Sample records for computer generated stimuli

  1. Computer programming for generating visual stimuli.

    PubMed

    Bukhari, Farhan; Kurylo, Daniel D

    2008-02-01

    Critical to vision research is the generation of visual displays with precise control over stimulus metrics. Generating stimuli often requires adapting commercial software or developing specialized software for specific research applications. In order to facilitate this process, we give here an overview that allows nonexpert users to generate and customize stimuli for vision research. We first give a review of relevant hardware and software considerations, to allow the selection of display hardware, operating system, programming language, and graphics packages most appropriate for specific research applications. We then describe the framework of a generic computer program that can be adapted for use with a broad range of experimental applications. Stimuli are generated in the context of trial events, allowing the display of text messages, the monitoring of subject responses and reaction times, and the inclusion of contingency algorithms. This approach allows direct control and management of computer-generated visual stimuli while utilizing the full capabilities of modern hardware and software systems. The flowchart and source code for the stimulus-generating program may be downloaded from www.psychonomic.org/archive.

  2. Increasing Valid Profiles in Phallometric Assessment of Sex Offenders with Child Victims: Combining the Strengths of Audio Stimuli and Synthetic Characters.

    PubMed

    Marschall-Lévesque, Shawn; Rouleau, Joanne-Lucine; Renaud, Patrice

    2018-02-01

    Penile plethysmography (PPG) is a measure of sexual interests that relies heavily on the stimuli it uses to generate valid results. Ethical considerations surrounding the use of real images in PPG have further limited the content admissible for these stimuli. To palliate this limitation, the current study aimed to combine audio and visual stimuli by incorporating computer-generated characters to create new stimuli capable of accurately classifying sex offenders with child victims, while also increasing the number of valid profiles. Three modalities (audio, visual, and audiovisual) were compared using two groups (15 sex offenders with child victims and 15 non-offenders). Both the new visual and audiovisual stimuli resulted in a 13% increase in the number of valid profiles at 2.5 mm, when compared to the standard audio stimuli. Furthermore, the new audiovisual stimuli generated a 34% increase in penile responses. All three modalities were able to discriminate between the two groups by their responses to the adult and child stimuli. Lastly, sexual interest indices for all three modalities could accurately classify participants in their appropriate groups, as demonstrated by ROC curve analysis (i.e., audio AUC = .81, 95% CI [.60, 1.00]; visual AUC = .84, 95% CI [.66, 1.00], and audiovisual AUC = .83, 95% CI [.63, 1.00]). Results suggest that computer-generated characters allow accurate discrimination of sex offenders with child victims and can be added to already validated stimuli to increase the number of valid profiles. The implications of audiovisual stimuli using computer-generated characters and their possible use in PPG evaluations are also discussed.

  3. Applications of computer-graphics animation for motion-perception research

    NASA Technical Reports Server (NTRS)

    Proffitt, D. R.; Kaiser, M. K.

    1986-01-01

    The advantages and limitations of using computer animated stimuli in studying motion perception are presented and discussed. Most current programs of motion perception research could not be pursued without the use of computer graphics animation. Computer generated displays afford latitudes of freedom and control that are almost impossible to attain through conventional methods. There are, however, limitations to this presentational medium. At present, computer generated displays present simplified approximations of the dynamics in natural events. Very little is known about how the differences between natural events and computer simulations influence perceptual processing. In practice, the differences are assumed to be irrelevant to the questions under study, and that findings with computer generated stimuli will generalize to natural events.

  4. Extracting Depth From Motion Parallax in Real-World and Synthetic Displays

    NASA Technical Reports Server (NTRS)

    Hecht, Heiko; Kaiser, Mary K.; Aiken, William; Null, Cynthia H. (Technical Monitor)

    1994-01-01

    In psychophysical studies on human sensitivity to visual motion parallax (MP), the use of computer displays is pervasive. However, a number of potential problems are associated with such displays: cue conflicts arise when observers accommodate to the screen surface, and observer head and body movements are often not reflected in the displays. We investigated observers' sensitivity to depth information in MP (slant, depth order, relative depth) using various real-world displays and their computer-generated analogs. Angle judgments of real-world stimuli were consistently superior to judgments that were based on computer-generated stimuli. Similar results were found for perceived depth order and relative depth. Perceptual competence of observers tends to be underestimated in research that is based on computer generated displays. Such findings cannot be generalized to more realistic viewing situations.

  5. A dense array stimulator to generate arbitrary spatio-temporal tactile stimuli

    PubMed Central

    Killebrew, Justin H.; Bensmaïa, Sliman J.; Dammann, John F.; Denchev, Peter; Hsiao, Steven S.; Craig, James C.

    2007-01-01

    The generation and presentation of tactile stimuli presents a unique challenge. Unlike vision and audition, in which standard equipment such as monitors and audio systems can be used for most experiments, tactile stimuli and/or stimulators often have to be tailor-made for a given study. Here, we present a novel tactile stimulator designed to present arbitrary spatio-temporal stimuli to the skin. The stimulator consists of 400 pins, arrayed over a 1 cm2 area, each under independent computer control. The dense array allows for an unprecedented number of stimuli to be presented within an experimental session (e.g., up to 1200 stimuli per minute) and for stimuli to be generated adaptively. The stimulator can be used in a variety of modes and can deliver indented and scanned patterns as well as stimuli defined by mathematical spatio-temporal functions (e.g., drifting sinusoids). We describe the hardware and software of the system, and discuss previous and prospective applications. PMID:17134760

  6. External audio for IBM-compatible computers

    NASA Technical Reports Server (NTRS)

    Washburn, David A.

    1992-01-01

    Numerous applications benefit from the presentation of computer-generated auditory stimuli at points discontiguous with the computer itself. Modification of an IBM-compatible computer for use of an external speaker is relatively easy but not intuitive. This modification is briefly described.

  7. The virtual people set: developing computer-generated stimuli for the assessment of pedophilic sexual interest.

    PubMed

    Dombert, Beate; Mokros, Andreas; Brückner, Eva; Schlegl, Verena; Antfolk, Jan; Bäckström, Anna; Zappalà, Angelo; Osterheider, Michael; Santtila, Pekka

    2013-12-01

    The implicit assessment of pedophilic sexual interest through viewing-time methods necessitates visual stimuli. There are grave ethical and legal concerns against using pictures of real children, however. The present report is a summary of findings on a new set of 108 computer-generated stimuli. The images vary in terms of gender (female/male), explicitness (naked/clothed), and physical maturity (prepubescent, pubescent, and adult) of the persons depicted. A series of three studies tested the internal and external validity of the picture set. Studies 1 and 2 yielded good-to-high estimates of observer agreement with regard to stimulus maturity levels by two methods (categorization and paired comparison). Study 3 extended these findings with regard to judgments made by convicted child sexual offenders.

  8. Generating Stimuli for Neuroscience Using PsychoPy.

    PubMed

    Peirce, Jonathan W

    2008-01-01

    PsychoPy is a software library written in Python, using OpenGL to generate very precise visual stimuli on standard personal computers. It is designed to allow the construction of as wide a variety of neuroscience experiments as possible, with the least effort. By writing scripts in standard Python syntax users can generate an enormous variety of visual and auditory stimuli and can interact with a wide range of external hardware (enabling its use in fMRI, EEG, MEG etc.). The structure of scripts is simple and intuitive. As a result, new experiments can be written very quickly, and trying to understand a previously written script is easy, even with minimal code comments. PsychoPy can also generate movies and image sequences to be used in demos or simulated neuroscience experiments. This paper describes the range of tools and stimuli that it provides and the environment in which experiments are conducted.

  9. Halftoning method for the generation of motion stimuli

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.; Stone, Leland S.

    1989-01-01

    This paper describes a novel computer-graphic technique for the generation of a broad class of motion stimuli for vision research, which uses color table animation in conjunction with a single base image. Using this technique, contrast and temporal frequency can be varied with a negligible amount of computation, once a single-base image is produced. Since only two-bit planes are needed to display a single drifting grating, an eight-bit/pixel display can be used to generate four-component plaids, in which each component of the plaid has independently programmable contrast and temporal frequency. Because the contrast and temporal frequencies of the various components are mutually independent, a large number of two-dimensional stimulus motions can be produced from a single image file.

  10. 4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials.

    PubMed

    Li, Yi-Chen; Zhang, Yu Shrike; Akpek, Ali; Shin, Su Ryon; Khademhosseini, Ali

    2016-12-02

    Four-dimensional (4D) bioprinting, encompassing a wide range of disciplines including bioengineering, materials science, chemistry, and computer sciences, is emerging as the next-generation biofabrication technology. By utilizing stimuli-responsive materials and advanced three-dimensional (3D) bioprinting strategies, 4D bioprinting aims to create dynamic 3D patterned biological structures that can transform their shapes or behavior under various stimuli. In this review, we highlight the potential use of various stimuli-responsive materials for 4D printing and their extension into biofabrication. We first discuss the state of the art and limitations associated with current 3D printing modalities and their transition into the inclusion of the additional time dimension. We then suggest the potential use of different stimuli-responsive biomaterials as the bioink that may achieve 4D bioprinting where transformation of fabricated biological constructs can be realized. We finally conclude with future perspectives.

  11. Color difference threshold of chromostereopsis induced by flat display emission.

    PubMed

    Ozolinsh, Maris; Muizniece, Kristine

    2015-01-01

    The study of chromostereopsis has gained attention in the backdrop of the use of computer displays in daily life. In this context, we analyze the illusory depth sense using planar color images presented on a computer screen. We determine the color difference threshold required to induce an illusory sense of depth psychometrically using a constant stimuli paradigm. Isoluminant stimuli are presented on a computer screen, which stimuli are aligned along the blue-red line in the computer display CIE xyY color space. Stereo disparity is generated by increasing the color difference between the central and surrounding areas of the stimuli with both areas consisting of random dots on a black background. The observed altering of illusory depth sense, thus also stereo disparity is validated using the "center-of-gravity" model. The induced illusory sense of the depth effect undergoes color reversal upon varying the binocular lateral eye pupil covering conditions (lateral or medial). Analysis of the retinal image point spread function for the display red and blue pixel radiation validates the altering of chromostereopsis retinal disparity achieved by increasing the color difference, and also the chromostereopsis color reversal caused by varying the eye pupil covering conditions.

  12. Universal Linear Motor Driven Leg Press Dynamometer and Concept of Serial Stretch Loading.

    PubMed

    Hamar, Dušan

    2015-08-24

    Paper deals with backgrounds and principles of universal linear motor driven leg press dynamometer and concept of serial stretch loading. The device is based on two computer controlled linear motors mounted to the horizontal rails. As the motors can keep either constant resistance force in selected position or velocity in both directions, the system allows simulation of any mode of muscle contraction. In addition, it also can generate defined serial stretch stimuli in a form of repeated force peaks. This is achieved by short segments of reversed velocity (in concentric phase) or acceleration (in eccentric phase). Such stimuli, generated at the rate of 10 Hz, have proven to be a more efficient means for the improvement of rate of the force development. This capability not only affects performance in many sports, but also plays a substantial role in prevention of falls and their consequences. Universal linear motor driven and computer controlled dynamometer with its unique feature to generate serial stretch stimuli seems to be an efficient and useful tool for enhancing strength training effects on neuromuscular function not only in athletes, but as well as in senior population and rehabilitation patients.

  13. How instructions modify perception: An fMRI study investigating brain areas involved in attributing human agency

    PubMed Central

    Stanley, James; Gowen, Emma; Miall, R. Christopher

    2010-01-01

    Behavioural studies suggest that the processing of movement stimuli is influenced by beliefs about the agency behind these actions. The current study examined how activity in social and action related brain areas differs when participants were instructed that identical movement stimuli were either human or computer generated. Participants viewed a series of point-light animation figures derived from motion-capture recordings of a moving actor, while functional magnetic resonance imaging (fMRI) was used to monitor patterns of neural activity. The stimuli were scrambled to produce a range of stimulus realism categories; furthermore, before each trial participants were told that they were about to view either a recording of human movement or a computer-simulated pattern of movement. Behavioural results suggested that agency instructions influenced participants' perceptions of the stimuli. The fMRI analysis indicated different functions within the paracingulate cortex: ventral paracingulate cortex was more active for human compared to computer agency instructed trials across all stimulus types, whereas dorsal paracingulate cortex was activated more highly in conflicting conditions (human instruction, low realism or vice versa). These findings support the hypothesis that ventral paracingulate encodes stimuli deemed to be of human origin, whereas dorsal paracingulate cortex is involved more in the ascertainment of human or intentional agency during the observation of ambiguous stimuli. Our results highlight the importance of prior instructions or beliefs on movement processing and the role of the paracingulate cortex in integrating prior knowledge with bottom-up stimuli. PMID:20398769

  14. SSCC TD: A Serial and Simultaneous Configural-Cue Compound Stimuli Representation for Temporal Difference Learning

    PubMed Central

    Mondragón, Esther; Gray, Jonathan; Alonso, Eduardo; Bonardi, Charlotte; Jennings, Dómhnall J.

    2014-01-01

    This paper presents a novel representational framework for the Temporal Difference (TD) model of learning, which allows the computation of configural stimuli – cumulative compounds of stimuli that generate perceptual emergents known as configural cues. This Simultaneous and Serial Configural-cue Compound Stimuli Temporal Difference model (SSCC TD) can model both simultaneous and serial stimulus compounds, as well as compounds including the experimental context. This modification significantly broadens the range of phenomena which the TD paradigm can explain, and allows it to predict phenomena which traditional TD solutions cannot, particularly effects that depend on compound stimuli functioning as a whole, such as pattern learning and serial structural discriminations, and context-related effects. PMID:25054799

  15. Ontology-based automatic generation of computerized cognitive exercises.

    PubMed

    Leonardi, Giorgio; Panzarasa, Silvia; Quaglini, Silvana

    2011-01-01

    Computer-based approaches can add great value to the traditional paper-based approaches for cognitive rehabilitation. The management of a big amount of stimuli and the use of multimedia features permits to improve the patient's involvement and to reuse and recombine them to create new exercises, whose difficulty level should be adapted to the patient's performance. This work proposes an ontological organization of the stimuli, to support the automatic generation of new exercises, tailored on the patient's preferences and skills, and its integration into a commercial cognitive rehabilitation tool. The possibilities offered by this approach are presented with the help of real examples.

  16. Computer-animated stimuli to measure motion sensitivity: constraints on signal design in the Jacky dragon.

    PubMed

    Woo, Kevin L; Rieucau, Guillaume; Burke, Darren

    2017-02-01

    Identifying perceptual thresholds is critical for understanding the mechanisms that underlie signal evolution. Using computer-animated stimuli, we examined visual speed sensitivity in the Jacky dragon Amphibolurus muricatus , a species that makes extensive use of rapid motor patterns in social communication. First, focal lizards were tested in discrimination trials using random-dot kinematograms displaying combinations of speed, coherence, and direction. Second, we measured subject lizards' ability to predict the appearance of a secondary reinforcer (1 of 3 different computer-generated animations of invertebrates: cricket, spider, and mite) based on the direction of movement of a field of drifting dots by following a set of behavioural responses (e.g., orienting response, latency to respond) to our virtual stimuli. We found an effect of both speed and coherence, as well as an interaction between these 2 factors on the perception of moving stimuli. Overall, our results showed that Jacky dragons have acute sensitivity to high speeds. We then employed an optic flow analysis to match the performance to ecologically relevant motion. Our results suggest that the Jacky dragon visual system may have been shaped to detect fast motion. This pre-existing sensitivity may have constrained the evolution of conspecific displays. In contrast, Jacky dragons may have difficulty in detecting the movement of ambush predators, such as snakes and of some invertebrate prey. Our study also demonstrates the potential of the computer-animated stimuli technique for conducting nonintrusive tests to explore motion range and sensitivity in a visually mediated species.

  17. Computer animations stimulate contagious yawning in chimpanzees

    PubMed Central

    Campbell, Matthew W.; Carter, J. Devyn; Proctor, Darby; Eisenberg, Michelle L.; de Waal, Frans B. M.

    2009-01-01

    People empathize with fictional displays of behaviour, including those of cartoons and computer animations, even though the stimuli are obviously artificial. However, the extent to which other animals also may respond empathetically to animations has yet to be determined. Animations provide a potentially useful tool for exploring non-human behaviour, cognition and empathy because computer-generated stimuli offer complete control over variables and the ability to program stimuli that could not be captured on video. Establishing computer animations as a viable tool requires that non-human subjects identify with and respond to animations in a way similar to the way they do to images of actual conspecifics. Contagious yawning has been linked to empathy and poses a good test of involuntary identification and motor mimicry. We presented 24 chimpanzees with three-dimensional computer-animated chimpanzees yawning or displaying control mouth movements. The apes yawned significantly more in response to the yawn animations than to the controls, implying identification with the animations. These results support the phenomenon of contagious yawning in chimpanzees and suggest an empathic response to animations. Understanding how chimpanzees connect with animations, to both empathize and imitate, may help us to understand how humans do the same. PMID:19740888

  18. Mechanical Influences on Morphogenesis of the Knee Joint Revealed through Morphological, Molecular and Computational Analysis of Immobilised Embryos

    PubMed Central

    Roddy, Karen A.; Prendergast, Patrick J.; Murphy, Paula

    2011-01-01

    Very little is known about the regulation of morphogenesis in synovial joints. Mechanical forces generated from muscle contractions are required for normal development of several aspects of normal skeletogenesis. Here we show that biophysical stimuli generated by muscle contractions impact multiple events during chick knee joint morphogenesis influencing differential growth of the skeletal rudiment epiphyses and patterning of the emerging tissues in the joint interzone. Immobilisation of chick embryos was achieved through treatment with the neuromuscular blocking agent Decamethonium Bromide. The effects on development of the knee joint were examined using a combination of computational modelling to predict alterations in biophysical stimuli, detailed morphometric analysis of 3D digital representations, cell proliferation assays and in situ hybridisation to examine the expression of a selected panel of genes known to regulate joint development. This work revealed the precise changes to shape, particularly in the distal femur, that occur in an altered mechanical environment, corresponding to predicted changes in the spatial and dynamic patterns of mechanical stimuli and region specific changes in cell proliferation rates. In addition, we show altered patterning of the emerging tissues of the joint interzone with the loss of clearly defined and organised cell territories revealed by loss of characteristic interzone gene expression and abnormal expression of cartilage markers. This work shows that local dynamic patterns of biophysical stimuli generated from muscle contractions in the embryo act as a source of positional information guiding patterning and morphogenesis of the developing knee joint. PMID:21386908

  19. Cortical travelling waves: mechanisms and computational principles

    PubMed Central

    Muller, Lyle; Chavane, Frédéric; Reynolds, John

    2018-01-01

    Multichannel recording technologies have revealed travelling waves of neural activity in multiple sensory, motor and cognitive systems. These waves can be spontaneously generated by recurrent circuits or evoked by external stimuli. They travel along brain networks at multiple scales, transiently modulating spiking and excitability as they pass. Here, we review recent experimental findings that have found evidence for travelling waves at single-area (mesoscopic) and whole-brain (macroscopic) scales. We place these findings in the context of the current theoretical understanding of wave generation and propagation in recurrent networks. During the large low-frequency rhythms of sleep or the relatively desynchronized state of the awake cortex, travelling waves may serve a variety of functions, from long-term memory consolidation to processing of dynamic visual stimuli. We explore new avenues for experimental and computational understanding of the role of spatiotemporal activity patterns in the cortex. PMID:29563572

  20. Memory conformity affects inaccurate memories more than accurate memories.

    PubMed

    Wright, Daniel B; Villalba, Daniella K

    2012-01-01

    After controlling for initial confidence, inaccurate memories were shown to be more easily distorted than accurate memories. In two experiments groups of participants viewed 50 stimuli and were then presented with these stimuli plus 50 fillers. During this test phase participants reported their confidence that each stimulus was originally shown. This was followed by computer-generated responses from a bogus participant. After being exposed to this response participants again rated the confidence of their memory. The computer-generated responses systematically distorted participants' responses. Memory distortion depended on initial memory confidence, with uncertain memories being more malleable than confident memories. This effect was moderated by whether the participant's memory was initially accurate or inaccurate. Inaccurate memories were more malleable than accurate memories. The data were consistent with a model describing two types of memory (i.e., recollective and non-recollective memories), which differ in how susceptible these memories are to memory distortion.

  1. Vocoders and Speech Perception: Uses of Computer-Based Speech Analysis-Synthesis in Stimulus Generation.

    ERIC Educational Resources Information Center

    Tierney, Joseph; Mack, Molly

    1987-01-01

    Stimuli used in research on the perception of the speech signal have often been obtained from simple filtering and distortion of the speech waveform, sometimes accompanied by noise. However, for more complex stimulus generation, the parameters of speech can be manipulated, after analysis and before synthesis, using various types of algorithms to…

  2. Computer-animated stimuli to measure motion sensitivity: constraints on signal design in the Jacky dragon

    PubMed Central

    Rieucau, Guillaume; Burke, Darren

    2017-01-01

    Abstract Identifying perceptual thresholds is critical for understanding the mechanisms that underlie signal evolution. Using computer-animated stimuli, we examined visual speed sensitivity in the Jacky dragon Amphibolurus muricatus, a species that makes extensive use of rapid motor patterns in social communication. First, focal lizards were tested in discrimination trials using random-dot kinematograms displaying combinations of speed, coherence, and direction. Second, we measured subject lizards’ ability to predict the appearance of a secondary reinforcer (1 of 3 different computer-generated animations of invertebrates: cricket, spider, and mite) based on the direction of movement of a field of drifting dots by following a set of behavioural responses (e.g., orienting response, latency to respond) to our virtual stimuli. We found an effect of both speed and coherence, as well as an interaction between these 2 factors on the perception of moving stimuli. Overall, our results showed that Jacky dragons have acute sensitivity to high speeds. We then employed an optic flow analysis to match the performance to ecologically relevant motion. Our results suggest that the Jacky dragon visual system may have been shaped to detect fast motion. This pre-existing sensitivity may have constrained the evolution of conspecific displays. In contrast, Jacky dragons may have difficulty in detecting the movement of ambush predators, such as snakes and of some invertebrate prey. Our study also demonstrates the potential of the computer-animated stimuli technique for conducting nonintrusive tests to explore motion range and sensitivity in a visually mediated species. PMID:29491965

  3. Thalamic reticular cells firing modes and its dependency on the frequency and amplitude ranges of the current stimulus.

    PubMed

    Hernandez, Oscar; Hernandez, Lilibeth; Vera, David; Santander, Alcides; Zurek, Eduardo

    2015-01-01

    The neurons of the Thalamic Reticular Nucleus (TRNn) respond to inputs in two activity modes called burst and tonic firing and both can be observed in different physiological states. The functional states of the thalamus depend in part on the properties of synaptic transmission between the TRNn and the thalamocortical and corticothalamic neurons. A dendrite can receive inhibitory and excitatory postsynaptic potentials. The novelties presented in this paper can be summarized as follows: First, it shows, through a computational simulation, that the burst and tonic firings observed in the TRNn soma could be explained as a product of random synaptic inputs on the distal dendrites, the tonic firings are generated by random excitatory stimuli, and the burst firings are generated by two different types of stimuli: inhibitory random stimuli, and a combination of inhibitory (from TRNn) and excitatory (from corticothalamic and thalamocortical neurons) random stimuli; second, according to in vivo recordings, we have found that the burst observed in the TRNn soma has graduate properties that are proportional to the stimuli frequency; and third, a novel method for showing in a quantitative manner the accelerando-decelerando pattern is proposed.

  4. Transfer to intermediate forms following concept discrimination by pigeons: chimeras and morphs.

    PubMed Central

    Ghosh, Natasha; Lea, Stephen E G; Noury, Malia

    2004-01-01

    Two experiments examined pigeons' generalization to intermediate forms following training of concept discriminations. In Experiment 1, the training stimuli were sets of images of dogs and cats, and the transfer stimuli were head/body chimeras, which humans tend to categorize more readily in terms of the head part rather than the body part. In Experiment 2, the training stimuli were sets of images of heads of dogs and cats, and the intermediate stimuli were computer-generated morphs. In both experiments, pigeons learned the concept discrimination quickly and generalized with some decrement to novel instances of the categories. In both experiments, transfer tests were carried out with intermediate forms generated from both familiar and novel exemplars of the training sets. In Experiment 1, the pigeons' transfer performance, unlike that of human infants exposed to similar stimuli, was best predicted by the body part of the stimulus when the chimeras were formed from familiar exemplars. Spatial frequency analysis of the stimuli showed that the body parts were richer in high spatial frequencies than the head parts, so these data are consistent with the hypothesis that categorization is more dependent on local stimulus features in pigeons than in humans. There was no corresponding trend when the chimeras were formed from novel exemplars. In Experiment 2, when morphs of training stimuli were used, response rates declined smoothly as the proportion of the morph contributed by the positive stimulus fell, although results with morphs of novel stimuli were again less orderly. PMID:15540501

  5. Considerations in video playback design: using optic flow analysis to examine motion characteristics of live and computer-generated animation sequences.

    PubMed

    Woo, Kevin L; Rieucau, Guillaume

    2008-07-01

    The increasing use of the video playback technique in behavioural ecology reveals a growing need to ensure better control of the visual stimuli that focal animals experience. Technological advances now allow researchers to develop computer-generated animations instead of using video sequences of live-acting demonstrators. However, care must be taken to match the motion characteristics (speed and velocity) of the animation to the original video source. Here, we presented a tool based on the use of an optic flow analysis program to measure the resemblance of motion characteristics of computer-generated animations compared to videos of live-acting animals. We examined three distinct displays (tail-flick (TF), push-up body rock (PUBR), and slow arm wave (SAW)) exhibited by animations of Jacky dragons (Amphibolurus muricatus) that were compared to the original video sequences of live lizards. We found no significant differences between the motion characteristics of videos and animations across all three displays. Our results showed that our animations are similar the speed and velocity features of each display. Researchers need to ensure that similar motion characteristics in animation and video stimuli are represented, and this feature is a critical component in the future success of the video playback technique.

  6. A database of body-only computer-generated pictures of women for body-image studies: Development and preliminary validation.

    PubMed

    Moussally, Joanna M; Rochat, Lucien; Posada, Andrés; Van der Linden, Martial

    2017-02-01

    The body-shape-related stimuli used in most body-image studies have several limitations (e.g., a lack of pilot validation procedures and the use of non-body-shape-related control/neutral stimuli). We therefore developed a database of 61 computer-generated body-only pictures of women, wherein bodies were methodically manipulated in terms of fatness versus thinness. Eighty-two young women assessed the pictures' attractiveness, beauty, harmony (valence ratings), and body shape (assessed on a thinness/fatness axis), providing normative data for valence and body shape ratings. First, stimuli manipulated for fatness versus thinness conveyed comparable emotional intensities regarding the valence and body shape ratings. Second, different subcategories of stimuli were obtained on the basis of variations in body shape and valence judgments. Fat and thin bodies were distributed into several subcategories depending on their valence ratings, and a subcategory containing stimuli that were neutral in terms of valence and body shape was identified. Interestingly, at a descriptive level, the thinness/fatness manipulations of the bodies were in a curvilinear relationship with the valence ratings: Thin bodies were not only judged as positive, but also as negative when their estimated body mass indexes (BMIs) decreased too much. Finally, convergent validity was assessed by exploring the impacts of body-image-related variables (BMI, thin-ideal internalization, and body dissatisfaction) on participants' judgments of the bodies. Valence judgments, but not body shape judgments, were influenced by the participants' levels of thin-ideal internalization and body dissatisfaction. Participants' BMIs did not significantly influence their judgments. Given these findings, this database contains relevant material that can be used in various fields, primarily for studies of body-image disturbance or eating disorders.

  7. Electromagnetic tracking of motion in the proximity of computer generated graphical stimuli: a tutorial.

    PubMed

    Schnabel, Ulf H; Hegenloh, Michael; Müller, Hermann J; Zehetleitner, Michael

    2013-09-01

    Electromagnetic motion-tracking systems have the advantage of capturing the tempo-spatial kinematics of movements independently of the visibility of the sensors. However, they are limited in that they cannot be used in the proximity of electromagnetic field sources, such as computer monitors. This prevents exploiting the tracking potential of the sensor system together with that of computer-generated visual stimulation. Here we present a solution for presenting computer-generated visual stimulation that does not distort the electromagnetic field required for precise motion tracking, by means of a back projection medium. In one experiment, we verify that cathode ray tube monitors, as well as thin-film-transistor monitors, distort electro-magnetic sensor signals even at a distance of 18 cm. Our back projection medium, by contrast, leads to no distortion of the motion-tracking signals even when the sensor is touching the medium. This novel solution permits combining the advantages of electromagnetic motion tracking with computer-generated visual stimulation.

  8. Orthographic and phonological neighborhood effects in handwritten word perception

    PubMed Central

    Goldinger, Stephen D.

    2017-01-01

    In printed-word perception, the orthographic neighborhood effect (i.e., faster recognition of words with more neighbors) has considerable theoretical importance, because it implicates great interactivity in lexical access. Mulatti, Reynolds, and Besner Journal of Experimental Psychology: Human Perception and Performance, 32, 799–810 (2006) questioned the validity of orthographic neighborhood effects, suggesting that they reflect a confound with phonological neighborhood density. They reported that, when phonological density is controlled, orthographic neighborhood effects vanish. Conversely, phonological neighborhood effects were still evident even when controlling for orthographic neighborhood density. The present study was a replication and extension of Mulatti et al. (2006), with words presented in four different formats (computer-generated print and cursive, and handwritten print and cursive). The results from Mulatti et al. (2006) were replicated with computer-generated stimuli, but were reversed with natural stimuli. These results suggest that, when ambiguity is introduced at the level of individual letters, top-down influences from lexical neighbors are increased. PMID:26306881

  9. Introducing Computational Fluid Dynamics Simulation into Olfactory Display

    NASA Astrophysics Data System (ADS)

    Ishida, Hiroshi; Yoshida, Hitoshi; Nakamoto, Takamichi

    An olfactory display is a device that delivers various odors to the user's nose. It can be used to add special effects to movies and games by releasing odors relevant to the scenes shown on the screen. In order to provide high-presence olfactory stimuli to the users, the display must be able to generate realistic odors with appropriate concentrations in a timely manner together with visual and audio playbacks. In this paper, we propose to use computational fluid dynamics (CFD) simulations in conjunction with the olfactory display. Odor molecules released from their source are transported mainly by turbulent flow, and their behavior can be extremely complicated even in a simple indoor environment. In the proposed system, a CFD solver is employed to calculate the airflow field and the odor dispersal in the given environment. An odor blender is used to generate the odor with the concentration determined based on the calculated odor distribution. Experimental results on presenting odor stimuli synchronously with movie clips show the effectiveness of the proposed system.

  10. Aircraft noise synthesis system

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.; Grandle, Robert E.

    1987-01-01

    A second-generation Aircraft Noise Synthesis System has been developed to provide test stimuli for studies of community annoyance to aircraft flyover noise. The computer-based system generates realistic, time-varying, audio simulations of aircraft flyover noise at a specified observer location on the ground. The synthesis takes into account the time-varying aircraft position relative to the observer; specified reference spectra consisting of broadband, narrowband, and pure-tone components; directivity patterns; Doppler shift; atmospheric effects; and ground effects. These parameters can be specified and controlled in such a way as to generate stimuli in which certain noise characteristics, such as duration or tonal content, are independently varied, while the remaining characteristics, such as broadband content, are held constant. The system can also generate simulations of the predicted noise characteristics of future aircraft. A description of the synthesis system and a discussion of the algorithms and methods used to generate the simulations are provided. An appendix describing the input data and providing user instructions is also included.

  11. Self-Motion Perception: Assessment by Real-Time Computer Generated Animations

    NASA Technical Reports Server (NTRS)

    Parker, Donald E.

    1999-01-01

    Our overall goal is to develop materials and procedures for assessing vestibular contributions to spatial cognition. The specific objective of the research described in this paper is to evaluate computer-generated animations as potential tools for studying self-orientation and self-motion perception. Specific questions addressed in this study included the following. First, does a non- verbal perceptual reporting procedure using real-time animations improve assessment of spatial orientation? Are reports reliable? Second, do reports confirm expectations based on stimuli to vestibular apparatus? Third, can reliable reports be obtained when self-motion description vocabulary training is omitted?

  12. Application of a brain-computer interface for person authentication using EEG responses to photo stimuli.

    PubMed

    Mu, Zhendong; Yin, Jinhai; Hu, Jianfeng

    2018-01-01

    In this paper, a person authentication system that can effectively identify individuals by generating unique electroencephalogram signal features in response to self-face and non-self-face photos is presented. In order to achieve a good stability performance, the sequence of self-face photo including first-occurrence position and non-first-occurrence position are taken into account in the serial occurrence of visual stimuli. In addition, a Fisher linear classification method and event-related potential technique for feature analysis is adapted to yield remarkably better outcomes than that by most of the existing methods in the field. The results have shown that the EEG-based person authentications via brain-computer interface can be considered as a suitable approach for biometric authentication system.

  13. Reliability, synchrony and noise

    PubMed Central

    Ermentrout, G. Bard; Galán, Roberto F.; Urban, Nathaniel N.

    2008-01-01

    The brain is noisy. Neurons receive tens of thousands of highly fluctuating inputs and generate spike trains that appear highly irregular. Much of this activity is spontaneous—uncoupled to overt stimuli or motor outputs—leading to questions about the functional impact of this noise. Although noise is most often thought of as disrupting patterned activity and interfering with the encoding of stimuli, recent theoretical and experimental work has shown that noise can play a constructive role—leading to increased reliability or regularity of neuronal firing in single neurons and across populations. These results raise fundamental questions about how noise can influence neural function and computation. PMID:18603311

  14. Computer-aided training sensorimotor cortex functions in humans before the upper limb transplantation using virtual reality and sensory feedback.

    PubMed

    Kurzynski, Marek; Jaskolska, Anna; Marusiak, Jaroslaw; Wolczowski, Andrzej; Bierut, Przemyslaw; Szumowski, Lukasz; Witkowski, Jerzy; Kisiel-Sajewicz, Katarzyna

    2017-08-01

    One of the biggest problems of upper limb transplantation is lack of certainty as to whether a patient will be able to control voluntary movements of transplanted hands. Based on findings of the recent research on brain cortex plasticity, a premise can be drawn that mental training supported with visual and sensory feedback can cause structural and functional reorganization of the sensorimotor cortex, which leads to recovery of function associated with the control of movements performed by the upper limbs. In this study, authors - based on the above observations - propose the computer-aided training (CAT) system, which generating visual and sensory stimuli, should enhance the effectiveness of mental training applied to humans before upper limb transplantation. The basis for the concept of computer-aided training system is a virtual hand whose reaching and grasping movements the trained patient can observe on the VR headset screen (visual feedback) and whose contact with virtual objects the patient can feel as a touch (sensory feedback). The computer training system is composed of three main components: (1) the system generating 3D virtual world in which the patient sees the virtual limb from the perspective as if it were his/her own hand; (2) sensory feedback transforming information about the interaction of the virtual hand with the grasped object into mechanical vibration; (3) the therapist's panel for controlling the training course. Results of the case study demonstrate that mental training supported with visual and sensory stimuli generated by the computer system leads to a beneficial change of the brain activity related to motor control of the reaching in the patient with bilateral upper limb congenital transverse deficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. [The P300-based brain-computer interface: presentation of the complex "flash + movement" stimuli].

    PubMed

    Ganin, I P; Kaplan, A Ia

    2014-01-01

    The P300 based brain-computer interface requires the detection of P300 wave of brain event-related potentials. Most of its users learn the BCI control in several minutes and after the short classifier training they can type a text on the computer screen or assemble an image of separate fragments in simple BCI-based video games. Nevertheless, insufficient attractiveness for users and conservative stimuli organization in this BCI may restrict its integration into real information processes control. At the same time initial movement of object (motion-onset stimuli) may be an independent factor that induces P300 wave. In current work we checked the hypothesis that complex "flash + movement" stimuli together with drastic and compact stimuli organization on the computer screen may be much more attractive for user while operating in P300 BCI. In 20 subjects research we showed the effectiveness of our interface. Both accuracy and P300 amplitude were higher for flashing stimuli and complex "flash + movement" stimuli compared to motion-onset stimuli. N200 amplitude was maximal for flashing stimuli, while for "flash + movement" stimuli and motion-onset stimuli it was only a half of it. Similar BCI with complex stimuli may be embedded into compact control systems requiring high level of user attention under impact of negative external effects obstructing the BCI control.

  16. Sequential responding and planning in capuchin monkeys (Cebus apella).

    PubMed

    Beran, Michael J; Parrish, Audrey E

    2012-11-01

    Previous experiments have assessed planning during sequential responding to computer generated stimuli by Old World nonhuman primates including chimpanzees and rhesus macaques. However, no such assessment has been made with a New World primate species. Capuchin monkeys (Cebus apella) are an interesting test case for assessing the distribution of cognitive processes in the Order Primates because they sometimes show proficiency in tasks also mastered by apes and Old World monkeys, but in other cases fail to match the proficiency of those other species. In two experiments, eight capuchin monkeys selected five arbitrary stimuli in distinct locations on a computer monitor in a learned sequence. In Experiment 1, shift trials occurred in which the second and third stimuli were transposed when the first stimulus was selected by the animal. In Experiment 2, mask trials occurred in which all remaining stimuli were masked after the monkey selected the first stimulus. Monkeys made more mistakes on trials in which the locations of the second and third stimuli were interchanged than on trials in which locations were not interchanged, suggesting they had already planned to select a location that no longer contained the correct stimulus. When mask trials occurred, monkeys performed at levels significantly better than chance, but their performance exceeded chance levels only for the first and the second selections on a trial. These data indicate that capuchin monkeys performed very similarly to chimpanzees and rhesus monkeys and appeared to plan their selection sequences during the computerized task, but only to a limited degree.

  17. View-tolerant face recognition and Hebbian learning imply mirror-symmetric neural tuning to head orientation

    PubMed Central

    Leibo, Joel Z.; Liao, Qianli; Freiwald, Winrich A.; Anselmi, Fabio; Poggio, Tomaso

    2017-01-01

    SUMMARY The primate brain contains a hierarchy of visual areas, dubbed the ventral stream, which rapidly computes object representations that are both specific for object identity and robust against identity-preserving transformations like depth-rotations [1, 2]. Current computational models of object recognition, including recent deep learning networks, generate these properties through a hierarchy of alternating selectivity-increasing filtering and tolerance-increasing pooling operations, similar to simple-complex cells operations [3, 4, 5, 6]. Here we prove that a class of hierarchical architectures and a broad set of biologically plausible learning rules generate approximate invariance to identity-preserving transformations at the top level of the processing hierarchy. However, all past models tested failed to reproduce the most salient property of an intermediate representation of a three-level face-processing hierarchy in the brain: mirror-symmetric tuning to head orientation [7]. Here we demonstrate that one specific biologically-plausible Hebb-type learning rule generates mirror-symmetric tuning to bilaterally symmetric stimuli like faces at intermediate levels of the architecture and show why it does so. Thus the tuning properties of individual cells inside the visual stream appear to result from group properties of the stimuli they encode and to reflect the learning rules that sculpted the information-processing system within which they reside. PMID:27916522

  18. Spatiotemporal Computations of an Excitable and Plastic Brain: Neuronal Plasticity Leads to Noise-Robust and Noise-Constructive Computations

    PubMed Central

    Toutounji, Hazem; Pipa, Gordon

    2014-01-01

    It is a long-established fact that neuronal plasticity occupies the central role in generating neural function and computation. Nevertheless, no unifying account exists of how neurons in a recurrent cortical network learn to compute on temporally and spatially extended stimuli. However, these stimuli constitute the norm, rather than the exception, of the brain's input. Here, we introduce a geometric theory of learning spatiotemporal computations through neuronal plasticity. To that end, we rigorously formulate the problem of neural representations as a relation in space between stimulus-induced neural activity and the asymptotic dynamics of excitable cortical networks. Backed up by computer simulations and numerical analysis, we show that two canonical and widely spread forms of neuronal plasticity, that is, spike-timing-dependent synaptic plasticity and intrinsic plasticity, are both necessary for creating neural representations, such that these computations become realizable. Interestingly, the effects of these forms of plasticity on the emerging neural code relate to properties necessary for both combating and utilizing noise. The neural dynamics also exhibits features of the most likely stimulus in the network's spontaneous activity. These properties of the spatiotemporal neural code resulting from plasticity, having their grounding in nature, further consolidate the biological relevance of our findings. PMID:24651447

  19. Tactile information transfer: A comparison of two stimulation sites

    NASA Astrophysics Data System (ADS)

    Summers, Ian R.; Whybrow, Jon J.; Gratton, Denise A.; Milnes, Peter; Brown, Brian H.; Stevens, John C.

    2005-10-01

    Two experiments on the discrimination of time-varying tactile stimuli were performed, with comparison of stimulus delivery to the distal pad of the right index finger and to the right wrist (palmar surface). Subjects were required to perceive differences in short sequences of computer-generated stimulus elements (experiment 1) or differences in short tactile stimuli derived from a speech signal (experiment 2). The pulse-train stimuli were distinguished by differences in frequency (i.e., pulse repetition rate) and amplitude, and by the presence/absence of gaps (~100-ms duration). Stimulation levels were 10 dB higher at the wrist than at the fingertip, to compensate for the lower vibration sensitivity at the wrist. Results indicate similar gap detection at wrist and fingertip and similar perception of frequency differences. However, perception of amplitude differences was found to be better at the wrist than at the fingertip. Maximum information transfer rates for the stimuli in experiment 1 were estimated at 7 bits s-1 at the wrist and 5 bits s-1 at the fingertip.

  20. Tactile information transfer: a comparison of two stimulation sites.

    PubMed

    Summers, lan R; Whybrow, Jon J; Gratton, Denise A; Milnes, Peter; Brown, Brian H; Stevens, John C

    2005-10-01

    Two experiments on the discrimination of time-varying tactile stimuli were performed, with comparison of stimulus delivery to the distal pad of the right index finger and to the right wrist (palmar surface). Subjects were required to perceive differences in short sequences of computer-generated stimulus elements (experiment 1) or differences in short tactile stimuli derived from a speech signal (experiment 2). The pulse-train stimuli were distinguished by differences in frequency (i.e., pulse repetition rate) and amplitude, and by the presence/absence of gaps (approximately 100-ms duration). Stimulation levels were 10 dB higher at the wrist than at the fingertip, to compensate for the lower vibration sensitivity at the wrist. Results indicate similar gap detection at wrist and fingertip and similar perception of frequency differences. However, perception of amplitude differences was found to be better at the wrist than at the fingertip. Maximum information transfer rates for the stimuli in experiment 1 were estimated at 7 bits s(-1) at the wrist and 5 bits s(-1) at the fingertip.

  1. Using the Item Response Theory (IRT) for Educational Evaluation through Games

    ERIC Educational Resources Information Center

    Euzébio Batista, Marcelo Henrique; Victória Barbosa, Jorge Luis; da Rosa Tavares, João Elison; Hackenhaar, Jonathan Luis

    2013-01-01

    This article shows the application of Item Response Theory (IRT) for educational evaluation using games. The article proposes a computational model to create user profiles, called Psychometric Profile Generator (PPG). PPG uses the IRT mathematical model for exploring the levels of skills and behaviors in the form of items and/or stimuli. The model…

  2. The Chinese Facial Emotion Recognition Database (CFERD): a computer-generated 3-D paradigm to measure the recognition of facial emotional expressions at different intensities.

    PubMed

    Huang, Charles Lung-Cheng; Hsiao, Sigmund; Hwu, Hai-Gwo; Howng, Shen-Long

    2012-12-30

    The Chinese Facial Emotion Recognition Database (CFERD), a computer-generated three-dimensional (3D) paradigm, was developed to measure the recognition of facial emotional expressions at different intensities. The stimuli consisted of 3D colour photographic images of six basic facial emotional expressions (happiness, sadness, disgust, fear, anger and surprise) and neutral faces of the Chinese. The purpose of the present study is to describe the development and validation of CFERD with nonclinical healthy participants (N=100; 50 men; age ranging between 18 and 50 years), and to generate normative data set. The results showed that the sensitivity index d' [d'=Z(hit rate)-Z(false alarm rate), where function Z(p), p∈[0,1

  3. A computer-generated animated face stimulus set for psychophysiological research

    PubMed Central

    Naples, Adam; Nguyen-Phuc, Alyssa; Coffman, Marika; Kresse, Anna; Faja, Susan; Bernier, Raphael; McPartland., James

    2014-01-01

    Human faces are fundamentally dynamic, but experimental investigations of face perception traditionally rely on static images of faces. While naturalistic videos of actors have been used with success in some contexts, much research in neuroscience and psychophysics demands carefully controlled stimuli. In this paper, we describe a novel set of computer generated, dynamic, face stimuli. These grayscale faces are tightly controlled for low- and high-level visual properties. All faces are standardized in terms of size, luminance, and location and size of facial features. Each face begins with a neutral pose and transitions to an expression over the course of 30 frames. Altogether there are 222 stimuli spanning 3 different categories of movement: (1) an affective movement (fearful face); (2) a neutral movement (close-lipped, puffed cheeks with open eyes); and (3) a biologically impossible movement (upward dislocation of eyes and mouth). To determine whether early brain responses sensitive to low-level visual features differed between expressions, we measured the occipital P100 event related potential (ERP), which is known to reflect differences in early stages of visual processing and the N170, which reflects structural encoding of faces. We found no differences between faces at the P100, indicating that different face categories were well matched on low-level image properties. This database provides researchers with a well-controlled set of dynamic faces controlled on low-level image characteristics that are applicable to a range of research questions in social perception. PMID:25028164

  4. Visual artificial grammar learning: comparative research on humans, kea (Nestor notabilis) and pigeons (Columba livia)

    PubMed Central

    Stobbe, Nina; Westphal-Fitch, Gesche; Aust, Ulrike; Fitch, W. Tecumseh

    2012-01-01

    Artificial grammar learning (AGL) provides a useful tool for exploring rule learning strategies linked to general purpose pattern perception. To be able to directly compare performance of humans with other species with different memory capacities, we developed an AGL task in the visual domain. Presenting entire visual patterns simultaneously instead of sequentially minimizes the amount of required working memory. This approach allowed us to evaluate performance levels of two bird species, kea (Nestor notabilis) and pigeons (Columba livia), in direct comparison to human participants. After being trained to discriminate between two types of visual patterns generated by rules at different levels of computational complexity and presented on a computer screen, birds and humans received further training with a series of novel stimuli that followed the same rules, but differed in various visual features from the training stimuli. Most avian and all human subjects continued to perform well above chance during this initial generalization phase, suggesting that they were able to generalize learned rules to novel stimuli. However, detailed testing with stimuli that violated the intended rules regarding the exact number of stimulus elements indicates that neither bird species was able to successfully acquire the intended pattern rule. Our data suggest that, in contrast to humans, these birds were unable to master a simple rule above the finite-state level, even with simultaneous item presentation and despite intensive training. PMID:22688635

  5. Using computer simulations to determine the limitations of dynamic clamp stimuli applied at the soma in mimicking distributed conductance sources.

    PubMed

    Lin, Risa J; Jaeger, Dieter

    2011-05-01

    In previous studies we used the technique of dynamic clamp to study how temporal modulation of inhibitory and excitatory inputs control the frequency and precise timing of spikes in neurons of the deep cerebellar nuclei (DCN). Although this technique is now widely used, it is limited to interpreting conductance inputs as being location independent; i.e., all inputs that are biologically distributed across the dendritic tree are applied to the soma. We used computer simulations of a morphologically realistic model of DCN neurons to compare the effects of purely somatic vs. distributed dendritic inputs in this cell type. We applied the same conductance stimuli used in our published experiments to the model. To simulate variability in neuronal responses to repeated stimuli, we added a somatic white current noise to reproduce subthreshold fluctuations in the membrane potential. We were able to replicate our dynamic clamp results with respect to spike rates and spike precision for different patterns of background synaptic activity. We found only minor differences in the spike pattern generation between focal or distributed input in this cell type even when strong inhibitory or excitatory bursts were applied. However, the location dependence of dynamic clamp stimuli is likely to be different for each cell type examined, and the simulation approach developed in the present study will allow a careful assessment of location dependence in all cell types.

  6. A cortical integrate-and-fire neural network model for blind decoding of visual prosthetic stimulation.

    PubMed

    Eiber, Calvin D; Morley, John W; Lovell, Nigel H; Suaning, Gregg J

    2014-01-01

    We present a computational model of the optic pathway which has been adapted to simulate cortical responses to visual-prosthetic stimulation. This model reproduces the statistically observed distributions of spikes for cortical recordings of sham and maximum-intensity stimuli, while simultaneously generating cellular receptive fields consistent with those observed using traditional visual neuroscience methods. By inverting this model to generate candidate phosphenes which could generate the responses observed to novel stimulation strategies, we hope to aid the development of said strategies in-vivo before being deployed in clinical settings.

