides further insights into available tradeoffs among competing design objectives are illustrated. The proposed method enhances the intuition and experience of the designer by providing new perspectives on the relationships between the design variables and the competing design objectives providing a systematic foundation for advancements in structural design.

  12. Computer simulations reveal complex distribution of haemodynamic forces in a mouse retina model of angiogenesis

    PubMed Central

    Bernabeu, Miguel O.; Jones, Martin L.; Nielsen, Jens H.; Krüger, Timm; Nash, Rupert W.; Groen, Derek; Schmieschek, Sebastian; Hetherington, James; Gerhardt, Holger; Franco, Claudio A.; Coveney, Peter V.

    2014-01-01

    There is currently limited understanding of the role played by haemodynamic forces on the processes governing vascular development. One of many obstacles to be overcome is being able to measure those forces, at the required resolution level, on vessels only a few micrometres thick. In this paper, we present an in silico method for the computation of the haemodynamic forces experienced by murine retinal vasculature (a widely used vascular development animal model) beyond what is measurable experimentally. Our results show that it is possible to reconstruct high-resolution three-dimensional geometrical models directly from samples of retinal vasculature and that the lattice-Boltzmann algorithm can be used to obtain accurate estimates of the haemodynamics in these domains. We generate flow models from samples obtained at postnatal days (P) 5 and 6. Our simulations show important differences between the flow patterns recovered in both cases, including observations of regression occurring in areas where wall shear stress (WSS) gradients exist. We propose two possible mechanisms to account for the observed increase in velocity and WSS between P5 and P6: (i) the measured reduction in typical vessel diameter between both time points and (ii) the reduction in network density triggered by the pruning process. The methodology developed herein is applicable to other biomedical domains where microvasculature can be imaged but experimental flow measurements are unavailable or difficult to obtain. PMID:25079871

  13. Computer Generated Holography with Intensity-Graded Patterns

    PubMed Central

    Conti, Rossella; Assayag, Osnath; de Sars, Vincent; Guillon, Marc; Emiliani, Valentina

    2016-01-01

    Computer Generated Holography achieves patterned illumination at the sample plane through phase modulation of the laser beam at the objective back aperture. This is obtained by using liquid crystal-based spatial light modulators (LC-SLMs), which modulate the spatial phase of the incident laser beam. A variety of algorithms is employed to calculate the phase modulation masks addressed to the LC-SLM. These algorithms range from simple gratings-and-lenses to generate multiple diffraction-limited spots, to iterative Fourier-transform algorithms capable of generating arbitrary illumination shapes perfectly tailored on the base of the target contour. Applications for holographic light patterning include multi-trap optical tweezers, patterned voltage imaging and optical control of neuronal excitation using uncaging or optogenetics. These past implementations of computer generated holography used binary input profile to generate binary light distribution at the sample plane. Here we demonstrate that using graded input sources, enables generating intensity graded light patterns and extend the range of application of holographic light illumination. At first, we use intensity-graded holograms to compensate for LC-SLM position dependent diffraction efficiency or sample fluorescence inhomogeneity. Finally we show that intensity-graded holography can be used to equalize photo evoked currents from cells expressing different levels of chanelrhodopsin2 (ChR2), one of the most commonly used optogenetics light gated channels, taking into account the non-linear dependence of channel opening on incident light. PMID:27799896

  14. Measurement of hydrodynamic force generation by swimming dolphins using bubble DPIV.

    PubMed

    Fish, Frank E; Legac, Paul; Williams, Terrie M; Wei, Timothy

    2014-01-15

    Attempts to measure the propulsive forces produced by swimming dolphins have been limited. Previous uses of computational hydrodynamic models and gliding experiments have provided estimates of thrust production by dolphins, but these were indirect tests that relied on various assumptions. The thrust produced by two actively swimming bottlenose dolphins (Tursiops truncatus) was directly measured using digital particle image velocimetry (DPIV). For dolphins swimming in a large outdoor pool, the DPIV method used illuminated microbubbles that were generated in a narrow sheet from a finely porous hose and a compressed air source. The movement of the bubbles was tracked with a high-speed video camera. Dolphins swam at speeds of 0.7 to 3.4 m s(-1) within the bubble sheet oriented along the midsagittal plane of the animal. The wake of the dolphin was visualized as the microbubbles were displaced because of the action of the propulsive flukes and jet flow. The oscillations of the dolphin flukes were shown to generate strong vortices in the wake. Thrust production was measured from the vortex strength through the Kutta-Joukowski theorem of aerodynamics. The dolphins generated up to 700 N during small amplitude swimming and up to 1468 N during large amplitude starts. The results of this study demonstrated that bubble DPIV can be used effectively to measure the thrust produced by large-bodied dolphins.

  15. Computation of the optical trapping force using an FDTD based technique.

    PubMed

    Gauthier, Robert

    2005-05-16

    The computation details related to computing the optical radiation pressure force on various objects using a 2-D grid FDTD algorithm are presented. The technique is based on propagating the electric and magnetic fields through the grid and determining the changes in the optical energy flow with and without the trap object(s) in the system. Traces displayed indicate that the optical forces and FDTD predicted object behavior are in agreement with published experiments and also determined through other computation techniques. We show computation results for a high and low dielectric disc and thin walled shell. The FDTD technique for computing the light-particle force interaction may be employed in all regimes relating particle dimensions to source wavelength. The algorithm presented here can be easily extended to 3-D and include torque computation algorithms, thus providing a highly flexible and universally useable computation engine.

  16. Numerical simulations of current generation and dynamo excitation in a mechanically forced turbulent flow.

    PubMed

    Bayliss, R A; Forest, C B; Nornberg, M D; Spence, E J; Terry, P W

    2007-02-01

    The role of turbulence in current generation and self-excitation of magnetic fields has been studied in the geometry of a mechanically driven, spherical dynamo experiment, using a three-dimensional numerical computation. A simple impeller model drives a flow that can generate a growing magnetic field, depending on the magnetic Reynolds number Rm=micro0sigmaVa and the fluid Reynolds number Re=Vanu of the flow. For Re<420, the flow is laminar and the dynamo transition is governed by a threshold of Rmcrit=100, above which a growing magnetic eigenmode is observed that is primarily a dipole field transverse to the axis of symmetry of the flow. In saturation, the Lorentz force slows the flow such that the magnetic eigenmode becomes marginally stable. For Re>420 and Rm approximately 100 the flow becomes turbulent and the dynamo eigenmode is suppressed. The mechanism of suppression is a combination of a time varying large-scale field and the presence of fluctuation driven currents (such as those predicted by the mean-field theory), which effectively enhance the magnetic diffusivity. For higher Rm, a dynamo reappears; however, the structure of the magnetic field is often different from the laminar dynamo. It is dominated by a dipolar magnetic field aligned with the axis of symmetry of the mean-flow, which is apparently generated by fluctuation-driven currents. The magnitude and structure of the fluctuation-driven currents have been studied by applying a weak, axisymmetric seed magnetic field to laminar and turbulent flows. An Ohm's law analysis of the axisymmetric currents allows the fluctuation-driven currents to be identified. The magnetic fields generated by the fluctuations are significant: a dipole moment aligned with the symmetry axis of the mean-flow is generated similar to those observed in the experiment, and both toroidal and poloidal flux expulsion are observed.

  17. Covariance Generation Using CONRAD and SAMMY Computer Codes

    SciTech Connect

    Leal, Luiz C; Derrien, Herve; De Saint Jean, C; Noguere, G; Ruggieri, J M

    2009-01-01

    Covariance generation in the resolved resonance region can be generated using the computer codes CONRAD and SAMMY. These codes use formalisms derived from the R-matrix methodology together with the generalized least squares technique to obtain resonance parameter. In addition, resonance parameter covariance is also obtained. Results of covariance calculations for a simple case of the s-wave resonance parameters of 48Ti in the energy region 10-5 eV to 300 keV are compared. The retroactive approach included in CONRAD and SAMMY was used.

  18. Source Term Model for Vortex Generator Vanes in a Navier-Stokes Computer Code

    NASA Technical Reports Server (NTRS)

    Waithe, Kenrick A.

    2004-01-01

    A source term model for an array of vortex generators was implemented into a non-proprietary Navier-Stokes computer code, OVERFLOW. The source term models the side force created by a vortex generator vane. The model is obtained by introducing a side force to the momentum and energy equations that can adjust its strength automatically based on the local flow. The model was tested and calibrated by comparing data from numerical simulations and experiments of a single low profile vortex generator vane on a flat plate. In addition, the model was compared to experimental data of an S-duct with 22 co-rotating, low profile vortex generators. The source term model allowed a grid reduction of about seventy percent when compared with the numerical simulations performed on a fully gridded vortex generator on a flat plate without adversely affecting the development and capture of the vortex created. The source term model was able to predict the shape and size of the stream-wise vorticity and velocity contours very well when compared with both numerical simulations and experimental data. The peak vorticity and its location were also predicted very well when compared to numerical simulations and experimental data. The circulation predicted by the source term model matches the prediction of the numerical simulation. The source term model predicted the engine fan face distortion and total pressure recovery of the S-duct with 22 co-rotating vortex generators very well. The source term model allows a researcher to quickly investigate different locations of individual or a row of vortex generators. The researcher is able to conduct a preliminary investigation with minimal grid generation and computational time.

  19. Next-Generation Force Fields from Symmetry-Adapted Perturbation Theory

    NASA Astrophysics Data System (ADS)

    McDaniel, Jesse G.; Schmidt, J. R.

    2016-05-01

    Symmetry-adapted perturbation theory (SAPT) provides a unique set of advantages for parameterizing next-generation force fields from first principles. SAPT provides a direct, basis-set superposition error free estimate of molecular interaction energies, a physically intuitive energy decomposition, and a seamless transition to an asymptotic picture of intermolecular interactions. These properties have been exploited throughout the literature to develop next-generation force fields for a variety of applications, including classical molecular dynamics simulations, crystal structure prediction, and quantum dynamics/spectroscopy. This review provides a brief overview of the formalism and theory of SAPT, along with a practical discussion of the various methodologies utilized to parameterize force fields from SAPT calculations. It also highlights a number of applications of SAPT-based force fields for chemical systems of particular interest. Finally, the review ends with a brief outlook on the future opportunities and challenges that remain for next-generation force fields based on SAPT.

  20. Next-Generation Force Fields from Symmetry-Adapted Perturbation Theory.

    PubMed

    McDaniel, Jesse G; Schmidt, J R

    2016-05-27

    Symmetry-adapted perturbation theory (SAPT) provides a unique set of advantages for parameterizing next-generation force fields from first principles. SAPT provides a direct, basis-set superposition error free estimate of molecular interaction energies, a physically intuitive energy decomposition, and a seamless transition to an asymptotic picture of intermolecular interactions. These properties have been exploited throughout the literature to develop next-generation force fields for a variety of applications, including classical molecular dynamics simulations, crystal structure prediction, and quantum dynamics/spectroscopy. This review provides a brief overview of the formalism and theory of SAPT, along with a practical discussion of the various methodologies utilized to parameterize force fields from SAPT calculations. It also highlights a number of applications of SAPT-based force fields for chemical systems of particular interest. Finally, the review ends with a brief outlook on the future opportunities and challenges that remain for next-generation force fields based on SAPT.

  1. Generation of mechanical force by grafted polyelectrolytes in an electric field.

    PubMed

    Brilliantov, N V; Budkov, Yu A; Seidel, C

    2016-03-01

    We study theoretically and by means of molecular dynamics (MD) simulations the generation of mechanical force by grafted polyelectrolytes in an external electric field, which favors its adsorption on the grafting plane. The force arises in deformable bodies linked to the free end of the chain. Varying the field, one controls the length of the nonadsorbed part of the chain and hence the deformation of the target body, i.e., the arising force too. We consider target bodies with a linear force-deformation relation and with a Hertzian one. While the first relation models a coiled Gaussian chain, the second one describes the force response of a squeezed colloidal particle. The theoretical dependences of generated force and compression of the target body on an applied field agree very well with the results of MD simulations. The analyzed phenomenon may play an important role in future nanomachinery, e.g., it may be used to design nanovices to fix nanosized objects.

  2. Surface texture generation during cylindrical milling in the aspect of cutting force variations

    NASA Astrophysics Data System (ADS)

    Wojciechowski, S.; Twardowski, P.; Pelic, M.

    2014-03-01

    The work presented here concentrates on surface texture analysis, after cylindrical milling of hardened steel. Cutting force variations occurring in the machining process have direct influence on the cutter displacements and thus on the generated surface texture. Therefore, in these experiments, the influence of active number of teeth (zc) on the cutting force variations was investigated. Cutting forces and cutter displacements were measured during machining process (online) using, namely piezoelectric force dynamometer and 3D laser vibrometer. Surface roughness parameters were measured using stylus surface profiler. The surface roughness model including cutting parameters (fz, D) and cutting force variations was also developed. The research revealed that in cylindrical milling process, cutting force variations have immediate influence on surface texture generation.

  3. Aircraft geometry verification with enhanced computer-generated displays

    NASA Technical Reports Server (NTRS)

    Cozzolongo, J. V.

    1982-01-01

    A method for visual verification of aerodynamic geometries using computer-generated, color-shaded images is described. The mathematical models representing aircraft geometries are created for use in theoretical aerodynamic analyses and in computer-aided manufacturing. The aerodynamic shapes are defined using parametric bi-cubic splined patches. This mathematical representation is then used as input to an algorithm that generates a color-shaded image of the geometry. A discussion of the techniques used in the mathematical representation of the geometry and in the rendering of the color-shaded display is presented. The results include examples of color-shaded displays, which are contrasted with wire-frame-type displays. The examples also show the use of mapped surface pressures in terms of color-shaded images of V/STOL fighter/attack aircraft and advanced turboprop aircraft.

  4. Aircraft geometry verification with enhanced computer generated displays

    NASA Technical Reports Server (NTRS)

    Cozzolongo, J. V.

    1982-01-01

    A method for visual verification of aerodynamic geometries using computer generated, color shaded images is described. The mathematical models representing aircraft geometries are created for use in theoretical aerodynamic analyses and in computer aided manufacturing. The aerodynamic shapes are defined using parametric bi-cubic splined patches. This mathematical representation is then used as input to an algorithm that generates a color shaded image of the geometry. A discussion of the techniques used in the mathematical representation of the geometry and in the rendering of the color shaded display is presented. The results include examples of color shaded displays, which are contrasted with wire frame type displays. The examples also show the use of mapped surface pressures in terms of color shaded images of V/STOL fighter/attack aircraft and advanced turboprop aircraft.

  5. Compliant tactile sensor for generating a signal related to an applied force

    NASA Technical Reports Server (NTRS)

    Torres-Jara, Eduardo (Inventor)

    2012-01-01

    Tactile sensor. The sensor includes a compliant convex surface disposed above a sensor array, the sensor array adapted to respond to deformation of the convex surface to generate a signal related to an applied force vector.

  6. Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion.

    PubMed

    Sun, Mao; Tang, Jian

    2002-01-01

    A computational fluid-dynamic analysis was conducted to study the unsteady aerodynamics of a model fruit fly wing. The wing performs an idealized flapping motion that emulates the wing motion of a fruit fly in normal hovering flight. The Navier-Stokes equations are solved numerically. The solution provides the flow and pressure fields, from which the aerodynamic forces and vorticity wake structure are obtained. Insights into the unsteady aerodynamic force generation process are gained from the force and flow-structure information. Considerable lift can be produced when the majority of the wing rotation is conducted near the end of a stroke or wing rotation precedes stroke reversal (rotation advanced), and the mean lift coefficient can be more than twice the quasi-steady value. Three mechanisms are responsible for the large lift: the rapid acceleration of the wing at the beginning of a stroke, the absence of stall during the stroke and the fast pitching-up rotation of the wing near the end of the stroke. When half the wing rotation is conducted near the end of a stroke and half at the beginning of the next stroke (symmetrical rotation), the lift at the beginning and near the end of a stroke becomes smaller because the effects of the first and third mechanisms above are reduced. The mean lift coefficient is smaller than that of the rotation-advanced case, but is still 80 % larger than the quasi-steady value. When the majority of the rotation is delayed until the beginning of the next stroke (rotation delayed), the lift at the beginning and near the end of a stroke becomes very small or even negative because the effect of the first mechanism above is cancelled and the third mechanism does not apply in this case. The mean lift coefficient is much smaller than in the other two cases.

  7. Tablet Computers on Trial: A Transformative Force in Education?

    ERIC Educational Resources Information Center

    Kjartansdóttir, Skúlína Hlíf; Jakobsdóttir, Sólveig

    2013-01-01

    In this paper we present the results of an evaluation study of a development project for the introduction and use of tablet computers (iPads) at the lower secondary level in Nordlinga school, a compulsory school in Reykjavík. In the study, we assess the impact of the use of tablet computers on instruction and students' learning in grades 9 to 10,…

  8. Local Lorentz force flowmeter at a continuous caster model using a new generation multicomponent force and torque sensor

    NASA Astrophysics Data System (ADS)

    Hernández, Daniel; Schleichert, Jan; Karcher, Christian; Fröhlich, Thomas; Wondrak, Thomas; Timmel, Klaus

    2016-06-01

    Lorentz force velocimetry is a non-invasive velocity measurement technique for electrical conductive liquids like molten steel. In this technique, the metal flow interacts with a static magnetic field generating eddy currents which, in turn, produce flow-braking Lorentz forces within the fluid. These forces are proportional to the electrical conductivity and to the velocity of the melt. Due to Newton’s third law, a counter force of the same magnitude acts on the source of the applied static magnetic field which is in our case a permanent magnet. In this paper we will present a new multicomponent sensor for the local Lorentz force flowmeter (L2F2) which is able to measure simultaneously all three components of the force as well as all three components of the torque. Therefore, this new sensor is capable of accessing all three velocity components at the same time in the region near the wall. In order to demonstrate the potential of this new sensor, it is used to identify the 3-dimensional velocity field near the wide face of the mold of a continuous caster model available at the Helmholtz-Zentrum Dresden-Rossendorf. As model melt, the eutectic alloy GaInSn is used.

  9. Automatic generation of computable implementation guides from clinical information models.

    PubMed

    Boscá, Diego; Maldonado, José Alberto; Moner, David; Robles, Montserrat

    2015-06-01

    Clinical information models are increasingly used to describe the contents of Electronic Health Records. Implementation guides are a common specification mechanism used to define such models. They contain, among other reference materials, all the constraints and rules that clinical information must obey. However, these implementation guides typically are oriented to human-readability, and thus cannot be processed by computers. As a consequence, they must be reinterpreted and transformed manually into an executable language such as Schematron or Object Constraint Language (OCL). This task can be difficult and error prone due to the big gap between both representations. The challenge is to develop a methodology for the specification of implementation guides in such a way that humans can read and understand easily and at the same time can be processed by computers. In this paper, we propose and describe a novel methodology that uses archetypes as basis for generation of implementation guides. We use archetypes to generate formal rules expressed in Natural Rule Language (NRL) and other reference materials usually included in implementation guides such as sample XML instances. We also generate Schematron rules from NRL rules to be used for the validation of data instances. We have implemented these methods in LinkEHR, an archetype editing platform, and exemplify our approach by generating NRL rules and implementation guides from EN ISO 13606, openEHR, and HL7 CDA archetypes.

  10. Sufficient conditions for the additivity of stall forces generated by multiple filaments or motors

    NASA Astrophysics Data System (ADS)

    Bameta, Tripti; Das, Dipjyoti; Das, Dibyendu; Padinhateeri, Ranjith; Inamdar, Mandar M.

    2017-02-01

    Molecular motors and cytoskeletal filaments work collectively most of the time under opposing forces. This opposing force may be due to cargo carried by motors or resistance coming from the cell membrane pressing against the cytoskeletal filaments. Some recent studies have shown that the collective maximum force (stall force) generated by multiple cytoskeletal filaments or molecular motors may not always be just a simple sum of the stall forces of the individual filaments or motors. To understand this excess or deficit in the collective force, we study a broad class of models of both cytoskeletal filaments and molecular motors. We argue that the stall force generated by a group of filaments or motors is additive, that is, the stall force of N number of filaments (motors) is N times the stall force of one filament (motor), when the system is reversible at stall. Conversely, we show that this additive property typically does not hold true when the system is irreversible at stall. We thus present a novel and unified understanding of the existing models exhibiting such non-addivity, and generalise our arguments by developing new models that demonstrate this phenomena. We also propose a quantity similar to thermodynamic efficiency to easily predict this deviation from stall-force additivity for filament and motor collectives.

  11. Generation of mechanical force by grafted polyelectrolytes in an electric field: application to polyelectrolyte-based nano-devices.

    PubMed

    Brilliantov, N V; Budkov, Yu A; Seidel, C

    2016-11-13

    We analyse theoretically and by means of molecular dynamics (MD) simulations the generation of mechanical force by a polyelectrolyte (PE) chain grafted to a plane. The PE is exposed to an external electric field that favours its adsorption on the plane. The free end of the chain is linked to a deformable target body. By varying the field, one can alter the length of the non-adsorbed part of the chain. This entails variation of the deformation of the target body and hence variation of the force arising in the body. Our theoretical predictions for the generated force are in very good agreement with the MD data. Using the theory developed for the generated force, we study the effectiveness of possible PE-based nano-vices, composed of two clenching planes connected by PEs and exposed to an external electric field. We exploit the Cundall-Strack solid friction model to describe the friction between a particle and the clenching planes. We compute the diffusion coefficient of a clenched particle and show that it drastically decreases even in weak applied fields. This demonstrates the efficacy of the PE-based nano-vices, which may be a possible alternative to the existing nanotube nano-tweezers and optical tweezers.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.

  12. Generation of mechanical force by grafted polyelectrolytes in an electric field: application to polyelectrolyte-based nano-devices

    NASA Astrophysics Data System (ADS)

    Brilliantov, N. V.; Budkov, Yu. A.; Seidel, C.

    2016-11-01

    We analyse theoretically and by means of molecular dynamics (MD) simulations the generation of mechanical force by a polyelectrolyte (PE) chain grafted to a plane. The PE is exposed to an external electric field that favours its adsorption on the plane. The free end of the chain is linked to a deformable target body. By varying the field, one can alter the length of the non-adsorbed part of the chain. This entails variation of the deformation of the target body and hence variation of the force arising in the body. Our theoretical predictions for the generated force are in very good agreement with the MD data. Using the theory developed for the generated force, we study the effectiveness of possible PE-based nano-vices, composed of two clenching planes connected by PEs and exposed to an external electric field. We exploit the Cundall-Strack solid friction model to describe the friction between a particle and the clenching planes. We compute the diffusion coefficient of a clenched particle and show that it drastically decreases even in weak applied fields. This demonstrates the efficacy of the PE-based nano-vices, which may be a possible alternative to the existing nanotube nano-tweezers and optical tweezers. This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.

  13. Estimation of aerodynamic noise generated by forced compressible round jets

    NASA Astrophysics Data System (ADS)

    Maidi, Mohamed

    2006-05-01

    An acoustic numerical code based on Ligthill's analogy is combined with large-eddy simulations techniques in order to evaluate the noise emitted by subsonic (M=0.7) and supersonic (M=1.4) round jets. We show first that, for centerline Mach number M=0.9 and Reynolds number Re=3.6×10, acoustic intensities compare satisfactorily with experimental data of the literature in terms of levels and directivity. Afterwards, high Reynolds number (Re=3.6×10) free and forced jets at Mach 0.7 and 1.4 are studied. Numerical results show that the jet noise intensity depends on the nature of the upstream mixing layer. Indeed, the subsonic jet is 4 dB quieter than the free jet when acting on this shear layer by superposing inlet varicose and flapping perturbations at preferred and first subharmonic frequency, respectively. The maximal acoustic level of the supersonic jet is, on the other hand, 3 dB lower than the free one with a flapping upstream perturbation at the second subharmonic. The results reported in this paper confirm previous works presented in the literature demonstrating that jet noise may be modified according to the inlet conditions. To cite this article: M. Maidi, C. R. Mecanique 334 (2006).

  14. Virtual photons in imaginary time: Computing Casimir forces in new geometries

    NASA Astrophysics Data System (ADS)

    Johnson, Steven G.

    2009-03-01

    One of the most dramatic manifestations of the quantum nature of light in the past half-century has been the Casimir force: a force between neutral objects at close separations caused by quantum vacuum fluctuations in the electromagnetic fields. In classical photonics, wavelength-scale structures can be designed to dramatically alter the behavior of light, so it is natural to consider whether analogous geometry-based effects occur for Casimir forces. However, this problem turns out to be surprisingly difficult for all but the simplest planar geometries. (The deceptively simple case of an infinite plate and infinite cylinder, for perfect metals, was first solved in 2006.) Many formulations of the Casimir force, indeed, correspond to impossibly hard numerical problems. We will describe how the availability of large-scale computing resources in NSF's Teragrid, combined with reformulations of the Casimir-force problem oriented towards numerical computation, are enabling the exploration of Casimir forces in new regimes of geometry and materials.

  15. Using Computers to Individually-Generate vs. Collaboratively-Generate Concept Maps

    ERIC Educational Resources Information Center

    Kwon, So Young; Cifuentes, Lauren

    2007-01-01

    Five eighth grade science classes of students in at a middle school were assigned to three treatment groups: those who individually concept mapped, those who collaboratively concept mapped, and those who independently used their study time. The findings revealed that individually generating concept maps on computers during study time positively…

  16. Fast high-resolution computer-generated hologram computation using multiple graphics processing unit cluster system.

    PubMed

    Takada, Naoki; Shimobaba, Tomoyoshi; Nakayama, Hirotaka; Shiraki, Atsushi; Okada, Naohisa; Oikawa, Minoru; Masuda, Nobuyuki; Ito, Tomoyoshi

    2012-10-20

    To overcome the computational complexity of a computer-generated hologram (CGH), we implement an optimized CGH computation in our multi-graphics processing unit cluster system. Our system can calculate a CGH of 6,400×3,072 pixels from a three-dimensional (3D) object composed of 2,048 points in 55 ms. Furthermore, in the case of a 3D object composed of 4096 points, our system is 553 times faster than a conventional central processing unit (using eight threads).

  17. Computer Aided Design of Computer Generated Holograms for electron beam fabrication

    NASA Technical Reports Server (NTRS)

    Urquhart, Kristopher S.; Lee, Sing H.; Guest, Clark C.; Feldman, Michael R.; Farhoosh, Hamid

    1989-01-01

    Computer Aided Design (CAD) systems that have been developed for electrical and mechanical design tasks are also effective tools for the process of designing Computer Generated Holograms (CGHs), particularly when these holograms are to be fabricated using electron beam lithography. CAD workstations provide efficient and convenient means of computing, storing, displaying, and preparing for fabrication many of the features that are common to CGH designs. Experience gained in the process of designing CGHs with various types of encoding methods is presented. Suggestions are made so that future workstations may further accommodate the CGH design process.

  18. Fracture resistance of computer-aided design/computer-aided manufacturing-generated composite resin-based molar crowns.

    PubMed

    Harada, Akio; Nakamura, Keisuke; Kanno, Taro; Inagaki, Ryoichi; Örtengren, Ulf; Niwano, Yoshimi; Sasaki, Keiichi; Egusa, Hiroshi

    2015-04-01

    The aim of this study was to investigate whether different fabrication processes, such as the computer-aided design/computer-aided manufacturing (CAD/CAM) system or the manual build-up technique, affect the fracture resistance of composite resin-based crowns. Lava Ultimate (LU), Estenia C&B (EC&B), and lithium disilicate glass-ceramic IPS e.max press (EMP) were used. Four types of molar crowns were fabricated: CAD/CAM-generated composite resin-based crowns (LU crowns); manually built-up monolayer composite resin-based crowns (EC&B-monolayer crowns); manually built-up layered composite resin-based crowns (EC&B-layered crowns); and EMP crowns. Each type of crown was cemented to dies and the fracture resistance was tested. EC&B-layered crowns showed significantly lower fracture resistance compared with LU and EMP crowns, although there was no significant difference in flexural strength or fracture toughness between LU and EC&B materials. Micro-computed tomography and fractographic analysis showed that decreased strength probably resulted from internal voids in the EC&B-layered crowns introduced by the layering process. There was no significant difference in fracture resistance among LU, EC&B-monolayer, and EMP crowns. Both types of composite resin-based crowns showed fracture loads of >2000 N, which is higher than the molar bite force. Therefore, CAD/CAM-generated crowns, without internal defects, may be applied to molar regions with sufficient fracture resistance.

  19. An Improved Tibial Force Sensor to Compute Contact Forces and Contact Locations In Vitro After Total Knee Arthroplasty.

    PubMed

    Roth, Joshua D; Howell, Stephen M; Hull, Maury L

    2017-04-01

    Contact force imbalance and contact kinematics (i.e., motion of the contact location in each compartment during flexion) of the tibiofemoral joint are both important predictors of a patient's outcome following total knee arthroplasty (TKA). Previous tibial force sensors have limitations in that they either did not determine contact forces and contact locations independently in the medial and lateral compartments or only did so within restricted areas of the tibial insert, which prevented them from thoroughly evaluating contact force imbalance and contact kinematics in vitro. Accordingly, the primary objective of this study was to present the design and verification of an improved tibial force sensor which overcomes these limitations. The improved tibial force sensor consists of a modified tibial baseplate which houses independent medial and lateral arrays of three custom tension-compression transducers each. This sensor is interchangeable with a standard tibial component because it accommodates tibial articular surface inserts with a range of sizes and thicknesses. This sensor was verified by applying known loads at known locations over the entire surface of the tibial insert to determine the errors in the computed contact force and contact location in each compartment. The root-mean-square errors (RMSEs) in contact force are ≤ 6.1 N which is 1.4% of the 450 N full-scale output. The RMSEs in contact location are ≤ 1.6 mm. This improved tibial force sensor overcomes the limitations of the previous sensors and therefore should be useful for in vitro evaluation of new alignment goals, new surgical techniques, and new component designs in TKA.

  20. Molecular mechanism of motion and force generation by cytoplasmic dynein

    NASA Astrophysics Data System (ADS)

    Gennerich, Arne

    2013-03-01

    Cytoplasmic dynein is an intricate microtubule (MT) motor with four AAA (ATPase associated with various cellular activities) ATPases per head domain. Dynein homodimers take hundreds of consecutive steps, during which the leading and trailing heads experience intramolecular tension in opposite directions. We hypothesize that this asymmetry may differentially regulate the MT-binding and ATPase functions in each head, thereby facilitating processive movement. Here, we elucidate the function of tension in regulating dynein-MT interactions, and dissect the roles of its multiple AAA subunits in effecting and modulating this behavior. Using optical tweezers to measure unbinding forces of single S. cerevisiae dynein heads in the absence of nucleotide, we show that intrinsic dynein-MT binding is significantly weaker under forward (MT-minus-end directed) tension than under rearward tension. Thus, forward tension likely promotes rear head detachment in the dimeric motor. The nucleotide states of specific AAA sites modify this intrinsic behavior. Mutational analysis shows that ATP binding to AAA1 substantially weakens MT binding. Moreover, ADP binding to AAA3 `locks' dynein in a previously undescribed, weak MT-binding state with a relatively symmetric response to tension. Interestingly, tension also affects nucleotide affinity: ADP affinity is lower under rearward than under forward load, suggesting that the front head preferentially releases ADP (likely from AAA3), perhaps driving a transition from an ADP state with relatively weak MT attachment to a strongly MT-attached, nucleotide-free state. Our analysis suggests that intramolecular tension is key to dynein motility, and highlights the importance of including multiple AAA ATPases in models for dynein mechanochemistry. NIH R01GM098469

  1. Investigation into the use of a personal computer for generating real-time infrared imagery

    NASA Astrophysics Data System (ADS)

    le Roux, Francois P.; Collin, Francois G.; Leuschner, F. Wilhelm

    2001-08-01

    The simulation of infrared imagery forms an integral part of the design and evaluation of infrared systems. HWIL simulations require imagery at frame rates of 100Hz and above. The generation of real-time imagery used to be the domain of graphics super-computers and custom rendering hardware. We investigated the use of a new generation of personal computer graphics accelerators to generate real-time infrared imagery, using OpenGL as the graphics library. The hardware was a NVIDIA GeForce-based graphics accelerator running on a standard Pentium III computer. The graphics accelerator is limited to a color resolution of 8 bits per channel. A technique was investigated to artificially increase this resolution in order to increase the fidelity of the simulation. OpenGL was designed to render images in the visual band. The implementation of the simulation in OpenGL requires the mapping of spectrally variant entities such as atmospheric transmittance to single parameter equivalents. Various combinations of sensor spectral response, source radiance and atmospheric transmittance were investigated to determine the situations under which such a mapping is feasible. A combination of rendering images on the graphics card, and processing the resultant images on the personal computer was investigated to increase the rendering speed and the fidelity of the simulation.

  2. Grid generation and inviscid flow computation about aircraft geometries

    NASA Technical Reports Server (NTRS)

    Smith, Robert E.

    1989-01-01

    Grid generation and Euler flow about fighter aircraft are described. A fighter aircraft geometry is specified by an area ruled fuselage with an internal duct, cranked delta wing or strake/wing combinations, canard and/or horizontal tail surfaces, and vertical tail surfaces. The initial step before grid generation and flow computation is the determination of a suitable grid topology. The external grid topology that has been applied is called a dual-block topology which is a patched C (exp 1) continuous multiple-block system where inner blocks cover the highly-swept part of a cranked wing or strake, rearward inner-part of the wing, and tail components. Outer-blocks cover the remainder of the fuselage, outer-part of the wing, canards and extend to the far field boundaries. The grid generation is based on transfinite interpolation with Lagrangian blending functions. This procedure has been applied to the Langley experimental fighter configuration and a modified F-18 configuration. Supersonic flow between Mach 1.3 and 2.5 and angles of attack between 0 degrees and 10 degrees have been computed with associated Euler solvers based on the finite-volume approach. When coupling geometric details such as boundary layer diverter regions, duct regions with inlets and outlets, or slots with the general external grid, imposing C (exp 1) continuity can be extremely tedious. The approach taken here is to patch blocks together at common interfaces where there is no grid continuity, but enforce conservation in the finite-volume solution. The key to this technique is how to obtain the information required for a conservative interface. The Ramshaw technique which automates the computation of proportional areas of two overlapping grids on a planar surface and is suitable for coding was used. Researchers generated internal duct grids for the Langley experimental fighter configuration independent of the external grid topology, with a conservative interface at the inlet and outlet.

  3. Revisions to the hydrogen gas generation computer model

    SciTech Connect

    Jerrell, J.W.

    1992-08-31

    Waste Management Technology has requested SRTC to maintain and extend a previously developed computer model, TRUGAS, which calculates hydrogen gas concentrations within the transuranic (TRU) waste drums. TRUGAS was written by Frank G. Smith using the BASIC language and is described in the report A Computer Model of gas Generation and Transport within TRU Waste Drums (DP- 1754). The computer model has been partially validated by yielding results similar to experimental data collected at SRL and LANL over a wide range of conditions. The model was created to provide the capability of predicting conditions that could potentially lead to the formation of flammable gas concentrations within drums, and to assess proposed drum venting methods. The model has served as a tool in determining how gas concentrations are affected by parameters such as filter vent sizes, waste composition, gas generation values, the number and types of enclosures, water instrusion into the drum, and curie loading. The success of the TRUGAS model has prompted an interest in the program's maintenance and enhancement. Experimental data continues to be collected at various sites on such parameters as permeability values, packaging arrangements, filter designs, and waste contents. Information provided by this data is used to improve the accuracy of the model's predictions. Also, several modifications to the model have been made to enlarge the scope of problems which can be analyzed. For instance, the model has been used to calculate hydrogen concentrations inside steel cabinets containing retired glove boxes (WSRC-RP-89-762). The revised TRUGAS computer model, H2GAS, is described in this report. This report summarizes all modifications made to the TRUGAS computer model and provides documentation useful for making future updates to H2GAS.

  4. Revisions to the hydrogen gas generation computer model

    SciTech Connect

    Jerrell, J.W.

    1992-08-31

    Waste Management Technology has requested SRTC to maintain and extend a previously developed computer model, TRUGAS, which calculates hydrogen gas concentrations within the transuranic (TRU) waste drums. TRUGAS was written by Frank G. Smith using the BASIC language and is described in the report A Computer Model of gas Generation and Transport within TRU Waste Drums (DP- 1754). The computer model has been partially validated by yielding results similar to experimental data collected at SRL and LANL over a wide range of conditions. The model was created to provide the capability of predicting conditions that could potentially lead to the formation of flammable gas concentrations within drums, and to assess proposed drum venting methods. The model has served as a tool in determining how gas concentrations are affected by parameters such as filter vent sizes, waste composition, gas generation values, the number and types of enclosures, water instrusion into the drum, and curie loading. The success of the TRUGAS model has prompted an interest in the program`s maintenance and enhancement. Experimental data continues to be collected at various sites on such parameters as permeability values, packaging arrangements, filter designs, and waste contents. Information provided by this data is used to improve the accuracy of the model`s predictions. Also, several modifications to the model have been made to enlarge the scope of problems which can be analyzed. For instance, the model has been used to calculate hydrogen concentrations inside steel cabinets containing retired glove boxes (WSRC-RP-89-762). The revised TRUGAS computer model, H2GAS, is described in this report. This report summarizes all modifications made to the TRUGAS computer model and provides documentation useful for making future updates to H2GAS.

  5. Measuring Computer Usage by Air Force Contracting Personnel as it Relates to Computer Training

    DTIC Science & Technology

    1996-09-01

    Computers in Human Behavior 12.1...34 Computers in Human Behavior 3 (1987): 49-59. Howard, G. S. and R. D. Smith. "Computer Anxiety in Management: Myth or Reality." Communications of the ACM 29...34 Computers in Human Behavior 9 (1993): 27-50. 34 Szajna, Bernadette. "An Investigation of the Predictive Validity of Computer Anxiety and

  6. Muscle force generation and force control of finger movements in children with spastic hemiplegia during isometric tasks.

    PubMed

    Smits-Engelsman, B C; Rameckers, E A; Duysens, J

    2005-05-01

    Force control ability was investigated in 10 males and 10 females, between 5 and 15 years old with spastic hemiplegia (mild and moderate hand dysfunction), and an aged-matched control group (eight males, 12 females). An isometric force production task at five different levels of maximum voluntary contraction (MVC) was performed. Results showed that MVC generated with the affected hand (AH) was only one-third of that generated by the non-affected hand (NAH; p < 0.001), time to peak was almost twofold at the highest force level (p < 0.001), and the coefficient of variation was twice as high (p < 0.001). Results for the NAH did not differ from those of the control children. Correlations between clinical and experimental variables were significant for the relation between Ashworth score for elbow flexors, MVC and variability at the highest force level. In conclusion, the findings for the AH suggests that strength training should be considered for agonist spastic muscles.

  7. An Air Force Guide to Computer Program Configuration Management

    DTIC Science & Technology

    1977-08-01

    the specific requirements set forth for hardware do not appl ’, to CPCIs, but that computer program contractors should implement procedurts to comply...DATE PAGE NO. IDITIFIER ISSUE DATE IDfTFE IDENTII Computor Progrom SPECIFICATION CHANGE NOTICE OATI: PRFPAnlo - I ORIGINATOR NAME AND AORECSS 2, LS

  8. 3D measurement system based on computer-generated gratings

    NASA Astrophysics Data System (ADS)

    Zhu, Yongjian; Pan, Weiqing; Luo, Yanliang

    2010-08-01

    A new kind of 3D measurement system has been developed to achieve the 3D profile of complex object. The principle of measurement system is based on the triangular measurement of digital fringe projection, and the fringes are fully generated from computer. Thus the computer-generated four fringes form the data source of phase-shifting 3D profilometry. The hardware of system includes the computer, video camera, projector, image grabber, and VGA board with two ports (one port links to the screen, another to the projector). The software of system consists of grating projection module, image grabbing module, phase reconstructing module and 3D display module. A software-based synchronizing method between grating projection and image capture is proposed. As for the nonlinear error of captured fringes, a compensating method is introduced based on the pixel-to-pixel gray correction. At the same time, a least square phase unwrapping is used to solve the problem of phase reconstruction by using the combination of Log Modulation Amplitude and Phase Derivative Variance (LMAPDV) as weight. The system adopts an algorithm from Matlab Tool Box for camera calibration. The 3D measurement system has an accuracy of 0.05mm. The execution time of system is 3~5s for one-time measurement.

  9. An Improved Optical Tweezers Assay for Measuring the Force Generation of Single Kinesin Molecules

    PubMed Central

    Nicholas, Matthew P.; Rao, Lu; Gennerich, Arne

    2014-01-01

    Numerous microtubule-associated molecular motors, including several kinesins and cytoplasmic dynein, produce opposing forces that regulate spindle and chromosome positioning during mitosis. The motility and force generation of these motors are therefore critical to normal cell division, and dysfunction of these processes may contribute to human disease. Optical tweezers provide a powerful method for studying the nanometer motility and piconewton force generation of single motor proteins in vitro. Using kinesin-1 as a prototype, we present a set of step-by-step, optimized protocols for expressing a kinesin construct (K560-GFP) in Escherichia coli, purifying it, and studying its force generation in an optical tweezers microscope. We also provide detailed instructions on proper alignment and calibration of an optical trapping microscope. These methods provide a foundation for a variety of similar experiments. PMID:24633799

  10. Robustness of muscle synergies underlying three-dimensional force generation at the hand in healthy humans

    PubMed Central

    Rymer, William Z.; Beer, Randall F.

    2012-01-01

    Previous studies using advanced matrix factorization techniques have shown that the coordination of human voluntary limb movements may be accomplished using combinations of a small number of intermuscular coordination patterns, or muscle synergies. However, the potential use of muscle synergies for isometric force generation has been evaluated mostly using correlational methods. The results of such studies suggest that fixed relationships between the activations of pairs of muscles are relatively rare. There is also emerging evidence that the nervous system uses independent strategies to control movement and force generation, which suggests that one cannot conclude a priori that isometric force generation is accomplished by combining muscle synergies, as shown in movement control. In this study, we used non-negative matrix factorization to evaluate the ability of a few muscle synergies to reconstruct the activation patterns of human arm muscles underlying the generation of three-dimensional (3-D) isometric forces at the hand. Surface electromyographic (EMG) data were recorded from eight key elbow and shoulder muscles during 3-D force target-matching protocols performed across a range of load levels and hand positions. Four synergies were sufficient to explain, on average, 95% of the variance in EMG datasets. Furthermore, we found that muscle synergy composition was conserved across biomechanical task conditions, experimental protocols, and subjects. Our findings are consistent with the view that the nervous system can generate isometric forces by assembling a combination of a small number of muscle synergies, differentially weighted according to task constraints. PMID:22279190

  11. Force-generating capacity of human myosin isoforms extracted from single muscle fibre segments.

    PubMed

    Li, Meishan; Larsson, Lars

    2010-12-15

    Muscle, motor unit and muscle fibre type-specific differences in force-generating capacity have been investigated for many years, but there is still no consensus regarding specific differences between slow- and fast-twitch muscles, motor units or muscle fibres. This is probably related to a number of different confounding factors disguising the function of the molecular motor protein myosin. We have therefore studied the force-generating capacity of specific myosin isoforms or combination of isoforms extracted from short single human muscle fibre segments in a modified single fibre myosin in vitro motility assay, in which an internal load (actin-binding protein) was added in different concentrations to evaluate the force-generating capacity. The force indices were the x-axis intercept and the slope of the relationship between the fraction of moving filaments and the α-actinin concentration. The force-generating capacity of the β/slow myosin isoform (type I) was weaker (P < 0.05) than the fast myosin isoform (type II), but the force-generating capacity of the different human fast myosin isoforms types IIa and IIx or a combination of both (IIax) were indistinguishable. A single fibre in vitro motility assay for both speed and force of specific myosin isoforms is described and used to measure the difference in force-generating capacity between fast and slow human myosin isoforms. The assay is proposed as a useful tool for clinical studies on the effects on muscle function of specific mutations or post-translational modifications of myosin.