  7. The perception of isoluminant coloured stimuli of amblyopic eye and defocused eye

    NASA Astrophysics Data System (ADS)

    Krumina, Gunta; Ozolinsh, Maris; Ikaunieks, Gatis

    2008-09-01

    In routine eye examination the visual acuity usually is determined using standard charts with black letters on a white background, however contrast and colour are important characteristics of visual perception. The purpose of research was to study the perception of isoluminant coloured stimuli in the cases of true and simulated amlyopia. We estimated difference in visual acuity with isoluminant coloured stimuli comparing to that for high contrast black-white stimuli for true amblyopia and simulated amblyopia. Tests were generated on computer screen. Visual acuity was detected using different charts in two ways: standard achromatic stimuli (black symbols on a white background) and isoluminant coloured stimuli (white symbols on a yellow background, grey symbols on blue, green or red background). Thus isoluminant tests had colour contrast only but had no luminance contrast. Visual acuity evaluated with the standard method and colour tests were studied for subjects with good visual acuity, if necessary using the best vision correction. The same was performed for subjects with defocused eye and with true amblyopia. Defocus was realized with optical lenses placed in front of the normal eye. The obtained results applying the isoluminant colour charts revealed worsening of the visual acuity comparing with the visual acuity estimated with a standard high contrast method (black symbols on a white background).

  8. Perceptual rate normalization in naturally produced bilabial stops

    NASA Astrophysics Data System (ADS)

    Nagao, Kyoko; de Jong, Kenneth

    2003-10-01

    The perception of voicing categories is affected by the speaking rate, so that listeners' category boundaries on a VOT continuum shift to a lower value when the syllable duration decreases (Miller and Volaitis, 1989; Volaitis and Miller, 1992). Previous rate normalization effects have been found using computer-generated stimuli. This study examines the effect of speech rate on voicing categorization in naturally produced speech. Four native speakers of American English repeated syllables (/bi/ and /pi/) at increasing rates in time with a metronome. Three-syllable stimuli were spliced from the repetitive speech. These stimuli contained natural decreases in VOT with faster speech rates. Besides, this rate effect on VOT was larger for /p/ than /b/, so that VOT values for /b/ and /p/ overlapped at the fastest rates. Eighteen native listeners of American English were presented with 168 stimuli and asked to identify the consonant. Perceptual category boundaries occur at VOT values 15 ms shorter than the values reported for synthesized stimuli. This difference may be due to the extraordinarily wide range of VOT values in previous studies. The values found in the current study closely match the actual division point for /b/ and /p/. The underlying mechanism of perceptual normalization will be discussed.

  9. An Exploration of Responses to Drug Conditioned Stimuli during Treatment for Substance Dependence

    PubMed Central

    Goddard, Benjamin; Son Hing, Leanne S.; Leri, Francesco

    2013-01-01

    Although it is well established that drug conditioned stimuli produce a variety of conditioned responses, it is not known whether such stimuli can also reinforce an arbitrary operant response and thus serve as conditioned reinforcers. Volunteers (n = 39) recruited from a residential treatment center for substance dependence were tested on a task in which presses on computer keys activated images of drugs/drug paraphernalia on a progressive ratio schedule of reinforcement. They also completed a personalized craving questionnaire and a personalized Implicit Association Test. A significant bias in responding was found for images of preferred drugs/route of drug administration. Craving, however, was low and the images generated negative evaluative reactions. Two additional studies were performed to ascertain the generalizability of the effects to a different population of drug-using individuals (i.e., students who drink) and to incentive stimuli of a different nature (i.e., sexual). The additional studies partially replicated and extended the central findings of the main study. Therefore, although these data should be considered preliminary in light of small group sizes, it is concluded that cue specificity and availability of the unconditioned stimuli (drugs and sex) plays a role in modulating responding maintained by conditioned reinforcers. PMID:24826360

  10. Simple and powerful visual stimulus generator.

    PubMed

    Kremlácek, J; Kuba, M; Kubová, Z; Vít, F

    1999-02-01

    We describe a cheap, simple, portable and efficient approach to visual stimulation for neurophysiology which does not need any special hardware equipment. The method based on an animation technique uses the FLI autodesk animator format. This form of the animation is replayed by a special program ('player') providing synchronisation pulses toward recording system via parallel port. The 'player is running on an IBM compatible personal computer under MS-DOS operation system and stimulus is displayed on a VGA computer monitor. Various stimuli created with this technique for visual evoked potentials (VEPs) are presented.

  11. View-Tolerant Face Recognition and Hebbian Learning Imply Mirror-Symmetric Neural Tuning to Head Orientation.

    PubMed

    Leibo, Joel Z; Liao, Qianli; Anselmi, Fabio; Freiwald, Winrich A; Poggio, Tomaso

    2017-01-09

    The primate brain contains a hierarchy of visual areas, dubbed the ventral stream, which rapidly computes object representations that are both specific for object identity and robust against identity-preserving transformations, like depth rotations [1, 2]. Current computational models of object recognition, including recent deep-learning networks, generate these properties through a hierarchy of alternating selectivity-increasing filtering and tolerance-increasing pooling operations, similar to simple-complex cells operations [3-6]. Here, we prove that a class of hierarchical architectures and a broad set of biologically plausible learning rules generate approximate invariance to identity-preserving transformations at the top level of the processing hierarchy. However, all past models tested failed to reproduce the most salient property of an intermediate representation of a three-level face-processing hierarchy in the brain: mirror-symmetric tuning to head orientation [7]. Here, we demonstrate that one specific biologically plausible Hebb-type learning rule generates mirror-symmetric tuning to bilaterally symmetric stimuli, like faces, at intermediate levels of the architecture and show why it does so. Thus, the tuning properties of individual cells inside the visual stream appear to result from group properties of the stimuli they encode and to reflect the learning rules that sculpted the information-processing system within which they reside. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Behavioral personal digital assistants: The seventh generation of computing

    PubMed Central

    Stephens, Kenneth R.; Hutchison, William R.

    1992-01-01

    Skinner (1985) described two divergent approaches to developing computer systems that would behave with some approximation to intelligence. The first approach, which corresponds to the mainstream of artificial intelligence and expert systems, models intelligence as a set of production rules that incorporate knowledge and a set of heuristics for inference and symbol manipulation. The alternative is a system that models the behavioral repertoire as a network of associations between antecedent stimuli and operants, and adapts when supplied with reinforcement. The latter approach is consistent with developments in the field of “neural networks.” The authors describe how an existing adaptive network software system, based on behavior analysis and developed since 1983, can be extended to provide a new generation of software systems capable of acquiring verbal behavior. This effort will require the collaboration of the academic and commercial sectors of the behavioral community, but the end result will enable a generational change in computer systems and support for behavior analytic concepts. PMID:22477053

  13. The adequate stimulus for avian short latency vestibular responses to linear translation

    NASA Technical Reports Server (NTRS)

    Jones, T. A.; Jones, S. M.; Colbert, S.

    1998-01-01

    Transient linear acceleration stimuli have been shown to elicit eighth nerve vestibular compound action potentials in birds and mammals. The present study was undertaken to better define the nature of the adequate stimulus for neurons generating the response in the chicken (Gallus domesticus). In particular, the study evaluated the question of whether the neurons studied are most sensitive to the maximum level of linear acceleration achieved or to the rate of change in acceleration (da/dt, or jerk). To do this, vestibular response thresholds were measured as a function of stimulus onset slope. Traditional computer signal averaging was used to record responses to pulsed linear acceleration stimuli. Stimulus onset slope was systematically varied. Acceleration thresholds decreased with increasing stimulus onset slope (decreasing stimulus rise time). When stimuli were expressed in units of jerk (g/ms), thresholds were virtually constant for all stimulus rise times. Moreover, stimuli having identical jerk magnitudes but widely varying peak acceleration levels produced virtually identical responses. Vestibular response thresholds, latencies and amplitudes appear to be determined strictly by stimulus jerk magnitudes. Stimulus attributes such as peak acceleration or rise time alone do not provide sufficient information to predict response parameter quantities. Indeed, the major response parameters were shown to be virtually independent of peak acceleration levels or rise time when these stimulus features were isolated and considered separately. It is concluded that the neurons generating short latency vestibular evoked potentials do so as "jerk encoders" in the chicken. Primary afferents classified as "irregular", and which traditionally fall into the broad category of "dynamic" or "phasic" neurons, would seem to be the most likely candidates for the neural generators of short latency vestibular compound action potentials.

  14. Prediction of truly random future events using analysis of prestimulus electroencephalographic data

    NASA Astrophysics Data System (ADS)

    Baumgart, Stephen L.; Franklin, Michael S.; Jimbo, Hiroumi K.; Su, Sharon J.; Schooler, Jonathan

    2017-05-01

    Our hypothesis is that pre-stimulus physiological data can be used to predict truly random events tied to perceptual stimuli (e.g., lights and sounds). Our experiment presents light and sound stimuli to a passive human subject while recording electrocortical potentials using a 32-channel Electroencephalography (EEG) system. For every trial a quantum random number generator (qRNG) chooses from three possible selections with equal probability: a light stimulus, a sound stimulus, and no stimulus. Time epochs are defined preceding and post-ceding each stimulus for which mean average potentials were computed across all trials for the three possible stimulus types. Data from three regions of the brain are examined. In all three regions mean potential for light stimuli was generally enhanced relative to baseline during the period starting approximately 2 seconds before the stimulus. For sound stimuli, mean potential decreased relative to baseline during the period starting approximately 2 seconds before the stimulus. These changes from baseline may indicated the presence of evoked potentials arising from the stimulus. A P200 peak was observed in data recorded from frontal electrodes. The P200 is a well-known potential arising from the brain's processing of visual stimuli and its presence represents a replication of a known neurological phenomenon.

  15. Aircraft noise synthesis system: Version 4 user instructions

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.; Sullivan, Brenda M.; Grandle, Robert E.

    1987-01-01

    A modified version of the Aircraft Noise Synthesis System with improved directivity and tonal content modeling has been developed. The synthesis system is used to provide test stimuli for studies of community annoyance to aircraft flyover noise. The computer-based system generates realistic, time-varying audio simulations of aircraft flyover noise at a specified observer location on the ground. The synthesis takes into account the time-varying aircraft position relative to the observer; specified reference spectra consisting of broadband, narrowband, and pure tone components; directivity patterns; Doppler shift; atmospheric effects; and ground effects. These parameters can be specified and controlled in such a way as to generate stimuli in which certain noise characteristics such as duration or tonal content are independently varied while the remaining characteristics such as broadband content are held constant. The modified version of the system provides improved modeling of noise directivity patterns and an increased number of pure tone components. User instructions for the modified version of the synthesis system are provided.

  16. Attentional neurocomputing

    NASA Astrophysics Data System (ADS)

    Speidel, Steven

    1992-08-01

    Our ultimate goal is to develop neural-like cognitive sensory processing within non-neuronal systems. Toward this end, computational models are being developed for selectivity attending the task-relevant parts of composite sensory excitations in an example sound processing application. Significant stimuli partials are selectively attended through the use of generalized neural adaptive beamformers. Computational components are being tested by experiment in the laboratory and also by use of recordings from sensor deployments in the ocean. Results will be presented. These computational components are being integrated into a comprehensive processing architecture that simultaneously attends memory according to stimuli, attends stimuli according to memory, and attends stimuli and memory according to an ongoing thought process. The proposed neural architecture is potentially very fast when implemented in special hardware.

  17. Subliminal mere exposure: specific, general, and diffuse effects.

    PubMed

    Monahan, J L; Murphy, S T; Zajonc, R B

    2000-11-01

    The present research examined the possibility that repeated exposure may simultaneously produce specific and diffuse effects. In Study 1, participants were presented with 5-ms exposures of 25 stimuli each shown once (single-exposure condition) or with five repetitions of 5 stimuli (repeated-exposure condition). Participants in the repeated-exposure condition subsequently rated their own mood more positively than those in the single-exposure condition. Study 2 examined whether affect generated by subliminal repeated exposures transfers to unrelated stimuli. After a subliminal exposure phase, affective reactions to previously exposed stimuli, to new but similar stimuli, and to stimuli from a different category were obtained. Previously exposed stimuli were rated most positively and novel different stimuli least positively. All stimuli were rated more positively in the repeated-exposure condition than in the single-exposure condition. These findings suggest that affect generated by subliminal repeated exposure is sufficiently diffuse to influence ratings of unrelated stimuli and mood.

  18. The influence of leg-to-body ratio (LBR) on judgments of female physical attractiveness: assessments of computer-generated images varying in LBR.

    PubMed

    Frederick, David A; Hadji-Michael, Maria; Furnham, Adrian; Swami, Viren

    2010-01-01

    The leg-to-body ratio (LBR), which is reliably associated with developmental stability and health outcomes, is an understudied component of human physical attractiveness. Several studies examining the effects of LBR on aesthetic judgments have been limited by the reliance on stimuli composed of hand-drawn silhouettes. In the present study, we developed a new set of female computer-generated images portraying eight levels of LBR that fell within the typical range of human variation. A community sample of 207 Britons in London and students from two samples drawn from a US university (Ns=940, 114) rated the physical attractiveness of the images. We found that mid-ranging female LBRs were perceived as maximally attractive. The present research overcomes some of the problems associated with past work on LBR and aesthetic preferences through use of computer-generated images rather than hand-drawn images and provides an instrument that may be useful in future investigations of LBR preferences. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. Enhanced long-latency somatosensory potentials in major depressive disorder.

    PubMed

    Dietl, T; Dirlich, G; Vogl, L; Nickel, T; Sonntag, A; Strian, F; Lechner, C

    2001-01-01

    Bodily misperceptions are a frequent symptom in major depressive disorder. A reduced ability to deflect attention from somatosensory stimuli may contribute to the generation of unpleasant bodily sensations and co-occur with altered habituation of the brain electric reactions to somatosensory stimuli. The aim of the present study was to explore whether attention-related components of somatosensory evoked potentials (SSEP) and the habituation of these components are altered in major depression. Fifteen patients with major depressive disorder were compared to an age- and gender-matched group of 15 healthy controls. A series of identical, intrusive but not painful electric stimuli were applied to the left index finger for 48 min. Averaged SSEP were computed from multichannel EEG recordings for consecutive recording blocks of the experiment, each block containing 162 stimuli. Based on these data the habituation process of late components of the SSEP was analysed in two latency intervals (50-150, 170-370 ms). Patients showed significantly enhanced reactions throughout the entire experiment. The persistence of enhanced SSEP components throughout the habituation process may be caused by a deficit in reducing the activity of attention-related brain processes concerned with intrusive, yet behaviourally irrelevant, continued stimulation in the state of major depression.

  20. Stimulus meanings alter illusory self-motion (vection)--experimental examination of the train illusion.

    PubMed

    Seno, Takeharu; Fukuda, Haruaki

    2012-01-01

    Over the last 100 years, numerous studies have examined the effective visual stimulus properties for inducing illusory self-motion (known as vection). This vection is often experienced more strongly in daily life than under controlled experimental conditions. One well-known example of vection in real life is the so-called 'train illusion'. In the present study, we showed that this train illusion can also be generated in the laboratory using virtual computer graphics-based motion stimuli. We also demonstrated that this vection can be modified by altering the meaning of the visual stimuli (i.e., top down effects). Importantly, we show that the semantic meaning of a stimulus can inhibit or facilitate vection, even when there is no physical change to the stimulus.

  1. Functional identification of spike-processing neural circuits.

    PubMed

    Lazar, Aurel A; Slutskiy, Yevgeniy B

    2014-02-01

    We introduce a novel approach for a complete functional identification of biophysical spike-processing neural circuits. The circuits considered accept multidimensional spike trains as their input and comprise a multitude of temporal receptive fields and conductance-based models of action potential generation. Each temporal receptive field describes the spatiotemporal contribution of all synapses between any two neurons and incorporates the (passive) processing carried out by the dendritic tree. The aggregate dendritic current produced by a multitude of temporal receptive fields is encoded into a sequence of action potentials by a spike generator modeled as a nonlinear dynamical system. Our approach builds on the observation that during any experiment, an entire neural circuit, including its receptive fields and biophysical spike generators, is projected onto the space of stimuli used to identify the circuit. Employing the reproducing kernel Hilbert space (RKHS) of trigonometric polynomials to describe input stimuli, we quantitatively describe the relationship between underlying circuit parameters and their projections. We also derive experimental conditions under which these projections converge to the true parameters. In doing so, we achieve the mathematical tractability needed to characterize the biophysical spike generator and identify the multitude of receptive fields. The algorithms obviate the need to repeat experiments in order to compute the neurons' rate of response, rendering our methodology of interest to both experimental and theoretical neuroscientists.

  2. The Functional Measurement Experiment Builder suite: two Java-based programs to generate and run functional measurement experiments.

    PubMed

    Mairesse, Olivier; Hofmans, Joeri; Theuns, Peter

    2008-05-01

    We propose a free, easy-to-use computer program that does not requires prior knowledge of computer programming to generate and run experiments using textual or pictorial stimuli. Although the FM Experiment Builder suite was initially programmed for building and conducting FM experiments, it can also be applied for non-FM experiments that necessitate randomized, single, or multifactorial designs. The program is highly configurable, allowing multilingual use and a wide range of different response formats. The outputs of the experiments are Microsoft Excel compatible .xls files that allow easy copy-paste of the results into Weiss's FM CalSTAT program (2006) or any other statistical package. Its Java-based structure is compatible with both Windows and Macintosh operating systems, and its compactness (< 1 MB) makes it easily distributable over the Internet.

  3. Statistical Comparison of Spike Responses to Natural Stimuli in Monkey Area V1 With Simulated Responses of a Detailed Laminar Network Model for a Patch of V1

    PubMed Central

    Schuch, Klaus; Logothetis, Nikos K.; Maass, Wolfgang

    2011-01-01

    A major goal of computational neuroscience is the creation of computer models for cortical areas whose response to sensory stimuli resembles that of cortical areas in vivo in important aspects. It is seldom considered whether the simulated spiking activity is realistic (in a statistical sense) in response to natural stimuli. Because certain statistical properties of spike responses were suggested to facilitate computations in the cortex, acquiring a realistic firing regimen in cortical network models might be a prerequisite for analyzing their computational functions. We present a characterization and comparison of the statistical response properties of the primary visual cortex (V1) in vivo and in silico in response to natural stimuli. We recorded from multiple electrodes in area V1 of 4 macaque monkeys and developed a large state-of-the-art network model for a 5 × 5-mm patch of V1 composed of 35,000 neurons and 3.9 million synapses that integrates previously published anatomical and physiological details. By quantitative comparison of the model response to the “statistical fingerprint” of responses in vivo, we find that our model for a patch of V1 responds to the same movie in a way which matches the statistical structure of the recorded data surprisingly well. The deviation between the firing regimen of the model and the in vivo data are on the same level as deviations among monkeys and sessions. This suggests that, despite strong simplifications and abstractions of cortical network models, they are nevertheless capable of generating realistic spiking activity. To reach a realistic firing state, it was not only necessary to include both N-methyl-d-aspartate and GABAB synaptic conductances in our model, but also to markedly increase the strength of excitatory synapses onto inhibitory neurons (>2-fold) in comparison to literature values, hinting at the importance to carefully adjust the effect of inhibition for achieving realistic dynamics in current network models. PMID:21106898

  4. FliMax, a novel stimulus device for panoramic and highspeed presentation of behaviourally generated optic flow.

    PubMed

    Lindemann, J P; Kern, R; Michaelis, C; Meyer, P; van Hateren, J H; Egelhaaf, M

    2003-03-01

    A high-speed panoramic visual stimulation device is introduced which is suitable to analyse visual interneurons during stimulation with rapid image displacements as experienced by fast moving animals. The responses of an identified motion sensitive neuron in the visual system of the blowfly to behaviourally generated image sequences are very complex and hard to predict from the established input circuitry of the neuron. This finding suggests that the computational significance of visual interneurons can only be assessed if they are characterised not only by conventional stimuli as are often used for systems analysis, but also by behaviourally relevant input.

  5. Development of a Bayesian Estimator for Audio-Visual Integration: A Neurocomputational Study

    PubMed Central

    Ursino, Mauro; Crisafulli, Andrea; di Pellegrino, Giuseppe; Magosso, Elisa; Cuppini, Cristiano

    2017-01-01

    The brain integrates information from different sensory modalities to generate a coherent and accurate percept of external events. Several experimental studies suggest that this integration follows the principle of Bayesian estimate. However, the neural mechanisms responsible for this behavior, and its development in a multisensory environment, are still insufficiently understood. We recently presented a neural network model of audio-visual integration (Neural Computation, 2017) to investigate how a Bayesian estimator can spontaneously develop from the statistics of external stimuli. Model assumes the presence of two unimodal areas (auditory and visual) topologically organized. Neurons in each area receive an input from the external environment, computed as the inner product of the sensory-specific stimulus and the receptive field synapses, and a cross-modal input from neurons of the other modality. Based on sensory experience, synapses were trained via Hebbian potentiation and a decay term. Aim of this work is to improve the previous model, including a more realistic distribution of visual stimuli: visual stimuli have a higher spatial accuracy at the central azimuthal coordinate and a lower accuracy at the periphery. Moreover, their prior probability is higher at the center, and decreases toward the periphery. Simulations show that, after training, the receptive fields of visual and auditory neurons shrink to reproduce the accuracy of the input (both at the center and at the periphery in the visual case), thus realizing the likelihood estimate of unimodal spatial position. Moreover, the preferred positions of visual neurons contract toward the center, thus encoding the prior probability of the visual input. Finally, a prior probability of the co-occurrence of audio-visual stimuli is encoded in the cross-modal synapses. The model is able to simulate the main properties of a Bayesian estimator and to reproduce behavioral data in all conditions examined. In particular, in unisensory conditions the visual estimates exhibit a bias toward the fovea, which increases with the level of noise. In cross modal conditions, the SD of the estimates decreases when using congruent audio-visual stimuli, and a ventriloquism effect becomes evident in case of spatially disparate stimuli. Moreover, the ventriloquism decreases with the eccentricity. PMID:29046631

  6. Visual stimuli that elicit appetitive behaviors in three morphologically distinct species of praying mantis.

    PubMed

    Prete, Frederick R; Komito, Justin L; Dominguez, Salina; Svenson, Gavin; López, LeoLin Y; Guillen, Alex; Bogdanivich, Nicole

    2011-09-01

    We assessed the differences in appetitive responses to visual stimuli by three species of praying mantis (Insecta: Mantodea), Tenodera aridifolia sinensis, Mantis religiosa, and Cilnia humeralis. Tethered, adult females watched computer generated stimuli (erratically moving disks or linearly moving rectangles) that varied along predetermined parameters. Three responses were scored: tracking, approaching, and striking. Threshold stimulus size (diameter) for tracking and striking at disks ranged from 3.5 deg (C. humeralis) to 7.8 deg (M. religiosa), and from 3.3 deg (C. humeralis) to 11.7 deg (M. religiosa), respectively. Unlike the other species which struck at disks as large as 44 deg, T. a. sinensis displayed a preference for 14 deg disks. Disks moving at 143 deg/s were preferred by all species. M. religiosa exhibited the most approaching behavior, and with T. a. sinensis distinguished between rectangular stimuli moving parallel versus perpendicular to their long axes. C. humeralis did not make this distinction. Stimulus sizes that elicited the target behaviors were not related to mantis size. However, differences in compound eye morphology may be related to species differences: C. humeralis' eyes are farthest apart, and it has an apparently narrower binocular visual field which may affect retinal inputs to movement-sensitive visual interneurons.

  7. Interactive Light Stimulus Generation with High Performance Real-Time Image Processing and Simple Scripting.

    PubMed

    Szécsi, László; Kacsó, Ágota; Zeck, Günther; Hantz, Péter

    2017-01-01

    Light stimulation with precise and complex spatial and temporal modulation is demanded by a series of research fields like visual neuroscience, optogenetics, ophthalmology, and visual psychophysics. We developed a user-friendly and flexible stimulus generating framework (GEARS GPU-based Eye And Retina Stimulation Software), which offers access to GPU computing power, and allows interactive modification of stimulus parameters during experiments. Furthermore, it has built-in support for driving external equipment, as well as for synchronization tasks, via USB ports. The use of GEARS does not require elaborate programming skills. The necessary scripting is visually aided by an intuitive interface, while the details of the underlying software and hardware components remain hidden. Internally, the software is a C++/Python hybrid using OpenGL graphics. Computations are performed on the GPU, and are defined in the GLSL shading language. However, all GPU settings, including the GPU shader programs, are automatically generated by GEARS. This is configured through a method encountered in game programming, which allows high flexibility: stimuli are straightforwardly composed using a broad library of basic components. Stimulus rendering is implemented solely in C++, therefore intermediary libraries for interfacing could be omitted. This enables the program to perform computationally demanding tasks like en-masse random number generation or real-time image processing by local and global operations.

  8. The effect of leg-to-body ratio on male attractiveness depends on the ecological validity of the figures.

    PubMed

    Versluys, Thomas M M; Skylark, William J

    2017-10-01

    Leg-to-body ratio (LBR) predicts evolutionary fitness, and is therefore expected to influence bodily attractiveness. Previous investigations of LBR attractiveness have used a wide variety of stimuli, including line drawings, silhouettes, and computer-generated images based on anthropometric data. In two studies, community samples of heterosexual women from the USA rated the attractiveness of male figures presented as silhouettes and as detailed computer-generated images with three different skin tones (white, black, and an artificial grey). The effects of LBR depended on the image format. In particular, a curve-fitting analysis indicated that the optimally-attractive LBR for silhouettes was fractionally below the baseline, whereas the optima for more detailed computer-generated images was approximately 0.5 s.d. above the baseline and was similar for all three skin-tones. In addition, the participants' sensitivity to changes in the LBR was lowest for the silhouettes and highest for the grey figures. Our results add to evidence that the most attractive LBR is close to, but slightly above, the population mean, and caution that the effects of limb proportions on attractiveness depend on the ecological validity of the figures.

  9. The computational worm: spatial orientation and its neuronal basis in C. elegans.

    PubMed

    Lockery, Shawn R

    2011-10-01

    Spatial orientation behaviors in animals are fundamental for survival but poorly understood at the neuronal level. The nematode Caenorhabditis elegans orients to a wide range of stimuli and has a numerically small and well-described nervous system making it advantageous for investigating the mechanisms of spatial orientation. Recent work by the C. elegans research community has identified essential computational elements of the neural circuits underlying two orientation strategies that operate in five different sensory modalities. Analysis of these circuits reveals novel motifs including simple circuits for computing temporal derivatives of sensory input and for integrating sensory input with behavioral state to generate adaptive behavior. These motifs constitute hypotheses concerning the identity and functionality of circuits controlling spatial orientation in higher organisms. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Computing with Neural Synchrony

    PubMed Central

    Brette, Romain

    2012-01-01

    Neurons communicate primarily with spikes, but most theories of neural computation are based on firing rates. Yet, many experimental observations suggest that the temporal coordination of spikes plays a role in sensory processing. Among potential spike-based codes, synchrony appears as a good candidate because neural firing and plasticity are sensitive to fine input correlations. However, it is unclear what role synchrony may play in neural computation, and what functional advantage it may provide. With a theoretical approach, I show that the computational interest of neural synchrony appears when neurons have heterogeneous properties. In this context, the relationship between stimuli and neural synchrony is captured by the concept of synchrony receptive field, the set of stimuli which induce synchronous responses in a group of neurons. In a heterogeneous neural population, it appears that synchrony patterns represent structure or sensory invariants in stimuli, which can then be detected by postsynaptic neurons. The required neural circuitry can spontaneously emerge with spike-timing-dependent plasticity. Using examples in different sensory modalities, I show that this allows simple neural circuits to extract relevant information from realistic sensory stimuli, for example to identify a fluctuating odor in the presence of distractors. This theory of synchrony-based computation shows that relative spike timing may indeed have computational relevance, and suggests new types of neural network models for sensory processing with appealing computational properties. PMID:22719243

  11. Functional Architecture for Disparity in Macaque Inferior Temporal Cortex and Its Relationship to the Architecture for Faces, Color, Scenes, and Visual Field

    PubMed Central

    Verhoef, Bram-Ernst; Bohon, Kaitlin S.

    2015-01-01

    Binocular disparity is a powerful depth cue for object perception. The computations for object vision culminate in inferior temporal cortex (IT), but the functional organization for disparity in IT is unknown. Here we addressed this question by measuring fMRI responses in alert monkeys to stimuli that appeared in front of (near), behind (far), or at the fixation plane. We discovered three regions that showed preferential responses for near and far stimuli, relative to zero-disparity stimuli at the fixation plane. These “near/far” disparity-biased regions were located within dorsal IT, as predicted by microelectrode studies, and on the posterior inferotemporal gyrus. In a second analysis, we instead compared responses to near stimuli with responses to far stimuli and discovered a separate network of “near” disparity-biased regions that extended along the crest of the superior temporal sulcus. We also measured in the same animals fMRI responses to faces, scenes, color, and checkerboard annuli at different visual field eccentricities. Disparity-biased regions defined in either analysis did not show a color bias, suggesting that disparity and color contribute to different computations within IT. Scene-biased regions responded preferentially to near and far stimuli (compared with stimuli without disparity) and had a peripheral visual field bias, whereas face patches had a marked near bias and a central visual field bias. These results support the idea that IT is organized by a coarse eccentricity map, and show that disparity likely contributes to computations associated with both central (face processing) and peripheral (scene processing) visual field biases, but likely does not contribute much to computations within IT that are implicated in processing color. PMID:25926470

  12. Neurons Forming Optic Glomeruli Compute Figure–Ground Discriminations in Drosophila

    PubMed Central

    Aptekar, Jacob W.; Keleş, Mehmet F.; Lu, Patrick M.; Zolotova, Nadezhda M.

    2015-01-01

    Many animals rely on visual figure–ground discrimination to aid in navigation, and to draw attention to salient features like conspecifics or predators. Even figures that are similar in pattern and luminance to the visual surroundings can be distinguished by the optical disparity generated by their relative motion against the ground, and yet the neural mechanisms underlying these visual discriminations are not well understood. We show in flies that a diverse array of figure–ground stimuli containing a motion-defined edge elicit statistically similar behavioral responses to one another, and statistically distinct behavioral responses from ground motion alone. From studies in larger flies and other insect species, we hypothesized that the circuitry of the lobula—one of the four, primary neuropiles of the fly optic lobe—performs this visual discrimination. Using calcium imaging of input dendrites, we then show that information encoded in cells projecting from the lobula to discrete optic glomeruli in the central brain group these sets of figure–ground stimuli in a homologous manner to the behavior; “figure-like” stimuli are coded similar to one another and “ground-like” stimuli are encoded differently. One cell class responds to the leading edge of a figure and is suppressed by ground motion. Two other classes cluster any figure-like stimuli, including a figure moving opposite the ground, distinctly from ground alone. This evidence demonstrates that lobula outputs provide a diverse basis set encoding visual features necessary for figure detection. PMID:25972183

  13. Neurons forming optic glomeruli compute figure-ground discriminations in Drosophila.

    PubMed

    Aptekar, Jacob W; Keleş, Mehmet F; Lu, Patrick M; Zolotova, Nadezhda M; Frye, Mark A

    2015-05-13

    Many animals rely on visual figure-ground discrimination to aid in navigation, and to draw attention to salient features like conspecifics or predators. Even figures that are similar in pattern and luminance to the visual surroundings can be distinguished by the optical disparity generated by their relative motion against the ground, and yet the neural mechanisms underlying these visual discriminations are not well understood. We show in flies that a diverse array of figure-ground stimuli containing a motion-defined edge elicit statistically similar behavioral responses to one another, and statistically distinct behavioral responses from ground motion alone. From studies in larger flies and other insect species, we hypothesized that the circuitry of the lobula--one of the four, primary neuropiles of the fly optic lobe--performs this visual discrimination. Using calcium imaging of input dendrites, we then show that information encoded in cells projecting from the lobula to discrete optic glomeruli in the central brain group these sets of figure-ground stimuli in a homologous manner to the behavior; "figure-like" stimuli are coded similar to one another and "ground-like" stimuli are encoded differently. One cell class responds to the leading edge of a figure and is suppressed by ground motion. Two other classes cluster any figure-like stimuli, including a figure moving opposite the ground, distinctly from ground alone. This evidence demonstrates that lobula outputs provide a diverse basis set encoding visual features necessary for figure detection. Copyright © 2015 the authors 0270-6474/15/357587-13$15.00/0.

  14. A computational model of pupil dilation

    NASA Astrophysics Data System (ADS)

    Johansson, Birger; Balkenius, Christian

    2018-01-01

    We present a system-level connectionist model of pupil control that includes brain regions believed to influence the size of the pupil. It includes parts of the sympathetic and parasympathetic nervous system together with the hypothalamus, amygdala, locus coeruleus, and cerebellum. Computer simulations show that the model is able to reproduce a number of important aspects of how the pupil reacts to different stimuli: (1) It reproduces the characteristic shape and latency of the light-reflex. (2) It elicits pupil dilation as a response to novel stimuli. (3) It produces pupil dilation when shown emotionally charged stimuli, and can be trained to respond to initially neutral stimuli through classical conditioning. (4) The model can learn to expect light changes for particular stimuli, such as images of the sun, and produces a "light-response" to such stimuli even when there is no change in light intensity. (5) It also reproduces the fear-inhibited light reflex effect where reactions to light increase is weaker after presentation of a conditioned stimulus that predicts punishment.

  15. 76 FR 10564 - Takes of Marine Mammals Incidental to Specified Activities; St. George Reef Light Station...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-25

    .... Acoustic and visual stimuli generated by: (1) Helicopter landings/takeoffs; (2) noise generated during... minimize acoustic and visual disturbances) as described in NMFS' December 22, 2010 (75 FR 80471) notice of... Activity on Marine Mammals Acoustic and visual stimuli generated by: (1) Helicopter landings/ takeoffs; (2...

  16. Cue reactivity and its inhibition in pathological computer game players.

    PubMed

    Lorenz, Robert C; Krüger, Jenny-Kathinka; Neumann, Britta; Schott, Björn H; Kaufmann, Christian; Heinz, Andreas; Wüstenberg, Torsten

    2013-01-01

    Despite a rising social relevance of pathological computer game playing, it remains unclear whether the neurobiological basis of this addiction-like behavioral disorder and substance-related addiction are comparable. In substance-related addiction, attentional bias and cue reactivity are often observed. We conducted a functional magnetic resonance study using a dot probe paradigm with short-presentation (attentional bias) and long-presentation (cue reactivity) trials in eight male pathological computer game players (PCGPs) and nine healthy controls (HCs). Computer game-related and neutral computer-generated pictures, as well as pictures from the International Affective Picture System with positive and neutral valence, served as stimuli. PCGPs showed an attentional bias toward both game-related and affective stimuli with positive valence. In contrast, HCs showed no attentional bias effect at all. PCGPs showed stronger brain responses in short-presentation trials compared with HCs in medial prefrontal cortex (MPFC) and anterior cingulate gyrus and in long-presentation trials in lingual gyrus. In an exploratory post hoc functional connectivity analyses, for long-presentation trials, connectivity strength was higher between right inferior frontal gyrus, which was associated with inhibition processing in previous studies, and cue reactivity-related regions (left orbitofrontal cortex and ventral striatum) in PCGPs. We observed behavioral and neural effects in PCGPs, which are comparable with those found in substance-related addiction. However, cue-related brain responses were depending on duration of cue presentation. Together with the connectivity result, these findings suggest that top-down inhibitory processes might suppress the cue reactivity-related neural activity in long-presentation trials. © 2012 The Authors, Addiction Biology © 2012 Society for the Study of Addiction.

  17. Video-task assessment of learning and memory in Macaques (Macaca mulatta) - Effects of stimulus movement on performance

    NASA Technical Reports Server (NTRS)

    Washburn, David A.; Hopkins, William D.; Rumbaugh, Duane M.

    1989-01-01

    Effects of stimulus movement on learning, transfer, matching, and short-term memory performance were assessed with 2 monkeys using a video-task paradigm in which the animals responded to computer-generated images by manipulating a joystick. Performance on tests of learning set, transfer index, matching to sample, and delayed matching to sample in the video-task paradigm was comparable to that obtained in previous investigations using the Wisconsin General Testing Apparatus. Additionally, learning, transfer, and matching were reliably and significantly better when the stimuli or discriminanda moved than when the stimuli were stationary. External manipulations such as stimulus movement may increase attention to the demands of a task, which in turn should increase the efficiency of learning. These findings have implications for the investigation of learning in other populations, as well as for the application of the video-task paradigm to comparative study.

  18. Spectrotemporal processing drives fast access to memory traces for spoken words.

    PubMed

    Tavano, A; Grimm, S; Costa-Faidella, J; Slabu, L; Schröger, E; Escera, C

    2012-05-01

    The Mismatch Negativity (MMN) component of the event-related potentials is generated when a detectable spectrotemporal feature of the incoming sound does not match the sensory model set up by preceding repeated stimuli. MMN is enhanced at frontocentral scalp sites for deviant words when compared to acoustically similar deviant pseudowords, suggesting that automatic access to long-term memory traces for spoken words contributes to MMN generation. Does spectrotemporal feature matching also drive automatic lexical access? To test this, we recorded human auditory event-related potentials (ERPs) to disyllabic spoken words and pseudowords within a passive oddball paradigm. We first aimed at replicating the word-related MMN enhancement effect for Spanish, thereby adding to the available cross-linguistic evidence (e.g., Finnish, English). We then probed its resilience to spectrotemporal perturbation by inserting short (20 ms) and long (120 ms) silent gaps between first and second syllables of deviant and standard stimuli. A significantly enhanced, frontocentrally distributed MMN to deviant words was found for stimuli with no gap. The long gap yielded no deviant word MMN, showing that prior expectations of word form limits in a given language influence deviance detection processes. Crucially, the insertion of a short gap suppressed deviant word MMN enhancement at frontocentral sites. We propose that spectrotemporal point-wise matching constitutes a core mechanism for fast serial computations in audition and language, bridging sensory and long-term memory systems. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Computer-task testing of rhesus monkeys (Macaca mulatta) in the social milieu.

    PubMed

    Washburn, D A; Harper, S; Rumbaugh, D M

    1994-07-01

    Previous research has demonstrated that a behavior and performance testing paradigm, in which rhesus monkeys (Macaca mulatta) manipulate a joystick to respond to computer-generated stimuli, provides environmental enrichment and supports the psychological well-being of captive research animals. The present study was designed to determine whether computer-task activity would be affected by pair-housing animals that had previously been tested only in their single-animal home cages. No differences were observed in productivity or performance levels as a function of housing condition, even when the animals were required to "self-identify" prior to performing each trial. The data indicate that cognitive challenge and control are as preferred by the animals as social opportunities, and that, together with comfort/health considerations, each must be addressed for the assurance of psychological well-being.

  20. Agent Models for Self-Motivated Home-Assistant Bots

    NASA Astrophysics Data System (ADS)

    Merrick, Kathryn; Shafi, Kamran

    2010-01-01

    Modern society increasingly relies on technology to support everyday activities. In the past, this technology has focused on automation, using computer technology embedded in physical objects. More recently, there is an expectation that this technology will not just embed reactive automation, but also embed intelligent, proactive automation in the environment. That is, there is an emerging desire for novel technologies that can monitor, assist, inform or entertain when required, and not just when requested. This paper presents three self-motivated, home-assistant bot applications using different self-motivated agent models. Self-motivated agents use a computational model of motivation to generate goals proactively. Technologies based on self-motivated agents can thus respond autonomously and proactively to stimuli from their environment. Three prototypes of different self-motivated agent models, using different computational models of motivation, are described to demonstrate these concepts.

  1. Interactive Light Stimulus Generation with High Performance Real-Time Image Processing and Simple Scripting

    PubMed Central

    Szécsi, László; Kacsó, Ágota; Zeck, Günther; Hantz, Péter

    2017-01-01

    Light stimulation with precise and complex spatial and temporal modulation is demanded by a series of research fields like visual neuroscience, optogenetics, ophthalmology, and visual psychophysics. We developed a user-friendly and flexible stimulus generating framework (GEARS GPU-based Eye And Retina Stimulation Software), which offers access to GPU computing power, and allows interactive modification of stimulus parameters during experiments. Furthermore, it has built-in support for driving external equipment, as well as for synchronization tasks, via USB ports. The use of GEARS does not require elaborate programming skills. The necessary scripting is visually aided by an intuitive interface, while the details of the underlying software and hardware components remain hidden. Internally, the software is a C++/Python hybrid using OpenGL graphics. Computations are performed on the GPU, and are defined in the GLSL shading language. However, all GPU settings, including the GPU shader programs, are automatically generated by GEARS. This is configured through a method encountered in game programming, which allows high flexibility: stimuli are straightforwardly composed using a broad library of basic components. Stimulus rendering is implemented solely in C++, therefore intermediary libraries for interfacing could be omitted. This enables the program to perform computationally demanding tasks like en-masse random number generation or real-time image processing by local and global operations. PMID:29326579

  2. Integration of visual and motion cues for simulator requirements and ride quality investigation. [computerized simulation of aircraft landing, visual perception of aircraft pilots

    NASA Technical Reports Server (NTRS)

    Young, L. R.

    1975-01-01

    Preliminary tests and evaluation are presented of pilot performance during landing (flight paths) using computer generated images (video tapes). Psychophysiological factors affecting pilot visual perception were measured. A turning flight maneuver (pitch and roll) was specifically studied using a training device, and the scaling laws involved were determined. Also presented are medical studies (abstracts) on human response to gravity variations without visual cues, acceleration stimuli effects on the semicircular canals, and neurons affecting eye movements, and vestibular tests.

  3. Antennal pointing at a looming object in the cricket Acheta domesticus.

    PubMed

    Yamawaki, Yoshifumi; Ishibashi, Wakako

    2014-01-01

    Antennal pointing responses to approaching objects were observed in the house cricket Acheta domesticus. In response to a ball approaching from the lateral side, crickets oriented the antenna ipsilateral to the ball towards it. In response to a ball approaching from the front, crickets oriented both antennae forward. Response rates of antennal pointing were higher when the ball was approaching from the front than from behind. The antennal angle ipsilateral to the approaching ball was positively correlated with approaching angle of the ball. Obstructing the cricket's sight decreased the response rate of antennal pointing, suggesting that this response was elicited mainly by visual stimuli. Although the response rates of antennal pointing decreased when the object ceased its approach at a great distance from the cricket, antennal pointing appeared to be resistant to habituation and was not substantially affected by the velocity, size and trajectory of an approaching ball. When presented with computer-generated visual stimuli, crickets frequently showed the antennal pointing response to a darkening stimulus as well as looming and linearly-expanding stimuli. Drifting gratings rarely elicited the antennal pointing. These results suggest that luminance change is sufficient to elicit antennal pointing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Supramodal representation of emotions.

    PubMed

    Klasen, Martin; Kenworthy, Charles A; Mathiak, Krystyna A; Kircher, Tilo T J; Mathiak, Klaus

    2011-09-21

    Supramodal representation of emotion and its neural substrates have recently attracted attention as a marker of social cognition. However, the question whether perceptual integration of facial and vocal emotions takes place in primary sensory areas, multimodal cortices, or in affective structures remains unanswered yet. Using novel computer-generated stimuli, we combined emotional faces and voices in congruent and incongruent ways and assessed functional brain data (fMRI) during an emotional classification task. Both congruent and incongruent audiovisual stimuli evoked larger responses in thalamus and superior temporal regions compared with unimodal conditions. Congruent emotions were characterized by activation in amygdala, insula, ventral posterior cingulate (vPCC), temporo-occipital, and auditory cortices; incongruent emotions activated a frontoparietal network and bilateral caudate nucleus, indicating a greater processing load in working memory and emotion-encoding areas. The vPCC alone exhibited differential reactions to congruency and incongruency for all emotion categories and can thus be considered a central structure for supramodal representation of complex emotional information. Moreover, the left amygdala reflected supramodal representation of happy stimuli. These findings document that emotional information does not merge at the perceptual audiovisual integration level in unimodal or multimodal areas, but in vPCC and amygdala.

  5. Monaural and binaural processing of complex waveforms

    NASA Astrophysics Data System (ADS)

    Trahiotis, Constantine; Bernstein, Leslie R.

    1992-01-01

    Our research concerned the manners by which the monaural and binaural auditory systems process information in complex sounds. Substantial progress was made in three areas, consistent with the ojectives outlined in the original proposal. (1) New electronic equipment, including a NeXT computer was purchased, installed and interfaced with the existing laboratory. Software was developed for generating the necessary complex digital stimuli and for running behavioral experiments utilizing those stimuli. (2) Monaural experiments showed that the CMR is not obtained successively and is reduced or non-existent when the flanking bands are pulsed rather than presented continuously. Binaural investigations revealed that the detectability of a tonal target in a masking level difference paradigm could be degraded by the presence of a spectrally remote interfering tone. (3) In collaboration with Dr. Richard Stem, theoretical efforts included the explication and evaluation of a weighted-image model of binaural hearing, attempts to extend the Stern-Colbum position-variable model to account for many crucial lateralization and localization data gathered over the past 50 years, and the continuation of efforts to incorporate into a general model notions that lateralization and localization of spectrally-rich stimuli depend upon the patterns of neural activity within a plane defined by frequency and interaural delay.

  6. Explaining compound generalization in associative and causal learning through rational principles of dimensional generalization.

    PubMed

    Soto, Fabian A; Gershman, Samuel J; Niv, Yael

    2014-07-01

    How do we apply learning from one situation to a similar, but not identical, situation? The principles governing the extent to which animals and humans generalize what they have learned about certain stimuli to novel compounds containing those stimuli vary depending on a number of factors. Perhaps the best studied among these factors is the type of stimuli used to generate compounds. One prominent hypothesis is that different generalization principles apply depending on whether the stimuli in a compound are similar or dissimilar to each other. However, the results of many experiments cannot be explained by this hypothesis. Here, we propose a rational Bayesian theory of compound generalization that uses the notion of consequential regions, first developed in the context of rational theories of multidimensional generalization, to explain the effects of stimulus factors on compound generalization. The model explains a large number of results from the compound generalization literature, including the influence of stimulus modality and spatial contiguity on the summation effect, the lack of influence of stimulus factors on summation with a recovered inhibitor, the effect of spatial position of stimuli on the blocking effect, the asymmetrical generalization decrement in overshadowing and external inhibition, and the conditions leading to a reliable external inhibition effect. By integrating rational theories of compound and dimensional generalization, our model provides the first comprehensive computational account of the effects of stimulus factors on compound generalization, including spatial and temporal contiguity between components, which have posed long-standing problems for rational theories of associative and causal learning. (c) 2014 APA, all rights reserved.

  7. Explaining Compound Generalization in Associative and Causal Learning Through Rational Principles of Dimensional Generalization

    PubMed Central

    Soto, Fabian A.; Gershman, Samuel J.; Niv, Yael

    2014-01-01

    How do we apply learning from one situation to a similar, but not identical, situation? The principles governing the extent to which animals and humans generalize what they have learned about certain stimuli to novel compounds containing those stimuli vary depending on a number of factors. Perhaps the best studied among these factors is the type of stimuli used to generate compounds. One prominent hypothesis is that different generalization principles apply depending on whether the stimuli in a compound are similar or dissimilar to each other. However, the results of many experiments cannot be explained by this hypothesis. Here we propose a rational Bayesian theory of compound generalization that uses the notion of consequential regions, first developed in the context of rational theories of multidimensional generalization, to explain the effects of stimulus factors on compound generalization. The model explains a large number of results from the compound generalization literature, including the influence of stimulus modality and spatial contiguity on the summation effect, the lack of influence of stimulus factors on summation with a recovered inhibitor, the effect of spatial position of stimuli on the blocking effect, the asymmetrical generalization decrement in overshadowing and external inhibition, and the conditions leading to a reliable external inhibition effect. By integrating rational theories of compound and dimensional generalization, our model provides the first comprehensive computational account of the effects of stimulus factors on compound generalization, including spatial and temporal contiguity between components, which have posed longstanding problems for rational theories of associative and causal learning. PMID:25090430

  8. Auditory presentation and synchronization in Adobe Flash and HTML5/JavaScript Web experiments.

    PubMed

    Reimers, Stian; Stewart, Neil

    2016-09-01

    Substantial recent research has examined the accuracy of presentation durations and response time measurements for visually presented stimuli in Web-based experiments, with a general conclusion that accuracy is acceptable for most kinds of experiments. However, many areas of behavioral research use auditory stimuli instead of, or in addition to, visual stimuli. Much less is known about auditory accuracy using standard Web-based testing procedures. We used a millisecond-accurate Black Box Toolkit to measure the actual durations of auditory stimuli and the synchronization of auditory and visual presentation onsets. We examined the distribution of timings for 100 presentations of auditory and visual stimuli across two computers with difference specs, three commonly used browsers, and code written in either Adobe Flash or JavaScript. We also examined different coding options for attempting to synchronize the auditory and visual onsets. Overall, we found that auditory durations were very consistent, but that the lags between visual and auditory onsets varied substantially across browsers and computer systems.

  9. Effect of instructive visual stimuli on neurofeedback training for motor imagery-based brain-computer interface.

    PubMed

    Kondo, Toshiyuki; Saeki, Midori; Hayashi, Yoshikatsu; Nakayashiki, Kosei; Takata, Yohei

    2015-10-01

    Event-related desynchronization (ERD) of the electroencephalogram (EEG) from the motor cortex is associated with execution, observation, and mental imagery of motor tasks. Generation of ERD by motor imagery (MI) has been widely used for brain-computer interfaces (BCIs) linked to neuroprosthetics and other motor assistance devices. Control of MI-based BCIs can be acquired by neurofeedback training to reliably induce MI-associated ERD. To develop more effective training conditions, we investigated the effect of static and dynamic visual representations of target movements (a picture of forearms or a video clip of hand grasping movements) during the BCI neurofeedback training. After 4 consecutive training days, the group that performed MI while viewing the video showed significant improvement in generating MI-associated ERD compared with the group that viewed the static image. This result suggests that passively observing the target movement during MI would improve the associated mental imagery and enhance MI-based BCIs skills. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Biosensors with Built-In Biomolecular Logic Gates for Practical Applications

    PubMed Central

    Lai, Yu-Hsuan; Sun, Sin-Cih; Chuang, Min-Chieh

    2014-01-01

    Molecular logic gates, designs constructed with biological and chemical molecules, have emerged as an alternative computing approach to silicon-based logic operations. These molecular computers are capable of receiving and integrating multiple stimuli of biochemical significance to generate a definitive output, opening a new research avenue to advanced diagnostics and therapeutics which demand handling of complex factors and precise control. In molecularly gated devices, Boolean logic computations can be activated by specific inputs and accurately processed via bio-recognition, bio-catalysis, and selective chemical reactions. In this review, we survey recent advances of the molecular logic approaches to practical applications of biosensors, including designs constructed with proteins, enzymes, nucleic acids, nanomaterials, and organic compounds, as well as the research avenues for future development of digitally operating “sense and act” schemes that logically process biochemical signals through networked circuits to implement intelligent control systems. PMID:25587423

  11. Partial correlation-based functional connectivity analysis for functional near-infrared spectroscopy signals

    NASA Astrophysics Data System (ADS)

    Akın, Ata

    2017-12-01

    A theoretical framework, a partial correlation-based functional connectivity (PC-FC) analysis to functional near-infrared spectroscopy (fNIRS) data, is proposed. This is based on generating a common background signal from a high passed version of fNIRS data averaged over all channels as the regressor in computing the PC between pairs of channels. This approach has been employed to real data collected during a Stroop task. The results show a strong significance in the global efficiency (GE) metric computed by the PC-FC analysis for neutral, congruent, and incongruent stimuli (NS, CS, IcS; GEN=0.10±0.009, GEC=0.11±0.01, GEIC=0.13±0.015, p=0.0073). A positive correlation (r=0.729 and p=0.0259) is observed between the interference of reaction times (incongruent-neutral) and interference of GE values (GEIC-GEN) computed from [HbO] signals.

  12. A Single Mechanism Can Account for Human Perception of Depth in Mixed Correlation Random Dot Stereograms

    PubMed Central

    Cumming, Bruce G.

    2016-01-01

    In order to extract retinal disparity from a visual scene, the brain must match corresponding points in the left and right retinae. This computationally demanding task is known as the stereo correspondence problem. The initial stage of the solution to the correspondence problem is generally thought to consist of a correlation-based computation. However, recent work by Doi et al suggests that human observers can see depth in a class of stimuli where the mean binocular correlation is 0 (half-matched random dot stereograms). Half-matched random dot stereograms are made up of an equal number of correlated and anticorrelated dots, and the binocular energy model—a well-known model of V1 binocular complex cells—fails to signal disparity here. This has led to the proposition that a second, match-based computation must be extracting disparity in these stimuli. Here we show that a straightforward modification to the binocular energy model—adding a point output nonlinearity—is by itself sufficient to produce cells that are disparity-tuned to half-matched random dot stereograms. We then show that a simple decision model using this single mechanism can reproduce psychometric functions generated by human observers, including reduced performance to large disparities and rapidly updating dot patterns. The model makes predictions about how performance should change with dot size in half-matched stereograms and temporal alternation in correlation, which we test in human observers. We conclude that a single correlation-based computation, based directly on already-known properties of V1 neurons, can account for the literature on mixed correlation random dot stereograms. PMID:27196696

  13. Computer-aided psychotherapy based on multimodal elicitation, estimation and regulation of emotion.

    PubMed

    Cosić, Krešimir; Popović, Siniša; Horvat, Marko; Kukolja, Davor; Dropuljić, Branimir; Kovač, Bernard; Jakovljević, Miro

    2013-09-01

    Contemporary psychiatry is looking at affective sciences to understand human behavior, cognition and the mind in health and disease. Since it has been recognized that emotions have a pivotal role for the human mind, an ever increasing number of laboratories and research centers are interested in affective sciences, affective neuroscience, affective psychology and affective psychopathology. Therefore, this paper presents multidisciplinary research results of Laboratory for Interactive Simulation System at Faculty of Electrical Engineering and Computing, University of Zagreb in the stress resilience. Patient's distortion in emotional processing of multimodal input stimuli is predominantly consequence of his/her cognitive deficit which is result of their individual mental health disorders. These emotional distortions in patient's multimodal physiological, facial, acoustic, and linguistic features related to presented stimulation can be used as indicator of patient's mental illness. Real-time processing and analysis of patient's multimodal response related to annotated input stimuli is based on appropriate machine learning methods from computer science. Comprehensive longitudinal multimodal analysis of patient's emotion, mood, feelings, attention, motivation, decision-making, and working memory in synchronization with multimodal stimuli provides extremely valuable big database for data mining, machine learning and machine reasoning. Presented multimedia stimuli sequence includes personalized images, movies and sounds, as well as semantically congruent narratives. Simultaneously, with stimuli presentation patient provides subjective emotional ratings of presented stimuli in terms of subjective units of discomfort/distress, discrete emotions, or valence and arousal. These subjective emotional ratings of input stimuli and corresponding physiological, speech, and facial output features provides enough information for evaluation of patient's cognitive appraisal deficit. Aggregated real-time visualization of this information provides valuable assistance in patient mental state diagnostics enabling therapist deeper and broader insights into dynamics and progress of the psychotherapy.

  14. Post-Coma Persons with Motor and Communication/Consciousness Impairments Choose among Environmental Stimuli and Request Stimulus Repetitions via Assistive Technology

    ERIC Educational Resources Information Center

    Lancioni, Giulio E.; Singh, Nirbhay N.; O'Reilly, Mark F.; Sigafoos, Jeff; Buonocunto, Francesca; Sacco, Valentina; Colonna, Fabio; Navarro, Jorge; Lanzilotti, Crocifissa; Oliva, Doretta; Megna, Gianfranco

    2010-01-01

    This study assessed whether a program based on microswitch and computer technology would enable three post-coma participants (adults) with motor and communication/consciousness impairments to choose among environmental stimuli and request their repetition whenever they so desired. Within each session, 16 stimuli (12 preferred and 4 non-preferred)…

  15. An Inexpensive and Automated Method for Presenting Olfactory or Tactile Stimuli to Rats in a Two-Choice Discrimination Task

    ERIC Educational Resources Information Center

    Iversen, Iver H.

    2008-01-01

    An inexpensive and automated method for presentation of olfactory or tactile stimuli in a two-choice task for rats was implemented with the use of a computer-controlled bidirectional motor. The motor rotated a disk that presented two stimuli of different texture for tactile discrimination, or different odor for olfactory discrimination. Because…

  16. Agency alters perceptual decisions about action-outcomes.

    PubMed

    Desantis, Andrea; Waszak, Florian; Gorea, Andrei

    2016-10-01

    Humans experience themselves as agents, capable of controlling their actions and the outcomes they generate (i.e., the sense of agency). Inferences of agency are not infallible. Research shows that we often attribute outcomes to our agency even though they are caused by another agent. Moreover, agents report the sensory events they generate to be less intense compared to the events that are generated externally. These effects have been assessed using highly suprathreshold stimuli and subjective measurements. Consequently, it remains unclear whether experiencing oneself as an agent lead to a decision criterion change and/or a sensitivity change. Here, we investigate this issue. Participants were told that their key presses generated an upward dot motion but that on 30 % of the trials the computer would take over and display a downward motion. The upward/downward dot motion was presented at participant's discrimination threshold. Participants were asked to indicate whether they (upward motion) or the computer (downward motion) generated the motion. This group of participants was compared with a 'no-agency' group who performed the same task except that subjects did not execute any actions to generate the dot motion. We observed that the agency group reported seeing more frequently the motion they expected to generate (i.e., upward motion) than the no-agency group. This suggests that agency distorts our experience of (allegedly) caused events by altering perceptual decision processes, so that, in ambiguous contexts, externally generated events are experienced as the outcomes of one's actions.

  17. The cognitive nuances of surprising events: exposure to unexpected stimuli elicits firing variations in neurons of the dorsal CA1 hippocampus.

    PubMed

    Valenti, Ornella; Mikus, Nace; Klausberger, Thomas

    2018-05-22

    The ability to recognize novel situations is among the most fascinating and vital of the brain functions. A hypothesis posits that encoding of novelty is prompted by failures in expectancy, according to computation matching incoming information with stored events. Thus, unexpected changes in context are detected within the hippocampus and transferred to downstream structures, eliciting the arousal of the dopamine system. Nevertheless, the precise locus of detection is a matter of debate. The dorsal CA1 hippocampus (dCA1) appears as an ideal candidate for operating a mismatch computation and discriminating the occurrence of diverse stimuli within the same environment. In this study, we sought to determine dCA1 neuronal firing during the experience of novel stimuli embedded in familiar contexts. We performed population recordings while head-fixed mice navigated virtual environments. Three stimuli were employed, namely a novel pattern of visual cues, an odor, and a reward with enhanced valence. The encounter of unexpected events elicited profound variations in dCA1 that were assessed both as opposite rate directions and altered network connectivity. When experienced in sequence, novel stimuli elicited specific responses that often exhibited cross-sensitization. Short-latency, event-triggered responses were in accordance with the detection of novelty being computed within dCA1. We postulate that firing variations trigger neuronal disinhibition, and constitute a fundamental mechanism in the processing of unexpected events and in learning. Elucidating the mechanisms underlying detection and computation of novelty might help in understanding hippocampal-dependent cognitive dysfunctions associated with neuropathologies and psychiatric conditions.

  18. Benchmarking Spike-Based Visual Recognition: A Dataset and Evaluation

    PubMed Central

    Liu, Qian; Pineda-García, Garibaldi; Stromatias, Evangelos; Serrano-Gotarredona, Teresa; Furber, Steve B.

    2016-01-01

    Today, increasing attention is being paid to research into spike-based neural computation both to gain a better understanding of the brain and to explore biologically-inspired computation. Within this field, the primate visual pathway and its hierarchical organization have been extensively studied. Spiking Neural Networks (SNNs), inspired by the understanding of observed biological structure and function, have been successfully applied to visual recognition and classification tasks. In addition, implementations on neuromorphic hardware have enabled large-scale networks to run in (or even faster than) real time, making spike-based neural vision processing accessible on mobile robots. Neuromorphic sensors such as silicon retinas are able to feed such mobile systems with real-time visual stimuli. A new set of vision benchmarks for spike-based neural processing are now needed to measure progress quantitatively within this rapidly advancing field. We propose that a large dataset of spike-based visual stimuli is needed to provide meaningful comparisons between different systems, and a corresponding evaluation methodology is also required to measure the performance of SNN models and their hardware implementations. In this paper we first propose an initial NE (Neuromorphic Engineering) dataset based on standard computer vision benchmarksand that uses digits from the MNIST database. This dataset is compatible with the state of current research on spike-based image recognition. The corresponding spike trains are produced using a range of techniques: rate-based Poisson spike generation, rank order encoding, and recorded output from a silicon retina with both flashing and oscillating input stimuli. In addition, a complementary evaluation methodology is presented to assess both model-level and hardware-level performance. Finally, we demonstrate the use of the dataset and the evaluation methodology using two SNN models to validate the performance of the models and their hardware implementations. With this dataset we hope to (1) promote meaningful comparison between algorithms in the field of neural computation, (2) allow comparison with conventional image recognition methods, (3) provide an assessment of the state of the art in spike-based visual recognition, and (4) help researchers identify future directions and advance the field. PMID:27853419

  19. Benchmarking Spike-Based Visual Recognition: A Dataset and Evaluation.

    PubMed

    Liu, Qian; Pineda-García, Garibaldi; Stromatias, Evangelos; Serrano-Gotarredona, Teresa; Furber, Steve B

    2016-01-01

    Today, increasing attention is being paid to research into spike-based neural computation both to gain a better understanding of the brain and to explore biologically-inspired computation. Within this field, the primate visual pathway and its hierarchical organization have been extensively studied. Spiking Neural Networks (SNNs), inspired by the understanding of observed biological structure and function, have been successfully applied to visual recognition and classification tasks. In addition, implementations on neuromorphic hardware have enabled large-scale networks to run in (or even faster than) real time, making spike-based neural vision processing accessible on mobile robots. Neuromorphic sensors such as silicon retinas are able to feed such mobile systems with real-time visual stimuli. A new set of vision benchmarks for spike-based neural processing are now needed to measure progress quantitatively within this rapidly advancing field. We propose that a large dataset of spike-based visual stimuli is needed to provide meaningful comparisons between different systems, and a corresponding evaluation methodology is also required to measure the performance of SNN models and their hardware implementations. In this paper we first propose an initial NE (Neuromorphic Engineering) dataset based on standard computer vision benchmarksand that uses digits from the MNIST database. This dataset is compatible with the state of current research on spike-based image recognition. The corresponding spike trains are produced using a range of techniques: rate-based Poisson spike generation, rank order encoding, and recorded output from a silicon retina with both flashing and oscillating input stimuli. In addition, a complementary evaluation methodology is presented to assess both model-level and hardware-level performance. Finally, we demonstrate the use of the dataset and the evaluation methodology using two SNN models to validate the performance of the models and their hardware implementations. With this dataset we hope to (1) promote meaningful comparison between algorithms in the field of neural computation, (2) allow comparison with conventional image recognition methods, (3) provide an assessment of the state of the art in spike-based visual recognition, and (4) help researchers identify future directions and advance the field.

  20. Stimuli inevitably generated by behavior that avoids electric shock are inherently reinforcing.

    PubMed Central

    Dinsmoor, J A

    2001-01-01

    A molecular analysis based on the termination of stimuli that are positively correlated with shock and the production of stimuli that are negatively correlated with shock provides a parsimonious count for both traditional discrete-trial avoidance behavior and the data derived from more recent free-operant procedures. The necessary stimuli are provided by the intrinsic feedback generated by the subject's behavior, in addition to those presented by the experimenter. Moreover, all data compatible with the molar principle of shock-frequency reduction as reinforcement are also compatible with a delay-of-shock gradient, but some data compatible with the delay gradient are not compatible with frequency reduction. The delay gradient corresponds to functions relating magnitude of behavioral effect to the time between conditional and unconditional stimuli, the time between conditioned and primary reinforcers, and the time between responses and positive reinforcers. PMID:11453621

  1. In Vivo Demonstration of a Self-Sustaining, Implantable, Stimulated-Muscle-Powered Piezoelectric Generator Prototype

    PubMed Central

    Lewandowski, B. E.; Kilgore, K. L.; Gustafson, K. J.

    2010-01-01

    An implantable, stimulated-muscle-powered piezoelectric active energy harvesting generator was previously designed to exploit the fact that the mechanical output power of muscle is substantially greater than the electrical power necessary to stimulate the muscle’s motor nerve. We reduced to practice the concept by building a prototype generator and stimulator. We demonstrated its feasibility in vivo, using rabbit quadriceps to drive the generator. The generated power was sufficient for self-sustaining operation of the stimulator and additional harnessed power was dissipated through a load resistor. The prototype generator was developed and the power generating capabilities were tested with a mechanical muscle analog. In vivo generated power matched the mechanical muscle analog, verifying its usefulness as a test-bed for generator development. Generator output power was dependent on the muscle stimulation parameters. Simulations and in vivo testing demonstrated that for a fixed number of stimuli/minute, two stimuli applied at a high frequency generated greater power than single stimuli or tetanic contractions. Larger muscles and circuitry improvements are expected to increase available power. An implanted, self-replenishing power source has the potential to augment implanted battery or transcutaneously powered electronic medical devices. PMID:19657742

  2. da Vinci decoded: does da Vinci stereopsis rely on disparity?

    PubMed

    Tsirlin, Inna; Wilcox, Laurie M; Allison, Robert S

    2012-11-01

    In conventional stereopsis, the depth between two objects is computed based on the retinal disparity in the position of matching points in the two eyes. When an object is occluded by another object in the scene, so that it is visible only in one eye, its retinal disparity cannot be computed. Nakayama and Shimojo (1990) found that a precept of quantitative depth between the two objects could still be established for such stimuli and proposed that this precept is based on the constraints imposed by occlusion geometry. They named this and other occlusion-based depth phenomena "da Vinci stereopsis." Subsequent research found quantitative depth based on occlusion geometry in several other classes of stimuli grouped under the term da Vinci stereopsis. However, Nakayama and Shimojo's findings were later brought into question by Gillam, Cook, and Blackburn (2003), who suggested that quantitative depth in their stimuli was perceived based on conventional disparity. In order to understand whether da Vinci stereopsis relies on one type of mechanism or whether its function is stimulus dependent we examine the nature and source of depth in the class of stimuli used by Nakayama and Shimojo (1990). We use three different psychophysical and computational methods to show that the most likely source for depth in these stimuli is occlusion geometry. Based on these experiments and previous data we discuss the potential mechanisms responsible for processing depth from monocular features in da Vinci stereopsis.

  3. Associability-modulated loss learning is increased in posttraumatic stress disorder

    PubMed Central

    Brown, Vanessa M; Zhu, Lusha; Wang, John M; Frueh, B Christopher

    2018-01-01

    Disproportionate reactions to unexpected stimuli in the environment are a cardinal symptom of posttraumatic stress disorder (PTSD). Here, we test whether these heightened responses are associated with disruptions in distinct components of reinforcement learning. Specifically, using functional neuroimaging, a loss-learning task, and a computational model-based approach, we assessed the mechanistic hypothesis that overreactions to stimuli in PTSD arise from anomalous gating of attention during learning (i.e., associability). Behavioral choices of combat-deployed veterans with and without PTSD were fit to a reinforcement learning model, generating trial-by-trial prediction errors (signaling unexpected outcomes) and associability values (signaling attention allocation to the unexpected outcomes). Neural substrates of associability value and behavioral parameter estimates of associability updating, but not prediction error, increased with PTSD during loss learning. Moreover, the interaction of PTSD severity with neural markers of associability value predicted behavioral choices. These results indicate that increased attention-based learning may underlie aspects of PTSD and suggest potential neuromechanistic treatment targets. PMID:29313489

  4. Shape, color, and the other-race effect in the infant brain

    PubMed Central

    Balas, Benjamin; Westerlund, Alissa; Hung, Katherine; Nelson, Charles A.

    2015-01-01

    The “other-race” effect describes the phenomenon in which faces are difficult to distinguish from one another if they belong to an ethnic or racial group to which the observer has had little exposure. Adult observers typically display multiple forms of recognition error for other-race faces, and infants exhibit behavioral evidence of a developing other-race effect at about 9 months of age. The neural correlates of the adult other-race effect have been identified using ERPs and fMRI, but the effects of racial category on infants’ neural response to face stimuli have to date not been described. We examine two distinct components of the infant ERP response to human faces and demonstrate through the use of computer-generated “hybrid” faces that the observed other-race effect is not the result of low-level sensitivity to 3D shape and color differences between the stimuli. Rather, differential processing depends critically on the joint encoding of race-specific features. PMID:21676108

  5. Residual attention guidance in blindsight monkeys watching complex natural scenes.

    PubMed

    Yoshida, Masatoshi; Itti, Laurent; Berg, David J; Ikeda, Takuro; Kato, Rikako; Takaura, Kana; White, Brian J; Munoz, Douglas P; Isa, Tadashi

    2012-08-07

    Patients with damage to primary visual cortex (V1) demonstrate residual performance on laboratory visual tasks despite denial of conscious seeing (blindsight) [1]. After a period of recovery, which suggests a role for plasticity [2], visual sensitivity higher than chance is observed in humans and monkeys for simple luminance-defined stimuli, grating stimuli, moving gratings, and other stimuli [3-7]. Some residual cognitive processes including bottom-up attention and spatial memory have also been demonstrated [8-10]. To date, little is known about blindsight with natural stimuli and spontaneous visual behavior. In particular, is orienting attention toward salient stimuli during free viewing still possible? We used a computational saliency map model to analyze spontaneous eye movements of monkeys with blindsight from unilateral ablation of V1. Despite general deficits in gaze allocation, monkeys were significantly attracted to salient stimuli. The contribution of orientation features to salience was nearly abolished, whereas contributions of motion, intensity, and color features were preserved. Control experiments employing laboratory stimuli confirmed the free-viewing finding that lesioned monkeys retained color sensitivity. Our results show that attention guidance over complex natural scenes is preserved in the absence of V1, thereby directly challenging theories and models that crucially depend on V1 to compute the low-level visual features that guide attention. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Polysensory response characteristics of dorsal root ganglion neurones that may serve sensory functions during myocardial ischaemia.

    PubMed

    Huang, M H; Horackova, M; Negoescu, R M; Wolf, S; Armour, J A

    1996-09-01

    To determine the response characteristics of dorsal root ganglion neurones that may serve sensory functions during myocardial ischaemia. Extracellular recordings were made from 54 spontaneously active and 5 normally quiescent dorsal root ganglion neurones (T2-T5) in 22 anaesthetized open-chest dogs under control conditions and during epicardial mechanical or chemical stimulation and myocardial ischaemia. The activity of 78% of spontaneously active and all quiescent neurones with left ventricular sensory fields was modified by left ventricular ischaemia. Forty-six spontaneously active neurones (85%) were polysensory with respect to mechanical and chemical stimuli. The 5 quiescent neurones responded only to chemical stimuli. Spontaneously active neurones associated with left ventricular mechanosensory endings (37 neurones) generated four different activity patterns in response to similar mechanical stimuli (high or low pressure active, high-low pressure active, high-low pressure inactive). A fifth group generated activity which was not related to chamber dynamics. Adenosine, adenosine 5'-triphosphate, substance P and bradykinin modified 72, 61, 65 and 63% of the spontaneously active neurones, respectively. Maximum local mechanical or chemical stimuli enhanced activity to similar degrees, as did ischaemia. Each ischaemia-sensitive neurone displayed unique activity patterns in response to similar mechanical or chemical stimuli. Most myocardial ischemia-sensitive dorsal root ganglion neurones associated with epicardial neurites sense mechanical and multiple chemical stimuli, a small population sensing only mechanical or chemical stimuli. Activity patterns generated by these neurones depend on their primary sensory characteristics or those of other neurones that may converge on them, as well as the type and magnitude of the stimuli that impinge upon their sensory fields, both normally and during ischaemia.

  7. The Role of Sketching States in the Stimulation of Idea Generation: An Eye Movement Study

    ERIC Educational Resources Information Center

    Sun, Lingyun; Xiang, Wei; Yang, Cheng; Yang, Zhiyuan; Lou, Yun

    2014-01-01

    Sketching is widely used in design to generate creative ideas. Design studies present stimuli during sketching to enhance creativity. This study examines the effect of stimuli presented during different sketching states, especially of those presented during the stuck period. It conducted a sketching experiment that enrolled 41 students with an…

  8. Virtual reality therapy: an effective treatment for phobias.

    PubMed

    North, M M; North, S M; Coble, J R

    1998-01-01

    Behavioral therapy techniques for treating phobias often includes graded exposure of the patient to anxiety-producing stimuli (Systematic Desensitization). However, in utilizing systematic desensitization, research reviews demonstrate that many patients appear to have difficulty in applying imaginative techniques. This chapter describes the Virtual Reality Therapy (VRT), a new therapeutical approach that can be used to overcome some of the difficulties inherent in the traditional treatment of phobias. VRT, like current imaginal and in vivo modalities, can generate stimuli that could be utilized in desensitization therapy. Like systematic desensitization therapy, VRT can provide stimuli for patients who have difficulty in imagining scenes and/or are too phobic to experience real situations. As far as we know, the idea of using virtual reality technology to combat psychological disorders was first conceived within the Human-Computer Interaction Group at Clark Atlanta University in November 1992. Since then, we have successfully conducted the first known pilot experiments in the use of virtual reality technologies in the treatment of specific phobias: fear of flying, fear of heights, fear of being in certain situations (such as a dark barn, an enclosed bridge over a river, and in the presence of an animal [a black cat] in a dark room), and fear of public speaking. The results of these experiments are described.

  9. SSVEP-based BCI for manipulating three-dimensional contents and devices

    NASA Astrophysics Data System (ADS)

    Mun, Sungchul; Cho, Sungjin; Whang, Mincheol; Ju, Byeong-Kwon; Park, Min-Chul

    2012-06-01

    Brain Computer Interface (BCI) studies have been done to help people manipulate electronic devices in a 2D space but less has been done for a vigorous 3D environment. The purpose of this study was to investigate the possibility of applying Steady State Visual Evoked Potentials (SSVEPs) to a 3D LCD display. Eight subjects (4 females) ranging in age between 20 to 26 years old participated in the experiment. They performed simple navigation tasks on a simple 2D space and virtual environment with/without 3D flickers generated by a Flim-Type Patterned Retarder (FPR). The experiments were conducted in a counterbalanced order. The results showed that 3D stimuli enhanced BCI performance, but no significant effects were found due to the small number of subjects. Visual fatigue that might be evoked by 3D stimuli was negligible in this study. The proposed SSVEP BCI combined with 3D flickers can allow people to control home appliances and other equipment such as wheelchairs, prosthetics, and orthotics without encountering dangerous situations that may happen when using BCIs in real world. 3D stimuli-based SSVEP BCI would motivate people to use 3D displays and vitalize the 3D related industry due to its entertainment value and high performance.

  10. Push-Pull Receptive Field Organization and Synaptic Depression: Mechanisms for Reliably Encoding Naturalistic Stimuli in V1

    PubMed Central

    Kremkow, Jens; Perrinet, Laurent U.; Monier, Cyril; Alonso, Jose-Manuel; Aertsen, Ad; Frégnac, Yves; Masson, Guillaume S.

    2016-01-01

    Neurons in the primary visual cortex are known for responding vigorously but with high variability to classical stimuli such as drifting bars or gratings. By contrast, natural scenes are encoded more efficiently by sparse and temporal precise spiking responses. We used a conductance-based model of the visual system in higher mammals to investigate how two specific features of the thalamo-cortical pathway, namely push-pull receptive field organization and fast synaptic depression, can contribute to this contextual reshaping of V1 responses. By comparing cortical dynamics evoked respectively by natural vs. artificial stimuli in a comprehensive parametric space analysis, we demonstrate that the reliability and sparseness of the spiking responses during natural vision is not a mere consequence of the increased bandwidth in the sensory input spectrum. Rather, it results from the combined impacts of fast synaptic depression and push-pull inhibition, the later acting for natural scenes as a form of “effective” feed-forward inhibition as demonstrated in other sensory systems. Thus, the combination of feedforward-like inhibition with fast thalamo-cortical synaptic depression by simple cells receiving a direct structured input from thalamus composes a generic computational mechanism for generating a sparse and reliable encoding of natural sensory events. PMID:27242445

  11. Starting research in interaction design with visuals for low-functioning children in the autistic spectrum: a protocol.

    PubMed

    Parés, Narcís; Carreras, Anna; Durany, Jaume; Ferrer, Jaume; Freixa, Pere; Gómez, David; Kruglanski, Orit; Parés, Roc; Ribas, J Ignasi; Soler, Miquel; Sanjurjo, Alex

    2006-04-01

    On starting to think about interaction design for low-functioning persons in the autistic spectrum (PAS), especially children, one finds a number of questions that are difficult to answer: Can we typify the PAS user? Can we engage the user in interactive communication without generating frustrating or obsessive situations? What sort of visual stimuli can we provide? Will they prefer representational or abstract visual stimuli? Will they understand three-dimensional (3D) graphic representation? What sort of interfaces will they accept? Can we set ambitious goals such as education or therapy? Unfortunately, most of these questions have no answer yet. Hence, we decided to set an apparently simple goal: to design a "fun application," with no intention to reach the level of education or therapy. The goal was to be attained by giving the users a sense of agency--by providing first a sense of control in the interaction dialogue. Our approach to visual stimuli design has been based on the use of geometric, abstract, two-dimensional (2D), real-time computer graphics in a full-body, non-invasive, interactive space. The results obtained within the European-funded project MultiSensory Environment Design for an Interface between Autistic and Typical Expressiveness (MEDIATE) have been extremely encouraging.

  12. Piezo-phototronic Boolean logic and computation using photon and strain dual-gated nanowire transistors.

    PubMed

    Yu, Ruomeng; Wu, Wenzhuo; Pan, Caofeng; Wang, Zhaona; Ding, Yong; Wang, Zhong Lin

    2015-02-04

    Using polarization charges created at the metal-cadmium sulfide interface under strain to gate/modulate electrical transport and optoelectronic processes of charge carriers, the piezo-phototronic effect is applied to process mechanical and optical stimuli into electronic controlling signals. The cascade nanowire networks are demonstrated for achieving logic gates, binary computations, and gated D latches to store information carried by these stimuli. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Proprioceptive isokinetic exercise test

    NASA Technical Reports Server (NTRS)

    Dempster, P. T.; Bernauer, E. M.; Bond, M.; Greenleaf, J. E.

    1993-01-01

    Proprioception, the reception of stimuli within the body that indicates position, is an important mechanism for optimal human performance. People exposed to prolonged bed rest, microgravity, or other deconditioning situations usually experience reduced proprioceptor and kinesthetic stimuli that compromise body balance, posture, and equilibrium. A new proprioceptive test is described that utilizes the computer-driven LIDO isokinetic ergometer. An overview of the computer logic, software, and testing procedure for this proprioceptive test, which can be performed with the arms or legs, is described.

  14. The iso-response method: measuring neuronal stimulus integration with closed-loop experiments

    PubMed Central

    Gollisch, Tim; Herz, Andreas V. M.

    2012-01-01

    Throughout the nervous system, neurons integrate high-dimensional input streams and transform them into an output of their own. This integration of incoming signals involves filtering processes and complex non-linear operations. The shapes of these filters and non-linearities determine the computational features of single neurons and their functional roles within larger networks. A detailed characterization of signal integration is thus a central ingredient to understanding information processing in neural circuits. Conventional methods for measuring single-neuron response properties, such as reverse correlation, however, are often limited by the implicit assumption that stimulus integration occurs in a linear fashion. Here, we review a conceptual and experimental alternative that is based on exploring the space of those sensory stimuli that result in the same neural output. As demonstrated by recent results in the auditory and visual system, such iso-response stimuli can be used to identify the non-linearities relevant for stimulus integration, disentangle consecutive neural processing steps, and determine their characteristics with unprecedented precision. Automated closed-loop experiments are crucial for this advance, allowing rapid search strategies for identifying iso-response stimuli during experiments. Prime targets for the method are feed-forward neural signaling chains in sensory systems, but the method has also been successfully applied to feedback systems. Depending on the specific question, “iso-response” may refer to a predefined firing rate, single-spike probability, first-spike latency, or other output measures. Examples from different studies show that substantial progress in understanding neural dynamics and coding can be achieved once rapid online data analysis and stimulus generation, adaptive sampling, and computational modeling are tightly integrated into experiments. PMID:23267315

  15. The Influence of Emotion on Immediate and Delayed Retention: Levinger and Clark Reconsidered.

    ERIC Educational Resources Information Center

    Parkin, Alan J.; And Others

    1982-01-01

    Examined effect of emotion on recall of self-generated paired associates under conditions of immediate and delayed retention. Results showed that, with immediate retention, recall of associates to emotional stimuli was significantly lower than to neutral stimuli and, with delayed retention, associations to emotional stimuli were better recalled.…

  16. Automated Testcase Generation for Numerical Support Functions in Embedded Systems

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Schnieder, Stefan-Alexander

    2014-01-01

    We present a tool for the automatic generation of test stimuli for small numerical support functions, e.g., code for trigonometric functions, quaternions, filters, or table lookup. Our tool is based on KLEE to produce a set of test stimuli for full path coverage. We use a method of iterative deepening over abstractions to deal with floating-point values. During actual testing the stimuli exercise the code against a reference implementation. We illustrate our approach with results of experiments with low-level trigonometric functions, interpolation routines, and mathematical support functions from an open source UAS autopilot.

  17. Evaluating brain-computer interface performance using color in the P300 checkerboard speller.

    PubMed

    Ryan, D B; Townsend, G; Gates, N A; Colwell, K; Sellers, E W

    2017-10-01

    Current Brain-Computer Interface (BCI) systems typically flash an array of items from grey to white (GW). The objective of this study was to evaluate BCI performance using uniquely colored stimuli. In addition to the GW stimuli, the current study tested two types of color stimuli (grey to color [GC] and color intensification [CI]). The main hypotheses were that in a checkboard paradigm, unique color stimuli will: (1) increase BCI performance over the standard GW paradigm; (2) elicit larger event-related potentials (ERPs); and, (3) improve offline performance with an electrode selection algorithm (i.e., Jumpwise). Online results (n=36) showed that GC provides higher accuracy and information transfer rate than the CI and GW conditions. Waveform analysis showed that GC produced higher amplitude ERPs than CI and GW. Information transfer rate was improved by the Jumpwise-selected channel locations in all conditions. Unique color stimuli (GC) improved BCI performance and enhanced ERPs. Jumpwise-selected electrode locations improved offline performance. These results show that in a checkerboard paradigm, unique color stimuli increase BCI performance, are preferred by participants, and are important to the design of end-user applications; thus, could lead to an increase in end-user performance and acceptance of BCI technology. Copyright © 2017 International Federation of Clinical Neurophysiology. All rights reserved.

  18. A geometric method for computing ocular kinematics and classifying gaze events using monocular remote eye tracking in a robotic environment.

    PubMed

    Singh, Tarkeshwar; Perry, Christopher M; Herter, Troy M

    2016-01-26

    Robotic and virtual-reality systems offer tremendous potential for improving assessment and rehabilitation of neurological disorders affecting the upper extremity. A key feature of these systems is that visual stimuli are often presented within the same workspace as the hands (i.e., peripersonal space). Integrating video-based remote eye tracking with robotic and virtual-reality systems can provide an additional tool for investigating how cognitive processes influence visuomotor learning and rehabilitation of the upper extremity. However, remote eye tracking systems typically compute ocular kinematics by assuming eye movements are made in a plane with constant depth (e.g. frontal plane). When visual stimuli are presented at variable depths (e.g. transverse plane), eye movements have a vergence component that may influence reliable detection of gaze events (fixations, smooth pursuits and saccades). To our knowledge, there are no available methods to classify gaze events in the transverse plane for monocular remote eye tracking systems. Here we present a geometrical method to compute ocular kinematics from a monocular remote eye tracking system when visual stimuli are presented in the transverse plane. We then use the obtained kinematics to compute velocity-based thresholds that allow us to accurately identify onsets and offsets of fixations, saccades and smooth pursuits. Finally, we validate our algorithm by comparing the gaze events computed by the algorithm with those obtained from the eye-tracking software and manual digitization. Within the transverse plane, our algorithm reliably differentiates saccades from fixations (static visual stimuli) and smooth pursuits from saccades and fixations when visual stimuli are dynamic. The proposed methods provide advancements for examining eye movements in robotic and virtual-reality systems. Our methods can also be used with other video-based or tablet-based systems in which eye movements are performed in a peripersonal plane with variable depth.

  19. A Neural Computational Model of Incentive Salience

    PubMed Central

    Zhang, Jun; Berridge, Kent C.; Tindell, Amy J.; Smith, Kyle S.; Aldridge, J. Wayne

    2009-01-01

    Incentive salience is a motivational property with ‘magnet-like’ qualities. When attributed to reward-predicting stimuli (cues), incentive salience triggers a pulse of ‘wanting’ and an individual is pulled toward the cues and reward. A key computational question is how incentive salience is generated during a cue re-encounter, which combines both learning and the state of limbic brain mechanisms. Learning processes, such as temporal-difference models, provide one way for stimuli to acquire cached predictive values of rewards. However, empirical data show that subsequent incentive values are also modulated on the fly by dynamic fluctuation in physiological states, altering cached values in ways requiring additional motivation mechanisms. Dynamic modulation of incentive salience for a Pavlovian conditioned stimulus (CS or cue) occurs during certain states, without necessarily requiring (re)learning about the cue. In some cases, dynamic modulation of cue value occurs during states that are quite novel, never having been experienced before, and even prior to experience of the associated unconditioned reward in the new state. Such cases can include novel drug-induced mesolimbic activation and addictive incentive-sensitization, as well as natural appetite states such as salt appetite. Dynamic enhancement specifically raises the incentive salience of an appropriate CS, without necessarily changing that of other CSs. Here we suggest a new computational model that modulates incentive salience by integrating changing physiological states with prior learning. We support the model with behavioral and neurobiological data from empirical tests that demonstrate dynamic elevations in cue-triggered motivation (involving natural salt appetite, and drug-induced intoxication and sensitization). Our data call for a dynamic model of incentive salience, such as presented here. Computational models can adequately capture fluctuations in cue-triggered ‘wanting’ only by incorporating modulation of previously learned values by natural appetite and addiction-related states. PMID:19609350

  20. Exponential current pulse generation for efficient very high-impedance multisite stimulation.

    PubMed

    Ethier, S; Sawan, M

    2011-02-01

    We describe in this paper an intracortical current-pulse generator for high-impedance microstimulation. This dual-chip system features a stimuli generator and a high-voltage electrode driver. The stimuli generator produces flexible rising exponential pulses in addition to standard rectangular stimuli. This novel stimulation waveform is expected to provide superior energy efficiency for action potential triggering while releasing less toxic reduced ions in the cortical tissues. The proposed fully integrated electrode driver is used as the output stage where high-voltage supplies are generated on-chip to significantly increase the voltage compliance for stimulation through high-impedance electrode-tissue interfaces. The stimuli generator has been implemented in 0.18-μm CMOS technology while a 0.8-μm CMOS/DMOS process has been used to integrate the high-voltage output stage. Experimental results show that the rectangular pulses cover a range of 1.6 to 167.2 μA with a DNL and an INL of 0.098 and 0.163 least-significant bit, respectively. The maximal dynamic range of the generated exponential reaches 34.36 dB at full scale within an error of ± 0.5 dB while all of its parameters (amplitude, duration, and time constant) are independently programmable over wide ranges. This chip consumes a maximum of 88.3 μ W in the exponential mode. High-voltage supplies of 8.95 and -8.46 V are generated by the output stage, boosting the voltage swing up to 13.6 V for a load as high as 100 kΩ.

  1. Gravitoinertial force magnitude and direction influence head-centric auditory localization

    NASA Technical Reports Server (NTRS)

    DiZio, P.; Held, R.; Lackner, J. R.; Shinn-Cunningham, B.; Durlach, N.

    2001-01-01

    We measured the influence of gravitoinertial force (GIF) magnitude and direction on head-centric auditory localization to determine whether a true audiogravic illusion exists. In experiment 1, supine subjects adjusted computer-generated dichotic stimuli until they heard a fused sound straight ahead in the midsagittal plane of the head under a variety of GIF conditions generated in a slow-rotation room. The dichotic stimuli were constructed by convolving broadband noise with head-related transfer function pairs that model the acoustic filtering at the listener's ears. These stimuli give rise to the perception of externally localized sounds. When the GIF was increased from 1 to 2 g and rotated 60 degrees rightward relative to the head and body, subjects on average set an acoustic stimulus 7.3 degrees right of their head's median plane to hear it as straight ahead. When the GIF was doubled and rotated 60 degrees leftward, subjects set the sound 6.8 degrees leftward of baseline values to hear it as centered. In experiment 2, increasing the GIF in the median plane of the supine body to 2 g did not influence auditory localization. In experiment 3, tilts up to 75 degrees of the supine body relative to the normal 1 g GIF led to small shifts, 1--2 degrees, of auditory setting toward the up ear to maintain a head-centered sound localization. These results show that head-centric auditory localization is affected by azimuthal rotation and increase in magnitude of the GIF and demonstrate that an audiogravic illusion exists. Sound localization is shifted in the direction opposite GIF rotation by an amount related to the magnitude of the GIF and its angular deviation relative to the median plane.

  2. Exploration of the psychophysics of a motion displacement hyperacuity stimulus.

    PubMed

    Verdon-Roe, Gay Mary; Westcott, Mark C; Viswanathan, Ananth C; Fitzke, Frederick W; Garway-Heath, David F

    2006-11-01

    To explore the summation properties of a motion-displacement hyperacuity stimulus with respect to stimulus area and luminance, with the goal of applying the results to the development of a motion-displacement test (MDT) for the detection of early glaucoma. A computer-generated line stimulus was presented with displacements randomized between 0 and 40 minutes of arc (min arc). Displacement thresholds (50% seen) were compared for stimuli of equal area but different edge length (orthogonal to the direction of motion) at four retinal locations. Also, MDT thresholds were recorded at five values of Michelson contrast (25%-84%) for each of five line lengths (11-128 min arc) at a single nasal location (-27,3). Frequency-of-seeing (FOS) curves were generated and displacement thresholds and interquartile ranges (IQR, 25%-75% seen) determined by probit analysis. Equivalent displacement thresholds were found for stimuli of equal area but half the edge length. Elevations of thresholds and IQR were demonstrated as line length and contrast were reduced. Equivalent displacement thresholds were also found for stimuli of equivalent energy (stimulus area x [stimulus luminance - background luminance]), in accordance with Ricco's law. There was a linear relationship (slope -0.5) between log MDT threshold and log stimulus energy. Stimulus area, rather than edge length, determined displacement thresholds within the experimental conditions tested. MDT thresholds are linearly related to the square root of the total energy of the stimulus. A new law, the threshold energy-displacement (TED) law, is proposed to apply to MDT summation properties, giving the relationship T = K logE where, T is the MDT threshold, Kis the constant, and E is the stimulus energy.

  3. Engineering Synthetic Proteins to Generate Ca2+ Signals in Mammalian Cells.

    PubMed

    Qudrat, Anam; Truong, Kevin

    2017-03-17

    The versatility of Ca 2+ signals allows it to regulate diverse cellular processes such as migration, apoptosis, motility and exocytosis. In some receptors (e.g., VEGFR2), Ca 2+ signals are generated upon binding their ligand(s) (e.g., VEGF-A). Here, we employed a design strategy to engineer proteins that generate a Ca 2+ signal upon binding various extracellular stimuli by creating fusions of protein domains that oligomerize to the transmembrane domain and the cytoplasmic tail of the VEGFR2. To test the strategy, we created chimeric proteins that generate Ca 2+ signals upon stimulation with various extracellular stimuli (e.g., rapamycin, EDTA or extracellular free Ca 2+ ). By coupling these chimeric proteins that generate Ca 2+ signals with proteins that respond to Ca 2+ signals, we rewired, for example, dynamic cellular blebbing to increases in extracellular free Ca 2+ . Thus, using this design strategy, it is possible to engineer proteins to generate a Ca 2+ signal to rewire a wide range of extracellular stimuli to a wide range of Ca 2+ -activated processes.

  4. Non-target adjacent stimuli classification improves performance of classical ERP-based brain computer interface

    NASA Astrophysics Data System (ADS)

    Ceballos, G. A.; Hernández, L. F.

    2015-04-01

    Objective. The classical ERP-based speller, or P300 Speller, is one of the most commonly used paradigms in the field of Brain Computer Interfaces (BCI). Several alterations to the visual stimuli presentation system have been developed to avoid unfavorable effects elicited by adjacent stimuli. However, there has been little, if any, regard to useful information contained in responses to adjacent stimuli about spatial location of target symbols. This paper aims to demonstrate that combining the classification of non-target adjacent stimuli with standard classification (target versus non-target) significantly improves classical ERP-based speller efficiency. Approach. Four SWLDA classifiers were trained and combined with the standard classifier: the lower row, upper row, right column and left column classifiers. This new feature extraction procedure and the classification method were carried out on three open databases: the UAM P300 database (Universidad Autonoma Metropolitana, Mexico), BCI competition II (dataset IIb) and BCI competition III (dataset II). Main results. The inclusion of the classification of non-target adjacent stimuli improves target classification in the classical row/column paradigm. A gain in mean single trial classification of 9.6% and an overall improvement of 25% in simulated spelling speed was achieved. Significance. We have provided further evidence that the ERPs produced by adjacent stimuli present discriminable features, which could provide additional information about the spatial location of intended symbols. This work promotes the searching of information on the peripheral stimulation responses to improve the performance of emerging visual ERP-based spellers.

  5. Does the generation effect occur for pictures?

    PubMed

    Kinjo, H; Snodgrass, J G

    2000-01-01

    The generation effect is the finding that self-generated stimuli are recalled and recognized better than read stimuli. The effect has been demonstrated primarily with words. This article examines the effect for pictures in two experiments: Subjects named complete pictures (name condition) and fragmented pictures (generation condition). In Experiment 1, memory was tested in 3 explicit tasks: free recall, yes/no recognition, and a source-monitoring task on whether each picture was complete or fragmented (the complete/incomplete task). The generation effect was found for all 3 tasks. However, in the recognition and source-monitoring tasks, the generation effect was observed only in the generation condition. We hypothesized that absence of the effect in the name condition was due to the sensory or process match effect between study and test pictures and the superior identification of pictures in the name condition. Therefore, stimuli were changed from pictures to their names in Experiment 2. Memory was tested in the recognition task, complete/incomplete task, and second source-monitoring task (success/failure) on whether each picture had been identified successfully. The generation effect was observed for all 3 tasks. These results suggest that memory of structural and semantic characteristics and of success in identification of generated pictures may contribute to the generation effect.

  6. The effects of varied versus constant high-, medium-, and low-preference stimuli on performance.

    PubMed

    Wine, Byron; Wilder, David A

    2009-01-01

    The purpose of the current study was to compare the delivery of varied versus constant high-, medium-, and low-preference stimuli on performance of 2 adults on a computer-based task in an analogue employment setting. For both participants, constant delivery of the high-preference stimulus produced the greatest increases in performance over baseline; the varied presentation produced performance comparable to constant delivery of medium-preference stimuli. Results are discussed in terms of their implications for the selection and delivery of stimuli as part of employee performance-improvement programs in the field of organizational behavior management.

  7. A practical, intuitive brain-computer interface for communicating ‘yes’ or ‘no’ by listening

    NASA Astrophysics Data System (ADS)

    Hill, N. Jeremy; Ricci, Erin; Haider, Sameah; McCane, Lynn M.; Heckman, Susan; Wolpaw, Jonathan R.; Vaughan, Theresa M.

    2014-06-01

    Objective. Previous work has shown that it is possible to build an EEG-based binary brain-computer interface system (BCI) driven purely by shifts of attention to auditory stimuli. However, previous studies used abrupt, abstract stimuli that are often perceived as harsh and unpleasant, and whose lack of inherent meaning may make the interface unintuitive and difficult for beginners. We aimed to establish whether we could transition to a system based on more natural, intuitive stimuli (spoken words ‘yes’ and ‘no’) without loss of performance, and whether the system could be used by people in the locked-in state. Approach. We performed a counterbalanced, interleaved within-subject comparison between an auditory streaming BCI that used beep stimuli, and one that used word stimuli. Fourteen healthy volunteers performed two sessions each, on separate days. We also collected preliminary data from two subjects with advanced amyotrophic lateral sclerosis (ALS), who used the word-based system to answer a set of simple yes-no questions. Main results. The N1, N2 and P3 event-related potentials elicited by words varied more between subjects than those elicited by beeps. However, the difference between responses to attended and unattended stimuli was more consistent with words than beeps. Healthy subjects’ performance with word stimuli (mean 77% ± 3.3 s.e.) was slightly but not significantly better than their performance with beep stimuli (mean 73% ± 2.8 s.e.). The two subjects with ALS used the word-based BCI to answer questions with a level of accuracy similar to that of the healthy subjects. Significance. Since performance using word stimuli was at least as good as performance using beeps, we recommend that auditory streaming BCI systems be built with word stimuli to make the system more pleasant and intuitive. Our preliminary data show that word-based streaming BCI is a promising tool for communication by people who are locked in.

  8. A Model of the Superior Colliculus Predicts Fixation Locations during Scene Viewing and Visual Search.

    PubMed

    Adeli, Hossein; Vitu, Françoise; Zelinsky, Gregory J

    2017-02-08

    Modern computational models of attention predict fixations using saliency maps and target maps, which prioritize locations for fixation based on feature contrast and target goals, respectively. But whereas many such models are biologically plausible, none have looked to the oculomotor system for design constraints or parameter specification. Conversely, although most models of saccade programming are tightly coupled to underlying neurophysiology, none have been tested using real-world stimuli and tasks. We combined the strengths of these two approaches in MASC, a model of attention in the superior colliculus (SC) that captures known neurophysiological constraints on saccade programming. We show that MASC predicted the fixation locations of humans freely viewing naturalistic scenes and performing exemplar and categorical search tasks, a breadth achieved by no other existing model. Moreover, it did this as well or better than its more specialized state-of-the-art competitors. MASC's predictive success stems from its inclusion of high-level but core principles of SC organization: an over-representation of foveal information, size-invariant population codes, cascaded population averaging over distorted visual and motor maps, and competition between motor point images for saccade programming, all of which cause further modulation of priority (attention) after projection of saliency and target maps to the SC. Only by incorporating these organizing brain principles into our models can we fully understand the transformation of complex visual information into the saccade programs underlying movements of overt attention. With MASC, a theoretical footing now exists to generate and test computationally explicit predictions of behavioral and neural responses in visually complex real-world contexts. SIGNIFICANCE STATEMENT The superior colliculus (SC) performs a visual-to-motor transformation vital to overt attention, but existing SC models cannot predict saccades to visually complex real-world stimuli. We introduce a brain-inspired SC model that outperforms state-of-the-art image-based competitors in predicting the sequences of fixations made by humans performing a range of everyday tasks (scene viewing and exemplar and categorical search), making clear the value of looking to the brain for model design. This work is significant in that it will drive new research by making computationally explicit predictions of SC neural population activity in response to naturalistic stimuli and tasks. It will also serve as a blueprint for the construction of other brain-inspired models, helping to usher in the next generation of truly intelligent autonomous systems. Copyright © 2017 the authors 0270-6474/17/371453-15$15.00/0.