  12. Computer controlled MHD power consolidation and pulse generation system

    SciTech Connect

    Johnson, R.; Marcotte, K.; Donnelly, M.

    1990-01-01

    The major goal of this research project is to establish the feasibility of a power conversion technology which will permit the direct synthesis of computer programmable pulse power. Feasibility has been established in this project by demonstration of direct synthesis of commercial frequency power by means of computer control. The power input to the conversion system is assumed to be a Faraday connected MHD generator which may be viewed as a multi-terminal dc source and is simulated for the purpose of this demonstration by a set of dc power supplies. This consolidation/inversion (CI), process will be referred to subsequently as Pulse Amplitude Synthesis and Control (PASC). A secondary goal is to deliver a controller subsystem consisting of a computer, software, and computer interface board which can serve as one of the building blocks for a possible phase II prototype system. This report period work summarizes the accomplishments and covers the high points of the two year project. 6 refs., 41 figs.

  13. Computation of the sound generated by isotropic turbulence

    NASA Technical Reports Server (NTRS)

    Sarkar, S.; Hussaini, M. Y.

    1993-01-01

    The acoustic radiation from isotropic turbulence is computed numerically. A hybrid direct numerical simulation approach which combines direct numerical simulation (DNS) of the turbulent flow with the Lighthill acoustic analogy is utilized. It is demonstrated that the hybrid DNS method is a feasible approach to the computation of sound generated by turbulent flows. The acoustic efficiency in the simulation of isotropic turbulence appears to be substantially less than that in subsonic jet experiments. The dominant frequency of the computed acoustic pressure is found to be somewhat larger than the dominant frequency of the energy-containing scales of motion. The acoustic power in the simulations is proportional to epsilon (M(sub t))(exp 5) where epsilon is the turbulent dissipation rate and M(sub t) is the turbulent Mach number. This is in agreement with the analytical result of Proudman (1952), but the constant of proportionality is smaller than the analytical result. Two different methods of computing the acoustic power from the DNS data bases yielded consistent results.

  14. Performance Evaluation Tools for Next Generation Scalable Computing Platforms

    NASA Technical Reports Server (NTRS)

    Yan, Jerry C.; Sarukkai, Sekhar; Craw, James (Technical Monitor)

    1995-01-01

    The Federal High Performance and Communications (HPCC) Program continue to focus on R&D in a wide range of high performance computing and communications technologies. Using its accomplishments in the past four years as building blocks towards a Global Information Infrastructure (GII), an Implementation Plan that identifies six Strategic Focus Areas for R&D has been proposed. This white paper argues that a new generation of system software and programming tools must be developed to support these focus areas, so that the R&D we invest today can lead to technology pay-off a decade from now. The Global Computing Infrastructure (GCI) in the Year 2000 and Beyond would consists of thousands of powerful computing nodes connected via high-speed networks across the globe. Users will be able to obtain computing in formation services the GCI with the ease of using a plugging a toaster into the electrical outlet on the wall anywhere in the country. Developing and managing the GO requires performance prediction and monitoring capabilities that do not exist. Various accomplishments in this field today must be integrated and expanded to support this vision.

  15. Computer simulations reveal motor properties generating stable antiparallel microtubule interactions.

    PubMed

    Nédélec, François

    2002-09-16

    An aster of microtubules is a set of flexible polar filaments with dynamic plus ends that irradiate from a common location at which the minus ends of the filaments are found. Processive soluble oligomeric motor complexes can bind simultaneously to two microtubules, and thus exert forces between two asters. Using computer simulations, I have explored systematically the possible steady-state regimes reached by two asters under the action of various kinds of oligomeric motors. As expected, motor complexes can induce the asters to fuse, for example when the complexes consist only of minus end-directed motors, or to fully separate, when the motors are plus end directed. More surprisingly, complexes made of two motors of opposite directionalities can also lead to antiparallel interactions between overlapping microtubules that are stable and sustained, like those seen in mitotic spindle structures. This suggests that such heterocomplexes could have a significant biological role, if they exist in the cell.

  16. 27 CFR 19.634 - Computer-generated reports and transaction forms.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Computer-generated reports... Reports Filing Forms and Reports § 19.634 Computer-generated reports and transaction forms. TTB will accept computer-generated reports of operations and transaction forms made using a computer printer...

  17. 27 CFR 19.634 - Computer-generated reports and transaction forms.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Computer-generated reports... Reports Filing Forms and Reports § 19.634 Computer-generated reports and transaction forms. TTB will accept computer-generated reports of operations and transaction forms made using a computer printer...

  18. 27 CFR 19.634 - Computer-generated reports and transaction forms.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Computer-generated reports... Reports Filing Forms and Reports § 19.634 Computer-generated reports and transaction forms. TTB will accept computer-generated reports of operations and transaction forms made using a computer printer...

  19. 27 CFR 19.634 - Computer-generated reports and transaction forms.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Computer-generated reports... Reports Filing Forms and Reports § 19.634 Computer-generated reports and transaction forms. TTB will accept computer-generated reports of operations and transaction forms made using a computer printer...

  20. Computational particle physics for event generators and data analysis

    NASA Astrophysics Data System (ADS)

    Perret-Gallix, Denis

    2013-08-01

    High-energy physics data analysis relies heavily on the comparison between experimental and simulated data as stressed lately by the Higgs search at LHC and the recent identification of a Higgs-like new boson. The first link in the full simulation chain is the event generation both for background and for expected signals. Nowadays event generators are based on the automatic computation of matrix element or amplitude for each process of interest. Moreover, recent analysis techniques based on the matrix element likelihood method assign probabilities for every event to belong to any of a given set of possible processes. This method originally used for the top mass measurement, although computing intensive, has shown its efficiency at LHC to extract the new boson signal from the background. Serving both needs, the automatic calculation of matrix element is therefore more than ever of prime importance for particle physics. Initiated in the 80's, the techniques have matured for the lowest order calculations (tree-level), but become complex and CPU time consuming when higher order calculations involving loop diagrams are necessary like for QCD processes at LHC. New calculation techniques for next-to-leading order (NLO) have surfaced making possible the generation of processes with many final state particles (up to 6). If NLO calculations are in many cases under control, although not yet fully automatic, even higher precision calculations involving processes at 2-loops or more remain a big challenge. After a short introduction to particle physics and to the related theoretical framework, we will review some of the computing techniques that have been developed to make these calculations automatic. The main available packages and some of the most important applications for simulation and data analysis, in particular at LHC will also be summarized (see CCP2012 slides [1]).

  1. Tug-of-war between two elastically coupled molecular motors: a case study on force generation and force balance.

    PubMed

    Uçar, Mehmet Can; Lipowsky, Reinhard

    2017-01-04

    Intracellular transport is performed by molecular motors that pull cargos along cytoskeletal filaments. Many cellular cargos are observed to move bidirectionally, with fast transport in both directions. This behaviour can be understood as a stochastic tug-of-war between two teams of antagonistic motors. The first theoretical model for such a tug-of-war, the Müller-Klumpp-Lipowsky (MKL) model, was based on two simplifying assumptions: (i) both motor teams move with the same velocity in the direction of the stronger team, and (ii) this velocity matching and the associated force balance arise immediately after the rebinding of an unbound motor to the filament. In this study, we extend the MKL model by including an elastic coupling between the antagonistic motors, and by allowing the motors to perform discrete motor steps. Each motor step changes the elastic interaction forces experienced by the motors. In order to elucidate the basic concepts of force balance and force fluctuations, we focus on the simplest case of two antagonistic motors, one kinesin against one dynein. We calculate the probability distribution for the spatial separation of the motors and the dependence of this distribution on the motors' unbinding rate. We also compute the probability distribution for the elastic interaction forces experienced by the motors, which determines the average elastic force 〈F〉 and the standard deviation of the force fluctuations around this average value. The average force 〈F〉 is found to decrease monotonically with increasing unbinding rate ε0. The behaviour of the MKL model is recovered in the limit of small ε0. In the opposite limit of large ε0, 〈F〉 is found to decay to zero as 1/ε0. Finally, we study the limiting case with ε0 = 0 for which we determine both the force statistics and the time needed to attain the steady state. Our theoretical predictions are accessible to experimental studies of in vitro systems consisting of two antagonistic motors

  2. Computer Generated Snapshot of Our Sun's Magnetic Field

    NASA Technical Reports Server (NTRS)

    2003-01-01

    These banana-shaped loops are part of a computer-generated snapshot of our sun's magnetic field. The solar magnetic-field lines loop through the sun's corona, break through the sun's surface, and cornect regions of magnetic activity, such as sunspots. This image --part of a magnetic-field study of the sun by NASA's Allen Gary -- shows the outer portion (skins) of interconnecting systems of hot (2 million degrees Kelvin) coronal loops within and between two active magnetic regions on opposite sides of the sun's equator. The diameter of these coronal loops at their foot points is approximately the same size as the Earth's radius (about 6,000 kilometers).

  3. Mass-producible microscopic computer-generated holograms: microtags

    SciTech Connect

    Descour, M.R.; Sweatt, W.C.; Ray-Chaudhuri, A.K.; Krenz, K.D.; Warren, M.E.; Kravitz, S.H.; Tichenor, D.A.; Stulen, R.H.; Love, T.L.

    1996-12-01

    We have developed a method for encoding phase and amplitude in microscopic computer-generated holograms (microtags) for security applications. An 8{times}8 cell phase-only and an 8{times}8 cell phase-and-amplitude microtag design has been exposed in photoresist by the extreme-ultraviolet (13.4-nm) lithography tool developed at Sandia National Laboratories. Each microtag measures 80 {mu}m{times}160 {mu}m and contains features that are 0.2 {mu}m wide. Fraunhofer zone diffraction patterns can be obtained from fabricated microtags without any intervening optics and compare favorably with predicted diffraction patterns. {copyright} {ital 1996 Optical Society of America.}

  4. Intermolecular Forces in Introductory Chemistry Studied by Gas Chromatography, Computer Models, and Viscometry

    NASA Astrophysics Data System (ADS)

    Wedvik, Jonathan C.; McManaman, Charity; Anderson, Janet S.; Carroll, Mary K.

    1998-07-01

    An experiment on intermolecular forces for first-term introductory college chemistry is presented. The experiment integrates traditional viscometry-based measurements with modern chromatographic analysis and use of computer-based molecular models. Students performing gas chromatographic (GC) analyses of mixtures of n-alkanes and samples that simulate crime scene evidence discover that liquid mixtures can be separated rapidly into their components based upon intermolecular forces. Each group of students is given a liquid sample that simulates one collected at an arson scene, and the group is required to determine the identity of the accelerant. Students also examine computer models to better visualize how molecular structure affects intermolecular forces: London forces, dipole-dipole interactions, and hydrogen bonding. The relative viscosities of organic liquids are also measured to relate physical properties to intermolecular forces.

  5. Optimization of computer-generated binary holograms using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Cojoc, Dan; Alexandrescu, Adrian

    1999-11-01

    The aim of this paper is to compare genetic algorithms against direct point oriented coding in the design of binary phase Fourier holograms, computer generated. These are used as fan-out elements for free space optical interconnection. Genetic algorithms are optimization methods which model the natural process of genetic evolution. The configuration of the hologram is encoded to form a chromosome. To start the optimization, a population of different chromosomes randomly generated is considered. The chromosomes compete, mate and mutate until the best chromosome is obtained according to a cost function. After explaining the operators that are used by genetic algorithms, this paper presents two examples with 32 X 32 genes in a chromosome. The crossover type and the number of mutations are shown to be important factors which influence the convergence of the algorithm. GA is demonstrated to be a useful tool to design namely binary phase holograms of complicate structures.

  6. Numerical study of Balearic meteotsunami generation and propagation under synthetic gravity wave forcing

    NASA Astrophysics Data System (ADS)

    Ličer, Matjaž; Mourre, Baptiste; Troupin, Charles; Krietemeyer, Andreas; Jansá, Agusti; Tintoré, Joaquín

    2017-03-01

    We use a high resolution nested ocean modelling system forced by synthetic atmospheric gravity waves to investigate Balearic meteotsunami generation, amplification and propagation properties. We determine how meteotsunami amplitude outside and inside of the Balearic port of Ciutadella depends on forcing gravity wave direction, speed and trajectory. We quantify the contributions of Mallorca shelves and Menorca Channel for different gravity wave forcing angles and speeds. The Channel is demonstrated to be the key build-up region determining meteotsunami amplitude in Ciutadella while northern and southern Mallorca shelves serve mostly as barotropic wave guides but do not significantly contribute to seiche amplitude in Ciutadella. This fact seriously reduces early-warning alert times in cases of locally generated pressure perturbations. We track meteotsunami propagation paths in the Menorca Channel for several forcing velocities and show that the Channel bathymetry serves as a focusing lens for meteotsunami waves whose paths are constrained by the forcing direction. We show that faster meteotsunamis propagate over deeper ocean regions, as required by Proudman resonance. We estimate meteotsunami speed under sub- and supercritical forcing and derive a first order estimate of its magnitude. We show that meteotsunamis, generated by supercritical gravity waves, propagate with a velocity which is equal to an arithmetic mean of the forcing velocity and local barotropic ocean wave speed.

  7. Distinct molecular processes associated with isometric force generation and rapid tension recovery after quick release.

    PubMed Central

    Brenner, B; Chalovich, J M; Yu, L C

    1995-01-01

    It was proposed by Huxley and Simmons (Nature 1971, 233:533-538) that force-generating cross-bridges are attached to actin in several stable positions. In this concept, isometric force is generated by the same mechanism as the quick tension recovery after an abrupt release of length; i.e., when crossbridges proceed from the first postulated stable position to the second and/or subsequent positions, resulting in straining of the elastic elements within the cross-bridges. Therefore, isometric force is generated by cross-bridges in the second or even subsequent stable positions. However, through mechanical measurements of skinned rabbit psoas muscle fibers, we found that during isometric contraction only the first stable state is significantly occupied; i.e., isometric force is generated by cross-bridges in the first of the stable states. Thus, isometric force and the quick tension recovery appear to result from two distinctly different molecular processes. We propose that isometric force results from a structural change in the actomyosin complex associated with the transition from a weakly bound configuration to a strongly bound configuration before the reaction steps in the Huxley-Simmons model, whereas a major component of quick tension recovery originates from transitions among the subsequent strongly bound states. Mechanical, biochemical, and structural evidence for the two distinct processes is summarized and reviewed. PMID:7787051

  8. Distinct molecular processes associated with isometric force generation and rapid tension recovery after quick release.

    PubMed

    Brenner, B; Chalovich, J M; Yu, L C

    1995-04-01

    It was proposed by Huxley and Simmons (Nature 1971, 233:533-538) that force-generating cross-bridges are attached to actin in several stable positions. In this concept, isometric force is generated by the same mechanism as the quick tension recovery after an abrupt release of length; i.e., when crossbridges proceed from the first postulated stable position to the second and/or subsequent positions, resulting in straining of the elastic elements within the cross-bridges. Therefore, isometric force is generated by cross-bridges in the second or even subsequent stable positions. However, through mechanical measurements of skinned rabbit psoas muscle fibers, we found that during isometric contraction only the first stable state is significantly occupied; i.e., isometric force is generated by cross-bridges in the first of the stable states. Thus, isometric force and the quick tension recovery appear to result from two distinctly different molecular processes. We propose that isometric force results from a structural change in the actomyosin complex associated with the transition from a weakly bound configuration to a strongly bound configuration before the reaction steps in the Huxley-Simmons model, whereas a major component of quick tension recovery originates from transitions among the subsequent strongly bound states. Mechanical, biochemical, and structural evidence for the two distinct processes is summarized and reviewed.

  9. Characterization of sliders for efficient force generation of electrostatically controlled linear actuator

    NASA Astrophysics Data System (ADS)

    Nguyen, T. A.; Konishi, S.

    2014-05-01

    In this paper, the characterization of sliders for efficient force generation of an electrostatically controlled linear actuator (ECLIA) is investigated. The ECLIA consists of a piezoactuator (PZT), driving and holding electrodes, multiple sliders and a guide structure. The stepping motion of the sliders is driven by the PZT actuator via an electrostatic clutch mechanism. Thus, multiple sliders can achieve parallel, independent, precise motion, and a large stroke. Previous studies have indicated that the Si bulk slider and Si electrode created an air gap owing to the deformation of the Si electrode. Thus, the Si slider generated a low pushing force. In this study, we propose a fishbone structure mounted on a flexible slider to enhance the pushing force of the slider. The flexible slider, that can deform and fit into the Si electrode to reduce the air gap, results in highly efficient electrostatic-force generation. The fishbone structure improves the longitudinal stiffness of the flexible slider for high pushing-force generation. The results show that the pushing force created by the fishbone slider was three times greater than that of the conventional Si slider. The fishbone and flexible sliders exhibited a high performance for the ECLIA.

  10. Fast electrostatic force calculation on parallel computer clusters

    SciTech Connect

    Kia, Amirali Kim, Daejoong Darve, Eric

    2008-10-01

    The fast multipole method (FMM) and smooth particle mesh Ewald (SPME) are well known fast algorithms to evaluate long range electrostatic interactions in molecular dynamics and other fields. FMM is a multi-scale method which reduces the computation cost by approximating the potential due to a group of particles at a large distance using few multipole functions. This algorithm scales like O(N) for N particles. SPME algorithm is an O(NlnN) method which is based on an interpolation of the Fourier space part of the Ewald sum and evaluating the resulting convolutions using fast Fourier transform (FFT). Those algorithms suffer from relatively poor efficiency on large parallel machines especially for mid-size problems around hundreds of thousands of atoms. A variation of the FMM, called PWA, based on plane wave expansions is presented in this paper. A new parallelization strategy for PWA, which takes advantage of the specific form of this expansion, is described. Its parallel efficiency is compared with SPME through detail time measurements on two different computer clusters.

  11. Molecular interaction forces generated during protein adsorption to well-defined polymer brush surfaces.

    PubMed

    Sakata, Sho; Inoue, Yuuki; Ishihara, Kazuhiko

    2015-03-17

    The molecular interaction forces generated during the adsorption of proteins to surfaces were examined by the force-versus-distance (f-d) curve measurements of atomic force microscopy using probes modified with appropriate molecules. Various substrates with polymer brush layers bearing zwitterionic, cationic, anionic, and hydrophobic groups were systematically prepared by surface-initiated atom transfer radical polymerization. Surface interaction forces on these substrates were analyzed by the f-d curve measurements using probes with the same polymer brush layer as the substrate. Repulsive forces, which decreased depending on the ionic strength, were generated between cationic or anionic polyelectrolyte brush layers; these were considered to be electrostatic interaction forces. A strong adhesive force was detected between hydrophobic polymer brush layers during retraction; this corresponded to the hydrophobic interaction between two hydrophobic polymer layers. In contrast, no significant interaction forces were detected between zwitterionic polymer brush layers. Direct interaction forces between proteins and polymer brush layers were then quantitatively evaluated by the f-d curve measurements using protein-immobilized probes consisting of negatively charged albumin and positively charged lysozyme under physiological conditions. In addition, the amount of protein adsorbed on the polymer brush layer was quantified by surface plasmon resonance measurements. Relatively large amounts of protein adsorbed to the polyelectrolyte brush layers with opposite charges. It was considered that the detachment of the protein after contact with the polymer brush layer hardly occurred due to salt formation at the interface. Both proteins adsorbed significantly on the hydrophobic polymer brush layer, which was due to hydrophobic interactions at the interface. In contrast, the zwitterionic polymer brush layer exhibited no significant interaction force with proteins and suppressed

  12. Geometric plane shapes for computer-generated holographic engraving codes

    NASA Astrophysics Data System (ADS)

    Augier, Ángel G.; Rabal, Héctor; Sánchez, Raúl B.

    2017-04-01

    We report a new theoretical and experimental study on hologravures, as holographic computer-generated laser-engravings. A geometric theory of images based on the general principles of light ray behaviour is shown. The models used are also applicable for similar engravings obtained by any non-laser method, and the solutions allow for the analysis of particular situations, not only in the case of light reflection mode, but also in transmission mode geometry. This approach is a novel perspective allowing the three-dimensional (3D) design of engraved images for specific ends. We prove theoretically that plane curves of very general geometric shapes can be used to encode image information onto a two-dimensional (2D) engraving, showing notable influence on the behaviour of reconstructed images that appears as an exciting investigation topic, extending its applications. Several cases of code using particular curvilinear shapes are experimentally studied. The computer-generated objects are coded by using the chosen curve type, and engraved by a laser on a plane surface of suitable material. All images are recovered optically by adequate illumination. The pseudoscopic or orthoscopic character of these images is considered, and an appropriate interpretation is presented.

  13. Very low force-generating ability and unusually high temperature dependency in hummingbird flight muscle fibers.

    PubMed

    Reiser, Peter J; Welch, Kenneth C; Suarez, Raul K; Altshuler, Douglas L

    2013-06-15

    Hummingbird flight muscle is estimated to have among the highest mass-specific power output among vertebrates, based on aerodynamic models. However, little is known about the fundamental contractile properties of their remarkable flight muscles. We hypothesized that hummingbird pectoralis fibers generate relatively low force when activated in a tradeoff for high shortening speeds associated with the characteristic high wingbeat frequencies that are required for sustained hovering. Our objective was to measure maximal force-generating ability (maximal force/cross-sectional area, Po/CSA) in single, skinned fibers from the pectoralis and supracoracoideus muscles, which power the wing downstroke and upstroke, respectively, in hummingbirds (Calypte anna) and in another similarly sized species, zebra finch (Taeniopygia guttata), which also has a very high wingbeat frequency during flight but does not perform a sustained hover. Mean Po/CSA in hummingbird pectoralis fibers was very low - 1.6, 6.1 and 12.2 kN m(-2), at 10, 15 and 20°C, respectively. Po/CSA in finch pectoralis fibers was also very low (for both species, ~5% of the reported Po/CSA of chicken pectoralis fast fibers at 15°C). Q10-force (force generated at 20°C/force generated at 10°C) was very high for hummingbird and finch pectoralis fibers (mean=15.3 and 11.5, respectively) compared with rat slow and fast fibers (1.8 and 1.9, respectively). Po/CSA in hummingbird leg fibers was much higher than in pectoralis fibers at each temperature, and the mean Q10-force was much lower. Thus, hummingbird and finch pectoralis fibers have an extremely low force-generating ability compared with other bird and mammalian limb fibers, and an extremely high temperature dependence of force generation. However, the extrapolated maximum force-generating ability of hummingbird pectoralis fibers in vivo (~48 kN m(-2)) is substantially higher than the estimated requirements for hovering flight of C. anna. The unusually low Po

  14. Computer-generated fiscal reports for food cost accounting.

    PubMed

    Fromm, B; Moore, A N; Hoover, L W

    1980-08-01

    To optimize resource utilization for the provision of health-care services, well designed food cost accounting systems should facilitate effective decision-making. Fiscal reports reflecting the financial status of an organization at a given time must be current and representative so that managers have adequate data for planning and controlling. The computer-assisted food cost accounting discussed in this article can be integrated with other sub-systems and operations management techniques to provide the information needed to make decisions regarding revenues and expenses. Management information systems must be routinely evaluated and updated to meet the current needs of administrators. Further improvements in the food cost accounting system will be desirable whenever substantial changes occur within the foodservice operation at the University of Missouri-Columbia Medical Center or when advancements in computer technology provide more efficient methods for manipulating data and generating reports. Development of new systems and better applications of present systems could contribute significantly to the efficiency of operations in both health care and commercial foodservices. The computer-assisted food cost accounting system reported here might serve s a prototype for other management cost information systems.

  15. Kinesin force generation measured using a centrifuge microscope sperm-gliding motility assay.

    PubMed Central

    Hall, K; Cole, D; Yeh, Y; Baskin, R J

    1996-01-01

    To measure force generation and characterize the relationship between force and velocity in kinesin-driven motility we have developed a centrifuge microscope sperm-gliding motility assay. The average (extrapolated) value of maximum isometric force at low kinesin density was 0.90 +/- 0.14 pN. Furthermore, in the experiments at low kinesin density, sperm pulled off before stall at forces between 0.40 and 0.75 pN. To further characterize our kinesin-demembranated sperm assay we estimated maximum isometric force using a laser trap-based assay. At low kinesin density, 4.34 +/- 1.5 pN was the maximum force. Using values of axoneme stiffness available from other studies, we concluded that, in our centrifuge microscope-based assay, a sperm axoneme functions as a lever arm, magnifying the centrifugal force and leading to pull-off before stall. In addition, drag of the distal portion of the axoneme is increased by the centrifugal force (because the axoneme is rotated into closer proximity to the glass surface) and represents an additional force that the kinesin motor must overcome. Images FIGURE 1 FIGURE 9 FIGURE 10 PMID:8968616

  16. Design of a new torque standard machine based on a torque generation method using electromagnetic force

    NASA Astrophysics Data System (ADS)

    Nishino, Atsuhiro; Ueda, Kazunaga; Fujii, Kenichi

    2017-02-01

    To allow the application of torque standards in various industries, we have been developing torque standard machines based on a lever deadweight system, i.e. a torque generation method using gravity. However, this method is not suitable for expanding the low end of the torque range, because of the limitations to the sizes of the weights and moment arms. In this study, the working principle of the torque generation method using an electromagnetic force was investigated by referring to watt balance experiments used for the redefinition of the kilogram. Applying this principle to a rotating coordinate system, an electromagnetic force type torque standard machine was designed and prototyped. It was experimentally demonstrated that SI-traceable torque could be generated by converting electrical power to mechanical power. Thus, for the first time, SI-traceable torque was successfully realized using a method other than that based on the force of gravity.

  17. Self-motion perception: assessment by computer-generated animations

    NASA Technical Reports Server (NTRS)

    Parker, D. E.; Harm, D. L.; Sandoz, G. R.; Skinner, N. C.

    1998-01-01

    The goal of this research is more precise description of adaptation to sensory rearrangements, including microgravity, by development of improved procedures for assessing spatial orientation perception. Thirty-six subjects reported perceived self-motion following exposure to complex inertial-visual motion. Twelve subjects were assigned to each of 3 perceptual reporting procedures: (a) animation movie selection, (b) written report selection and (c) verbal report generation. The question addressed was: do reports produced by these procedures differ with respect to complexity and reliability? Following repeated (within-day and across-day) exposures to 4 different "motion profiles," subjects either (a) selected movies presented on a laptop computer, or (b) selected written descriptions from a booklet, or (c) generated self-motion verbal descriptions that corresponded most closely with their motion experience. One "complexity" and 2 reliability "scores" were calculated. Contrary to expectations, reliability and complexity scores were essentially equivalent for the animation movie selection and written report selection procedures. Verbal report generation subjects exhibited less complexity than did subjects in the other conditions and their reports were often ambiguous. The results suggest that, when selecting from carefully written descriptions and following appropriate training, people may be better able to describe their self-motion experience with words than is usually believed.

  18. Effect of oblique force source induced by laser ablation on ultrasonic generation.

    PubMed

    Guo, Yuning; Yang, Dexing; Chang, Ying; Gao, Wei

    2014-01-13

    The effect of asymmetry caused by oblique line-shaped laser ablation on the generation of ultrasonic waves in metal, especially the effect of transverse component of the ablation force source on the ultrasonic waves is analyzed. Due to the oblique force source, the displacements of shear wave increase obviously by the enhanced shear force, the energy concentration area of longitudinal wave deflects to the small range centered on the incident direction while that of shear wave is approximately perpendicular to incident direction. In addition, surface wave enhances in the direction of transverse power flow. Furthermore, some ultrasonic characteristics under vortex laser ablation condition are inferred.

  19. The actin crosslinking protein palladin modulates force generation and mechanosensitivity of tumor associated fibroblasts

    PubMed Central

    Azatov, Mikheil; Goicoechea, Silvia M.; Otey, Carol A.; Upadhyaya, Arpita

    2016-01-01

    Cells organize actin filaments into higher-order structures by regulating the composition, distribution and concentration of actin crosslinkers. Palladin is an actin crosslinker found in the lamellar actin network and stress fibers, which are critical for mechanosensing of the environment. Palladin also serves as a molecular scaffold for α-actinin, another key actin crosslinker. By virtue of its close interactions with actomyosin structures in the cell, palladin may play an important role in cell mechanics. However, the role of palladin in cellular force generation and mechanosensing has not been studied. Here, we investigate the role of palladin in regulating the plasticity of the actin cytoskeleton and cellular force generation in response to alterations in substrate stiffness. Traction force microscopy revealed that tumor-associated fibroblasts generate larger forces on substrates of increased stiffness. Contrary to expectations, knocking down palladin increased the forces generated by cells and inhibited their ability to sense substrate stiffness for very stiff gels. This was accompanied by significant differences in actin organization, adhesion dynamics and altered myosin organization in palladin knock-down cells. Our results suggest that actin crosslinkers such as palladin and myosin motors coordinate for optimal cell function and to prevent aberrant behavior as in cancer metastasis. PMID:27353427

  20. Forces and moments generated by the human arm: variability and control.

    PubMed

    Xu, Y; Terekhov, A V; Latash, M L; Zatsiorsky, V M

    2012-11-01

    This is an exploratory study of the accurate endpoint force vector production by the human arm in isometric conditions. We formulated three common-sense hypotheses and falsified them in the experiment. The subjects (n = 10) exerted static forces on the handle in eight directions in a horizontal plane for 25 s. The forces were of 4 magnitude levels (10, 20, 30 and 40 % of individual maximal voluntary contractions). The torsion moment on the handle (grasp moment) was not specified in the instruction. The two force components and the grasp moment were recorded, and the shoulder, elbow, and wrist joint torques were computed. The following main facts were observed: (a) While the grasp moment was not prescribed by the instruction, it was always produced. The moment magnitude and direction depended on the instructed force magnitude and direction. (b) The within-trial angular variability of the exerted force vector (angular precision) did not depend on the target force magnitude (a small negative correlation was observed). (c) Across the target force directions, the variability of the exerted force magnitude and directional variability exhibited opposite trends: In the directions where the variability of force magnitude was maximal, the directional variability was minimal and vice versa. (d) The time profiles of joint torques in the trials were always positively correlated, even for the force directions where flexion torque was produced at one joint and extension torque was produced at the other joint. (e) The correlations between the grasp moment and the wrist torque were negative across the tasks and positive within the individual trials. (f) In static serial kinematic chains, the pattern of the joint torques distribution could not be explained by an optimization cost function additive with respect to the torques. Plans for several future experiments have been suggested.

  1. Forces and moments generated by the human arm: Variability and control

    PubMed Central

    Xu, Y; Terekhov, AV; Latash, ML; Zatsiorsky, VM

    2012-01-01

    This is an exploratory study of the accurate endpoint force vector production by the human arm in isometric conditions. We formulated three common-sense hypotheses and falsified them in the experiment. The subjects (n=10) exerted static forces on the handle in eight directions in a horizontal plane for 25 seconds. The forces were of 4 magnitude levels (10 %, 20%, 30% and 40% of individual MVC). The torsion moment on the handle (grasp moment) was not specified in the instruction. The two force components and the grasp moment were recorded, and the shoulder, elbow, and wrist joint torques were computed. The following main facts were observed: (a) While the grasp moment was not prescribed by the instruction, it was always produced. The moment magnitude and direction depended on the instructed force magnitude and direction. (b) The within-trial angular variability of the exerted force vector (angular precision) did not depend on the target force magnitude (a small negative correlation was observed). (c) Across the target force directions, the variability of the exerted force magnitude and directional variability exhibited opposite trends: In the directions where the variability of force magnitude was maximal, the directional variability was minimal and vice versa. (d) The time profiles of joint torques in the trials were always positively correlated, even for the force directions where flexion torque was produced at one joint and extension torque was produced at the other joint. (e) The correlations between the grasp moment and the wrist torque were negative across the tasks and positive within the individual trials. (f) In static serial kinematic chains, the pattern of the joint torques distribution could not be explained by an optimization cost function additive with respect to the torques. Plans for several future experiments have been suggested. PMID:23080084

  2. Computational Needs for the Next Generation Electric Grid Proceedings

    SciTech Connect

    Birman, Kenneth; Ganesh, Lakshmi; Renessee, Robbert van; Ferris, Michael; Hofmann, Andreas; Williams, Brian; Sztipanovits, Janos; Hemingway, Graham; University, Vanderbilt; Bose, Anjan; Stivastava, Anurag; Grijalva, Santiago; Grijalva, Santiago; Ryan, Sarah M.; McCalley, James D.; Woodruff, David L.; Xiong, Jinjun; Acar, Emrah; Agrawal, Bhavna; Conn, Andrew R.; Ditlow, Gary; Feldmann, Peter; Finkler, Ulrich; Gaucher, Brian; Gupta, Anshul; Heng, Fook-Luen; Kalagnanam, Jayant R; Koc, Ali; Kung, David; Phan, Dung; Singhee, Amith; Smith, Basil

    2011-10-05

    The April 2011 DOE workshop, 'Computational Needs for the Next Generation Electric Grid', was the culmination of a year-long process to bring together some of the Nation's leading researchers and experts to identify computational challenges associated with the operation and planning of the electric power system. The attached papers provide a journey into these experts' insights, highlighting a class of mathematical and computational problems relevant for potential power systems research. While each paper defines a specific problem area, there were several recurrent themes. First, the breadth and depth of power system data has expanded tremendously over the past decade. This provides the potential for new control approaches and operator tools that can enhance system efficiencies and improve reliability. However, the large volume of data poses its own challenges, and could benefit from application of advances in computer networking and architecture, as well as data base structures. Second, the computational complexity of the underlying system problems is growing. Transmitting electricity from clean, domestic energy resources in remote regions to urban consumers, for example, requires broader, regional planning over multi-decade time horizons. Yet, it may also mean operational focus on local solutions and shorter timescales, as reactive power and system dynamics (including fast switching and controls) play an increasingly critical role in achieving stability and ultimately reliability. The expected growth in reliance on variable renewable sources of electricity generation places an exclamation point on both of these observations, and highlights the need for new focus in areas such as stochastic optimization to accommodate the increased uncertainty that is occurring in both planning and operations. Application of research advances in algorithms (especially related to optimization techniques and uncertainty quantification) could accelerate power system software tool

  3. Computational model for noncontact atomic force microscopy: energy dissipation of cantilever.

    PubMed

    Senda, Yasuhiro; Blomqvist, Janne; Nieminen, Risto M

    2016-09-21

    We propose a computational model for noncontact atomic force microscopy (AFM) in which the atomic force between the cantilever tip and the surface is calculated using a molecular dynamics method, and the macroscopic motion of the cantilever is modeled by an oscillating spring. The movement of atoms in the tip and surface is connected with the oscillating spring using a recently developed coupling method. In this computational model, the oscillation energy is dissipated, as observed in AFM experiments. We attribute this dissipation to the hysteresis and nonconservative properties of the interatomic force that acts between the atoms in the tip and sample surface. The dissipation rate strongly depends on the parameters used in the computational model.

  4. Extrusion of transmitter, water and ions generates forces to close fusion pore.

    PubMed

    Tajparast, M; Glavinović, M I

    2009-05-01

    During exocytosis the fusion pore opens rapidly, then dilates gradually, and may subsequently close completely, but what controls its dynamics is not well understood. In this study we focus our attention on forces acting on the pore wall, and which are generated solely by the passage of transmitter, ions and water through the open fusion pore. The transport through the charged cylindrical nano-size pore is simulated using a coupled system of Poisson-Nernst-Planck and Navier-Stokes equations and the forces that act radially on the wall of the fusion pore are then estimated. Four forces are considered: a) inertial force, b) pressure, c) viscotic force, and d) electrostatic force. The inertial and viscotic forces are small, but the electrostatic force and the pressure are typically significant. High vesicular pressure tends to open the fusion pore, but the pressure induced by the transport of charged particles (glutamate, ions), which is predominant when the pore wall charge density is high tends to close the pore. The electrostatic force, which also depends on the charge density on the pore wall, is weakly repulsive before the pore dilates, but becomes attractive and pronounced as the pore dilates. Given that the vesicular concentration of free transmitter can change rapidly due to the release, or owing to the dissociation from the gel matrix, we evaluated how much and how rapidly a change of the vesicular K(+)-glutamate(-) concentration affects the concentration of glutamate(-) and ions in the pore and how such changes alter the radial force on the wall of the fusion pore. A step-like rise of the vesicular K(+)-glutamate(-) concentration leads to a chain of events. Pore concentration (and efflux) of both K(+) and glutamate(-) rise reaching their new steady-state values in less than 100 ns. Interestingly within a similar time interval the pore concentration of Na(+) also rises, whereas that of Cl(-) diminishes, although their extra-cellular concentration does not

  5. Comment on: Computation of the optical trapping force using an FDTD based technique.

    PubMed

    Zhou, Fei; Gan, Xiaosong; Xu, Wendong; Gan, Fuxi

    2006-12-11

    In this comment, problems associated with an oversimplified FDTD based model used for trapping force calculation in recent papers "Computation of the optical trapping force using an FDTD based technique" [Opt. Express 13, 3707 (2005)], and "Rigorous time domain simulation of momentum transfer between light and microscopic particles in optical trapping" [Opt. Express 12, 2220 (2004)] are discussed. A more rigorous model using in Poynting vector is also presented.

  6. Reconfigurable optical interconnections via dynamic computer-generated holograms

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang (Inventor); Zhou, Shaomin (Inventor)

    1994-01-01

    A system is proposed for optically providing one-to-many irregular interconnections, and strength-adjustable many-to-many irregular interconnections which may be provided with strengths (weights) w(sub ij) using multiple laser beams which address multiple holograms and means for combining the beams modified by the holograms to form multiple interconnections, such as a cross-bar switching network. The optical means for interconnection is based on entering a series of complex computer-generated holograms on an electrically addressed spatial light modulator for real-time reconfigurations, thus providing flexibility for interconnection networks for largescale practical use. By employing multiple sources and holograms, the number of interconnection patterns achieved is increased greatly.

  7. Knowledge-based zonal grid generation for computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Andrews, Alison E.

    1988-01-01

    Automation of flow field zoning in two dimensions is an important step towards reducing the difficulty of three-dimensional grid generation in computational fluid dynamics. Using a knowledge-based approach makes sense, but problems arise which are caused by aspects of zoning involving perception, lack of expert consensus, and design processes. These obstacles are overcome by means of a simple shape and configuration language, a tunable zoning archetype, and a method of assembling plans from selected, predefined subplans. A demonstration system for knowledge-based two-dimensional flow field zoning has been successfully implemented and tested on representative aerodynamic configurations. The results show that this approach can produce flow field zonings that are acceptable to experts with differing evaluation criteria.

  8. Next-generation sequencing: big data meets high performance computing.

    PubMed

    Schmidt, Bertil; Hildebrandt, Andreas

    2017-02-02

    The progress of next-generation sequencing has a major impact on medical and genomic research. This high-throughput technology can now produce billions of short DNA or RNA fragments in excess of a few terabytes of data in a single run. This leads to massive datasets used by a wide range of applications including personalized cancer treatment and precision medicine. In addition to the hugely increased throughput, the cost of using high-throughput technologies has been dramatically decreasing. A low sequencing cost of around US$1000 per genome has now rendered large population-scale projects feasible. However, to make effective use of the produced data, the design of big data algorithms and their efficient implementation on modern high performance computing systems is required.

  9. Reconfigurable Optical Interconnections Via Dynamic Computer-Generated Holograms

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang (Inventor); Zhou, Shao-Min (Inventor)

    1996-01-01

    A system is presented for optically providing one-to-many irregular interconnections, and strength-adjustable many-to-many irregular interconnections which may be provided with strengths (weights) w(sub ij) using multiple laser beams which address multiple holograms and means for combining the beams modified by the holograms to form multiple interconnections, such as a cross-bar switching network. The optical means for interconnection is based on entering a series of complex computer-generated holograms on an electrically addressed spatial light modulator for real-time reconfigurations, thus providing flexibility for interconnection networks for large-scale practical use. By employing multiple sources and holograms, the number of interconnection patterns achieved is increased greatly.

  10. Image quality improvement of polygon computer generated holography.

    PubMed

    Pang, Xiao-Ning; Chen, Ding-Chen; Ding, Yi-Cong; Chen, Yi-Gui; Jiang, Shao-Ji; Dong, Jian-Wen

    2015-07-27

    Quality of holographic reconstruction image is seriously affected by undesirable messy fringes in polygon-based computer generated holography. Here, several methods have been proposed to improve the image quality, including a modified encoding method based on spatial-domain Fraunhofer diffraction and a specific LED light source. Fast Fourier transform is applied to the basic element of polygon and fringe-invisible reconstruction is achieved after introducing initial random phase. Furthermore, we find that the image with satisfactory fidelity and sharp edge can be reconstructed by either a LED with moderate coherence level or a modulator with small pixel pitch. Satisfactory image quality without obvious speckle noise is observed under the illumination of bandpass-filter-aided LED. The experimental results are consistent well with the correlation analysis on the acceptable viewing angle and the coherence length of the light source.

  11. Development of a Polarizable Force Field for Proteins Via Ab Initio Quantum Chemistry: First Generation Model and Gas Phase Tests

    SciTech Connect

    Kaminski, George A.; Stern, Harry A.; Berne, Bruce J.; Friesner, Richard A.; Cao, Yixiang; Murphy, Robert B.; Zhou, Ruhong; Halgren, Thomas A.

    2002-12-01

    We present results of developing a methodology suitable for producing molecular mechanics force fields with explicit treatment of electrostatic polarization for proteins and other molecular system of biological interest. The technique allows simulation of realistic-size systems. Employing high-level ab initio data as a target for fitting allows us to avoid the problem of the lack of detailed experimental data. Using the fast and reliable quantum mechanical methods supplies robust fitting data for the resulting parameter sets. As a result, gas-phase many-body effects for dipeptides are captured within the average RMSD of 0.22 kcal/mol from their ab initio values, and conformational energies for the di- and tetrapeptides are reproduced within the average RMSD of 0.43 kcal/mol from their quantum mechanical counterparts. The latter is achieved in part because of application of a novel torsional fitting technique recently developed in our group, which has already been used to greatly improve accuracy of the peptide conformational equilibrium prediction with the OPLS-AA force field.1 Finally, we have employed the newly developed first-generation model in computing gas-phase conformations of real proteins, as well as in molecular dynamics studies of the systems. The results show that, although the overall accuracy is no better than what can be achieved with a fixed-charges model, the methodology produces robust results, permits reasonably low computational cost, and avoids other computational problems typical for polarizable force fields. It can be considered as a solid basis for building a more accurate and complete second-generation model.

  12. Development of a Polarizable Force Field For Proteins via Ab Initio Quantum Chemistry: First Generation Model and Gas Phase Tests

    PubMed Central

    KAMINSKI, GEORGE A.; STERN, HARRY A.; BERNE, B. J.; FRIESNER, RICHARD A.; CAO, YIXIANG X.; MURPHY, ROBERT B.; ZHOU, RUHONG; HALGREN, THOMAS A.

    2014-01-01

    We present results of developing a methodology suitable for producing molecular mechanics force fields with explicit treatment of electrostatic polarization for proteins and other molecular system of biological interest. The technique allows simulation of realistic-size systems. Employing high-level ab initio data as a target for fitting allows us to avoid the problem of the lack of detailed experimental data. Using the fast and reliable quantum mechanical methods supplies robust fitting data for the resulting parameter sets. As a result, gas-phase many-body effects for dipeptides are captured within the average RMSD of 0.22 kcal/mol from their ab initio values, and conformational energies for the di- and tetrapeptides are reproduced within the average RMSD of 0.43 kcal/mol from their quantum mechanical counterparts. The latter is achieved in part because of application of a novel torsional fitting technique recently developed in our group, which has already been used to greatly improve accuracy of the peptide conformational equilibrium prediction with the OPLS-AA force field.1 Finally, we have employed the newly developed first-generation model in computing gas-phase conformations of real proteins, as well as in molecular dynamics studies of the systems. The results show that, although the overall accuracy is no better than what can be achieved with a fixed-charges model, the methodology produces robust results, permits reasonably low computational cost, and avoids other computational problems typical for polarizable force fields. It can be considered as a solid basis for building a more accurate and complete second-generation model. PMID:12395421

  13. 77 FR 44064 - Federal Acquisition Regulation: Clarification of Standards for Computer Generation of Forms

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-26

    ... Federal Acquisition Regulation: Clarification of Standards for Computer Generation of Forms AGENCIES... valid standard to use for computer-generated forms. FAR 53.105 is being amended; it will continue allowing agencies and the public to generate standard and optional forms on their computers. II....

  14. The use of computer vision and force sensing for tight tolerance assembly

    SciTech Connect

    Bayliss, J.D.

    1993-05-19

    Computer vision and force control provide feedback for robot manipulation during the assembly of objects. Both techniques have weaknesses, but their complementary strengths enable them to work well together, achieving assembly with tight tolerances. For instance, camera resolution limits the accuracy of computer vision, but it can locate approximately where the part should be placed and is an excellent choice for coarse placement of the part. Force control senses the force induced by object contact and if used extensively could damage a delicate part, but when used for fine placement of an object, it compensates for the error in coarse placement. It is our goal to utilize the best features of force sensing and computer vision to reduce the error in placement of an object. The results of placing a peg in a 0.15mm tolerance hole with different camera resolutions will be presented. We have chosen to use computer vision to move the peg as close to its correct placement point as possible and force control to make minor adjustments, achieving the correct positioning of the peg.

  15. Electro-hydrodynamic force field and flow patterns generated by a DC corona discharge in the air

    NASA Astrophysics Data System (ADS)

    Monrolin, Nicolas; Plouraboue, Franck; Praud, Olivier

    2016-11-01

    Ionic wind refers to the electro-convection of ionised air between high voltage electrodes. Microscopic ion-neutral collisions are responsible for momentum transfer from accelerated ions, subjected to the electric field, to the neutral gas molecules resulting in a macroscopic airflow acceleration. In the past decades it has been investigated for various purposes from food drying through aerodynamic flow control and eventually laptop cooling. One consequence of air acceleration between the electrodes is thrust generation, often referred to as the Biefeld-Brown effect or electro-hydrodynamic thrust. In this experimental study, the ionic wind velocity field is measured with the PIV method. From computing the acceleration of the air we work out the electrostatic force field for various electrodes configurations. This enables an original direct evaluation of the force distribution as well as the influence of electrodes shape and position. Thrust computation based on the flow acceleration are compared with digital scale measurements. Complex flow features are highlighted such as vortex shedding, indicating that aerodynamic effects may play a significant role. Furthermore, the aerodynamic drag force exerted on the electrodes is quantified by choosing an appropriate control volume. Authors thank Region Midi-Pyrenee and CNES Launcher Directorate for financial support.

  16. Digital computer program for generating dynamic turbofan engine models (DIGTEM)

    NASA Technical Reports Server (NTRS)

    Daniele, C. J.; Krosel, S. M.; Szuch, J. R.; Westerkamp, E. J.

    1983-01-01

    This report describes DIGTEM, a digital computer program that simulates two spool, two-stream turbofan engines. The turbofan engine model in DIGTEM contains steady-state performance maps for all of the components and has control volumes where continuity and energy balances are maintained. Rotor dynamics and duct momentum dynamics are also included. Altogether there are 16 state variables and state equations. DIGTEM features a backward-differnce integration scheme for integrating stiff systems. It trims the model equations to match a prescribed design point by calculating correction coefficients that balance out the dynamic equations. It uses the same coefficients at off-design points and iterates to a balanced engine condition. Transients can also be run. They are generated by defining controls as a function of time (open-loop control) in a user-written subroutine (TMRSP). DIGTEM has run on the IBM 370/3033 computer using implicit integration with time steps ranging from 1.0 msec to 1.0 sec. DIGTEM is generalized in the aerothermodynamic treatment of components.

  17. Diffusion of Innovation: Factors Promoting Interest in Solar Photovoltaic Generation Systems Within Air Force Installations

    DTIC Science & Technology

    2007-03-01

    Q42c. How likely is it that your base will request funding in these systems in the next 10 years? (large scale) Q43a.How beneficial do you think it...DIFFUSION OF INNOVATION: FACTORS PROMOTING INTEREST IN SOLAR PHOTOVOLTAIC GENERATION SYSTEMS WITHIN AIR...SOLAR PHOTOVOLTAIC GENERATION SYSTEMS WITHIN AIR FORCE INSTALLATIONS THESIS Presented to the Faculty Department of Systems and Engineering

  18. Grid generation and flow computation about a Martian entry vehicle

    NASA Technical Reports Server (NTRS)

    Stewart, J. E.; Tiwari, S. N.

    1990-01-01

    A number of vehicles are currently being proposed for a manned mission to Mars. One of these vehicles has a modified blunt-nosed cone configuration. Experimental results were obtained for this vehicle in 1968. They show lift-over-drag ratios comparable to those needed for Mars entry. Computations are performed to verify the earlier results and to further describe the flight characteristics of this vehicle. An analytical method is used to define the surface of this vehicle. A single-block volume grid is generated around the vehicle using the algebraic Two-Boundary Grid Generation algorithm (TBGG) and transfinite interpolation. Euler solutions are then obtained from a Langley Aerodynamic Upward Relaxation Algorithm (LAURA) at Mach 6.0 and angles of attack of 0, 6, and 12 deg. The lift coefficient determined from the LAURA code agree very well with the experimental results. The drag and pitching moment coefficients, however, are underestimated by the code since viscous effects are not considered. Contour plots of the flowfield show no evidence of separation for angles of attack up to 12 deg.

  19. How Well Do Computer-Generated Faces Tap Face Expertise?

    PubMed

    Crookes, Kate; Ewing, Louise; Gildenhuys, Ju-Dith; Kloth, Nadine; Hayward, William G; Oxner, Matt; Pond, Stephen; Rhodes, Gillian

    2015-01-01

    The use of computer-generated (CG) stimuli in face processing research is proliferating due to the ease with which faces can be generated, standardised and manipulated. However there has been surprisingly little research into whether CG faces are processed in the same way as photographs of real faces. The present study assessed how well CG faces tap face identity expertise by investigating whether two indicators of face expertise are reduced for CG faces when compared to face photographs. These indicators were accuracy for identification of own-race faces and the other-race effect (ORE)-the well-established finding that own-race faces are recognised more accurately than other-race faces. In Experiment 1 Caucasian and Asian participants completed a recognition memory task for own- and other-race real and CG faces. Overall accuracy for own-race faces was dramatically reduced for CG compared to real faces and the ORE was significantly and substantially attenuated for CG faces. Experiment 2 investigated perceptual discrimination for own- and other-race real and CG faces with Caucasian and Asian participants. Here again, accuracy for own-race faces was significantly reduced for CG compared to real faces. However the ORE was not affected by format. Together these results signal that CG faces of the type tested here do not fully tap face expertise. Technological advancement may, in the future, produce CG faces that are equivalent to real photographs. Until then caution is advised when interpreting results obtained using CG faces.

  20. Force.

    ERIC Educational Resources Information Center

    Gamble, Reed

    1989-01-01

    Discusses pupil misconceptions concerning forces. Summarizes some of Assessment of Performance Unit's findings on meaning of (1) force, (2) force and motion in one dimension and two dimensions, and (3) Newton's second law. (YP)

  1. A force-generating machinery maintains the spindle at the cell center during mitosis.

    PubMed

    Garzon-Coral, Carlos; Fantana, Horatiu A; Howard, Jonathon

    2016-05-27

    The position and orientation of the mitotic spindle is precisely regulated to ensure the accurate partition of the cytoplasm between daughter cells and the correct localization of the daughters within growing tissue. Using magnetic tweezers to perturb the position of the spindle in intact cells, we discovered a force-generating machinery that maintains the spindle at the cell center during metaphase and anaphase in one- and two-cell Caenorhabditis elegans embryos. The forces increase with the number of microtubules and are larger in smaller cells. The machinery is rigid enough to suppress thermal fluctuations to ensure precise localization of the mitotic spindle, yet compliant enough to allow molecular force generators to fine-tune the position of the mitotic spindle to facilitate asymmetric division.

  2. A single synthetic small molecule that generates force against a load

    NASA Astrophysics Data System (ADS)

    Lussis, Perrine; Svaldo-Lanero, Tiziana; Bertocco, Andrea; Fustin, Charles-André; Leigh, David A.; Duwez, Anne-Sophie

    2011-09-01

    Some biomolecules are able to generate directional forces by rectifying random thermal motions. This allows these molecular machines to perform mechanical tasks such as intracellular cargo transport or muscle contraction in plants and animals. Although some artificial molecular machines have been synthesized and used collectively to perform mechanical tasks, so far there have been no direct measurements of mechanical processes at the single-molecule level. Here we report measurements of the mechanical work performed by a synthetic molecule less than 5 nm long. We show that biased Brownian motion of the sub-molecular components in a hydrogen-bonded [2]rotaxane--a molecular ring threaded onto a molecular axle--can be harnessed to generate significant directional forces. We used the cantilever of an atomic force microscope to apply a mechanical load to the ring during single-molecule pulling-relaxing cycles. The ring was pulled along the axle, away from the thermodynamically favoured binding site, and was then found to travel back to this site against an external load of 30 pN. Using fluctuation theorems, we were able to relate measurements of the work done at the level of individual rotaxane molecules to the free-energy change as previously determined from ensemble measurements. The results show that individual rotaxanes can generate directional forces of similar magnitude to those generated by natural molecular machines.

  3. Turbofan forced mixer-nozzle internal flowfield. Volume 2: Computational fluid dynamic predictions

    NASA Technical Reports Server (NTRS)

    Werle, M. J.; Vasta, V. N.

    1982-01-01

    A general program was conducted to develop and assess a computational method for predicting the flow properties in a turbofan forced mixed duct. The detail assessment of the resulting computer code is presented. It was found that the code provided excellent predictions of the kinematics of the mixing process throughout the entire length of the mixer nozzle. The thermal mixing process between the hot core and cold fan flows was found to be well represented in the low speed portion of the flowfield.

  4. Close intramolecular sulfur-oxygen contacts: modified force field parameters for improved conformation generation

    NASA Astrophysics Data System (ADS)

    Lupyan, Dmitry; Abramov, Yuriy A.; Sherman, Woody

    2012-11-01

    The Cambridge Structural Database (CSD) offers an excellent data source to study small molecule conformations and molecular interactions. We have analyzed 130 small molecules from the CSD containing an intramolecular sulfur-oxygen distance less than the sum of their van der Waals (vdW) radii. Close S···O distances are observed in several important medicinal chemistry motifs (e.g. a carbonyl oxygen connected by a carbon or nitrogen linker to a sulfur) and are not treated well with existing parameters in the MMFFs or OPLS_2005 force fields, resulting in suboptimal geometries and energetics. In this work, we develop modified parameters for the OPLS_2005 force field to better treat this specific interaction in order to generate conformations close to those found in the CSD structures. We use a combination of refitting a force field torsional parameter, adding a specific atom pair vdW term, and attenuating the electrostatic interactions to obtain an improvement in the accuracy of geometry minimizations and conformational searches for these molecules. Specifically, in a conformational search 58 % of the cases produced a conformation less than 0.25 Å from the CSD crystal conformation with the modified OPLS force field parameters developed in this work. In contrast, 25 and 37 % produced a conformation less than 0.25 Å with the MMFFs and OPLS_2005 force fields, respectively. As an application of the new parameters, we generated conformations for the tyrosine kinase inhibitor axitinib (trade name Inlyta) that could be correctly repacked into three observed polymorphic structures, which was not possible with conformations generated using MMFFs or OPLS_2005. The improved parameters can be mapped directly onto physical characteristics of the systems that are treated inadequately with the molecular mechanics force fields used in this study and potentially other force fields as well.

  5. Close intramolecular sulfur-oxygen contacts: modified force field parameters for improved conformation generation.

    PubMed

    Lupyan, Dmitry; Abramov, Yuriy A; Sherman, Woody

    2012-11-01

    The Cambridge Structural Database (CSD) offers an excellent data source to study small molecule conformations and molecular interactions. We have analyzed 130 small molecules from the CSD containing an intramolecular sulfur-oxygen distance less than the sum of their van der Waals (vdW) radii. Close S···O distances are observed in several important medicinal chemistry motifs (e.g. a carbonyl oxygen connected by a carbon or nitrogen linker to a sulfur) and are not treated well with existing parameters in the MMFFs or OPLS_2005 force fields, resulting in suboptimal geometries and energetics. In this work, we develop modified parameters for the OPLS_2005 force field to better treat this specific interaction in order to generate conformations close to those found in the CSD structures. We use a combination of refitting a force field torsional parameter, adding a specific atom pair vdW term, and attenuating the electrostatic interactions to obtain an improvement in the accuracy of geometry minimizations and conformational searches for these molecules. Specifically, in a conformational search 58 % of the cases produced a conformation less than 0.25 Å from the CSD crystal conformation with the modified OPLS force field parameters developed in this work. In contrast, 25 and 37 % produced a conformation less than 0.25 Å with the MMFFs and OPLS_2005 force fields, respectively. As an application of the new parameters, we generated conformations for the tyrosine kinase inhibitor axitinib (trade name Inlyta) that could be correctly repacked into three observed polymorphic structures, which was not possible with conformations generated using MMFFs or OPLS_2005. The improved parameters can be mapped directly onto physical characteristics of the systems that are treated inadequately with the molecular mechanics force fields used in this study and potentially other force fields as well.

  6. Improvement of force factor of magnetostrictive vibration power generator for high efficiency

    NASA Astrophysics Data System (ADS)

    Kita, Shota; Ueno, Toshiyuki; Yamada, Sotoshi

    2015-05-01

    We develop high power magnetostrictive vibration power generator for battery-free wireless electronics. The generator is based on a cantilever of parallel beam structure consisting of coil-wound Galfenol and stainless plates with permanent magnet for bias. Oscillating force exerted on the tip bends the cantilever in vibration yields stress variation of Galfenol plate, which causes flux variation and generates voltage on coil due to the law of induction. This generator has advantages over conventional, such as piezoelectric or moving magnet types, in the point of high efficiency, highly robust, and low electrical impedance. Our concern is the improvement of energy conversion efficiency dependent on the dimension. Especially, force factor, the conversion ratio of the electromotive force (voltage) on the tip velocity in vibration, has an important role in energy conversion process. First, the theoretical value of the force factor is formulated and then the validity was verified by experiments, where we compare four types of prototype with parameters of the dimension using 7.0 × 1.5 × 50 mm beams of Galfenol with 1606-turn wound coil. In addition, the energy conversion efficiency of the prototypes depending on load resistance was measured. The most efficient prototype exhibits the maximum instantaneous power of 0.73 W and energy of 4.7 mJ at a free vibration of frequency of 202 Hz in the case of applied force is 25 N. Further, it was found that energy conversion efficiency depends not only on the force factor but also on the damping (mechanical loss) of the vibration.

  7. Improvement of force factor of magnetostrictive vibration power generator for high efficiency

    SciTech Connect

    Kita, Shota Ueno, Toshiyuki; Yamada, Sotoshi

    2015-05-07

    We develop high power magnetostrictive vibration power generator for battery-free wireless electronics. The generator is based on a cantilever of parallel beam structure consisting of coil-wound Galfenol and stainless plates with permanent magnet for bias. Oscillating force exerted on the tip bends the cantilever in vibration yields stress variation of Galfenol plate, which causes flux variation and generates voltage on coil due to the law of induction. This generator has advantages over conventional, such as piezoelectric or moving magnet types, in the point of high efficiency, highly robust, and low electrical impedance. Our concern is the improvement of energy conversion efficiency dependent on the dimension. Especially, force factor, the conversion ratio of the electromotive force (voltage) on the tip velocity in vibration, has an important role in energy conversion process. First, the theoretical value of the force factor is formulated and then the validity was verified by experiments, where we compare four types of prototype with parameters of the dimension using 7.0 × 1.5 × 50 mm beams of Galfenol with 1606-turn wound coil. In addition, the energy conversion efficiency of the prototypes depending on load resistance was measured. The most efficient prototype exhibits the maximum instantaneous power of 0.73 W and energy of 4.7 mJ at a free vibration of frequency of 202 Hz in the case of applied force is 25 N. Further, it was found that energy conversion efficiency depends not only on the force factor but also on the damping (mechanical loss) of the vibration.

  8. Functional role of muscle reflexes for force generation in the decerebrate walking cat.

    PubMed

    Stein, R B; Misiaszek, J E; Pearson, K G

    2000-06-15

    To quantify the importance of reflexes due to muscle length changes in generating force during walking, we studied high decerebrate cats that walked on a treadmill. One leg was denervated except for the triceps surae and a few other selected muscles. The triceps surae muscles are ankle extensor muscles that attach to the Achilles' tendon which was cut and connected to a muscle puller. In some steps the EMG activity triggered the puller to move the muscle through the pattern of length changes that are normally produced by ankle movements in intact cats walking over ground (simulated walking). In other steps the muscles were held isometrically. The EMG and force produced during the two types of steps were compared. On average about 50 % more EMG was generated during the E2 part of the simulated stance phase in the triceps surae muscles, but not in other muscles studied. Force was increased significantly over the entire stance phase by about 20 %, when muscle stretches simulating walking were applied. However, during much of the stance phase the triceps surae muscles are shortening and so would produce less force. The effect of shortening was assessed in control experiments in which these muscles were stimulated at a constant frequency, either isometrically or during simulated walking movements. By combining data from the walking and control experiments, we estimate that about 35 % of the force produced in the cat ankle extensors during stance is produced by reflexes due to muscle length changes. Other sensory inputs may also contribute to force production, but the total reflex contribution will vary under different conditions of speed, length, loading, task difficulty, etc. Since a substantial percentage of the force in the stance phase of walking is normally produced by muscle reflexes, this force can be continuously adjusted up or down, if the muscles receive extra stretch or unloading during a particular step cycle.

  9. Networked Microcomputers--The Next Generation in College Computing.

    ERIC Educational Resources Information Center

    Harris, Albert L.

    The evolution of computer hardware for college computing has mirrored the industry's growth. When computers were introduced into the educational environment, they had limited capacity and served one user at a time. Then came large mainframes with many terminals sharing the resource. Next, the use of computers in office automation emerged. As…

  10. Computational design of materials for solar hydrogen generation

    NASA Astrophysics Data System (ADS)

    Umezawa, Naoto

    Photocatalysis has a great potential for the production of hydrogen from aquerous solution under solar light. In this talk, two different approaches toward the computational materials desing for solar hydrogen generation will be presented. Tin (Sn), which has two major oxidation states, Sn2+ and Sn4+, is abundant on the earth's crust. Recently, visible-light responsive photocatalytc H2 evolution reaction was identified over a mixed valence tin oxide Sn3O4. We have carried out crystal structure prediction for mixed valence tin oxides in different atomic compositions under ambient pressure condition using advanced computational methods based on the evolutionary crystal-structure search and density-functional theory. The predicted novel crystal structures realize the desirable band gaps and band edge positions for H2 evolution under visible light irradiation. It is concluded that multivalent tin oxides have a great potential as an abundant, cheap and environmentally-benign solar-energy conversion photofunctional materials. Transition metal doping is effective for sensitizing SrTiO3 under visible light. We have theoretically investigated the roles of the doped Cr in STO based on hybrid density-functional calculations. Cr atoms are preferably substituting for Ti under any equilibrium growth conditions. The lower oxidation state Cr3+, which is stabilized under an n-type condition of STO, is found to be advantageous for the photocatalytic performance. It is firther predicted that lanthanum is the best codopant for stabilizing the favorable oxidation state, Cr3+. The prediction was validated by our experiments that La and Cr co-doped STO shows the best performance among examined samples. This work was supported by the Japan Science and Technology Agency (JST) Precursory Research for Embryonic Science and Technology (PRESTO) and International Research Fellow program of Japan Society for the Promotion of Science (JSPS) through project P14207.

  11. Computer Support Needs at Amarillo College: A Report of the Information System Task Force.

    ERIC Educational Resources Information Center

    Amarillo Coll., TX.

    A Task Force of 21 people representing faculty, department chairmen, and administrators at Amarillo College (AC) was organized into committees to investigate the use of the computer at AC and future data processing needs in areas of instructional support, administrative support, and equipment and software selection. Compared to computer…

  12. Stabilizing stochastically-forced oscillation generators with hard excitement: a confidence-domain control approach

    NASA Astrophysics Data System (ADS)

    Bashkirtseva, Irina; Chen, Guanrong; Ryashko, Lev

    2013-10-01

    In this paper, noise-induced destruction of self-sustained oscillations is studied for a stochastically-forced generator with hard excitement. The problem is to design a feedback regulator that can stabilize a limit cycle of the closed-loop system and to provide a required dispersion of the generated oscillations. The approach is based on the stochastic sensitivity function (SSF) technique and confidence domain method. A theory about the synthesis of assigned SSF is developed. For the case when this control problem is ill-posed, a regularization method is constructed. The effectiveness of the new method of confidence domain is demonstrated by stabilizing auto-oscillations in a randomly-forced generator with hard excitement.

  13. Preparing the periphery for a subsequent behavior: motor neuronal activity during biting generates little force but prepares a retractor muscle to generate larger forces during swallowing in Aplysia.

    PubMed

    Lu, Hui; McManus, Jeffrey M; Cullins, Miranda J; Chiel, Hillel J

    2015-03-25

    Some behaviors occur in obligatory sequence, such as reaching before grasping an object. Can the earlier behavior serve to prepare the musculature for the later behavior? If it does, what is the underlying neural mechanism of the preparation? To address this question, we examined two feeding behaviors in the marine mollusk Aplysia californica, one of which must precede the second: biting and swallowing. Biting is an attempt to grasp food. When that attempt is successful, the animal immediately switches to swallowing to ingest food. The main muscle responsible for pulling food into the buccal cavity during swallowing is the I3 muscle, whose motor neurons B6, B9, and B3 have been previously identified. By performing recordings from these neurons in vivo in intact, behaving animals or in vitro in a suspended buccal mass preparation, we demonstrated that the frequencies and durations of these motor neurons increased from biting to swallowing. Using the physiological patterns of activation to drive these neurons intracellularly, we further demonstrated that activating them using biting-like frequencies and durations, either alone or in combination, generated little or no force in the I3 muscle. When biting-like patterns preceded swallowing-like patterns, however, the forces during the subsequent swallowing-like patterns were significantly enhanced. Sequences of swallowing-like patterns, either with these neurons alone or in combination, further enhanced forces in the I3 muscle. These results suggest a novel mechanism for enhancing force production in a muscle, and may be relevant to understanding motor control in vertebrates.

  14. How Well Do Computer-Generated Faces Tap Face Expertise?

    PubMed Central

    Crookes, Kate; Ewing, Louise; Gildenhuys, Ju-dith; Kloth, Nadine; Hayward, William G.; Oxner, Matt; Pond, Stephen; Rhodes, Gillian

    2015-01-01

    The use of computer-generated (CG) stimuli in face processing research is proliferating due to the ease with which faces can be generated, standardised and manipulated. However there has been surprisingly little research into whether CG faces are processed in the same way as photographs of real faces. The present study assessed how well CG faces tap face identity expertise by investigating whether two indicators of face expertise are reduced for CG faces when compared to face photographs. These indicators were accuracy for identification of own-race faces and the other-race effect (ORE)–the well-established finding that own-race faces are recognised more accurately than other-race faces. In Experiment 1 Caucasian and Asian participants completed a recognition memory task for own- and other-race real and CG faces. Overall accuracy for own-race faces was dramatically reduced for CG compared to real faces and the ORE was significantly and substantially attenuated for CG faces. Experiment 2 investigated perceptual discrimination for own- and other-race real and CG faces with Caucasian and Asian participants. Here again, accuracy for own-race faces was significantly reduced for CG compared to real faces. However the ORE was not affected by format. Together these results signal that CG faces of the type tested here do not fully tap face expertise. Technological advancement may, in the future, produce CG faces that are equivalent to real photographs. Until then caution is advised when interpreting results obtained using CG faces. PMID:26535910

  15. Direct measurement of cortical force generation and polarization in a living parasite.

    PubMed

    Stadler, Rachel V; White, Lauren A; Hu, Ke; Helmke, Brian P; Guilford, William H

    2017-02-16

    Apicomplexa is a large phylum of intracellular parasites that are notable for the diseases they cause, including toxoplasmosis, malaria and cryptosporidiosis. A conserved motile system is critical to their lifecycles as it drives directional gliding motility between cells, as well as invasion of and egress from host cells. However, our understanding of this system is limited by a lack of measurements of the forces driving parasite motion. We used a laser trap to measure the function of the motility apparatus of living Toxoplasma gondii by adhering a microsphere to the surface of an immobilized parasite. Motion of the microsphere reflected underlying forces exerted by the motile apparatus. We found that force generated at the parasite surface begins with no preferential directionality, but becomes directed toward the rear of the cell after a period of time. The transition from non-directional to directional force generation occurs on spatial intervals consistent with the lateral periodicity of structures associated with the membrane pellicle, and is influenced by the kinetics of actin filament polymerization and cytoplasmic calcium. A lysine methyltransferase regulates both the magnitude and polarization of the force. Our work provides a novel means to dissect the motile mechanisms of these pathogens.

  16. Deconvolution of the Cellular Force-Generating Subsystems that Govern Cytokinesis Furrow Ingression

    PubMed Central

    Poirier, Christopher C.; Ng, Win Pin; Robinson, Douglas N.; Iglesias, Pablo A.

    2012-01-01

    Cytokinesis occurs through the coordinated action of several biochemically-mediated stresses acting on the cytoskeleton. Here, we develop a computational model of cellular mechanics, and using a large number of experimentally measured biophysical parameters, we simulate cell division under a number of different scenarios. We demonstrate that traction-mediated protrusive forces or contractile forces due to myosin II are sufficient to initiate furrow ingression. Furthermore, we show that passive forces due to the cell's cortical tension and surface curvature allow the furrow to complete ingression. We compare quantitatively the furrow thinning trajectories obtained from simulation with those observed experimentally in both wild-type and myosin II null Dictyostelium cells. Our simulations highlight the relative contributions of different biomechanical subsystems to cell shape progression during cell division. PMID:22570593

  17. True Three-Dimensional Display Of Computer Generated Images

    NASA Astrophysics Data System (ADS)

    Stover, Hank; Fletcher, John

    1983-12-01

    The display of data in three dimensions overcomes the ambiguity often found in two dimensional displays. A truly objective examination of the display data is allowed while two-dimensional displays require a subjective interpretation of what might exist in the Z direction. Data can occupy a volume of 20 X 25 X 30 centimeters since SpaceGraph allows the display of data in a volume filling manner. The display volume is generated by observing the reflection of a CRT in a circular mirror. The mirror is flexed about a rubber hinge located on a concentric circle several inches from the edge. By exciting this assembly with a hi-fi woofer, the mirror is caused to vibrate and takes on concave and convex optical shapes thus varying the focal length. The varying focal length causes the image of the CRT to sweep out apparent distance in Z of about 30 centimeters. By plotting points on the CRT in X and Y, these points permit us to draw vectors which can describe a wide variety of three-dimensional objects, such as molecules, mechanical subassemblies or total assemblies such as aircraft and ships. In the vector mode, SpaceGraph provides 23 meters of vectors which can appear in as many segments as required by the object being displayed. The three-dimensional display can also be used in a second mode which can be called the image mode. In this mode, X and Y are controlled to generate a raster much like one generated in a conventional home TV. While the raster is being swept, brightness is varied to provide an image in gray shades. As this process takes place, the Z is continuously swept by the mirror as in the vector mode and a volume filling image is created. This mode appears to be of particular interest in computer-aided tomography and to seismologists. Computeraided design, ultra sound analysis, anti-submarine warfare and air traffic control are other applications or views of science which appear promising for 3-D displays.

  18. Interactive computer methods for generating mineral-resource maps

    USGS Publications Warehouse

    Calkins, James Alfred; Crosby, A.S.; Huffman, T.E.; Clark, A.L.; Mason, G.T.; Bascle, R.J.

    1980-01-01

    Inasmuch as maps are a basic tool of geologists, the U.S. Geological Survey's CRIB (Computerized Resources Information Bank) was constructed so that the data it contains can be used to generate mineral-resource maps. However, by the standard methods used-batch processing and off-line plotting-the production of a finished map commonly takes 2-3 weeks. To produce computer-generated maps more rapidly, cheaply, and easily, and also to provide an effective demonstration tool, we have devised two related methods for plotting maps as alternatives to conventional batch methods. These methods are: 1. Quick-Plot, an interactive program whose output appears on a CRT (cathode-ray-tube) device, and 2. The Interactive CAM (Cartographic Automatic Mapping system), which combines batch and interactive runs. The output of the Interactive CAM system is final compilation (not camera-ready) paper copy. Both methods are designed to use data from the CRIB file in conjunction with a map-plotting program. Quick-Plot retrieves a user-selected subset of data from the CRIB file, immediately produces an image of the desired area on a CRT device, and plots data points according to a limited set of user-selected symbols. This method is useful for immediate evaluation of the map and for demonstrating how trial maps can be made quickly. The Interactive CAM system links the output of an interactive CRIB retrieval to a modified version of the CAM program, which runs in the batch mode and stores plotting instructions on a disk, rather than on a tape. The disk can be accessed by a CRT, and, thus, the user can view and evaluate the map output on a CRT immediately after a batch run, without waiting 1-3 days for an off-line plot. The user can, therefore, do most of the layout and design work in a relatively short time by use of the CRT, before generating a plot tape and having the map plotted on an off-line plotter.

  19. Improving the Prediction of Absolute Solvation Free Energies Using the Next Generation OPLS Force Field.

    PubMed

    Shivakumar, Devleena; Harder, Edward; Damm, Wolfgang; Friesner, Richard A; Sherman, Woody

    2012-08-14

    Explicit solvent molecular dynamics free energy perturbation simulations were performed to predict absolute solvation free energies of 239 diverse small molecules. We use OPLS2.0, the next generation OPLS force field, and compare the results with popular small molecule force fields-OPLS_2005, GAFF, and CHARMm-MSI. OPLS2.0 produces the best correlation with experimental data (R(2) = 0.95, slope = 0.96) and the lowest average unsigned errors (0.7 kcal/mol). Important classes of compounds that performed suboptimally with OPLS_2005 show significant improvements.

  20. Computer Generated Hologram System for Wavefront Measurement System Calibration

    NASA Technical Reports Server (NTRS)

    Olczak, Gene

    2011-01-01

    Computer Generated Holograms (CGHs) have been used for some time to calibrate interferometers that require nulling optics. A typical scenario is the testing of aspheric surfaces with an interferometer placed near the paraxial center of curvature. Existing CGH technology suffers from a reduced capacity to calibrate middle and high spatial frequencies. The root cause of this shortcoming is as follows: the CGH is not placed at an image conjugate of the asphere due to limitations imposed by the geometry of the test and the allowable size of the CGH. This innovation provides a calibration system where the imaging properties in calibration can be made comparable to the test configuration. Thus, if the test is designed to have good imaging properties, then middle and high spatial frequency errors in the test system can be well calibrated. The improved imaging properties are provided by a rudimentary auxiliary optic as part of the calibration system. The auxiliary optic is simple to characterize and align to the CGH. Use of the auxiliary optic also reduces the size of the CGH required for calibration and the density of the lines required for the CGH. The resulting CGH is less expensive than the existing technology and has reduced write error and alignment error sensitivities. This CGH system is suitable for any kind of calibration using an interferometer when high spatial resolution is required. It is especially well suited for tests that include segmented optical components or large apertures.

  1. Computer generated slides: a need to curb our enthusiasm.

    PubMed

    Dalal, M D; Daver, B M

    1996-12-01

    The popular use of computer generated slides for presentations during plastic surgery scientific meetings has opened a fresh chapter in audiovisual techniques. Although the profusion of colours seen during presentations is a visual treat, the information imparted by these slides leaves much to be desired and raises the question of whether such attractive and apparently professionally made slides are visual aids during such presentations. Presentation slides are displayed for a very short time (10-15 seconds) as compared to slides displayed during a lecture and therefore these presentation slides should have the ability to impart their information very quickly. We conducted a study wherein 36 slides, each having a different colour combination, were displayed to a class of third year medical students who were asked to judge the efficacy of each slide. The attractiveness, clarity and recall of each slide was graded by every student and, with the information obtained, the most effective format and colour combinations to be used while making slides for presentations were established. We conclude that the best format for slides is a plain dark coloured background (blue, purple or green) and a separate, contrasting plain dark coloured title text background (red, green or purple), with white letters for the text and yellow letters for the title.

  2. Computer-generated ovaries to assist follicle counting experiments.

    PubMed

    Skodras, Angelos; Marcelli, Gianluca

    2015-01-01

    Precise estimation of the number of follicles in ovaries is of key importance in the field of reproductive biology, both from a developmental point of view, where follicle numbers are determined at specific time points, as well as from a therapeutic perspective, determining the adverse effects of environmental toxins and cancer chemotherapeutics on the reproductive system. The two main factors affecting follicle number estimates are the sampling method and the variation in follicle numbers within animals of the same strain, due to biological variability. This study aims at assessing the effect of these two factors, when estimating ovarian follicle numbers of neonatal mice. We developed computer algorithms, which generate models of neonatal mouse ovaries (simulated ovaries), with characteristics derived from experimental measurements already available in the published literature. The simulated ovaries are used to reproduce in-silico counting experiments based on unbiased stereological techniques; the proposed approach provides the necessary number of ovaries and sampling frequency to be used in the experiments given a specific biological variability and a desirable degree of accuracy. The simulated ovary is a novel, versatile tool which can be used in the planning phase of experiments to estimate the expected number of animals and workload, ensuring appropriate statistical power of the resulting measurements. Moreover, the idea of the simulated ovary can be applied to other organs made up of large numbers of individual functional units.

  3. Too real for comfort? Uncanny responses to computer generated faces

    PubMed Central

    MacDorman, Karl F.; Green, Robert D.; Ho, Chin-Chang; Koch, Clinton T.

    2014-01-01

    As virtual humans approach photorealistic perfection, they risk making real humans uncomfortable. This intriguing phenomenon, known as the uncanny valley, is well known but not well understood. In an effort to demystify the causes of the uncanny valley, this paper proposes several perceptual, cognitive, and social mechanisms that have already helped address riddles like empathy, mate selection, threat avoidance, cognitive dissonance, and psychological defenses. In the four studies described herein, a computer generated human character’s facial proportions, skin texture, and level of detail were varied to examine their effect on perceived eeriness, human likeness, and attractiveness. In Study I, texture photorealism and polygon count increased human likeness. In Study II, texture photorealism heightened the accuracy of human judgments of ideal facial proportions. In Study III, atypical facial proportions were shown to be more disturbing on photorealistic faces than on other faces. In Study IV, a mismatch in the size and texture of the eyes and face was especially prone to make a character eerie. These results contest the depiction of the uncanny valley as a simple relation between comfort level and human likeness. This paper concludes by introducing a set of design principles for bridging the uncanny valley. PMID:25506126

  4. Too real for comfort? Uncanny responses to computer generated faces.

    PubMed

    MacDorman, Karl F; Green, Robert D; Ho, Chin-Chang; Koch, Clinton T

    2009-05-01

    As virtual humans approach photorealistic perfection, they risk making real humans uncomfortable. This intriguing phenomenon, known as the uncanny valley, is well known but not well understood. In an effort to demystify the causes of the uncanny valley, this paper proposes several perceptual, cognitive, and social mechanisms that have already helped address riddles like empathy, mate selection, threat avoidance, cognitive dissonance, and psychological defenses. In the four studies described herein, a computer generated human character's facial proportions, skin texture, and level of detail were varied to examine their effect on perceived eeriness, human likeness, and attractiveness. In Study I, texture photorealism and polygon count increased human likeness. In Study II, texture photorealism heightened the accuracy of human judgments of ideal facial proportions. In Study III, atypical facial proportions were shown to be more disturbing on photorealistic faces than on other faces. In Study IV, a mismatch in the size and texture of the eyes and face was especially prone to make a character eerie. These results contest the depiction of the uncanny valley as a simple relation between comfort level and human likeness. This paper concludes by introducing a set of design principles for bridging the uncanny valley.

  5. The Development of a Computer-Directed Training Subsystem and Computer Operator Training Material for the Air Force Phase II Base Level System. Final Report.

    ERIC Educational Resources Information Center

    System Development Corp., Santa Monica, CA.

    The design, development, and evaluation of an integrated Computer-Directed Training Subsystem (CDTS) for the Air Force Phase II Base Level System is described in this report. The development and evaluation of a course to train computer operators of the Air Force Phase II Base Level System under CDTS control is also described. Detailed test results…

  6. Force Generation in Single Conventional Actomyosin Complexes under High Dynamic Load

    PubMed Central

    Takagi, Yasuharu; Homsher, Earl E.; Goldman, Yale E.; Shuman, Henry

    2006-01-01

    The mechanical load borne by a molecular motor affects its force, sliding distance, and its rate of energy transduction. The control of ATPase activity by the mechanical load on a muscle tunes its efficiency to the immediate task, increasing ATP hydrolysis as the power output increases at forces less than isometric (the Fenn effect) and suppressing ATP hydrolysis when the force is greater than isometric. In this work, we used a novel ‘isometric’ optical clamp to study the mechanics of myosin II molecules to detect the reaction steps that depend on the dynamic properties of the load. An actin filament suspended between two beads and held in separate optical traps is brought close to a surface that is sparsely coated with motor proteins on pedestals of silica beads. A feedback system increases the effective stiffness of the actin by clamping the force on one of the beads and moving the other bead electrooptically. Forces measured during actomyosin interactions are increased at higher effective stiffness. The results indicate that single myosin molecules transduce energy nearly as efficiently as whole muscle and that the mechanical control of the ATP hydrolysis rate is in part exerted by reversal of the force-generating actomyosin transition under high load without net utilization of ATP. PMID:16326899

  7. Semi-analytic texturing algorithm for polygon computer-generated holograms.

    PubMed

    Lee, Wooyoung; Im, Dajeong; Paek, Jeongyeup; Hahn, Joonku; Kim, Hwi

    2014-12-15

    A texturing method for the semi-analytic polygon computer-generated hologram synthesis algorithm is studied. Through this, the full-potential and development direction of the semi-analytic polygon computer-generated holograms are discussed and compared to that of the conventional numerical algorithm of polygon computer-generated hologram generation based on the fast Fourier transform and bilinear interpolation. The theoretical hurdle of the semi-analytic texturing algorithm is manifested and an approach to resolve this problen. A key mathematical approximation in the angular spectrum computer-generated hologram computation, as well as the trade-offs between texturing effects and computational efficiencies are analyzed through numerical simulation. In this fundamental study, theoretical potential of the semi-analytic polygon computer-generated hologram algorithm is revealed and the ultimate goal of research into the algorithm clarified.

  8. Comparison of Two Methods for the Generation of Spatially Modulated Ultrasound Radiation Force

    PubMed Central

    Elegbe, Etana C.; Menon, Manoj G.; McAleavey, Stephen A.

    2012-01-01

    Spatially modulated ultrasound radiation force (SMURF) imaging is an elastographic technique that involves generating a radiation force beam with a lateral intensity variation of a defined spatial frequency. This results in a shear wave of known wavelength. By using the displacements induced by the shear wave and standard Doppler or speckle-tracking methods, the shear wave frequency, and thus material shear modulus, is estimated. In addition to generating a pushing beam pattern with a specified lateral intensity variation, it is generally desirable to induce larger displacements so that the displacement data signal-to-noise ratio is higher. We provide an analysis of two beam forming methods for generating SMURF in an elastic material: the focal Fraunhofer and intersecting plane wave methods. Both techniques generate beams with a defined spatial frequency. However, as a result of the trade-offs associated with each technique, the peak acoustic intensity outputs in the region of interest differs for the same combinations of parameters (e.g., the focal depth, the width of the area of interest, and ultrasonic attenuation coefficient). Assuming limited transducer drive voltage, we provide a decision plot to determine which of the two techniques yields the greater pushing force for a specific configuration. PMID:21768019

  9. Visualization of x-ray computer tomography using computer-generated holography

    NASA Astrophysics Data System (ADS)

    Daibo, Masahiro; Tayama, Norio

    1998-09-01

    The theory converted from x-ray projection data to the hologram directly by combining the computer tomography (CT) with the computer generated hologram (CGH), is proposed. The purpose of this study is to offer the theory for realizing the all- electronic and high-speed seeing through 3D visualization system, which is for the application to medical diagnosis and non- destructive testing. First, the CT is expressed using the pseudo- inverse matrix which is obtained by the singular value decomposition. CGH is expressed in the matrix style. Next, `projection to hologram conversion' (PTHC) matrix is calculated by the multiplication of phase matrix of CGH with pseudo-inverse matrix of the CT. Finally, the projection vector is converted to the hologram vector directly, by multiplication of the PTHC matrix with the projection vector. Incorporating holographic analog computation into CT reconstruction, it becomes possible that the calculation amount is drastically reduced. We demonstrate the CT cross section which is reconstituted by He-Ne laser in the 3D space from the real x-ray projection data acquired by x-ray television equipment, using our direct conversion technique.

  10. Comparing Hand Drawn and Computer Generated Concept Mapping

    ERIC Educational Resources Information Center

    Royer, Regina; Royer, Jeffery

    2004-01-01

    This study compared the use of paper/pencil and computer tools for creating concept maps. Participants were 52 students in two combined 9th/10th grade biology classes. An independent measures research design was used. There were two treatment groups: computer and paper/pencil. The computer group created concept maps using Inspiration software…

  11. Hilbert phase dynamometry (HPD) for real-time measurement of cell generated forces (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sridharan, Shamira; Li, Yanfen; Bhaduri, Basanta; Majeed, Hassaan; Dupenloup, Paul; Levine, Alex; Kilian, Kristopher A.; Popescu, Gabriel

    2016-03-01

    Traction force microscopy is the most widely used technique for studying the forces exerted by cells on deformable substrates. However, the method is computationally intense and cells have to be detached from the substrate prior to measuring the displacement map. We have developed a new method, referred to as Hilbert phase dynamometry (HPD), which yields real-time force fields and, simultaneously, cell dry mass and growth information. HPD operates by imaging cells on a deformable substrate that is patterned with a grid of fluorescent proteins. A Hilbert transform is used to extract the phase map associated with the grid deformation, which provides the displacement field. By combining this information with substrate stiffness, an elasticity model was developed to measure forces exerted by cells with high spatial resolution. In our study, we prepared 10kPa gels and them with a 2-D grid of FITC-conjugated fibrinogen/fibronectin mixture, an extracellular matrix protein to which cells adhere. We cultured undifferentiated mesenchymal stem cells (MSC), and MSCs that were in the process of undergoing adipogenesis and osteogenesis. The cells were measured over the course of 24 hours using Spatial Light Interference Microscopy (SLIM) and wide-field epi-fluorescence microscopy allowing us to simultaneously measure cell growth and the forces exerted by the cells on the substrate.