  9. Distributed and Dynamic Neural Encoding of Multiple Motion Directions of Transparently Moving Stimuli in Cortical Area MT

    PubMed Central

    Xiao, Jianbo

    2015-01-01

    Segmenting visual scenes into distinct objects and surfaces is a fundamental visual function. To better understand the underlying neural mechanism, we investigated how neurons in the middle temporal cortex (MT) of macaque monkeys represent overlapping random-dot stimuli moving transparently in slightly different directions. It has been shown that the neuronal response elicited by two stimuli approximately follows the average of the responses elicited by the constituent stimulus components presented alone. In this scheme of response pooling, the ability to segment two simultaneously presented motion directions is limited by the width of the tuning curve to motion in a single direction. We found that, although the population-averaged neuronal tuning showed response averaging, subgroups of neurons showed distinct patterns of response tuning and were capable of representing component directions that were separated by a small angle—less than the tuning width to unidirectional stimuli. One group of neurons preferentially represented the component direction at a specific side of the bidirectional stimuli, weighting one stimulus component more strongly than the other. Another group of neurons pooled the component responses nonlinearly and showed two separate peaks in their tuning curves even when the average of the component responses was unimodal. We also show for the first time that the direction tuning of MT neurons evolved from initially representing the vector-averaged direction of slightly different stimuli to gradually representing the component directions. Our results reveal important neural processes underlying image segmentation and suggest that information about slightly different stimulus components is computed dynamically and distributed across neurons. SIGNIFICANCE STATEMENT Natural scenes often contain multiple entities. The ability to segment visual scenes into distinct objects and surfaces is fundamental to sensory processing and is crucial for generating the perception of our environment. Because cortical neurons are broadly tuned to a given visual feature, segmenting two stimuli that differ only slightly is a challenge for the visual system. In this study, we discovered that many neurons in the visual cortex are capable of representing individual components of slightly different stimuli by selectively and nonlinearly pooling the responses elicited by the stimulus components. We also show for the first time that the neural representation of individual stimulus components developed over a period of ∼70–100 ms, revealing a dynamic process of image segmentation. PMID:26658869

  10. Pulser: user-friendly, graphical user-interface based software for controlling stimuli during data acquisition with Spike2 for Windows.

    PubMed

    Lidierth, Malcolm

    2005-02-15

    This paper describes software that runs in the Spike2 for Windows environment and provides a versatile tool for generating stimuli during data acquisition from the 1401 family of interfaces (CED, UK). A graphical user interface (GUI) is used to provide dynamic control of stimulus timing. Both single stimuli and trains of stimuli can be generated. The pulse generation routines make use of programmable variables within the interface and allow these to be rapidly changed during an experiment. The routines therefore provide the ease-of-use associated with external, stand-alone pulse generators. Complex stimulus protocols can be loaded from an external text file and facilities are included to create these files through the GUI. The software consists of a Spike2 script that runs in the host PC, and accompanying routines written in the 1401 sequencer control code, that run in the 1401 interface. Handshaking between the PC and the interface card are built into the routines and provides for full integration of sampling, analysis and stimulus generation during an experiment. Control of the 1401 digital-to-analogue converters is also provided; this allows control of stimulus amplitude as well as timing and also provides a sample-hold feature that may be used to remove DC offsets and drift from recorded data.

  11. The Impact of Semantic Relevance and Heterogeneity of Pictorial Stimuli on Individual Brainstorming: An Extension of the SIAM Model

    ERIC Educational Resources Information Center

    Guo, Jing; McLeod, Poppy Lauretta

    2014-01-01

    Drawing upon the Search for Ideas in Associative Memory (SIAM) model as the theoretical framework, the impact of heterogeneity and topic relevance of visual stimuli on ideation performance was examined. Results from a laboratory experiment showed that visual stimuli increased productivity and diversity of idea generation, that relevance to the…

  12. A Model-Based Approach to Trial-By-Trial P300 Amplitude Fluctuations

    PubMed Central

    Kolossa, Antonio; Fingscheidt, Tim; Wessel, Karl; Kopp, Bruno

    2013-01-01

    It has long been recognized that the amplitude of the P300 component of event-related brain potentials is sensitive to the degree to which eliciting stimuli are surprising to the observers (Donchin, 1981). While Squires et al. (1976) showed and modeled dependencies of P300 amplitudes from observed stimuli on various time scales, Mars et al. (2008) proposed a computational model keeping track of stimulus probabilities on a long-term time scale. We suggest here a computational model which integrates prior information with short-term, long-term, and alternation-based experiential influences on P300 amplitude fluctuations. To evaluate the new model, we measured trial-by-trial P300 amplitude fluctuations in a simple two-choice response time task, and tested the computational models of trial-by-trial P300 amplitudes using Bayesian model evaluation. The results reveal that the new digital filtering (DIF) model provides a superior account of the trial-by-trial P300 amplitudes when compared to both Squires et al.’s (1976) model, and Mars et al.’s (2008) model. We show that the P300-generating system can be described as two parallel first-order infinite impulse response (IIR) low-pass filters and an additional fourth-order finite impulse response (FIR) high-pass filter. Implications of the acquired data are discussed with regard to the neurobiological distinction between short-term, long-term, and working memory as well as from the point of view of predictive coding models and Bayesian learning theories of cortical function. PMID:23404628

  13. The eye-tracking of social stimuli in patients with Rett syndrome and autism spectrum disorders: a pilot study.

    PubMed

    Schwartzman, José Salomão; Velloso, Renata de Lima; D'Antino, Maria Eloísa Famá; Santos, Silvana

    2015-05-01

    To compare visual fixation at social stimuli in Rett syndrome (RT) and autism spectrum disorders (ASD) patients. Visual fixation at social stimuli was analyzed in 14 RS female patients (age range 4-30 years), 11 ASD male patients (age range 4-20 years), and 17 children with typical development (TD). Patients were exposed to three different pictures (two of human faces and one with social and non-social stimuli) presented for 8 seconds each on the screen of a computer attached to an eye-tracker equipment. Percentage of visual fixation at social stimuli was significantly higher in the RS group compared to ASD and even to TD groups. Visual fixation at social stimuli seems to be one more endophenotype making RS to be very different from ASD.

  14. Impaired theta phase-resetting underlying auditory N1 suppression in chronic alcoholism.

    PubMed

    Fuentemilla, Lluis; Marco-Pallarés, Josep; Gual, Antoni; Escera, Carles; Polo, Maria Dolores; Grau, Carles

    2009-02-18

    It has been suggested that chronic alcoholism may lead to altered neural mechanisms related to inhibitory processes. Here, we studied auditory N1 suppression phenomena (i.e. amplitude reduction with repetitive stimuli) in chronic alcoholic patients as an early-stage information-processing brain function involving inhibition by the analysis of the N1 event-related potential and time-frequency computation (spectral power and phase-resetting). Our results showed enhanced neural theta oscillatory phase-resetting underlying N1 generation in suppressed N1 event-related potential. The present findings suggest that chronic alcoholism alters neural oscillatory synchrony dynamics at very early stages of information processing.

  15. A dendrite-autonomous mechanism for direction selectivity in retinal starburst amacrine cells.

    PubMed

    Hausselt, Susanne E; Euler, Thomas; Detwiler, Peter B; Denk, Winfried

    2007-07-01

    Detection of image motion direction begins in the retina, with starburst amacrine cells (SACs) playing a major role. SACs generate larger dendritic Ca(2+) signals when motion is from their somata towards their dendritic tips than for motion in the opposite direction. To study the mechanisms underlying the computation of direction selectivity (DS) in SAC dendrites, electrical responses to expanding and contracting circular wave visual stimuli were measured via somatic whole-cell recordings and quantified using Fourier analysis. Fundamental and, especially, harmonic frequency components were larger for expanding stimuli. This DS persists in the presence of GABA and glycine receptor antagonists, suggesting that inhibitory network interactions are not essential. The presence of harmonics indicates nonlinearity, which, as the relationship between harmonic amplitudes and holding potential indicates, is likely due to the activation of voltage-gated channels. [Ca(2+)] changes in SAC dendrites evoked by voltage steps and monitored by two-photon microscopy suggest that the distal dendrite is tonically depolarized relative to the soma, due in part to resting currents mediated by tonic glutamatergic synaptic input, and that high-voltage-activated Ca(2+) channels are active at rest. Supported by compartmental modeling, we conclude that dendritic DS in SACs can be computed by the dendrites themselves, relying on voltage-gated channels and a dendritic voltage gradient, which provides the spatial asymmetry necessary for direction discrimination.

  16. Real-time functional magnetic imaging-brain-computer interface and virtual reality promising tools for the treatment of pedophilia.

    PubMed

    Renaud, Patrice; Joyal, Christian; Stoleru, Serge; Goyette, Mathieu; Weiskopf, Nikolaus; Birbaumer, Niels

    2011-01-01

    This chapter proposes a prospective view on using a real-time functional magnetic imaging (rt-fMRI) brain-computer interface (BCI) application as a new treatment for pedophilia. Neurofeedback mediated by interactive virtual stimuli is presented as the key process in this new BCI application. Results on the diagnostic discriminant power of virtual characters depicting sexual stimuli relevant to pedophilia are given. Finally, practical and ethical implications are briefly addressed. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Dynamic generation of concentration- and temporal-dependent chemical signals in an integrated microfluidic device for single-cell analysis.

    PubMed

    Gonzalez-Suarez, Alan Mauricio; Peña-Del Castillo, Johanna G; Hernandez-Cruz, Arturo; Garcia-Cordero, Jose Luis

    2018-06-19

    Intracellular signaling pathways are affected by the temporal nature of external chemical signaling molecules such as neuro-transmitters or hormones. Developing high-throughput technologies to mimic these time-varying chemical signals and to analyze the response of single cells would deepen our understanding of signaling networks. In this work, we introduce a microfluidic platform to stimulate hundreds of single cells with chemical waveforms of tunable frequency and amplitude. Our device produces a linear gradient of 9 concentrations that are delivered to an equal number of chambers, each containing 492 microwells, where individual cells are captured. The device can alternate between the different stimuli concentrations and a control buffer, with a maximum operating frequency of 33 mHz that can be adjusted from a computer. Fluorescent time-lapse microscopy enables to obtain hundreds of thousands of data points from one experiment. We characterized the gradient performance and stability by staining hundreds of cells with calcein AM. We also assessed the capacity of our device to introduce periodic chemical stimuli of different amplitudes and frequencies. To demonstrate our device performance, we studied the dynamics of intracellular Ca2+ release from intracellular stores of HEK cells when stimulated with carbachol at 4.5 and 20 mHz. Our work opens the possibility of characterizing the dynamic responses in real time of signaling molecules to time-varying chemical stimuli with single cell resolution.

  18. Visually evoked changes in the rat retinal blood flow measured with Doppler optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tan, Bingyao; Mason, Erik; MacLellan, Ben; Bizheva, Kostadinka

    2017-02-01

    Visually evoked changes of retinal blood flow can serve as an important research tool to investigate eye disease such as glaucoma and diabetic retinopathy. In this study we used a combined, research-grade, high-resolution Doppler OCT+ERG system to study changes in the retinal blood flow (RBF) and retinal neuronal activity in response to visual stimuli of different intensities, durations and type (flicker vs single flash). Specifically, we used white light stimuli of 10 ms and 200 ms single flash, 1s and 2s for flickers stimuli of 20% duty cycle. The study was conducted in-vivo in pigmented rats. Both single flash (SF) and flicker stimuli caused increase in the RBF. The 10 ms SF stimulus did not generate any consistent measurable response, while the 200 ms SF of the same intensity generated 4% change in the RBF peaking at 1.5 s after the stimulus onset. Single flash stimuli introduced 2x smaller change in RBF and 30% earlier RBF peak response compared to flicker stimuli of the same intensity and duration. Doubling the intensity of SF or flicker stimuli increased the RBF peak magnitude by 1.5x. Shortening the flicker stimulus duration by 2x increased the RBF recovery rate by 2x, however, had no effect on the rate of RBF change from baseline to peak.

  19. Listening to the Shepard-Risset Glissando: the Relationship between Emotional Response, Disruption of Equilibrium, and Personality

    PubMed Central

    Vernooij, Eveline; Orcalli, Angelo; Fabbro, Franco; Crescentini, Cristiano

    2016-01-01

    The endless scale illusion, obtained by cyclically repeating a chromatic scale made up of Shepard tones, has been used in a variety of musical works. Music psychology and neuroscience has been interested in this particular psychoacoustic phenomenon mainly for studying the cognitive processes of pitch perception involved. In the present study, we investigated the emotional states induced by the Shepard-Risset glissando, a variant of the Shepard scale. For this purpose we chose three musical stimuli: a Matlab-generated Shepard Risset glissando, Jean-Claude Risset's Computer Suite from Little Boy, which presents a Shepard-Risset glissando integrated in the aesthetic context of a composition, and an ordinary orchestral glissando taken from the opening of Iannis Xenakis's Metastasis. Seventy-three volunteers completed a listening experiment during which they rated their emotional response to these stimuli on a seven-point Likert scale and indicated whether they had experienced a disruption of equilibrium. Personality was also measured with the Five-Factor Model of personality traits. The results show that negative emotions were most strongly evoked during listening to each of the stimuli. We also found that the Shepard-Risset glissando illusion, both within the aesthetic context of a musical composition and on its own, was capable of evoking disruption of equilibrium, frequently leading to the associated feeling of falling. Moreover, generally for the Shepard-Risset glissando illusion, higher negative emotional ratings were given by individuals who had experienced a feeling of disturbance of equilibrium relative to those who had not had this experience. Finally, we found a complex pattern of relationships between personality and the subjective experience of the glissando. Openness to experience correlated positively with positive emotion ratings for the Computer Suite, while agreeableness correlated negatively with positive emotion ratings for the Matlab stimulus. Moreover, results indicated higher (Bonferroni-uncorrected) neuroticism for those who experienced an equilibrium disturbance relative to subjects who did not have this experience during listening to the Computer Suite. These findings suggest that musical paradoxes may be of interest not only for the insights they provide on our perceptual system, but also for the richness of the emotional experience elicited during listening. PMID:26973584

  20. Listening to the Shepard-Risset Glissando: the Relationship between Emotional Response, Disruption of Equilibrium, and Personality.

    PubMed

    Vernooij, Eveline; Orcalli, Angelo; Fabbro, Franco; Crescentini, Cristiano

    2016-01-01

    The endless scale illusion, obtained by cyclically repeating a chromatic scale made up of Shepard tones, has been used in a variety of musical works. Music psychology and neuroscience has been interested in this particular psychoacoustic phenomenon mainly for studying the cognitive processes of pitch perception involved. In the present study, we investigated the emotional states induced by the Shepard-Risset glissando, a variant of the Shepard scale. For this purpose we chose three musical stimuli: a Matlab-generated Shepard Risset glissando, Jean-Claude Risset's Computer Suite from Little Boy, which presents a Shepard-Risset glissando integrated in the aesthetic context of a composition, and an ordinary orchestral glissando taken from the opening of Iannis Xenakis's Metastasis. Seventy-three volunteers completed a listening experiment during which they rated their emotional response to these stimuli on a seven-point Likert scale and indicated whether they had experienced a disruption of equilibrium. Personality was also measured with the Five-Factor Model of personality traits. The results show that negative emotions were most strongly evoked during listening to each of the stimuli. We also found that the Shepard-Risset glissando illusion, both within the aesthetic context of a musical composition and on its own, was capable of evoking disruption of equilibrium, frequently leading to the associated feeling of falling. Moreover, generally for the Shepard-Risset glissando illusion, higher negative emotional ratings were given by individuals who had experienced a feeling of disturbance of equilibrium relative to those who had not had this experience. Finally, we found a complex pattern of relationships between personality and the subjective experience of the glissando. Openness to experience correlated positively with positive emotion ratings for the Computer Suite, while agreeableness correlated negatively with positive emotion ratings for the Matlab stimulus. Moreover, results indicated higher (Bonferroni-uncorrected) neuroticism for those who experienced an equilibrium disturbance relative to subjects who did not have this experience during listening to the Computer Suite. These findings suggest that musical paradoxes may be of interest not only for the insights they provide on our perceptual system, but also for the richness of the emotional experience elicited during listening.

  1. State-space receptive fields of semicircular canal afferent neurons in the bullfrog

    NASA Technical Reports Server (NTRS)

    Paulin, M. G.; Hoffman, L. F.

    2001-01-01

    Receptive fields are commonly used to describe spatial characteristics of sensory neuron responses. They can be extended to characterize temporal or dynamical aspects by mapping neural responses in dynamical state spaces. The state-space receptive field of a neuron is the probability distribution of the dynamical state of the stimulus-generating system conditioned upon the occurrence of a spike. We have computed state-space receptive fields for semicircular canal afferent neurons in the bullfrog (Rana catesbeiana). We recorded spike times during broad-band Gaussian noise rotational velocity stimuli, computed the frequency distribution of head states at spike times, and normalized these to obtain conditional pdfs for the state. These state-space receptive fields quantify what the brain can deduce about the dynamical state of the head when a single spike arrives from the periphery. c2001 Elsevier Science B.V. All rights reserved.

  2. Biomechanics of the Chick Embryonic Heart Outflow Tract at HH18 Using 4D Optical Coherence Tomography Imaging and Computational Modeling

    PubMed Central

    Liu, Aiping; Yin, Xin; Shi, Liang; Li, Peng; Thornburg, Kent L.; Wang, Ruikang; Rugonyi, Sandra

    2012-01-01

    During developmental stages, biomechanical stimuli on cardiac cells modulate genetic programs, and deviations from normal stimuli can lead to cardiac defects. Therefore, it is important to characterize normal cardiac biomechanical stimuli during early developmental stages. Using the chicken embryo model of cardiac development, we focused on characterizing biomechanical stimuli on the Hamburger–Hamilton (HH) 18 chick cardiac outflow tract (OFT), the distal portion of the heart from which a large portion of defects observed in humans originate. To characterize biomechanical stimuli in the OFT, we used a combination of in vivo optical coherence tomography (OCT) imaging, physiological measurements and computational fluid dynamics (CFD) modeling. We found that, at HH18, the proximal portion of the OFT wall undergoes larger circumferential strains than its distal portion, while the distal portion of the OFT wall undergoes larger wall stresses. Maximal wall shear stresses were generally found on the surface of endocardial cushions, which are protrusions of extracellular matrix onto the OFT lumen that later during development give rise to cardiac septa and valves. The non-uniform spatial and temporal distributions of stresses and strains in the OFT walls provide biomechanical cues to cardiac cells that likely aid in the extensive differential growth and remodeling patterns observed during normal development. PMID:22844414

  3. Efficient use of bit planes in the generation of motion stimuli

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.; Stone, Leland S.

    1988-01-01

    The production of animated motion sequences on computer-controlled display systems presents a technical problem because large images cannot be transferred from disk storage to image memory at conventional frame rates. A technique is described in which a single base image can be used to generate a broad class of motion stimuli without the need for such memory transfers. This technique was applied to the generation of drifting sine-wave gratings (and by extension, sine wave plaids). For each drifting grating, sine and cosine spatial phase components are first reduced to 1 bit/pixel using a digital halftoning technique. The resulting pairs of 1-bit images are then loaded into pairs of bit planes of the display memory. To animate the patterns, the display hardware's color lookup table is modified on a frame-by-frame basis; for each frame the lookup table is set to display a weighted sum of the spatial sine and cosine phase components. Because the contrasts and temporal frequencies of the various components are mutually independent in each frame, the sine and cosine components can be counterphase modulated in temporal quadrature, yielding a single drifting grating. Using additional bit planes, multiple drifting gratings can be combined to form sine-wave plaid patterns. A large number of resultant plaid motions can be produced from a single image file because the temporal frequencies of all the components can be varied independently. For a graphics device having 8 bits/pixel, up to four drifting gratings may be combined, each having independently variable contrast and speed.

  4. A noninvasive brain computer interface using visually-induced near-infrared spectroscopy responses.

    PubMed

    Chen, Cheng-Hsuan; Ho, Ming-Shan; Shyu, Kuo-Kai; Hsu, Kou-Cheng; Wang, Kuo-Wei; Lee, Po-Lei

    2014-09-19

    Visually-induced near-infrared spectroscopy (NIRS) response was utilized to design a brain computer interface (BCI) system. Four circular checkerboards driven by distinct flickering sequences were displayed on a LCD screen as visual stimuli to induce subjects' NIRS responses. Each flickering sequence was a concatenated sequence of alternative flickering segments and resting segments. The flickering segment was designed with fixed duration of 3s whereas the resting segment was chosen randomly within 15-20s to create the mutual independencies among different flickering sequences. Six subjects were recruited in this study and subjects were requested to gaze at the four visual stimuli one-after-one in a random order. Since visual responses in human brain are time-locked to the onsets of visual stimuli and the flicker sequences of distinct visual stimuli were designed mutually independent, the NIRS responses induced by user's gazed targets can be discerned from non-gazed targets by applying a simple averaging process. The accuracies for the six subjects were higher than 90% after 10 or more epochs being averaged. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Technical and conceptual considerations for using animated stimuli in studies of animal behavior.

    PubMed

    Chouinard-Thuly, Laura; Gierszewski, Stefanie; Rosenthal, Gil G; Reader, Simon M; Rieucau, Guillaume; Woo, Kevin L; Gerlai, Robert; Tedore, Cynthia; Ingley, Spencer J; Stowers, John R; Frommen, Joachim G; Dolins, Francine L; Witte, Klaudia

    2017-02-01

    Rapid technical advances in the field of computer animation (CA) and virtual reality (VR) have opened new avenues in animal behavior research. Animated stimuli are powerful tools as they offer standardization, repeatability, and complete control over the stimulus presented, thereby "reducing" and "replacing" the animals used, and "refining" the experimental design in line with the 3Rs. However, appropriate use of these technologies raises conceptual and technical questions. In this review, we offer guidelines for common technical and conceptual considerations related to the use of animated stimuli in animal behavior research. Following the steps required to create an animated stimulus, we discuss (I) the creation, (II) the presentation, and (III) the validation of CAs and VRs. Although our review is geared toward computer-graphically designed stimuli, considerations on presentation and validation also apply to video playbacks. CA and VR allow both new behavioral questions to be addressed and existing questions to be addressed in new ways, thus we expect a rich future for these methods in both ultimate and proximate studies of animal behavior.

  6. Technical and conceptual considerations for using animated stimuli in studies of animal behavior

    PubMed Central

    Rosenthal, Gil G.; Reader, Simon M.; Rieucau, Guillaume; Woo, Kevin L.; Gerlai, Robert; Tedore, Cynthia; Ingley, Spencer J.; Stowers, John R.; Frommen, Joachim G.; Dolins, Francine L.; Witte, Klaudia

    2017-01-01

    Abstract Rapid technical advances in the field of computer animation (CA) and virtual reality (VR) have opened new avenues in animal behavior research. Animated stimuli are powerful tools as they offer standardization, repeatability, and complete control over the stimulus presented, thereby “reducing” and “replacing” the animals used, and “refining” the experimental design in line with the 3Rs. However, appropriate use of these technologies raises conceptual and technical questions. In this review, we offer guidelines for common technical and conceptual considerations related to the use of animated stimuli in animal behavior research. Following the steps required to create an animated stimulus, we discuss (I) the creation, (II) the presentation, and (III) the validation of CAs and VRs. Although our review is geared toward computer-graphically designed stimuli, considerations on presentation and validation also apply to video playbacks. CA and VR allow both new behavioral questions to be addressed and existing questions to be addressed in new ways, thus we expect a rich future for these methods in both ultimate and proximate studies of animal behavior. PMID:29491958

  7. Laminar and orientation-dependent characteristics of spatial nonlinearities: implications for the computational architecture of visual cortex.

    PubMed

    Victor, Jonathan D; Mechler, Ferenc; Ohiorhenuan, Ifije; Schmid, Anita M; Purpura, Keith P

    2009-12-01

    A full understanding of the computations performed in primary visual cortex is an important yet elusive goal. Receptive field models consisting of cascades of linear filters and static nonlinearities may be adequate to account for responses to simple stimuli such as gratings and random checkerboards, but their predictions of responses to complex stimuli such as natural scenes are only approximately correct. It is unclear whether these discrepancies are limited to quantitative inaccuracies that reflect well-recognized mechanisms such as response normalization, gain controls, and cross-orientation suppression or, alternatively, imply additional qualitative features of the underlying computations. To address this question, we examined responses of V1 and V2 neurons in the monkey and area 17 neurons in the cat to two-dimensional Hermite functions (TDHs). TDHs are intermediate in complexity between traditional analytic stimuli and natural scenes and have mathematical properties that facilitate their use to test candidate models. By exploiting these properties, along with the laminar organization of V1, we identify qualitative aspects of neural computations beyond those anticipated from the above-cited model framework. Specifically, we find that V1 neurons receive signals from orientation-selective mechanisms that are highly nonlinear: they are sensitive to phase correlations, not just spatial frequency content. That is, the behavior of V1 neurons departs from that of linear-nonlinear cascades with standard modulatory mechanisms in a qualitative manner: even relatively simple stimuli evoke responses that imply complex spatial nonlinearities. The presence of these findings in the input layers suggests that these nonlinearities act in a feedback fashion.

  8. Stimulus-category competition, inhibition, and affective devaluation: a novel account of the uncanny valley

    PubMed Central

    Ferrey, Anne E.; Burleigh, Tyler J.; Fenske, Mark J.

    2015-01-01

    Stimuli that resemble humans, but are not perfectly human-like, are disliked compared to distinctly human and non-human stimuli. Accounts of this “Uncanny Valley” effect often focus on how changes in human resemblance can evoke different emotional responses. We present an alternate account based on the novel hypothesis that the Uncanny Valley is not directly related to ‘human-likeness’ per se, but instead reflects a more general form of stimulus devaluation that occurs when inhibition is triggered to resolve conflict between competing stimulus-related representations. We consider existing support for this inhibitory-devaluation hypothesis and further assess its feasibility through tests of two corresponding predictions that arise from the link between conflict-resolving inhibition and aversive response: (1) that the pronounced disliking of Uncanny-type stimuli will occur for any image that strongly activates multiple competing stimulus representations, even in the absence of any human-likeness, and (2) that the negative peak of an ‘Uncanny Valley’ should occur at the point of greatest stimulus-related conflict and not (in the presence of human-likeness) always closer to the ‘human’ end of a perceptual continuum. We measured affective responses to a set of line drawings representing non-human animal–animal morphs, in which each continuum midpoint was a bistable image (Experiment 1), as well as to sets of human-robot and human-animal computer-generated morphs (Experiment 2). Affective trends depicting classic Uncanny Valley functions occurred for all continua, including the non-human stimuli. Images at continua midpoints elicited significantly more negative affect than images at endpoints, even when the continua included a human endpoint. This illustrates the feasibility of the inhibitory-devaluation hypothesis and the need for further research into the possibility that the strong dislike of Uncanny-type stimuli reflects the negative affective consequences of cognitive inhibition. PMID:25821439

  9. Stimulus-category competition, inhibition, and affective devaluation: a novel account of the uncanny valley.

    PubMed

    Ferrey, Anne E; Burleigh, Tyler J; Fenske, Mark J

    2015-01-01

    Stimuli that resemble humans, but are not perfectly human-like, are disliked compared to distinctly human and non-human stimuli. Accounts of this "Uncanny Valley" effect often focus on how changes in human resemblance can evoke different emotional responses. We present an alternate account based on the novel hypothesis that the Uncanny Valley is not directly related to 'human-likeness' per se, but instead reflects a more general form of stimulus devaluation that occurs when inhibition is triggered to resolve conflict between competing stimulus-related representations. We consider existing support for this inhibitory-devaluation hypothesis and further assess its feasibility through tests of two corresponding predictions that arise from the link between conflict-resolving inhibition and aversive response: (1) that the pronounced disliking of Uncanny-type stimuli will occur for any image that strongly activates multiple competing stimulus representations, even in the absence of any human-likeness, and (2) that the negative peak of an 'Uncanny Valley' should occur at the point of greatest stimulus-related conflict and not (in the presence of human-likeness) always closer to the 'human' end of a perceptual continuum. We measured affective responses to a set of line drawings representing non-human animal-animal morphs, in which each continuum midpoint was a bistable image (Experiment 1), as well as to sets of human-robot and human-animal computer-generated morphs (Experiment 2). Affective trends depicting classic Uncanny Valley functions occurred for all continua, including the non-human stimuli. Images at continua midpoints elicited significantly more negative affect than images at endpoints, even when the continua included a human endpoint. This illustrates the feasibility of the inhibitory-devaluation hypothesis and the need for further research into the possibility that the strong dislike of Uncanny-type stimuli reflects the negative affective consequences of cognitive inhibition.

  10. A sLORETA study for gaze-independent BCI speller.

    PubMed

    Xingwei An; Jinwen Wei; Shuang Liu; Dong Ming

    2017-07-01

    EEG-based BCI (brain-computer-interface) speller, especially gaze-independent BCI speller, has become a hot topic in recent years. It provides direct spelling device by non-muscular method for people with severe motor impairments and with limited gaze movement. Brain needs to conduct both stimuli-driven and stimuli-related attention in fast presented BCI paradigms for such BCI speller applications. Few researchers studied the mechanism of brain response to such fast presented BCI applications. In this study, we compared the distribution of brain activation in visual, auditory, and audio-visual combined stimuli paradigms using sLORETA (standardized low-resolution brain electromagnetic tomography). Between groups comparisons showed the importance of visual and auditory stimuli in audio-visual combined paradigm. They both contribute to the activation of brain regions, with visual stimuli being the predominate stimuli. Visual stimuli related brain region was mainly located at parietal and occipital lobe, whereas response in frontal-temporal lobes might be caused by auditory stimuli. These regions played an important role in audio-visual bimodal paradigms. These new findings are important for future study of ERP speller as well as the mechanism of fast presented stimuli.

  11. Natural stimuli improve auditory BCIs with respect to ergonomics and performance

    NASA Astrophysics Data System (ADS)

    Höhne, Johannes; Krenzlin, Konrad; Dähne, Sven; Tangermann, Michael

    2012-08-01

    Moving from well-controlled, brisk artificial stimuli to natural and less-controlled stimuli seems counter-intuitive for event-related potential (ERP) studies. As natural stimuli typically contain a richer internal structure, they might introduce higher levels of variance and jitter in the ERP responses. Both characteristics are unfavorable for a good single-trial classification of ERPs in the context of a multi-class brain-computer interface (BCI) system, where the class-discriminant information between target stimuli and non-target stimuli must be maximized. For the application in an auditory BCI system, however, the transition from simple artificial tones to natural syllables can be useful despite the variance introduced. In the presented study, healthy users (N = 9) participated in an offline auditory nine-class BCI experiment with artificial and natural stimuli. It is shown that the use of syllables as natural stimuli does not only improve the users’ ergonomic ratings; also the classification performance is increased. Moreover, natural stimuli obtain a better balance in multi-class decisions, such that the number of systematic confusions between the nine classes is reduced. Hopefully, our findings may contribute to make auditory BCI paradigms more user friendly and applicable for patients.

  12. Number of discernible colors for color-deficient observers estimated from the MacAdam limits.

    PubMed

    Perales, Esther; Martínez-Verdú, Francisco Miguel; Linhares, João Manuel Maciel; Nascimento, Sérgio Miguel Cardoso

    2010-10-01

    We estimated the number of colors perceived by color normal and color-deficient observers when looking at the theoretic limits of object-color stimuli. These limits, the optimal color stimuli, were computed for a color normal observer and CIE standard illuminant D65, and the resultant colors were expressed in the CIELAB and DIN99d color spaces. The corresponding color volumes for abnormal color vision were computed using models simulating for normal trichromatic observers the appearance for dichromats and anomalous trichomats. The number of colors perceived in each case was then computed from the color volumes enclosed by the optimal colors also known as MacAdam limits. It was estimated that dichromats perceive less than 1% of the colors perceived by normal trichromats and that anomalous trichromats perceive 50%-60% for anomalies in the medium-wavelength-sensitive and 60%-70% for anomalies in the long-wavelength-sensitive cones. Complementary estimates obtained similarly for the spectral locus of monochromatic stimuli suggest less impairment for color-deficient observers, a fact that is explained by the two-dimensional nature of the locus.

  13. EEG Responses to Auditory Stimuli for Automatic Affect Recognition

    PubMed Central

    Hettich, Dirk T.; Bolinger, Elaina; Matuz, Tamara; Birbaumer, Niels; Rosenstiel, Wolfgang; Spüler, Martin

    2016-01-01

    Brain state classification for communication and control has been well established in the area of brain-computer interfaces over the last decades. Recently, the passive and automatic extraction of additional information regarding the psychological state of users from neurophysiological signals has gained increased attention in the interdisciplinary field of affective computing. We investigated how well specific emotional reactions, induced by auditory stimuli, can be detected in EEG recordings. We introduce an auditory emotion induction paradigm based on the International Affective Digitized Sounds 2nd Edition (IADS-2) database also suitable for disabled individuals. Stimuli are grouped in three valence categories: unpleasant, neutral, and pleasant. Significant differences in time domain domain event-related potentials are found in the electroencephalogram (EEG) between unpleasant and neutral, as well as pleasant and neutral conditions over midline electrodes. Time domain data were classified in three binary classification problems using a linear support vector machine (SVM) classifier. We discuss three classification performance measures in the context of affective computing and outline some strategies for conducting and reporting affect classification studies. PMID:27375410

  14. Linear Discriminant Analysis Achieves High Classification Accuracy for the BOLD fMRI Response to Naturalistic Movie Stimuli

    PubMed Central

    Mandelkow, Hendrik; de Zwart, Jacco A.; Duyn, Jeff H.

    2016-01-01

    Naturalistic stimuli like movies evoke complex perceptual processes, which are of great interest in the study of human cognition by functional MRI (fMRI). However, conventional fMRI analysis based on statistical parametric mapping (SPM) and the general linear model (GLM) is hampered by a lack of accurate parametric models of the BOLD response to complex stimuli. In this situation, statistical machine-learning methods, a.k.a. multivariate pattern analysis (MVPA), have received growing attention for their ability to generate stimulus response models in a data-driven fashion. However, machine-learning methods typically require large amounts of training data as well as computational resources. In the past, this has largely limited their application to fMRI experiments involving small sets of stimulus categories and small regions of interest in the brain. By contrast, the present study compares several classification algorithms known as Nearest Neighbor (NN), Gaussian Naïve Bayes (GNB), and (regularized) Linear Discriminant Analysis (LDA) in terms of their classification accuracy in discriminating the global fMRI response patterns evoked by a large number of naturalistic visual stimuli presented as a movie. Results show that LDA regularized by principal component analysis (PCA) achieved high classification accuracies, above 90% on average for single fMRI volumes acquired 2 s apart during a 300 s movie (chance level 0.7% = 2 s/300 s). The largest source of classification errors were autocorrelations in the BOLD signal compounded by the similarity of consecutive stimuli. All classifiers performed best when given input features from a large region of interest comprising around 25% of the voxels that responded significantly to the visual stimulus. Consistent with this, the most informative principal components represented widespread distributions of co-activated brain regions that were similar between subjects and may represent functional networks. In light of these results, the combination of naturalistic movie stimuli and classification analysis in fMRI experiments may prove to be a sensitive tool for the assessment of changes in natural cognitive processes under experimental manipulation. PMID:27065832

  15. Teaching by Simulation with Personal Computers.

    ERIC Educational Resources Information Center

    Randall, James E.

    1978-01-01

    Describes the use of a small digital computer to simulate a peripheral nerve demonstration in which the action potential responses to pairs of stimuli are used to illustrate the properties of excitable membranes. (Author/MA)

  16. Cortical pyramidal cells as non-linear oscillators: experiment and spike-generation theory.

    PubMed

    Brumberg, Joshua C; Gutkin, Boris S

    2007-09-26

    Cortical neurons are capable of generating trains of action potentials in response to current injections. These discharges can take different forms, e.g., repetitive firing that adapts during the period of current injection or bursting behaviors. We have used a combined experimental and computational approach to characterize the dynamics leading to action potential responses in single neurons. Specifically we investigated the origin of complex firing patterns in response to sinusoidal current injections. Using a reduced model, the theta-neuron, alongside recordings from cortical pyramidal cells we show that both real and simulated neurons show phase-locking to sine wave stimuli up to a critical frequency, above which period skipping and 1-to-x phase-locking occurs. The locking behavior follows a complex "devil's staircase" phenomena, where locked modes are interleaved with irregular firing. We further show that the critical frequency depends on the time scale of spike generation and on the level of spike frequency adaptation. These results suggest that phase-locking of neuronal responses to complex input patterns can be explained by basic properties of the spike-generating machinery.

  17. Plantar flexion force induced by amplitude-modulated tendon vibration and associated soleus V/F-waves as an evidence of a centrally-mediated mechanism contributing to extra torque generation in humans

    PubMed Central

    2013-01-01

    Background High-frequency trains of electrical stimulation applied over the human muscles can generate forces higher than would be expected by direct activation of motor axons, as evidenced by an unexpected relation between the stimuli and the evoked contractions, originating what has been called “extra forces”. This phenomenon has been thought to reflect nonlinear input/output neural properties such as plateau potential activation in motoneurons. However, more recent evidence has indicated that extra forces generated during electrical stimulation are mediated primarily, if not exclusively, by an intrinsic muscle property, and not from a central mechanism as previously thought. Given the inherent differences between electrical and vibratory stimuli, this study aimed to investigate: (a) whether the generation of vibration-induced muscle forces results in an unexpected relation between the stimuli and the evoked contractions (i.e. extra forces generation) and (b) whether these extra forces are accompanied by signs of a centrally-mediated mechanism or whether intrinsic muscle properties are the predominant mechanisms. Methods Six subjects had their Achilles tendon stimulated by 100 Hz vibratory stimuli that linearly increased in amplitude (with a peak-to-peak displacement varying from 0 to 5 mm) for 10 seconds and then linearly decreased to zero for the next 10 seconds. As a measure of motoneuron excitability taken at different times during the vibratory stimulation, short-latency compound muscle action potentials (V/F-waves) were recorded in the soleus muscle in response to supramaximal nerve stimulation. Results Plantar flexion torque and soleus V/F-wave amplitudes were increased in the second half of the stimulation in comparison with the first half. Conclusion The present findings provide evidence that vibratory stimuli may trigger a centrally-mediated mechanism that contributes to the generation of extra torques. The vibration-induced increased motoneuron excitability (leading to increased torque generation) presumably activates spinal motoneurons following the size principle, which is a desirable feature for stimulation paradigms involved in rehabilitation programs and exercise training. PMID:23531240

  18. Stimulus waveform determines the characteristics of sensory nerve action potentials.

    PubMed

    Pereira, Pedro; Leote, João; Cabib, Christopher; Casanova-Molla, Jordi; Valls-Sole, Josep

    2016-03-01

    In routine nerve conduction studies supramaximal electrical stimuli generate sensory nerve action potentials by depolarization of nerve fibers under the cathode. However, stimuli of submaximal intensity may give rise to action potentials generated under the anode. We tested if this phenomenon depends on the characteristics of stimulus ending. We added a circuit to our stimulation device that allowed us to modify the end of the stimulus by increasing the time constant of the decay phase. Increasing the fall time caused a reduction of anode action potential (anAP) amplitude, and eventually abolished it, in all tested subjects. We subsequently examined the stimulus waveform in a series of available electromyographs stimulators and found that the anAP could only be obtained with stimulators that issued stimuli ending sharply. Our results prove that the anAP is generated at stimulus end, and depends on the sharpness of current shut down. Electromyographs produce stimuli of varying characteristics, which limits the reproducibility of anAP results by interested researchers. The study of anodal action potentials might be a useful tool to have a quick appraisal of distal human sensory nerve excitability. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Electrical conditioning of adipose-derived stem cells in a multi-chamber culture platform.

    PubMed

    Pavesi, A; Soncini, M; Zamperone, A; Pietronave, S; Medico, E; Redaelli, A; Prat, M; Fiore, G B

    2014-07-01

    In tissue engineering, several factors play key roles in providing adequate stimuli for cells differentiation, in particular biochemical and physical stimuli, which try to mimic the physiological microenvironments. Since electrical stimuli are important in the developing heart, we have developed an easy-to-use, cost-effective cell culture platform, able to provide controlled electrical stimulation aimed at investigating the influence of the electric field in the stem cell differentiation process. This bioreactor consists of an electrical stimulator and 12 independent, petri-like culture chambers and a 3-D computational model was used to characterize the distribution and the intensity of the electric field generated in the cell culture volume. We explored the effects of monophasic and biphasic square wave pulse stimulation on a mouse adipose-derived stem cell line (m17.ASC) comparing cell viability, proliferation, protein, and gene expression. Both monophasic (8 V, 2 ms, 1 Hz) and biphasic (+4 V, 1 ms and -4 V, 1 ms; 1 Hz) stimulation were compatible with cell survival and proliferation. Biphasic stimulation induced the expression of Connexin 43, which was found to localize also at the cell membrane, which is its recognized functional mediating intercellular electrical coupling. Electrically stimulated cells showed an induced transcriptional profile more closely related to that of neonatal cadiomyocytes, particularly for biphasic stimulation. The developed platform thus allowed to set-up precise conditions to drive adult stem cells toward a myocardial phenotype solely by physical stimuli, in the absence of exogenously added expensive bioactive molecules, and can thus represent a valuable tool for translational applications for heart tissue engineering and regeneration. © 2014 Wiley Periodicals, Inc.

  20. Interactions between auditory and visual semantic stimulus classes: evidence for common processing networks for speech and body actions.

    PubMed

    Meyer, Georg F; Greenlee, Mark; Wuerger, Sophie

    2011-09-01

    Incongruencies between auditory and visual signals negatively affect human performance and cause selective activation in neuroimaging studies; therefore, they are increasingly used to probe audiovisual integration mechanisms. An open question is whether the increased BOLD response reflects computational demands in integrating mismatching low-level signals or reflects simultaneous unimodal conceptual representations of the competing signals. To address this question, we explore the effect of semantic congruency within and across three signal categories (speech, body actions, and unfamiliar patterns) for signals with matched low-level statistics. In a localizer experiment, unimodal (auditory and visual) and bimodal stimuli were used to identify ROIs. All three semantic categories cause overlapping activation patterns. We find no evidence for areas that show greater BOLD response to bimodal stimuli than predicted by the sum of the two unimodal responses. Conjunction analysis of the unimodal responses in each category identifies a network including posterior temporal, inferior frontal, and premotor areas. Semantic congruency effects are measured in the main experiment. We find that incongruent combinations of two meaningful stimuli (speech and body actions) but not combinations of meaningful with meaningless stimuli lead to increased BOLD response in the posterior STS (pSTS) bilaterally, the left SMA, the inferior frontal gyrus, the inferior parietal lobule, and the anterior insula. These interactions are not seen in premotor areas. Our findings are consistent with the hypothesis that pSTS and frontal areas form a recognition network that combines sensory categorical representations (in pSTS) with action hypothesis generation in inferior frontal gyrus/premotor areas. We argue that the same neural networks process speech and body actions.

  1. Spatial decoupling of targets and flashing stimuli for visual brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Waytowich, Nicholas R.; Krusienski, Dean J.

    2015-06-01

    Objective. Recently, paradigms using code-modulated visual evoked potentials (c-VEPs) have proven to achieve among the highest information transfer rates for noninvasive brain-computer interfaces (BCIs). One issue with current c-VEP paradigms, and visual-evoked paradigms in general, is that they require direct foveal fixation of the flashing stimuli. These interfaces are often visually unpleasant and can be irritating and fatiguing to the user, thus adversely impacting practical performance. In this study, a novel c-VEP BCI paradigm is presented that attempts to perform spatial decoupling of the targets and flashing stimuli using two distinct concepts: spatial separation and boundary positioning. Approach. For the paradigm, the flashing stimuli form a ring that encompasses the intended non-flashing targets, which are spatially separated from the stimuli. The user fixates on the desired target, which is classified using the changes to the EEG induced by the flashing stimuli located in the non-foveal visual field. Additionally, a subset of targets is also positioned at or near the stimulus boundaries, which decouples targets from direct association with a single stimulus. This allows a greater number of target locations for a fixed number of flashing stimuli. Main results. Results from 11 subjects showed practical classification accuracies for the non-foveal condition, with comparable performance to the direct-foveal condition for longer observation lengths. Online results from 5 subjects confirmed the offline results with an average accuracy across subjects of 95.6% for a 4-target condition. The offline analysis also indicated that targets positioned at or near the boundaries of two stimuli could be classified with the same accuracy as traditional superimposed (non-boundary) targets. Significance. The implications of this research are that c-VEPs can be detected and accurately classified to achieve comparable BCI performance without requiring potentially irritating direct foveation of flashing stimuli. Furthermore, this study shows that it is possible to increase the number of targets beyond the number of stimuli without degrading performance. Given the superior information transfer rate of c-VEP paradigms, these results can lead to the development of more practical and ergonomic BCIs.

  2. Stretchable energy-harvesting tactile electronic skin capable of differentiating multiple mechanical stimuli modes.

    PubMed

    Park, Steve; Kim, Hyunjin; Vosgueritchian, Michael; Cheon, Sangmo; Kim, Hyeok; Koo, Ja Hoon; Kim, Taeho Roy; Lee, Sanghyo; Schwartz, Gregory; Chang, Hyuk; Bao, Zhenan

    2014-11-19

    The first stretchable energy-harvesting electronic-skin device capable of differentiating and generating energy from various mechanical stimuli, such as normal pressure, lateral strain, bending, and vibration, is presented. A pressure sensitivity of 0.7 kPa(-1) is achieved in the pressure region <1 kPa with power generation of tens of μW cm(-2) from a gentle finger touch. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Absolute judgment for one- and two-dimensional stimuli embedded in Gaussian noise

    NASA Technical Reports Server (NTRS)

    Kvalseth, T. O.

    1977-01-01

    This study examines the effect on human performance of adding Gaussian noise or disturbance to the stimuli in absolute judgment tasks involving both one- and two-dimensional stimuli. For each selected stimulus value (both an X-value and a Y-value were generated in the two-dimensional case), 10 values (or 10 pairs of values in the two-dimensional case) were generated from a zero-mean Gaussian variate, added to the selected stimulus value and then served as the coordinate values for the 10 points that were displayed sequentially on a CRT. The results show that human performance, in terms of the information transmitted and rms error as functions of stimulus uncertainty, was significantly reduced as the noise variance increased.

  4. Control-display mapping in brain-computer interfaces.

    PubMed

    Thurlings, Marieke E; van Erp, Jan B F; Brouwer, Anne-Marie; Blankertz, Benjamin; Werkhoven, Peter

    2012-01-01

    Event-related potential (ERP) based brain-computer interfaces (BCIs) employ differences in brain responses to attended and ignored stimuli. When using a tactile ERP-BCI for navigation, mapping is required between navigation directions on a visual display and unambiguously corresponding tactile stimuli (tactors) from a tactile control device: control-display mapping (CDM). We investigated the effect of congruent (both display and control horizontal or both vertical) and incongruent (vertical display, horizontal control) CDMs on task performance, the ERP and potential BCI performance. Ten participants attended to a target (determined via CDM), in a stream of sequentially vibrating tactors. We show that congruent CDM yields best task performance, enhanced the P300 and results in increased estimated BCI performance. This suggests a reduced availability of attentional resources when operating an ERP-BCI with incongruent CDM. Additionally, we found an enhanced N2 for incongruent CDM, which indicates a conflict between visual display and tactile control orientations. Incongruency in control-display mapping reduces task performance. In this study, brain responses, task and system performance are related to (in)congruent mapping of command options and the corresponding stimuli in a brain-computer interface (BCI). Directional congruency reduces task errors, increases available attentional resources, improves BCI performance and thus facilitates human-computer interaction.

  5. The Effects of Varied versus Constant High-, Medium-, and Low-Preference Stimuli on Performance

    ERIC Educational Resources Information Center

    Wine, Byron; Wilder, David A.

    2009-01-01

    The purpose of the current study was to compare the delivery of varied versus constant high-, medium-, and low-preference stimuli on performance of 2 adults on a computer-based task in an analogue employment setting. For both participants, constant delivery of the high-preference stimulus produced the greatest increases in performance over…

  6. TypingSuite: Integrated Software for Presenting Stimuli, and Collecting and Analyzing Typing Data

    ERIC Educational Resources Information Center

    Mazerolle, Erin L.; Marchand, Yannick

    2015-01-01

    Research into typing patterns has broad applications in both psycholinguistics and biometrics (i.e., improving security of computer access via each user's unique typing patterns). We present a new software package, TypingSuite, which can be used for presenting visual and auditory stimuli, collecting typing data, and summarizing and analyzing the…

  7. Silent Expectations: Dynamic Causal Modeling of Cortical Prediction and Attention to Sounds That Weren't.

    PubMed

    Chennu, Srivas; Noreika, Valdas; Gueorguiev, David; Shtyrov, Yury; Bekinschtein, Tristan A; Henson, Richard

    2016-08-10

    There is increasing evidence that human perception is realized by a hierarchy of neural processes in which predictions sent backward from higher levels result in prediction errors that are fed forward from lower levels, to update the current model of the environment. Moreover, the precision of prediction errors is thought to be modulated by attention. Much of this evidence comes from paradigms in which a stimulus differs from that predicted by the recent history of other stimuli (generating a so-called "mismatch response"). There is less evidence from situations where a prediction is not fulfilled by any sensory input (an "omission" response). This situation arguably provides a more direct measure of "top-down" predictions in the absence of confounding "bottom-up" input. We applied Dynamic Causal Modeling of evoked electromagnetic responses recorded by EEG and MEG to an auditory paradigm in which we factorially crossed the presence versus absence of "bottom-up" stimuli with the presence versus absence of "top-down" attention. Model comparison revealed that both mismatch and omission responses were mediated by increased forward and backward connections, differing primarily in the driving input. In both responses, modeling results suggested that the presence of attention selectively modulated backward "prediction" connections. Our results provide new model-driven evidence of the pure top-down prediction signal posited in theories of hierarchical perception, and highlight the role of attentional precision in strengthening this prediction. Human auditory perception is thought to be realized by a network of neurons that maintain a model of and predict future stimuli. Much of the evidence for this comes from experiments where a stimulus unexpectedly differs from previous ones, which generates a well-known "mismatch response." But what happens when a stimulus is unexpectedly omitted altogether? By measuring the brain's electromagnetic activity, we show that it also generates an "omission response" that is contingent on the presence of attention. We model these responses computationally, revealing that mismatch and omission responses only differ in the location of inputs into the same underlying neuronal network. In both cases, we show that attention selectively strengthens the brain's prediction of the future. Copyright © 2016 Chennu et al.