  12. Generating fractal-like surfaces on general purpose mesh-connected computers

    NASA Technical Reports Server (NTRS)

    Wainer, Michael

    1988-01-01

    Realistic images of natural surfaces are often generated using computationally expensive stochastic modeling techniques. Here a parallel procedure to generate such models is presented. The target machines are general-purpose mesh-connected computers. The complexity of the procedure is similar to that of a proposed special-purpose parallel fractal generator.

  13. External forces and torques generated by the brachiating white-handed gibbon (Hylobates lar).

    PubMed

    Chang, Y H; Bertram, J E; Lee, D V

    2000-10-01

    We compared the kinetics of brachiation to bipedal walking and running. Gibbons use pectoral limbs in continuous contact with their overhead support at slow speeds, but exhibit aerial phases (or ricochetal brachiation) at faster speeds. This basic interaction between limb and support suggests some analogy to walking and running. We quantified the forces in three axes and torque about the vertical axis generated by a brachiating White-handed gibbon (Hylobates lar) and compared them with bipedal locomotion. Handholds oriented perpendicular to the direction of travel (as in ladder rungs) were spaced 0.80, 1.20, 1.60, 1.72, 1.95, and 2.25 m apart. The gibbon proportionally matched forward velocity to stride length. Handhold reaction forces resembled ground reaction forces of running humans except that the order of horizontal braking and propulsion were reversed. Peak vertical forces in brachiation increased with speed as in bipedal locomotion. In contrast to bipedalism, however, peak horizontal forces changed little with speed. Gait transition occurred within the same relative velocity range as the walk-run transition in bipeds (Froude number = 0.3-0.6). We oriented handholds parallel to the direction of travel (as in a continuous pole) at 0.80 and 1.60 m spacings. In ricochetal brachiation, the gibbon generated greater torque with handholds oriented perpendicular as opposed to parallel to the direction of travel. Handhold orientation did not affect peak forces. The similarities and differences between brachiation and bipedalism offer insight into the ubiquity of mechanical principles guiding all limbed locomotion and the distinctiveness of brachiation as a unique mode of locomotion.

  14. Rotating Detonation Combustion: A Computational Study for Stationary Power Generation

    NASA Astrophysics Data System (ADS)

    Escobar, Sergio

    The increased availability of gaseous fossil fuels in The US has led to the substantial growth of stationary Gas Turbine (GT) usage for electrical power generation. In fact, from 2013 to 2104, out of the 11 Tera Watts-hour per day produced from fossil fuels, approximately 27% was generated through the combustion of natural gas in stationary GT. The thermodynamic efficiency for simple-cycle GT has increased from 20% to 40% during the last six decades, mainly due to research and development in the fields of combustion science, material science and machine design. However, additional improvements have become more costly and more difficult to obtain as technology is further refined. An alternative to improve GT thermal efficiency is the implementation of a combustion regime leading to pressure-gain; rather than pressure loss across the combustor. One concept being considered for such purpose is Rotating Detonation Combustion (RDC). RDC refers to a combustion regime in which a detonation wave propagates continuously in the azimuthal direction of a cylindrical annular chamber. In RDC, the fuel and oxidizer, injected from separated streams, are mixed near the injection plane and are then consumed by the detonation front traveling inside the annular gap of the combustion chamber. The detonation products then expand in the azimuthal and axial direction away from the detonation front and exit through the combustion chamber outlet. In the present study Computational Fluid Dynamics (CFD) is used to predict the performance of Rotating Detonation Combustion (RDC) at operating conditions relevant to GT applications. As part of this study, a modeling strategy for RDC simulations was developed. The validation of the model was performed using benchmark cases with different levels of complexity. First, 2D simulations of non-reactive shock tube and detonation tubes were performed. The numerical predictions that were obtained using different modeling parameters were compared with

  15. Virtual photons in imaginary time: Computing exact Casimir forces via standard numerical electromagnetism techniques

    SciTech Connect

    Rodriguez, Alejandro; Ibanescu, Mihai; Joannopoulos, J. D.; Johnson, Steven G.; Iannuzzi, Davide

    2007-09-15

    We describe a numerical method to compute Casimir forces in arbitrary geometries, for arbitrary dielectric and metallic materials, with arbitrary accuracy (given sufficient computational resources). Our approach, based on well-established integration of the mean stress tensor evaluated via the fluctuation-dissipation theorem, is designed to directly exploit fast methods developed for classical computational electromagnetism, since it only involves repeated evaluation of the Green's function for imaginary frequencies (equivalently, real frequencies in imaginary time). We develop the approach by systematically examining various formulations of Casimir forces from the previous decades and evaluating them according to their suitability for numerical computation. We illustrate our approach with a simple finite-difference frequency-domain implementation, test it for known geometries such as a cylinder and a plate, and apply it to new geometries. In particular, we show that a pistonlike geometry of two squares sliding between metal walls, in both two and three dimensions with both perfect and realistic metallic materials, exhibits a surprising nonmonotonic ''lateral'' force from the walls.

  16. Infragravity wave generation and dynamics over a mild slope beach : Experiments and numerical computations

    NASA Astrophysics Data System (ADS)

    Cienfuegos, R.; Duarte, L.; Hernandez, E.

    2008-12-01

    Charasteristic frequencies of gravity waves generated by wind and propagating towards the coast are usually comprised between 0.05Hz and 1Hz. Nevertheless, lower frequecy waves, in the range of 0.001Hz and 0.05Hz, have been observed in the nearshore zone. Those long waves, termed as infragravity waves, are generated by complex nonlinear mechanisms affecting the propagation of irregular waves up to the coast. The groupiness of an incident random wave field may be responsible for producing a slow modulation of the mean water surface thus generating bound long waves travelling at the group speed. Similarly, a quasi- periodic oscillation of the break-point location, will be accompained by a slow modulation of set-up/set-down in the surf zone and generation and release of long waves. If the primary structure of the carrying incident gravity waves is destroyed (e.g. by breaking), forced long waves can be freely released and even reflected at the coast. Infragravity waves can affect port operation through resonating conditions, or strongly affect sediment transport and beach morphodynamics. In the present study we investigate infragravity wave generation mechanisms both, from experiments and numerical computations. Measurements were conducted at the 70-meter long wave tank, located at the Instituto Nacional de Hidraulica (Chile), prepared with a beach of very mild slope of 1/80 in order to produce large surf zone extensions. A random JONSWAP type wave field (h0=0.52m, fp=0.25Hz, Hmo=0.17m) was generated by a piston wave-maker and measurements of the free surface displacements were performed all over its length at high spatial resolution (0.2m to 1m). Velocity profiles were also measured at four verticals inside the surf zone using an ADV. Correlation maps of wave group envelopes and infragravity waves are computed in order to identify long wave generation and dynamics in the experimental set-up. It appears that both mechanisms (groupiness and break-point oscillation) are

  17. Three-dimensional analysis of optical forces generated by an active tractor beam using radial polarization.

    PubMed

    Carretero, Luis; Acebal, Pablo; Blaya, Salvador

    2014-02-10

    We theoretically study the three-dimensional behavior of nanoparticles in an active optical conveyor. To do this, we solved the Langevin equation when the forces are generated by a focusing system at the near field. Analytical expressions for the optical forces generated by the optical conveyor were obtained by solving the Richards and Wolf vectorial diffraction integrals in an approximated form when a mask of two annular pupils is illuminated by a radially polarized Hermite-Gauss beam. Trajectories, in both the transverse plane and the longitudinal direction, are analyzed showing that the behavior of the optical conveyor can be optimized by conveniently choosing the configuration of the mask of the two annular pupils (inner and outer radius of the two rings) in order to trap and transport all particles at the focal plane.

  18. NuSAP governs chromosome oscillation by facilitating the Kid-generated polar ejection force.

    PubMed

    Li, Chenyu; Xue, Chenyi; Yang, Qiaoyun; Low, Boon Chuan; Liou, Yih-Cherng

    2016-02-03

    In vertebrate cells, chromosomes oscillate to align precisely during metaphase. NuSAP, a microtubule-associated protein, plays a critical role in stabilizing spindle microtubules. In this study, we utilize 3D time-lapse live-cell imaging to monitor the role of NuSAP in chromosome oscillation and identify NuSAP as a novel regulator of the chromokinesin, Kid. Depletion of NuSAP significantly suppresses the amplitude and velocity of chromosome oscillation. We analyse the effects of NuSAP and Kid depletion in monopolar and bipolar cells with or without kinetochore microtubule depletion. Twelve postulated conditions are deciphered to reveal the contribution of NuSAP to the polar force generated at kinetochore microtubules and to the regulation of the polar ejection force generated by Kid, thus revealing a pivotal role of NuSAP in chromosome oscillation.

  19. Intermolecular forces between low generation PAMAM dendrimer condensed DNA helices: role of cation architecture.

    PubMed

    An, Min; Parkin, Sean R; DeRouchey, Jason E

    2014-01-28

    In recent years, dendriplexes, complexes of cationic dendrimers with DNA, have become attractive DNA delivery vehicles due to their well-defined chemistries. To better understand the nature of the forces condensing dendriplexes, we studied low generation poly(amidoamine) (PAMAM) dendrimer-DNA complexes and compared them to comparably charged linear arginine peptides. Using osmotic stress coupled with X-ray scattering, we have investigated the effect of molecular chain architecture on DNA-DNA intermolecular forces that determine the net attraction and equilibrium interhelical distance within these polycation condensed DNA arrays. In order to compact DNA, linear cations are believed to bind in DNA grooves and to interact with the phosphate backbone of apposing helices. We have previously shown a length dependent attraction resulting in higher packaging densities with increasing charge for linear cations. Hyperbranched polycations, such as polycationic dendrimers, presumably would not be able to bind to DNA and correlate their charges in the same manner as linear cations. We show that attractive and repulsive force amplitudes in PAMAM-DNA assemblies display significantly different trends than comparably charged linear arginines resulting in lower DNA packaging densities with increasing PAMAM generation. The salt and pH dependencies of packaging in PAMAM dendrimer-DNA and linear arginine-DNA complexes were also investigated. Significant differences in the force curve behaviour and salt and pH sensitivities suggest that different binding modes may be present in DNA condensed by dendrimers when compared to linear polycations.

  20. Microholographic computer generated holograms for security applications: Microtags

    SciTech Connect

    Sweatt, W.C.; Warren, M.E.; Kravitz, S.H.

    1998-01-01

    We have developed a method for encoding phase and amplitude in microscopic computer-generated holograms (microtags) for security applications. Eight-by-eight-cell and 12 x 12-cell phase-only and phase-and-amplitude microtag designs has been exposed in photoresist using the extreme-ultraviolet (13.4 nm) lithography (EUVL) tool developed at Sandia National Laboratories. Using EUVL, we have also fabricated microtags consisting of 150-nm lines arranged to form 300-nm-period gratings. The microtags described in this report were designed for readout at 632.8 nm and 442 nm. The smallest microtag measures 56 {mu}m x 80 {mu}m when viewed at normal incidence. The largest microtag measures 80 by 160 microns and contains features 0.2 {mu}m wide. The microtag design process uses a modified iterative Fourier-transform algorithm to create either phase-only or phase-and-amplitude microtags. We also report on a simple and compact readout system for recording the diffraction pattern formed by a microtag. The measured diffraction patterns agree very well with predictions. We present the results of a rigorous coupled-wave analysis (RCWA) of microtags. Microtags are CD modeled as consisting of sub-wavelength gratings of a trapezoidal profile. Transverse-electric (TE) and TM readout polarizations are modeled. The objective of our analysis is the determination of optimal microtag-grating design parameter values and tolerances on those parameters. The parameters are grating wall-slope angle, grating duty cycle, grating depth, and metal-coating thickness. Optimal microtag-grating parameter values result in maximum diffraction efficiency. Maximum diffraction efficiency is calculated at 16% for microtag gratings in air and 12% for microtag gratings underneath a protective dielectric coating, within fabrication constraints. TM-microtag gratings. Finally, we suggest several additional microtag concepts, such as two-dimensional microtags and pixel-code microtags.

  1. Proton motive force generation from stored polymers for the uptake of acetate under anaerobic conditions.

    PubMed

    Saunders, Aaron M; Mabbett, Amanda N; McEwan, Alastair G; Blackall, Linda L

    2007-09-01

    The bacteria facilitating enhanced biological phosphorus removal gain a selective advantage from intracellularly stored polymer-driven substrate uptake under anaerobic conditions during sequential anaerobic : aerobic cycling. Mechanisms for these unusual membrane transport processes were proposed and experimentally validated using selective inhibitors and highly-enriched cultures of a polyphosphate-accumulating organism, Accumulibacter, and a glycogen-accumulating organism, Competibacter. Acetate uptake by both Accumulibacter and Competibacter was driven by a proton motive force (PMF). Stored polymers were used to generate the PMF -Accumulibacter used phosphate efflux through the Pit transporter, while Competibacter generated a PMF by proton efflux through the ATPase and fumarate reductase in the reductive TCA cycle.

  2. Force Generation by Microtubule Assembly/Disassembly in Mitosis and Related Movements

    PubMed Central

    Inoué, Shinya; Salmon, Edward D.

    1995-01-01

    In this article, we review the dynamic nature of the filaments (microtubules) that make up the labile fibers of the mitotic spindle and asters, we discuss the roles that assembly and disassembly of microtubules play in mitosis, and we consider how such assembling and disassembling polymer filaments can generate forces that are utilized by the living cell in mitosis and related movements. Images PMID:8590794

  3. Elastic and damping forces generated by confined arrays of dynamic microtubules.

    PubMed

    Howard, J

    2006-02-28

    In addition to serving as structural elements and as tracks for motor proteins, microtubules use chemical energy derived from the hydrolysis of GTP to generate forces when growing and shrinking. These forces are used to push or pull on organelles such as chromosomes and the mitotic spindle. If an array of microtubules grows out from a nucleation site and is confined by the periphery of the cell, pushing and pulling forces can give rise to interesting collective phenomena. In this paper, I show that pushing forces center the array provided that the microtubules are dynamic in the sense that they switch from pushing to shrinking after reaching the periphery. Microtubule dynamics of free ends is neither necessary nor sufficient for centering. Buckling can augment the centering force. For small displacements and velocities, the array can be modeled very simply as a damped spring. The dynamic stiffness of the array is orders of magnitude smaller than its static stiffness, and the relaxation time is on the order of the time that it takes for a microtubule to grow from the center to the periphery. Replacement of a dynamic polymer array with an equivalent mechanical circuit provides a bridge between molecular and cellular mechanics.

  4. Effects of Botox and Neuronox on muscle force generation in mice.

    PubMed

    Stone, Austin V; Ma, Jianjun; Whitlock, Patrick W; Koman, L Andrew; Smith, Thomas L; Smith, Beth P; Callahan, Michael F

    2007-12-01

    The current study determined the dose-response relationship for inhibition of muscle force of two commercially available botulinum neurotoxin type-A (BoNTA) preparations (Botox and Neuronox) in a murine model and characterized the time course of recovery from the toxin-induced muscle paralysis. The effect of freezing reconstituted toxin on toxin potency was also determined. The gastrocnemius muscles in male CD-1 mice were injected with either saline or BoNTA (0.3-3.0 U/kg), and muscle force generation was examined following stimulation of the tibial nerve (single twitch and 15-200 Hz tetany). Botox and Neuronox produced nearly equivalent decrements in muscle force (30%-90%) at 4 days after toxin injection. At 28 days after injection (1 U/kg), muscle force had recovered from the effects of both toxin preparations. Maintaining reconstituted toxin at -80 degrees C for up to 5 months did not result in significant loss of toxin activity. The results of this study suggest that Botox and Neuronox produce equivalent responses in a murine model, and, in contrast to other models, muscle recovery is rapid with doses of toxin that produce less than maximal decrements in muscle force.

  5. Compare and contrast the reaction coordinate diagrams for chemical reactions and cytoskeletal force generators

    PubMed Central

    Scholey, Jonathan M.

    2013-01-01

    Reaction coordinate diagrams are used to relate the free energy changes that occur during the progress of chemical processes to the rate and equilibrium constants of the process. Here I briefly review the application of these diagrams to the thermodynamics and kinetics of the generation of force and motion by cytoskeletal motors and polymer ratchets as they mediate intracellular transport, organelle dynamics, cell locomotion, and cell division. To provide a familiar biochemical context for discussing these subcellular force generators, I first review the application of reaction coordinate diagrams to the mechanisms of simple chemical and enzyme-catalyzed reactions. My description of reaction coordinate diagrams of motors and polymer ratchets is simplified relative to the rigorous biophysical treatment found in many of the references that I use and cite, but I hope that the essay provides a valuable qualitative representation of the physical chemical parameters that underlie the generation of force and motility at molecular scales. In any case, I have found that this approach represents a useful interdisciplinary framework for understanding, researching, and teaching the basic molecular mechanisms by which motors contribute to fundamental cell biological processes. PMID:23408787

  6. Computation of Ion Drag Force and Charge on a Static Spherical Dust Grain in RF Plasma

    SciTech Connect

    Ikkurthi, V. R.; Melzer, A.; Matyash, K.; Schneider, R.

    2008-09-07

    The ion drag force and charge on a spherical dust grain located in RF discharge plasma is computed using a 3-dimensional Particle-Particle Particle-Mesh (P3M) code. Our plasma model includes finite-size effects for dust grains and allows to self-consistently resolve the dust grain charging due to absorption of plasma electrons and ions. Ion drag and dust charge have been computed for various sizes of dust particles placed at various locations in the discharge. The results for ion drag have been compared with previous collisionless models and affect of collisions on drag has been discussed in detail.

  7. Next Generation Workload Management System For Big Data on Heterogeneous Distributed Computing

    NASA Astrophysics Data System (ADS)

    Klimentov, A.; Buncic, P.; De, K.; Jha, S.; Maeno, T.; Mount, R.; Nilsson, P.; Oleynik, D.; Panitkin, S.; Petrosyan, A.; Porter, R. J.; Read, K. F.; Vaniachine, A.; Wells, J. C.; Wenaus, T.

    2015-05-01

    The Large Hadron Collider (LHC), operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe, and were recently credited for the discovery of a Higgs boson. ATLAS and ALICE are the largest collaborations ever assembled in the sciences and are at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, both experiments rely on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Management System (WMS) for managing the workflow for all data processing on hundreds of data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. The scale is demonstrated by the following numbers: PanDA manages O(102) sites, O(105) cores, O(108) jobs per year, O(103) users, and ATLAS data volume is O(1017) bytes. In 2013 we started an ambitious program to expand PanDA to all available computing resources, including opportunistic use of commercial and academic clouds and Leadership Computing Facilities (LCF). The project titled ‘Next Generation Workload Management and Analysis System for Big Data’ (BigPanDA) is funded by DOE ASCR and HEP. Extending PanDA to clouds and LCF presents new challenges in managing heterogeneity and supporting workflow. The BigPanDA project is underway to setup and tailor PanDA at the Oak Ridge Leadership Computing Facility (OLCF) and at the National Research Center "Kurchatov Institute" together with ALICE distributed computing and ORNL computing professionals. Our approach to integration of HPC platforms at the OLCF and elsewhere is to reuse, as much as possible, existing components of the PanDA system. We

  8. Next Generation Workload Management System For Big Data on Heterogeneous Distributed Computing

    SciTech Connect

    Klimentov, A.; Buncic, P.; De, K.; Jha, S.; Maeno, T.; Mount, R.; Nilsson, P.; Oleynik, D.; Panitkin, S.; Petrosyan, A.; Porter, R. J.; Read, K. F.; Vaniachine, A.; Wells, J. C.; Wenaus, T.

    2015-05-22

    The Large Hadron Collider (LHC), operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe, and were recently credited for the discovery of a Higgs boson. ATLAS and ALICE are the largest collaborations ever assembled in the sciences and are at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, both experiments rely on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Management System (WMS) for managing the workflow for all data processing on hundreds of data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. The scale is demonstrated by the following numbers: PanDA manages O(102) sites, O(105) cores, O(108) jobs per year, O(103) users, and ATLAS data volume is O(1017) bytes. In 2013 we started an ambitious program to expand PanDA to all available computing resources, including opportunistic use of commercial and academic clouds and Leadership Computing Facilities (LCF). The project titled 'Next Generation Workload Management and Analysis System for Big Data' (BigPanDA) is funded by DOE ASCR and HEP. Extending PanDA to clouds and LCF presents new challenges in managing heterogeneity and supporting workflow. The BigPanDA project is underway to setup and tailor PanDA at the Oak Ridge Leadership Computing Facility (OLCF) and at the National Research Center "Kurchatov Institute" together with ALICE distributed computing and ORNL computing professionals. Our approach to integration of HPC platforms at the OLCF and elsewhere is to reuse, as much as

  9. Next Generation Workload Management System For Big Data on Heterogeneous Distributed Computing

    DOE PAGES

    Klimentov, A.; Buncic, P.; De, K.; ...

    2015-05-22

    The Large Hadron Collider (LHC), operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe, and were recently credited for the discovery of a Higgs boson. ATLAS and ALICE are the largest collaborations ever assembled in the sciences and are at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, both experiments rely on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Managementmore » System (WMS) for managing the workflow for all data processing on hundreds of data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. The scale is demonstrated by the following numbers: PanDA manages O(102) sites, O(105) cores, O(108) jobs per year, O(103) users, and ATLAS data volume is O(1017) bytes. In 2013 we started an ambitious program to expand PanDA to all available computing resources, including opportunistic use of commercial and academic clouds and Leadership Computing Facilities (LCF). The project titled 'Next Generation Workload Management and Analysis System for Big Data' (BigPanDA) is funded by DOE ASCR and HEP. Extending PanDA to clouds and LCF presents new challenges in managing heterogeneity and supporting workflow. The BigPanDA project is underway to setup and tailor PanDA at the Oak Ridge Leadership Computing Facility (OLCF) and at the National Research Center "Kurchatov Institute" together with ALICE distributed computing and ORNL computing professionals. Our approach to integration of HPC platforms at the OLCF and elsewhere is to reuse, as much as possible, existing components of the PanDA system

  10. Statistical Analysis and Computer Generation of Spatially Correlated Acoustic Noise (Preprint)

    DTIC Science & Technology

    2006-05-01

    this paper, we describe an approach for generating simulated acoustic noise with a spatial correlation coefficient distribution and maximum extreme... correlation coefficient and MEV distributions which drive the computer generation of a large number of simulated acoustic noise signals.

  11. Computer Folding of RNA Tetraloops: Identification of Key Force Field Deficiencies.

    PubMed

    Kührová, Petra; Best, Robert B; Bottaro, Sandro; Bussi, Giovanni; Šponer, Jiří; Otyepka, Michal; Banáš, Pavel

    2016-09-13

    The computer-aided folding of biomolecules, particularly RNAs, is one of the most difficult challenges in computational structural biology. RNA tetraloops are fundamental RNA motifs playing key roles in RNA folding and RNA-RNA and RNA-protein interactions. Although state-of-the-art Molecular Dynamics (MD) force fields correctly describe the native state of these tetraloops as a stable free-energy basin on the microsecond time scale, enhanced sampling techniques reveal that the native state is not the global free energy minimum, suggesting yet unidentified significant imbalances in the force fields. Here, we tested our ability to fold the RNA tetraloops in various force fields and simulation settings. We employed three different enhanced sampling techniques, namely, temperature replica exchange MD (T-REMD), replica exchange with solute tempering (REST2), and well-tempered metadynamics (WT-MetaD). We aimed to separate problems caused by limited sampling from those due to force-field inaccuracies. We found that none of the contemporary force fields is able to correctly describe folding of the 5'-GAGA-3' tetraloop over a range of simulation conditions. We thus aimed to identify which terms of the force field are responsible for this poor description of TL folding. We showed that at least two different imbalances contribute to this behavior, namely, overstabilization of base-phosphate and/or sugar-phosphate interactions and underestimated stability of the hydrogen bonding interaction in base pairing. The first artifact stabilizes the unfolded ensemble, while the second one destabilizes the folded state. The former problem might be partially alleviated by reparametrization of the van der Waals parameters of the phosphate oxygens suggested by Case et al., while in order to overcome the latter effect we suggest local potentials to better capture hydrogen bonding interactions.

  12. Central mechanisms for force and motion--towards computational synthesis of human movement.

    PubMed

    Hemami, Hooshang; Dariush, Behzad

    2012-12-01

    Anatomical, physiological and experimental research on the human body can be supplemented by computational synthesis of the human body for all movement: routine daily activities, sports, dancing, and artistic and exploratory involvements. The synthesis requires thorough knowledge about all subsystems of the human body and their interactions, and allows for integration of known knowledge in working modules. It also affords confirmation and/or verification of scientific hypotheses about workings of the central nervous system (CNS). A simple step in this direction is explored here for controlling the forces of constraint. It requires co-activation of agonist-antagonist musculature. The desired trajectories of motion and the force of contact have to be provided by the CNS. The spinal control involves projection onto a muscular subset that induces the force of contact. The projection of force in the sensory motor cortex is implemented via a well-defined neural population unit, and is executed in the spinal cord by a standard integral controller requiring input from tendon organs. The sensory motor cortex structure is extended to the case for directing motion via two neural population units with vision input and spindle efferents. Digital computer simulations show the feasibility of the system. The formulation is modular and can be extended to multi-link limbs, robot and humanoid systems with many pairs of actuators or muscles. It can be expanded to include reticular activating structures and learning.

  13. A Simulation Tool for the Duties of Computer Specialist Non-Commissioned Officers on a Turkish Air Force Base

    DTIC Science & Technology

    2009-09-01

    at the MOVES Institute A SIMULATION TOOL FOR THE DUTIES OF COMPUTER SPECIALIST NON-COMMISSIONED OFFICERS ON A TURKISH AIR FORCE BASE by...REPORT DATE September 2009 1. AGENCY USE ONLY (Leave blank) 4. TITLE AND SUBTITLE A Simulation Tool for the Duties of Computer Specialist...simulation tool by using a prototypical model of the computer system specialist non-commissioned officers’ jobs on a Turkish Air Force Base, and to

  14. Cyclic Fatigue Resistance and Force Generated by OneShape Instruments during Curved Canal Preparation

    PubMed Central

    Zhang, Xiaolei

    2016-01-01

    Objectives To evaluate the cyclic fatigue resistance and the force generated by OneShape files during preparation of simulated curved canals. Methods Six OneShape files (the test) and six ProTaper F2 files (the control) were subject to the bending ability test. Another thirty files of each type were used to prepare artificial canals (n = 60), which were divided into 3 groups according to respective curvatures of the canals (30°, 60°, and 90°). The numbers of cycles to fatigue (NCF) as well as the positive and negative forces that were generated by files during canal preparation were recorded. The scanning electron microscopy was applied to detect the fracture surfaces. Results Compared with ProTaper F2 files, the bending loads of OneShape files were significantly lower at deflections of 45°(P < .05), 60° (P < .05) and 75° (P < .01). No significant difference was found at 30°. OneShape files presented a higher NCF in both 60° and 90° canals than the control (P < .01). No significant difference of NCF was found between OneShape and ProTaper files in 30° canals. During the preparation of 30° canals by both files, the negative forces were dominant. With the increase of the curvature, more positive forces were observed. When the OneShape Files were compared with the control, significant different forces were found at D3 and D2 (P < .05) in 30° canals, at D2 (P < .05), D1 (P < .01) and D0 (P < .01) in 60° canals, and at D4 and D3 (P < .01) in 90° canals. Conclusions OneShape files possessed a reliable flexibility and cyclic fatigue resistance. According to the assessments of the forces generated by files, OneShape instruments performed in a more fatigue-resistant way during curved canal preparation, compared with the ProTaper F2 files. PMID:27513666

  15. Effects of corrugation angle on developing laminar forced convection and entropy generation in a wavy channel

    NASA Astrophysics Data System (ADS)

    Ko, Tzu-Hsiang

    2007-12-01

    This paper investigates the effects of corrugation angle ( β) on the developing laminar forced convection and entropy generation in a wavy channel with numerical methods. The studied cases cover β = 10-, 15-, 20-, 25-, 30- and 35°, whilst Reynolds number ( Re) is varied as 100, 200 and 400. The analyzed flow characteristics include recirculating flows, secondary vortices, temperature distributions, and friction factor as well as Nusselt number. In particular, the effects of corrugation angle on the distributions and magnitudes of local entropy generation resulted from frictional irreversibility ( S {/P '''}) and heat transfer irreversibility ( S {/T '''}) are separately discussed in detail in the present paper. Based on the minimal entropy generation principle, the optimal corrugation angle and favorable Re are reported.

  16. Computer Generation of Natural Language from a Deep Conceptual Base

    DTIC Science & Technology

    1974-01-01

    and conceptual domain. The final sentence generated is a result of a ’linearization’ of the syntax net by the grammar . Many paraphrases can be...notion of "performance" grammar . They have long since given up debugging their creation, and should not be hel liable for those "competence...limited to MACHINE generation» no attempt is made to cover the literature of generative grammar , as developed by theoretical linguistics over the

  17. A Computational Fluid Dynamics Analysis of Hydrodynamic Force Acting on a Swimmer’S Hand in a Swimming Competition

    PubMed Central

    Sato, Yohei; Hino, Takanori

    2013-01-01

    A stroke-analysis system based on a CFD (Computational Fluid Dynamics) simulation has been developed to evaluate the hydrodynamic forces acting on a swimmer’s hand. Using the present stroke-analysis system, a stroke technique of top swimmers can be recognized with regard to the hydrodynamic forces. The developed analysis system takes into account the effect of a transient stroke motion including acceleration and a curved stroke path without using assumptions such as a quasi-static approach. An unsteady Navier-Stokes solver based on an unstructured grid method is employed as the CFD method to calculate a viscous flow around a swimmer’s hand which can cope with the complicated geometry of hands. The CFD method is validated by comparison with experiments in steady-state and transient conditions. Following the validations, a stroke-analysis system is proposed, in which a hand moves in accordance with a stroke path measured by synchronized video cameras, and the fluid forces acting on the hand are computed with the CFD method. As a demonstration of the stroke-analysis system, two world class swimmers’ strokes in a race of 200 m freestyle are analyzed. The hydrodynamic forces acting on the hands of the top swimmers are computed, and the comparison of two swimmers shows that the stroke of the faster swimmer, who advanced at 1.84 m·s-1 during the stroke-analysis, generated larger thrust with higher thrust efficiency than that of the slower swimmer, who advanced at 1.75 m·s-1. The applicability of the present stroke analysis system has been proved through this analysis. Key Points The stroke-analysis system using CFD technique has been established. The stroke path and the hand orientation are obtained from a swimming competition with two synchronized underwater video camera, and used for the input data to the CFD analysis. The hydrodynamic force acting on the swimmer’s hand and thrust efficiency are analyzed, and the stroke technique can be evaluated. PMID

  18. (abstract) The Nest Generation of Space Flight Computers

    NASA Technical Reports Server (NTRS)

    Alkalaj, Leon; Panwar, Ramesh

    1993-01-01

    To meet new design objectives for drastic reductions in mass, size, and power consumption, the Flight Computer Development Group at JPL is participating in a design study and development of a light-weight, small-sized, low-power 3-D Space Flight Computer. In this paper, we will present a detailed design and tradeoff study of the proposed computer. We will also discuss a complete design of the multichip modules and their size, weight, and power consumption. Prelimimary thermal models will also be discussed.

  19. Measuring Pushing and Braking Forces Generated by Ensembles of Kinesin-5 Crosslinking Two Microtubules.

    PubMed

    Shimamoto, Yuta; Forth, Scott; Kapoor, Tarun M

    2015-09-28

    The proper organization of the microtubule-based mitotic spindle is proposed to depend on nanometer-sized motor proteins generating forces that scale with a micron-sized geometric feature, such as microtubule overlap length. However, it is unclear whether such regulation can be achieved by any mitotic motor protein. Here, we employ an optical-trap- and total internal reflection fluorescence (TIRF)-based assay to show that ensembles of kinesin-5, a conserved mitotic motor protein, can push apart overlapping antiparallel microtubules to generate a force whose magnitude scales with filament overlap length. We also find that kinesin-5 can produce overlap-length-dependent "brake-like" resistance against relative microtubule sliding in both parallel and antiparallel geometries, an activity that has been suggested by cell biological studies but had not been directly measured. Together, these findings, along with numerical simulations, reveal how a motor protein can function as an analog converter, "reading" simple geometric and dynamic features in cytoskeletal networks to produce regulated force outputs.

  20. Dynein's C-terminal Domain Plays a Novel Role in Regulating Force Generation

    NASA Astrophysics Data System (ADS)

    Gennerich, Arne; Nicholas, Matthew; Brenner, Sibylle; Lazar, Caitlin; Weil, Sarah; Vallee, Richard; Hook, Peter; Gennerich Lab Collaboration; Vallee Lab Collaboration

    2014-03-01

    Cytoplasmic dynein is a microtubule motor involved in a wide range of low and high force requiring functions in metazoans. In contrast, yeast dynein is involved in a single, nonessential function, nuclear positioning. Interestingly, the single-molecule function of yeast dynein is also unique: whereas mammalian dyneins generate forces of 1-2 pN, S. cerevisiae dynein stalls at 5-7 pN. The basis for this functional difference is unknown. However, the major structural difference between mammalian and yeast dyneins is a ~30 kDa C-terminal extension (CT) present in higher eukaryotic dyneins, but missing in yeast. To test whether the CT accounts for the differences in function, we produced recombinant rat dynein motor domains (MD) with (WT-MD) and without (ΔCT-MD) the CT, using baculovirus expression. To define motor function, we performed single-molecule optical trapping studies. Dimerized WT-MD stalls at ~1 pN and detaches from microtubules after brief stalls, in agreement with previous studies on native mammalian dynein. In sharp contrast, but similar to yeast dynein, ΔCT-MD stalls at ~6 pN, with stall durations up to minutes. These results identify the CT as a new regulatory element for controlling dynein force generation. Supported by NIH GM094415 (A.G.) and GM102347 (R.B.V.)

  1. Forces Generated by High Velocity Impact of Ice on a Rigid Structure

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Padula, Santo A., II; Revilock, Duane M.; Melis, Matthew E.

    2006-01-01

    Tests were conducted to measure the impact forces generated by cylindrical ice projectiles striking a relatively rigid target. Two types of ice projectiles were used, solid clear ice and lower density fabricated ice. Three forms of solid clear ice were tested: single crystal, poly-crystal, and "rejected" poly-crystal (poly-crystal ice in which defects were detected during inspection.) The solid ice had a density of approximately 56 lb/cu ft (0.9 gm/cu cm). A second set of test specimens, termed "low density ice" was manufactured by molding shaved ice into a cylindrical die to produce ice with a density of approximately 40 lb/cu ft (0.65 gm/cu cm). Both the static mechanical characteristics and the crystalline structure of the ice were found to have little effect on the observed transient response. The impact forces generated by low density ice projectiles, which had very low mechanical strength, were comparable to those of full density solid ice. This supports the hypothesis that at a velocity significantly greater than that required to produce fracture in the ice, the mechanical properties become relatively insignificant, and the impact forces are governed by the shape and mass of the projectile.

  2. Cloud Computing Trace Characterization and Synthetic Workload Generation

    DTIC Science & Technology

    2013-03-01

    to design realistic cloud workloads, which drive the evaluation of Hadoop job schedulers and Hadoop shared storage system performance. The trace...synthesizing realistic workload traces for studying the hadoop ecosystem. Presented at Modeling, Analysis & Simulation of Computer and

  3. Boundary conditions for direct computation of aerodynamic sound generation

    NASA Technical Reports Server (NTRS)

    Colonius, Tim; Lele, Sanjiva K.; Moin, Parviz

    1992-01-01

    A numerical scheme suitable for the computation of both the near field acoustic sources and the far field sound produced by turbulent free shear flows utilizing the Navier-Stokes equations is presented. To produce stable numerical schemes in the presence of shear, damping terms must be added to the boundary conditions. The numerical technique and boundary conditions are found to give stable results for computations of spatially evolving mixing layers.

  4. The suitability of Sanders' model for calculation of the propulsive force generated by the hands during sculling motion.

    PubMed

    Gomes, Lara Elena; Boeira, Lucas; Loss, Jefferson Fagundes

    2017-05-01

    This study examined whether Sanders' model is suitable for estimating accurately the propulsive force generated by the hands' motion in swimming comparing the calculated force obtained using the model and the measured force during an actual propulsive action. The measured and calculated forces were obtained from 13 swimmers who, while tethered, performed a sculling motion in a prone position for the purpose of displacing the body by moving it forward. Kinematic analyses were conducted to obtain the calculated force, while the measured force was obtained via the use of a load cell. The calculated force was lower than the measured force and accounted for only a small part of the variation in the measured force. The forces could not be used interchangeably, and there were fixed and proportional differences between them. Consequently, this study indicates that Sanders' model is not suitable for estimating accurately the propulsive force generated by the swimmer's hands during sculling motion. However, research that integrates analyses from different approaches could result in improvements to the model that would render it applicable for estimating the propulsive forces during movements that are characterised by directional changes of the hands.

  5. Acoustic manipulation of active spherical carriers: Generation of negative radiation force

    NASA Astrophysics Data System (ADS)

    Rajabi, Majid; Mojahed, Alireza

    2016-09-01

    This paper examines theoretically a novel mechanism of generating negative (pulling) radiation force for acoustic manipulation of spherical carriers equipped with piezoelectric actuators in its inner surface. In this mechanism, the spherical particle is handled by common plane progressive monochromatic acoustic waves instead of zero-/higher- order Bessel beams or standing waves field. The handling strategy is based on applying a spatially uniform harmonic electrical voltage at the piezoelectric actuator with the same frequency of handling acoustic waves, in order to change the radiation force effect from repulsive (away from source) to attractive (toward source). This study may be considered as a start point for development of contact-free precise handling and entrapment technology of active carriers which are essential in many engineering and medicine applications.

  6. Large-scale magnetic field generation by randomly forced shearing waves.

    PubMed

    Heinemann, T; McWilliams, J C; Schekochihin, A A

    2011-12-16

    A rigorous theory for the generation of a large-scale magnetic field by random nonhelically forced motions of a conducting fluid combined with a linear shear is presented in the analytically tractable limit of low magnetic Reynolds number (Rm) and weak shear. The dynamo is kinematic and due to fluctuations in the net (volume-averaged) electromotive force. This is a minimal proof-of-concept quasilinear calculation aiming to put the shear dynamo, a new effect recently found in numerical experiments, on a firm theoretical footing. Numerically observed scalings of the wave number and growth rate of the fastest-growing mode, previously not understood, are derived analytically. The simplicity of the model suggests that shear dynamo action may be a generic property of sheared magnetohydrodynamic turbulence.

  7. Hair cell force generation does not amplify or tune vibrations within the chicken basilar papilla

    PubMed Central

    Xia, Anping; Liu, Xiaofang; Raphael, Patrick D.; Applegate, Brian E.; Oghalai, John S.

    2016-01-01

    Frequency tuning within the auditory papilla of most non-mammalian species is electrical, deriving from ion-channel resonance within their sensory hair cells. In contrast, tuning within the mammalian cochlea is mechanical, stemming from active mechanisms within outer hair cells that amplify the basilar membrane travelling wave. Interestingly, hair cells in the avian basilar papilla demonstrate both electrical resonance and force-generation, making it unclear which mechanism creates sharp frequency tuning. Here, we measured sound-induced vibrations within the apical half of the chicken basilar papilla in vivo and found broadly-tuned travelling waves that were not amplified. However, distortion products were found in live but not dead chickens. These findings support the idea that avian hair cells do produce force, but that their effects on vibration are small and do not sharpen tuning. Therefore, frequency tuning within the apical avian basilar papilla is not mechanical, and likely derives from hair cell electrical resonance. PMID:27796310

  8. Hair cell force generation does not amplify or tune vibrations within the chicken basilar papilla.

    PubMed

    Xia, Anping; Liu, Xiaofang; Raphael, Patrick D; Applegate, Brian E; Oghalai, John S

    2016-10-31

    Frequency tuning within the auditory papilla of most non-mammalian species is electrical, deriving from ion-channel resonance within their sensory hair cells. In contrast, tuning within the mammalian cochlea is mechanical, stemming from active mechanisms within outer hair cells that amplify the basilar membrane travelling wave. Interestingly, hair cells in the avian basilar papilla demonstrate both electrical resonance and force-generation, making it unclear which mechanism creates sharp frequency tuning. Here, we measured sound-induced vibrations within the apical half of the chicken basilar papilla in vivo and found broadly-tuned travelling waves that were not amplified. However, distortion products were found in live but not dead chickens. These findings support the idea that avian hair cells do produce force, but that their effects on vibration are small and do not sharpen tuning. Therefore, frequency tuning within the apical avian basilar papilla is not mechanical, and likely derives from hair cell electrical resonance.

  9. Clathrin Coat Disassembly Illuminates the Mechanisms of Hsp70 Force Generation

    PubMed Central

    Liao, Hsien-Shun; Cuéllar, Jorge; Jin, Suping; Valpuesta, Jose M.; Jin, Albert J.; Lafer, Eileen M.

    2016-01-01

    Hsp70s use ATP hydrolysis to disrupt protein:protein associations or move macromolecules. One example is Hsc70-mediated disassembly of clathrin coats that form on vesicles during endocytosis. We exploit the exceptional features of these coats to test three models—Brownian ratchet, power-stroke and entropic pulling—proposed to explain how Hsp70s transform their substrates. Our data rule out the ratchet and power-stroke models, and instead support a collision pressure mechanism whereby collisions between clathrin coat walls and Hsc70s drive coats apart. Collision pressure is the complement to the pulling force described in the entropic pulling model. We also find that self-association can augment collision pressure to allow disassembly of clathrin lattices predicted to resist disassembly. These results illuminate how Hsp70s generate the forces that transform their substrates. PMID:27478930

  10. Computing solvent-induced forces in the solvation approach called Semi Explicit Assembly

    NASA Astrophysics Data System (ADS)

    Brini, Emiliano; Hummel, Michelle H.; Coutsias, Evangelos A.; Fennell, Christopher J.; Dill, Ken A.

    2014-03-01

    Many biologically relevant processes (e.g. protein folding) are often too big and slow to be simulated by computer methods that model atomically detailed water. Faster physical models of water are needed. We have developed an approach called Semi Explicit Assembly (SEA) [C.J. Fennell, C.W. Kehoe, K.A. Dill, PNAS, 108, 3234 (2011)]. It is physical because it uses pre-simulations of explicit-solvent models, and it is fast because at runtime, we just combine the pre-simulated results in rapid computations. SEA has also now been proven physically accurate in two blind tests called SAMPL. Here, we describe the computation of solvation forces in SEA, so that this solvation procedure can be incorporated into standard molecular dynamics codes. We describe experimental tests.

  11. A multipole accelerated desingularized method for computing nonlinear wave forces on bodies

    SciTech Connect

    Scorpio, S.M.; Beck, R.F.

    1996-12-31

    Nonlinear wave forces on offshore structures are investigated. The fluid motion is computed using an Euler-Lagrange time domain approach. Nonlinear free surface boundary conditions are stepped forward in time using an accurate and stable integration technique. The field equation with mixed boundary conditions that result at each time step are solved at N nodes using a desingularized boundary integral method with multipole acceleration. Multipole accelerated solutions require O(N) computational effort and computer storage while conventional solvers require O(N{sup 2}) effort and storage for an iterative solution and O(N{sup 3}) effort for direct inversion of the influence matrix. These methods are applied to the three dimensional problem of wave diffraction by a vertical cylinder.

  12. How muscle fiber lengths and velocities affect muscle force generation as humans walk and run at different speeds

    PubMed Central

    Arnold, Edith M.; Hamner, Samuel R.; Seth, Ajay; Millard, Matthew; Delp, Scott L.

    2013-01-01

    SUMMARY The lengths and velocities of muscle fibers have a dramatic effect on muscle force generation. It is unknown, however, whether the lengths and velocities of lower limb muscle fibers substantially affect the ability of muscles to generate force during walking and running. We examined this issue by developing simulations of muscle–tendon dynamics to calculate the lengths and velocities of muscle fibers from electromyographic recordings of 11 lower limb muscles and kinematic measurements of the hip, knee and ankle made as five subjects walked at speeds of 1.0–1.75 m s−1 and ran at speeds of 2.0–5.0 m s−1. We analyzed the simulated fiber lengths, fiber velocities and forces to evaluate the influence of force–length and force–velocity properties on force generation at different walking and running speeds. The simulations revealed that force generation ability (i.e. the force generated per unit of activation) of eight of the 11 muscles was significantly affected by walking or running speed. Soleus force generation ability decreased with increasing walking speed, but the transition from walking to running increased the force generation ability by reducing fiber velocities. Our results demonstrate the influence of soleus muscle architecture on the walk-to-run transition and the effects of muscle–tendon compliance on the plantarflexors' ability to generate ankle moment and power. The study presents data that permit lower limb muscles to be studied in unprecedented detail by relating muscle fiber dynamics and force generation to the mechanical demands of walking and running. PMID:23470656

  13. Forced generation of solitary waves in a rotating fluid and their stability

    NASA Astrophysics Data System (ADS)

    Choi, Wooyoung

    The primary objective of this graduate research is to study forced generation of solitary waves in a rotating fluid and their stability properties. For axisymmetric flow of a non-uniformly rotating fluid within a long cylindrical tube, an analysis is presented to predict the periodic generation of upstream-advancing vortex solitons by axisymmetric disturbance steadily moving with a transcritical velocity as a forcing agent. The phenomenon is simulated using the forced Korteweg-de Vries (fKdV) equation to model the amplitude function of the Stokes stream function for describing this family of rotating flows of an inviscid and incompressible fluid. The numerical results for the weakly nonlinear and weakly dispersive wave motion show that a sequence of well-defined axisymmetrical recirculating eddies is periodically produced and emitted to radiate upstream of the disturbance, soon becoming permanent in the form as a procession of vortex solitons, which we call vortons. Two primary flows, the Rankine vortex and the Burgers vortex, are adopted to exhibit in detail the process of producing the upstream vortons by the critical motion of a slender body moving along the central axis, with the Burgers vortex being found the more effective of the two in the generation of vortons. To investigate the evolution of free or forced waves within a tube of non-uniform radius, a new forced KdV equation is derived which models the variable geometry with variable coefficients. A set of section-mean conservation laws is derived specially for this class of rotational tube flows of an inviscid and incompressible fluid, in both differential and integral forms. A new aspect of stability theory is analyzed for possible instabilities of the axisymmetric solitary waves subject to non-axisymmetric disturbances. The present linear analysis based on the model equation involving the bending mode shows that the axisymmetric solitary wave is neutrally stable with respect to small bending mode

  14. Altered Smooth Muscle Cell Force Generation as a Driver of Thoracic Aortic Aneurysms and Dissections.

    PubMed

    Milewicz, Dianna M; Trybus, Kathleen M; Guo, Dong-Chuan; Sweeney, H Lee; Regalado, Ellen; Kamm, Kristine; Stull, James T

    2017-01-01

    The importance of maintaining contractile function in aortic smooth muscle cells (SMCs) is evident by the fact that heterozygous mutations in the major structural proteins or kinases controlling contraction lead to the formation of aneurysms of the ascending thoracic aorta that predispose to life-threatening aortic dissections. Force generation by SMC requires ATP-dependent cyclic interactions between filaments composed of SMC-specific isoforms of α-actin (encoded by ACTA2) and myosin heavy chain (MYH11). ACTA2 and MYH11 mutations are predicted or have been shown to disrupt this cyclic interaction predispose to thoracic aortic disease. Movement of the myosin motor domain is controlled by phosphorylation of the regulatory light chain on the myosin filament, and loss-of-function mutations in the dedicated kinase for this phosphorylation, myosin light chain kinase (MYLK) also predispose to thoracic aortic disease. Finally, a mutation in the cGMP-activated protein kinase (PRKG1) results in constitutive activation of the kinase in the absence of cGMP, thus driving SMC relaxation in part through increased dephosphorylation of the regulatory light chain and predisposes to thoracic aortic disease. Furthermore, SMCs cannot generate force without connections to the extracellular matrix through focal adhesions, and mutations in the major protein in the extracellular matrix, fibrillin-1, linking SMCs to the matrix also cause thoracic aortic disease in individuals with Marfan syndrome. Thus, disruption of the ability of the aortic SMC to generate force through the elastin-contractile units in response to pulsatile blood flow may be a primary driver for thoracic aortic aneurysms and dissections.

  15. A Hidden Surface Algorithm for Computer Generated Halftone Pictures

    DTIC Science & Technology

    converting data describing three-dimensional objects into data that can be used to generate two-dimensional halftone images. It deals with some problems that arise in black and white, and color shading.

  16. Analysis of radial and longitudinal force of plasma wakefield generated by a chirped pulse laser

    SciTech Connect

    Ghasemi, Leila; Afhami, Saeedeh; Eslami, Esmaeil

    2015-08-15

    In present paper, the chirp effect of an electromagnetic pulse via an analytical model of wakefield generation is studied. Different types of chirps are employed in this study. Our results show that by the use of nonlinear chirped pulse the longitudinal wakefield and focusing force is stronger than that of linear chirped pulse. It is indicated that quadratic nonlinear chirped pulses are globally much efficient than periodic nonlinear chirped pulses. Our calculations also predict that in nonlinear chirped pulse case, the overlap of focusing and accelerating regions is broader than that achieved in linear chirped pulse.

  17. The FORCE: A portable parallel programming language supporting computational structural mechanics

    NASA Technical Reports Server (NTRS)

    Jordan, Harry F.; Benten, Muhammad S.; Brehm, Juergen; Ramanan, Aruna

    1989-01-01

    This project supports the conversion of codes in Computational Structural Mechanics (CSM) to a parallel form which will efficiently exploit the computational power available from multiprocessors. The work is a part of a comprehensive, FORTRAN-based system to form a basis for a parallel version of the NICE/SPAR combination which will form the CSM Testbed. The software is macro-based and rests on the force methodology developed by the principal investigator in connection with an early scientific multiprocessor. Machine independence is an important characteristic of the system so that retargeting it to the Flex/32, or any other multiprocessor on which NICE/SPAR might be imnplemented, is well supported. The principal investigator has experience in producing parallel software for both full and sparse systems of linear equations using the force macros. Other researchers have used the Force in finite element programs. It has been possible to rapidly develop software which performs at maximum efficiency on a multiprocessor. The inherent machine independence of the system also means that the parallelization will not be limited to a specific multiprocessor.

  18. 76 FR 79609 - Federal Acquisition Regulation; Clarification of Standards for Computer Generation of Forms

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-22

    ... Federal Acquisition Regulation; Clarification of Standards for Computer Generation of Forms AGENCY... clarifying the use of American National Standards Institute X12, as the valid standard to use for computer... standard and optional forms on their computers. In addition to clarifying that FIPS 161 is no longer in...

  19. Single-Frame Cinema. Three Dimensional Computer-Generated Imaging.

    ERIC Educational Resources Information Center

    Cheetham, Edward Joseph, II

    This master's thesis provides a description of the proposed art form called single-frame cinema, which is a category of computer imagery that takes the temporal polarities of photography and cinema and unites them into a single visual vignette of time. Following introductory comments, individual chapters discuss (1) the essential physical…

  20. Computer-Generated, Three-Dimensional Character Animation.

    ERIC Educational Resources Information Center

    Van Baerle, Susan Lynn

    This master's thesis begins by discussing the differences between 3-D computer animation of solid three-dimensional, or monolithic, objects, and the animation of characters, i.e., collections of movable parts with soft pliable surfaces. Principles from two-dimensional character animation that can be transferred to three-dimensional character…

  1. Force and torque on spherical particles in micro-channel flows using computational fluid dynamics.

    PubMed

    Suo, Jin; Edwards, Erin E; Anilkumar, Ananyaveena; Sulchek, Todd; Giddens, Don P; Thomas, Susan N

    2016-07-01

    To delineate the influence of hemodynamic force on cell adhesion processes, model in vitro fluidic assays that mimic physiological conditions are commonly employed. Herein, we offer a framework for solution of the three-dimensional Navier-Stokes equations using computational fluid dynamics (CFD) to estimate the forces resulting from fluid flow near a plane acting on a sphere that is either stationary or in free flow, and we compare these results to a widely used theoretical model that assumes Stokes flow with a constant shear rate. We find that while the full three-dimensional solutions using a parabolic velocity profile in CFD simulations yield similar translational velocities to those predicted by the theoretical method, the CFD approach results in approximately 50% larger rotational velocities over the wall shear stress range of 0.1-5.0 dynes cm(-2). This leads to an approximately 25% difference in force and torque calculations between the two methods. When compared with experimental measurements of translational and rotational velocities of microspheres or cells perfused in microfluidic channels, the CFD simulations yield significantly less error. We propose that CFD modelling can provide better estimations of hemodynamic force levels acting on perfused microspheres and cells in flow fields through microfluidic devices used for cell adhesion dynamics analysis.

  2. Accurate computation of surface stresses and forces with immersed boundary methods

    NASA Astrophysics Data System (ADS)

    Goza, Andres; Liska, Sebastian; Morley, Benjamin; Colonius, Tim

    2016-09-01

    Many immersed boundary methods solve for surface stresses that impose the velocity boundary conditions on an immersed body. These surface stresses may contain spurious oscillations that make them ill-suited for representing the physical surface stresses on the body. Moreover, these inaccurate stresses often lead to unphysical oscillations in the history of integrated surface forces such as the coefficient of lift. While the errors in the surface stresses and forces do not necessarily affect the convergence of the velocity field, it is desirable, especially in fluid-structure interaction problems, to obtain smooth and convergent stress distributions on the surface. To this end, we show that the equation for the surface stresses is an integral equation of the first kind whose ill-posedness is the source of spurious oscillations in the stresses. We also demonstrate that for sufficiently smooth delta functions, the oscillations may be filtered out to obtain physically accurate surface stresses. The filtering is applied as a post-processing procedure, so that the convergence of the velocity field is unaffected. We demonstrate the efficacy of the method by computing stresses and forces that converge to the physical stresses and forces for several test problems.

  3. Force and torque on spherical particles in micro-channel flows using computational fluid dynamics

    PubMed Central

    Suo, Jin; Edwards, Erin E.; Anilkumar, Ananyaveena; Sulchek, Todd; Giddens, Don P.

    2016-01-01

    To delineate the influence of hemodynamic force on cell adhesion processes, model in vitro fluidic assays that mimic physiological conditions are commonly employed. Herein, we offer a framework for solution of the three-dimensional Navier–Stokes equations using computational fluid dynamics (CFD) to estimate the forces resulting from fluid flow near a plane acting on a sphere that is either stationary or in free flow, and we compare these results to a widely used theoretical model that assumes Stokes flow with a constant shear rate. We find that while the full three-dimensional solutions using a parabolic velocity profile in CFD simulations yield similar translational velocities to those predicted by the theoretical method, the CFD approach results in approximately 50% larger rotational velocities over the wall shear stress range of 0.1–5.0 dynes cm−2. This leads to an approximately 25% difference in force and torque calculations between the two methods. When compared with experimental measurements of translational and rotational velocities of microspheres or cells perfused in microfluidic channels, the CFD simulations yield significantly less error. We propose that CFD modelling can provide better estimations of hemodynamic force levels acting on perfused microspheres and cells in flow fields through microfluidic devices used for cell adhesion dynamics analysis. PMID:27493783

  4. Numerical computation of the effective-one-body potential q using self-force results

    NASA Astrophysics Data System (ADS)

    Akcay, Sarp; van de Meent, Maarten

    2016-03-01

    The effective-one-body theory (EOB) describes the conservative dynamics of compact binary systems in terms of an effective Hamiltonian approach. The Hamiltonian for moderately eccentric motion of two nonspinning compact objects in the extreme mass-ratio limit is given in terms of three potentials: a (v ) , d ¯ (v ) , q (v ) . By generalizing the first law of mechanics for (nonspinning) black hole binaries to eccentric orbits, [A. Le Tiec, Phys. Rev. D 92, 084021 (2015).] recently obtained new expressions for d ¯(v ) and q (v ) in terms of quantities that can be readily computed using the gravitational self-force approach. Using these expressions we present a new computation of the EOB potential q (v ) by combining results from two independent numerical self-force codes. We determine q (v ) for inverse binary separations in the range 1 /1200 ≤v ≲1 /6 . Our computation thus provides the first-ever strong-field results for q (v ) . We also obtain d ¯ (v ) in our entire domain to a fractional accuracy of ≳10-8 . We find that our results are compatible with the known post-Newtonian expansions for d ¯(v ) and q (v ) in the weak field, and agree with previous (less accurate) numerical results for d ¯(v ) in the strong field.

  5. Correlation of embryonic skeletal muscle myotube physical characteristics with contractile force generation on an atomic force microscope-based bio-microelectromechanical systems device

    NASA Astrophysics Data System (ADS)

    Pirozzi, K. L.; Long, C. J.; McAleer, C. W.; Smith, A. S. T.; Hickman, J. J.

    2013-08-01

    Rigorous analysis of muscle function in in vitro systems is needed for both acute and chronic biomedical applications. Forces generated by skeletal myotubes on bio-microelectromechanical cantilevers were calculated using a modified version of Stoney's thin-film equation and finite element analysis (FEA), then analyzed for regression to physical parameters. The Stoney's equation results closely matched the more intensive FEA and the force correlated to cross-sectional area (CSA). Normalizing force to measured CSA significantly improved the statistical sensitivity and now allows for close comparison of in vitro data to in vivo measurements for applications in exercise physiology, robotics, and modeling neuromuscular diseases.

  6. Correlation of embryonic skeletal muscle myotube physical characteristics with contractile force generation on an atomic force microscope-based bio-microelectromechanical systems device

    PubMed Central

    Pirozzi, K. L.; Long, C. J.; McAleer, C. W.; Smith, A. S. T.; Hickman, J. J.

    2013-01-01

    Rigorous analysis of muscle function in in vitro systems is needed for both acute and chronic biomedical applications. Forces generated by skeletal myotubes on bio-microelectromechanical cantilevers were calculated using a modified version of Stoney's thin-film equation and finite element analysis (FEA), then analyzed for regression to physical parameters. The Stoney's equation results closely matched the more intensive FEA and the force correlated to cross-sectional area (CSA). Normalizing force to measured CSA significantly improved the statistical sensitivity and now allows for close comparison of in vitro data to in vivo measurements for applications in exercise physiology, robotics, and modeling neuromuscular diseases. PMID:24046483

  7. Magnetic Field, Force, and Inductance Computations for an Axially Symmetric Solenoid

    NASA Technical Reports Server (NTRS)

    Lane, John E.; Youngquist, Robert C.; Immer, Christopher D.; Simpson, James C.

    2001-01-01

    The pumping of liquid oxygen (LOX) by magnetic fields (B field), using an array of electromagnets, is a current topic of research and development at Kennedy Space Center, FL. Oxygen is paramagnetic so that LOX, like a ferrofluid, can be forced in the direction of a B field gradient. It is well known that liquid oxygen has a sufficient magnetic susceptibility that a strong magnetic gradient can lift it in the earth's gravitational field. It has been proposed that this phenomenon can be utilized in transporting (i.e., pumping) LOX not only on earth, but on Mars and in the weightlessness of space. In order to design and evaluate such a magnetic pumping system, it is essential to compute the magnetic and force fields, as well as inductance, of various types of electromagnets (solenoids). In this application, it is assumed that the solenoids are air wrapped, and that the current is essentially time independent.

  8. Computational study of exciton generation in suspended carbon nanotube transistors.

    PubMed

    Koswatta, Siyuranga O; Perebeinos, Vasili; Lundstrom, Mark S; Avouris, Phaedon

    2008-06-01

    Optical emission from carbon nanotube transistors (CNTFETs) has recently attracted significant attention due to its potential applications. In this paper, we use a self-consistent numerical solution of the Boltzmann transport equation in the presence of both phonon and exciton scattering to present a detailed study of the operation of a partially suspended CNTFET light emitter, which has been discussed in a recent experiment. We determine the energy distribution of hot carriers in the CNTFET and, as reported in the experiment, observe localized generation of excitons near the trench-substrate junction and an exponential increase in emission intensity with a linear increase in current versus gate voltage. We further provide detailed insight into device operation and propose optimization schemes for efficient exciton generation; a deeper trench increases the generation efficiency, and use of high-k substrate oxides could lead to even larger enhancements.

  9. Design of the magnetorheological mount with high damping force for medium speed diesel generators

    NASA Astrophysics Data System (ADS)

    Kang, O.-H.; Kim, W.-H.; Joo, W. H.; Park, J.-H.

    2013-04-01

    This paper investigates the controllable magnetorheological (MR) mount for the marine diesel-generator (D/G) sets. Sometimes, significant vibrations over the allowable limit are observed on the D/G sets due to their huge excitation forces. Because the severe vibration can lead to structural damages to the D/G sets, it should be reduced to below the limit. Although passive mounts with rubber isolators are usually used, the vibration reduction performance is not always sufficient. In addition, expecting that the vibration levels required by customers will get more severe, semi-active vibration isolation system needs to be developed. To the aim, the valve (flow) mode type of MR mount has been designed. Especially, the annular-radial configuration was adopted to enhance the damping force within the restricted space. The geometry of the mount has been optimized to obtain the required damping force and the magnetic field analysis has been carried out using ANSYS APDL. To verify the performance of the developed MR mount, excitation test was conducted and the dynamic characteristics were identified. Since damping property of the MR fluid is changed by the applied magnetic field strength and excitation frequency, responses to changing applied currents and frequencies were obtained. From the results, damping performance of the MR mount was evaluated.

  10. Defect localization in fibre-reinforced composites by computing external volume forces from surface sensor measurements

    NASA Astrophysics Data System (ADS)

    Binder, F.; Schöpfer, F.; Schuster, T.

    2015-02-01

    We suggest a prospective method for detecting and visualizing defects in fibre-reinforced composites by computing external volume forces from measurements acquired by sensors that are integrated on the surface of the structure. Anisotropic materials like carbon fibre-reinforced composites are widely used in light weight construction which can exhibit damages that are not optically detectable. The key idea of our method is the interpretation of defects in such structures as if they were induced by an external volume force. This idea is based on the observation that a propagating elastic wave interferes with a damaged area by reflecting the wave. In that sense a damage can be seen as an additional source. Thus identifying the external volume force which has caused this wave is supposed to reveal the location of the defect. This approach leads to the inverse problem of determining the inhomogeneity of a hyperbolic initial-boundary value problem. We tackle this ill-posed problem by minimizing a Tikhonov functional which takes the oberservation points of our surface measurements into account. In the article we address the solvability of the direct problem, state and analyze the PDE-based optimization problem that aims for computing the external force and develop a numerical realization of its solution using the conjugate gradient method. First numerical results for a simple model case with different sensor adjustments show that the defects in fact are detectable. In that sense this article might be seen as starting point of future research which should comprehend deeper numerical studies and analysis of the problem.

  11. Propagation of shear waves generated by a modulated finite amplitude radiation force in a viscoelastic medium.

    PubMed

    Giannoula, Alexia; Cobbold, Richard S C

    2009-03-01

    An effective way to generate localized narrowband low-frequency shear waves within tissue noninvasively, is by the modulated radiation force, resulting from the interference of two confocal quasi-CW ultrasound beams of slightly different frequencies. By using approximate viscoelastic Green's functions, investigations of the properties of the propagated shear-field component at the fundamental modulation frequency were previously reported by our group. However, high-amplitude source excitations may be needed to increase the signal-to-noise-ratio for shear-wave detection in tissue. This paper reports a study of the generation and propagation of dynamic radiation force components at harmonics of the modulation frequency for conditions that generally correspond to diagnostic safety standards. We describe the propagation characteristics of the resulting harmonic shear waves and discuss how they depend on the parameters of nonlinearity, focusing gain, and absorption. For conditions of high viscosity (believed to be characteristic of soft tissue) and higher modulation frequencies, the approximate shear wave Green's function is inappropriate. A more exact viscoelastic Green's function is derived in k-space, and using this, it is shown that the lowpass and dispersive effects, associated with a Voigt model of tissue, are more accurately represented. Finally, it is shown how the viscoelastic properties of the propagating medium can be estimated, based on several spectral components of the shearwave spectrum.

  12. Simultaneous Knee Extensor Muscle Action Induces an Increase in Voluntary Force Generation of Plantar Flexor Muscles.

    PubMed

    Suzuki, Takahito; Shioda, Kohei; Kinugasa, Ryuta; Fukashiro, Senshi

    2017-02-01

    Suzuki, T, Shioda, K, Kinugasa, R, and Fukashiro, S. Simultaneous knee extensor muscle action induces an increase in voluntary force generation of plantar flexor muscles. J Strength Cond Res 31(2): 365-371, 2017-Maximum activation of the plantar flexor muscles is required for various sporting activities that involve simultaneous plantar flexion and knee extension. During a multi-joint movement, activation of the plantar flexor muscles is affected by the activity of the knee extensor muscles. We hypothesized that coactivation of the plantar flexor muscles and knee extensor muscles would result in a higher plantar flexion torque. To test this hypothesis, 8 male volunteers performed maximum voluntary isometric action of the plantar flexor muscles with and without isometric action of the knee extensor muscles. Surface electromyographic data were collected from 8 muscles of the right lower limb. Voluntary activation of the triceps surae muscles, evaluated using the interpolated twitch technique, significantly increased by 6.4 percentage points with intentional knee extensor action (p = 0.0491). This finding is in line with a significant increase in the average rectified value of the electromyographic activity of the vastus lateralis, fibularis longus, and soleus muscles (p = 0.013, 0.010, and 0.045, respectively). The resultant plantar flexion torque also significantly increased by 11.5% of the predetermined maximum (p = 0.031). These results suggest that higher plantar flexor activation coupled with knee extensor activation facilitates force generation during a multi-joint task.

  13. Experimental and theoretical analysis of a hybrid solar thermoelectric generator with forced convection cooling

    NASA Astrophysics Data System (ADS)

    Sundarraj, Pradeepkumar; Taylor, Robert A.; Banerjee, Debosmita; Maity, Dipak; Sinha Roy, Susanta

    2017-01-01

    Hybrid solar thermoelectric generators (HSTEGs) have garnered significant research attention recently due to their potential ability to cogenerate heat and electricity. In this paper, theoretical and experimental investigations of the electrical and thermal performance of a HSTEG system are reported. In order to validate the theoretical model, a laboratory scale HSTEG system (based on forced convection cooling) is developed. The HSTEG consists of six thermoelectric generator modules, an electrical heater, and a stainless steel cooling block. Our experimental analysis shows that the HSTEG is capable of producing a maximum electrical power output of 4.7 W, an electrical efficiency of 1.2% and thermal efficiency of 61% for an average temperature difference of 92 °C across the TEG modules with a heater power input of 382 W. These experimental results of the HSTEG system are found to be in good agreement with the theoretical prediction. This experimental/theoretical analysis can also serve as a guide for evaluating the performance of the HSTEG system with forced convection cooling.

  14. Graphics and Flow Visualization of Computer Generated Flow Fields

    NASA Technical Reports Server (NTRS)

    Kathong, M.; Tiwari, S. N.

    1987-01-01

    Flow field variables are visualized using color representations described on surfaces that are interpolated from computational grids and transformed to digital images. Techniques for displaying two and three dimensional flow field solutions are addressed. The transformations and the use of an interactive graphics program for CFD flow field solutions, called PLOT3D, which runs on the color graphics IRIS workstation are described. An overview of the IRIS workstation is also described.

  15. Photodeposited diffractive optical elements of computer generated masks

    NASA Astrophysics Data System (ADS)

    Mirchin, N.; Peled, A.; Baal-Zedaka, I.; Margolin, R.; Zagon, M.; Lapsker, I.; Verdyan, A.; Azoulay, J.

    2005-07-01

    Diffractive optical elements (DOE) were synthesized on plastic substrates using the photodeposition (PD) technique by depositing amorphous selenium (a-Se) films with argon lasers and UV spectra light. The thin films were deposited typically onto polymethylmethacrylate (PMMA) substrates at room temperature. Scanned beam and contact mask modes were employed using computer-designed DOE lenses. Optical and electron micrographs characterize the surface details. The films were typically 200 nm thick.

  16. The Use of Force Sensors and a Computer System to Introduce the Concept of Inertia at a School

    ERIC Educational Resources Information Center

    Bogacz, Bogdan F.; Pedziwiatr, Antoni T.

    2014-01-01

    A classical experiment used to introduce the concept of body inertia, breaking of a thread below and above a hanging weight, is described mathematically and presented in a new way, using force sensors and a computer system.

  17. International Conference on Numerical Grid Generation in Computational Fluid Dynamics

    DTIC Science & Technology

    1989-04-30

    Sao Vicente 225 Washington, D.C. 20059 22453 Rio de Janerlo-- RJ BRA A.S. Dvinsky Haiqing Gong Creare Inc. University of Delaware Etna Road P.O. Box...Fulselage- Mounted Nacelle 77S /Pylon Configuration N. D. Halsey Zonal Grid Generation for Fighter Aircraft 785 E. H. Atta Geometric Modelling of

  18. Recognition of Computer-Generated Pictures on Monochrome Monitors.

    ERIC Educational Resources Information Center

    Baker, Patti R.; And Others

    1985-01-01

    This study investigated whether second, third, and fourth graders could recognize microcomputer-generated color graphics displayed on monochromatic monitors. It was found that subjects were unable to discern critical features of a color graphic displayed on a monochromatic screen unless it was designed to enhance figure/ground separation.…

  19. PC-compatible computer-generated stimuli for video-task testing

    NASA Technical Reports Server (NTRS)

    Washburn, David A.

    1990-01-01

    A program for automatic computer generation of novel nonverbal stimuli is described. The program, STIMGEN, allows menu-driven control over the type and appearance of stimuli. Data are presented in which two monkeys matched to sample with high accuracy using stimuli generated with STIMGEN. These data are interpreted to support the usefulness and value of automatic stimulus generation in a variety of applications.

  20. Computing Reaction Pathways of Rare Biomolecular Transitions using Atomistic Force-Fields.

    PubMed

    Faccioli, P; a Beccara, S

    2016-01-01

    The Dominant Reaction Pathway (DRP) method is an approximate variational scheme which can be used to compute reaction pathways in conformational transitions undergone by large biomolecules (up to ~10(3) amino-acids) using realistic all-atom force fields. We first review the status of development of this method. Next, we discuss its validation against the results of plain MD protein folding simulations performed by the DE-Shaw group using the Anton supercomputer. Finally, we review a few representative applications of the DRP approach to study reactions which are far too complex and rare to be investigated by plain MD, even on the Anton machine.

  1. Experimental Validation Data for Computational Fluid Dynamics of Forced Convection on a Vertical Flat Plate

    SciTech Connect

    Harris, Jeff R.; Lance, Blake W.; Smith, Barton L.

    2015-08-10

    We present computational fluid dynamics (CFD) validation dataset for turbulent forced convection on a vertical plate. The design of the apparatus is based on recent validation literature and provides a means to simultaneously measure boundary conditions (BCs) and system response quantities (SRQs). Important inflow quantities for Reynolds-Averaged Navier-Stokes (RANS). CFD are also measured. Data are acquired at two heating conditions and cover the range 40,000 < Rex < 300,000, 357 < Reδ2 < 813, and 0.02 < Gr/Re2 < 0.232.

  2. Discrete Breathers in a Forced-Damped Array of Coupled Pendula: Modeling, Computation, and Experiment

    NASA Astrophysics Data System (ADS)

    Cuevas, J.; English, L. Q.; Kevrekidis, P. G.; Anderson, M.

    2009-06-01

    In this work, we present a mechanical example of an experimental realization of a stability reversal between on-site and intersite centered localized modes. A corresponding realization of a vanishing of the Peierls-Nabarro barrier allows for an experimentally observed enhanced mobility of the localized modes near the reversal point. These features are supported by detailed numerical computations of the stability and mobility of the discrete breathers in this system of forced and damped coupled pendula. Furthermore, additional exotic features of the relevant model, such as dark breathers are briefly discussed.

  3. Experimental Validation Data for Computational Fluid Dynamics of Forced Convection on a Vertical Flat Plate

    DOE PAGES

    Harris, Jeff R.; Lance, Blake W.; Smith, Barton L.

    2015-08-10

    We present computational fluid dynamics (CFD) validation dataset for turbulent forced convection on a vertical plate. The design of the apparatus is based on recent validation literature and provides a means to simultaneously measure boundary conditions (BCs) and system response quantities (SRQs). Important inflow quantities for Reynolds-Averaged Navier-Stokes (RANS). CFD are also measured. Data are acquired at two heating conditions and cover the range 40,000 < Rex < 300,000, 357 < Reδ2 < 813, and 0.02 < Gr/Re2 < 0.232.

  4. Shaded-Color Picture Generation of Computer-Defined Arbitrary Shapes

    NASA Technical Reports Server (NTRS)

    Cozzolongo, J. V.; Hermstad, D. L.; Mccoy, D. S.; Clark, J.

    1986-01-01

    SHADE computer program generates realistic color-shaded pictures from computer-defined arbitrary shapes. Objects defined for computer representation displayed as smooth, color-shaded surfaces, including varying degrees of transparency. Results also used for presentation of computational results. By performing color mapping, SHADE colors model surface to display analysis results as pressures, stresses, and temperatures. NASA has used SHADE extensively in sign and analysis of high-performance aircraft. Industry should find applications for SHADE in computer-aided design and computer-aided manufacturing. SHADE written in VAX FORTRAN and MACRO Assembler for either interactive or batch execution.

  5. Computational fluid dynamics (CFD) simulations of aerosol in a U-shaped steam generator tube

    NASA Astrophysics Data System (ADS)

    Longmire, Pamela

    To quantify primary side aerosol retention, an Eulerian/Lagrangian approach was used to investigate aerosol transport in a compressible, turbulent, adiabatic, internal, wall-bounded flow. The ARTIST experimental project (Phase I) served as the physical model replicated for numerical simulation. Realizable k-epsilon and standard k-o turbulence models were selected from the computational fluid dynamics (CFD) code, FLUENT, to provide the Eulerian description of the gaseous phase. Flow field simulation results exhibited: (a) onset of weak secondary flow accelerated at bend entrance towards the inner wall; (b) flow separation zone development on the convex wall that persisted from the point of onset; (c) centrifugal force concentrated high velocity flow in the direction of the concave wall; (d) formation of vortices throughout the flow domain resulted from rotational (Dean-type) flow; (e) weakened secondary flow assisted the formation of twin vortices in the outflow cross section; and (f) perturbations induced by the bend influenced flow recovery several pipe diameters upstream of the bend. These observations were consistent with those of previous investigators. The Lagrangian discrete random walk model, with and without turbulent dispersion, simulated the dispersed phase behavior, incorrectly. Accurate deposition predictions in wall-bounded flow require modification of the Eddy Impaction Model (EIM). Thus, to circumvent shortcomings of the EIM, the Lagrangian time scale was changed to a wall function and the root-mean-square (RMS) fluctuating velocities were modified to account for the strong anisotropic nature of flow in the immediate vicinity of the wall (boundary layer). Subsequent computed trajectories suggest a precision that ranges from 0.1% to 0.7%, statistical sampling error. The aerodynamic mass median diameter (AMMD) at the inlet (5.5 mum) was consistent with the ARTIST experimental findings. The geometric standard deviation (GSD) varied depending on the

  6. Force Limited Vibration Testing: Computation C2 for Real Load and Probabilistic Source

    NASA Astrophysics Data System (ADS)

    Wijker, J. J.; de Boer, A.; Ellenbroek, M. H. M.

    2014-06-01

    To prevent over-testing of the test-item during random vibration testing Scharton proposed and discussed the force limited random vibration testing (FLVT) in a number of publications, in which the factor C2 is besides the random vibration specification, the total mass and the turnover frequency of the load(test item), a very important parameter. A number of computational methods to estimate C2 are described in the literature, i.e. the simple and the complex two degrees of freedom system, STDFS and CTDFS, respectively. Both the STDFS and the CTDFS describe in a very reduced (simplified) manner the load and the source (adjacent structure to test item transferring the excitation forces, i.e. spacecraft supporting an instrument).The motivation of this work is to establish a method for the computation of a realistic value of C2 to perform a representative random vibration test based on force limitation, when the adjacent structure (source) description is more or less unknown. Marchand formulated a conservative estimation of C2 based on maximum modal effective mass and damping of the test item (load) , when no description of the supporting structure (source) is available [13].Marchand discussed the formal description of getting C 2 , using the maximum PSD of the acceleration and maximum PSD of the force, both at the interface between load and source, in combination with the apparent mass and total mass of the the load. This method is very convenient to compute the factor C 2 . However, finite element models are needed to compute the spectra of the PSD of both the acceleration and force at the interface between load and source.Stevens presented the coupled systems modal approach (CSMA), where simplified asparagus patch models (parallel-oscillator representation) of load and source are connected, consisting of modal effective masses and the spring stiffnesses associated with the natural frequencies. When the random acceleration vibration specification is given the CMSA

  7. Computer-generated Model of Purine Nucleoside Phosphorylase (PNP)

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Purine Nucleoside Phosphorylase (PNP) is an important target enzyme for the design of anti-cancer and immunosuppressive drugs. Bacterial PNP, which is slightly different from the human enzyme, is used to synthesize chemotherapuautic agents. Knowledge of the three-dimensional structure of the bacterial PNP molecule is useful in efforts to engineer different types of PNP enzymes, that can be used to produce new chemotherapeutic agents. This picture shows a computer model of bacterial PNP, which looks a lot like a display of colorful ribbons. Principal Investigator was Charles Bugg.

  8. Robot Control Through Brain Computer Interface For Patterns Generation

    NASA Astrophysics Data System (ADS)

    Belluomo, P.; Bucolo, M.; Fortuna, L.; Frasca, M.

    2011-09-01

    A Brain Computer Interface (BCI) system processes and translates neuronal signals, that mainly comes from EEG instruments, into commands for controlling electronic devices. This system can allow people with motor disabilities to control external devices through the real-time modulation of their brain waves. In this context an EEG-based BCI system that allows creative luminous artistic representations is here presented. The system that has been designed and realized in our laboratory interfaces the BCI2000 platform performing real-time analysis of EEG signals with a couple of moving luminescent twin robots. Experiments are also presented.

  9. Effect of Elastase-induced Emphysema on the Force-generating Ability of the Diaphragm

    PubMed Central

    Supinski, Gerald S.; Kelsen, Steven G.

    1982-01-01

    The effect of emphysema on the ability of the diaphragm to generate force was examined in costal diaphragm muscle strips from 10 Golden hamsters killed 18 mo after intratracheal injection of pancreatic elastase in a dose producing hyperinflation (mean total lung capacity [TLC] = 163% of control) and generalized panacinar emphysema. 13 saline-injected normal animals served as controls. The time course of isometric tension and the effect of alterations in muscle fiber and sarcomere length on the isometric tension (T) generated in response to tetanizing electrical stimuli (length-tension [L-T] relationship) were examined. Elastase administration caused an increase in diaphragm muscle thickness and reduction in the length of costal diaphragm muscle fibers measured in situ. Emphysema significantly increased the maximum tetanic tension as a result of hypertrophy. Maximal tension corrected for increases in muscle cross-sectional area (T/cm2), however, was the same in emphysematous (E) and control (C) animals. Emphysema also shifted the muscle fiber L-T curve of the diaphragm but not of a control muscle, the soleus, toward shorter lengths. In contrast to the effects of E on the diaphragm muscle fiber L-T curve, the sarcomere L-T curve was the same in E and C. Since the length at which tension was maximal correlated closely with sarcomere number (r = 0.94; P < 0.001) reduction in the number of sarcomeres in series in muscles from emphysematous animals appeared to explain the shift in the muscle fiber L-T curve. We conclude that in elastase-induced emphysema adaptive changes both in diaphragm cross-sectional area and sarcomere number augment the force-generating ability of the diaphragm. We speculate that changes in sarcomere number compensate for alterations in muscle fiber length resulting from chronic hyperinflation of the thorax, while diaphragmatic muscle hypertrophy represents a response to changes in respiratory load and/or diaphragm configuration (La

  10. Integrated Nanophotonic Silicon Devices for Next Generation Computing Chips

    NASA Astrophysics Data System (ADS)

    Djordjevic, Stevan

    Development of the computing platform of the future depends largely on high bandwidth interconnects at intra-die level. Silicon photonics, as an innately CMOS compatible technology, is a promising candidate for delivering terabit per second bandwidths through the use of wavelength division multiplex (WDM) signaling. Silicon photonic interconnects offer unmatched bandwidth, density, energy efficiency, latency and reach, compared with the electrical interconnects. WDM silicon photonic links are viewed today as a promising solution for resolving the inter/intra-chip communication bottlenecks for high performance computing systems. Towards its maturity, silicon photonic technology has to resolve the issues of waveguide propagation loss, density of device integration, thermal stability of resonant devices, heterogeneous integration of various materials and many other problems. This dissertation describes the development of integrated photonic technology on silicon and silicon nitride platforms in the increased order of device complexity, from the fabrication process of low loss waveguides and efficient off-chip coupling devices, to the die-size reconfigurable lattice filters for optical signal processing. Particular emphasis of the dissertation is on the demonstration of CMOS-compatible, athermal silicon ring modulators that potentially hold the key to solving the thermal problem of silicon photonic devices. The development of high quality amorphous titanium dioxide films with negative thermo-optic coefficient enabled the fabrication of gigahertz-bandwidth silicon ring modulators that can be made insensitive to ambient temperature changes.

  11. A distributed computing tool for generating neural simulation databases.

    PubMed

    Calin-Jageman, Robert J; Katz, Paul S

    2006-12-01

    After developing a model neuron or network, it is important to systematically explore its behavior across a wide range of parameter values or experimental conditions, or both. However, compiling a very large set of simulation runs is challenging because it typically requires both access to and expertise with high-performance computing facilities. To lower the barrier for large-scale model analysis, we have developed NeuronPM, a client/server application that creates a "screen-saver" cluster for running simulations in NEURON (Hines & Carnevale, 1997). NeuronPM provides a user-friendly way to use existing computing resources to catalog the performance of a neural simulation across a wide range of parameter values and experimental conditions. The NeuronPM client is a Windows-based screen saver, and the NeuronPM server can be hosted on any Apache/PHP/MySQL server. During idle time, the client retrieves model files and work assignments from the server, invokes NEURON to run the simulation, and returns results to the server. Administrative panels make it simple to upload model files, define the parameters and conditions to vary, and then monitor client status and work progress. NeuronPM is open-source freeware and is available for download at http://neuronpm.homeip.net . It is a useful entry-level tool for systematically analyzing complex neuron and network simulations.

  12. Trajectory Tracking of a Planer Parallel Manipulator by Using Computed Force Control Method

    NASA Astrophysics Data System (ADS)

    Bayram, Atilla

    2017-03-01

    Despite small workspace, parallel manipulators have some advantages over their serial counterparts in terms of higher speed, acceleration, rigidity, accuracy, manufacturing cost and payload. Accordingly, this type of manipulators can be used in many applications such as in high-speed machine tools, tuning machine for feeding, sensitive cutting, assembly and packaging. This paper presents a special type of planar parallel manipulator with three degrees of freedom. It is constructed as a variable geometry truss generally known planar Stewart platform. The reachable and orientation workspaces are obtained for this manipulator. The inverse kinematic analysis is solved for the trajectory tracking according to the redundancy and joint limit avoidance. Then, the dynamics model of the manipulator is established by using Virtual Work method. The simulations are performed to follow the given planar trajectories by using the dynamic equations of the variable geometry truss manipulator and computed force control method. In computed force control method, the feedback gain matrices for PD control are tuned with fixed matrices by trail end error and variable ones by means of optimization with genetic algorithm.

  13. The evolutionary forces maintaining a wild polymorphism of Littorina saxatilis: model selection by computer simulations.

    PubMed

    Pérez-Figueroa, A; Cruz, F; Carvajal-Rodríguez, A; Rolán-Alvarez, E; Caballero, A

    2005-01-01

    Two rocky shore ecotypes of Littorina saxatilis from north-west Spain live at different shore levels and habitats and have developed an incomplete reproductive isolation through size assortative mating. The system is regarded as an example of sympatric ecological speciation. Several experiments have indicated that different evolutionary forces (migration, assortative mating and habitat-dependent selection) play a role in maintaining the polymorphism. However, an assessment of the combined contributions of these forces supporting the observed pattern in the wild is absent. A model selection procedure using computer simulations was used to investigate the contribution of the different evolutionary forces towards the maintenance of the polymorphism. The agreement between alternative models and experimental estimates for a number of parameters was quantified by a least square method. The results of the analysis show that the fittest evolutionary model for the observed polymorphism is characterized by a high gene flow, intermediate-high reproductive isolation between ecotypes, and a moderate to strong selection against the nonresident ecotypes on each shore level. In addition, a substantial number of additive loci contributing to the selected trait and a narrow hybrid definition with respect to the phenotype are scenarios that better explain the polymorphism, whereas the ecotype fitnesses at the mid-shore, the level of phenotypic plasticity, and environmental effects are not key parameters.

  14. Tensile mechanics of alanine-based helical polypeptide: force spectroscopy versus computer simulations.

    PubMed

    Afrin, Rehana; Takahashi, Ichiro; Shiga, Kazuki; Ikai, Atsushi

    2009-02-01

    In nature, an alpha-helix is commonly used to build thermodynamically stable and mechanically rigid protein conformations. In view of growing interest in the mechanical rigidity of proteins, we measured the tensile profile of an alanine-based alpha-helical polypeptide on an atomic-force microscope to investigate the basic mechanics of helix extension with minimal interference from side-chain interactions. The peptide was extended to its maximum contour length with much less force than in reported cases of poly-L-Glu or poly-L-Lys, indicating that chain stiffness strongly depended on the physicochemical properties of side chains, such as their bulkiness. The low tensile-force extension originated presumably in locally unfolded parts because of spontaneous structural fluctuations. In 50% trifluoroethanol, the well-known helix-promoting agent, the rigidity of the sample polypeptide was markedly increased. Computer simulations of the peptide-stretching process showed that a majority of constituent residues underwent a transition from an alpha-helical to an extended conformation by overcoming an energy barrier around psi approximately 0 degrees on the Ramachandran plot. The observed lability of an isolated helix signified the biological importance of the lateral bundling of helices to maintain a rigid protein structure.