  8. Top-down predictions in the cognitive brain

    PubMed Central

    Kveraga, Kestutis; Ghuman, Avniel S.; Bar, Moshe

    2007-01-01

    The human brain is not a passive organ simply waiting to be activated by external stimuli. Instead, it is proposed tat the brain continuously employs memory of past experiences to interpret sensory information and predict the immediately relevant future. This review concentrates on visual recognition as the model system for developing and testing ideas about the role and mechanisms of top-down predictions in the brain. We cover relevant behavioral, computational and neural aspects. These ideas are then extended to other domains. The basic elements of this proposal include analogical mapping, associative representations and the generation of predictions. Connections to a host of cognitive processes will be made and implications to several mental disorders will be proposed. PMID:17923222

  9. Mechanistic systems modeling to guide drug discovery and development

    PubMed Central

    Schmidt, Brian J.; Papin, Jason A.; Musante, Cynthia J.

    2013-01-01

    A crucial question that must be addressed in the drug development process is whether the proposed therapeutic target will yield the desired effect in the clinical population. Pharmaceutical and biotechnology companies place a large investment on research and development, long before confirmatory data are available from human trials. Basic science has greatly expanded the computable knowledge of disease processes, both through the generation of large omics data sets and a compendium of studies assessing cellular and systemic responses to physiologic and pathophysiologic stimuli. Given inherent uncertainties in drug development, mechanistic systems models can better inform target selection and the decision process for advancing compounds through preclinical and clinical research. PMID:22999913

  10. Mechanistic systems modeling to guide drug discovery and development.

    PubMed

    Schmidt, Brian J; Papin, Jason A; Musante, Cynthia J

    2013-02-01

    A crucial question that must be addressed in the drug development process is whether the proposed therapeutic target will yield the desired effect in the clinical population. Pharmaceutical and biotechnology companies place a large investment on research and development, long before confirmatory data are available from human trials. Basic science has greatly expanded the computable knowledge of disease processes, both through the generation of large omics data sets and a compendium of studies assessing cellular and systemic responses to physiologic and pathophysiologic stimuli. Given inherent uncertainties in drug development, mechanistic systems models can better inform target selection and the decision process for advancing compounds through preclinical and clinical research. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Automation of learning-set testing - The video-task paradigm

    NASA Technical Reports Server (NTRS)

    Washburn, David A.; Hopkins, William D.; Rumbaugh, Duane M.

    1989-01-01

    Researchers interested in studying discrimination learning in primates have typically utilized variations in the Wisconsin General Test Apparatus (WGTA). In the present experiment, a new testing apparatus for the study of primate learning is proposed. In the video-task paradigm, rhesus monkeys (Macaca mulatta) respond to computer-generated stimuli by manipulating a joystick. Using this apparatus, discrimination learning-set data for 2 monkeys were obtained. Performance on Trial 2 exceeded 80 percent within 200 discrimination learning problems. These data illustrate the utility of the video-task paradigm in comparative research. Additionally, the efficient learning and rich data that were characteristic of this study suggest several advantages of the present testing paradigm over traditional WGTA testing.

  12. Bacillus spores as building blocks for stimuli-responsive materials and nanogenerators

    NASA Astrophysics Data System (ADS)

    Sahin, Ozgur; Chen, Xi

    2014-03-01

    Materials that mechanically respond to external chemical stimuli have applications in a wide range of fields. Inspired by biological systems, stimuli-responsive materials that can oscillate, transport fluid, mimic homeostasis, and undergo complex changes in shape have been previously demonstrated. However, the effectiveness of synthetic stimuli-responsive materials in generating work is limited when compared to mechanical actuators. During studies of bacterial sporulation, we have found that the mechanical response of Bacillus spores to water gradients exhibits an energy density of more than 10 MJ/m3, which is two orders of magnitude higher than synthetic water-responsive materials. We also identified mutations that can approximately double the energy density of the spores, and found that spores can self-assemble into dense, submicron-thick monolayers on substrates such as silicon microcantilevers and elastomer sheets, creating self-assembled actuators that can remotely generate electrical power from an evaporating body of water. The energy conversion mechanism of Bacillus spores may facilitate synthetic stimuli-responsive materials with significantly higher energy densities. We acknowledge support from the U.S. Dept. of Energy Early Career Research Program, the Wyss Institute for Biologically Inspired Engineering, and the Rowland Institute at Harvard.

  13. An online brain-computer interface based on shifting attention to concurrent streams of auditory stimuli

    PubMed Central

    Hill, N J; Schölkopf, B

    2012-01-01

    We report on the development and online testing of an EEG-based brain-computer interface (BCI) that aims to be usable by completely paralysed users—for whom visual or motor-system-based BCIs may not be suitable, and among whom reports of successful BCI use have so far been very rare. The current approach exploits covert shifts of attention to auditory stimuli in a dichotic-listening stimulus design. To compare the efficacy of event-related potentials (ERPs) and steady-state auditory evoked potentials (SSAEPs), the stimuli were designed such that they elicited both ERPs and SSAEPs simultaneously. Trial-by-trial feedback was provided online, based on subjects’ modulation of N1 and P3 ERP components measured during single 5-second stimulation intervals. All 13 healthy subjects were able to use the BCI, with performance in a binary left/right choice task ranging from 75% to 96% correct across subjects (mean 85%). BCI classification was based on the contrast between stimuli in the attended stream and stimuli in the unattended stream, making use of every stimulus, rather than contrasting frequent standard and rare “oddball” stimuli. SSAEPs were assessed offline: for all subjects, spectral components at the two exactly-known modulation frequencies allowed discrimination of pre-stimulus from stimulus intervals, and of left-only stimuli from right-only stimuli when one side of the dichotic stimulus pair was muted. However, attention-modulation of SSAEPs was not sufficient for single-trial BCI communication, even when the subject’s attention was clearly focused well enough to allow classification of the same trials via ERPs. ERPs clearly provided a superior basis for BCI. The ERP results are a promising step towards the development of a simple-to-use, reliable yes/no communication system for users in the most severely paralysed states, as well as potential attention-monitoring and -training applications outside the context of assistive technology. PMID:22333135

  14. An online brain-computer interface based on shifting attention to concurrent streams of auditory stimuli

    NASA Astrophysics Data System (ADS)

    Hill, N. J.; Schölkopf, B.

    2012-04-01

    We report on the development and online testing of an electroencephalogram-based brain-computer interface (BCI) that aims to be usable by completely paralysed users—for whom visual or motor-system-based BCIs may not be suitable, and among whom reports of successful BCI use have so far been very rare. The current approach exploits covert shifts of attention to auditory stimuli in a dichotic-listening stimulus design. To compare the efficacy of event-related potentials (ERPs) and steady-state auditory evoked potentials (SSAEPs), the stimuli were designed such that they elicited both ERPs and SSAEPs simultaneously. Trial-by-trial feedback was provided online, based on subjects' modulation of N1 and P3 ERP components measured during single 5 s stimulation intervals. All 13 healthy subjects were able to use the BCI, with performance in a binary left/right choice task ranging from 75% to 96% correct across subjects (mean 85%). BCI classification was based on the contrast between stimuli in the attended stream and stimuli in the unattended stream, making use of every stimulus, rather than contrasting frequent standard and rare ‘oddball’ stimuli. SSAEPs were assessed offline: for all subjects, spectral components at the two exactly known modulation frequencies allowed discrimination of pre-stimulus from stimulus intervals, and of left-only stimuli from right-only stimuli when one side of the dichotic stimulus pair was muted. However, attention modulation of SSAEPs was not sufficient for single-trial BCI communication, even when the subject's attention was clearly focused well enough to allow classification of the same trials via ERPs. ERPs clearly provided a superior basis for BCI. The ERP results are a promising step towards the development of a simple-to-use, reliable yes/no communication system for users in the most severely paralysed states, as well as potential attention-monitoring and -training applications outside the context of assistive technology.

  15. Transfer of stimulus control from a TFT to CRT screen.

    PubMed

    Railton, Renee Caron Richards; Foster, T Mary; Temple, William

    2010-10-01

    The use of television and computer screens for presenting stimuli to animals is increasing as it is non-invasive and can provide precise control over stimuli. Past studies have used cathode ray tube (CRT) screens; however, there is some evidence that these give different results to non-flickering thin film transistor (TFT) screens. Hens' critical flicker fusion frequency ranges between 80 and 90 Hz--above standard CRT screens. Thus, stimuli presented on CRT screens may appear distorted to hens. This study aimed to investigate whether changing the flicker rate of CRT screens altered hens' discrimination. Hens were trained (in a conditional discrimination) to discriminate between two stimuli on a TFT (flickerless) screen, and tested with the stimuli on a CRT screen at four flicker rates (60, 75, 85, and 100 Hz). The hens' accuracy generally decreased as the refresh rate of the CRT screen decreased. These results imply that the change in flicker rate changed the appearance of the stimuli enough to affect the hens' discrimination and stimulus control is disrupted when the stimuli appear to flicker. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  16. Enhancing interaural-delay-based extents of laterality at high frequencies by using ``transposed stimuli''

    NASA Astrophysics Data System (ADS)

    Bernstein, Leslie R.; Trahiotis, Constantine

    2003-06-01

    An acoustic pointing task was used to determine whether interaural temporal disparities (ITDs) conveyed by high-frequency ``transposed'' stimuli would produce larger extents of laterality than ITDs conveyed by bands of high-frequency Gaussian noise. The envelopes of transposed stimuli are designed to provide high-frequency channels with information similar to that conveyed by the waveforms of low-frequency stimuli. Lateralization was measured for low-frequency Gaussian noises, the same noises transposed to 4 kHz, and high-frequency Gaussian bands of noise centered at 4 kHz. Extents of laterality obtained with the transposed stimuli were greater than those obtained with bands of Gaussian noise centered at 4 kHz and, in some cases, were equivalent to those obtained with low-frequency stimuli. In a second experiment, the general effects on lateral position produced by imposed combinations of bandwidth, ITD, and interaural phase disparities (IPDs) on low-frequency stimuli remained when those stimuli were transposed to 4 kHz. Overall, the data were fairly well accounted for by a model that computes the cross-correlation subsequent to known stages of peripheral auditory processing augmented by low-pass filtering of the envelopes within the high-frequency channels of each ear.

  17. Evidence for Neural Computations of Temporal Coherence in an Auditory Scene and Their Enhancement during Active Listening.

    PubMed

    O'Sullivan, James A; Shamma, Shihab A; Lalor, Edmund C

    2015-05-06

    The human brain has evolved to operate effectively in highly complex acoustic environments, segregating multiple sound sources into perceptually distinct auditory objects. A recent theory seeks to explain this ability by arguing that stream segregation occurs primarily due to the temporal coherence of the neural populations that encode the various features of an individual acoustic source. This theory has received support from both psychoacoustic and functional magnetic resonance imaging (fMRI) studies that use stimuli which model complex acoustic environments. Termed stochastic figure-ground (SFG) stimuli, they are composed of a "figure" and background that overlap in spectrotemporal space, such that the only way to segregate the figure is by computing the coherence of its frequency components over time. Here, we extend these psychoacoustic and fMRI findings by using the greater temporal resolution of electroencephalography to investigate the neural computation of temporal coherence. We present subjects with modified SFG stimuli wherein the temporal coherence of the figure is modulated stochastically over time, which allows us to use linear regression methods to extract a signature of the neural processing of this temporal coherence. We do this under both active and passive listening conditions. Our findings show an early effect of coherence during passive listening, lasting from ∼115 to 185 ms post-stimulus. When subjects are actively listening to the stimuli, these responses are larger and last longer, up to ∼265 ms. These findings provide evidence for early and preattentive neural computations of temporal coherence that are enhanced by active analysis of an auditory scene. Copyright © 2015 the authors 0270-6474/15/357256-08$15.00/0.

  18. Human brain spots emotion in non humanoid robots

    PubMed Central

    Foucher, Aurélie; Jouvent, Roland; Nadel, Jacqueline

    2011-01-01

    The computation by which our brain elaborates fast responses to emotional expressions is currently an active field of brain studies. Previous studies have focused on stimuli taken from everyday life. Here, we investigated event-related potentials in response to happy vs neutral stimuli of human and non-humanoid robots. At the behavioural level, emotion shortened reaction times similarly for robotic and human stimuli. Early P1 wave was enhanced in response to happy compared to neutral expressions for robotic as well as for human stimuli, suggesting that emotion from robots is encoded as early as human emotion expression. Congruent with their lower faceness properties compared to human stimuli, robots elicited a later and lower N170 component than human stimuli. These findings challenge the claim that robots need to present an anthropomorphic aspect to interact with humans. Taken together, such results suggest that the early brain processing of emotional expressions is not bounded to human-like arrangements embodying emotion. PMID:20194513

  19. Advantage of hole stimulus in rivalry competition.

    PubMed

    Meng, Qianli; Cui, Ding; Zhou, Ke; Chen, Lin; Ma, Yuanye

    2012-01-01

    Mounting psychophysical evidence suggests that early visual computations are sensitive to the topological properties of stimuli, such as the determination of whether the object has a hole or not. Previous studies have demonstrated that the hole feature took some advantages during conscious perception. In this study, we investigate whether there exists a privileged processing for hole stimuli during unconscious perception. By applying a continuous flash suppression paradigm, the target was gradually introduced to one eye to compete against a flashed full contrast Mondrian pattern which was presented to the other eye. This method ensured that the target image was suppressed during the initial perceptual period. We compared the initial suppressed duration between the stimuli with and without the hole feature and found that hole stimuli required less time than no-hole stimuli to gain dominance against the identical suppression noise. These results suggest the hole feature could be processed in the absence of awareness, and there exists a privileged detection of hole stimuli during suppressed phase in the interocular rivalry.

  20. PyNEST: A Convenient Interface to the NEST Simulator.

    PubMed

    Eppler, Jochen Martin; Helias, Moritz; Muller, Eilif; Diesmann, Markus; Gewaltig, Marc-Oliver

    2008-01-01

    The neural simulation tool NEST (http://www.nest-initiative.org) is a simulator for heterogeneous networks of point neurons or neurons with a small number of compartments. It aims at simulations of large neural systems with more than 10(4) neurons and 10(7) to 10(9) synapses. NEST is implemented in C++ and can be used on a large range of architectures from single-core laptops over multi-core desktop computers to super-computers with thousands of processor cores. Python (http://www.python.org) is a modern programming language that has recently received considerable attention in Computational Neuroscience. Python is easy to learn and has many extension modules for scientific computing (e.g. http://www.scipy.org). In this contribution we describe PyNEST, the new user interface to NEST. PyNEST combines NEST's efficient simulation kernel with the simplicity and flexibility of Python. Compared to NEST's native simulation language SLI, PyNEST makes it easier to set up simulations, generate stimuli, and analyze simulation results. We describe how PyNEST connects NEST and Python and how it is implemented. With a number of examples, we illustrate how it is used.

  1. PyNEST: A Convenient Interface to the NEST Simulator

    PubMed Central

    Eppler, Jochen Martin; Helias, Moritz; Muller, Eilif; Diesmann, Markus; Gewaltig, Marc-Oliver

    2008-01-01

    The neural simulation tool NEST (http://www.nest-initiative.org) is a simulator for heterogeneous networks of point neurons or neurons with a small number of compartments. It aims at simulations of large neural systems with more than 104 neurons and 107 to 109 synapses. NEST is implemented in C++ and can be used on a large range of architectures from single-core laptops over multi-core desktop computers to super-computers with thousands of processor cores. Python (http://www.python.org) is a modern programming language that has recently received considerable attention in Computational Neuroscience. Python is easy to learn and has many extension modules for scientific computing (e.g. http://www.scipy.org). In this contribution we describe PyNEST, the new user interface to NEST. PyNEST combines NEST's efficient simulation kernel with the simplicity and flexibility of Python. Compared to NEST's native simulation language SLI, PyNEST makes it easier to set up simulations, generate stimuli, and analyze simulation results. We describe how PyNEST connects NEST and Python and how it is implemented. With a number of examples, we illustrate how it is used. PMID:19198667

  2. Adjudicating between face-coding models with individual-face fMRI responses

    PubMed Central

    Kriegeskorte, Nikolaus

    2017-01-01

    The perceptual representation of individual faces is often explained with reference to a norm-based face space. In such spaces, individuals are encoded as vectors where identity is primarily conveyed by direction and distinctiveness by eccentricity. Here we measured human fMRI responses and psychophysical similarity judgments of individual face exemplars, which were generated as realistic 3D animations using a computer-graphics model. We developed and evaluated multiple neurobiologically plausible computational models, each of which predicts a representational distance matrix and a regional-mean activation profile for 24 face stimuli. In the fusiform face area, a face-space coding model with sigmoidal ramp tuning provided a better account of the data than one based on exemplar tuning. However, an image-processing model with weighted banks of Gabor filters performed similarly. Accounting for the data required the inclusion of a measurement-level population averaging mechanism that approximates how fMRI voxels locally average distinct neuronal tunings. Our study demonstrates the importance of comparing multiple models and of modeling the measurement process in computational neuroimaging. PMID:28746335

  3. Bio-inspired approach to multistage image processing

    NASA Astrophysics Data System (ADS)

    Timchenko, Leonid I.; Pavlov, Sergii V.; Kokryatskaya, Natalia I.; Poplavska, Anna A.; Kobylyanska, Iryna M.; Burdenyuk, Iryna I.; Wójcik, Waldemar; Uvaysova, Svetlana; Orazbekov, Zhassulan; Kashaganova, Gulzhan

    2017-08-01

    Multistage integration of visual information in the brain allows people to respond quickly to most significant stimuli while preserving the ability to recognize small details in the image. Implementation of this principle in technical systems can lead to more efficient processing procedures. The multistage approach to image processing, described in this paper, comprises main types of cortical multistage convergence. One of these types occurs within each visual pathway and the other between the pathways. This approach maps input images into a flexible hierarchy which reflects the complexity of the image data. The procedures of temporal image decomposition and hierarchy formation are described in mathematical terms. The multistage system highlights spatial regularities, which are passed through a number of transformational levels to generate a coded representation of the image which encapsulates, in a computer manner, structure on different hierarchical levels in the image. At each processing stage a single output result is computed to allow a very quick response from the system. The result is represented as an activity pattern, which can be compared with previously computed patterns on the basis of the closest match.

  4. A Novel Audiovisual Brain-Computer Interface and Its Application in Awareness Detection.

    PubMed

    Wang, Fei; He, Yanbin; Pan, Jiahui; Xie, Qiuyou; Yu, Ronghao; Zhang, Rui; Li, Yuanqing

    2015-06-30

    Currently, detecting awareness in patients with disorders of consciousness (DOC) is a challenging task, which is commonly addressed through behavioral observation scales such as the JFK Coma Recovery Scale-Revised. Brain-computer interfaces (BCIs) provide an alternative approach to detect awareness in patients with DOC. However, these patients have a much lower capability of using BCIs compared to healthy individuals. This study proposed a novel BCI using temporally, spatially, and semantically congruent audiovisual stimuli involving numbers (i.e., visual and spoken numbers). Subjects were instructed to selectively attend to the target stimuli cued by instruction. Ten healthy subjects first participated in the experiment to evaluate the system. The results indicated that the audiovisual BCI system outperformed auditory-only and visual-only systems. Through event-related potential analysis, we observed audiovisual integration effects for target stimuli, which enhanced the discriminability between brain responses for target and nontarget stimuli and thus improved the performance of the audiovisual BCI. This system was then applied to detect the awareness of seven DOC patients, five of whom exhibited command following as well as number recognition. Thus, this audiovisual BCI system may be used as a supportive bedside tool for awareness detection in patients with DOC.

  5. Evaluating Brain-Computer Interface Performance in an ALS Population: Checkerboard and Color Paradigms.

    PubMed

    Ryan, David B; Colwell, Kenneth A; Throckmorton, Chandra S; Collins, Leslie M; Caves, Kevin; Sellers, Eric W

    2018-03-01

    The objective of this study was to investigate the performance of 3 brain-computer interface (BCI) paradigms in an amyotrophic lateral sclerosis (ALS) population (n = 11). Using a repeated-measures design, participants completed 3 BCI conditions: row/column (RCW), checkerboard (CBW), and gray-to-color (CBC). Based on previous studies, it is hypothesized that the CBC and CBW conditions will result in higher accuracy, information transfer rate, waveform amplitude, and user preference over the RCW condition. An offline dynamic stopping simulation will also increase information transfer rate. Higher mean accuracy was observed in the CBC condition (89.7%), followed by the CBW (84.3%) condition, and lowest in the RCW condition (78.7%); however, these differences did not reach statistical significance ( P = .062). Eight of the eleven participants preferred the CBC and the remaining three preferred the CBW conditions. The offline dynamic stopping simulation significantly increased information transfer rate ( P = .005) and decreased accuracy ( P < .000). The findings of this study suggest that color stimuli provide a modest improvement in performance and that participants prefer color stimuli over monochromatic stimuli. Given these findings, BCI paradigms that use color stimuli should be considered for individuals who have ALS.

  6. A Novel Audiovisual Brain-Computer Interface and Its Application in Awareness Detection

    PubMed Central

    Wang, Fei; He, Yanbin; Pan, Jiahui; Xie, Qiuyou; Yu, Ronghao; Zhang, Rui; Li, Yuanqing

    2015-01-01

    Currently, detecting awareness in patients with disorders of consciousness (DOC) is a challenging task, which is commonly addressed through behavioral observation scales such as the JFK Coma Recovery Scale-Revised. Brain-computer interfaces (BCIs) provide an alternative approach to detect awareness in patients with DOC. However, these patients have a much lower capability of using BCIs compared to healthy individuals. This study proposed a novel BCI using temporally, spatially, and semantically congruent audiovisual stimuli involving numbers (i.e., visual and spoken numbers). Subjects were instructed to selectively attend to the target stimuli cued by instruction. Ten healthy subjects first participated in the experiment to evaluate the system. The results indicated that the audiovisual BCI system outperformed auditory-only and visual-only systems. Through event-related potential analysis, we observed audiovisual integration effects for target stimuli, which enhanced the discriminability between brain responses for target and nontarget stimuli and thus improved the performance of the audiovisual BCI. This system was then applied to detect the awareness of seven DOC patients, five of whom exhibited command following as well as number recognition. Thus, this audiovisual BCI system may be used as a supportive bedside tool for awareness detection in patients with DOC. PMID:26123281

  7. Virtual faces expressing emotions: an initial concomitant and construct validity study.

    PubMed

    Joyal, Christian C; Jacob, Laurence; Cigna, Marie-Hélène; Guay, Jean-Pierre; Renaud, Patrice

    2014-01-01

    Facial expressions of emotions represent classic stimuli for the study of social cognition. Developing virtual dynamic facial expressions of emotions, however, would open-up possibilities, both for fundamental and clinical research. For instance, virtual faces allow real-time Human-Computer retroactions between physiological measures and the virtual agent. The goal of this study was to initially assess concomitants and construct validity of a newly developed set of virtual faces expressing six fundamental emotions (happiness, surprise, anger, sadness, fear, and disgust). Recognition rates, facial electromyography (zygomatic major and corrugator supercilii muscles), and regional gaze fixation latencies (eyes and mouth regions) were compared in 41 adult volunteers (20 ♂, 21 ♀) during the presentation of video clips depicting real vs. virtual adults expressing emotions. Emotions expressed by each set of stimuli were similarly recognized, both by men and women. Accordingly, both sets of stimuli elicited similar activation of facial muscles and similar ocular fixation times in eye regions from man and woman participants. Further validation studies can be performed with these virtual faces among clinical populations known to present social cognition difficulties. Brain-Computer Interface studies with feedback-feedforward interactions based on facial emotion expressions can also be conducted with these stimuli.

  8. How you perceive threat determines your behavior

    PubMed Central

    Fernandes, Orlando; Portugal, Liana C. L.; Alves, Rita C. S.; Campagnoli, Rafaela R.; Mocaiber, Izabela; David, Isabel P. A.; Erthal, Fátima C. S.; Volchan, Eliane; de Oliveira, Leticia; Pereira, Mirtes G.

    2013-01-01

    The prioritization of processing emotional stimuli usually produces deleterious effects on task performance when it distracts from a task. One common explanation is that brain resources are consumed by emotional stimuli, diverting resources away from executing the task. Viewing unpleasant stimuli also generates defensive reactions, and these responses may be at least partially responsible for the effect of the emotional modulation observed in various reaction time (RT) paradigms. We investigated whether modulatory effects on RT vary if we presented threat stimuli to prompt different defensive responses. To trigger different responses, we manipulated threat perception by moving the direction of threatening stimuli. Threatening or neutral stimuli were presented as distractors during a bar orientation discrimination task. The results demonstrated that threat stimuli directed toward the observer produced a decrease in RT; in contrast, threat stimuli directed away from the observer produced an increase in RT, when compared to neutral stimuli. Accelerated RT during directed toward threat stimuli was attributed to increased motor preparation resulting from strong activation of the defense response cascade. In contrast, directed away threat stimuli likely activated the defense cascade, but less intensively, prompting immobility. Different threat stimuli produced varying effects, which was interpreted as evidence that the modulation of RT by emotional stimuli represents the summation of attentional and motivational effects. Additionally, participants who had been previously exposed to diverse types of violent crime were more strongly influenced by threat stimuli directed toward the observer. In sum, our data support the concept that emotions are indeed action tendencies. PMID:24115925

  9. Neonate Auditory Brainstem Responses to CE-Chirp and CE-Chirp Octave Band Stimuli I: Versus Click and Tone Burst Stimuli.

    PubMed

    Cobb, Kensi M; Stuart, Andrew

    The purpose of the study was to generate normative auditory brainstem response (ABR) wave component peak latency and amplitude values for neonates with air- and bone-conducted CE-Chirps and air-conducted CE-Chirp octave band stimuli (i.e., 500, 1000, 2000, and 4000 Hz). A second objective was to compare neonate ABRs to CE-Chirp stimuli with ABR responses to traditional click and tone burst stimuli with the same stimulus parameters. Participants were 168 healthy neonates. ABRs were obtained to air- and bone-conducted CE-Chirp and click stimuli and air-conducted CE-Chirp octave band and tone burst stimuli. The effects of stimulus level, rate, and polarity were examined with air-conducted CE-Chirps and clicks. The effect of stimulus level was also examined with bone-conducted CE-Chirps and clicks and air-conducted CE-Chirp octave band stimuli. In general, ABR wave V amplitudes to air- and bone-conducted CE-Chirp stimuli were significantly larger (p < 0.05) than those evoked to traditional click and tone burst stimuli. Systematic statistically significant (p < 0.05) wave V latency differences existed between the air- and bone-conducted CE-Chirp and CE-Chirp octave band stimuli relative to traditional click and tone burst stimuli. ABRs to air- and bone-conducted CE-Chirps and CE-Chirp octave band stimuli may be valuable in the assessment of newborn infants. However, the prognostic value of such stimuli needs to be validated.

  10. Deciphering molecular circuits from genetic variation underlying transcriptional responsiveness to stimuli

    PubMed Central

    Gat-Viks, Irit; Chevrier, Nicolas; Wilentzik, Roni; Eisenhaure, Thomas; Raychowdhury, Raktima; Steuerman, Yael; Shalek, Alex; Hacohen, Nir; Amit, Ido; Regev, Aviv

    2013-01-01

    Individual genetic variation affects gene expression in response to stimuli, often by influencing complex molecular circuits. Here we combine genomic and intermediate-scale transcriptional profiling with computational methods to identify variants that affect the responsiveness of genes to stimuli (responsiveness QTLs; reQTLs) and to position these variants in molecular circuit diagrams. We apply this approach to study variation in transcriptional responsiveness to pathogen components in dendritic cells from recombinant inbred mouse strains. We identify reQTLs that correlate with particular stimuli and position them in known pathways. For example, in response to a virus-like stimulus, a trans-acting variant acts as an activator of the antiviral response; using RNAi, we identify Rgs16 as the likely causal gene. Our approach charts an experimental and analytic path to decipher the mechanisms underlying genetic variation in circuits that control responses to stimuli. PMID:23503680

  11. Deciphering molecular circuits from genetic variation underlying transcriptional responsiveness to stimuli.

    PubMed

    Gat-Viks, Irit; Chevrier, Nicolas; Wilentzik, Roni; Eisenhaure, Thomas; Raychowdhury, Raktima; Steuerman, Yael; Shalek, Alex K; Hacohen, Nir; Amit, Ido; Regev, Aviv

    2013-04-01

    Individual genetic variation affects gene responsiveness to stimuli, often by influencing complex molecular circuits. Here we combine genomic and intermediate-scale transcriptional profiling with computational methods to identify variants that affect the responsiveness of genes to stimuli (responsiveness quantitative trait loci or reQTLs) and to position these variants in molecular circuit diagrams. We apply this approach to study variation in transcriptional responsiveness to pathogen components in dendritic cells from recombinant inbred mouse strains. We identify reQTLs that correlate with particular stimuli and position them in known pathways. For example, in response to a virus-like stimulus, a trans-acting variant responds as an activator of the antiviral response; using RNA interference, we identify Rgs16 as the likely causal gene. Our approach charts an experimental and analytic path to decipher the mechanisms underlying genetic variation in circuits that control responses to stimuli.

  12. Modeling Behavioral Experiment Interaction and Environmental Stimuli for a Synthetic C. elegans.

    PubMed

    Mujika, Andoni; Leškovský, Peter; Álvarez, Roberto; Otaduy, Miguel A; Epelde, Gorka

    2017-01-01

    This paper focusses on the simulation of the neural network of the Caenorhabditis elegans living organism, and more specifically in the modeling of the stimuli applied within behavioral experiments and the stimuli that is generated in the interaction of the C. elegans with the environment. To the best of our knowledge, all efforts regarding stimuli modeling for the C. elegans are focused on a single type of stimulus, which is usually tested with a limited subnetwork of the C. elegans neural system. In this paper, we follow a different approach where we model a wide-range of different stimuli, with more flexible neural network configurations and simulations in mind. Moreover, we focus on the stimuli sensation by different types of sensory organs or various sensory principles of the neurons. As part of this work, most common stimuli involved in behavioral assays have been modeled. It includes models for mechanical, thermal, chemical, electrical and light stimuli, and for proprioception-related self-sensed information exchange with the neural network. The developed models have been implemented and tested with the hardware-based Si elegans simulation platform.

  13. Modeling Behavioral Experiment Interaction and Environmental Stimuli for a Synthetic C. elegans

    PubMed Central

    Mujika, Andoni; Leškovský, Peter; Álvarez, Roberto; Otaduy, Miguel A.; Epelde, Gorka

    2017-01-01

    This paper focusses on the simulation of the neural network of the Caenorhabditis elegans living organism, and more specifically in the modeling of the stimuli applied within behavioral experiments and the stimuli that is generated in the interaction of the C. elegans with the environment. To the best of our knowledge, all efforts regarding stimuli modeling for the C. elegansare focused on a single type of stimulus, which is usually tested with a limited subnetwork of the C. elegansneural system. In this paper, we follow a different approach where we model a wide-range of different stimuli, with more flexible neural network configurations and simulations in mind. Moreover, we focus on the stimuli sensation by different types of sensory organs or various sensory principles of the neurons. As part of this work, most common stimuli involved in behavioral assays have been modeled. It includes models for mechanical, thermal, chemical, electrical and light stimuli, and for proprioception-related self-sensed information exchange with the neural network. The developed models have been implemented and tested with the hardware-based Si elegans simulation platform. PMID:29276485

  14. Eye Movements Affect Postural Control in Young and Older Females

    PubMed Central

    Thomas, Neil M.; Bampouras, Theodoros M.; Donovan, Tim; Dewhurst, Susan

    2016-01-01

    Visual information is used for postural stabilization in humans. However, little is known about how eye movements prevalent in everyday life interact with the postural control system in older individuals. Therefore, the present study assessed the effects of stationary gaze fixations, smooth pursuits, and saccadic eye movements, with combinations of absent, fixed and oscillating large-field visual backgrounds to generate different forms of retinal flow, on postural control in healthy young and older females. Participants were presented with computer generated visual stimuli, whilst postural sway and gaze fixations were simultaneously assessed with a force platform and eye tracking equipment, respectively. The results showed that fixed backgrounds and stationary gaze fixations attenuated postural sway. In contrast, oscillating backgrounds and smooth pursuits increased postural sway. There were no differences regarding saccades. There were also no differences in postural sway or gaze errors between age groups in any visual condition. The stabilizing effect of the fixed visual stimuli show how retinal flow and extraocular factors guide postural adjustments. The destabilizing effect of oscillating visual backgrounds and smooth pursuits may be related to more challenging conditions for determining body shifts from retinal flow, and more complex extraocular signals, respectively. Because the older participants matched the young group's performance in all conditions, decreases of posture and gaze control during stance may not be a direct consequence of healthy aging. Further research examining extraocular and retinal mechanisms of balance control and the effects of eye movements, during locomotion, is needed to better inform fall prevention interventions. PMID:27695412

  15. Eye Movements Affect Postural Control in Young and Older Females.

    PubMed

    Thomas, Neil M; Bampouras, Theodoros M; Donovan, Tim; Dewhurst, Susan

    2016-01-01

    Visual information is used for postural stabilization in humans. However, little is known about how eye movements prevalent in everyday life interact with the postural control system in older individuals. Therefore, the present study assessed the effects of stationary gaze fixations, smooth pursuits, and saccadic eye movements, with combinations of absent, fixed and oscillating large-field visual backgrounds to generate different forms of retinal flow, on postural control in healthy young and older females. Participants were presented with computer generated visual stimuli, whilst postural sway and gaze fixations were simultaneously assessed with a force platform and eye tracking equipment, respectively. The results showed that fixed backgrounds and stationary gaze fixations attenuated postural sway. In contrast, oscillating backgrounds and smooth pursuits increased postural sway. There were no differences regarding saccades. There were also no differences in postural sway or gaze errors between age groups in any visual condition. The stabilizing effect of the fixed visual stimuli show how retinal flow and extraocular factors guide postural adjustments. The destabilizing effect of oscillating visual backgrounds and smooth pursuits may be related to more challenging conditions for determining body shifts from retinal flow, and more complex extraocular signals, respectively. Because the older participants matched the young group's performance in all conditions, decreases of posture and gaze control during stance may not be a direct consequence of healthy aging. Further research examining extraocular and retinal mechanisms of balance control and the effects of eye movements, during locomotion, is needed to better inform fall prevention interventions.

  16. Effect of contiguity and figure-ground organization on the area rule of lightness.

    PubMed

    Boyaci, Huseyin; Simşek, Mahru Kobal; Subaşı, Ece

    2014-11-25

    In a simple two-dimensional (2D) display composed of two uniform surfaces with different luminances, the lightness of the darker surface varies as a function of its relative area while its luminance is held constant (Gilchrist & Radonjić, 2009; Li & Gilchrist, 1999). This phenomenon is known as the area rule of lightness, and although it is extensively studied in the literature, the underlying principles are still largely unknown. Here, using computer-generated stimuli, we investigated the effects of contiguity and figure-ground organization on the area rule of lightness. Stimuli were 2D disks composed of radial sectors with high (25 cd/m2) or low (8 cd/m2) luminance. On each trial, observers judged the lightness of the sectors by adjusting the luminance of a matching patch. Four conditions were tested. In the contiguous condition, there were one dark and one light sector; in the noncontiguous condition, both the light and dark surfaces were split into four equal radial sectors. Figure and ground conditions were generated by adding small contextual elements to the stimulus. We found that the area rule applied under all conditions; however, the functional form of the effect showed marked differences across conditions. Taken together, our results show that both high-level (e.g., perceptual grouping, figure-ground organization) and low-level (e.g., spatial-summation) mechanisms play a role in the area rule of lightness. © 2014 ARVO.

  17. Teaching Older Adults to Use Computers: Recommendations Based on Cognitive Aging Research.

    ERIC Educational Resources Information Center

    Jones, Brett D.; Bayen, Ute J.

    1998-01-01

    Reviews cognitive aging research that identifies the following effects on older adults: cognitive slowing, limited processing resources, lack of inhibition of irrelevant stimuli, and sensory deficits. Makes recommendations for teaching older adults to use computers. (SK)

  18. Rod Electroretinograms Elicited by Silent Substitution Stimuli from the Light-Adapted Human Eye

    PubMed Central

    Maguire, John; Parry, Neil R. A.; Kremers, Jan; Kommanapalli, Deepika; Murray, Ian J.; McKeefry, Declan J.

    2016-01-01

    Purpose To demonstrate that silent substitution stimuli can be used to generate electroretinograms (ERGs) that effectively isolate rod photoreceptor function in humans without the need for dark adaptation, and that this approach constitutes a viable alternative to current clinical standard testing protocols. Methods Rod-isolating and non-isolating sinusoidal flicker stimuli were generated on a 4 primary light-emitting diode (LED) Ganzfeld stimulator to elicit ERGs from participants with normal and compromised rod function who had not undergone dark-adaptation. Responses were subjected to Fourier analysis, and the amplitude and phase of the fundamental were used to examine temporal frequency and retinal illuminance response characteristics. Results Electroretinograms elicited by rod-isolating silent substitution stimuli exhibit low-pass temporal frequency response characteristics with an upper response limit of 30 Hz. Responses are optimal between 5 and 8 Hz and between 10 and 100 photopic trolands (Td). There is a significant correlation between the response amplitudes obtained with the silent substitution method and current standard clinical protocols. Analysis of signal-to-noise ratios reveals significant differences between subjects with normal and compromised rod function. Conclusions Silent substitution provides an effective method for the isolation of human rod photoreceptor function in subjects with normal as well as compromised rod function when stimuli are used within appropriate parameter ranges. Translational Relevance This method of generating rod-mediated ERGs can be achieved without time-consuming periods of dark adaptation, provides improved isolation of rod- from cone-based activity, and will lead to the development of faster clinical electrophysiologic testing protocols with improved selectivity. PMID:27617180

  19. Neural Bases of Peri-Hand Space Plasticity through Tool-Use: Insights from a Combined Computational-Experimental Approach

    ERIC Educational Resources Information Center

    Magosso, Elisa; Ursino, Mauro; di Pellegrino, Giuseppe; Ladavas, Elisabetta; Serino, Andrea

    2010-01-01

    Visual peripersonal space (i.e., the space immediately surrounding the body) is represented by multimodal neurons integrating tactile stimuli applied on a body part with visual stimuli delivered near the same body part, e.g., the hand. Tool use may modify the boundaries of the peri-hand area, where vision and touch are integrated. The neural…

  20. Neural source dynamics of brain responses to continuous stimuli: Speech processing from acoustics to comprehension.

    PubMed

    Brodbeck, Christian; Presacco, Alessandro; Simon, Jonathan Z

    2018-05-15

    Human experience often involves continuous sensory information that unfolds over time. This is true in particular for speech comprehension, where continuous acoustic signals are processed over seconds or even minutes. We show that brain responses to such continuous stimuli can be investigated in detail, for magnetoencephalography (MEG) data, by combining linear kernel estimation with minimum norm source localization. Previous research has shown that the requirement to average data over many trials can be overcome by modeling the brain response as a linear convolution of the stimulus and a kernel, or response function, and estimating a kernel that predicts the response from the stimulus. However, such analysis has been typically restricted to sensor space. Here we demonstrate that this analysis can also be performed in neural source space. We first computed distributed minimum norm current source estimates for continuous MEG recordings, and then computed response functions for the current estimate at each source element, using the boosting algorithm with cross-validation. Permutation tests can then assess the significance of individual predictor variables, as well as features of the corresponding spatio-temporal response functions. We demonstrate the viability of this technique by computing spatio-temporal response functions for speech stimuli, using predictor variables reflecting acoustic, lexical and semantic processing. Results indicate that processes related to comprehension of continuous speech can be differentiated anatomically as well as temporally: acoustic information engaged auditory cortex at short latencies, followed by responses over the central sulcus and inferior frontal gyrus, possibly related to somatosensory/motor cortex involvement in speech perception; lexical frequency was associated with a left-lateralized response in auditory cortex and subsequent bilateral frontal activity; and semantic composition was associated with bilateral temporal and frontal brain activity. We conclude that this technique can be used to study the neural processing of continuous stimuli in time and anatomical space with the millisecond temporal resolution of MEG. This suggests new avenues for analyzing neural processing of naturalistic stimuli, without the necessity of averaging over artificially short or truncated stimuli. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Integrating probabilistic models of perception and interactive neural networks: a historical and tutorial review

    PubMed Central

    McClelland, James L.

    2013-01-01

    This article seeks to establish a rapprochement between explicitly Bayesian models of contextual effects in perception and neural network models of such effects, particularly the connectionist interactive activation (IA) model of perception. The article is in part an historical review and in part a tutorial, reviewing the probabilistic Bayesian approach to understanding perception and how it may be shaped by context, and also reviewing ideas about how such probabilistic computations may be carried out in neural networks, focusing on the role of context in interactive neural networks, in which both bottom-up and top-down signals affect the interpretation of sensory inputs. It is pointed out that connectionist units that use the logistic or softmax activation functions can exactly compute Bayesian posterior probabilities when the bias terms and connection weights affecting such units are set to the logarithms of appropriate probabilistic quantities. Bayesian concepts such the prior, likelihood, (joint and marginal) posterior, probability matching and maximizing, and calculating vs. sampling from the posterior are all reviewed and linked to neural network computations. Probabilistic and neural network models are explicitly linked to the concept of a probabilistic generative model that describes the relationship between the underlying target of perception (e.g., the word intended by a speaker or other source of sensory stimuli) and the sensory input that reaches the perceiver for use in inferring the underlying target. It is shown how a new version of the IA model called the multinomial interactive activation (MIA) model can sample correctly from the joint posterior of a proposed generative model for perception of letters in words, indicating that interactive processing is fully consistent with principled probabilistic computation. Ways in which these computations might be realized in real neural systems are also considered. PMID:23970868

  2. Integrating probabilistic models of perception and interactive neural networks: a historical and tutorial review.

    PubMed

    McClelland, James L

    2013-01-01

    This article seeks to establish a rapprochement between explicitly Bayesian models of contextual effects in perception and neural network models of such effects, particularly the connectionist interactive activation (IA) model of perception. The article is in part an historical review and in part a tutorial, reviewing the probabilistic Bayesian approach to understanding perception and how it may be shaped by context, and also reviewing ideas about how such probabilistic computations may be carried out in neural networks, focusing on the role of context in interactive neural networks, in which both bottom-up and top-down signals affect the interpretation of sensory inputs. It is pointed out that connectionist units that use the logistic or softmax activation functions can exactly compute Bayesian posterior probabilities when the bias terms and connection weights affecting such units are set to the logarithms of appropriate probabilistic quantities. Bayesian concepts such the prior, likelihood, (joint and marginal) posterior, probability matching and maximizing, and calculating vs. sampling from the posterior are all reviewed and linked to neural network computations. Probabilistic and neural network models are explicitly linked to the concept of a probabilistic generative model that describes the relationship between the underlying target of perception (e.g., the word intended by a speaker or other source of sensory stimuli) and the sensory input that reaches the perceiver for use in inferring the underlying target. It is shown how a new version of the IA model called the multinomial interactive activation (MIA) model can sample correctly from the joint posterior of a proposed generative model for perception of letters in words, indicating that interactive processing is fully consistent with principled probabilistic computation. Ways in which these computations might be realized in real neural systems are also considered.

  3. Zebrafish response to a robotic replica in three dimensions

    PubMed Central

    Ruberto, Tommaso; Mwaffo, Violet; Singh, Sukhgewanpreet; Neri, Daniele

    2016-01-01

    As zebrafish emerge as a species of choice for the investigation of biological processes, a number of experimental protocols are being developed to study their social behaviour. While live stimuli may elicit varying response in focal subjects owing to idiosyncrasies, tiredness and circadian rhythms, video stimuli suffer from the absence of physical input and rely only on two-dimensional projections. Robotics has been recently proposed as an alternative approach to generate physical, customizable, effective and consistent stimuli for behavioural phenotyping. Here, we contribute to this field of investigation through a novel four-degree-of-freedom robotics-based platform to manoeuvre a biologically inspired three-dimensionally printed replica. The platform enables three-dimensional motions as well as body oscillations to mimic zebrafish locomotion. In a series of experiments, we demonstrate the differential role of the visual stimuli associated with the biologically inspired replica and its three-dimensional motion. Three-dimensional tracking and information-theoretic tools are complemented to quantify the interaction between zebrafish and the robotic stimulus. Live subjects displayed a robust attraction towards the moving replica, and such attraction was lost when controlling for its visual appearance or motion. This effort is expected to aid zebrafish behavioural phenotyping, by offering a novel approach to generate physical stimuli moving in three dimensions. PMID:27853566

  4. Divided attention enhances the recognition of emotional stimuli: evidence from the attentional boost effect.

    PubMed

    Rossi-Arnaud, Clelia; Spataro, Pietro; Costanzi, Marco; Saraulli, Daniele; Cestari, Vincenzo

    2018-01-01

    The present study examined predictions of the early-phase-elevated-attention hypothesis of the attentional boost effect (ABE), which suggests that transient increases in attention at encoding, as instantiated in the ABE paradigm, should enhance the recognition of neutral and positive items (whose encoding is mostly based on controlled processes), while having small or null effects on the recognition of negative items (whose encoding is primarily based on automatic processes). Participants were presented a sequence of negative, neutral and positive stimuli (pictures in Experiment 1, words in Experiment 2) associated to target (red) squares, distractor (green) squares or no squares (baseline condition). They were told to attend to the pictures/words and simultaneously press the spacebar of the computer when a red square appeared. In a later recognition task, stimuli associated to target squares were recognised better than stimuli associated to distractor squares, replicating the standard ABE. More importantly, we also found that: (a) the memory enhancement following target detection occurred with all types of stimuli (neutral, negative and positive) and (b) the advantage of negative stimuli over neutral stimuli was intact in the DA condition. These findings suggest that the encoding of negative stimuli depends on both controlled (attention-dependent) and automatic (attention-independent) processes.

  5. Lingering representations of stimuli influence recall organization

    PubMed Central

    Chan, Stephanie C.Y.; Applegate, Marissa C.; Morton, Neal W; Polyn, Sean M.; Norman, Kenneth A.

    2017-01-01

    Several prominent theories posit that information about recent experiences lingers in the brain and organizes memories for current experiences, by forming a temporal context that is linked to those memories at encoding. According to these theories, if the thoughts preceding an experience X resemble the thoughts preceding an experience Y, then X and Y should show an elevated probability of being recalled together. We tested this prediction by using multi-voxel pattern analysis (MVPA) of fMRI data to measure neural evidence for lingering processing of preceding stimuli. As predicted, memories encoded with similar lingering thoughts about the category of preceding stimuli were more likely to be recalled together. Our results demonstrate that the “fading embers” of previous stimuli help to organize recall, confirming a key prediction of computational models of episodic memory. PMID:28132858

  6. Multiscale mechanobiology of de novo bone generation, remodeling and adaptation of autograft in a common ovine femur model.

    PubMed

    Knothe Tate, Melissa L; Dolejs, Scott; McBride, Sarah H; Matthew Miller, R; Knothe, Ulf R

    2011-08-01

    The link between mechanics and biology in the generation and the adaptation of bone has been studied for more than a century in the context of skeletal development and fracture healing. However, the interplay between mechanics and biology in de novo generation of bone in postnatal defects as well as healing of morcellized bone graft or massive cortical bone autografts is less well understood. To address this, here we integrate insights from our previously published studies describing the mechanobiology on both de novo bone generation and graft healing in a common ovine femoral defect model. Studying these effects in a common experimental model provides a unique opportunity to elucidate factors conducive to harnessing the regenerative power of the periosteum, and ultimately, to provide mechanistic insights into the multiscale mechanobiology of bone generation, remodeling and adaptation. Taken together, the studies indicate that, as long as adequate, directional transport of cells and molecules can be insured (e.g. with periosteum in situ or a delivery device), biological factors intrinsic to the periosteum suffice to bridge critical sized bone defects, even in the absence of a patent blood supply. Furthermore, mechanical stimuli are crucial for the success of periosteal bone generation and bone graft healing. Interestingly, areas of highest periosteal strain around defects correlate with greatest amounts albeit not greatest mineralization of newly generated bone. This may indicate a role for convection enhanced transport of cells and molecules in modulation of tissue generation by pluripotent cells that ingress into the defect center, away from the periosteum and toward the surface of the intramedullary nail that fills the medullary cavity. These insights bring us much closer to understanding the mechanobiological environment and stimuli that stimulate the proliferation and differentiation of periosteum-derived progenitor cells and ultimately drive the generation of new bone tissue. Furthermore, these insights provide a foundation to create virtual predictive computational models of bone mechanophysiology, to develop cell seeding protocols for scale up and manufacture of engineered tissues, to optimize surgical procedures, and to develop post-surgical therapies with the ultimate goal of achieving the best possible healing outcomes for treatment and/or reconstruction of postnatal bone defects. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Visual Memories Bypass Normalization.