  15. Evaluating Statistical Process Control (SPC) techniques and computing the uncertainty of force calibrations

    NASA Technical Reports Server (NTRS)

    Navard, Sharon E.

    1989-01-01

    In recent years there has been a push within NASA to use statistical techniques to improve the quality of production. Two areas where statistics are used are in establishing product and process quality control of flight hardware and in evaluating the uncertainty of calibration of instruments. The Flight Systems Quality Engineering branch is responsible for developing and assuring the quality of all flight hardware; the statistical process control methods employed are reviewed and evaluated. The Measurement Standards and Calibration Laboratory performs the calibration of all instruments used on-site at JSC as well as those used by all off-site contractors. These calibrations must be performed in such a way as to be traceable to national standards maintained by the National Institute of Standards and Technology, and they must meet a four-to-one ratio of the instrument specifications to calibrating standard uncertainty. In some instances this ratio is not met, and in these cases it is desirable to compute the exact uncertainty of the calibration and determine ways of reducing it. A particular example where this problem is encountered is with a machine which does automatic calibrations of force. The process of force calibration using the United Force Machine is described in detail. The sources of error are identified and quantified when possible. Suggestions for improvement are made.

  16. Computer Simulations of Radiation Generation from Relativistic Electron Beams

    DTIC Science & Technology

    1987-09-30

    the dynamic phase shift to given. The phase velocity of the generated wave and the remain small. In a lowbitron, the condition for AO to be zero ...condition for A$ to be bunching for the fast-wave and the slow-wave bran- zero to no longer Vph - c but io Vph > c. This is chea should take place 180* out...electromagnetic Electronics, 51, 541 (1981). wave cannot be zero . At the same time, In order 4. T. Ryan, J.N. Dawson, and A.T. Lin, Phys. to avoid the exact

  17. Computation of Tone Noises Generated in Viscous Flows

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.; Jorgenson, Philip C. E.

    2004-01-01

    Three benchmark problems from the current and previous CAA workshops involving tone noise generated in viscous flows are investigated using the CE/SE finite volume method. The CE/SE method is first briefly reviewed. Then, the benchmark problems, namely, flow past a single cylinder (CAA Workshop II problem), flow past twin cylinders (from the current CAA Workshop IV, Category 5, Problem 1) and flow past a deep cavity with overhang (CAA Workshop III problem) are investigated. Generally good results are obtained in comparison with the experimental data.

  18. Effect of wing-wake interaction on aerodynamic force generation on a 2D flapping wing

    NASA Astrophysics Data System (ADS)

    Lua, K. B.; Lim, T. T.; Yeo, K. S.

    2011-07-01

    This paper is motivated by the works of Dickinson et al. (Science 284:1954-1960, 1999) and Sun and Tang (J Exp Biol 205:55-70, 2002) which provided two different perspectives on the influence of wing-wake interaction (or wake capture) on lift generation during flapping motion. Dickinson et al. (Science 284:1954-1960, 1999) hypothesize that wake capture is responsible for the additional lift generated at the early phase of each stroke, while Sun and Tang (J Exp Biol 205:55-70, 2002) believe otherwise. Here, we take a more fundamental approach to study the effect of wing-wake interaction on the aerodynamic force generation by carrying out simultaneous force and flow field measurements on a two-dimensional wing subjected to two different types of motion. In one of the motions, the wing at a fixed angle of attack was made to follow a motion profile described by "acceleration-constant velocity-deceleration". Here, the wing was first linearly accelerated from rest to a predetermined maximum velocity and remains at that speed for set duration before linearly decelerating to a stop. The acceleration and deceleration phase each accounted for only 10% of the stroke, and the stroke covered a total distance of three chord lengths. In another motion, the wing was subjected to the same above-mentioned movement, but in a back and forth manner over twenty strokes. Results show that there are two possible outcomes of wing-wake interaction. The first outcome occurs when the wing encounters a pair of counter-rotating wake vortices on the reverse stroke, and the induced velocity of these vortices impinges directly on the windward side of the wing, resulting in a higher oncoming flow to the wing, which translates into a higher lift. Another outcome is when the wing encounters one vortex on the reverse stroke, and the close proximity of this vortex to the windward surface of the wing, coupled with the vortex suction effect (caused by low pressure region at the center of the vortex

  19. Directions in US Air Force space power energy generation and distribution technology

    NASA Astrophysics Data System (ADS)

    Reinhardt, Kitt; Keener, Dave; Schuller, Mike

    1997-01-01

    Recent trends in the development of high efficiency, light-weight, reliable and cost-effective space power technologies needed to support the development of near-term, next-generation government and commercial satellites will be discussed. Significant advancements in light-weight and reduced volume electrical power system (EPS) components are required to enable the design of future smallsats with power requirements of less than 1000 W to monster-sats having projected power demands ranging from 10-50 kW for civilian and military communications and space based radar needs. For these missions increased emphasis is placed on reducing total satellite mass to enable use of smaller, less costly, and easier to deploy launch vehicles. In support of these requirements a complement of power generation, power management and distribution, and energy storage technologies are under development at the Air Force Phillips Laboratory Space and Missiles Technology Directorate. Specific technologies presented in this paper include high efficiency multijunction solar cells, low-cost thin-film solar cells, ultra light-weight flexible solar arrays, solar electric thermal converters, and high-voltage (70-130 V) and high-efficiency power management and distribution (PMAD) electronics. The projected impact of EPS subsystem performance on existing, near-term, and next-generation 10-50 kW military satellites will be discussed, along with technical issues and status of EPS component development.

  20. Realistic computer network simulation for network intrusion detection dataset generation

    NASA Astrophysics Data System (ADS)

    Payer, Garrett

    2015-05-01

    The KDD-99 Cup dataset is dead. While it can continue to be used as a toy example, the age of this dataset makes it all but useless for intrusion detection research and data mining. Many of the attacks used within the dataset are obsolete and do not reflect the features important for intrusion detection in today's networks. Creating a new dataset encompassing a large cross section of the attacks found on the Internet today could be useful, but would eventually fall to the same problem as the KDD-99 Cup; its usefulness would diminish after a period of time. To continue research into intrusion detection, the generation of new datasets needs to be as dynamic and as quick as the attacker. Simply examining existing network traffic and using domain experts such as intrusion analysts to label traffic is inefficient, expensive, and not scalable. The only viable methodology is simulation using technologies including virtualization, attack-toolsets such as Metasploit and Armitage, and sophisticated emulation of threat and user behavior. Simulating actual user behavior and network intrusion events dynamically not only allows researchers to vary scenarios quickly, but enables online testing of intrusion detection mechanisms by interacting with data as it is generated. As new threat behaviors are identified, they can be added to the simulation to make quicker determinations as to the effectiveness of existing and ongoing network intrusion technology, methodology and models.

  1. A comprehensive approach to decipher biological computation to achieve next generation high-performance exascale computing.

    SciTech Connect

    James, Conrad D.; Schiess, Adrian B.; Howell, Jamie; Baca, Michael J.; Partridge, L. Donald; Finnegan, Patrick Sean; Wolfley, Steven L.; Dagel, Daryl James; Spahn, Olga Blum; Harper, Jason C.; Pohl, Kenneth Roy; Mickel, Patrick R.; Lohn, Andrew; Marinella, Matthew

    2013-10-01

    The human brain (volume=1200cm3) consumes 20W and is capable of performing > 10^16 operations/s. Current supercomputer technology has reached 1015 operations/s, yet it requires 1500m^3 and 3MW, giving the brain a 10^12 advantage in operations/s/W/cm^3. Thus, to reach exascale computation, two achievements are required: 1) improved understanding of computation in biological tissue, and 2) a paradigm shift towards neuromorphic computing where hardware circuits mimic properties of neural tissue. To address 1), we will interrogate corticostriatal networks in mouse brain tissue slices, specifically with regard to their frequency filtering capabilities as a function of input stimulus. To address 2), we will instantiate biological computing characteristics such as multi-bit storage into hardware devices with future computational and memory applications. Resistive memory devices will be modeled, designed, and fabricated in the MESA facility in consultation with our internal and external collaborators.

  2. Effect of dummy area in the generation of computer-generated hologram to improve the reconstruction diffraction efficiency

    NASA Astrophysics Data System (ADS)

    Misaki, Yuki; Koga, Yosuke; Yang, Shiyuan; Serikawa, Seiichi

    2014-11-01

    In most cases of the generation of computer-generated hologram, a zero-valued dummy area is usually added to the desired object in order to avoid the disturbance of high order reconstruction. The high order reconstruction not only disturbs the zero order reconstruction but also decreases the zero order reconstruction diffraction efficiency. In this study, we show a method to improve the zero order reconstruction diffraction efficiency by using a finite dummy area. According to the structure of a general computer-generated hologram, that is each calculated computer-generated hologram point has the same square size, then the high order reconstruction is the product of the zero order reconstruction and a sampling function with a scale factor. We use computer simulation to show the effect of dummy area in the improvement of the zero order reconstruction diffraction efficiency. According to our simulation results, we find that the zero order reconstruction diffraction efficiency increases as increasing the size of dummy area. In addition, we also find that the on-axis reconstruction has a higher reconstruction diffraction efficiency that the off-axis ones.

  3. On-surface generation and imaging of arynes by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Pavliček, Niko; Schuler, Bruno; Collazos, Sara; Moll, Nikolaj; Pérez, Dolores; Guitián, Enrique; Meyer, Gerhard; Peña, Diego; Gross, Leo

    2015-08-01

    Reactive intermediates are involved in many chemical transformations. However, their characterization is a great challenge because of their short lifetimes and high reactivities. Arynes, formally derived from arenes by the removal of two hydrogen atoms from adjacent carbon atoms, are prominent reactive intermediates that have been hypothesized for more than a century. Their rich chemistry enables a widespread use in synthetic chemistry, as they are advantageous building blocks for the construction of polycyclic compounds that contain aromatic rings. Here, we demonstrate the generation and characterization of individual polycyclic aryne molecules on an ultrathin insulating film by means of low-temperature scanning tunnelling microscopy and atomic force microscopy. Bond-order analysis suggests that a cumulene resonance structure is the dominant one, and the aryne reactivity is preserved at cryogenic temperatures. Our results provide important insights into the chemistry of these elusive intermediates and their potential application in the field of on-surface synthesis.

  4. The Structure of Misfolded Amyloidogenic Dimers: Computational Analysis of Force Spectroscopy Data

    PubMed Central

    Zhang, Yuliang; Lyubchenko, Yuri L.

    2014-01-01

    Progress in understanding the molecular mechanism of self-assembly of amyloidogenic proteins and peptides requires knowledge about their structure in misfolded states. Structural studies of amyloid aggregates formed during the early aggregation stage are very limited. Atomic force microscopy (AFM) spectroscopy is widely used to analyze misfolded proteins and peptides, but the structural characterization of transiently formed misfolded dimers is limited by the lack of computational approaches that allow direct comparison with AFM experiments. Steered molecular dynamics (SMD) simulation is capable of modeling force spectroscopy experiments, but the modeling requires pulling rates 107 times higher than those used in AFM experiments. In this study, we describe a computational all-atom Monte Carlo pulling (MCP) approach that enables us to model results at pulling rates comparable to those used in AFM pulling experiments. We tested the approach by modeling pulling experimental data for I91 from titin I-band (PDB ID: 1TIT) and ubiquitin (PDB ID: 1UBQ). We then used MCP to analyze AFM spectroscopy experiments that probed the interaction of the peptides [Q6C] Sup35 (6–13) and [H13C] Aβ (13–23). A comparison of experimental results with the computational data for the Sup35 dimer with out-of-register and in-register arrangements of β-sheets suggests that Sup35 monomers adopt an out-of-register arrangement in the dimer. A similar analysis performed for Aβ peptide demonstrates that the out-of-register antiparallel β-sheet arrangement of monomers also occurs in this peptide. Although the rupture of hydrogen bonds is the major contributor to dimer dissociation, the aromatic-aromatic interaction also contributes to the dimer rupture process. PMID:25517155

  5. The Role of Rac1 in the Growth Cone Dynamics and Force Generation of DRG Neurons

    PubMed Central

    Sayyad, Wasim A.; Fabris, Paolo; Torre, Vincent

    2016-01-01

    We used optical tweezers, video imaging, immunocytochemistry and a variety of inhibitors to analyze the role of Rac1 in the motility and force generation of lamellipodia and filopodia from developing growth cones of isolated Dorsal Root Ganglia neurons. When the activity of Rac1 was inhibited by the drug EHop-016, the period of lamellipodia protrusion/retraction cycles increased and the lamellipodia retrograde flow rate decreased; moreover, the axial force exerted by lamellipodia was reduced dramatically. Inhibition of Arp2/3 by a moderate amount of the drug CK-548 caused a transient retraction of lamellipodia followed by a complete recovery of their usual motility. This recovery was abolished by the concomitant inhibition of Rac1. The filopodia length increased upon inhibition of both Rac1 and Arp2/3, but the speed of filopodia protrusion increased when Rac1 was inhibited and decreased instead when Arp2/3 was inhibited. These results suggest that Rac1 acts as a switch that activates upon inhibition of Arp2/3. Rac1 also controls the filopodia dynamics necessary to explore the environment. PMID:26766136

  6. Recent progress on fully analytic mesh based computer-generated holography

    NASA Astrophysics Data System (ADS)

    Park, Jae-Hyeung

    2016-10-01

    Computer generated holography plays a main role in the contents generation for holographic displays and digital archiving of three-dimensional objects. The fully analytic mesh based computer generated holography finds exact complex optical field for each triangular mesh of the three-dimensional objects for given sampling interval in the hologram plane without any approximation, enhancing the quality of the reconstruction. The mesh based processing rather than conventional point based one makes it compatible with most computer graphics techniques and efficient especially for large objects. In this paper, we present a few recent progress on fully analytic mesh based computer generated holography techniques including the dark line artifact removal, continuous shading of each mesh surface, the implementation of the angular reflectance distribution of the object surface and application of the texture map.

  7. Computer program for generating kinematic earthquake rupture models using Irikura and Miyake's method.

    SciTech Connect

    Pitarka, Arben

    2016-02-10

    GEN_SRF_4 is a computer program for generation kinematic earthquake rupture models for use in ground motion modeling and simulations of earthquakes. The output is an ascii SRF formatted file containing kinematic rupture parameters.

  8. Formate Metabolism in Shewanella oneidensis Generates Proton Motive Force and Prevents Growth without an Electron Acceptor

    PubMed Central

    Kane, Aunica L.; Brutinel, Evan D.; Joo, Heena; Maysonet, Rebecca; VanDrisse, Chelsey M.; Kotloski, Nicholas J.

    2016-01-01

    ABSTRACT Shewanella oneidensis strain MR-1 is a facultative anaerobe that thrives in redox-stratified environments due to its ability to utilize a wide array of terminal electron acceptors. Conversely, the electron donors utilized by S. oneidensis are more limited and include products of primary fermentation such as lactate, pyruvate, formate, and hydrogen. Lactate, pyruvate, and hydrogen metabolisms in S. oneidensis have been described previously, but little is known about the role of formate oxidation in the ecophysiology of these bacteria. Formate is produced by S. oneidensis through pyruvate formate lyase during anaerobic growth on carbon sources that enter metabolism at or above the level of pyruvate, and the genome contains three gene clusters predicted to encode three complete formate dehydrogenase complexes. To determine the contribution of each complex to formate metabolism, strains lacking one, two, or all three annotated formate dehydrogenase gene clusters were generated and examined for growth rates and yields on a variety of carbon sources. Here, we report that formate oxidation contributes to both the growth rate and yield of S. oneidensis through the generation of proton motive force. Exogenous formate also greatly accelerated growth on N-acetylglucosamine, a carbon source normally utilized very slowly by S. oneidensis under anaerobic conditions. Surprisingly, deletion of all three formate dehydrogenase gene clusters enabled growth of S. oneidensis using pyruvate in the absence of a terminal electron acceptor, a mode of growth never before observed in these bacteria. Our results demonstrate that formate oxidation is a fundamental strategy under anaerobic conditions for energy conservation in S. oneidensis. IMPORTANCE Shewanella species have garnered interest in biotechnology applications for their ability to respire extracellular terminal electron acceptors, such as insoluble iron oxides and electrodes. While much effort has gone into studying the

  9. New liquid aerosol generation devices: systems that force pressurized liquids through nozzles.

    PubMed

    Geller, David E

    2002-12-01

    Over the past few decades, aerosol delivery devices have been relatively inefficient, wasteful, and difficult for patients to use. These drawbacks have been tolerated because the drugs available for inhalation have wide therapeutic margins and steep dose-response curves at low doses. Recently several forces have converged to drive innovation in the aerosol device industry: the ban on chlorofluorocarbon propellants in metered-dose inhalers, the need for more user-friendly devices, and the invention of expensive inhalable therapies for topical and systemic lung delivery. Numerous devices are in development to improve the efficiency, ease of use, and reproducibility of aerosol delivery to the lung, including systems that force liquid through a nozzle to form the aerosol cloud. The Respimat is a novel, compact, propellant-free, multi-dose inhaler that employs a spring to push drug solution through a nozzle, which generates a slow-moving aerosol. Deposition studies show that the Respimat can deliver 39-44% of a dose to the lungs. Clinical asthma and chronic obstructive pulmonary disease trials with bronchodilators show that the Respimat is 2-8 times as effective as a metered-dose inhaler. Respimat has been tested with bronchodilators and inhaled corticosteroids. The AERx device uses sophisticated electronics to deliver aerosol from a single-dose blister, using an integral, disposable nozzle array. The electronics control dose expression and titration, timing of aerosol generation with the breath, and provide feedback for proper inhalation technique. Lung deposition ranges from 50 to 80% of the loaded dose, with remarkable reproducibility. AERx has been tested with a variety of drugs, for both topical and systemic delivery, including rhDNase (dornase alfa), insulin, and opioids. These novel devices face competition from other technologies as well as financial and regulatory hurdles, but they both offer a marked improvement in the efficiency of pulmonary drug delivery.

  10. Listeners discern affective variation in computer-generated musical sounds.

    PubMed

    Bailes, Freya; Dean, Roger T

    2009-01-01

    We carried out two experiments to test the relationship between real-time perception of structural change in stylistically unusual musical sounds, and perception of its affect (arousal and valence). Computer music was used because of its unfamiliarity and our capacity to control it in ecologically appropriate ways. In experiment 1, thirteen participants unselected for musical training participated in tasks to detect segmentation and changes in affect. Changes in affect occurred upon detection of segmentation; but not all algorithmically distinct segments conveyed distinct affect. Short segments followed by long segments led to greater changes in arousal and valence at the point of segmentation than vice versa. In experiment 2, intra-segment sound transitions were introduced. Sixteen musicians performed the same affect task as in experiment 1, and a novel change in sound task. Participants were slow to respond to a continuous transition, but quick to respond to instantaneous transitions. Contrary to literature on the perception of affect in more familiar music, the musician participants in experiment 2 differed more in their ratings of arousal than of valence, in spite of a strong correlation of arousal with the composition of the stimuli. These findings are discussed in relation to the positive valence attributed to the more familiar sounds in both experiments.

  11. The comparative effect of individually-generated vs. collaboratively-generated computer-based concept mapping on science concept learning

    NASA Astrophysics Data System (ADS)

    Kwon, So Young

    Using a quasi-experimental design, the researcher investigated the comparative effects of individually-generated and collaboratively-generated computer-based concept mapping on middle school science concept learning. Qualitative data were analyzed to explain quantitative findings. One hundred sixty-one students (74 boys and 87 girls) in eight, seventh grade science classes at a middle school in Southeast Texas completed the entire study. Using prior science performance scores to assure equivalence of student achievement across groups, the researcher assigned the teacher's classes to one of the three experimental groups. The independent variable, group, consisted of three levels: 40 students in a control group, 59 students trained to individually generate concept maps on computers, and 62 students trained to collaboratively generate concept maps on computers. The dependent variables were science concept learning as demonstrated by comprehension test scores, and quality of concept maps created by students in experimental groups as demonstrated by rubric scores. Students in the experimental groups received concept mapping training and used their newly acquired concept mapping skills to individually or collaboratively construct computer-based concept maps during study time. The control group, the individually-generated concept mapping group, and the collaboratively-generated concept mapping group had equivalent learning experiences for 50 minutes during five days, excepting that students in a control group worked independently without concept mapping activities, students in the individual group worked individually to construct concept maps, and students in the collaborative group worked collaboratively to construct concept maps during their study time. Both collaboratively and individually generated computer-based concept mapping had a positive effect on seventh grade middle school science concept learning but neither strategy was more effective than the other. However

  12. Hydrogenase activity and proton-motive force generation by Escherichia coli during glycerol fermentation.

    PubMed

    Trchounian, Karen; Blbulyan, Syuzanna; Trchounian, Armen

    2013-06-01

    Proton motive force (Δp) generation by Escherichia coli wild type cells during glycerol fermentation was first studied. Its two components, electrical-the membrane potential (∆φ) and chemical-the pH transmembrane gradient (ΔpH), were established and the effects of external pH (pHex) were determined. Intracellular pH was 7.0 and 6.0 and lower than pHex at pH 7.5 and 6.5, respectively; and it was higher than pHex at pH 5.5. At high pHex, the increase of ∆φ (-130 mV) was only partially compensated by a reversed ΔpH, resulting in a low Δp. At low pHex ∆φ and consequently Δp were decreased. The generation of Δp during glycerol fermentation was compared with glucose fermentation, and the difference in Δp might be due to distinguished mechanisms for H(+) transport through the membrane, especially to hydrogenase (Hyd) enzymes besides the F0F1-ATPase. H(+) efflux was determined to depend on pHex; overall and N,N'-dicyclohexylcarbodiimide (DCCD)-inhibitory H(+) efflux was maximal at pH 6.5. Moreover, ΔpH was changed at pH 6.5 and Δp was different at pH 6.5 and 5.5 with the hypF mutant lacking all Hyd enzymes. DCCD-inhibited ATPase activity of membrane vesicles was maximal at pH 7.5 and decreased with the hypF mutant. Thus, Δp generation by E. coli during glycerol fermentation is different than that during glucose fermentation. Δp is dependent on pHex, and a role of Hyd enzymes in its generation is suggested.

  13. Phase Aberration and Attenuation Effects on Acoustic Radiation Force-Based Shear Wave Generation.

    PubMed

    Carrascal, Carolina Amador; Aristizabal, Sara; Greenleaf, James F; Urban, Matthew W

    2016-02-01

    Elasticity is measured by shear wave elasticity imaging (SWEI) methods using acoustic radiation force to create the shear waves. Phase aberration and tissue attenuation can hamper the generation of shear waves for in vivo applications. In this study, the effects of phase aberration and attenuation in ultrasound focusing for creating shear waves were explored. This includes the effects of phase shifts and amplitude attenuation on shear wave characteristics such as shear wave amplitude, shear wave speed, shear wave center frequency, and bandwidth. Two samples of swine belly tissue were used to create phase aberration and attenuation experimentally. To explore the phase aberration and attenuation effects individually, tissue experiments were complemented with ultrasound beam simulations using fast object-oriented C++ ultrasound simulator (FOCUS) and shear wave simulations using finite-element-model (FEM) analysis. The ultrasound frequency used to generate shear waves was varied from 3.0 to 4.5 MHz. Results: The measured acoustic pressure and resulting shear wave amplitude decreased approximately 40%-90% with the introduction of the tissue samples. Acoustic intensity and shear wave displacement were correlated for both tissue samples, and the resulting Pearson's correlation coefficients were 0.99 and 0.97. Analysis of shear wave generation with tissue samples (phase aberration and attenuation case), measured phase screen, (only phase aberration case), and FOCUS/FEM model (only attenuation case) showed that tissue attenuation affected the shear wave generation more than tissue aberration. Decreasing the ultrasound frequency helped maintain a focused beam for creation of shear waves in the presence of both phase aberration and attenuation.

  14. Phase Aberration and Attenuation Effects on Acoustic Radiation Force-Based Shear Wave Generation

    PubMed Central

    Amador, Carolina; Aristizabal, Sara; Greenleaf, James F.; Urban, Matthew W.

    2016-01-01

    Tissue elasticity is measured by shear wave elasticity imaging methods using acoustic radiation force to create the shear waves. Phase aberration and tissue attenuation can hamper the generation of shear waves for in vivo applications. In this study effects of phase aberration and attenuation in ultrasound focusing for creating shear waves were explored. This includes the effects of phase shifts and amplitude attenuation on shear wave characteristics such as shear wave amplitude, shear wave speed, shear wave center frequency and bandwidth. Two samples of swine belly tissue were used to create phase aberration and attenuation experimentally. To explore the phase aberration and attenuation effects individually, tissue experiments were complemented with ultrasound beam simulations using FOCUS and shear wave simulations using Finite Element Model (FEM) analysis. The ultrasound frequency used to generate shear waves was varied from 3.0 to 4.5 MHz. Results The measured acoustic pressure and resulting shear wave amplitude decreased approximately 40% to 90% with the introduction of the tissue samples. Acoustic intensity and shear wave displacement were correlated for both tissue samples, the resulting Pearson’s correlation coefficients were 0.99 and 0.97. Analysis of shear wave generation with tissue samples (Phase Aberration and Attenuation case), measured phase screen (Only Phase Aberration case) and FOCUS/FEM model (Only Attenuation case) showed that tissue attenuation affected the shear wave generation more than tissue aberration. Decreasing the ultrasound frequency helped maintain a focused beam for creation of shear waves in the presence of both phase aberration and attenuation. PMID:26742131

  15. Real-time C Code Generation in Ptolemy II for the Giotto Model of Computation

    DTIC Science & Technology

    2009-05-20

    Real-time C Code Generation in Ptolemy II for the Giotto Model of Computation Shanna-Shaye Forbes Electrical Engineering and Computer Sciences...MAY 2009 2. REPORT TYPE 3. DATES COVERED 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE Real-time C Code Generation in Ptolemy II for the Giotto...periodic and there are multiple modes of operation. Ptolemy II is a university based open source modeling and simulation framework that supports model

  16. An in silico central pattern generator: silicon oscillator, coupling, entrainment, and physical computation.

    PubMed

    Lewis, M Anthony; Etienne-Cummings, Ralph; Hartmann, Mitra J; Xu, Zi Rong; Cohen, Avis H

    2003-02-01

    In biological systems, the task of computing a gait trajectory is shared between the biomechanical and nervous systems. We take the perspective that both of these seemingly different computations are examples of physical computation. Here we describe the progress that has been made toward building a minimal biped system that illustrates this idea. We embed a significant portion of the computation in physical devices, such as capacitors and transistors, to underline the potential power of emphasizing the understanding of physical computation. We describe results in the exploitation of physical computation by (1) using a passive knee to assist in dynamics computation, (2) using an oscillator to drive a monoped mechanism based on the passive knee, (3) using sensory entrainment to coordinate the mechanics with the neural oscillator, (4) coupling two such systems together mechanically at the hip and computationally via the resulting two oscillators to create a biped mechanism, and (5) demonstrating the resulting gait generation in the biped mechanism.

  17. Computer quantification of airway collapse on forced expiration to predict the presence of emphysema

    PubMed Central

    2013-01-01

    Background Spirometric parameters are the mainstay for diagnosis of COPD, but cannot distinguish airway obstruction from emphysema. We aimed to develop a computer model that quantifies airway collapse on forced expiratory flow–volume loops. We then explored and validated the relationship of airway collapse with computed tomography (CT) diagnosed emphysema in two large independent cohorts. Methods A computer model was developed in 513 Caucasian individuals with ≥15 pack-years who performed spirometry, diffusion capacity and CT scans to quantify emphysema presence. The model computed the two best fitting regression lines on the expiratory phase of the flow-volume loop and calculated the angle between them. The collapse was expressed as an Angle of collapse (AC) which was then correlated with the presence of emphysema. Findings were validated in an independent group of 340 individuals. Results AC in emphysema subjects (N = 251) was significantly lower (131° ± 14°) compared to AC in subjects without emphysema (N = 223), (152° ± 10°) (p < 0.0001). Multivariate regression analysis revealed AC as best indicator of visually scored emphysema (R2 = 0.505, p < 0.0001) with little significant contribution of KCO, %predicted and FEV1, %predicted to the total model (total R2 = 0.626, p < 0.0001). Similar associations were obtained when using CT-automated density scores for emphysema assessment. Receiver operating characteristic (ROC) curves pointed to 131° as the best cut-off for emphysema (95.5% positive predictive value, 97% specificity and 51% sensitivity). Validation in a second group confirmed the significant difference in mean AC between emphysema and non-emphysema subjects. When applying the 131° cut-off, a positive predictive value of 95.6%, a specificity of 96% and a sensitivity of 59% were demonstrated. Conclusions Airway collapse on forced expiration quantified by a computer model correlates with emphysema. An AC below

  18. Navier-Stokes Computations of Longitudinal Forces and Moments for a Blended Wing Body

    NASA Technical Reports Server (NTRS)

    Pao, S. Paul; Biedron, Robert T.; Park, Michael A.; Fremaux, C. Michael; Vicroy, Dan D.

    2005-01-01

    The object of this paper is to investigate the feasibility of applying CFD methods to aerodynamic analyses for aircraft stability and control. The integrated aerodynamic parameters used in stability and control, however, are not necessarily those extensively validated in the state of the art CFD technology. Hence, an exploratory study of such applications and the comparison of the solutions to available experimental data will help to assess the validity of the current computation methods. In addition, this study will also examine issues related to wind tunnel measurements such as measurement uncertainty and support interference effects. Several sets of experimental data from the NASA Langley 14x22-Foot Subsonic Tunnel and the National Transonic Facility are presented. Two Navier-Stokes flow solvers, one using structured meshes and the other unstructured meshes, were used to compute longitudinal static stability derivatives for an advanced Blended Wing Body configuration over a wide range of angles of attack. The computations were performed for two different Reynolds numbers and the resulting forces and moments are compared with the above mentioned wind tunnel data.

  19. Navier-Stokes Computations of Longitudinal Forces and Moments for a Blended Wing Body

    NASA Technical Reports Server (NTRS)

    Pao, S. Paul; Biedron, Robert T.; Park, Michael A.; Fremaux, C. Michael; Vicroy, Dan D.

    2004-01-01

    The object of this paper is to investigate the feasibility of applying CFD methods to aerodynamic analyses for aircraft stability and control. The integrated aerodynamic parameters used in stability and control, however, are not necessarily those extensively validated in the state of the art CFD technology. Hence, an exploratory study of such applications and the comparison of the solutions to available experimental data will help to assess the validity of the current computation methods. In addition, this study will also examine issues related to wind tunnel measurements such as measurement uncertainty and support interference effects. Several sets of experimental data from the NASA Langley 14x22-Foot Subsonic Tunnel and the National Transonic Facility are presented. Two Navier-Stokes flow solvers, one using structured meshes and the other unstructured meshes, were used to compute longitudinal static stability derivatives for an advanced Blended Wing Body configuration over a wide range of angles of attack. The computations were performed for two different Reynolds numbers and the resulting forces and moments are compared with the above mentioned wind tunnel data.

  20. SETI reloaded: Next generation radio telescopes, transients and cognitive computing

    NASA Astrophysics Data System (ADS)

    Garrett, Michael A.

    2015-08-01

    The Search for Extra-terrestrial Intelligence (SETI) using radio telescopes is an area of research that is now more than 50 years old. Thus far, both targeted and wide-area surveys have yet to detect artificial signals from intelligent civilisations. In this paper, I argue that the incidence of co-existing intelligent and communicating civilisations is probably small in the Milky Way. While this makes successful SETI searches a very difficult pursuit indeed, the huge impact of even a single detection requires us to continue the search. A substantial increase in the overall performance of radio telescopes (and in particular future wide-field instruments such as the Square Kilometre Array - SKA), provide renewed optimism in the field. Evidence for this is already to be seen in the success of SETI researchers in acquiring observations on some of the world's most sensitive radio telescope facilities via open, peer-reviewed processes. The increasing interest in the dynamic radio sky, and our ability to detect new and rapid transient phenomena such as Fast Radio Bursts (FRB) is also greatly encouraging. While the nature of FRBs is not yet fully understood, I argue they are unlikely to be the signature of distant extra-terrestrial civilisations. As astronomers face a data avalanche on all sides, advances made in related areas such as advanced Big Data analytics, and cognitive computing are crucial to enable serendipitous discoveries to be made. In any case, as the era of the SKA fast approaches, the prospects of a SETI detection have never been better.

  1. Multiple Exciton Generation in Semiconductor Nanostructures: DFT-based Computation

    NASA Astrophysics Data System (ADS)

    Mihaylov, Deyan; Kryjevski, Andrei; Kilin, Dmitri; Kilina, Svetlana; Vogel, Dayton

    Multiple exciton generation (MEG) in nm-sized H-passivated Si nanowires (NWs), and quasi 2D nanofilms depends strongly on the degree of the core structural disorder as shown by the perturbation theory calculations based on the DFT simulations. In perturbation theory, we work to the 2nd order in the electron-photon coupling and in the (approximate) RPA-screened Coulomb interaction. We also include the effect of excitons for which we solve Bethe-Salpeter Equation. To describe MEG we calculate exciton-to-biexciton as well as biexciton-to-exciton rates and quantum efficiency (QE). We consider 3D arrays of Si29H36 quantum dots, NWs, and quasi 2D silicon nanofilms, all with both crystalline and amorphous core structures. Efficient MEG with QE of 1.3 up to 1.8 at the photon energy of about 3Egap is predicted in these nanoparticles except for the crystalline NW and film where QE ~=1. MEG in the amorphous nanoparticles is enhanced by the electron localization due to structural disorder. The exciton effects significantly red-shift QE vs. photon energy curves. Nm-sized a-Si NWs and films are predicted to have effective MEG within the solar spectrum range. Also, we find efficient MEG in the chiral single-wall Carbon nanotubes and in a perovskite nanostructure.

  2. Generation and physical characteristics of the LANDSAT-1, -2 and -3 MSS computer compatible tapes

    NASA Technical Reports Server (NTRS)

    Thomas, V. L.

    1977-01-01

    The generation and format of the LANDSAT 1, 2, and 3 system corrected multispectral scanner computer compatible tapes are discussed. Included in the discussion are the spacecraft sensors, scene characteristics, the transmission of data, and the conversion of the data to computer compatible tapes. Also included in the discussion are geometric and radiometric corrections, tape formats, and the physical characteristics of the tape.

  3. Fifth Generation Computers: Their Implications for Further Education. An Occasional Paper.

    ERIC Educational Resources Information Center

    Ennals, Richard; Cotterell, Arthur

    Research to develop a fifth generation of computers is underway in several countries. These computers, which will be distinguished by the ability to provide knowledge information processing and respond to natural language commands, will have a profound impact on the labor market and hence on further education. Rather than being a separate…

  4. Statistical analysis of mesoscale rainfall: Dependence of a random cascade generator on large-scale forcing

    NASA Technical Reports Server (NTRS)

    Over, Thomas, M.; Gupta, Vijay K.

    1994-01-01

    Under the theory of independent and identically distributed random cascades, the probability distribution of the cascade generator determines the spatial and the ensemble properties of spatial rainfall. Three sets of radar-derived rainfall data in space and time are analyzed to estimate the probability distribution of the generator. A detailed comparison between instantaneous scans of spatial rainfall and simulated cascades using the scaling properties of the marginal moments is carried out. This comparison highlights important similarities and differences between the data and the random cascade theory. Differences are quantified and measured for the three datasets. Evidence is presented to show that the scaling properties of the rainfall can be captured to the first order by a random cascade with a single parameter. The dependence of this parameter on forcing by the large-scale meteorological conditions, as measured by the large-scale spatial average rain rate, is investigated for these three datasets. The data show that this dependence can be captured by a one-to-one function. Since the large-scale average rain rate can be diagnosed from the large-scale dynamics, this relationship demonstrates an important linkage between the large-scale atmospheric dynamics and the statistical cascade theory of mesoscale rainfall. Potential application of this research to parameterization of runoff from the land surface and regional flood frequency analysis is briefly discussed, and open problems for further research are presented.

  5. Grid generation and compressible flow computations about a high-speed civil transport configuration

    NASA Technical Reports Server (NTRS)

    Abolhassani, J. S.; Stewart, J. E.; Farr, N.; Smith, R. E.; Kerr, P. W.; Everton, E. L.

    1991-01-01

    Techniques and software are discussed for generating grids about a high-speed civil transport configuration. The configuration is defined by a computer-aided design system in wing, fuselage, tail and engine-nacelle components. Grid topology and the surfaces outlining the blocks of the topology are computed with interactive software. The volume grid is computed using software based on transfinite interpolation and Lagrangian blending functions. Several volume grids for inviscid and viscous flow have been generated using this system of codes. Demonstration flowfields around this vehicle are described.

  6. Osmotic forces and gap junctions in spreading depression: a computational model

    NASA Technical Reports Server (NTRS)

    Shapiro, B. E.

    2001-01-01

    In a computational model of spreading depression (SD), ionic movement through a neuronal syncytium of cells connected by gap junctions is described electrodiffusively. Simulations predict that SD will not occur unless cells are allowed to expand in response to osmotic pressure gradients and K+ is allowed to move through gap junctions. SD waves of [K+]out approximately 25 to approximately 60 mM moving at approximately 2 to approximately 18 mm/min are predicted over the range of parametric values reported in gray matter, with extracellular space decreasing up to approximately 50%. Predicted waveform shape is qualitatively similar to laboratory reports. The delayed-rectifier, NMDA, BK, and Na+ currents are predicted to facilitate SD, while SK and A-type K+ currents and glial activity impede SD. These predictions are consonant with recent findings that gap junction poisons block SD and support the theories that cytosolic diffusion via gap junctions and osmotic forces are important mechanisms underlying SD.

  7. Scalar self-force on eccentric geodesics in Schwarzschild spacetime: A time-domain computation

    SciTech Connect

    Haas, Roland

    2007-06-15

    We calculate the self-force acting on a particle with scalar charge moving on a generic geodesic around a Schwarzschild black hole. This calculation requires an accurate computation of the retarded scalar field produced by the moving charge; this is done numerically with the help of a fourth-order convergent finite-difference scheme formulated in the time domain. The calculation also requires a regularization procedure, because the retarded field is singular on the particle's world line; this is handled mode-by-mode via the mode-sum regularization scheme first introduced by Barack and Ori. This paper presents the numerical method, various numerical tests, and a sample of results for mildly eccentric orbits as well as ''zoom-whirl'' orbits.

  8. A Computational-Experimental Development of Vortex Generator Use for a Transitioning S-Diffuser

    NASA Technical Reports Server (NTRS)

    Wendt, Bruce J.; Dudek, Julianne C.

    1996-01-01

    The development of an effective design strategy for surface-mounted vortex generator arrays in a subsonic diffuser is described in this report. This strategy uses the strengths of both computational and experimental analyses to determine beneficial vortex generator locations and sizes. A parabolized Navier-Stokes solver, RNS3D, was used to establish proper placement of the vortex generators for reduction in circumferential total pressure distortion. Experimental measurements were used to determine proper vortex generator sizing to minimize total pressure recovery losses associated with vortex generator device drag. The best result achieved a 59% reduction in the distortion index DC60, with a 0.3% reduction in total pressure recovery.

  9. A Computer-Controlled Classroom Model of an Atomic Force Microscope

    NASA Astrophysics Data System (ADS)

    Engstrom, Tyler A.; Johnson, Matthew M.; Eklund, Peter C.; Russin, Timothy J.

    2015-12-01

    The concept of "seeing by feeling" as a way to circumvent limitations on sight is universal on the macroscopic scale—reading Braille, feeling one's way around a dark room, etc. The development of the atomic force microscope (AFM) in 1986 extended this concept to imaging in the nanoscale. While there are classroom demonstrations that use a tactile probe to map the topography or some other property of a sample, the rastering of the probe over the sample is manually controlled, which is both tedious and potentially inaccurate. Other groups have used simulation or tele-operation of an AFM probe. In this paper we describe a teaching AFM with complete computer control to map out topographic and magnetic properties of a "crystal" consisting of two-dimensional arrays of spherical marble "atoms." Our AFM is well suited for lessons on the "Big Ideas of Nanoscale" such as tools and instrumentation, as well as a pre-teaching activity for groups with remote access AFM or mobile AFM. The principle of operation of our classroom AFM is the same as that of a real AFM, excepting the nature of the force between sample and probe.

  10. Application of a single-board computer as a low-cost pulse generator

    NASA Astrophysics Data System (ADS)

    Fedrizzi, Marcus; Soria, Julio

    2015-09-01

    A BeagleBone Black (BBB) single-board open-source computer was implemented as a low-cost fully programmable pulse generator. The pulse generator makes use of the BBB Programmable Real-Time Unit (PRU) subsystem to achieve a deterministic temporal resolution of 5 ns, an RMS jitter of 290 ps and a timebase stability on the order of 10 ppm. A Python-based software framework has also been developed to simplify the usage of the pulse generator.

  11. Computationally generated velocity taper for efficiency enhancement in a coupled-cavity traveling-wave tube

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.

    1989-01-01

    A computational routine has been created to generate velocity tapers for efficiency enhancement in coupled-cavity TWTs. Programmed into the NASA multidimensional large-signal coupled-cavity TWT computer code, the routine generates the gradually decreasing cavity periods required to maintain a prescribed relationship between the circuit phase velocity and the electron-bunch velocity. Computational results for several computer-generated tapers are compared to those for an existing coupled-cavity TWT with a three-step taper. Guidelines are developed for prescribing the bunch-phase profile to produce a taper for efficiency. The resulting taper provides a calculated RF efficiency 45 percent higher than the step taper at center frequency and at least 37 percent higher over the bandwidth.

  12. HOMAR: A computer code for generating homotopic grids using algebraic relations: User's manual

    NASA Technical Reports Server (NTRS)

    Moitra, Anutosh

    1989-01-01

    A computer code for fast automatic generation of quasi-three-dimensional grid systems for aerospace configurations is described. The code employs a homotopic method to algebraically generate two-dimensional grids in cross-sectional planes, which are stacked to produce a three-dimensional grid system. Implementation of the algebraic equivalents of the homotopic relations for generating body geometries and grids are explained. Procedures for controlling grid orthogonality and distortion are described. Test cases with description and specification of inputs are presented in detail. The FORTRAN computer program and notes on implementation and use are included.

  13. HOMAR: A computer code for generating homotopic grids using algebraic relations: User's manual

    NASA Astrophysics Data System (ADS)

    Moitra, Anutosh

    1989-07-01

    A computer code for fast automatic generation of quasi-three-dimensional grid systems for aerospace configurations is described. The code employs a homotopic method to algebraically generate two-dimensional grids in cross-sectional planes, which are stacked to produce a three-dimensional grid system. Implementation of the algebraic equivalents of the homotopic relations for generating body geometries and grids are explained. Procedures for controlling grid orthogonality and distortion are described. Test cases with description and specification of inputs are presented in detail. The FORTRAN computer program and notes on implementation and use are included.