    PubMed

    Bloem, Ilona M; Watanabe, Yurika L; Kibbe, Melissa M; Ling, Sam

    2018-05-01

    How distinct are visual memory representations from visual perception? Although evidence suggests that briefly remembered stimuli are represented within early visual cortices, the degree to which these memory traces resemble true visual representations remains something of a mystery. Here, we tested whether both visual memory and perception succumb to a seemingly ubiquitous neural computation: normalization. Observers were asked to remember the contrast of visual stimuli, which were pitted against each other to promote normalization either in perception or in visual memory. Our results revealed robust normalization between visual representations in perception, yet no signature of normalization occurring between working memory stores-neither between representations in memory nor between memory representations and visual inputs. These results provide unique insight into the nature of visual memory representations, illustrating that visual memory representations follow a different set of computational rules, bypassing normalization, a canonical visual computation.

  8. Visual Memories Bypass Normalization

    PubMed Central

    Bloem, Ilona M.; Watanabe, Yurika L.; Kibbe, Melissa M.; Ling, Sam

    2018-01-01

    How distinct are visual memory representations from visual perception? Although evidence suggests that briefly remembered stimuli are represented within early visual cortices, the degree to which these memory traces resemble true visual representations remains something of a mystery. Here, we tested whether both visual memory and perception succumb to a seemingly ubiquitous neural computation: normalization. Observers were asked to remember the contrast of visual stimuli, which were pitted against each other to promote normalization either in perception or in visual memory. Our results revealed robust normalization between visual representations in perception, yet no signature of normalization occurring between working memory stores—neither between representations in memory nor between memory representations and visual inputs. These results provide unique insight into the nature of visual memory representations, illustrating that visual memory representations follow a different set of computational rules, bypassing normalization, a canonical visual computation. PMID:29596038

  9. Outside influence: The sense of agency takes into account what is in our surroundings.

    PubMed

    Hon, Nicholas; Seow, Yin-Yi; Pereira, Don

    2018-05-01

    We are quite capable of distinguishing those outcomes we cause from those we do not. This ability to sense self-agency is thought to be produced by a comparison between a predictive representation of an outcome and the actual outcome that occurs. It is unclear, though, specifically what types of information can be entered into agency computations. Here, we demonstrate that information from non-target stimuli (stimuli that are not directly acted upon) incidentally present in our surroundings can influence predictions of outcomes, consequently modulating the sense of agency over clearly-defined target outcomes (those that occur to acted-upon stimuli). This provides the first evidence that our sense of agency is contextualized with respect to what is in our immediate visual environment. Furthermore, our data suggest that agency computations, instead of just a single comparison, may involve comparisons performed in stages, with different stages involving different types/classes of information. A model of such multi-stage comparisons is described. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Temporal precision in the visual pathway through the interplay of excitation and stimulus-driven suppression.

    PubMed

    Butts, Daniel A; Weng, Chong; Jin, Jianzhong; Alonso, Jose-Manuel; Paninski, Liam

    2011-08-03

    Visual neurons can respond with extremely precise temporal patterning to visual stimuli that change on much slower time scales. Here, we investigate how the precise timing of cat thalamic spike trains-which can have timing as precise as 1 ms-is related to the stimulus, in the context of both artificial noise and natural visual stimuli. Using a nonlinear modeling framework applied to extracellular data, we demonstrate that the precise timing of thalamic spike trains can be explained by the interplay between an excitatory input and a delayed suppressive input that resembles inhibition, such that neuronal responses only occur in brief windows where excitation exceeds suppression. The resulting description of thalamic computation resembles earlier models of contrast adaptation, suggesting a more general role for mechanisms of contrast adaptation in visual processing. Thus, we describe a more complex computation underlying thalamic responses to artificial and natural stimuli that has implications for understanding how visual information is represented in the early stages of visual processing.

  11. Distracted by Your Mind? Individual Differences in Distractibility Predict Mind Wandering

    ERIC Educational Resources Information Center

    Forster, Sophie; Lavie, Nilli

    2014-01-01

    Attention may be distracted from its intended focus both by stimuli in the external environment and by internally generated task-unrelated thoughts during mind wandering. However, previous attention research has focused almost exclusively on distraction by external stimuli, and the extent to which mind wandering relates to external distraction is…

  12. Visual stimulus presentation using fiber optics in the MRI scanner.

    PubMed

    Huang, Ruey-Song; Sereno, Martin I

    2008-03-30

    Imaging the neural basis of visuomotor actions using fMRI is a topic of increasing interest in the field of cognitive neuroscience. One challenge is to present realistic three-dimensional (3-D) stimuli in the subject's peripersonal space inside the MRI scanner. The stimulus generating apparatus must be compatible with strong magnetic fields and must not interfere with image acquisition. Virtual 3-D stimuli can be generated with a stereo image pair projected onto screens or via binocular goggles. Here, we describe designs and implementations for automatically presenting physical 3-D stimuli (point-light targets) in peripersonal and near-face space using fiber optics in the MRI scanner. The feasibility of fiber-optic based displays was demonstrated in two experiments. The first presented a point-light array along a slanted surface near the body, and the second presented multiple point-light targets around the face. Stimuli were presented using phase-encoded paradigms in both experiments. The results suggest that fiber-optic based displays can be a complementary approach for visual stimulus presentation in the MRI scanner.

  13. [The P300 based brain-computer interface: effect of stimulus position in a stimulus train].

    PubMed

    Ganin, I P; Shishkin, S L; Kochetova, A G; Kaplan, A Ia

    2012-01-01

    The P300 brain-computer interface (BCI) is currently the most efficient BCI. This interface is based on detection of the P300 wave of the brain potentials evoked when a symbol related to the intended input is highlighted. To increase operation speed of the P300 BCI, reduction of the number of stimuli repetitions is needed. This reduction leads to increase of the relative contribution to the input symbol detection from the reaction to the first target stimulus. It is known that the event-related potentials (ERP) to the first stimulus presentations can be different from the ERP to stimuli presented latter. In particular, the amplitude of responses to the first stimulus presentations is often increased, which is beneficial for their recognition by the BCI. However, this effect was not studied within the BCI framework. The current study examined the ERP obtained from healthy participants (n = 14) in the standard P300 BCI paradigm using 10 trials, as well as in the modified P300 BCI with stimuli presented on moving objects in triple-trial (n = 6) and single-trial (n = 6) stimulation modes. Increased ERP amplitude was observed in response to the first target stimuli in both conditions, as well as in the single-trial mode comparing to triple-trial. We discuss the prospects of using the specific features of the ERP to first stimuli and the single-trial ERP for optimizing the high-speed modes in the P300 BCIs.

  14. Mechanism and characteristics of stimuli-dependent ROS generation in undifferentiated HL-60 cells.

    PubMed

    Muranaka, Shikibu; Fujita, Hirofumi; Fujiwara, Takuzo; Ogino, Tetsuya; Sato, Eisuke F; Akiyama, Jitsuo; Imada, Isuke; Inoue, Masayasu; Utsumi, Kozo

    2005-01-01

    It has been widely believed that undifferentiated human promyelocytic leukemia cells (HL-60) have no ability to generate reactive oxygen species (ROS) responding to stimuli. We report here that undifferentiated HL-60 cells possess NADPH oxidase and that generation of superoxide can be measured using a highly sensitive chemiluminescence dye, L-012. Five subunits of NADPH oxidase, namely, gp91(phox), p22(phox), p67(phox), p47(phox), and Rac 2, were detected in undifferentiated HL-60 cells by immunoblotting analysis. The contents of these NADPH oxidase components in the cells were increased with the differentiation induced by phorbol myristate acetate (PMA), except for p22(phox). Messenger RNAs of these subunits were also detected by the RT-PCR method, and their expressions increased except that of p22(phox) with the differentiation induced by PMA. Kinetic analysis using L-012 revealed that HL-60 cells generated substantial amounts of ROS by various stimulants, including formylmethionyl-leucyl-phenylalanine, PMA, myristic acid, and a Ca2+ ionophore, A23187. Both diphenyleneiodonium (an inhibitor of FAD-dependent oxidase) and apocynin (a specific inhibitor of NADPH oxidase) suppressed this stimuli-dependent ROS generation. Genistein, staurosporine, uric acid, and sodium azide inhibited the ROS generation in undifferentiated HL-60 cells in a similar way to that in undifferentiated neutrophils. These results suggested that the mechanism of ROS generation in undifferentiated HL-60 cells is the same as that in primed neutrophils.

  15. A method for simultaneously counterbalancing condition order and assignment of stimulus materials to conditions.

    PubMed

    Zeelenberg, René; Pecher, Diane

    2015-03-01

    Counterbalanced designs are frequently used in the behavioral sciences. Studies often counterbalance either the order in which conditions are presented in the experiment or the assignment of stimulus materials to conditions. Occasionally, researchers need to simultaneously counterbalance both condition order and stimulus assignment to conditions. Lewis (1989; Behavior Research Methods, Instruments, & Computers 25:414-415, 1993) presented a method for constructing Latin squares that fulfill these requirements. The resulting Latin squares counterbalance immediate sequential effects, but not remote sequential effects. Here, we present a new method for generating Latin squares that simultaneously counterbalance both immediate and remote sequential effects and assignment of stimuli to conditions. An Appendix is provided to facilitate implementation of these Latin square designs.

  16. Possible disruption of remote viewing by complex weak magnetic fields around the stimulus site and the possibility of accessing real phase space: a pilot study.

    PubMed

    Koren, S A; Persinger, M A

    2002-12-01

    In 2002 Persinger, Roll, Tiller, Koren, and Cook considered whether there are physical processes by which recondite information exists within the space and time of objects or events. The stimuli that compose this information might be directly detected within the whole brain without being processed by the typical sensory modalities. We tested the artist Ingo Swann who can reliably draw and describe randomly selected photographs sealed in envelopes in another room. In the present experiment the photographs were immersed continuously in repeated presentations (5 times per sec.) of one of two types of computer-generated complex magnetic field patterns whose intensities were less than 20 nT over most of the area. WINDOWS-generated but not DOS-generated patterns were associated with a marked decrease in Mr. Swann's accuracy. Whereas the DOS software generated exactly the same pattern, WINDOWS software phase-modulated the actual wave form resulting in an infinite bandwidth and complexity. We suggest that information obtained by processes attributed to "paranormal" phenomena have physical correlates that can be masked by weak, infinitely variable magnetic fields.

  17. Binocular coordination in response to stereoscopic stimuli

    NASA Astrophysics Data System (ADS)

    Liversedge, Simon P.; Holliman, Nicolas S.; Blythe, Hazel I.

    2009-02-01

    Humans actively explore their visual environment by moving their eyes. Precise coordination of the eyes during visual scanning underlies the experience of a unified perceptual representation and is important for the perception of depth. We report data from three psychological experiments investigating human binocular coordination during visual processing of stereoscopic stimuli.In the first experiment participants were required to read sentences that contained a stereoscopically presented target word. Half of the word was presented exclusively to one eye and half exclusively to the other eye. Eye movements were recorded and showed that saccadic targeting was uninfluenced by the stereoscopic presentation, strongly suggesting that complementary retinal stimuli are perceived as a single, unified input prior to saccade initiation. In a second eye movement experiment we presented words stereoscopically to measure Panum's Fusional Area for linguistic stimuli. In the final experiment we compared binocular coordination during saccades between simple dot stimuli under 2D, stereoscopic 3D and real 3D viewing conditions. Results showed that depth appropriate vergence movements were made during saccades and fixations to real 3D stimuli, but only during fixations on stereoscopic 3D stimuli. 2D stimuli did not induce depth vergence movements. Together, these experiments indicate that stereoscopic visual stimuli are fused when they fall within Panum's Fusional Area, and that saccade metrics are computed on the basis of a unified percept. Also, there is sensitivity to non-foveal retinal disparity in real 3D stimuli, but not in stereoscopic 3D stimuli, and the system responsible for binocular coordination responds to this during saccades as well as fixations.

  18. Gaze-independent ERP-BCIs: augmenting performance through location-congruent bimodal stimuli

    PubMed Central

    Thurlings, Marieke E.; Brouwer, Anne-Marie; Van Erp, Jan B. F.; Werkhoven, Peter

    2014-01-01

    Gaze-independent event-related potential (ERP) based brain-computer interfaces (BCIs) yield relatively low BCI performance and traditionally employ unimodal stimuli. Bimodal ERP-BCIs may increase BCI performance due to multisensory integration or summation in the brain. An additional advantage of bimodal BCIs may be that the user can choose which modality or modalities to attend to. We studied bimodal, visual-tactile, gaze-independent BCIs and investigated whether or not ERP components’ tAUCs and subsequent classification accuracies are increased for (1) bimodal vs. unimodal stimuli; (2) location-congruent vs. location-incongruent bimodal stimuli; and (3) attending to both modalities vs. to either one modality. We observed an enhanced bimodal (compared to unimodal) P300 tAUC, which appeared to be positively affected by location-congruency (p = 0.056) and resulted in higher classification accuracies. Attending either to one or to both modalities of the bimodal location-congruent stimuli resulted in differences between ERP components, but not in classification performance. We conclude that location-congruent bimodal stimuli improve ERP-BCIs, and offer the user the possibility to switch the attended modality without losing performance. PMID:25249947

  19. Design of Test Articles and Monitoring System for the Characterization of HIRF Effects on a Fault-Tolerant Computer Communication System

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo; Malekpour, Mahyar R.; Miner, Paul S.; Koppen, Sandra V.

    2008-01-01

    This report describes the design of the test articles and monitoring systems developed to characterize the response of a fault-tolerant computer communication system when stressed beyond the theoretical limits for guaranteed correct performance. A high-intensity radiated electromagnetic field (HIRF) environment was selected as the means of injecting faults, as such environments are known to have the potential to cause arbitrary and coincident common-mode fault manifestations that can overwhelm redundancy management mechanisms. The monitors generate stimuli for the systems-under-test (SUTs) and collect data in real-time on the internal state and the response at the external interfaces. A real-time health assessment capability was developed to support the automation of the test. A detailed description of the nature and structure of the collected data is included. The goal of the report is to provide insight into the design and operation of these systems, and to serve as a reference document for use in post-test analyses.

  20. Sig2GRN: a software tool linking signaling pathway with gene regulatory network for dynamic simulation.

    PubMed

    Zhang, Fan; Liu, Runsheng; Zheng, Jie

    2016-12-23

    Linking computational models of signaling pathways to predicted cellular responses such as gene expression regulation is a major challenge in computational systems biology. In this work, we present Sig2GRN, a Cytoscape plugin that is able to simulate time-course gene expression data given the user-defined external stimuli to the signaling pathways. A generalized logical model is used in modeling the upstream signaling pathways. Then a Boolean model and a thermodynamics-based model are employed to predict the downstream changes in gene expression based on the simulated dynamics of transcription factors in signaling pathways. Our empirical case studies show that the simulation of Sig2GRN can predict changes in gene expression patterns induced by DNA damage signals and drug treatments. As a software tool for modeling cellular dynamics, Sig2GRN can facilitate studies in systems biology by hypotheses generation and wet-lab experimental design. http://histone.scse.ntu.edu.sg/Sig2GRN/.

  1. An experimental design for quantification of cardiovascular responses to music stimuli in humans.

    PubMed

    Chang, S-H; Luo, C-H; Yeh, T-L

    2004-01-01

    There have been several researches on the relationship between music and human physiological or psychological responses. However, there are cardiovascular index factors that have not been explored quantitatively due to the qualitative nature of acoustic stimuli. This study proposes and demonstrates an experimental design for quantification of cardiovascular responses to music stimuli in humans. The system comprises two components: a unit for generating and monitoring quantitative acoustic stimuli and a portable autonomic nervous system (ANS) analysis unit for quantitative recording and analysis of the cardiovascular responses. The experimental results indicate that the proposed system can exactly achieve the goal of full control and measurement for the music stimuli, and also effectively support many quantitative indices of cardiovascular response in humans. In addition, the analysis results are discussed and predicted in the future clinical research.

  2. Brain-computer interface for alertness estimation and improving

    NASA Astrophysics Data System (ADS)

    Hramov, Alexander; Maksimenko, Vladimir; Hramova, Marina

    2018-02-01

    Using wavelet analysis of the signals of electrical brain activity (EEG), we study the processes of neural activity, associated with perception of visual stimuli. We demonstrate that the brain can process visual stimuli in two scenarios: (i) perception is characterized by destruction of the alpha-waves and increase in the high-frequency (beta) activity, (ii) the beta-rhythm is not well pronounced, while the alpha-wave energy remains unchanged. The special experiments show that the motivation factor initiates the first scenario, explained by the increasing alertness. Based on the obtained results we build the brain-computer interface and demonstrate how the degree of the alertness can be estimated and controlled in real experiment.

  3. Exact computation of the maximum-entropy potential of spiking neural-network models.

    PubMed

    Cofré, R; Cessac, B

    2014-05-01

    Understanding how stimuli and synaptic connectivity influence the statistics of spike patterns in neural networks is a central question in computational neuroscience. The maximum-entropy approach has been successfully used to characterize the statistical response of simultaneously recorded spiking neurons responding to stimuli. However, in spite of good performance in terms of prediction, the fitting parameters do not explain the underlying mechanistic causes of the observed correlations. On the other hand, mathematical models of spiking neurons (neuromimetic models) provide a probabilistic mapping between the stimulus, network architecture, and spike patterns in terms of conditional probabilities. In this paper we build an exact analytical mapping between neuromimetic and maximum-entropy models.

  4. Taxis through Computer Simulation Programs.

    ERIC Educational Resources Information Center

    Park, David

    1983-01-01

    Describes a sequence of five computer programs (listings for Apple II available from author) on tactic responses (oriented movement of a cell, cell group, or whole organism in reponse to stimuli). The simulation programs are useful in helping students examine mechanisms at work in real organisms. (JN)

  5. 3D graphics, virtual reality, and motion-onset visual evoked potentials in neurogaming.

    PubMed

    Beveridge, R; Wilson, S; Coyle, D

    2016-01-01

    A brain-computer interface (BCI) offers movement-free control of a computer application and is achieved by reading and translating the cortical activity of the brain into semantic control signals. Motion-onset visual evoked potentials (mVEP) are neural potentials employed in BCIs and occur when motion-related stimuli are attended visually. mVEP dynamics are correlated with the position and timing of the moving stimuli. To investigate the feasibility of utilizing the mVEP paradigm with video games of various graphical complexities including those of commercial quality, we conducted three studies over four separate sessions comparing the performance of classifying five mVEP responses with variations in graphical complexity and style, in-game distractions, and display parameters surrounding mVEP stimuli. To investigate the feasibility of utilizing contemporary presentation modalities in neurogaming, one of the studies compared mVEP classification performance when stimuli were presented using the oculus rift virtual reality headset. Results from 31 independent subjects were analyzed offline. The results show classification performances ranging up to 90% with variations in conditions in graphical complexity having limited effect on mVEP performance; thus, demonstrating the feasibility of using the mVEP paradigm within BCI-based neurogaming. © 2016 Elsevier B.V. All rights reserved.

  6. Movement Anticipation and EEG: Implications for BCI-Contingent Robot Therapy

    PubMed Central

    Norman, Sumner L.; Dennison, Mark; Wolbrecht, Eric; Cramer, Steven C.; Srinivasan, Ramesh; Reinkensmeyer, David J.

    2017-01-01

    Brain-computer interfacing is a technology that has the potential to improve patient engagement in robot-assisted rehabilitation therapy. For example, movement intention reduces mu (8-13 Hz) oscillation amplitude over the sensorimotor cortex, a phenomenon referred to as event-related desynchronization (ERD). In an ERD-contingent assistance paradigm, initial BCI-enhanced robotic therapy studies have used ERD to provide robotic assistance for movement. Here we investigated how ERD changed as a function of audio-visual stimuli, overt movement from the participant, and robotic assistance. Twelve unimpaired subjects played a computer game designed for rehabilitation therapy with their fingers using the FINGER robotic exoskeleton. In the game, the participant and robot matched movement timing to audio-visual stimuli in the form of notes approaching a target on the screen set to the consistent beat of popular music. The audio-visual stimulation of the game alone did not cause ERD, before or after training. In contrast, overt movement by the subject caused ERD, whether or not the robot assisted the finger movement. Notably, ERD was also present when the subjects remained passive and the robot moved their fingers to play the game. This ERD occurred in anticipation of the passive finger movement with similar onset timing as for the overt movement conditions. These results demonstrate that ERD can be contingent on expectation of robotic assistance; that is, the brain generates an anticipatory ERD in expectation of a robot-imposed but predictable movement. This is a caveat that should be considered in designing BCIs for enhancing patient effort in roboticallyassisted therapy. PMID:26891487

  7. Recall and recognition hypermnesia for Socratic stimuli.

    PubMed

    Kazén, Miguel; Solís-Macías, Víctor M

    2016-01-01

    In two experiments, we investigate hypermnesia, net memory improvements with repeated testing of the same material after a single study trial. In the first experiment, we found hypermnesia across three trials for the recall of word solutions to Socratic stimuli (dictionary-like definitions of concepts) replicating Erdelyi, Buschke, and Finkelstein and, for the first time using these materials, for their recognition. In the second experiment, we had two "yes/no" recognition groups, a Socratic stimuli group presented with concrete and abstract verbal materials and a word-only control group. Using signal detection measures, we found hypermnesia for concrete Socratic stimuli-and stable performance for abstract stimuli across three recognition tests. The control group showed memory decrements across tests. We interpret these findings with the alternative retrieval pathways (ARP) hypothesis, contrasting it with alternative theories of hypermnesia, such as depth of processing, generation and retrieve-recognise. We conclude that recognition hypermnesia for concrete Socratic stimuli is a reliable phenomenon, which we found in two experiments involving both forced-choice and yes/no recognition procedures.

  8. Lingering representations of stimuli influence recall organization.

    PubMed

    Chan, Stephanie C Y; Applegate, Marissa C; Morton, Neal W; Polyn, Sean M; Norman, Kenneth A

    2017-03-01

    Several prominent theories posit that information about recent experiences lingers in the brain and organizes memories for current experiences, by forming a temporal context that is linked to those memories at encoding. According to these theories, if the thoughts preceding an experience X resemble the thoughts preceding an experience Y, then X and Y should show an elevated probability of being recalled together. We tested this prediction by using multi-voxel pattern analysis (MVPA) of fMRI data to measure neural evidence for lingering processing of preceding stimuli. As predicted, memories encoded with similar lingering thoughts about the category of preceding stimuli were more likely to be recalled together. Our results demonstrate that the "fading embers" of previous stimuli help to organize recall, confirming a key prediction of computational models of episodic memory. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Interhemispheric Resource Sharing: Decreasing Benefits with Increasing Processing Efficiency

    ERIC Educational Resources Information Center

    Maertens, M.; Pollmann, S.

    2005-01-01

    Visual matches are sometimes faster when stimuli are presented across visual hemifields, compared to within-field matching. Using a cued geometric figure matching task, we investigated the influence of computational complexity vs. processing efficiency on this bilateral distribution advantage (BDA). Computational complexity was manipulated by…

  10. Spatiotemporal mapping of scalp potentials.

    PubMed

    Fender, D H; Santoro, T P

    1977-11-01

    Computerized analysis and display techniques are applied to the problem of identifying the origins of visually evoked scalped potentials (VESP's). A new stimulus for VESP work, white noise, is being incorporated in the solution of this problem. VESP's for white-noise stimulation exhibit time domain behavior similar to the classical response for flash stimuli but with certain significant differences. Contour mapping algorithms are used to display the time behavior of equipotential surfaces on the scalp during the VESP. The electrical and geometrical parameters of the head are modeled. Electrical fields closely matching those obtained experimentally are generated on the surface of the model head by optimally selecting the location and strength parameters of one or two dipole current sources contained within the model. Computer graphics are used to display as a movie the actual and model scalp potential field and the parameters of the dipole generators whithin the model head during the time course of the VESP. These techniques are currently used to study retinotopic mapping, fusion, and texture perception in the human.

  11. Flexible theta sequence compression mediated via phase precessing interneurons

    PubMed Central

    Chadwick, Angus; van Rossum, Mark CW; Nolan, Matthew F

    2016-01-01

    Encoding of behavioral episodes as spike sequences during hippocampal theta oscillations provides a neural substrate for computations on events extended across time and space. However, the mechanisms underlying the numerous and diverse experimentally observed properties of theta sequences remain poorly understood. Here we account for theta sequences using a novel model constrained by the septo-hippocampal circuitry. We show that when spontaneously active interneurons integrate spatial signals and theta frequency pacemaker inputs, they generate phase precessing action potentials that can coordinate theta sequences in place cell populations. We reveal novel constraints on sequence generation, predict cellular properties and neural dynamics that characterize sequence compression, identify circuit organization principles for high capacity sequential representation, and show that theta sequences can be used as substrates for association of conditioned stimuli with recent and upcoming events. Our results suggest mechanisms for flexible sequence compression that are suited to associative learning across an animal’s lifespan. DOI: http://dx.doi.org/10.7554/eLife.20349.001 PMID:27929374

  12. Context, Contrast, and Tone of Voice in Auditory Sarcasm Perception.

    PubMed

    Voyer, Daniel; Thibodeau, Sophie-Hélène; Delong, Breanna J

    2016-02-01

    Four experiments were conducted to investigate the interplay between context and tone of voice in the perception of sarcasm. These experiments emphasized the role of contrast effects in sarcasm perception exclusively by means of auditory stimuli whereas most past research has relied on written material. In all experiments, a positive or negative computer-generated context spoken in a flat emotional tone was followed by a literally positive statement spoken in a sincere or sarcastic tone of voice. Participants indicated for each statement whether the intonation was sincere or sarcastic. In Experiment 1, a congruent context/tone of voice pairing (negative/sarcastic, positive/sincere) produced fast response times and proportions of sarcastic responses in the direction predicted by the tone of voice. Incongruent pairings produced mid-range proportions and slower response times. Experiment 2 introduced ambiguous contexts to determine whether a lower context/statements contrast would affect the proportion of sarcastic responses and response time. Results showed the expected findings for proportions (values between those obtained for congruent and incongruent pairings in the direction predicted by the tone of voice). However, response time failed to produce the predicted pattern, suggesting potential issues with the choice of stimuli. Experiments 3 and 4 extended the results of Experiments 1 and 2, respectively, to auditory stimuli based on written vignettes used in neuropsychological assessment. Results were exactly as predicted by contrast effects in both experiments. Taken together, the findings suggest that both context and tone influence how sarcasm is perceived while supporting the importance of contrast effects in sarcasm perception.

  13. Strong seduction: impulsivity and the impact of contextual cues on instrumental behavior in alcohol dependence.

    PubMed

    Sommer, C; Garbusow, M; Jünger, E; Pooseh, S; Bernhardt, N; Birkenstock, J; Schad, D J; Jabs, B; Glöckler, T; Huys, Q M; Heinz, A; Smolka, M N; Zimmermann, U S

    2017-08-01

    Alcohol-related cues acquire incentive salience through Pavlovian conditioning and then can markedly affect instrumental behavior of alcohol-dependent patients to promote relapse. However, it is unclear whether similar effects occur with alcohol-unrelated cues. We tested 116 early-abstinent alcohol-dependent patients and 91 healthy controls who completed a delay discounting task to assess choice impulsivity, and a Pavlovian-to-instrumental transfer (PIT) paradigm employing both alcohol-unrelated and alcohol-related stimuli. To modify instrumental choice behavior, we tiled the background of the computer screen either with conditioned stimuli (CS) previously generated by pairing abstract pictures with pictures indicating monetary gains or losses, or with pictures displaying alcohol or water beverages. CS paired to money gains and losses affected instrumental choices differently. This PIT effect was significantly more pronounced in patients compared to controls, and the group difference was mainly driven by highly impulsive patients. The PIT effect was particularly strong in trials in which the instrumental stimulus required inhibition of instrumental response behavior and the background CS was associated to monetary gains. Under that condition, patients performed inappropriate approach behavior, contrary to their previously formed behavioral intention. Surprisingly, the effect of alcohol and water pictures as background stimuli resembled that of aversive and appetitive CS, respectively. These findings suggest that positively valenced background CS can provoke dysfunctional instrumental approach behavior in impulsive alcohol-dependent patients. Consequently, in real life they might be easily seduced by environmental cues to engage in actions thwarting their long-term goals. Such behaviors may include, but are not limited to, approaching alcohol.

  14. Psychophysical and perceptual performance in a simulated-scotoma model of human eye injury

    NASA Astrophysics Data System (ADS)

    Brandeis, R.; Egoz, I.; Peri, D.; Sapiens, N.; Turetz, J.

    2008-02-01

    Macular scotomas, affecting visual functioning, characterize many eye and neurological diseases like AMD, diabetes mellitus, multiple sclerosis, and macular hole. In this work, foveal visual field defects were modeled, and their effects were evaluated on spatial contrast sensitivity and a task of stimulus detection and aiming. The modeled occluding scotomas, of different size, were superimposed on the stimuli presented on the computer display, and were stabilized on the retina using a mono Purkinje Eye-Tracker. Spatial contrast sensitivity was evaluated using square-wave grating stimuli, whose contrast thresholds were measured using the method of constant stimuli with "catch trials". The detection task consisted of a triple conjunctive visual search display of: size (in visual angle), contrast and background (simple, low-level features vs. complex, high-level features). Search/aiming accuracy as well as R.T. measures used for performance evaluation. Artificially generated scotomas suppressed spatial contrast sensitivity in a size dependent manner, similar to previous studies. Deprivation effect was dependent on spatial frequency, consistent with retinal inhomogeneity models. Stimulus detection time was slowed in complex background search situation more than in simple background. Detection speed was dependent on scotoma size and size of stimulus. In contrast, visually guided aiming was more sensitive to scotoma effect in simple background search situation than in complex background. Both stimulus aiming R.T. and accuracy (precision targeting) were impaired, as a function of scotoma size and size of stimulus. The data can be explained by models distinguishing between saliency-based, parallel and serial search processes, guiding visual attention, which are supported by underlying retinal as well as neural mechanisms.

  15. Deep learning for EEG-Based preference classification

    NASA Astrophysics Data System (ADS)

    Teo, Jason; Hou, Chew Lin; Mountstephens, James

    2017-10-01

    Electroencephalogram (EEG)-based emotion classification is rapidly becoming one of the most intensely studied areas of brain-computer interfacing (BCI). The ability to passively identify yet accurately correlate brainwaves with our immediate emotions opens up truly meaningful and previously unattainable human-computer interactions such as in forensic neuroscience, rehabilitative medicine, affective entertainment and neuro-marketing. One particularly useful yet rarely explored areas of EEG-based emotion classification is preference recognition [1], which is simply the detection of like versus dislike. Within the limited investigations into preference classification, all reported studies were based on musically-induced stimuli except for a single study which used 2D images. The main objective of this study is to apply deep learning, which has been shown to produce state-of-the-art results in diverse hard problems such as in computer vision, natural language processing and audio recognition, to 3D object preference classification over a larger group of test subjects. A cohort of 16 users was shown 60 bracelet-like objects as rotating visual stimuli on a computer display while their preferences and EEGs were recorded. After training a variety of machine learning approaches which included deep neural networks, we then attempted to classify the users' preferences for the 3D visual stimuli based on their EEGs. Here, we show that that deep learning outperforms a variety of other machine learning classifiers for this EEG-based preference classification task particularly in a highly challenging dataset with large inter- and intra-subject variability.

  16. Manipulation of cell membrane using carbon nanotube scaffold as a photoresponsive stimuli generator.

    PubMed

    Sada, Takao; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2014-08-01

    We describe, for the first time, the perforation of the cell membrane in the targeted single cell based on the nanosecond pulsed near-infrared (NIR) laser irradiation of a thin film of carbon nanotubes that act as an effective photon absorber as well as stimuli generator. When the power of NIR laser is over 17.5 μ J/pulse, the cell membrane after irradiation is irreversibly disrupted and results in cell death. In sharp contrast, the perforation of the cell membrane occurs at suitable laser power (∼15 μ J/pulse) without involving cell termination.

  17. Manipulation of cell membrane using carbon nanotube scaffold as a photoresponsive stimuli generator

    PubMed Central

    Sada, Takao; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2014-01-01

    We describe, for the first time, the perforation of the cell membrane in the targeted single cell based on the nanosecond pulsed near-infrared (NIR) laser irradiation of a thin film of carbon nanotubes that act as an effective photon absorber as well as stimuli generator. When the power of NIR laser is over 17.5 μJ/pulse, the cell membrane after irradiation is irreversibly disrupted and results in cell death. In sharp contrast, the perforation of the cell membrane occurs at suitable laser power (∼15 μJ/pulse) without involving cell termination. PMID:27877703

  18. Cortical evoked responses associated with arousal from sleep.

    PubMed

    Phillips, Derrick J; Schei, Jennifer L; Meighan, Peter C; Rector, David M

    2011-01-01

    To determine if low-level intermittent auditory stimuli have the potential to disrupt sleep during 24-h recordings, we assessed arousal occurrence to varying stimulus intensities. Additionally, if stimulus-generated evoked response potential (ERP) components provide a metric of underlying cortical state, then a particular ERP structure may precede an arousal. Physiological electrodes measuring EEG, EKG, and EMG were implanted into 5 adult female Sprague-Dawley rats. We delivered auditory stimuli of varying intensities (50-75 dBa sound pressure level SPL) at random intervals of 6-12 s over a 24-hour period. Recordings were divided into 2-s epochs and scored for sleep/wake state. Following each stimulus, we identified whether the animal stayed asleep or woke. We then sorted the stimuli depending on prior and post-stimulus state, and measured ERP components. Auditory stimuli did not produce a significant increase in the number of arousals compared to silent control periods. Overall, arousal from REM sleep occurred more often compared to quiet sleep. ERPs preceding an arousal had decreased mean area and shorter N1 latency. Low level auditory stimuli did not fragment animal sleep since we observed no significant change in arousal occurrence. Arousals that occurred within 4 s of a stimulus exhibited an ERP mean area and latency had features similar to ERPs generated during wake, indicating that the underlying cortical tissue state may contribute to physiological conditions required for arousal.

  19. Adaptive plasticity in speech perception: Effects of external information and internal predictions.

    PubMed

    Guediche, Sara; Fiez, Julie A; Holt, Lori L

    2016-07-01

    When listeners encounter speech under adverse listening conditions, adaptive adjustments in perception can improve comprehension over time. In some cases, these adaptive changes require the presence of external information that disambiguates the distorted speech signals, whereas in other cases mere exposure is sufficient. Both external (e.g., written feedback) and internal (e.g., prior word knowledge) sources of information can be used to generate predictions about the correct mapping of a distorted speech signal. We hypothesize that these predictions provide a basis for determining the discrepancy between the expected and actual speech signal that can be used to guide adaptive changes in perception. This study provides the first empirical investigation that manipulates external and internal factors through (a) the availability of explicit external disambiguating information via the presence or absence of postresponse orthographic information paired with a repetition of the degraded stimulus, and (b) the accuracy of internally generated predictions; an acoustic distortion is introduced either abruptly or incrementally. The results demonstrate that the impact of external information on adaptive plasticity is contingent upon whether the intelligibility of the stimuli permits accurate internally generated predictions during exposure. External information sources enhance adaptive plasticity only when input signals are severely degraded and cannot reliably access internal predictions. This is consistent with a computational framework for adaptive plasticity in which error-driven supervised learning relies on the ability to compute sensory prediction error signals from both internal and external sources of information. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  20. How Well Do Computer-Generated Faces Tap Face Expertise?

    PubMed

    Crookes, Kate; Ewing, Louise; Gildenhuys, Ju-Dith; Kloth, Nadine; Hayward, William G; Oxner, Matt; Pond, Stephen; Rhodes, Gillian

    2015-01-01

    The use of computer-generated (CG) stimuli in face processing research is proliferating due to the ease with which faces can be generated, standardised and manipulated. However there has been surprisingly little research into whether CG faces are processed in the same way as photographs of real faces. The present study assessed how well CG faces tap face identity expertise by investigating whether two indicators of face expertise are reduced for CG faces when compared to face photographs. These indicators were accuracy for identification of own-race faces and the other-race effect (ORE)-the well-established finding that own-race faces are recognised more accurately than other-race faces. In Experiment 1 Caucasian and Asian participants completed a recognition memory task for own- and other-race real and CG faces. Overall accuracy for own-race faces was dramatically reduced for CG compared to real faces and the ORE was significantly and substantially attenuated for CG faces. Experiment 2 investigated perceptual discrimination for own- and other-race real and CG faces with Caucasian and Asian participants. Here again, accuracy for own-race faces was significantly reduced for CG compared to real faces. However the ORE was not affected by format. Together these results signal that CG faces of the type tested here do not fully tap face expertise. Technological advancement may, in the future, produce CG faces that are equivalent to real photographs. Until then caution is advised when interpreting results obtained using CG faces.

  1. Adaptive plasticity in speech perception: effects of external information and internal predictions

    PubMed Central

    Guediche, Sara; Fiez, Julie A.; Holt, Lori L.

    2016-01-01

    When listeners encounter speech under adverse listening conditions, adaptive adjustments in perception can improve comprehension over time. In some cases, these adaptive changes require the presence of external information that disambiguates the distorted speech signals, whereas in other cases mere exposure is sufficient. Both external (e.g. written feedback) and internal (e.g., prior word knowledge) sources of information can be used to generate predictions about the correct mapping of a distorted speech signal. We hypothesize that these predictions provide a basis for determining the discrepancy between the expected and actual speech signal that can be used to guide adaptive changes in perception. This study provides the first empirical investigation that manipulates external and internal factors through 1) the availability of explicit external disambiguating information via the presence or absence of post-response orthographic information paired with a repetition of the degraded stimulus, and 2) the accuracy of internally-generated predictions; an acoustic distortion is introduced either abruptly or incrementally. The results demonstrate that the impact of external information on adaptive plasticity is contingent upon whether the intelligibility of the stimuli permits accurate internally-generated predictions during exposure. External information sources enhance adaptive plasticity only when input signals are severely degraded and cannot reliably access internal predictions. This is consistent with a computational framework for adaptive plasticity in which error-driven supervised learning relies on the ability to compute sensory prediction error signals from both internal and external sources of information. PMID:26854531

  2. Does bimodal stimulus presentation increase ERP components usable in BCIs?

    NASA Astrophysics Data System (ADS)

    Thurlings, Marieke E.; Brouwer, Anne-Marie; Van Erp, Jan B. F.; Blankertz, Benjamin; Werkhoven, Peter J.

    2012-08-01

    Event-related potential (ERP)-based brain-computer interfaces (BCIs) employ differences in brain responses to attended and ignored stimuli. Typically, visual stimuli are used. Tactile stimuli have recently been suggested as a gaze-independent alternative. Bimodal stimuli could evoke additional brain activity due to multisensory integration which may be of use in BCIs. We investigated the effect of visual-tactile stimulus presentation on the chain of ERP components, BCI performance (classification accuracies and bitrates) and participants’ task performance (counting of targets). Ten participants were instructed to navigate a visual display by attending (spatially) to targets in sequences of either visual, tactile or visual-tactile stimuli. We observe that attending to visual-tactile (compared to either visual or tactile) stimuli results in an enhanced early ERP component (N1). This bimodal N1 may enhance BCI performance, as suggested by a nonsignificant positive trend in offline classification accuracies. A late ERP component (P300) is reduced when attending to visual-tactile compared to visual stimuli, which is consistent with the nonsignificant negative trend of participants’ task performance. We discuss these findings in the light of affected spatial attention at high-level compared to low-level stimulus processing. Furthermore, we evaluate bimodal BCIs from a practical perspective and for future applications.

  3. Comparing the effects of sustained and transient spatial attention on the orienting towards and the processing of electrical nociceptive stimuli.

    PubMed

    Van der Lubbe, Rob H J; Blom, Jorian H G; De Kleine, Elian; Bohlmeijer, Ernst T

    2017-02-01

    We examined whether sustained vs. transient spatial attention differentially affect the processing of electrical nociceptive stimuli. Cued nociceptive stimuli of a relevant intensity (low or high) on the left or right forearm required a foot pedal press. The cued side varied trial wise in the transient attention condition, while it remained constant during a series of trials in the sustained attention condition. The orienting phase preceding the nociceptive stimuli was examined by focusing on lateralized EEG activity. ERPs were computed to examine the influence of spatial attention on the processing of the nociceptive stimuli. Results for the orienting phase showed increased ipsilateral alpha and beta power above somatosensory areas in both the transient and the sustained attention conditions, which may reflect inhibition of ipsilateral and/or disinhibition of contralateral somatosensory areas. Cued nociceptive stimuli evoked a larger N130 than uncued stimuli, both in the transient and the sustained attention conditions. Support for increased efficiency of spatial attention in the sustained attention condition was obtained for the N180 and the P540 component. We concluded that spatial attention is more efficient in the case of sustained than in the case of transient spatial attention. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. EyeMusic: Introducing a "visual" colorful experience for the blind using auditory sensory substitution.

    PubMed

    Abboud, Sami; Hanassy, Shlomi; Levy-Tzedek, Shelly; Maidenbaum, Shachar; Amedi, Amir

    2014-01-01

    Sensory-substitution devices (SSDs) provide auditory or tactile representations of visual information. These devices often generate unpleasant sensations and mostly lack color information. We present here a novel SSD aimed at addressing these issues. We developed the EyeMusic, a novel visual-to-auditory SSD for the blind, providing both shape and color information. Our design uses musical notes on a pentatonic scale generated by natural instruments to convey the visual information in a pleasant manner. A short behavioral protocol was utilized to train the blind to extract shape and color information, and test their acquired abilities. Finally, we conducted a survey and a comparison task to assess the pleasantness of the generated auditory stimuli. We show that basic shape and color information can be decoded from the generated auditory stimuli. High performance levels were achieved by all participants following as little as 2-3 hours of training. Furthermore, we show that users indeed found the stimuli pleasant and potentially tolerable for prolonged use. The novel EyeMusic algorithm provides an intuitive and relatively pleasant way for the blind to extract shape and color information. We suggest that this might help facilitating visual rehabilitation because of the added functionality and enhanced pleasantness.

  5. The effect of viewing speech on auditory speech processing is different in the left and right hemispheres.

    PubMed

    Davis, Chris; Kislyuk, Daniel; Kim, Jeesun; Sams, Mikko

    2008-11-25

    We used whole-head magnetoencephalograpy (MEG) to record changes in neuromagnetic N100m responses generated in the left and right auditory cortex as a function of the match between visual and auditory speech signals. Stimuli were auditory-only (AO) and auditory-visual (AV) presentations of /pi/, /ti/ and /vi/. Three types of intensity matched auditory stimuli were used: intact speech (Normal), frequency band filtered speech (Band) and speech-shaped white noise (Noise). The behavioural task was to detect the /vi/ syllables which comprised 12% of stimuli. N100m responses were measured to averaged /pi/ and /ti/ stimuli. Behavioural data showed that identification of the stimuli was faster and more accurate for Normal than for Band stimuli, and for Band than for Noise stimuli. Reaction times were faster for AV than AO stimuli. MEG data showed that in the left hemisphere, N100m to both AO and AV stimuli was largest for the Normal, smaller for Band and smallest for Noise stimuli. In the right hemisphere, Normal and Band AO stimuli elicited N100m responses of quite similar amplitudes, but N100m amplitude to Noise was about half of that. There was a reduction in N100m for the AV compared to the AO conditions. The size of this reduction for each stimulus type was same in the left hemisphere but graded in the right (being largest to the Normal, smaller to the Band and smallest to the Noise stimuli). The N100m decrease for the Normal stimuli was significantly larger in the right than in the left hemisphere. We suggest that the effect of processing visual speech seen in the right hemisphere likely reflects suppression of the auditory response based on AV cues for place of articulation.

  6. Computer Graphics and Metaphorical Elaboration for Learning Science Concepts.

    ERIC Educational Resources Information Center

    ChanLin, Lih-Juan; Chan, Kung-Chi

    This study explores the instructional impact of using computer multimedia to integrate metaphorical verbal information into graphical representations of biotechnology concepts. The combination of text and graphics into a single metaphor makes concepts dual-coded, and therefore more comprehensible and memorable for the student. Visual stimuli help…

  7. Earthquake experience interference effects in a modified Stroop task: an ERP study.

    PubMed

    Wei, Dongtao; Qiu, Jiang; Tu, Shen; Tian, Fang; Su, Yanhua; Luo, Yuejia

    2010-05-03

    The effects of the modified Stroop task on ERP were investigated in 20 subjects who had experienced the Sichuan earthquake and a matched control group. ERP data showed that Incongruent stimuli elicited a more negative ERP deflection (N300-450) than did Congruent stimuli between 300 and 450 ms post-stimulus in the earthquake group but not found in the control group, and the N300-450 might reflect conflict monitor (the information of color and meaning do not match) in the early phase of perception identification due to their sensitivity to the external stimulus. Then, Incongruent stimuli elicited a more negative ERP deflection than did Congruent stimuli between 450 and 650 ms post-stimulus in both the groups. Dipole source analysis showed that the N450-650 was mainly generated in the ACC contributed to this effect in the control group, which might be related to monitor and conflict resolution. However, in the earthquake group, the N450-650 was generated in the thalamus, which might be involved in inhibiting and compensating of the ACC which may be related to conflict resolution process. 2010 Elsevier Ireland Ltd. All rights reserved.

  8. Active Construction of Profession-Related Events: The Priming Effect among Pre-service Teachers with Different Professional Identity

    PubMed Central

    Wang, Xin-qiang; Zhu, Jun-cheng; Liu, Lu; Chen, Xiang-yu; Huo, Jun-yu

    2018-01-01

    Pre-service teachers with different professional identity may actively construct different subjective profession-related events based on the same objective profession-related events. To explore the priming effect among pre-service teachers with different professional identity, this study examined the effect of positive, negative, or neutral priming sentences in an individualized narration of profession-related events through a priming paradigm. Forty-two female volunteers were asked to complete positive, negative, and neutral priming sentences describing profession-related events. The results showed that, relative to those with weak professional identity, participants with strong professional identity generated a higher number of positive items when primed with different stimuli and displayed greater positive priming bias for positive and neutral stimuli. In addition, relative to those with strong professional identity, participants with weak professional identity generated a higher number of neutral and negative items when primed with positive and negative stimuli, respectively, and displayed greater negative priming bias toward negative stimuli. These results indicate that pre-service teachers with strong professional identity were likely to have established positive self-schemas involving profession-related events, which facilitated active, positive construction of such events. PMID:29535667

  9. Active Construction of Profession-Related Events: The Priming Effect among Pre-service Teachers with Different Professional Identity.

    PubMed

    Wang, Xin-Qiang; Zhu, Jun-Cheng; Liu, Lu; Chen, Xiang-Yu; Huo, Jun-Yu

    2018-01-01

    Pre-service teachers with different professional identity may actively construct different subjective profession-related events based on the same objective profession-related events. To explore the priming effect among pre-service teachers with different professional identity, this study examined the effect of positive, negative, or neutral priming sentences in an individualized narration of profession-related events through a priming paradigm. Forty-two female volunteers were asked to complete positive, negative, and neutral priming sentences describing profession-related events. The results showed that, relative to those with weak professional identity, participants with strong professional identity generated a higher number of positive items when primed with different stimuli and displayed greater positive priming bias for positive and neutral stimuli. In addition, relative to those with strong professional identity, participants with weak professional identity generated a higher number of neutral and negative items when primed with positive and negative stimuli, respectively, and displayed greater negative priming bias toward negative stimuli. These results indicate that pre-service teachers with strong professional identity were likely to have established positive self-schemas involving profession-related events, which facilitated active, positive construction of such events.

  10. Brain-computer interface on the basis of EEG system Encephalan

    NASA Astrophysics Data System (ADS)

    Maksimenko, Vladimir; Badarin, Artem; Nedaivozov, Vladimir; Kirsanov, Daniil; Hramov, Alexander

    2018-04-01

    We have proposed brain-computer interface (BCI) for the estimation of the brain response on the presented visual tasks. Proposed BCI is based on the EEG recorder Encephalan-EEGR-19/26 (Medicom MTD, Russia) supplemented by a special home-made developed acquisition software. BCI is tested during experimental session while subject is perceiving the bistable visual stimuli and classifying them according to the interpretation. We have subjected the participant to the different external conditions and observed the significant decrease in the response, associated with the perceiving the bistable visual stimuli, during the presence of distraction. Based on the obtained results we have proposed possibility to use of BCI for estimation of the human alertness during solving the tasks required substantial visual attention.

  11. Height and body mass influence on human body outlines: a quantitative approach using an elliptic Fourier analysis.

    PubMed

    Courtiol, Alexandre; Ferdy, Jean Baptiste; Godelle, Bernard; Raymond, Michel; Claude, Julien

    2010-05-01

    Many studies use representations of human body outlines to study how individual characteristics, such as height and body mass, affect perception of body shape. These typically involve reality-based stimuli (e.g., pictures) or manipulated stimuli (e.g., drawings). These two classes of stimuli have important drawbacks that limit result interpretations. Realistic stimuli vary in terms of traits that are correlated, which makes it impossible to assess the effect of a single trait independently. In addition, manipulated stimuli usually do not represent realistic morphologies. We describe and examine a method based on elliptic Fourier descriptors to automatically predict and represent body outlines for a given set of predicted variables (e.g., sex, height, and body mass). We first estimate whether these predictive variables are significantly related to human outlines. We find that height and body mass significantly influence body shape. Unlike height, the effect of body mass on shape differs between sexes. Then, we show that we can easily build a regression model that creates hypothetical outlines for an arbitrary set of covariates. These statistically computed outlines are quite realistic and may be used as stimuli in future studies.

  12. Visual stimuli for the P300 brain-computer interface: a comparison of white/gray and green/blue flicker matrices.

    PubMed

    Takano, Kouji; Komatsu, Tomoaki; Hata, Naoki; Nakajima, Yasoichi; Kansaku, Kenji

    2009-08-01

    The white/gray flicker matrix has been used as a visual stimulus for the so-called P300 brain-computer interface (BCI), but the white/gray flash stimuli might induce discomfort. In this study, we investigated the effectiveness of green/blue flicker matrices as visual stimuli. Ten able-bodied, non-trained subjects performed Alphabet Spelling (Japanese Alphabet: Hiragana) using an 8 x 10 matrix with three types of intensification/rest flicker combinations (L, luminance; C, chromatic; LC, luminance and chromatic); both online and offline performances were evaluated. The accuracy rate under the online LC condition was 80.6%. Offline analysis showed that the LC condition was associated with significantly higher accuracy than was the L or C condition (Tukey-Kramer, p < 0.05). No significant difference was observed between L and C conditions. The LC condition, which used the green/blue flicker matrix was associated with better performances in the P300 BCI. The green/blue chromatic flicker matrix can be an efficient tool for practical BCI application.

  13. Understanding the limits of animal models as predictors of human biology: lessons learned from the sbv IMPROVER Species Translation Challenge

    PubMed Central

    Mathis, Carole; Dulize, Rémi H. J.; Ivanov, Nikolai V.; Alexopoulos, Leonidas; Jeremy Rice, J.; Peitsch, Manuel C.; Stolovitzky, Gustavo; Meyer, Pablo; Hoeng, Julia

    2015-01-01

    Motivation: Inferring how humans respond to external cues such as drugs, chemicals, viruses or hormones is an essential question in biomedicine. Very often, however, this question cannot be addressed because it is not possible to perform experiments in humans. A reasonable alternative consists of generating responses in animal models and ‘translating’ those results to humans. The limitations of such translation, however, are far from clear, and systematic assessments of its actual potential are urgently needed. sbv IMPROVER (systems biology verification for Industrial Methodology for PROcess VErification in Research) was designed as a series of challenges to address translatability between humans and rodents. This collaborative crowd-sourcing initiative invited scientists from around the world to apply their own computational methodologies on a multilayer systems biology dataset composed of phosphoproteomics, transcriptomics and cytokine data derived from normal human and rat bronchial epithelial cells exposed in parallel to 52 different stimuli under identical conditions. Our aim was to understand the limits of species-to-species translatability at different levels of biological organization: signaling, transcriptional and release of secreted factors (such as cytokines). Participating teams submitted 49 different solutions across the sub-challenges, two-thirds of which were statistically significantly better than random. Additionally, similar computational methods were found to range widely in their performance within the same challenge, and no single method emerged as a clear winner across all sub-challenges. Finally, computational methods were able to effectively translate some specific stimuli and biological processes in the lung epithelial system, such as DNA synthesis, cytoskeleton and extracellular matrix, translation, immune/inflammation and growth factor/proliferation pathways, better than the expected response similarity between species. Contact: pmeyerr@us.ibm.com or Julia.Hoeng@pmi.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25236459

  14. Understanding the limits of animal models as predictors of human biology: lessons learned from the sbv IMPROVER Species Translation Challenge.

    PubMed

    Rhrissorrakrai, Kahn; Belcastro, Vincenzo; Bilal, Erhan; Norel, Raquel; Poussin, Carine; Mathis, Carole; Dulize, Rémi H J; Ivanov, Nikolai V; Alexopoulos, Leonidas; Rice, J Jeremy; Peitsch, Manuel C; Stolovitzky, Gustavo; Meyer, Pablo; Hoeng, Julia

    2015-02-15

    Inferring how humans respond to external cues such as drugs, chemicals, viruses or hormones is an essential question in biomedicine. Very often, however, this question cannot be addressed because it is not possible to perform experiments in humans. A reasonable alternative consists of generating responses in animal models and 'translating' those results to humans. The limitations of such translation, however, are far from clear, and systematic assessments of its actual potential are urgently needed. sbv IMPROVER (systems biology verification for Industrial Methodology for PROcess VErification in Research) was designed as a series of challenges to address translatability between humans and rodents. This collaborative crowd-sourcing initiative invited scientists from around the world to apply their own computational methodologies on a multilayer systems biology dataset composed of phosphoproteomics, transcriptomics and cytokine data derived from normal human and rat bronchial epithelial cells exposed in parallel to 52 different stimuli under identical conditions. Our aim was to understand the limits of species-to-species translatability at different levels of biological organization: signaling, transcriptional and release of secreted factors (such as cytokines). Participating teams submitted 49 different solutions across the sub-challenges, two-thirds of which were statistically significantly better than random. Additionally, similar computational methods were found to range widely in their performance within the same challenge, and no single method emerged as a clear winner across all sub-challenges. Finally, computational methods were able to effectively translate some specific stimuli and biological processes in the lung epithelial system, such as DNA synthesis, cytoskeleton and extracellular matrix, translation, immune/inflammation and growth factor/proliferation pathways, better than the expected response similarity between species. pmeyerr@us.ibm.com or Julia.Hoeng@pmi.com Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.

  15. Persons with multiple disabilities select environmental stimuli through a smile response monitored via camera-based technology.

    PubMed

    Lancioni, Giulio E; Bellini, Domenico; Oliva, Doretta; Singh, Nirbhay N; O'reilly, Mark F; Lang, Russell; Didden, Robert; Bosco, Andrea

    2011-01-01

    To assess whether two persons with multiple disabilities could use smile expressions and new camera-based microswitch technology to select environmental stimuli. Within each session, a computer system provided samples/reminders of preferred and non-preferred stimuli. The camera-based microswitch determined whether the participants had smile expressions in relation to those samples. If they did, stimuli matching the specific samples to which they responded were presented for 20 seconds. The smile expression could be profitably used by the participants who managed to select means of ∼70% or 75% of the preferred stimulus opportunities made available by the environment while avoiding almost all the non-preferred stimulus opportunities. Smile expressions (a) might be an effective and rapid means for selecting preferred stimulation and (b) might develop into cognitively more elaborate forms of responding through the learning experience (i.e. their consistent association with positive/reinforcing consequences).

  16. How previous experience shapes perception in different sensory modalities

    PubMed Central

    Snyder, Joel S.; Schwiedrzik, Caspar M.; Vitela, A. Davi; Melloni, Lucia

    2015-01-01

    What has transpired immediately before has a strong influence on how sensory stimuli are processed and perceived. In particular, temporal context can have contrastive effects, repelling perception away from the interpretation of the context stimulus, and attractive effects (TCEs), whereby perception repeats upon successive presentations of the same stimulus. For decades, scientists have documented contrastive and attractive temporal context effects mostly with simple visual stimuli. But both types of effects also occur in other modalities, e.g., audition and touch, and for stimuli of varying complexity, raising the possibility that context effects reflect general computational principles of sensory systems. Neuroimaging shows that contrastive and attractive context effects arise from neural processes in different areas of the cerebral cortex, suggesting two separate operations with distinct functional roles. Bayesian models can provide a functional account of both context effects, whereby prior experience adjusts sensory systems to optimize perception of future stimuli. PMID:26582982

  17. Bias to experience approaching motion in a three-dimensional virtual environment.

    PubMed

    Lewis, Clifford F; McBeath, Michael K

    2004-01-01

    We used two-frame apparent motion in a three-dimensional virtual environment to test whether observers had biases to experience approaching or receding motion in depth. Observers viewed a tunnel of tiles receding in depth, that moved ambiguously either toward or away from them. We found that observers exhibited biases to experience approaching motion. The strengths of the biases were decreased when stimuli pointed away, but size of the display screen had no effect. Tests with diamond-shaped tiles that varied in the degree of pointing asymmetry resulted in a linear trend in which the bias was strongest for stimuli pointing toward the viewer, and weakest for stimuli pointing away. We show that the overall bias to experience approaching motion is consistent with a computational strategy of matching corresponding features between adjacent foreshortened stimuli in consecutive visual frames. We conclude that there are both adaptational and geometric reasons to favor the experience of approaching motion.

  18. Distributed feature binding in the auditory modality: experimental evidence toward reconciliation of opposing views on the basis of mismatch negativity and behavioral measures.

    PubMed

    Chernyshev, Boris V; Bryzgalov, Dmitri V; Lazarev, Ivan E; Chernysheva, Elena G

    2016-08-03

    Current understanding of feature binding remains controversial. Studies involving mismatch negativity (MMN) measurement show a low level of binding, whereas behavioral experiments suggest a higher level. We examined the possibility that the two levels of feature binding coexist and may be shown within one experiment. The electroencephalogram was recorded while participants were engaged in an auditory two-alternative choice task, which was a combination of the oddball and the condensation tasks. Two types of deviant target stimuli were used - complex stimuli, which required feature conjunction to be identified, and simple stimuli, which differed from standard stimuli in a single feature. Two behavioral outcomes - correct responses and errors - were analyzed separately. Responses to complex stimuli were slower and less accurate than responses to simple stimuli. MMN was prominent and its amplitude was similar for both simple and complex stimuli, whereas the respective stimuli differed from standards in a single feature or two features respectively. Errors in response only to complex stimuli were associated with decreased MMN amplitude. P300 amplitude was greater for complex stimuli than for simple stimuli. Our data are compatible with the explanation that feature binding in auditory modality depends on two concurrent levels of processing. We speculate that the earlier level related to MMN generation is an essential and critical stage. Yet, a later analysis is also carried out, affecting P300 amplitude and response time. The current findings provide resolution to conflicting views on the nature of feature binding and show that feature binding is a distributed multilevel process.

  19. Novel application of multi-stimuli network inference to synovial fibroblasts of rheumatoid arthritis patients

    PubMed Central

    2014-01-01

    Background Network inference of gene expression data is an important challenge in systems biology. Novel algorithms may provide more detailed gene regulatory networks (GRN) for complex, chronic inflammatory diseases such as rheumatoid arthritis (RA), in which activated synovial fibroblasts (SFBs) play a major role. Since the detailed mechanisms underlying this activation are still unclear, simultaneous investigation of multi-stimuli activation of SFBs offers the possibility to elucidate the regulatory effects of multiple mediators and to gain new insights into disease pathogenesis. Methods A GRN was therefore inferred from RA-SFBs treated with 4 different stimuli (IL-1 β, TNF- α, TGF- β, and PDGF-D). Data from time series microarray experiments (0, 1, 2, 4, 12 h; Affymetrix HG-U133 Plus 2.0) were batch-corrected applying ‘ComBat’, analyzed for differentially expressed genes over time with ‘Limma’, and used for the inference of a robust GRN with NetGenerator V2.0, a heuristic ordinary differential equation-based method with soft integration of prior knowledge. Results Using all genes differentially expressed over time in RA-SFBs for any stimulus, and selecting the genes belonging to the most significant gene ontology (GO) term, i.e., ‘cartilage development’, a dynamic, robust, moderately complex multi-stimuli GRN was generated with 24 genes and 57 edges in total, 31 of which were gene-to-gene edges. Prior literature-based knowledge derived from Pathway Studio or manual searches was reflected in the final network by 25/57 confirmed edges (44%). The model contained known network motifs crucial for dynamic cellular behavior, e.g., cross-talk among pathways, positive feed-back loops, and positive feed-forward motifs (including suppression of the transcriptional repressor OSR2 by all 4 stimuli. Conclusion A multi-stimuli GRN highly concordant with literature data was successfully generated by network inference from the gene expression of stimulated RA-SFBs. The GRN showed high reliability, since 10 predicted edges were independently validated by literature findings post network inference. The selected GO term ‘cartilage development’ contained a number of differentiation markers, growth factors, and transcription factors with potential relevance for RA. Finally, the model provided new insight into the response of RA-SFBs to multiple stimuli implicated in the pathogenesis of RA, in particular to the ‘novel’ potent growth factor PDGF-D. PMID:24989895

  20. The virtual lover: variable and easily guided 3D fish animations as an innovative tool in mate-choice experiments with sailfin mollies-II. Validation

    PubMed Central

    Müller, Klaus; Smielik, Ievgen; Hütwohl, Jan-Marco; Kuhnert, Klaus-Dieter; Witte, Klaudia

    2017-01-01

    Abstract The use of computer animation in behavioral research is a state-of-the-art method for designing and presenting animated animals to live test animals. The major advantages of computer animations are: (1) the creation of animated animal stimuli with high variability of morphology and even behavior; (2) animated stimuli provide highly standardized, controlled and repeatable testing procedures; and (3) they allow a reduction in the number of live test animals regarding the 3Rs principle. But the use of animated animals should be attended by a thorough validation for each test species to verify that behavior measured with live animals toward virtual animals can also be expected with natural stimuli. Here we present results on the validation of a custom-made simulation for animated 3D sailfin mollies Poecilia latipinna and show that responses of live test females were as strong to an animated fish as to a video or a live male fish. Movement of an animated stimulus was important but female response was stronger toward a swimming 3D fish stimulus than to a “swimming” box. Moreover, male test fish were able to discriminate between animated male and female stimuli; hence, rendering the animated 3D fish a useful tool in mate-choice experiments with sailfin mollies. PMID:29491964

  1. The virtual lover: variable and easily guided 3D fish animations as an innovative tool in mate-choice experiments with sailfin mollies-II. Validation.

    PubMed

    Gierszewski, Stefanie; Müller, Klaus; Smielik, Ievgen; Hütwohl, Jan-Marco; Kuhnert, Klaus-Dieter; Witte, Klaudia

    2017-02-01

    The use of computer animation in behavioral research is a state-of-the-art method for designing and presenting animated animals to live test animals. The major advantages of computer animations are: (1) the creation of animated animal stimuli with high variability of morphology and even behavior; (2) animated stimuli provide highly standardized, controlled and repeatable testing procedures; and (3) they allow a reduction in the number of live test animals regarding the 3Rs principle. But the use of animated animals should be attended by a thorough validation for each test species to verify that behavior measured with live animals toward virtual animals can also be expected with natural stimuli. Here we present results on the validation of a custom-made simulation for animated 3D sailfin mollies Poecilia latipinna and show that responses of live test females were as strong to an animated fish as to a video or a live male fish. Movement of an animated stimulus was important but female response was stronger toward a swimming 3D fish stimulus than to a "swimming" box. Moreover, male test fish were able to discriminate between animated male and female stimuli; hence, rendering the animated 3D fish a useful tool in mate-choice experiments with sailfin mollies.

  2. Who We Are: Today's Students Speak Out

    ERIC Educational Resources Information Center

    Blandford, Ayoka

    2012-01-01

    Today's students have been nicknamed the "Digital Generation," "Millennials," "Net Generation" and "Generation Next." They are frequently identified by their technological prowess and seem to work well with multiple stimuli (for example, designing a web site while listening to iTunes and responding to texts). While many research studies have been…

  3. Effects of Light and Sound on the Prefrontal Cortex Activation and Emotional Function: A Functional Near-Infrared Spectroscopy Study

    PubMed Central

    Hori, Shota; Mori, Koichi; Mashimo, Takehisa; Seiyama, Akitoshi

    2017-01-01

    We constructed a near infrared spectroscopy-based real-time feedback system to estimate the subjects' emotional states using the changes in oxygenated hemoglobin concentration [Δ(oxy-Hb)] in the prefrontal cortex (PFC). Using this system, we investigated the influences of continual mild and equivocal stimuli consisting of lights and a reconstructed waterfall sound on Δ[oxy-Hb] in the PFC. The visual (light) and auditory (sound) stimuli changed randomly and independently, depending on the emotional states of the individual subjects. The emotional states induced by the stimuli were examined via a questionnaire rated on an 11-point scale, from +5 (pleasant) to −5 (unpleasant), through 0 (neutral), after the 5-min experiments. Results from 757 subjects revealed that Δ[oxy-Hb] in the PFC exhibited a weak, but significant, correlation with emotional change, with the given continual and mild stimuli similar to that experienced in response to the intense pleasant/unpleasant stimuli. Based on the results we discuss the generation of pleasant/unpleasant weak emotional change induced by mild and weak stimuli such as light and sound. PMID:28649190

  4. Exploration of a physiologically-inspired hearing-aid algorithm using a computer model mimicking impaired hearing.

    PubMed

    Jürgens, Tim; Clark, Nicholas R; Lecluyse, Wendy; Meddis, Ray

    2016-01-01

    To use a computer model of impaired hearing to explore the effects of a physiologically-inspired hearing-aid algorithm on a range of psychoacoustic measures. A computer model of a hypothetical impaired listener's hearing was constructed by adjusting parameters of a computer model of normal hearing. Absolute thresholds, estimates of compression, and frequency selectivity (summarized to a hearing profile) were assessed using this model with and without pre-processing the stimuli by a hearing-aid algorithm. The influence of different settings of the algorithm on the impaired profile was investigated. To validate the model predictions, the effect of the algorithm on hearing profiles of human impaired listeners was measured. A computer model simulating impaired hearing (total absence of basilar membrane compression) was used, and three hearing-impaired listeners participated. The hearing profiles of the model and the listeners showed substantial changes when the test stimuli were pre-processed by the hearing-aid algorithm. These changes consisted of lower absolute thresholds, steeper temporal masking curves, and sharper psychophysical tuning curves. The hearing-aid algorithm affected the impaired hearing profile of the model to approximate a normal hearing profile. Qualitatively similar results were found with the impaired listeners' hearing profiles.

  5. Full-wave and half-wave rectification in second-order motion perception

    NASA Technical Reports Server (NTRS)

    Solomon, J. A.; Sperling, G.

    1994-01-01

    Microbalanced stimuli are dynamic displays which do not stimulate motion mechanisms that apply standard (Fourier-energy or autocorrelational) motion analysis directly to the visual signal. In order to extract motion information from microbalanced stimuli, Chubb and Sperling [(1988) Journal of the Optical Society of America, 5, 1986-2006] proposed that the human visual system performs a rectifying transformation on the visual signal prior to standard motion analysis. The current research employs two novel types of microbalanced stimuli: half-wave stimuli preserve motion information following half-wave rectification (with a threshold) but lose motion information following full-wave rectification; full-wave stimuli preserve motion information following full-wave rectification but lose motion information following half-wave rectification. Additionally, Fourier stimuli, ordinary square-wave gratings, were used to stimulate standard motion mechanisms. Psychometric functions (direction discrimination vs stimulus contrast) were obtained for each type of stimulus when presented alone, and when masked by each of the other stimuli (presented as moving masks and also as nonmoving, counterphase-flickering masks). RESULTS: given sufficient contrast, all three types of stimulus convey motion. However, only one-third of the population can perceive the motion of the half-wave stimulus. Observers are able to process the motion information contained in the Fourier stimulus slightly more efficiently than the information in the full-wave stimulus but are much less efficient in processing half-wave motion information. Moving masks are more effective than counterphase masks at hampering direction discrimination, indicating that some of the masking effect is interference between motion mechanisms, and some occurs at earlier stages. When either full-wave and Fourier or half-wave and Fourier gratings are presented simultaneously, there is a wide range of relative contrasts within which the motion directions of both gratings are easily determinable. Conversely, when half-wave and full-wave gratings are combined, the direction of only one of these gratings can be determined with high accuracy. CONCLUSIONS: the results indicate that three motion computations are carried out, any two in parallel: one standard ("first order") and two non-Fourier ("second-order") computations that employ full-wave and half-wave rectification.

  6. The Tight-interlocked Rhythm Section: Production and Perception of Synchronisation in Jazz Trio Performance.

    PubMed

    Hofmann, Alex; Wesolowski, Brian C; Goebl, Werner

    2017-01-01

    This study investigates the production and perception of timing, synchronisation and dynamics in jazz trio performances. In a production experiment, six trio combinations of one saxophonist, two bassists, and three drummers were recorded while they performed three popular jazz songs. Onset timing and dynamics of each performer were extracted and analysed. Results showed that the tempo was significantly influenced by the timing of the drummers and all performers showed higher temporal precision on the backbeats. The drummers demonstrated individual swing-ratios, accentuations of beats and intrapersonal asynchronies between simultaneous hi-hat and ride cymbal onsets, which resulted in a hi-hat played 2-26 ms ahead of the pulse of the music. In a subsequent perception test, participants ([Formula: see text]) rated 12 excerpts of the jazz recordings. They selected their preferred version from a pool of stimuli containing the original version, but also manipulations with artificially increased or reduced asynchronies. Stimuli with reduced asynchronies smaller than 19 ms were preferred by the listeners over the original or the fully quantised timing. This suggests that listeners endorse a 'tight-interlocked' jazz rhythm section, with asynchronies smaller than the perceptual threshold (temporal masking), but with natural timing variabilities that makes it distinguishable from a computer-generated playback.

  7. The Tight-interlocked Rhythm Section: Production and Perception of Synchronisation in Jazz Trio Performance

    PubMed Central

    Hofmann, Alex; Wesolowski, Brian C.; Goebl, Werner

    2017-01-01

    Abstract This study investigates the production and perception of timing, synchronisation and dynamics in jazz trio performances. In a production experiment, six trio combinations of one saxophonist, two bassists, and three drummers were recorded while they performed three popular jazz songs. Onset timing and dynamics of each performer were extracted and analysed. Results showed that the tempo was significantly influenced by the timing of the drummers and all performers showed higher temporal precision on the backbeats. The drummers demonstrated individual swing-ratios, accentuations of beats and intrapersonal asynchronies between simultaneous hi-hat and ride cymbal onsets, which resulted in a hi-hat played 2–26 ms ahead of the pulse of the music. In a subsequent perception test, participants () rated 12 excerpts of the jazz recordings. They selected their preferred version from a pool of stimuli containing the original version, but also manipulations with artificially increased or reduced asynchronies. Stimuli with reduced asynchronies smaller than 19 ms were preferred by the listeners over the original or the fully quantised timing. This suggests that listeners endorse a ‘tight-interlocked’ jazz rhythm section, with asynchronies smaller than the perceptual threshold (temporal masking), but with natural timing variabilities that makes it distinguishable from a computer-generated playback. PMID:29238387

  8. Statistical analysis of magnetically soft particles in magnetorheological elastomers

    NASA Astrophysics Data System (ADS)

    Gundermann, T.; Cremer, P.; Löwen, H.; Menzel, A. M.; Odenbach, S.

    2017-04-01

    The physical properties of magnetorheological elastomers (MRE) are a complex issue and can be influenced and controlled in many ways, e.g. by applying a magnetic field, by external mechanical stimuli, or by an electric potential. In general, the response of MRE materials to these stimuli is crucially dependent on the distribution of the magnetic particles inside the elastomer. Specific knowledge of the interactions between particles or particle clusters is of high relevance for understanding the macroscopic rheological properties and provides an important input for theoretical calculations. In order to gain a better insight into the correlation between the macroscopic effects and microstructure and to generate a database for theoretical analysis, x-ray micro-computed tomography (X-μCT) investigations as a base for a statistical analysis of the particle configurations were carried out. Different MREs with quantities of 2-15 wt% (0.27-2.3 vol%) of iron powder and different allocations of the particles inside the matrix were prepared. The X-μCT results were edited by an image processing software regarding the geometrical properties of the particles with and without the influence of an external magnetic field. Pair correlation functions for the positions of the particles inside the elastomer were calculated to statistically characterize the distributions of the particles in the samples.

  9. Automatic change detection: does the auditory system use representations of individual stimulus features or gestalts?

    PubMed

    Deacon, D; Nousak, J M; Pilotti, M; Ritter, W; Yang, C M

    1998-07-01

    The effects of global and feature-specific probabilities of auditory stimuli were manipulated to determine their effects on the mismatch negativity (MMN) of the human event-related potential. The question of interest was whether the automatic comparison of stimuli indexed by the MMN was performed on representations of individual stimulus features or on gestalt representations of their combined attributes. The design of the study was such that both feature and gestalt representations could have been available to the comparator mechanism generating the MMN. The data were consistent with the interpretation that the MMN was generated following an analysis of stimulus features.

  10. Impact of cercal air currents on singing motor pattern generation in the cricket (Gryllus bimaculatus DeGeer)

    PubMed Central

    2015-01-01

    The cercal system of crickets detects low-frequency air currents produced by approaching predators and self-generated air currents during singing, which may provide sensory feedback to the singing motor network. We analyzed the effect of cercal stimulation on singing motor pattern generation to reveal the response of a singing interneuron to predator-like signals and to elucidate the possible role of self-generated air currents during singing. In fictive singing males, we recorded an interneuron of the singing network while applying air currents to the cerci; additionally, we analyzed the effect of abolishing the cercal system in freely singing males. In fictively singing crickets, the effect of short air stimuli is either to terminate prematurely or to lengthen the interchirp interval, depending on their phase in the chirp cycle. Within our stimulation paradigm, air stimuli of different velocities and durations always elicited an inhibitory postsynaptic potential in the singing interneuron. Current injection in the singing interneuron elicited singing motor activity, even during the air current-evoked inhibitory input from the cercal pathway. The disruptive effects of air stimuli on the fictive singing pattern and the inhibitory response of the singing interneuron point toward the cercal system being involved in initiating avoidance responses in singing crickets, according to the established role of cerci in a predator escape pathway. After abolishing the activity of the cercal system, the timing of natural singing activity was not significantly altered. Our study provides no evidence that self-generated cercal sensory activity has a feedback function for singing motor pattern generation. PMID:26334014

  11. The Detection of Nonplanar Surfaces in Visual Space.

    DTIC Science & Technology

    1984-03-01

    involve quasi -dotted stimuli. For example, applications may be found in fields such as air traffic control ; geophysical surveys (e.g., to distinguish a...line microcomputers. The control program was initially loaded by the experimenter from the computer’s disk O memory into its randomly addressable... experimenter and the computer carried out certain initialization segments of the control program. Next, the observer signed on at the computer terminal with a

  12. Understanding the symptoms of schizophrenia using visual scan paths.

    PubMed

    Phillips, M L; David, A S

    1994-11-01

    This paper highlights the role of the visual scan path as a physiological marker of information processing, while investigating positive symptomatology in schizophrenia. The current literature is reviewed using computer search facilities (Medline). Schizophrenics either scan or stare extensively, the latter related to negative symptoms. Schizophrenics particularly scan when viewing human faces. Scan paths in schizophrenics are important when viewing meaningful stimuli such as human faces, because of the relationship between abnormal perception of stimuli and symptomatology in these subjects.

  13. Collective Calcium Signaling of Defective Multicellular Networks

    NASA Astrophysics Data System (ADS)

    Potter, Garrett; Sun, Bo

    2015-03-01

    A communicating multicellular network processes environmental cues into collective cellular dynamics. We have previously demonstrated that, when excited by extracellular ATP, fibroblast monolayers generate correlated calcium dynamics modulated by both the stimuli and gap junction communication between the cells. However, just as a well-connected neural network may be compromised by abnormal neurons, a tissue monolayer can also be defective with cancer cells, which typically have down regulated gap junctions. To understand the collective cellular dynamics in a defective multicellular network we have studied the calcium signaling of co-cultured breast cancer cells and fibroblast cells in various concentrations of ATP delivered through microfluidic devices. Our results demonstrate that cancer cells respond faster, generate singular spikes, and are more synchronous across all stimuli concentrations. Additionally, fibroblast cells exhibit persistent calcium oscillations that increase in regularity with greater stimuli. To interpret these results we quantitatively analyzed the immunostaining of purigenic receptors and gap junction channels. The results confirm our hypothesis that collective dynamics are mainly determined by the availability of gap junction communications.

  14. Identification of novel microRNAs in Hevea brasiliensis and computational prediction of their targets

    PubMed Central

    2012-01-01

    Background Plants respond to external stimuli through fine regulation of gene expression partially ensured by small RNAs. Of these, microRNAs (miRNAs) play a crucial role. They negatively regulate gene expression by targeting the cleavage or translational inhibition of target messenger RNAs (mRNAs). In Hevea brasiliensis, environmental and harvesting stresses are known to affect natural rubber production. This study set out to identify abiotic stress-related miRNAs in Hevea using next-generation sequencing and bioinformatic analysis. Results Deep sequencing of small RNAs was carried out on plantlets subjected to severe abiotic stress using the Solexa technique. By combining the LeARN pipeline, data from the Plant microRNA database (PMRD) and Hevea EST sequences, we identified 48 conserved miRNA families already characterized in other plant species, and 10 putatively novel miRNA families. The results showed the most abundant size for miRNAs to be 24 nucleotides, except for seven families. Several MIR genes produced both 20-22 nucleotides and 23-27 nucleotides. The two miRNA class sizes were detected for both conserved and putative novel miRNA families, suggesting their functional duality. The EST databases were scanned with conserved and novel miRNA sequences. MiRNA targets were computationally predicted and analysed. The predicted targets involved in "responses to stimuli" and to "antioxidant" and "transcription activities" are presented. Conclusions Deep sequencing of small RNAs combined with transcriptomic data is a powerful tool for identifying conserved and novel miRNAs when the complete genome is not yet available. Our study provided additional information for evolutionary studies and revealed potentially specific regulation of the control of redox status in Hevea. PMID:22330773

  15. Mental transformations of spatial stimuli in humans and in monkeys: rotation vs. translocation.

    PubMed

    Nekovarova, Tereza; Nedvidek, Jan; Klement, Daniel; Rokyta, Richard; Bures, Jan

    2013-03-01

    We studied the ability of monkeys and humans to orient in one spatial frame ("response frame") according to abstract spatial stimuli presented in another spatial frame ("stimulus frame"). The stimuli were designed as simple maps of the "response space". We studied how the transformations of these stimuli affected the performance. The subjects were trained to choose a particular position in the response frame - either on a touch screen (monkeys) or on a keyboard (humans) - according to schematic spatial stimuli presented on the stimulus screen. The monkeys responded by touching one of four circles shown in corners of a rectangle displayed on the touch screen. The correct position was signaled by the stimulus ("map") presented on the stimulus screen. The map was a complementary rectangle, but only with one circle shown ("pointer"). The position of this circle indicated the correct position in the response frame. In the first experiment we only manipulated stimuli presented on the computer screen. The "map" was originally shown in the same position and orientation as the "response pattern" but later the position and the rotation of the map on the screen were changing. Such transformations of the stimuli allow us to study the mental operations that the animals performed and how particular mental transformations mutually differed. In the second experiment we tested whether the monkeys relied more on stimuli presented on the screen or on the surrounding stable environment and objects. We compared the performance of animals in tasks with rotated virtual maps in a stable surrounding environment with the performance in tasks where we rotated the surrounding frame (computer monitor), whereas the stimuli on the screen remained stable. In the third experiment we tested human subjects in analogous tests to compare the ability and cognitive strategies of monkeys and humans in this task. We showed that the mental strategies that monkeys used for orientation in one spatial frame according to the map presented in the other spatial frame depended on the type of stimulus manipulation. We demonstrated that for monkeys there was a difference between solving "mental rotation" and "mental translocation" in this experimental design. We showed that humans were able both to mentally rotate and translocate the displayed stimuli. However, the mental rotation was more difficult than mental translocation also for them. These experiments help us to understand how the monkeys perceive the abstract spatial information, create the representation of space and how they transform the information about the position obtained from one spatial frame into another. The comparison between humans and monkeys allows us to study this cognitive ability in phylogeny. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Adaptation to Variance of Stimuli in Drosophila Larva Navigation

    NASA Astrophysics Data System (ADS)

    Wolk, Jason; Gepner, Ruben; Gershow, Marc

    In order to respond to stimuli that vary over orders of magnitude while also being capable of sensing very small changes, neural systems must be capable of rapidly adapting to the variance of stimuli. We study this adaptation in Drosophila larvae responding to varying visual signals and optogenetically induced fictitious odors using an infrared illuminated arena and custom computer vision software. Larval navigational decisions (when to turn) are modeled as the output a linear-nonlinear Poisson process. The development of the nonlinear turn rate in response to changes in variance is tracked using an adaptive point process filter determining the rate of adaptation to different stimulus profiles. Supported by NIH Grant 1DP2EB022359 and NSF Grant PHY-1455015.

  17. Force sensor in simulated skin and neural model mimic tactile SAI afferent spiking response to ramp and hold stimuli

    PubMed Central

    2012-01-01

    Background The next generation of prosthetic limbs will restore sensory feedback to the nervous system by mimicking how skin mechanoreceptors, innervated by afferents, produce trains of action potentials in response to compressive stimuli. Prior work has addressed building sensors within skin substitutes for robotics, modeling skin mechanics and neural dynamics of mechanotransduction, and predicting response timing of action potentials for vibration. The effort here is unique because it accounts for skin elasticity by measuring force within simulated skin, utilizes few free model parameters for parsimony, and separates parameter fitting and model validation. Additionally, the ramp-and-hold, sustained stimuli used in this work capture the essential features of the everyday task of contacting and holding an object. Methods This systems integration effort computationally replicates the neural firing behavior for a slowly adapting type I (SAI) afferent in its temporally varying response to both intensity and rate of indentation force by combining a physical force sensor, housed in a skin-like substrate, with a mathematical model of neuronal spiking, the leaky integrate-and-fire. Comparison experiments were then conducted using ramp-and-hold stimuli on both the spiking-sensor model and mouse SAI afferents. The model parameters were iteratively fit against recorded SAI interspike intervals (ISI) before validating the model to assess its performance. Results Model-predicted spike firing compares favorably with that observed for single SAI afferents. As indentation magnitude increases (1.2, 1.3, to 1.4 mm), mean ISI decreases from 98.81 ± 24.73, 54.52 ± 6.94, to 41.11 ± 6.11 ms. Moreover, as rate of ramp-up increases, ISI during ramp-up decreases from 21.85 ± 5.33, 19.98 ± 3.10, to 15.42 ± 2.41 ms. Considering first spikes, the predicted latencies exhibited a decreasing trend as stimulus rate increased, as is observed in afferent recordings. Finally, the SAI afferent’s characteristic response of producing irregular ISIs is shown to be controllable via manipulating the output filtering from the sensor or adding stochastic noise. Conclusions This integrated engineering approach extends prior works focused upon neural dynamics and vibration. Future efforts will perfect measures of performance, such as first spike latency and irregular ISIs, and link the generation of characteristic features within trains of action potentials with current pulse waveforms that stimulate single action potentials at the peripheral afferent. PMID:22824523

  18. Computing the Local Field Potential (LFP) from Integrate-and-Fire Network Models.

    PubMed

    Mazzoni, Alberto; Lindén, Henrik; Cuntz, Hermann; Lansner, Anders; Panzeri, Stefano; Einevoll, Gaute T

    2015-12-01

    Leaky integrate-and-fire (LIF) network models are commonly used to study how the spiking dynamics of neural networks changes with stimuli, tasks or dynamic network states. However, neurophysiological studies in vivo often rather measure the mass activity of neuronal microcircuits with the local field potential (LFP). Given that LFPs are generated by spatially separated currents across the neuronal membrane, they cannot be computed directly from quantities defined in models of point-like LIF neurons. Here, we explore the best approximation for predicting the LFP based on standard output from point-neuron LIF networks. To search for this best "LFP proxy", we compared LFP predictions from candidate proxies based on LIF network output (e.g, firing rates, membrane potentials, synaptic currents) with "ground-truth" LFP obtained when the LIF network synaptic input currents were injected into an analogous three-dimensional (3D) network model of multi-compartmental neurons with realistic morphology, spatial distributions of somata and synapses. We found that a specific fixed linear combination of the LIF synaptic currents provided an accurate LFP proxy, accounting for most of the variance of the LFP time course observed in the 3D network for all recording locations. This proxy performed well over a broad set of conditions, including substantial variations of the neuronal morphologies. Our results provide a simple formula for estimating the time course of the LFP from LIF network simulations in cases where a single pyramidal population dominates the LFP generation, and thereby facilitate quantitative comparison between computational models and experimental LFP recordings in vivo.

  19. Computing the Local Field Potential (LFP) from Integrate-and-Fire Network Models

    PubMed Central

    Cuntz, Hermann; Lansner, Anders; Panzeri, Stefano; Einevoll, Gaute T.

    2015-01-01

    Leaky integrate-and-fire (LIF) network models are commonly used to study how the spiking dynamics of neural networks changes with stimuli, tasks or dynamic network states. However, neurophysiological studies in vivo often rather measure the mass activity of neuronal microcircuits with the local field potential (LFP). Given that LFPs are generated by spatially separated currents across the neuronal membrane, they cannot be computed directly from quantities defined in models of point-like LIF neurons. Here, we explore the best approximation for predicting the LFP based on standard output from point-neuron LIF networks. To search for this best “LFP proxy”, we compared LFP predictions from candidate proxies based on LIF network output (e.g, firing rates, membrane potentials, synaptic currents) with “ground-truth” LFP obtained when the LIF network synaptic input currents were injected into an analogous three-dimensional (3D) network model of multi-compartmental neurons with realistic morphology, spatial distributions of somata and synapses. We found that a specific fixed linear combination of the LIF synaptic currents provided an accurate LFP proxy, accounting for most of the variance of the LFP time course observed in the 3D network for all recording locations. This proxy performed well over a broad set of conditions, including substantial variations of the neuronal morphologies. Our results provide a simple formula for estimating the time course of the LFP from LIF network simulations in cases where a single pyramidal population dominates the LFP generation, and thereby facilitate quantitative comparison between computational models and experimental LFP recordings in vivo. PMID:26657024

  20. Training Signaling Pathway Maps to Biochemical Data with Constrained Fuzzy Logic: Quantitative Analysis of Liver Cell Responses to Inflammatory Stimuli

    PubMed Central

    Morris, Melody K.; Saez-Rodriguez, Julio; Clarke, David C.; Sorger, Peter K.; Lauffenburger, Douglas A.

    2011-01-01

    Predictive understanding of cell signaling network operation based on general prior knowledge but consistent with empirical data in a specific environmental context is a current challenge in computational biology. Recent work has demonstrated that Boolean logic can be used to create context-specific network models by training proteomic pathway maps to dedicated biochemical data; however, the Boolean formalism is restricted to characterizing protein species as either fully active or inactive. To advance beyond this limitation, we propose a novel form of fuzzy logic sufficiently flexible to model quantitative data but also sufficiently simple to efficiently construct models by training pathway maps on dedicated experimental measurements. Our new approach, termed constrained fuzzy logic (cFL), converts a prior knowledge network (obtained from literature or interactome databases) into a computable model that describes graded values of protein activation across multiple pathways. We train a cFL-converted network to experimental data describing hepatocytic protein activation by inflammatory cytokines and demonstrate the application of the resultant trained models for three important purposes: (a) generating experimentally testable biological hypotheses concerning pathway crosstalk, (b) establishing capability for quantitative prediction of protein activity, and (c) prediction and understanding of the cytokine release phenotypic response. Our methodology systematically and quantitatively trains a protein pathway map summarizing curated literature to context-specific biochemical data. This process generates a computable model yielding successful prediction of new test data and offering biological insight into complex datasets that are difficult to fully analyze by intuition alone. PMID:21408212

  1. Cortical plasticity as a mechanism for storing Bayesian priors in sensory perception.

    PubMed

    Köver, Hania; Bao, Shaowen

    2010-05-05

    Human perception of ambiguous sensory signals is biased by prior experiences. It is not known how such prior information is encoded, retrieved and combined with sensory information by neurons. Previous authors have suggested dynamic encoding mechanisms for prior information, whereby top-down modulation of firing patterns on a trial-by-trial basis creates short-term representations of priors. Although such a mechanism may well account for perceptual bias arising in the short-term, it does not account for the often irreversible and robust changes in perception that result from long-term, developmental experience. Based on the finding that more frequently experienced stimuli gain greater representations in sensory cortices during development, we reasoned that prior information could be stored in the size of cortical sensory representations. For the case of auditory perception, we use a computational model to show that prior information about sound frequency distributions may be stored in the size of primary auditory cortex frequency representations, read-out by elevated baseline activity in all neurons and combined with sensory-evoked activity to generate a perception that conforms to Bayesian integration theory. Our results suggest an alternative neural mechanism for experience-induced long-term perceptual bias in the context of auditory perception. They make the testable prediction that the extent of such perceptual prior bias is modulated by both the degree of cortical reorganization and the magnitude of spontaneous activity in primary auditory cortex. Given that cortical over-representation of frequently experienced stimuli, as well as perceptual bias towards such stimuli is a common phenomenon across sensory modalities, our model may generalize to sensory perception, rather than being specific to auditory perception.

  2. A Comparison of Solver Performance for Complex Gastric Electrophysiology Models

    PubMed Central

    Sathar, Shameer; Cheng, Leo K.; Trew, Mark L.

    2016-01-01

    Computational techniques for solving systems of equations arising in gastric electrophysiology have not been studied for efficient solution process. We present a computationally challenging problem of simulating gastric electrophysiology in anatomically realistic stomach geometries with multiple intracellular and extracellular domains. The multiscale nature of the problem and mesh resolution required to capture geometric and functional features necessitates efficient solution methods if the problem is to be tractable. In this study, we investigated and compared several parallel preconditioners for the linear systems arising from tetrahedral discretisation of electrically isotropic and anisotropic problems, with and without stimuli. The results showed that the isotropic problem was computationally less challenging than the anisotropic problem and that the application of extracellular stimuli increased workload considerably. Preconditioning based on block Jacobi and algebraic multigrid solvers were found to have the best overall solution times and least iteration counts, respectively. The algebraic multigrid preconditioner would be expected to perform better on large problems. PMID:26736543

  3. A Direct Examination of the Effect of Intranasal Administration of Oxytocin on Approach-Avoidance Motor Responses to Emotional Stimuli

    PubMed Central

    Theodoridou, Angeliki; Penton-Voak, Ian S.; Rowe, Angela C.

    2013-01-01

    Oxytocin has been shown to promote a host of social behaviors in humans but the exact mechanisms by which it exerts its effects are unspecified. One prominent theory suggests that oxytocin increases approach and decreases avoidance to social stimuli. Another dominant theory posits that oxytocin increases the salience of social stimuli. Herein, we report a direct test of these hypotheses. In a double-blind, placebo-controlled study we examined approach-avoidance motor responses to social and non-social emotional stimuli. One hundred and twenty participants self-administered either 24 IU oxytocin or placebo and moved a lever toward or away from pictures of faces depicting emotional expressions or from natural scenes appearing before them on a computer screen. Lever movements toward stimuli decreased and movements away increased stimuli size producing the illusion that stimuli moved away from or approached participants. Reaction time data were recorded. The task produced the effects that were anticipated on the basis of the approach-avoidance literature in relation to emotional stimuli, yet the anticipated speeded approach and slowed avoidance responses to emotional faces by the oxytocin group were not observed. Interestingly, the oxytocin treatment group was faster to approach and avoid faces depicting disgust relative to the placebo group, suggesting a salience of disgust for the former group. Results also showed that within the oxytocin group women's reaction times to all emotional faces were faster than those of men, suggesting sex specific effects of oxytocin. The present findings provide the first direct evidence that intranasal oxytocin administration does not enhance approach/avoidance to social stimuli and does not exert a stronger effect on social vs. non-social stimuli in the context of processing of emotional expressions and scenes. Instead, our data suggest that oxytocin administration increases the salience of certain social stimuli and point to a possible role for oxytocin in behavioral prophylaxis. PMID:23469148

  4. A direct examination of the effect of intranasal administration of oxytocin on approach-avoidance motor responses to emotional stimuli.

    PubMed

    Theodoridou, Angeliki; Penton-Voak, Ian S; Rowe, Angela C

    2013-01-01

    Oxytocin has been shown to promote a host of social behaviors in humans but the exact mechanisms by which it exerts its effects are unspecified. One prominent theory suggests that oxytocin increases approach and decreases avoidance to social stimuli. Another dominant theory posits that oxytocin increases the salience of social stimuli. Herein, we report a direct test of these hypotheses. In a double-blind, placebo-controlled study we examined approach-avoidance motor responses to social and non-social emotional stimuli. One hundred and twenty participants self-administered either 24 IU oxytocin or placebo and moved a lever toward or away from pictures of faces depicting emotional expressions or from natural scenes appearing before them on a computer screen. Lever movements toward stimuli decreased and movements away increased stimuli size producing the illusion that stimuli moved away from or approached participants. Reaction time data were recorded. The task produced the effects that were anticipated on the basis of the approach-avoidance literature in relation to emotional stimuli, yet the anticipated speeded approach and slowed avoidance responses to emotional faces by the oxytocin group were not observed. Interestingly, the oxytocin treatment group was faster to approach and avoid faces depicting disgust relative to the placebo group, suggesting a salience of disgust for the former group. Results also showed that within the oxytocin group women's reaction times to all emotional faces were faster than those of men, suggesting sex specific effects of oxytocin. The present findings provide the first direct evidence that intranasal oxytocin administration does not enhance approach/avoidance to social stimuli and does not exert a stronger effect on social vs. non-social stimuli in the context of processing of emotional expressions and scenes. Instead, our data suggest that oxytocin administration increases the salience of certain social stimuli and point to a possible role for oxytocin in behavioral prophylaxis.

  5. Stimulating human accommodation without changes in focus.

    PubMed

    Weiss, Monika; Seidemann, Anne; Schaeffel, Frank

    2004-05-01

    Inspired by the finding in chickens that preferential stimulation of the ON retinal system suppresses myopia induced by negative spectacle lens wear and that stimulation of the OFF system suppresses the hyperopia induced by positive lens wear, we sought to determine whether stimulation of the ON-OFF retinal systems could drive directional accommodation responses in humans. If emmetropisation and accommodation use similar image processing algorithms, more accommodation would be expected with OFF stimulation. Accommodation responses were measured while viewing a computer-generated pattern designed to stimulate the ON-OFF systems. The stimulus comprised a rectangular field (12 x 9.5 cm) on a black background filled with 196 discs (diameters: 0.4-1.0 cm). These were presented on an LCD monitor in a dark room at a viewing distance of 55 cm (1.8 D). Thirteen subjects aged 21-37 years took part. The individual discs had saw-tooth shaped temporal luminance profiles with the same time period but with random phases with respect to each other, so that the mean brightness of the stimulus was constant. To eliminate accommodation responses based on other cues (i.e. proximity) a 0.5 mm artificial pupil was used to open the accommodation loop. Refraction in the vertical pupil meridian was continuously recorded with an infrared photorefractor (the PowerRefractor). To verify that computer-based stimuli presented within our experimental design were effective in driving accommodation, previously studied stimuli were also tested: changes in size (looming) and incremental low pass filtering. Preferential stimulation of the ON or OFF subsystems produced a convincing depth illusion in all subjects (which was psychophysically confirmed in four subjects). Although the stimulus appeared to move in depth it did not produce accommodation responses that were consistent with that, i.e. the accommodation system did not appear to fluctuate in rhythm with the temporal oscillations of the stimulus. As the target appeared to loom it induced a greater accommodation response then when it appeared to recede. The looming target produced changes in the accommodation response in nine of 13 subjects that were consistent with its perceived change in proximity (although the target did not actually move in depth). Incremental low pass filtering produced non-directional drifts of accommodation in all subjects. Combinations of the stimuli (i.e. looming and low pass filtering, ON/OFF and looming) were not more effective stimuli to accommodation. After removal of the artificial pupil (closed loop conditions), accommodation was no longer induced with any of these stimuli. Although the preferential ON or OFF stimulation produced a pronounced illusion of motion in depth despite constant average brightness, proximal accommodation was induced in only one subject. Therefore, the ON/OFF stimulation appeared to have only minor input into proximal accommodation. Potential inputs into reflex accommodation need to be defined in further studies.

  6. Stimuli Influencing Small Business Owner Adoption of a Software-as-a-Service Solution: A Quantitative Study

    ERIC Educational Resources Information Center

    Cianciotta, Michael A.

    2016-01-01

    Cloud computing has moved beyond the early adoption phase and recent trends demonstrate encouraging adoption rates. This utility-based computing model offers significant IT flexibility and potential for cost savings for organizations of all sizes, but may be the most attractive to small businesses because of limited capital to fund required…

  7. Effects of Computer Skill on Mouse Move and Click Performance

    ERIC Educational Resources Information Center

    Panagiotakopoulos, Chris; Sarris, Menelaos

    2008-01-01

    This study focuses on the use of computers in the field of education. It reports a series of experimental mouse move and click tasks on constant and moving stimuli. These experiments attempt to explore the efficiency with which individuals of different skill level and age group perform using a mouse. Differences in performance between high-skill…

  8. Digging deeper on "deep" learning: A computational ecology approach.

    PubMed

    Buscema, Massimo; Sacco, Pier Luigi

    2017-01-01

    We propose an alternative approach to "deep" learning that is based on computational ecologies of structurally diverse artificial neural networks, and on dynamic associative memory responses to stimuli. Rather than focusing on massive computation of many different examples of a single situation, we opt for model-based learning and adaptive flexibility. Cross-fertilization of learning processes across multiple domains is the fundamental feature of human intelligence that must inform "new" artificial intelligence.