  14. The Children of the Computer Generation: An Analysis of the Family Computer Fad in Japan.

    ERIC Educational Resources Information Center

    Ishigaki, Emiko Hannah

    Results of a survey of grade school and junior high school students suggest that Japan is now caught up in a TV game fad called Family Computer (Fami-Com). Fami-Com is a household electric machine for video games that allows players to use more than 100 currently marketed software products. Since its introduction in 1983, the popularity of the…

  15. Computer image generation: Reconfigurability as a strategy in high fidelity space applications

    NASA Technical Reports Server (NTRS)

    Bartholomew, Michael J.

    1989-01-01

    The demand for realistic, high fidelity, computer image generation systems to support space simulation is well established. However, as the number and diversity of space applications increase, the complexity and cost of computer image generation systems also increase. One strategy used to harmonize cost with varied requirements is establishment of a reconfigurable image generation system that can be adapted rapidly and easily to meet new and changing requirements. The reconfigurability strategy through the life cycle of system conception, specification, design, implementation, operation, and support for high fidelity computer image generation systems are discussed. The discussion is limited to those issues directly associated with reconfigurability and adaptability of a specialized scene generation system in a multi-faceted space applications environment. Examples and insights gained through the recent development and installation of the Improved Multi-function Scene Generation System at Johnson Space Center, Systems Engineering Simulator are reviewed and compared with current simulator industry practices. The results are clear; the strategy of reconfigurability applied to space simulation requirements provides a viable path to supporting diverse applications with an adaptable computer image generation system.

  16. Aging related changes in determinants of muscle force generating capacity: a comparison of muscle aging in men and male rodents.

    PubMed

    Ballak, Sam B; Degens, Hans; de Haan, Arnold; Jaspers, Richard T

    2014-03-01

    Human aging is associated with a progressive decline in skeletal muscle mass and force generating capacity, however the exact mechanisms underlying these changes are not fully understood. Rodents models have often been used to enhance our understanding of mechanisms of age-related changes in human skeletal muscle. However, to what extent age-related alterations in determinants of muscle force generating capacity observed in rodents resemble those in humans has not been considered thoroughly. This review compares the effect of aging on muscle force generating determinants (muscle mass, fiber size, fiber number, fiber type distribution and muscle specific tension), in men and male rodents at similar relative age. It appears that muscle aging in male F344*BN rat resembles that in men most; 32-35-month-old rats exhibit similar signs of muscle weakness to those of 70-80-yr-old men, and the decline in 36-38-month-old rats is similar to that in men aged over 80 yrs. For male C57BL/6 mice, age-related decline in muscle force generating capacity seems to occur only at higher relative age than in men. We conclude that the effects on determinants of muscle force differ between species as well as within species, but qualitatively show the same pattern as that observed in men.

  17. Relativistic force field: parametric computations of proton-proton coupling constants in (1)H NMR spectra.

    PubMed

    Kutateladze, Andrei G; Mukhina, Olga A

    2014-09-05

    Spin-spin coupling constants in (1)H NMR carry a wealth of structural information and offer a powerful tool for deciphering molecular structures. However, accurate ab initio or DFT calculations of spin-spin coupling constants have been very challenging and expensive. Scaling of (easy) Fermi contacts, fc, especially in the context of recent findings by Bally and Rablen (Bally, T.; Rablen, P. R. J. Org. Chem. 2011, 76, 4818), offers a framework for achieving practical evaluation of spin-spin coupling constants. We report a faster and more precise parametrization approach utilizing a new basis set for hydrogen atoms optimized in conjunction with (i) inexpensive B3LYP/6-31G(d) molecular geometries, (ii) inexpensive 4-31G basis set for carbon atoms in fc calculations, and (iii) individual parametrization for different atom types/hybridizations, not unlike a force field in molecular mechanics, but designed for the fc's. With the training set of 608 experimental constants we achieved rmsd <0.19 Hz. The methodology performs very well as we illustrate with a set of complex organic natural products, including strychnine (rmsd 0.19 Hz), morphine (rmsd 0.24 Hz), etc. This precision is achieved with much shorter computational times: accurate spin-spin coupling constants for the two conformers of strychnine were computed in parallel on two 16-core nodes of a Linux cluster within 10 min.

  18. The generation of tire cornering forces in aircraft with a free-swiveling nose gear

    NASA Technical Reports Server (NTRS)

    Daugherty, R. H.; Stubbs, S. M.

    1985-01-01

    An experimental investigation was conducted to study the effect of various parameters on the cornering forces produced by a rolling aircraft tire installed on a tilted, free-swiveling nose gear. The parameters studied included tilt angle, trial, tire inflation pressure, rake angle, vertical load, and whether or not a twin tire configuration corotates. These parameters were evaluated by measuring the cornering force produced by an aircraft tire installed on the nose gear of a modified vehicle as it was towed slowly. Cornering force coefficient increased with increasing tilt angle. Increasing trial or rake angle decreased the magnitude of the cornering force coefficient. Tire inflation pressure had no effect on the cornering force coefficient. Increasing vertical load decreased the cornering force coefficient. When the tires of a twin tire system rotated independently, the cornering force coefficients were the same as those for the single-tire configuration. When the twin tire system was made to corotate, however, the cornering force coefficients increased significantly.

  19. Molecular basis of lateral force spectroscopy nano-diagnostics: computational unbinding of autism related chemokine MCP-1 from IgG antibody.

    PubMed

    Gogolinska, Anna; Nowak, Wieslaw

    2013-11-01

    Monocyte-chemoattractant protein-1 (MCP-1), also known as CCL2, is a potent chemoattractant of T cells and monocytes, involved in inflammatory and angio-proliferative brain and retinal diseases. Higher expression of MCP-1 is observed in metastatic tumors. Unusual levels of MCP-1 in the brain may be correlated with autism. Immunochemistry where atomic force microscope (AFM) tips functionalized with appropriate antibodies against MCP-1 are used could in principle support medical diagnostics. Useful signals from single molecule experiments may be generated if interaction forces are large enough. The chemokine-antibody unbinding force depends on a relative motion of the interacting fragments of the complex. In this paper the stability of the medically important MCP-1- immunoglobulin G antibody Fab fragment complex has been studied using steered molecular dynamics (SMD) computer simulations with the aim to model possible arrangements of nano-diagnostics experiments. Using SMD we confirm that molecular recognition in MCP1-IgG is based mainly on six pairs of residues: Glu39A - Arg98H, Lys56A - Asp52H, Asp65A - Arg32L, Asp68A - Arg32L, Thr32A - Glu55L, Gln61A - Tyr33H. The minimum external force required for mechanical dissociation of the complex depends on a direction of the force. The pulling of the MCP-1 antigen in the directions parallel to the antigen-antibody contact plane requires forces about 20 %-40 % lower than in the perpendicular one. Fortunately, these values are large enough that the fast lateral force spectroscopy may be used for effective nano-diagnostics purposes. We show that molecular modeling is a useful tool in planning AFM force spectroscopy experiments.

  20. Computation of the Second-Order Steady Forces Acting on a Surface Ship in an Oblique Wave.

    DTIC Science & Technology

    1981-03-01

    of equation (2.10) was also approximated by a finite sum of discretized integrals. The computations were mostly carried out on the CDC 6600, 6700...resistance and lateral drift force as the second-order steady forces. Because of the complexity of the problem, there have been only a few efforts to...utilized for such practical application as establishing data base for the design of a ship for a given route and sea state. The work will be

  1. Helical Explosive Flux Compression Generator Research at the Air Force Research Laboratory

    DTIC Science & Technology

    1999-06-01

    Air Force Research Laboratory Kirtland AFB...ORGANIZATION NAME(S) AND ADDRESS(ES) Directed Energy Directorate, Air Force Research Laboratory Kirtland AFB, NM 8. PERFORMING ORGANIZATION REPORT...in support of the Air Force Research Laboratory ( AFRL ) explosive pulsed power program. These include circuit codes such as Microcap and

  2. Characterization of the photocurrents generated by the laser of atomic force microscopes.

    PubMed

    Ji, Yanfeng; Hui, Fei; Shi, Yuanyuan; Iglesias, Vanessa; Lewis, David; Niu, Jiebin; Long, Shibing; Liu, Ming; Hofer, Alexander; Frammelsberger, Werner; Benstetter, Guenther; Scheuermann, Andrew; McIntyre, Paul C; Lanza, Mario

    2016-08-01

    The conductive atomic force microscope (CAFM) has become an essential tool for the nanoscale electronic characterization of many materials and devices. When studying photoactive samples, the laser used by the CAFM to detect the deflection of the cantilever can generate photocurrents that perturb the current signals collected, leading to unreliable characterization. In metal-coated semiconductor samples, this problem is further aggravated, and large currents above the nanometer range can be observed even without the application of any bias. Here we present the first characterization of the photocurrents introduced by the laser of the CAFM, and we quantify the amount of light arriving to the surface of the sample. The mechanisms for current collection when placing the CAFM tip on metal-coated photoactive samples are also analyzed in-depth. Finally, we successfully avoided the laser-induced perturbations using a two pass technique: the first scan collects the topography (laser ON) and the second collects the current (laser OFF). We also demonstrate that CAFMs without a laser (using a tuning fork for detecting the deflection of the tip) do not have this problem.

  3. Generating and characterizing the mechanical properties of cell-derived matrices using atomic force microscopy.

    PubMed

    Tello, Marta; Spenlé, Caroline; Hemmerlé, Joseph; Mercier, Luc; Fabre, Roxane; Allio, Guillaume; Simon-Assmann, Patricia; Goetz, Jacky G

    2016-02-01

    Mechanical interaction between cells and their surrounding extracellular matrix (ECM) controls key processes such as proliferation, differentiation and motility. For many years, two-dimensional (2D) models were used to better understand the interactions between cells and their surrounding ECM. More recently, variation of the mechanical properties of tissues has been reported to play a major role in physiological and pathological scenarios such as cancer progression. The 3D architecture of the ECM finely tunes cellular behavior to perform physiologically relevant tasks. Technical limitations prevented scientists from obtaining accurate assessment of the mechanical properties of physiologically realistic matrices. There is therefore a need for combining the production of high-quality cell-derived 3D matrices (CDMs) and the characterization of their topographical and mechanical properties. Here, we describe methods that allow to accurately measure the young modulus of matrices produced by various cellular types. In the first part, we will describe and review several protocols for generating CDMs matrices from endothelial, epithelial, fibroblastic, muscle and mesenchymal stem cells. We will discuss tools allowing the characterization of the topographical details as well as of the protein content of such CDMs. In a second part, we will report the methodologies that can be used, based on atomic force microscopy, to accurately evaluate the stiffness properties of the CDMs through the quantification of their young modulus. Altogether, such methodologies allow characterizing the stiffness and topography of matrices deposited by the cells, which is key for the understanding of cellular behavior in physiological conditions.

  4. Atomic force microscopy shows that vaccinia topoisomerase IB generates filaments on DNA in a cooperative fashion.

    PubMed

    Moreno-Herrero, Fernando; Holtzer, Laurent; Koster, Daniel A; Shuman, Stewart; Dekker, Cees; Dekker, Nynke H

    2005-01-01

    Type IB DNA topoisomerases cleave and rejoin one strand of the DNA duplex, allowing for the removal of supercoils generated during replication and transcription. In addition, electron microscopy of cellular and viral TopIB-DNA complexes has suggested that the enzyme promotes long-range DNA-DNA crossovers and synapses. Here, we have used the atomic force microscope to visualize and quantify the interaction between vaccinia topoisomerase IB (vTopIB) and DNA. vTopIB was found to form filaments on nicked-circular DNA by intramolecular synapsis of two segments of a single DNA molecule. Measuring the filament length as a function of protein concentration showed that synapsis is a highly cooperative process. At high protein:DNA ratios, synapses between distinct DNA molecules were observed, which led to the formation of large vTopIB-induced DNA clusters. These clusters were observed in the presence of Mg2+, Ca2+ or Mn2+, suggesting that the formation of intermolecular vTopIB-mediated DNA synapsis is favored by screening of the DNA charge.

  5. A mathematical model for the thrust force generated by a flapping elastic wing

    NASA Astrophysics Data System (ADS)

    Tarasov, Alexander E.; Sumbatyan, Mezhlum A.

    2012-11-01

    The physical nature of the thrust force generated by flapping wings is of a long-time interest of many researchers. The idea of the thrust effect came from the observation of birds' flight. Apparently, Leonardo da Vinci was first who tried to explain the mechanism of the flapping wing trust, for possible engineering applications. Nevertheless, the fundamental basics of a theoretical study of wing oscillations were laid only near the beginning of the 20th century. The thrust effect of the flapping wing was explained by Knoller in 1909 and Betz in 1912, independently. The principal problem in this theory is to define an optimal deformation law which provides the flapping wing to work with highest efficiency. In the present paper we study a rectangular elastic wing of finite span as a propulsion device. We propose an analytical approach, to study harmonic oscillations of a thin elastic rectangular wing at zero attack angle in a flow of inviscid incompressible fluid. The problem is reduced to an integro-differential equation, in frames of the "plane sections" hypothesis.

  6. Manipulating the selection forces during affinity maturation to generate cross-reactive HIV antibodies

    PubMed Central

    Wang, Shenshen; Mata-Fink, Jordi; Kriegsman, Barry; Hanson, Melissa; Irvine, Darrell J.; Eisen, Herman N.; Burton, Dennis R.; Wittrup, K. Dane; Kardar, Mehran; Chakraborty, Arup K.

    2015-01-01

    Summary Generation of potent antibodies by a mutation-selection process called affinity maturation is a key component of effective immune responses. Antibodies that protect against highly mutable pathogens must neutralize diverse strains. Developing effective immunization strategies to drive their evolution requires understanding how affinity maturation happens in an enviroment where variants of the same antigen are present. We present an in silico model of affinity maturation driven by antigen variants which reveals that induction of cross-reactive antibodies often occurs with low probability because conflicting selection forces, imposed by different antigen variants, can frustrate affinity maturation. We describe how variables such as temporal pattern of antigen administration influence the outcome of this frustrated evolutionary process. Our calculations predict, and experiments in mice with variant gp120 constructs of the HIV envelope protein confirm, that sequential immunization with antigen variants is preferred over a cocktail for induction of cross-reactive antibodies focused on the shared CD4 binding site epitope. PMID:25662010

  7. Computation of the optical trapping force on small particles illuminated with a focused light beam using a FDTD method

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Pan, Shi; Jiang, Yuchi

    2006-12-01

    According to the electromagnetic momentum interpretation due to Minkowski, the optical trapping force is determined by momentum transfer. The computation details related to computing the forces of optical radiation pressure on small particles using the scattered field three-dimensional (3D) grid finite difference time domain (FDTD) algorithm are presented. The technique is based on propagating the focused electromagnetic fields through the grid and determining the changes in the optical energy flow with and without the trapped object in the system. The Richards `Wolf vector field equations are applied to the scattered FDTD approach to specify an incident focused beam. We show computational results for a high refractive index particle. These results are in agreement with published experiments and are similar to other computational methods. Compared with some other calculation results using the FDTD method, our results are more consistent with the results measured.

  8. A statistical mechanical approach for the computation of the climatic response to general forcings

    NASA Astrophysics Data System (ADS)

    Lucarini, V.; Sarno, S.

    2011-01-01

    The climate belongs to the class of non-equilibrium forced and dissipative systems, for which most results of quasi-equilibrium statistical mechanics, including the fluctuation-dissipation theorem, do not apply. In this paper we show for the first time how the Ruelle linear response theory, developed for studying rigorously the impact of perturbations on general observables of non-equilibrium statistical mechanical systems, can be applied with great success to analyze the climatic response to general forcings. The crucial value of the Ruelle theory lies in the fact that it allows to compute the response of the system in terms of expectation values of explicit and computable functions of the phase space averaged over the invariant measure of the unperturbed state. We choose as test bed a classical version of the Lorenz 96 model, which, in spite of its simplicity, has a well-recognized prototypical value as it is a spatially extended one-dimensional model and presents the basic ingredients, such as dissipation, advection and the presence of an external forcing, of the actual atmosphere. We recapitulate the main aspects of the general response theory and propose some new general results. We then analyze the frequency dependence of the response of both local and global observables to perturbations having localized as well as global spatial patterns. We derive analytically several properties of the corresponding susceptibilities, such as asymptotic behavior, validity of Kramers-Kronig relations, and sum rules, whose main ingredient is the causality principle. We show that all the coefficients of the leading asymptotic expansions as well as the integral constraints can be written as linear function of parameters that describe the unperturbed properties of the system, such as its average energy. Some newly obtained empirical closure equations for such parameters allow to define such properties as an explicit function of the unperturbed forcing parameter alone for a

  9. OCT-based quantification of flow velocity, shear force, and power generated by a biological ciliated surface (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Huang, Brendan K.; Khokha, Mustafa K.; Loewenberg, Michael; Choma, Michael A.

    2016-03-01

    In cilia-driven fluid flow physiology, quantification of flow velocity, shearing force, and power dissipation is important in defining abnormal ciliary function. The capacity to generate flow can be robustly described in terms of shearing force. Dissipated power can be related to net ATP consumption by ciliary molecular motors. To date, however, only flow velocity can be routinely quantified in a non-invasive, non-contact manner. Additionally, traditional power-based metrics rely on metabolic consumption that reflects energy consumption not just from cilia but also from all active cellular processes. Here, we demonstrate the estimation of all three of these quantities (flow velocity, shear force, and power dissipation) using only optical coherence tomography (OCT). Specifically, we develop a framework that can extract force and power information from vectorial flow velocity fields obtained using OCT-based methods. We do so by (a) estimating the viscous stress tensor from flow velocity fields to estimate shearing force and (b) using the viscous stress tensor to estimate the power dissipation function to infer total mechanical power. These estimates have the advantage of (a) requiring only a single modality, (b) being non-invasive in nature, and (c) being reflective of only the net power work generated by a ciliated surface. We demonstrate our all-optical approach to the estimation of these parameters in the Xenopus animal model system under normal and increased viscous loading. Our preliminary data support the hypothesis that the Xenopus ciliated surface can increase force output under loading conditions.

  10. Identification of natural images and computer-generated graphics based on statistical and textural features.

    PubMed

    Peng, Fei; Li, Jiao-ting; Long, Min

    2015-03-01

    To discriminate the acquisition pipelines of digital images, a novel scheme for the identification of natural images and computer-generated graphics is proposed based on statistical and textural features. First, the differences between them are investigated from the view of statistics and texture, and 31 dimensions of feature are acquired for identification. Then, LIBSVM is used for the classification. Finally, the experimental results are presented. The results show that it can achieve an identification accuracy of 97.89% for computer-generated graphics, and an identification accuracy of 97.75% for natural images. The analyses also demonstrate the proposed method has excellent performance, compared with some existing methods based only on statistical features or other features. The method has a great potential to be implemented for the identification of natural images and computer-generated graphics.

  11. Computer-generated slides: outdated technology or state-of-the-art presentation style?

    PubMed

    Hinds, K F

    1998-01-01

    With the explosion of computerization, it appears that the business community is switching to computer-based presentations, projecting onto a screen directly from a computer, instead of the old standard of presenting with slides. However, the dental profession has been slow to follow. Although some speakers have switched to computer-based presentations, slides are still the standard in 1998. With the advent of numerous new computer software programs, clinicians are now able to generate highly sophisticated slides, that can be an equally powerful medium to communicate with the audience. Unfortunately, many clinicians are not taking advantage of the benefits of this technology. This article explains the simplicity of generating professional, high quality slides, reviews the major programs and equipment available to accomplish this task, and previews the multitude of applications this technology offers to practitioners as well as educators.

  12. Endothermic force generation in fast and slow mammalian (rabbit) muscle fibers.

    PubMed Central

    Ranatunga, K W

    1996-01-01

    Isometric tension responses to rapid temperature jumps (T-jumps) of 3-7 degrees C were examined in single skinned fibers isolated from rabbit psoas (fast) and soleus (slow) muscles. T-jumps were induced by an infrared laser pulse (wavelength 1.32 microns, pulse duration 0.2 ms) obtained from a Nd-YAG laser, which heated the fiber and bathing buffer solution in a 50-microliter trough. After a T-jump, the temperature near the fiber remained constant for approximately 0.5 s, and the temperature could be clamped for longer periods by means of Peltier units assembled on the back trough wall. A T-jump produced a step decrease in tension in both fast and slow muscle fibers in rigor, indicating thermal expansion. In maximally Ca-activated (pCa approximately 4) fibers, the increase of steady tension with heating (3-35 degrees C) was approximately sigmoidal, and a T-jump at any temperature induced a more complex tension transient than in rigor fibers. An initial (small amplitude) step decrease in tension followed by a rapid recovery (tau(1); see Davis and Harrington, 1993) was seen in some records from both fiber types, which presumably was an indirect consequence of thermal expansion. The net rise in tension after a T-jump was biexponential, and its time course was characteristically different in the two fibers. At approximately 12 degrees C the reciprocal time constants for the two exponential components (tau(2) and tau(3), respectively, were approximately 70.s(-1) and approximately 15.s(-1) in fast fibers and approximately 20.s(-1) and approximately 3.s(-1) in slow fibers. In both fibers, tau(2) ("endothermic force regeneration") became faster with an increase in temperature. Furthermore, tau(3) was temperature sensitive in slow fibers but not in fast fibers. The results are compared and contrasted with previous findings from T-jump experiments on fast fibers. It is observed that the fast/slow fiber difference in the rate of endothermic force generation (three- to

  13. Generation and physical characteristics of the Landsat 1 and 2 MSS computer compatible tapes

    NASA Technical Reports Server (NTRS)

    Thomas, V. L.

    1975-01-01

    The generation and format is discussed of the Landsat 1 and 2 system corrected multispectral scanner computer compatible tapes. Included in the discussion are the spacecraft sensors, scene characteristics, the transmission of data, and the conversion of the data to computer compatible tapes at the NASA Data Processing Facility. Geometric and radiometric corrections, tape formats, and the physical characteristics of the tape are also described.

  14. Computational fluid dynamics analysis and noise modeling of jets with internal forced mixers

    NASA Astrophysics Data System (ADS)

    Garrison, Loren Armstrong

    The goal of the current research work is to develop a stand-alone jet noise prediction methodology. The current project is focused on jets with internal forced mixers, which are used in regional jet aircraft. In the current approach a two-step method is adopted. First, the turbulence properties in the jet plume are determined from Computational Fluid Dynamics (CFD) analysis using the Reynolds Averaged Navier-Stokes (BANS) equations with a two-equation turbulence model. Second, the far-field noise spectrum is predicted using a noise model based on the combination of simple single stream jet components taken from an existing experimental database. The results of this study show that the CFD predictions of the mean velocity field in the jet plume are in good agreement with experimental particle image velocimetry data. It is also observed that the CFD analysis over-predicts the turbulence levels in a simple single jet shear layer. However, it is determined that the CFD analysis under-predicts the enhancement of the shear layer turbulence levels for the forced mixers. Despite this deficiency, it is seen that the trends in the peak turbulence levels for various mixer geometries are correctly predicted by the CFD analysis. In the current study the far-field noise spectra are predicted using a noise model based on the combination of simple single stream jet components. It is found that the CFD-based two-source model noise predictions are under-predicted when compared to experimental acoustic data. This under-prediction appears to result from the under-prediction of the enhanced turbulence levels in the plume of the jets with forced mixers. In addition to the two-source noise model, a new multi-source model is proposed and evaluated. This model, which has a more general form, takes into account additional mean flow information from the jet plume. As a result, this model should be applicable to a wider range of geometric configurations. The results using this new multi

  15. Computational Research Challenges and Opportunities for the Optimization of Fossil Energy Power Generation System

    SciTech Connect

    Zitney, S.E.

    2007-06-01

    Emerging fossil energy power generation systems must operate with unprecedented efficiency and near-zero emissions, while optimizing profitably amid cost fluctuations for raw materials, finished products, and energy. To help address these challenges, the fossil energy industry will have to rely increasingly on the use advanced computational tools for modeling and simulating complex process systems. In this paper, we present the computational research challenges and opportunities for the optimization of fossil energy power generation systems across the plant lifecycle from process synthesis and design to plant operations. We also look beyond the plant gates to discuss research challenges and opportunities for enterprise-wide optimization, including planning, scheduling, and supply chain technologies.

  16. Acoustic project for installation of motor generator group by means of computer simulation

    NASA Astrophysics Data System (ADS)

    Ferreira, Jose C.; Zannin, Paulo T.

    2004-05-01

    This work presents an acoustical project for the installation of a motor generator group of electricity in a hotel by means of computer modeling. The noise levels at the site have been obtained without the motor generator group, and via the computer modeling it has been deduced how these levels would be after the installation of the equipment. A possible solution to mitigate the noise impact the equipment would cause on the neighborhood has been indicated, and it has been predicted how the impact would be reduced after the implantation of this solution.

  17. From medical images to flow computations without user-generated meshes.

    PubMed

    Dillard, Seth I; Mousel, John A; Shrestha, Liza; Raghavan, Madhavan L; Vigmostad, Sarah C

    2014-10-01

    Biomedical flow computations in patient-specific geometries require integrating image acquisition and processing with fluid flow solvers. Typically, image-based modeling processes involve several steps, such as image segmentation, surface mesh generation, volumetric flow mesh generation, and finally, computational simulation. These steps are performed separately, often using separate pieces of software, and each step requires considerable expertise and investment of time on the part of the user. In this paper, an alternative framework is presented in which the entire image-based modeling process is performed on a Cartesian domain where the image is embedded within the domain as an implicit surface. Thus, the framework circumvents the need for generating surface meshes to fit complex geometries and subsequent creation of body-fitted flow meshes. Cartesian mesh pruning, local mesh refinement, and massive parallelization provide computational efficiency; the image-to-computation techniques adopted are chosen to be suitable for distributed memory architectures. The complete framework is demonstrated with flow calculations computed in two 3D image reconstructions of geometrically dissimilar intracranial aneurysms. The flow calculations are performed on multiprocessor computer architectures and are compared against calculations performed with a standard multistep route.

  18. First-Principles Framework to Compute Sum-Frequency Generation Vibrational Spectra of Semiconductors and Insulators

    NASA Astrophysics Data System (ADS)

    Wan, Quan; Galli, Giulia

    2015-12-01

    We present a first-principles framework to compute sum-frequency generation (SFG) vibrational spectra of semiconductors and insulators. The method is based on density functional theory and the use of maximally localized Wannier functions to compute the response to electric fields, and it includes the effect of electric field gradients at surfaces. In addition, it includes quadrupole contributions to SFG spectra, thus enabling the verification of the dipole approximation, whose validity determines the surface specificity of SFG spectroscopy. We compute the SFG spectra of ice Ih basal surfaces and identify which spectra components are affected by bulk contributions. Our results are in good agreement with experiments at low temperature.

  19. Design quadrilateral apertures in binary computer-generated holograms of large space bandwidth product.

    PubMed

    Wang, Jing; Sheng, Yunlong

    2016-09-20

    A new approach for designing the binary computer-generated hologram (CGH) of a very large number of pixels is proposed. Diffraction of the CGH apertures is computed by the analytical Abbe transform and by considering the aperture edges as the basic diffracting elements. The computation cost is independent of the CGH size. The arbitrary-shaped polygonal apertures in the CGH consist of quadrilateral apertures, which are designed by assigning the binary phases using the parallel genetic algorithm with a local search, followed by optimizing the locations of the co-vertices with a direct search. The design results in high performance with low image reconstruction error.

  20. Three-dimensional elliptic grid generation about fighter aircraft for zonal finite-difference computations

    NASA Technical Reports Server (NTRS)

    Sorenson, R. L.

    1986-01-01

    An elliptic grid-generation method for finite-difference computations about complex aerodynamic configurations is developed. A zonal approach is used, which involves first making a coarse global grid filling the entire physical domain and then subdividing regions of that grid to make the individual zone grids. The details of the grid-generation method are presented along with results of the present application, a wing-body configuration based on the F-16 fighter aircraft.

  1. Band-limited double-step Fresnel diffraction and its application to computer-generated holograms.

    PubMed

    Okada, Naohisa; Shimobaba, Tomoyoshi; Ichihashi, Yasuyuki; Oi, Ryutaro; Yamamoto, Kenji; Oikawa, Minoru; Kakue, Takashi; Masuda, Nobuyuki; Ito, Tomoyoshi

    2013-04-08

    Double-step Fresnel diffraction (DSF) is an efficient diffraction calculation in terms of the amount of usage memory and calculation time. This paper describes band-limited DSF, which will be useful for large computer-generated holograms (CGHs) and gigapixel digital holography, mitigating the aliasing noise of the DSF. As the application, we demonstrate a CGH generation with nearly 8K × 4K pixels from texture and depth maps of a three-dimensional scene captured by a depth camera.

  2. Correlation of hierarchal Upper Silurian stacking patterns generated by Milankovitch orbital forcing

    SciTech Connect

    Mauriello, D.J.; Ketterer, M.W. . Dept. of Geology)

    1993-03-01

    The Upper Silurian Wills Creek Formation in Pennsylvania and Maryland is entirely divisible into meter-scale allocycles. Stacking patterns of these allocycles reveal a hierarchy consistent with predictions based on the Milankovitch model of orbital forcing. Asymmetrical Sixth-Order cycles (PACs), bounded by surfaces produced by precessional sea-level rises, are divisible into a lower highstand portion and an upper lowstand portion separated by a sharp sea-level fall surface produced by a rapid sea-level drop within the precessional cycle. Sixth-Order cycles may be genetically grouped into Fifth-Order (100 ky.) and subsequently, Fourth-Order (400 ky.) cycles, each of which exhibits a distinct internal symmetry. Fifth-Order cycles, on average three to four meters in thickness, are composed of a basal transgressive portion consisting of two PACs followed by two or three successively regressive PACs. Four Fifth-Order cycles constitute a complete Fourth-Order cycle, in which the second Fifth-Order cycle contains facies representing the deepest or least restricted paleoenvironments. In each case, the fundamental Sixth-Order cycles were generated by the precessional signal modulated by orbital eccentricity variations. Over distances in excess of 100 km, Wills Creek facies change laterally from nearshore marine to fluvial coastal plain. Stacking patterns in these distinct facies are identical, and thus correlative, indicating the basin-wide extent of the stratigraphic events which produced these patterns. These correlations demonstrate that Milankovitch-driven eustatic sea-level fluctuations were occurring during the Late Silurian.

  3. Exaggerated force production in altered Gz-levels during parabolic flight: the role of computational resources allocation.

    PubMed

    Mierau, Andreas; Girgenrath, Michaela

    2010-02-01

    The purpose of the present experiment was to examine whether the previously observed exaggerated isometric force production in changed-Gz during parabolic flight (Mierau et al. 2008) can be explained by a higher computational demand and, thus, inadequate allocation of the brain's computational resources to the task. Subjects (n = 12) were tested during the micro-Gz, high-Gz and normal-Gz episodes of parabolic flight. They produced isometric forces of different magnitudes and directions, according to visually prescribed vectors with their right, dominant hand and performed a choice reaction-time task with their left hand. Tasks were performed either separately (single-task) or simultaneously (dual-task). Dual-task interference was present for both tasks, indicating that each task was resources-demanding. However, this interference remained unaffected by the Gz-level. It was concluded that exaggerated force production in changed-Gz is probably not related to inadequate allocation of the brain's computational resources to the force production task. Statement of Relevance: The present study shows that deficient motor performance in changed-Gz environments (both micro-Gz and high-Gz) is not necessarily related to inadequate computational resources allocation, as was suggested in some previous studies. This finding is of great relevance not only for fundamental research, but also for the training and safety of humans operating in changed-Gz environments, such as astronauts and jet pilots.

  4. Oligomerization states of Bowman-Birk inhibitor by atomic force microscopy and computational approaches.

    PubMed

    Silva, Luciano P; Azevedo, Ricardo B; Morais, Paulo C; Ventura, Manuel M; Freitas, Sonia M

    2005-11-15

    Several methods have been applied to study protein-protein interaction from structural and thermodynamic point of view. The present study reveals that atomic force microscopy (AFM), molecular modeling, and docking approaches represent alternative methods offering new strategy to investigate structural aspects in oligomerization process of proteinase inhibitors. The topography of the black-eyed pea trypsin/chymotrypsin inhibitor (BTCI) was recorded by AFM and compared with computational rigid-bodies docking approaches. Multimeric states of BTCI identified from AFM analysis showed globular-ellipsoidal shapes. Monomers, dimers, trimers, and hexamers were the most prominent molecular arrays observed in AFM images as evaluated by molecular volume calculations and corroborated by in silico docking and theoretical approaches. We therefore propose that BTCI adopts stable and well-packed self-assembled states in monomer-dimer-trimer-hexamer equilibrium. Although there are no correlation between specificity and packing efficiency among proteinases and proteinase inhibitors, the AFM and docked BTCI analyses suggest that these assemblies may exist in situ to play their potential function in oligomerization process.

  5. SENSITIVITY OF HELIOSEISMIC TRAVEL TIMES TO THE IMPOSITION OF A LORENTZ FORCE LIMITER IN COMPUTATIONAL HELIOSEISMOLOGY

    SciTech Connect

    Moradi, Hamed; Cally, Paul S.

    2014-02-20

    The rapid exponential increase in the Alfvén wave speed with height above the solar surface presents a serious challenge to physical modeling of the effects of magnetic fields on solar oscillations, as it introduces a significant Courant-Friedrichs-Lewy time-step constraint for explicit numerical codes. A common approach adopted in computational helioseismology, where long simulations in excess of 10 hr (hundreds of wave periods) are often required, is to cap the Alfvén wave speed by artificially modifying the momentum equation when the ratio between the Lorentz and hydrodynamic forces becomes too large. However, recent studies have demonstrated that the Alfvén wave speed plays a critical role in the MHD mode conversion process, particularly in determining the reflection height of the upwardly propagating helioseismic fast wave. Using numerical simulations of helioseismic wave propagation in constant inclined (relative to the vertical) magnetic fields we demonstrate that the imposition of such artificial limiters significantly affects time-distance travel times unless the Alfvén wave-speed cap is chosen comfortably in excess of the horizontal phase speeds under investigation.

  6. Computation of the Nusselt number asymptotes for laminar forced convection flows in internally finned tubes

    SciTech Connect

    Ledezma, G.A.; Campo, A.

    1999-04-01

    The utilization of internal longitudinal finned tubes has received unparallel attention in the heat transfer literature over the years as a result of its imminent application in high performance compact heat exchangers to enhance the heat transfer between laminar streams of viscous fluids and tube walls. Here, the central goal of this paper is to report a simple approximate way for the prediction of the two asymptotes for the local Nusselt number in laminar forced convection flows inside internal longitudinal finned tubes. The computational attributes of the Method Of Lines (MOL) are propitious for the determination of asymptotic temperature solutions and corresponding heat transfer rates (one for Z {r_arrow} 0 and the other for z {r_arrow} {infinity}). The two local Nusselt number sub-distributions, namely Nu{sub z{r_arrow}0} and Nu{sub z{r_arrow}{infinity}}, blend themselves into an approximate Nusselt number distribution that covers the entire z-domain in a natural way.

  7. Differences in proprioception, muscle force control and comfort between conventional and new-generation knee and ankle orthoses.

    PubMed

    Marchini, A; Lauermann, S P; Minetto, M A; Massazza, G; Maffiuletti, N A

    2014-06-01

    The aim of this study was to compare muscle force control and proprioception between conventional and new-generation experimental orthoses. Sixteen healthy subjects participated in a single-blind controlled trial in which two different types of orthosis were applied to the dominant knee or ankle, while the following variables were evaluated: muscle force control (accuracy), joint position sense, kinesthesia, static balance as well as subjective outcomes. The use of experimental orthoses resulted in better force accuracy during isometric knee extensions compared to conventional orthoses (P=0.005). Moreover, the use of experimental orthoses resulted in better force accuracy during concentric (P=0.010) and eccentric (P=0.014) ankle plantar flexions and better knee joint kinesthesia in the flexed position (P=0.004) compared to conventional orthoses. Subjective comfort (P<0.001) and preference scores were higher with experimental orthoses compared to conventional ones. In conclusion, orthosis type affected static and dynamic muscle force control, kinesthesia, and perceived comfort in healthy subjects. New-generation experimental knee and ankle orthoses may thus be recommended for prophylactic joint bracing during physical activity and to improve the compliance for orthosis use, particularly in patients who require long-term bracing.

  8. Computing the flow past Vortex Generators: Comparison between RANS Simulations and Experiments

    NASA Astrophysics Data System (ADS)

    Manolesos, M.; Sørensen, N. N.; Troldborg, N.; Florentie, L.; Papadakis, G.; Voutsinas, S.

    2016-09-01

    The flow around a wind turbine airfoil equipped with Vortex Generators (VGs) is examined. Predictions from three different Reynolds Averaged Navier Stokes (RANS) solvers with two different turbulence models and two different VG modelling approaches are compared between them and with experimental data. The best results are obtained with the more expensive fully resolved VG approach. The cost efficient BAY model can also provide acceptable results, if grid related numerical diffusion is minimized and only force coefficient polars are considered.

  9. Computer generated animation and movie production at LARC: A case study

    NASA Technical Reports Server (NTRS)

    Gates, R. L.; Matthews, C. G.; Vonofenheim, W. H.; Randall, D. P.; Jones, K. H.

    1984-01-01

    The process of producing computer generated 16mm movies using the MOVIE.BYU software package developed by Brigham Young University and the currently available hardware technology at the Langley Research Center is described. A general overview relates the procedures to a specific application. Details are provided which describe the data used, preparation of a storyboard, key frame generation, the actual animation, title generation, filming, and processing/developing the final product. Problems encountered in each of these areas are identified. Both hardware and software problems are discussed along with proposed solutions and recommendations.

  10. ForceGen 3D structure and conformer generation: from small lead-like molecules to macrocyclic drugs.

    PubMed

    Cleves, Ann E; Jain, Ajay N

    2017-03-13

    We introduce the ForceGen method for 3D structure generation and conformer elaboration of drug-like small molecules. ForceGen is novel, avoiding use of distance geometry, molecular templates, or simulation-oriented stochastic sampling. The method is primarily driven by the molecular force field, implemented using an extension of MMFF94s and a partial charge estimator based on electronegativity-equalization. The force field is coupled to algorithms for direct sampling of realistic physical movements made by small molecules. Results are presented on a standard benchmark from the Cambridge Crystallographic Database of 480 drug-like small molecules, including full structure generation from SMILES strings. Reproduction of protein-bound crystallographic ligand poses is demonstrated on four carefully curated data sets: the ConfGen Set (667 ligands), the PINC cross-docking benchmark (1062 ligands), a large set of macrocyclic ligands (182 total with typical ring sizes of 12-23 atoms), and a commonly used benchmark for evaluating macrocycle conformer generation (30 ligands total). Results compare favorably to alternative methods, and performance on macrocyclic compounds approaches that observed on non-macrocycles while yielding a roughly 100-fold speed improvement over alternative MD-based methods with comparable performance.

  11. ForceGen 3D structure and conformer generation: from small lead-like molecules to macrocyclic drugs

    NASA Astrophysics Data System (ADS)

    Cleves, Ann E.; Jain, Ajay N.

    2017-03-01

    We introduce the ForceGen method for 3D structure generation and conformer elaboration of drug-like small molecules. ForceGen is novel, avoiding use of distance geometry, molecular templates, or simulation-oriented stochastic sampling. The method is primarily driven by the molecular force field, implemented using an extension of MMFF94s and a partial charge estimator based on electronegativity-equalization. The force field is coupled to algorithms for direct sampling of realistic physical movements made by small molecules. Results are presented on a standard benchmark from the Cambridge Crystallographic Database of 480 drug-like small molecules, including full structure generation from SMILES strings. Reproduction of protein-bound crystallographic ligand poses is demonstrated on four carefully curated data sets: the ConfGen Set (667 ligands), the PINC cross-docking benchmark (1062 ligands), a large set of macrocyclic ligands (182 total with typical ring sizes of 12-23 atoms), and a commonly used benchmark for evaluating macrocycle conformer generation (30 ligands total). Results compare favorably to alternative methods, and performance on macrocyclic compounds approaches that observed on non-macrocycles while yielding a roughly 100-fold speed improvement over alternative MD-based methods with comparable performance.

  12. Upregulation of MHC class I in transgenic mice results in reduced force-generating capacity in slow-twitch muscle.

    PubMed

    Salomonsson, Stina; Grundtman, Cecilia; Zhang, Shi-Jin; Lanner, Johanna T; Li, Charles; Katz, Abram; Wedderburn, Lucy R; Nagaraju, Kanneboyina; Lundberg, Ingrid E; Westerblad, Håkan

    2009-05-01

    Expression of major histocompatibility complex (MHC) class I in skeletal muscle fibers is an early and consistent finding in inflammatory myopathies. To test if MHC class I has a primary role in muscle impairment, we used transgenic mice with inducible overexpression of MHC class I in their skeletal muscle cells. Contractile function was studied in isolated extensor digitorum longus (EDL, fast-twitch) and soleus (slow-twitch) muscles. We found that EDL was smaller, whereas soleus muscle was slightly larger. Both muscles generated less absolute force in myopathic compared with control mice; however, when force was expressed per cross-sectional area, only soleus muscle generated less force. Inflammation was markedly increased, but no changes were found in the activities of key mitochondrial and glycogenolytic enzymes in myopathic mice. The induction of MHC class I results in muscle atrophy and an intrinsic decrease in force-generation capacity. These observations may have important implications for our understanding of the pathophysiological processes of muscle weakness seen in inflammatory myopathies. Muscle Nerve, 2008.

  13. Long Range Debye-Hückel Correction for Computation of Grid-based Electrostatic Forces Between Biomacromolecules

    SciTech Connect

    Mereghetti, Paolo; Martinez, M.; Wade, Rebecca C.

    2014-06-17

    Brownian dynamics (BD) simulations can be used to study very large molecular systems, such as models of the intracellular environment, using atomic-detail structures. Such simulations require strategies to contain the computational costs, especially for the computation of interaction forces and energies. A common approach is to compute interaction forces between macromolecules by precomputing their interaction potentials on three-dimensional discretized grids. For long-range interactions, such as electrostatics, grid-based methods are subject to finite size errors. We describe here the implementation of a Debye-Hückel correction to the grid-based electrostatic potential used in the SDA BD simulation software that was applied to simulate solutions of bovine serum albumin and of hen egg white lysozyme.

  14. Hybrid electro-optical stimulation of the rat sciatic nerve induces force generation in the plantarflexor muscles

    NASA Astrophysics Data System (ADS)

    Duke, Austin R.; Peterson, Erik; Mackanos, Mark A.; Atkinson, James; Tyler, Dustin; Jansen, E. Duco

    2012-12-01

    Objective. Optical methods of neural activation are becoming important tools for the study and treatment of neurological disorders. Infrared nerve stimulation (INS) is an optical technique exhibiting spatially precise activation in the native neural system. While this technique shows great promise, the risk of thermal damage may limit some applications. Combining INS with traditional electrical stimulation, a method known as hybrid electro-optical stimulation, reduces the laser power requirements and mitigates the risk of thermal damage while maintaining spatial selectivity. Here we investigate the capability of inducing force generation in the rat hind limb through hybrid stimulation of the sciatic nerve. Approach. Hybrid stimulation was achieved by combining an optically transparent nerve cuff for electrical stimulation and a diode laser coupled to an optical fiber for infrared stimulation. Force generation in the rat plantarflexor muscles was measured in response to hybrid stimulation with 1 s bursts of pulses at 15 and 20 Hz and with a burst frequency of 0.5 Hz. Main results. Forces were found to increase with successive stimulus trains, ultimately reaching a plateau by the 20th train. Hybrid evoked forces decayed at a rate similar to the rate of thermal diffusion in tissue. Preconditioning the nerve with an optical stimulus resulted in an increase in the force response to both electrical and hybrid stimulation. Histological evaluation showed no signs of thermally induced morphological changes following hybrid stimulation. Our results indicate that an increase in baseline temperature is a likely contributor to hybrid force generation. Significance. Extraneural INS of peripheral nerves at physiologically relevant repetition rates is possible using hybrid electro-optical stimulation.

  15. Optical phase step method for absolute ranging interferometry using computer-generated holograms

    NASA Astrophysics Data System (ADS)

    Deininger, Martin; Wang, Lingli; Gerstner, Klaus; Tschudi, Theo

    1995-09-01

    One main problem of an interferometric measurement is to evaluate the object distance from the interference function. One of the known methods that delivers the object phase is the phase step method. Here we introduce computer-generated holograms to realize parallel phase steps without phase modulation of the reference path.

  16. Infrared Testing of the Wide-field Infrared Survey Telescope Grism Using Computer Generated Holograms

    NASA Technical Reports Server (NTRS)

    Dominguez, Margaret Z.; Content, David A.; Gong, Qian; Griesmann, Ulf; Hagopian, John G.; Marx, Catherine T; Whipple, Arthur L.

    2017-01-01

    Infrared Computer Generated Holograms (CGHs) were designed, manufactured and used to measure the performance of the grism (grating prism) prototype which includes testing Diffractive Optical Elements (DOE). The grism in the Wide Field Infrared Survey Telescope (WFIRST) will allow the surveying of a large section of the sky to find bright galaxies.

  17. Computer-Assisted Reading and Discovery for Student-Generated Text in Massive Open Online Courses

    ERIC Educational Resources Information Center

    Reich, Justin; Tingley, Dustin; Leder-Luis, Jetson; Roberts, Margaret E.; Stewart, Brandon M.

    2015-01-01

    Dealing with the vast quantities of text that students generate in Massive Open Online Courses (MOOCs) and other large-scale online learning environments is a daunting challenge. Computational tools are needed to help instructional teams uncover themes and patterns as students write in forums, assignments, and surveys. This paper introduces to the…

  18. The computer scene generation for star simulator hardware-in-the-loop simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Yu, Hong; Du, Huijie; Lei, Jie

    2011-08-01

    The star sensor simulation system is used to test the star sensor performance on the ground, which is designed for star identification and spacecraft attitude determination of the spacecraft. The computer star scene based on the astronomical star chat is generated for hardware-in-the-loop simulation of the star sensor simulation system using by OpenGL.

  19. THIRD GENERATION COMPUTER CURRICULUM AND INNOVATIVE TEACHING METHODS AT EL CAMINO COLLEGE.

    ERIC Educational Resources Information Center

    FEDRICK, ROBERT J.

    A 1967 QUESTIONNAIRE SURVEY IN THE EL CAMINO JUNIOR COLLEGE DISTRICT INDICATED THE EXISTENCE OF 115 COMPUTER SYSTEMS IN 64 COMPANIES, WITH A TREND TOWARD THIRD GENERATION SYSTEMS. WHILE UNIT RECORD SYSTEMS WERE USED IN ABOUT HALF OF THE COMPANIES SURVEYED, THEIR USE WAS DEEMPHASIZED, AND EMPLOYERS INDICATED NEED FOR TRAINING IN PROGRAMING,…

  20. Next Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational, and Systems Biology (Final Report)

    EPA Science Inventory

    EPA announced the release of the final report, Next Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational, and Systems Biology. This report describes new approaches that are faster, less resource intensive, and more robust that can help ...

  1. The Generative Effects of Instructional Organizers with Computer-Based Interactive Video.

    ERIC Educational Resources Information Center

    Kenny, Richard F.

    This study compared the use of three instructional organizers--the advance organizer (AO), the participatory pictorial graphic organizer (PGO), and the final form pictorial graphic organizer (FGO)--in the design and use of computer-based interactive video (CBIV) programs. That is, it attempted to determine whether a less generative or more…

  2. Teaching French Transformational Grammar by Means of Computer-Generated Video-Tapes.

    ERIC Educational Resources Information Center

    Adler, Alfred; Thomas, Jean Jacques

    This paper describes a pilot program in an integrated media presentation of foreign languages and the production and usage of seven computer-generated video tapes which demonstrate various aspects of French syntax. This instructional set could form the basis for CAI lessons in which the student is presented images identical to those on the video…

  3. COED Transactions, Vol. 8, No. 10, October 1976. The Computer Generation of Thermodynamic Phase Diagrams.

    ERIC Educational Resources Information Center

    Jolls, Kenneth R.; And Others

    A technique is described for the generation of perspective views of three-dimensional models using computer graphics. The technique is applied to models of familiar thermodynamic phase diagrams and the results are presented for the ideal gas and van der Waals equations of state as well as the properties of liquid water and steam from the Steam…

  4. Enhancing Learning Outcomes in Computer-Based Training via Self-Generated Elaboration

    ERIC Educational Resources Information Center

    Cuevas, Haydee M.; Fiore, Stephen M.

    2014-01-01

    The present study investigated the utility of an instructional strategy known as the "query method" for enhancing learning outcomes in computer-based training. The query method involves an embedded guided, sentence generation task requiring elaboration of key concepts in the training material that encourages learners to "stop and…

  5. Realization of Fourier and Fresnel computer-generated holograpm based on MATLAB

    NASA Astrophysics Data System (ADS)

    Lin, GuoQiang; Ren, XueChang

    2016-10-01

    Computer-generated hologram(CGH) can encode the picture. The image, which equals the original object of traditional optics, can be divided into two parts. A portion of it encoding into Fourier computer generated hologram(CGH), while the remaining are coded into Fresnel computer generated hologram. So in the processing of information transmission, the possibility of being stolen details can be greatly reduced. When the image is coded into the Fourier CGH and Fresnel CGH and reached the receiving end, the original image should be obtained by the reconstruction of the two computer generated holograms. This article presents three important things. Firstly, it provides the recording and reconstruction - both of them consist of the holographic technique - of the source program of Fresnel CGH and Fourier CGH in MATLAB. MATLAB(Matrix Laboratory) is the abbreviation of Laboratory Matrix and commercial mathematical software produced by the United States company. Secondly, it isolates the original image and the conjugate image in regeneration of Fourier CGH by using all zero matrix. Even though the original image and the conjugate image can be separated, the two of them also prevent us to acquire the original message. For reserving the most important image, we should apply the window function to filter one of them. Finally, in the coding of Fourier CGH and Fresnel CGH, this passage describes several functions to decrease the noise of the original image which is encoded into program. The function can be available in Fourier CGH and Fresnel CGH.

  6. Student-Generated Assignments about Electrical Circuits in a Computer Simulation

    ERIC Educational Resources Information Center

    Vreman-de Olde, Cornelise; de Jong, Ton

    2004-01-01

    In this study we investigated the design of assignments by students as a knowledge-generating activity. Students were required to design assignments for 'other students' in a computer simulation environment about electrical circuits. Assignments consisted of a question, alternatives, and feedback on those alternatives. In this way, subjects were…

  7. A Computer-Generated Content Analysis of Issues Identified by Elementary Education Preservice Teachers.

    ERIC Educational Resources Information Center

    Vacc, Nancy Nesbitt

    1993-01-01

    Describes a study that investigated the use of a computer-generated narrative content analysis procedure to determine preservice elementary education teachers' perspectives during their first field experience. Semantic units were analyzed that expressed concerns about the internship environment and role, classroom management, discrepancies between…

  8. Generation of spiral bevel gears with zero kinematical errors and computer aided tooth contact analysis

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Tsung, W. J.; Coy, J. J.; Heine, C.

    1986-01-01

    Kinematic errors in spiral bevel gears are a major source of noise and vibrations in transmissions. A method for the generation of Gleason's spiral bevel gears which provides conjugated gear tooth surfaces and an improved bearing contact was developed. A computer program for the simulation of meshing, misalignment, and bearing contact was written.

  9. Monitor Tone Generates Stress in Computer and VDT Operators: A Preliminary Study.

    ERIC Educational Resources Information Center

    Dow, Caroline; Covert, Douglas C.

    A near-ultrasonic pure tone of 15,570 Herz generated by flyback transformers in computer and video display terminal (VDT) monitors may cause severe non-specific irritation or stress disease in operators. Women hear higher frequency sounds than men and are twice as sensitive to "too loud" noise. Pure tones at high frequencies are more…

  10. Computational Tools and Facilities for the Next-Generation Analysis and Design Environment

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1997-01-01

    This document contains presentations from the joint UVA/NASA Workshop on Computational Tools and Facilities for the Next-Generation Analysis and Design Environment held at the Virginia Consortium of Engineering and Science Universities in Hampton, Virginia on September 17-18, 1996. The presentations focused on the computational tools and facilities for analysis and design of engineering systems, including, real-time simulations, immersive systems, collaborative engineering environment, Web-based tools and interactive media for technical training. Workshop attendees represented NASA, commercial software developers, the aerospace industry, government labs, and academia. The workshop objectives were to assess the level of maturity of a number of computational tools and facilities and their potential for application to the next-generation integrated design environment.

  11. A simple computer-controlled analogue ramp generator for producing multiple ramp-and-hold stimuli.

    PubMed

    Matheson, T; Ditz, F

    1991-08-01

    This report describes an inexpensive ramp generator which produces multiple ramp-and-hold stimuli ("staircase-type" wave forms). The output voltage is analogue and is, therefore, free of stepping artifacts characteristic of digital function generators. When coupled with a standard power amplifier and mechanical vibrator, this system is particularly suitable for stimulation of mechanoreceptive sense organs. Connection to the serial port of an IBM personal computer, or the user port of a BBC computer allows complex ramp-and-hold sequences to be developed and repeated. The number, duration and sign of ramps, and the duration of intervening hold periods can be set using the computer. This system has been used successfully to characterise phasic and tonic neurones in the locust metathoracic femoral chordotonal organ (a leg position and movement detector).

  12. Complex force history of a calving-generated glacial earthquake derived from broadband seismic inversion

    NASA Astrophysics Data System (ADS)

    Sergeant, Amandine; Mangeney, Anne; Stutzmann, Eléonore; Montagner, Jean-Paul; Walter, Fabian; Moretti, Laurent; Castelnau, Olivier

    2016-02-01

    The force applied to the Earth by the calving of two icebergs at Jakobshavn Isbrae, Greenland, has been quantified. The source force history was recovered by inversion of regional broadband seismograms without any a priori constraint on the source time function, in contrast with previous studies. For periods 10-100 s, the three-component force can be obtained from distant stations alone and is proportional to the closest station seismograms. This inversion makes it possible to quantify changes of the source force direction and amplitude as a function of time and frequency. A detailed comparison with a video of the event was used to identify four forces associated with collision, then bottom-out and top-out rotation of the first and second icebergs, and ice mélange motion. Only the two iceberg rotations were identified in previous studies. All four processes are found here to contribute to the force amplitude and variability. Such a complete time-frequency force history provides unique dynamical constraints for mechanical calving models.

  13. Generation of a suite of 3D computer-generated breast phantoms from a limited set of human subject data

    SciTech Connect

    Hsu, Christina M. L.; Palmeri, Mark L.; Segars, W. Paul; Veress, Alexander I.; Dobbins, James T. III

    2013-04-15

    Purpose: The authors previously reported on a three-dimensional computer-generated breast phantom, based on empirical human image data, including a realistic finite-element based compression model that was capable of simulating multimodality imaging data. The computerized breast phantoms are a hybrid of two phantom generation techniques, combining empirical breast CT (bCT) data with flexible computer graphics techniques. However, to date, these phantoms have been based on single human subjects. In this paper, the authors report on a new method to generate multiple phantoms, simulating additional subjects from the limited set of original dedicated breast CT data. The authors developed an image morphing technique to construct new phantoms by gradually transitioning between two human subject datasets, with the potential to generate hundreds of additional pseudoindependent phantoms from the limited bCT cases. The authors conducted a preliminary subjective assessment with a limited number of observers (n= 4) to illustrate how realistic the simulated images generated with the pseudoindependent phantoms appeared. Methods: Several mesh-based geometric transformations were developed to generate distorted breast datasets from the original human subject data. Segmented bCT data from two different human subjects were used as the 'base' and 'target' for morphing. Several combinations of transformations were applied to morph between the 'base' and 'target' datasets such as changing the breast shape, rotating the glandular data, and changing the distribution of the glandular tissue. Following the morphing, regions of skin and fat were assigned to the morphed dataset in order to appropriately assign mechanical properties during the compression simulation. The resulting morphed breast was compressed using a finite element algorithm and simulated mammograms were generated using techniques described previously. Sixty-two simulated mammograms, generated from morphing three human

  14. Computer-generated holograms using multiview images captured by a small number of sparsely arranged cameras.

    PubMed

    Ohsawa, Yusuke; Yamaguchi, Kazuhiro; Ichikawa, Tsubasa; Sakamoto, Yuji

    2013-01-01

    Computer-generated holograms (CGHs) using multiview images (MVIs) are holograms generated with multiple ordinary cameras. This process typically requires a huge number of cameras arranged at high density. In this paper, we propose a method to improve CGH using MVIs that obtains the MVIs by using voxel models rather than cameras. In the proposed method the voxel model is generated using the shape-from-silhouette (SFS) technique. We perform SFS using a small number of cameras arranged sparsely to create voxel models of objects and then generate the required number of images from these models by volume rendering. This enables us to generate CGHs using MVIs with just a small number of sparsely arranged cameras. Moreover, the proposed method arrange CGHs using MVIs at arbitrary positions.

  15. Control of Human Generating Force by Use of Acoustic Information ─ Utilization of Onomatopoeic Utterance

    NASA Astrophysics Data System (ADS)

    Sato, Taichi; Oyama, Keiichi; Iimura, Miki; Kobayashi, Harumi; Tanaka, Kihachiro

    We have performed basic experiments for the purpose of applying onomatopoeia to engineering problems. In these experiments, test subjects were made to perform lifting actions while listening to onomatopoeic utterances. We thereby demonstrated that there is a relationship between the onomatopoeic utterances and the lifting forces exerted by the test subjects. We examined how the lifting forces are related to the envelope of onomatopoeic utterances. Furthermore, we investigated how the lifting force is affected depending on whether or not emotion is expressed when uttering the onomatopoeia.

  16. XSECT: A computer code for generating fuselage cross sections - user's manual

    NASA Technical Reports Server (NTRS)

    Ames, K. R.

    1982-01-01

    A computer code, XSECT, has been developed to generate fuselage cross sections from a given area distribution and wing definition. The cross sections are generated to match the wing definition while conforming to the area requirement. An iterative procedure is used to generate each cross section. Fuselage area balancing may be included in this procedure if desired. The code is intended as an aid for engineers who must first design a wing under certain aerodynamic constraints and then design a fuselage for the wing such that the contraints remain satisfied. This report contains the information necessary for accessing and executing the code, which is written in FORTRAN to execute on the Cyber 170 series computers (NOS operating system) and produces graphical output for a Tektronix 4014 CRT. The LRC graphics software is used in combination with the interface between this software and the PLOT 10 software.

  17. Optical trapping reveals propulsion forces, power generation and motility efficiency of the unicellular parasites Trypanosoma brucei brucei.

    PubMed

    Stellamanns, Eric; Uppaluri, Sravanti; Hochstetter, Axel; Heddergott, Niko; Engstler, Markus; Pfohl, Thomas

    2014-10-01

    Unicellular parasites have developed sophisticated swimming mechanisms to survive in a wide range of environments. Cell motility of African trypanosomes, parasites responsible for fatal illness in humans and animals, is crucial both in the insect vector and the mammalian host. Using millisecond-scale imaging in a microfluidics platform along with a custom made optical trap, we are able to confine single cells to study trypanosome motility. From the trapping characteristics of the cells, we determine the propulsion force generated by cells with a single flagellum as well as of dividing trypanosomes with two fully developed flagella. Estimates of the dissipative energy and the power generation of single cells obtained from the motility patterns of the trypanosomes within the optical trap indicate that specific motility characteristics, in addition to locomotion, may be required for antibody clearance. Introducing a steerable second optical trap we could further measure the force, which is generated at the flagellar tip. Differences in the cellular structure of the trypanosomes are correlated with the trapping and motility characteristics and in consequence with their propulsion force, dissipative energy and power generation.

  18. Climate forcing by the on-road transportation and power generation sectors

    NASA Astrophysics Data System (ADS)

    Unger, Nadine; Shindell, Drew T.; Wang, James S.

    The on-road transportation (ORT) and power generation (PG) sectors are major contributors to carbon dioxide (CO 2) emissions and a host of short-lived radiatively-active air pollutants, including tropospheric ozone and fine aerosol particles, that exert complex influences on global climate. Effective mitigation of global climate change necessitates action in these sectors for which technology change options exist or are being developed. Most assessments of possible energy change options to date have neglected non-CO 2 air pollutant impacts on radiative forcing (RF). In a multi-pollutant approach, we apply a global atmospheric composition-climate model to quantify the total RF from the global and United States (U.S.) ORT and PG sectors. We assess the RF for 2 time horizons: 20- and 100-year that are relevant for understanding near-term and longer-term impacts of climate change, respectively. ORT is a key target sector to mitigate global climate change because the net non-CO 2 RF is positive and acts to enhance considerably the CO 2 warming impacts. We perform further sensitivity studies to assess the RF impacts of a potential major technology shift that would reduce ORT emissions by 50% with the replacement energy supplied either by a clean zero-emissions source (S1) or by the PG sector, which results in an estimated 20% penalty increase in emissions from this sector (S2). We examine cases where the technology shift is applied globally and in the U.S. only. The resultant RF relative to the present day control is negative (cooling) in all cases for both S1 and S2 scenarios, global and U.S. emissions, and 20- and 100-year time horizons. The net non-CO 2 RF is always important relative to the CO 2 RF and outweighs the CO 2 RF response in the S2 scenario for both time horizons. Assessment of the full impacts of technology and policy strategies designed to mitigate global climate change must consider the climate effects of ozone and fine aerosol particles.

  19. Bacillus subtilis Bacteria Generate an Internal Mechanical Force within a Biofilm

    PubMed Central

    Douarche, Carine; Allain, Jean-Marc; Raspaud, Eric

    2015-01-01

    A key issue in understanding why biofilms are the most prevalent mode of bacterial life is the origin of the degree of resistance and protection that bacteria gain from self-organizing into biofilm communities. Our experiments suggest that their mechanical properties are a key factor. Experiments on pellicles, or floating biofilms, of Bacillus subtilis showed that while they are multiplying and secreting extracellular substances, bacteria create an internal force (associated with a −80 ± 25 Pa stress) within the biofilms, similar to the forces that self-equilibrate and strengthen plants, organs, and some engineered buildings. Here, we found that this force, or stress, is associated with growth-induced pressure. Our observations indicate that due to such forces, biofilms spread after any cut or ablation by up to 15–20% of their initial size. The force relaxes over very short timescales (tens of milliseconds). We conclude that this force helps bacteria to shape the biofilm, improve its mechanical resistance, and facilitate its invasion and self-repair. PMID:26588577

  20. College and the Digital Generation: Assessing and Training Students for the Technological Demands of College by Exploring Relationships between Computer Self-Efficacy and Computer Proficiency

    ERIC Educational Resources Information Center

    Morris, Kathleen M.

    2010-01-01

    Today's college students are often labeled the "Net Generation" and assumed to be computer savvy and technological minded. Exposure to and use of technologies can increase self-efficacy regarding ability to complete desired computer tasks, but students arrive on campuses unable to pass computer proficiency exams. This is concerning because some…

  1. A Computer Based Data Management System for Air Force War Reserve Materiel (WRM) Vehicle Management

    DTIC Science & Technology

    1988-09-01

    THESIS Robert S. Thomas First Lieutenant, USAF AFIT/GLM/LSM/8RS-70 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright...School of Logistics of the Air Force Institute of Technology Air University In Partial Fulfillment of the Requirements for the Degree Master of Science...of Available Technology and Equipment ... 23 Software Identification.........................24 Interface with Existing Systems.................28

  2. Computer-Mediated Training Tools to Enhance Joint Task Force Cognitive Leadership Skills

    DTIC Science & Technology

    2007-04-01

    this morning’s reports indicate that a significant concentration of al-Qaeda operatives and Taliban forces have been discovered once again in the Shahi ...assistance of a US-led JTF to deal with the resurgence of enemy forces in the Shahi -Kot Valley. Module #1 Scenario: (Strategic National Level) You are on the...to conduct Operation DIAMONDBACK to destroy al-Qaeda and Taliban forces in the vicinity of the Shahi -Kot Valley and Arma Mountains southeast of Zormat

  3. Electromagnetic tracking of motion in the proximity of computer generated graphical stimuli: a tutorial.

    PubMed

    Schnabel, Ulf H; Hegenloh, Michael; Müller, Hermann J; Zehetleitner, Michael

    2013-09-01

    Electromagnetic motion-tracking systems have the advantage of capturing the tempo-spatial kinematics of movements independently of the visibility of the sensors. However, they are limited in that they cannot be used in the proximity of electromagnetic field sources, such as computer monitors. This prevents exploiting the tracking potential of the sensor system together with that of computer-generated visual stimulation. Here we present a solution for presenting computer-generated visual stimulation that does not distort the electromagnetic field required for precise motion tracking, by means of a back projection medium. In one experiment, we verify that cathode ray tube monitors, as well as thin-film-transistor monitors, distort electro-magnetic sensor signals even at a distance of 18 cm. Our back projection medium, by contrast, leads to no distortion of the motion-tracking signals even when the sensor is touching the medium. This novel solution permits combining the advantages of electromagnetic motion tracking with computer-generated visual stimulation.

  4. Towards pattern generation and chaotic series prediction with photonic reservoir computers

    NASA Astrophysics Data System (ADS)

    Antonik, Piotr; Hermans, Michiel; Duport, François; Haelterman, Marc; Massar, Serge

    2016-03-01

    Reservoir Computing is a bio-inspired computing paradigm for processing time dependent signals that is particularly well suited for analog implementations. Our team has demonstrated several photonic reservoir computers with performance comparable to digital algorithms on a series of benchmark tasks such as channel equalisation and speech recognition. Recently, we showed that our opto-electronic reservoir computer could be trained online with a simple gradient descent algorithm programmed on an FPGA chip. This setup makes it in principle possible to feed the output signal back into the reservoir, and thus highly enrich the dynamics of the system. This will allow to tackle complex prediction tasks in hardware, such as pattern generation and chaotic and financial series prediction, which have so far only been studied in digital implementations. Here we report simulation results of our opto-electronic setup with an FPGA chip and output feedback applied to pattern generation and Mackey-Glass chaotic series prediction. The simulations take into account the major aspects of our experimental setup. We find that pattern generation can be easily implemented on the current setup with very good results. The Mackey-Glass series prediction task is more complex and requires a large reservoir and more elaborate training algorithm. With these adjustments promising result are obtained, and we now know what improvements are needed to match previously reported numerical results. These simulation results will serve as basis of comparison for experiments we will carry out in the coming months.

  5. Random generation of periodic hard ellipsoids based on molecular dynamics: A computationally-efficient algorithm

    NASA Astrophysics Data System (ADS)

    Ghossein, Elias; Lévesque, Martin

    2013-11-01

    This paper presents a computationally-efficient algorithm for generating random periodic packings of hard ellipsoids. The algorithm is based on molecular dynamics where the ellipsoids are set in translational and rotational motion and their volumes gradually increase. Binary collision times are computed by simply finding the roots of a non-linear function. In addition, an original and efficient method to compute the collision time between an ellipsoid and a cube face is proposed. The algorithm can generate all types of ellipsoids (prolate, oblate and scalene) with very high aspect ratios (i.e., >10). It is the first time that such packings are reported in the literature. Orientations tensors were computed for the generated packings and it has been shown that ellipsoids had a uniform distribution of orientations. Moreover, it seems that for low aspect ratios (i.e., ⩽10), the volume fraction is the most influential parameter on the algorithm CPU time. For higher aspect ratios, the influence of the latter becomes as important as the volume fraction. All necessary pseudo-codes are given so that the reader can easily implement the algorithm.

  6. Acute effect of androgens on maximal force-generating capacity and electrically evoked calcium transient in mouse skeletal muscles.

    PubMed

    Fraysse, Bodvael; Vignaud, Alban; Fane, Bourama; Schuh, Mélanie; Butler-Browne, Gillian; Metzger, Daniel; Ferry, Arnaud

    2014-09-01

    As androgens might have rapid androgen-receptor (AR) independent action on muscle cells, we analysed the in vivo acute effect of androgens on maximal force generation capacity and electrically evoked calcium transient responsible for the excitation-contraction coupling in skeletal muscle from wild-type male mice and muscle fibre androgen receptor (AR) deficient (AR(skm-/y)) male mice. We tested the hypothesis that acute in vivo androgen treatment improves contractility and modifies calcium transient in mouse hindlimb muscles. In addition, we determined whether the reduced maximal force generation capacity of AR(skm-/y) mice is caused by an alteration in calcium transient. We found that acute dehydrotestosterone (DHT) and testosterone treatment of mice does not change in situ maximal force, power or fatigue resistance of tibialis anterior muscles. In agreement with this observation, maximal force and twitch kinetics also remained unchanged when both whole extensor digitorum longus (EDL) muscle or fibre bundles were incubated in vitro with DHT. Electrically evoked calcium transient, i.e. calcium amplitude, time to peak and decay, was also not modified by DHT treatment of EDL muscle fibre bundles. Finally, we found no difference in calcium transient between AR(skm-/y) and wild-type mice despite the reduced maximal force in EDL fibre bundles of AR(skm-/y) mice. In conclusion, acute androgen treatment has no ergogenic effect on muscle contractility and does not affect calcium transient in response to stimulation. In addition, the reduced maximal force of AR(skm-/y) mice is not related to calcium transient dysfunction.

  7. Jar-opening challenges. Part 2: estimating the force-generating capacity of thumb muscles in healthy young adults during jar-opening tasks.

    PubMed

    Kuo, L C; Chang, J H; Lin, C F; Hsu, H Y; Ho, K Y; Su, F C

    2009-07-01

    This study discusses the force-generating capacity of thumb muscles during jar-opening tasks using two grip patterns: the power grip and the precision grip. This study develops a three-dimensional biomechanical model of the thumb to predict muscle forces in jar-opening activities based on external forces measured by a custom-designed jar device. Ten healthy subjects participated in the study. Each participant turned a jar lid of 66 mm diameter counterclockwise with maximal effort and preferred speed using both grip patterns. The average normal and tangential forces applied by the thumb to the jar lid show that the normal force is the primary contributive force for opening a jar. This normal force is approximately three times the tangential force. Muscular force-generating capacity measurements show that the major active muscles during a jar-opening activity for both grips include the flexor pollicis longus, flexor pollicis brevis, abductor pollicis brevis, adductor pollicis, and opponens pollicis. The total muscle force ratios for the precision grip and power grip with respect to externally applied forces are 5.6 and 4.7 respectively. These ratios indicate that the power grip pattern produces less muscle force per unit of external applied load. The technique proposed in this study provides a proper apparatus and model for measuring three-dimensional loads and estimating the force-generating capacity of each muscle and tendon of the thumb during jar-opening tasks.

  8. Developmant of a Reparametrized Semi-Empirical Force Field to Compute the Rovibrational Structure of Large PAHs

    NASA Astrophysics Data System (ADS)

    Fortenberry, Ryan

    The Spitzer Space Telescope observation of spectra most likely attributable to diverse and abundant populations of polycyclic aromatic hydrocarbons (PAHs) in space has led to tremendous interest in these molecules as tracers of the physical conditions in different astrophysical regions. A major challenge in using PAHs as molecular tracers is the complexity of the spectral features in the 3-20 μm region. The large number and vibrational similarity of the putative PAHs responsible for these spectra necessitate determination for the most accurate basis spectra possible for comparison. It is essential that these spectra be established in order for the regions explored with the newest generation of observatories such as SOFIA and JWST to be understood. Current strategies to develop these spectra for individual PAHs involve either matrixisolation IR measurements or quantum chemical calculations of harmonic vibrational frequencies. These strategies have been employed to develop the successful PAH IR spectral database as a repository of basis functions used to fit astronomically observed spectra, but they are limited in important ways. Both techniques provide an adequate description of the molecules in their electronic, vibrational, and rotational ground state, but these conditions do not represent energetically hot regions for PAHs near strong radiation fields of stars and are not direct representations of the gas phase. Some non-negligible matrix effects are known in condensed-phase studies, and the inclusion of anharmonicity in quantum chemical calculations is essential to generate physically-relevant results especially for hot bands. While scaling factors in either case can be useful, they are agnostic to the system studied and are not robustly predictive. One strategy that has emerged to calculate the molecular vibrational structure uses vibrational perturbation theory along with a quartic force field (QFF) to account for higher-order derivatives of the potential

  9. Modelling LARES temperature distribution and thermal drag II: Numerical computation of current-epoch thermal forces

    NASA Astrophysics Data System (ADS)

    Brooks, Jason W.; Matzner, Richard

    2016-07-01

    The LARES satellite is a laser-ranged space experiment to contribute to geophysics observation, and to measure the general relativistic Lense-Thirring effect. LARES consists of a solid tungsten alloy sphere, into which 92 fused-silica Cube Corner Reflectors (CCRs) are set in colatitude circles ("rows"). During its first four months in orbit it was observed to undergo an anomalous along-track orbital acceleration of approximately -0.4 pm/s2 (pm: = picometer). The first paper in this series (Eur. Phys. J. Plus 130, 206 (2015) - Paper I) computed the thermally induced along-track "thermal drag" on the LARES satellite during the first 126 days after launch. The results there suggest that the IR absorbance α and emissivity ɛ of the CCRs equal 0.60, a possible value for silica with slight surface contamination subjected to the space environment. Paper I computed an average thermal drag acceleration of -0.36 pm/s2 for a 120-day period starting with the 7th day after launch. The heating and the resultant along-track acceleration depend on the plane of the orbit, the sun position, and in particular on the occurrence of eclipses, all of which are functions of time. Thus we compute the thermal drag for specific days. The satellite is heated from two sources: sunlight and Earth's infrared (IR) radiation. Paper I worked in the fast-spin regime, where CCRs with the same colatitude can be taken to have the same temperature. Further, since all temperature variations (temporal or spatial) were small in this regime, Paper I linearized the Stefan-Boltzmann law and performed a Fourier series analysis. However, the spin rate of the satellite is expected currently ( ≈ day 1500) to be slow, of order ≈ 5 /orbit, so the "fast-spin equal-temperatures in a row" assumption is suspect. In this paper, which considers epochs up to 1580 days after launch, we do not linearize and we use direct numerical integration instead of Fourier methods. In addition to the along-track drag, this code

  10. Estimation of changes in dynamic hydraulic force in a magnetically suspended centrifugal blood pump with transient computational fluid dynamics analysis.

    PubMed

    Masuzawa, Toru; Ohta, Akiko; Tanaka, Nobuatu; Qian, Yi; Tsukiya, Tomonori

    2009-01-01

    The effect of the hydraulic force on magnetically levitated (maglev) pumps should be studied carefully to improve the suspension performance and the reliability of the pumps. A maglev centrifugal pump, developed at Ibaraki University, was modeled with 926 376 hexahedral elements for computational fluid dynamics (CFD) analyses. The pump has a fully open six-vane impeller with a diameter of 72.5 mm. A self-bearing motor suspends the impeller in the radial direction. The maximum pressure head and flow rate were 250 mmHg and 14 l/min, respectively. First, a steady-state analysis was performed using commercial code STAR-CD to confirm the model's suitability by comparing the results with the real pump performance. Second, transient analysis was performed to estimate the hydraulic force on the levitated impeller. The impeller was rotated in steps of 1 degrees using a sliding mesh. The force around the impeller was integrated at every step. The transient analysis revealed that the direction of the radial force changed dynamically as the vane's position changed relative to the outlet port during one circulation, and the magnitude of this force was about 1 N. The current maglev pump has sufficient performance to counteract this hydraulic force. Transient CFD analysis is not only useful for observing dynamic flow conditions in a centrifugal pump but is also effective for obtaining information about the levitation dynamics of a maglev pump.

  11. Sympathetic activation by the cold pressor test does not increase the muscle force generation capacity.

    PubMed

    Roatta, Silvestro; Farina, Dario

    2011-06-01

    A positive inotropic action by the sympathetic nervous system on skeletal muscles has been observed and investigated in animal and in vitro studies. This action provided a theoretical basis for the putative ergogenic action of catecholamines and adrenergic agonists, although there is no clear evidence of this effect in humans. The aim of this study was to investigate the occurrence of inotropic effects associated to physiological sympathetic activation in healthy subjects. The muscle force capacity was investigated in the tibialis anterior (n = 9 subjects) and in the soleus (n = 9) muscles electrically stimulated with single pulses and double pulses with variable interspike interval (4-1,000 ms) and short pulse trains (frequency: 5-14 Hz) before, during, and after sympathetic activation by the cold pressor test (CPT). CPT significantly decreased by 10.4 ± 7.2 and 10.6 ± 4.4% the force produced by single and double pulse stimulation, respectively, and produced smaller decreases in the force obtained by train stimulation in the tibialis anterior, while no significant changes were observed in either type of contraction in the soleus muscle. CPT failed to induce any increase in the force capacity of the investigated muscles. The prevalent decrease in force evidenced in this study supports the concept that the weakening sympathetic action on type I fiber, already shown to occur in humans, prevails over the putative potentiating action.

  12. Analysis of wavefront errors introduced by encoding computer-generated holograms.

    PubMed

    Cai, Wenrui; Zhou, Ping; Zhao, Chunyu; Burge, James H

    2013-12-01

    The fabrication of computer-generated holograms (CGH) by e-beam or laser-writing machine specifically requires using polygon segments to approximate the continuously smooth fringe pattern of an ideal CGH. Wavefront phase errors introduced in this process depend on the size of the polygon segments and the shape of the fringes. In this paper, we propose a method for estimating the wavefront error and its spatial frequency, allowing optimization of the polygon sizes for required measurement accuracy. This method is validated with computer simulation and direct measurements from an interferometer.

  13. Spatial frequency sampling look-up table method for computer-generated hologram

    NASA Astrophysics Data System (ADS)

    Zhao, Kai; Huang, Yingqing; Jiang, Xiaoyu; Yan, Xingpeng

    2016-04-01

    A spatial frequency sampling look-up table method is proposed to generate a hologram. The three-dimensional (3-D) scene is sampled as several intensity images by computer rendering. Each object point on the rendered images has a defined spatial frequency. The basis terms for calculating fringe patterns are precomputed and stored in a table to improve the calculation speed. Both numerical simulations and optical experiments are performed. The results show that the proposed approach can easily realize color reconstructions of a 3-D scene with a low computation cost. The occlusion effects and depth information are all provided accurately.

  14. Forces generated during stretch in the heart of the lobster Homarus americanus are anisotropic and are altered by neuromodulators.

    PubMed

    Dickinson, E S; Johnson, A S; Ellers, O; Dickinson, P S

    2016-04-15

    Mechanical and neurophysiological anisotropies mediate three-dimensional responses of the heart of ITALIC! Homarus americanus Although hearts ITALIC! in vivoare loaded multi-axially by pressure, studies of invertebrate cardiac function typically use uniaxial tests. To generate whole-heart length-tension curves, stretch pyramids at constant lengthening and shortening rates were imposed uniaxially and biaxially along longitudinal and transverse axes of the beating whole heart. To determine whether neuropeptides that are known to modulate cardiac activity in ITALIC! H. americanusaffect the active or passive components of these length-tension curves, we also performed these tests in the presence of SGRNFLRFamide (SGRN) and GYSNRNYLRFamide (GYS). In uniaxial and biaxial tests, both passive and active forces increased with stretch along both measurement axes. The increase in passive forces was anisotropic, with greater increases along the longitudinal axis. Passive forces showed hysteresis and active forces were higher during lengthening than shortening phases of the stretch pyramid. Active forces at a given length were increased by both neuropeptides. To exert these effects, neuropeptides might have acted indirectly on the muscle via their effects on the cardiac ganglion, directly on the neuromuscular junction, or directly on the muscles. Because increases in response to stretch were also seen in stimulated motor nerve-muscle preparations, at least some of the effects of the peptides are likely peripheral. Taken together, these findings suggest that flexibility in rhythmic cardiac contractions results from the amplified effects of neuropeptides interacting with the length-tension characteristics of the heart.

  15. Developing an Effective and Efficient Real Time Strategy Agent for Use as a Computer Generated Force

    DTIC Science & Technology

    2010-03-01

    other RTS games. Energy (money) and magma (fuel) are consumed at a rate based on the number of units and buildings a player owns. As the size of the...a text file. Each snapshot consists of thirty different statistics: Energy Rate; Magma Rate; Stored Energy; Stored Magma ; Energy Capacity; Magma ...Medics; Rocket Tanks; Tanks; Harvesters; Training Camps; Vehicle Factories; Gun Turrets; Big Gun Turrets; Cameras; Vaults; Magma Pumps; Power Plants

  16. Dynamic localization of LIN-5 and GPR-1/2 to cortical force generation domains during spindle positioning

    PubMed Central

    Park, Dae Hwi; Rose, Lesilee S.

    2008-01-01

    G protein signaling pathways regulate mitotic spindle positioning during cell division in many systems. In C. elegans embryos, Gα subunits act with the positive regulators GPR-1/2 and LIN-5 to generate cortical pulling forces for posterior spindle displacement during the first asymmetric division. GPR-1/2 are asymmetrically localized at the posterior cortex by PAR polarity cues at this time. Here we show that LIN-5 colocalizes with GPR-1/2 in one-cell embryos during spindle displacement. Significantly, we also find that LIN-5 and GPR-1/2 are localized to the opposite, anterior cortex in a polarity dependent manner during the nuclear centration and rotation movements that orient the forming spindle onto the polarity axis. The depletion of LIN-5 or GPR-1/2 results in decreased centration and rotation rates, indicating a role in force generation at this stage. The localization of LIN- 5 and GPR-1/2 is largely interdependent and requires Gα. Further, LIN-5 immunoprecipitates with Gα in vivo, and association is GPR-1/2 dependent. These results suggest that a complex of Gα /GPR- 1/2/LIN-5 is asymmetrically localized in response to polarity cues, and this may be the active signaling complex that transmits asymmetries to the force generation machinery during both nuclear rotation and spindle displacement. PMID:18234174

  17. Mantle seismic anisotropy beneath the 660km phase transition generated by subduction body force stresses.

    NASA Astrophysics Data System (ADS)

    Nippress, S.; Kusznir, N. J.; Kendall, M.

    2003-04-01

    Observations of seismic anisotropy can provide insights into the style of mantle dynamics near the 660km discontinuity. Wookey et al. (2002) report up to 7 seconds of shear wave splitting for rays generated by deep focus events from the Tonga subduction zone and recorded in Australia. The results suggest a transversely isotropic symmetry with the symmetry axis in the vertical plane, perpendicular to the ray direction. Thus, for horizontally travelling waves this would imply horizontally polarised shear waves (SH lead SV). They show that a topmost lower mantle model with anisotropy between 660-900km could produce theoretical shear wave splitting similar to that observed. Therefore, the seismic anisotropy observed by Wookey et al., can be explained by an anisotropic region between 660-900km, with only a minimal contribution from above the 660km phase transition. The goal of this study is to try to explain the observed shear wave splitting using geodynamical modelling. We use finite element (FE) modelling to calculate slab-induced models of fluid flow, total stress and deviatoric stress. A simple 2D subduction zone model with a prescribed viscosity structure and slab density is used. Large deviatoric stresses (maximum values ~ 40 MPa) are generated in the topmost lower mantle when the subducting slab encounters an increase in viscosity at the 660km phase transition. These stresses may induce mineral alignment in a broad region (lateral wavelength approximately » 800km) in the topmost lower mantle below the slab. Perovskite may therefore be aligned with a rotated symmetry axis conformal to the shape of this region of high deviatoric stress. Aligned Perovskite rotated more than 30 degrees predicts SH-waves faster than SV-waves for horizontally travelling S-waves. The formulation of McKenzie (1979) is used to calculate the finite strain accumulated by a mantle parcel as it propagates through the FE flow models. The computed strain ellipsoids align in a similar region

  18. Using PHM to measure equipment usable life on the Air Force's next generation reusable space booster

    NASA Astrophysics Data System (ADS)

    Blasdel, A.

    The U.S. Air Force procures many launch vehicles and launch vehicle services to place their satellites at their desired location in space. The equipment on-board these satellite and launch vehicle often suffer from premature failures that result in the total loss of the satellite or a shortened mission life sometimes requiring the purchase of a replacement satellite and launch vehicle. The Air Force uses its EELV to launch its high priority satellites. Due to a rise in the cost of purchasing a launch using the Air Force's EELV from 72M in 1997 to as high as 475M per launch today, the Air Force is working to replace the EELV with a reusable space booster (RSB). The RSB will be similar in design and operations to the recently cancelled NASA reusable space booster known as the Space Shuttle. If the Air Force uses the same process that procures the EELV and other launch vehicles and satellites, the RSB will also suffer from premature equipment failures thus putting the payloads at a similar high risk of mission failure. The RSB is expected to lower each launch cost by 50% compared to the EELV. The development of the RSB offers the Air Force an opportunity to use a new reliability paradigm that includes a prognostic and health management program and a condition-based maintenance program. These both require using intelligent, decision making self-prognostic equipment The prognostic and health management program and its condition-based maintenance program allows increases in RSB equipment usable life, lower logistics and maintenance costs, while increasing safety and mission assurance. The PHM removes many decisions from personnel that, in the past resulted in catastrophic failures and loss of life. Adding intelligent, decision-making self-prognostic equipment to the RSB will further decrease launch costs while decreasing risk and increasing safety and mission assurance.

  19. Magnetic Circuit Model of PM Motor-Generator to Predict Radial Forces

    NASA Technical Reports Server (NTRS)

    McLallin, Kerry (Technical Monitor); Kascak, Peter E.; Dever, Timothy P.; Jansen, Ralph H.

    2004-01-01

    A magnetic circuit model is developed for a PM motor for flywheel applications. A sample motor is designed and modeled. Motor configuration and selection of materials is discussed, and the choice of winding configuration is described. A magnetic circuit model is described, which includes the stator back iron, rotor yoke, permanent magnets, air gaps and the stator teeth. Iterative solution of this model yields flux linkages, back EMF, torque, power, and radial force at the rotor caused by eccentricity. Calculated radial forces are then used to determine motor negative stiffness.

  20. Digital computer programs for generating oblique orthographic projections and contour plots

    NASA Technical Reports Server (NTRS)

    Giles, G. L.

    1975-01-01

    User and programer documentation is presented for two programs for automatic plotting of digital data. One of the programs generates oblique orthographic projections of three-dimensional numerical models and the other program generates contour plots of data distributed in an arbitrary planar region. A general description of the computational algorithms, user instructions, and complete listings of the programs is given. Several plots are included to illustrate various program options, and a single example is described to facilitate learning the use of the programs.