  9. Using RGB displays to portray color realistic imagery to animal eyes

    PubMed Central

    Johnsen, Sönke

    2017-01-01

    Abstract RGB displays effectively simulate millions of colors in the eyes of humans by modulating the relative amount of light emitted by 3 differently colored juxtaposed lights (red, green, and blue). The relationship between the ratio of red, green, and blue light and the perceptual experience of that light has been well defined by psychophysical experiments in humans, but is unknown in animals. The perceptual experience of an animal looking at an RGB display of imagery designed for humans is likely to poorly represent an animal’s experience of the same stimulus in the real world. This is due, in part, to the fact that many animals have different numbers of photoreceptor classes than humans do and that their photoreceptor classes have peak sensitivities centered over different parts of the ultraviolet and visible spectrum. However, it is sometimes possible to generate videos that accurately mimic natural stimuli in the eyes of another animal, even if that animal’s sensitivity extends into the ultraviolet portion of the spectrum. How independently each RGB phosphor stimulates each of an animal’s photoreceptor classes determines the range of colors that can be simulated for that animal. What is required to determine optimal color rendering for another animal is a device capable of measuring absolute or relative quanta of light across the portion of the spectrum visible to the animal (i.e., a spectrometer), and data on the spectral sensitivities of the animal’s photoreceptor classes. In this article, we outline how to use such equipment and information to generate video stimuli that mimic, as closely as possible, an animal’s color perceptual experience of real-world objects. Key words: color vision, computer animation, perception, video playback, virtual reality. PMID:29491960

  10. Spinal motor control system incorporates an internal model of limb dynamics.

    PubMed

    Shimansky, Y P

    2000-10-01

    The existence and utilization of an internal representation of the controlled object is one of the most important features of the functioning of neural motor control systems. This study demonstrates that this property already exists at the level of the spinal motor control system (SMCS), which is capable of generating motor patterns for reflex rhythmic movements, such as locomotion and scratching, without the aid of the peripheral afferent feedback, but substantially modifies the generated activity in response to peripheral afferent stimuli. The SMCS is presented as an optimal control system whose optimality requires that it incorporate an internal model (IM) of the controlled object's dynamics. A novel functional mechanism for the integration of peripheral sensory signals with the corresponding predictive output from the IM, the summation of information precision (SIP) is proposed. In contrast to other models in which the correction of the internal representation of the controlled object's state is based on the calculation of a mismatch between the internal and external information sources, the SIP mechanism merges the information from these sources in order to optimize the precision of the controlled object's state estimate. It is demonstrated, based on scratching in decerebrate cats as an example of the spinal control of goal-directed movements, that the results of computer modeling agree with the experimental observations related to the SMCS's reactions to phasic and tonic peripheral afferent stimuli. It is also shown that the functional requirements imposed by the mathematical model of the SMCS comply with the current knowledge about the related properties of spinal neuronal circuitry. The crucial role of the spinal presynaptic inhibition mechanism in the neuronal implementation of SIP is elucidated. Important differences between the IM and a state predictor employed for compensating for a neural reflex time delay are discussed.

  11. Do dichromats see colours in this way? Assessing simulation tools without colorimetric measurements.

    PubMed

    Lillo Jover, Julio A; Álvaro Llorente, Leticia; Moreira Villegas, Humberto; Melnikova, Anna

    2016-11-01

    Simulcheck evaluates Colour Simulation Tools (CSTs, they transform colours to mimic those seen by colour vision deficients). Two CSTs (Variantor and Coblis) were used to know if the standard Simulcheck version (direct measurement based, DMB) can be substituted by another (RGB values based) not requiring sophisticated measurement instruments. Ten normal trichromats performed the two psychophysical tasks included in the Simulcheck method. The Pseudoachromatic Stimuli Identification task provided the h uv (hue angle) values of the pseudoachromatic stimuli: colours seen as red or green by normal trichromats but as grey by colour deficient people. The Minimum Achromatic Contrast task was used to compute the L R (relative luminance) values of the pseudoachromatic stimuli. Simulcheck DMB version showed that Variantor was accurate to simulate protanopia but neither Variantor nor Coblis were accurate to simulate deuteranopia. Simulcheck RGB version provided accurate h uv values, so this variable can be adequately estimated when lacking a colorimeter —an expensive and unusual apparatus—. Contrary, the inaccuracy of the L R estimations provided by Simulcheck RGB version makes it advisable to compute this variable from the measurements performed with a photometer, a cheap and easy to find apparatus.

  12. Task-specific performance effects with different numeric keypad layouts.

    PubMed

    Armand, Jenny T; Redick, Thomas S; Poulsen, Joan R

    2014-07-01

    Two commonly used keypad arrangements are the telephone and calculator layouts. The purpose of this study was to determine if entering different types of numeric information was quicker and more accurate with the telephone or the calculator layout on a computer keyboard numeric keypad. Fifty-seven participants saw a 10-digit numeric stimulus to type with a computer number keypad as quickly and as accurately as possible. Stimuli were presented in either a numerical [1,234,567,890] or phone [(123) 456-7890] format. The results indicated that participants' memory of the layout for the arrangement of keys on a telephone was significantly better than the layout of a calculator. In addition, the results showed that participants were more accurate when entering stimuli using the calculator keypad layout. Critically, participants' response times showed an interaction of stimulus format and keypad layout: participants were specifically slowed when entering numeric stimuli using a telephone keypad layout. Responses made using the middle row of keys were faster and more accurate than responses using the top and bottom row of keys. Implications for keypad design and cell phone usage are discussed. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  13. Bayesian Mapping Reveals That Attention Boosts Neural Responses to Predicted and Unpredicted Stimuli.

    PubMed

    Garrido, Marta I; Rowe, Elise G; Halász, Veronika; Mattingley, Jason B

    2018-05-01

    Predictive coding posits that the human brain continually monitors the environment for regularities and detects inconsistencies. It is unclear, however, what effect attention has on expectation processes, as there have been relatively few studies and the results of these have yielded contradictory findings. Here, we employed Bayesian model comparison to adjudicate between 2 alternative computational models. The "Opposition" model states that attention boosts neural responses equally to predicted and unpredicted stimuli, whereas the "Interaction" model assumes that attentional boosting of neural signals depends on the level of predictability. We designed a novel, audiospatial attention task that orthogonally manipulated attention and prediction by playing oddball sequences in either the attended or unattended ear. We observed sensory prediction error responses, with electroencephalography, across all attentional manipulations. Crucially, posterior probability maps revealed that, overall, the Opposition model better explained scalp and source data, suggesting that attention boosts responses to predicted and unpredicted stimuli equally. Furthermore, Dynamic Causal Modeling showed that these Opposition effects were expressed in plastic changes within the mismatch negativity network. Our findings provide empirical evidence for a computational model of the opposing interplay of attention and expectation in the brain.

  14. Deep Belief Networks Learn Context Dependent Behavior

    PubMed Central

    Raudies, Florian; Zilli, Eric A.; Hasselmo, Michael E.

    2014-01-01

    With the goal of understanding behavioral mechanisms of generalization, we analyzed the ability of neural networks to generalize across context. We modeled a behavioral task where the correct responses to a set of specific sensory stimuli varied systematically across different contexts. The correct response depended on the stimulus (A,B,C,D) and context quadrant (1,2,3,4). The possible 16 stimulus-context combinations were associated with one of two responses (X,Y), one of which was correct for half of the combinations. The correct responses varied symmetrically across contexts. This allowed responses to previously unseen stimuli (probe stimuli) to be generalized from stimuli that had been presented previously. By testing the simulation on two or more stimuli that the network had never seen in a particular context, we could test whether the correct response on the novel stimuli could be generated based on knowledge of the correct responses in other contexts. We tested this generalization capability with a Deep Belief Network (DBN), Multi-Layer Perceptron (MLP) network, and the combination of a DBN with a linear perceptron (LP). Overall, the combination of the DBN and LP had the highest success rate for generalization. PMID:24671178

  15. Perception of chemesthetic stimuli in groups who differ by food involvement and culinary experience.

    PubMed

    Byrnes, Nadia; Loss, Christopher R; Hayes, John E

    2015-12-01

    In the English language, there is generally a limited lexicon when referring to the sensations elicited by chemesthetic stimuli like capsaicin, allyl isothiocyanate, and eugenol, the orally irritating compounds found in chiles, wasabi, and cloves, respectively. Elsewhere, experts and novices have been shown to use language differently, with experts using more precise language. Here, we compare perceptual maps and word usage across three cohorts: experts with formal culinary education, naïve individuals with high Food Involvement Scale (FIS) scores, and naïve individuals with low FIS scores. We hypothesized that increased experience with foods, whether through informal experiential learning or formal culinary education, would have a significant influence on the perceptual maps generated from a sorting task conducted with chemesthetic stimuli, as well as on language use in a descriptive follow-up task to this sorting task. The low- and highFIS non-expert cohorts generated significantly similar maps, though in other respects the highFIS cohort was an intermediate between the lowFIS and expert cohorts. The highFIS and expert cohorts generated more attributes but used language more idiosyncratically than the lowFIS group. Overall, the results from the expert group with formal culinary education differed from the two naïve cohorts both in the perceptual map generated using MDS as well as the mean number of attributes generated. Present data suggest that both formal education and informal experiential learning result in lexical development, but the level and type of learning can have a significant influence on language use and the approach to a sorting task.

  16. Perception of chemesthetic stimuli in groups who differ by food involvement and culinary experience

    PubMed Central

    Byrnes, Nadia; Loss, Christopher R.; Hayes, John E.

    2015-01-01

    In the English language, there is generally a limited lexicon when referring to the sensations elicited by chemesthetic stimuli like capsaicin, allyl isothiocyanate, and eugenol, the orally irritating compounds found in chiles, wasabi, and cloves, respectively. Elsewhere, experts and novices have been shown to use language differently, with experts using more precise language. Here, we compare perceptual maps and word usage across three cohorts: experts with formal culinary education, naïve individuals with high Food Involvement Scale (FIS) scores, and naïve individuals with low FIS scores. We hypothesized that increased experience with foods, whether through informal experiential learning or formal culinary education, would have a significant influence on the perceptual maps generated from a sorting task conducted with chemesthetic stimuli, as well as on language use in a descriptive follow-up task to this sorting task. The low- and highFIS non-expert cohorts generated significantly similar maps, though in other respects the highFIS cohort was an intermediate between the lowFIS and expert cohorts. The highFIS and expert cohorts generated more attributes but used language more idiosyncratically than the lowFIS group. Overall, the results from the expert group with formal culinary education differed from the two naïve cohorts both in the perceptual map generated using MDS as well as the mean number of attributes generated. Present data suggest that both formal education and informal experiential learning result in lexical development, but the level and type of learning can have a significant influence on language use and the approach to a sorting task. PMID:26516297

  17. Spatiotemporal discrimination in neural networks with short-term synaptic plasticity

    NASA Astrophysics Data System (ADS)

    Shlaer, Benjamin; Miller, Paul

    2015-03-01

    Cells in recurrently connected neural networks exhibit bistability, which allows for stimulus information to persist in a circuit even after stimulus offset, i.e. short-term memory. However, such a system does not have enough hysteresis to encode temporal information about the stimuli. The biophysically described phenomenon of synaptic depression decreases synaptic transmission strengths due to increased presynaptic activity. This short-term reduction in synaptic strengths can destabilize attractor states in excitatory recurrent neural networks, causing the network to move along stimulus dependent dynamical trajectories. Such a network can successfully separate amplitudes and durations of stimuli from the number of successive stimuli. Stimulus number, duration and intensity encoding in randomly connected attractor networks with synaptic depression. Front. Comput. Neurosci. 7:59., and so provides a strong candidate network for the encoding of spatiotemporal information. Here we explicitly demonstrate the capability of a recurrent neural network with short-term synaptic depression to discriminate between the temporal sequences in which spatial stimuli are presented.

  18. The lawful imprecision of human surface tilt estimation in natural scenes

    PubMed Central

    2018-01-01

    Estimating local surface orientation (slant and tilt) is fundamental to recovering the three-dimensional structure of the environment. It is unknown how well humans perform this task in natural scenes. Here, with a database of natural stereo-images having groundtruth surface orientation at each pixel, we find dramatic differences in human tilt estimation with natural and artificial stimuli. Estimates are precise and unbiased with artificial stimuli and imprecise and strongly biased with natural stimuli. An image-computable Bayes optimal model grounded in natural scene statistics predicts human bias, precision, and trial-by-trial errors without fitting parameters to the human data. The similarities between human and model performance suggest that the complex human performance patterns with natural stimuli are lawful, and that human visual systems have internalized local image and scene statistics to optimally infer the three-dimensional structure of the environment. These results generalize our understanding of vision from the lab to the real world. PMID:29384477

  19. The lawful imprecision of human surface tilt estimation in natural scenes.

    PubMed

    Kim, Seha; Burge, Johannes

    2018-01-31

    Estimating local surface orientation (slant and tilt) is fundamental to recovering the three-dimensional structure of the environment. It is unknown how well humans perform this task in natural scenes. Here, with a database of natural stereo-images having groundtruth surface orientation at each pixel, we find dramatic differences in human tilt estimation with natural and artificial stimuli. Estimates are precise and unbiased with artificial stimuli and imprecise and strongly biased with natural stimuli. An image-computable Bayes optimal model grounded in natural scene statistics predicts human bias, precision, and trial-by-trial errors without fitting parameters to the human data. The similarities between human and model performance suggest that the complex human performance patterns with natural stimuli are lawful, and that human visual systems have internalized local image and scene statistics to optimally infer the three-dimensional structure of the environment. These results generalize our understanding of vision from the lab to the real world. © 2018, Kim et al.

  20. More superimposition for contrast-modulated than luminance-modulated stimuli during binocular rivalry.

    PubMed

    Skerswetat, Jan; Formankiewicz, Monika A; Waugh, Sarah J

    2018-01-01

    Luminance-modulated noise (LM) and contrast-modulated noise (CM) gratings were presented with interocularly correlated, uncorrelated and anti-correlated binary noise to investigate their contributions to mixed percepts, specifically piecemeal and superimposition, during binocular rivalry. Stimuli were sine-wave gratings of 2 c/deg presented within 2 deg circular apertures. The LM stimulus contrast was 0.1 and the CM stimulus modulation depth was 1.0, equating to approximately 5 and 7 times detection threshold, respectively. Twelve 45 s trials, per noise configuration, were carried out. Fifteen participants with normal vision indicated via button presses whether an exclusive, piecemeal or superimposed percept was seen. For all noise conditions LM stimuli generated more exclusive visibility, and lower proportions of superimposition. CM stimuli led to greater proportions and longer periods of superimposition. For both stimulus types, correlated interocular noise generated more superimposition than did anti- or uncorrelated interocular noise. No significant effect of stimulus type (LM vs CM) or noise configuration (correlated, uncorrelated, anti-correlated) on piecemeal perception was found. Exclusive visibility was greater in proportion, and perceptual changes more numerous, during binocular rivalry for CM stimuli when interocular noise was not correlated. This suggests that mutual inhibition, initiated by non-correlated noise CM gratings, occurs between neurons processing luminance noise (first-order component), as well as those processing gratings (second-order component). Therefore, first- and second-order components can contribute to overall binocular rivalry responses. We suggest the addition of a new well to the current energy landscape model for binocular rivalry that takes superimposition into account. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A simple handheld pupillometer for chromatic Flicker studies

    NASA Astrophysics Data System (ADS)

    Bernabei, M.; Tinarelli, R.; Peretto, L.; Rovati, L.

    2014-02-01

    A portable pupillometer has been developed which is capable of performing accurate measurements of the pupil diameter during chromatic flicker stimulations. The handheld measuring system records the near-infrared image of the pupil at the rate of 25 fps and simultaneously stimulates the eye using a diffused flicker light generated by light emitting diodes (LEDs). Intensity, frequency and chromatic coordinates of the stimulus can be easily adjusted using a user-friendly graphical interface. Thanks to a chromatic monitoring of the stimulus close to the plane of the eye, photopically matched conditions can be easily achieved. The pupil diameter/area can be measured during flickering stimuli that are generated with frequency in a range of 0.1-20 Hz. The electronic unit, properly connected to the personal computer through a USB port, drives the optical unit, which can be easily held in a hand. The software interface controlling the system was developed in LabVIEW. This paper describes the instrument optical setup, front-end electronics and data processing. Moreover preliminary results obtained on a voluntary are reported.

  2. The species translation challenge—A systems biology perspective on human and rat bronchial epithelial cells

    PubMed Central

    Poussin, Carine; Mathis, Carole; Alexopoulos, Leonidas G; Messinis, Dimitris E; Dulize, Rémi H J; Belcastro, Vincenzo; Melas, Ioannis N; Sakellaropoulos, Theodore; Rhrissorrakrai, Kahn; Bilal, Erhan; Meyer, Pablo; Talikka, Marja; Boué, Stéphanie; Norel, Raquel; Rice, John J; Stolovitzky, Gustavo; Ivanov, Nikolai V; Peitsch, Manuel C; Hoeng, Julia

    2014-01-01

    The biological responses to external cues such as drugs, chemicals, viruses and hormones, is an essential question in biomedicine and in the field of toxicology, and cannot be easily studied in humans. Thus, biomedical research has continuously relied on animal models for studying the impact of these compounds and attempted to ‘translate’ the results to humans. In this context, the SBV IMPROVER (Systems Biology Verification for Industrial Methodology for PROcess VErification in Research) collaborative initiative, which uses crowd-sourcing techniques to address fundamental questions in systems biology, invited scientists to deploy their own computational methodologies to make predictions on species translatability. A multi-layer systems biology dataset was generated that was comprised of phosphoproteomics, transcriptomics and cytokine data derived from normal human (NHBE) and rat (NRBE) bronchial epithelial cells exposed in parallel to more than 50 different stimuli under identical conditions. The present manuscript describes in detail the experimental settings, generation, processing and quality control analysis of the multi-layer omics dataset accessible in public repositories for further intra- and inter-species translation studies. PMID:25977767

  3. The species translation challenge-a systems biology perspective on human and rat bronchial epithelial cells.

    PubMed

    Poussin, Carine; Mathis, Carole; Alexopoulos, Leonidas G; Messinis, Dimitris E; Dulize, Rémi H J; Belcastro, Vincenzo; Melas, Ioannis N; Sakellaropoulos, Theodore; Rhrissorrakrai, Kahn; Bilal, Erhan; Meyer, Pablo; Talikka, Marja; Boué, Stéphanie; Norel, Raquel; Rice, John J; Stolovitzky, Gustavo; Ivanov, Nikolai V; Peitsch, Manuel C; Hoeng, Julia

    2014-01-01

    The biological responses to external cues such as drugs, chemicals, viruses and hormones, is an essential question in biomedicine and in the field of toxicology, and cannot be easily studied in humans. Thus, biomedical research has continuously relied on animal models for studying the impact of these compounds and attempted to 'translate' the results to humans. In this context, the SBV IMPROVER (Systems Biology Verification for Industrial Methodology for PROcess VErification in Research) collaborative initiative, which uses crowd-sourcing techniques to address fundamental questions in systems biology, invited scientists to deploy their own computational methodologies to make predictions on species translatability. A multi-layer systems biology dataset was generated that was comprised of phosphoproteomics, transcriptomics and cytokine data derived from normal human (NHBE) and rat (NRBE) bronchial epithelial cells exposed in parallel to more than 50 different stimuli under identical conditions. The present manuscript describes in detail the experimental settings, generation, processing and quality control analysis of the multi-layer omics dataset accessible in public repositories for further intra- and inter-species translation studies.

  4. Is the perception of 3D shape from shading based on assumed reflectance and illumination?

    PubMed

    Todd, James T; Egan, Eric J L; Phillips, Flip

    2014-01-01

    The research described in the present article was designed to compare three types of image shading: one generated with a Lambertian BRDF and homogeneous illumination such that image intensity was determined entirely by local surface orientation irrespective of position; one that was textured with a linear intensity gradient, such that image intensity was determined entirely by local surface position irrespective of orientation; and another that was generated with a Lambertian BRDF and inhomogeneous illumination such that image intensity was influenced by both position and orientation. A gauge figure adjustment task was used to measure observers' perceptions of local surface orientation on the depicted surfaces, and the probe points included 60 pairs of regions that both had the same orientation. The results show clearly that observers' perceptions of these three types of stimuli were remarkably similar, and that probe regions with similar apparent orientations could have large differences in image intensity. This latter finding is incompatible with any process for computing shape from shading that assumes any plausible reflectance function combined with any possible homogeneous illumination.

  5. Is the perception of 3D shape from shading based on assumed reflectance and illumination?

    PubMed Central

    Todd, James T.; Egan, Eric J. L.; Phillips, Flip

    2014-01-01

    The research described in the present article was designed to compare three types of image shading: one generated with a Lambertian BRDF and homogeneous illumination such that image intensity was determined entirely by local surface orientation irrespective of position; one that was textured with a linear intensity gradient, such that image intensity was determined entirely by local surface position irrespective of orientation; and another that was generated with a Lambertian BRDF and inhomogeneous illumination such that image intensity was influenced by both position and orientation. A gauge figure adjustment task was used to measure observers' perceptions of local surface orientation on the depicted surfaces, and the probe points included 60 pairs of regions that both had the same orientation. The results show clearly that observers' perceptions of these three types of stimuli were remarkably similar, and that probe regions with similar apparent orientations could have large differences in image intensity. This latter finding is incompatible with any process for computing shape from shading that assumes any plausible reflectance function combined with any possible homogeneous illumination. PMID:26034561

  6. Seeing is believing: on the use of image databases for visually exploring plant organelle dynamics.

    PubMed

    Mano, Shoji; Miwa, Tomoki; Nishikawa, Shuh-ichi; Mimura, Tetsuro; Nishimura, Mikio

    2009-12-01

    Organelle dynamics vary dramatically depending on cell type, developmental stage and environmental stimuli, so that various parameters, such as size, number and behavior, are required for the description of the dynamics of each organelle. Imaging techniques are superior to other techniques for describing organelle dynamics because these parameters are visually exhibited. Therefore, as the results can be seen immediately, investigators can more easily grasp organelle dynamics. At present, imaging techniques are emerging as fundamental tools in plant organelle research, and the development of new methodologies to visualize organelles and the improvement of analytical tools and equipment have allowed the large-scale generation of image and movie data. Accordingly, image databases that accumulate information on organelle dynamics are an increasingly indispensable part of modern plant organelle research. In addition, image databases are potentially rich data sources for computational analyses, as image and movie data reposited in the databases contain valuable and significant information, such as size, number, length and velocity. Computational analytical tools support image-based data mining, such as segmentation, quantification and statistical analyses, to extract biologically meaningful information from each database and combine them to construct models. In this review, we outline the image databases that are dedicated to plant organelle research and present their potential as resources for image-based computational analyses.

  7. Eye-gaze determination of user intent at the computer interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldberg, J.H.; Schryver, J.C.

    1993-12-31

    Determination of user intent at the computer interface through eye-gaze monitoring can significantly aid applications for the disabled, as well as telerobotics and process control interfaces. Whereas current eye-gaze control applications are limited to object selection and x/y gazepoint tracking, a methodology was developed here to discriminate a more abstract interface operation: zooming-in or out. This methodology first collects samples of eve-gaze location looking at controlled stimuli, at 30 Hz, just prior to a user`s decision to zoom. The sample is broken into data frames, or temporal snapshots. Within a data frame, all spatial samples are connected into a minimummore » spanning tree, then clustered, according to user defined parameters. Each cluster is mapped to one in the prior data frame, and statistics are computed from each cluster. These characteristics include cluster size, position, and pupil size. A multiple discriminant analysis uses these statistics both within and between data frames to formulate optimal rules for assigning the observations into zooming, zoom-out, or no zoom conditions. The statistical procedure effectively generates heuristics for future assignments, based upon these variables. Future work will enhance the accuracy and precision of the modeling technique, and will empirically test users in controlled experiments.« less

  8. Finite element study of scaffold architecture design and culture conditions for tissue engineering.

    PubMed

    Olivares, Andy L; Marsal, Elia; Planell, Josep A; Lacroix, Damien

    2009-10-01

    Tissue engineering scaffolds provide temporary mechanical support for tissue regeneration and transfer global mechanical load to mechanical stimuli to cells through its architecture. In this study the interactions between scaffold pore morphology, mechanical stimuli developed at the cell microscopic level, and culture conditions applied at the macroscopic scale are studied on two regular scaffold structures. Gyroid and hexagonal scaffolds of 55% and 70% porosity were modeled in a finite element analysis and were submitted to an inlet fluid flow or compressive strain. A mechanoregulation theory based on scaffold shear strain and fluid shear stress was applied for determining the influence of each structures on the mechanical stimuli on initial conditions. Results indicate that the distribution of shear stress induced by fluid perfusion is very dependent on pore distribution within the scaffold. Gyroid architectures provide a better accessibility of the fluid than hexagonal structures. Based on the mechanoregulation theory, the differentiation process in these structures was more sensitive to inlet fluid flow than axial strain of the scaffold. This study provides a computational approach to determine the mechanical stimuli at the cellular level when cells are cultured in a bioreactor and to relate mechanical stimuli with cell differentiation.

  9. Selective attention determines emotional responses to novel visual stimuli.

    PubMed

    Raymond, Jane E; Fenske, Mark J; Tavassoli, Nader T

    2003-11-01

    Distinct complex brain systems support selective attention and emotion, but connections between them suggest that human behavior should reflect reciprocal interactions of these systems. Although there is ample evidence that emotional stimuli modulate attentional processes, it is not known whether attention influences emotional behavior. Here we show that evaluation of the emotional tone (cheery/dreary) of complex but meaningless visual patterns can be modulated by the prior attentional state (attending vs. ignoring) used to process each pattern in a visual selection task. Previously ignored patterns were evaluated more negatively than either previously attended or novel patterns. Furthermore, this emotional devaluation of distracting stimuli was robust across different emotional contexts and response scales. Finding that negative affective responses are specifically generated for ignored stimuli points to a new functional role for attention and elaborates the link between attention and emotion. This finding also casts doubt on the conventional marketing wisdom that any exposure is good exposure.

  10. Can anchor models explain inverted-U effects in facial judgments?

    PubMed

    Mignault, Alain; Bhaumik, Arijit; Chaudhuri, Avi

    2009-06-01

    Researchers in a variety of disciplines have found that participants take less time and generate less diversity of responses when judging stimuli towards the ends of a scale than when judging those near the center. Three types of models, connectionist, exemplar, and anchor models, can account for these inverted-U effects. Anchor models assume that stimuli near the ends of the scale are used as anchors to compare with the other stimuli, implying that anchor representations are activated for each judgment. Therefore, participants should learn the anchors better than the other stimuli. Participants were 40 students from the Department of Psychology at McGill University (5 men; M age = 20.5 yr.; SD = 1.7). The experiment involved two tasks: first participants judged facial gender and then performed a recognition task. The results showed no correlation between the position on the gender scale and recognition accuracy. Several hypotheses were offered to explain these results.

  11. Control strategies of 3-cell Central Pattern Generator via global stimuli

    NASA Astrophysics Data System (ADS)

    Lozano, Álvaro; Rodríguez, Marcos; Barrio, Roberto

    2016-03-01

    The study of the synchronization patterns of small neuron networks that control several biological processes has become an interesting growing discipline. Some of these synchronization patterns of individual neurons are related to some undesirable neurological diseases, and they are believed to play a crucial role in the emergence of pathological rhythmic brain activity in different diseases, like Parkinson’s disease. We show how, with a suitable combination of short and weak global inhibitory and excitatory stimuli over the whole network, we can switch between different stable bursting patterns in small neuron networks (in our case a 3-neuron network). We develop a systematic study showing and explaining the effects of applying the pulses at different moments. Moreover, we compare the technique on a completely symmetric network and on a slightly perturbed one (a much more realistic situation). The present approach of using global stimuli may allow to avoid undesirable synchronization patterns with nonaggressive stimuli.

  12. Brain activation in response to randomized visual stimulation as obtained from conjunction and differential analysis: an fMRI study

    NASA Astrophysics Data System (ADS)

    Nasaruddin, N. H.; Yusoff, A. N.; Kaur, S.

    2014-11-01

    The objective of this multiple-subjects functional magnetic resonance imaging (fMRI) study was to identify the common brain areas that are activated when viewing black-and-white checkerboard pattern stimuli of various shapes, pattern and size and to investigate specific brain areas that are involved in processing static and moving visual stimuli. Sixteen participants viewed the moving (expanding ring, rotating wedge, flipping hour glass and bowtie and arc quadrant) and static (full checkerboard) stimuli during an fMRI scan. All stimuli have black-and-white checkerboard pattern. Statistical parametric mapping (SPM) was used in generating brain activation. Differential analyses were implemented to separately search for areas involved in processing static and moving stimuli. In general, the stimuli of various shapes, pattern and size activated multiple brain areas mostly in the left hemisphere. The activation in the right middle temporal gyrus (MTG) was found to be significantly higher in processing moving visual stimuli as compared to static stimulus. In contrast, the activation in the left calcarine sulcus and left lingual gyrus were significantly higher for static stimulus as compared to moving stimuli. Visual stimulation of various shapes, pattern and size used in this study indicated left lateralization of activation. The involvement of the right MTG in processing moving visual information was evident from differential analysis, while the left calcarine sulcus and left lingual gyrus are the areas that are involved in the processing of static visual stimulus.

  13. Age effect in generating mental images of buildings but not common objects.

    PubMed

    Piccardi, L; Nori, R; Palermo, L; Guariglia, C; Giusberti, F

    2015-08-18

    Imagining a familiar environment is different from imagining an environmental map and clinical evidence demonstrated the existence of double dissociations in brain-damaged patients due to the contents of mental images. Here, we assessed a large sample of young and old participants by considering their ability to generate different kinds of mental images, namely, buildings or common objects. As buildings are environmental stimuli that have an important role in human navigation, we expected that elderly participants would have greater difficulty in generating images of buildings than common objects. We found that young and older participants differed in generating both buildings and common objects. For young participants there were no differences between buildings and common objects, but older participants found easier to generate common objects than buildings. Buildings are a special type of visual stimuli because in urban environments they are commonly used as landmarks for navigational purposes. Considering that topographical orientation is one of the abilities mostly affected in normal and pathological aging, the present data throw some light on the impaired processes underlying human navigation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Recognizing sights, smells, and sounds with gnostic fields.

    PubMed

    Kanan, Christopher

    2013-01-01

    Mammals rely on vision, audition, and olfaction to remotely sense stimuli in their environment. Determining how the mammalian brain uses this sensory information to recognize objects has been one of the major goals of psychology and neuroscience. Likewise, researchers in computer vision, machine audition, and machine olfaction have endeavored to discover good algorithms for stimulus classification. Almost 50 years ago, the neuroscientist Jerzy Konorski proposed a theoretical model in his final monograph in which competing sets of "gnostic" neurons sitting atop sensory processing hierarchies enabled stimuli to be robustly categorized, despite variations in their presentation. Much of what Konorski hypothesized has been remarkably accurate, and neurons with gnostic-like properties have been discovered in visual, aural, and olfactory brain regions. Surprisingly, there have not been any attempts to directly transform his theoretical model into a computational one. Here, I describe the first computational implementation of Konorski's theory. The model is not domain specific, and it surpasses the best machine learning algorithms on challenging image, music, and olfactory classification tasks, while also being simpler. My results suggest that criticisms of exemplar-based models of object recognition as being computationally intractable due to limited neural resources are unfounded.

  15. Recognizing Sights, Smells, and Sounds with Gnostic Fields

    PubMed Central

    Kanan, Christopher

    2013-01-01

    Mammals rely on vision, audition, and olfaction to remotely sense stimuli in their environment. Determining how the mammalian brain uses this sensory information to recognize objects has been one of the major goals of psychology and neuroscience. Likewise, researchers in computer vision, machine audition, and machine olfaction have endeavored to discover good algorithms for stimulus classification. Almost 50 years ago, the neuroscientist Jerzy Konorski proposed a theoretical model in his final monograph in which competing sets of “gnostic” neurons sitting atop sensory processing hierarchies enabled stimuli to be robustly categorized, despite variations in their presentation. Much of what Konorski hypothesized has been remarkably accurate, and neurons with gnostic-like properties have been discovered in visual, aural, and olfactory brain regions. Surprisingly, there have not been any attempts to directly transform his theoretical model into a computational one. Here, I describe the first computational implementation of Konorski's theory. The model is not domain specific, and it surpasses the best machine learning algorithms on challenging image, music, and olfactory classification tasks, while also being simpler. My results suggest that criticisms of exemplar-based models of object recognition as being computationally intractable due to limited neural resources are unfounded. PMID:23365648

  16. A P300-based Brain-Computer Interface with Stimuli on Moving Objects: Four-Session Single-Trial and Triple-Trial Tests with a Game-Like Task Design

    PubMed Central

    Ganin, Ilya P.; Shishkin, Sergei L.; Kaplan, Alexander Y.

    2013-01-01

    Brain-computer interfaces (BCIs) are tools for controlling computers and other devices without using muscular activity, employing user-controlled variations in signals recorded from the user’s brain. One of the most efficient noninvasive BCIs is based on the P300 wave of the brain’s response to stimuli and is therefore referred to as the P300 BCI. Many modifications of this BCI have been proposed to further improve the BCI’s characteristics or to better adapt the BCI to various applications. However, in the original P300 BCI and in all of its modifications, the spatial positions of stimuli were fixed relative to each other, which can impose constraints on designing applications controlled by this BCI. We designed and tested a P300 BCI with stimuli presented on objects that were freely moving on a screen at a speed of 5.4°/s. Healthy participants practiced a game-like task with this BCI in either single-trial or triple-trial mode within four sessions. At each step, the participants were required to select one of nine moving objects. The mean online accuracy of BCI-based selection was 81% in the triple-trial mode and 65% in the single-trial mode. A relatively high P300 amplitude was observed in response to targets in most participants. Self-rated interest in the task was high and stable over the four sessions (the medians in the 1st/4th sessions were 79/84% and 76/71% in the groups practicing in the single-trial and triple-trial modes, respectively). We conclude that the movement of stimulus positions relative to each other may not prevent the efficient use of the P300 BCI by people controlling their gaze, e.g., in robotic devices and in video games. PMID:24302977

  17. Causal Inference for Cross-Modal Action Selection: A Computational Study in a Decision Making Framework.

    PubMed

    Daemi, Mehdi; Harris, Laurence R; Crawford, J Douglas

    2016-01-01

    Animals try to make sense of sensory information from multiple modalities by categorizing them into perceptions of individual or multiple external objects or internal concepts. For example, the brain constructs sensory, spatial representations of the locations of visual and auditory stimuli in the visual and auditory cortices based on retinal and cochlear stimulations. Currently, it is not known how the brain compares the temporal and spatial features of these sensory representations to decide whether they originate from the same or separate sources in space. Here, we propose a computational model of how the brain might solve such a task. We reduce the visual and auditory information to time-varying, finite-dimensional signals. We introduce controlled, leaky integrators as working memory that retains the sensory information for the limited time-course of task implementation. We propose our model within an evidence-based, decision-making framework, where the alternative plan units are saliency maps of space. A spatiotemporal similarity measure, computed directly from the unimodal signals, is suggested as the criterion to infer common or separate causes. We provide simulations that (1) validate our model against behavioral, experimental results in tasks where the participants were asked to report common or separate causes for cross-modal stimuli presented with arbitrary spatial and temporal disparities. (2) Predict the behavior in novel experiments where stimuli have different combinations of spatial, temporal, and reliability features. (3) Illustrate the dynamics of the proposed internal system. These results confirm our spatiotemporal similarity measure as a viable criterion for causal inference, and our decision-making framework as a viable mechanism for target selection, which may be used by the brain in cross-modal situations. Further, we suggest that a similar approach can be extended to other cognitive problems where working memory is a limiting factor, such as target selection among higher numbers of stimuli and selections among other modality combinations.

  18. Evaluating fractionated space systems - Status

    NASA Astrophysics Data System (ADS)

    Cornford, S.; Jenkins, S.; Wall, S.; Cole, B.; Bairstow, B.; Rouquette, N.; Dubos, G.; Ryan, T.; Zarifian, P.; Boutwell, J.

    DARPA has funded a number of teams to further refine its Fractionated Spacecraft vision. Several teams, including this team led by JPL, have been tasked to develop a tool for the evaluation of the Business case for a fractionated system architecture. This evaluation is to understand under what conditions and constraints the fractionated architecture make more sense (in a cost/benefit sense) than the traditional monolithic paradigm. Our approach to this evaluation is to generate and evaluate a variety of trade space options. These options include various sets of stimuli, various degrees of fractionation and various subsystem element properties. The stimuli include many not normally modeled such as technology obsolescence, funding profile changes and changes in mission objectives during the mission itself. The degrees of fractionation enable various traditional subsystem elements to be distributed across different free flyers which then act in concert as needed. This will enable key technologies to be updated as need dictates and availability allows. We have described our approach in a previous IEEE Aerospace conference paper but will briefly summarize here. Our approach to generate the Business Case evaluation is to explicitly model both the implementation and operation phases for the life cycle of a fractionated constellation. A variety of models are integrated into the Phoenix ModelCenter framework and are used to generate various intermediate data which is aggregated into the Present Strategic Value (PSV). The PSV is essentially the value (including the value of the embedded real options) minus the cost. These PSVs are calculated for a variety of configurations and scenarios including variations of various stimuli or uncertainties (e.g. supply chain delays, launch vehicle failures and orbital debris events). There are various decision options (e.g. delay, accelerate, cancel) which can now be exercised for each stimulus. We can compute the PSV for the various comb- nations and populate a tradespace. We have developed tooling to allow models to be automatically created and executed allowing us to explore large numbers of options with no human intervention. The methodology, models and the process by which they are integrated were a key subset of the previous paper. We will present the results of the Business Case analyses for a variety of configurations and scenarios, present the populated tradespace, show the GUI we have developed to facilitate the use of the tool and discuss the implications of both the results and our work to date. We will also discuss future work and possible approaches for that work.

  19. Bifurcation in the chemotactic behavior of Physarum plasmodium

    NASA Astrophysics Data System (ADS)

    Shirakawa, Tomohiro; Gunji, Yukio-Pegio; Sato, Hiroshi; Tsubakino, Hiroto

    2017-07-01

    The plasmodium of true slime mold Physarum polycephalum is a unicellular and multinuclear giant amoeba. Since the cellular organism has some computational abilities, it is attracting much attention in the field of information science. However, previous studies have mainly focused on the optimization behavior of the plasmodium for a single-modality stimulus, and there are few studies on how the organism adapts to multi-modal stimuli. We stimulated the plasmodium with mixture of attractant and repellent stimuli, and we observed bifurcation in the chemotactic behavior of the plasmodium.

  20. Audio-visual perception of 3D cinematography: an fMRI study using condition-based and computation-based analyses.

    PubMed

    Ogawa, Akitoshi; Bordier, Cecile; Macaluso, Emiliano

    2013-01-01

    The use of naturalistic stimuli to probe sensory functions in the human brain is gaining increasing interest. Previous imaging studies examined brain activity associated with the processing of cinematographic material using both standard "condition-based" designs, as well as "computational" methods based on the extraction of time-varying features of the stimuli (e.g. motion). Here, we exploited both approaches to investigate the neural correlates of complex visual and auditory spatial signals in cinematography. In the first experiment, the participants watched a piece of a commercial movie presented in four blocked conditions: 3D vision with surround sounds (3D-Surround), 3D with monaural sound (3D-Mono), 2D-Surround, and 2D-Mono. In the second experiment, they watched two different segments of the movie both presented continuously in 3D-Surround. The blocked presentation served for standard condition-based analyses, while all datasets were submitted to computation-based analyses. The latter assessed where activity co-varied with visual disparity signals and the complexity of auditory multi-sources signals. The blocked analyses associated 3D viewing with the activation of the dorsal and lateral occipital cortex and superior parietal lobule, while the surround sounds activated the superior and middle temporal gyri (S/MTG). The computation-based analyses revealed the effects of absolute disparity in dorsal occipital and posterior parietal cortices and of disparity gradients in the posterior middle temporal gyrus plus the inferior frontal gyrus. The complexity of the surround sounds was associated with activity in specific sub-regions of S/MTG, even after accounting for changes of sound intensity. These results demonstrate that the processing of naturalistic audio-visual signals entails an extensive set of visual and auditory areas, and that computation-based analyses can track the contribution of complex spatial aspects characterizing such life-like stimuli.

  1. Reservoir Computing Properties of Neural Dynamics in Prefrontal Cortex

    PubMed Central

    Procyk, Emmanuel; Dominey, Peter Ford

    2016-01-01

    Primates display a remarkable ability to adapt to novel situations. Determining what is most pertinent in these situations is not always possible based only on the current sensory inputs, and often also depends on recent inputs and behavioral outputs that contribute to internal states. Thus, one can ask how cortical dynamics generate representations of these complex situations. It has been observed that mixed selectivity in cortical neurons contributes to represent diverse situations defined by a combination of the current stimuli, and that mixed selectivity is readily obtained in randomly connected recurrent networks. In this context, these reservoir networks reproduce the highly recurrent nature of local cortical connectivity. Recombining present and past inputs, random recurrent networks from the reservoir computing framework generate mixed selectivity which provides pre-coded representations of an essentially universal set of contexts. These representations can then be selectively amplified through learning to solve the task at hand. We thus explored their representational power and dynamical properties after training a reservoir to perform a complex cognitive task initially developed for monkeys. The reservoir model inherently displayed a dynamic form of mixed selectivity, key to the representation of the behavioral context over time. The pre-coded representation of context was amplified by training a feedback neuron to explicitly represent this context, thereby reproducing the effect of learning and allowing the model to perform more robustly. This second version of the model demonstrates how a hybrid dynamical regime combining spatio-temporal processing of reservoirs, and input driven attracting dynamics generated by the feedback neuron, can be used to solve a complex cognitive task. We compared reservoir activity to neural activity of dorsal anterior cingulate cortex of monkeys which revealed similar network dynamics. We argue that reservoir computing is a pertinent framework to model local cortical dynamics and their contribution to higher cognitive function. PMID:27286251

  2. Beyond Picture Naming: Norms and Patient Data for a Verb Generation Task**

    PubMed Central

    Kurland, Jacquie; Reber, Alisson; Stokes, Polly

    2014-01-01

    Purpose The current study aimed to: 1) acquire a set of verb generation to picture norms; and 2) probe its utility as an outcomes measure in aphasia treatment. Method Fifty healthy volunteers participated in Phase I, the verb generation normative sample. They generated verbs for 218 pictures of common objects (ISI=5s). In Phase II, four persons with aphasia (PWA) generated verbs for 60 objects (ISI=10s). Their stimuli consisted of objects which were: 1) recently trained (for object naming; n=20); 2) untrained (a control set; n=20); or 3) from a set of pictures named correctly at baseline (n=20). Verb generation was acquired twice: two months into, and following, a six-month home practice program. Results No objects elicited perfect verb agreement in the normed sample. Stimuli with the highest percent agreement were mostly artifacts and dominant verbs primary functional associates. Although not targeted in treatment or home practice, PWA mostly improved performance in verb generation post-practice. Conclusions A set of clinically and experimentally useful verb generation norms was acquired for a subset of the Snodgrass and Vanderwart (1980) picture set. More cognitively demanding than confrontation naming, this task may help to fill the sizeable gap between object picture naming and propositional speech. PMID:24686752

  3. Heightened attentional capture by visual food stimuli in anorexia nervosa.

    PubMed

    Neimeijer, Renate A M; Roefs, Anne; de Jong, Peter J

    2017-08-01

    The present study was designed to test the hypothesis that anorexia nervosa (AN) patients are relatively insensitive to the attentional capture of visual food stimuli. Attentional avoidance of food might help AN patients to prevent more elaborate processing of food stimuli and the subsequent generation of craving, which might enable AN patients to maintain their strict diet. Participants were 66 restrictive AN spectrum patients and 55 healthy controls. A single-target rapid serial visual presentation task was used with food and disorder-neutral cues as critical distracter stimuli and disorder-neutral pictures as target stimuli. AN spectrum patients showed diminished task performance when visual food cues were presented in close temporal proximity of the to-be-identified target. In contrast to our hypothesis, results indicate that food cues automatically capture AN spectrum patients' attention. One explanation could be that the enhanced attentional capture of food cues in AN is driven by the relatively high threat value of food items in AN. Implications and suggestions for future research are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. Metastable neural dynamics mediates expectation

    NASA Astrophysics Data System (ADS)

    Mazzucato, Luca; La Camera, Giancarlo; Fontanini, Alfredo

    Sensory stimuli are processed faster when their presentation is expected compared to when they come as a surprise. We previously showed that, in multiple single-unit recordings from alert rat gustatory cortex, taste stimuli can be decoded faster from neural activity if preceded by a stimulus-predicting cue. However, the specific computational process mediating this anticipatory neural activity is unknown. Here, we propose a biologically plausible model based on a recurrent network of spiking neurons with clustered architecture. In the absence of stimulation, the model neural activity unfolds through sequences of metastable states, each state being a population vector of firing rates. We modeled taste stimuli and cue (the same for all stimuli) as two inputs targeting subsets of excitatory neurons. As observed in experiment, stimuli evoked specific state sequences, characterized in terms of `coding states', i.e., states occurring significantly more often for a particular stimulus. When stimulus presentation is preceded by a cue, coding states show a faster and more reliable onset, and expected stimuli can be decoded more quickly than unexpected ones. This anticipatory effect is unrelated to changes of firing rates in stimulus-selective neurons and is absent in homogeneous balanced networks, suggesting that a clustered organization is necessary to mediate the expectation of relevant events. Our results demonstrate a novel mechanism for speeding up sensory coding in cortical circuits. NIDCD K25-DC013557 (LM); NIDCD R01-DC010389 (AF); NSF IIS-1161852 (GL).

  5. Does Presentation Format Influence Visual Size Discrimination in Tufted Capuchin Monkeys (Sapajus spp.)?

    PubMed Central

    Truppa, Valentina; Carducci, Paola; Trapanese, Cinzia; Hanus, Daniel

    2015-01-01

    Most experimental paradigms to study visual cognition in humans and non-human species are based on discrimination tasks involving the choice between two or more visual stimuli. To this end, different types of stimuli and procedures for stimuli presentation are used, which highlights the necessity to compare data obtained with different methods. The present study assessed whether, and to what extent, capuchin monkeys’ ability to solve a size discrimination problem is influenced by the type of procedure used to present the problem. Capuchins’ ability to generalise knowledge across different tasks was also evaluated. We trained eight adult tufted capuchin monkeys to select the larger of two stimuli of the same shape and different sizes by using pairs of food items (Experiment 1), computer images (Experiment 1) and objects (Experiment 2). Our results indicated that monkeys achieved the learning criterion faster with food stimuli compared to both images and objects. They also required consistently fewer trials with objects than with images. Moreover, female capuchins had higher levels of acquisition accuracy with food stimuli than with images. Finally, capuchins did not immediately transfer the solution of the problem acquired in one task condition to the other conditions. Overall, these findings suggest that – even in relatively simple visual discrimination problems where a single perceptual dimension (i.e., size) has to be judged – learning speed strongly depends on the mode of presentation. PMID:25927363

  6. CdS QDs-chitosan microcapsules with stimuli-responsive property generated by gas-liquid microfluidic technique.

    PubMed

    Chen, Yanjun; Yao, Rongyi; Wang, Yifeng; Chen, Ming; Qiu, Tong; Zhang, Chaocan

    2015-01-01

    This article describes a straightforward gas-liquid microfluidic approach to generate uniform-sized chitosan microcapsules containing CdS quantum dots (QDs). CdS QDs are encapsulated into the liquid-core of the microcapsules. The sizes of the microcapsules can be conveniently controlled by gas flow rate. QDs-chitosan microcapsules show good fluorescent stability in water, and exhibit fluorescent responses to chemical environmental stimuli. α-Cyclodextrin (α-CD) causes the microcapsules to deform and even collapse. More interestingly, α-CD induces obvious changes on the fluorescent color of the microcapsules. However, β-cyclodextrin (β-CD) has little influence on the shape and fluorescent color of the microcapsules. Based on the results of scanning electron microscopy, the possible mechanism about the effects of α-CD on the chitosan microcapsules is analyzed. These stimuli-responsive microcapsules are low-cost and easy to be prepared by gas-liquid microfluidic technique, and can be applied as a potential micro-detector to chemicals, such as CDs. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Recruitment of local inhibitory networks by horizontal connections in layer 2/3 of ferret visual cortex.

    PubMed

    Tucker, Thomas R; Katz, Lawrence C

    2003-01-01

    To investigate how neurons in cortical layer 2/3 integrate horizontal inputs arising from widely distributed sites, we combined intracellular recording and voltage-sensitive dye imaging to visualize the spatiotemporal dynamics of neuronal activity evoked by electrical stimulation of multiple sites in visual cortex. Individual stimuli evoked characteristic patterns of optical activity, while delivering stimuli at multiple sites generated interacting patterns in the regions of overlap. We observed that neurons in overlapping regions received convergent horizontal activation that generated nonlinear responses due to the emergence of large inhibitory potentials. The results indicate that co-activation of multiple sets of horizontal connections recruit strong inhibition from local inhibitory networks, causing marked deviations from simple linear integration.

  8. Laser stimulation for pain research

    NASA Astrophysics Data System (ADS)

    Clark, Stuart; Dickinson, Mark R.; King, Terence A.; Jones, Anthony; Chen, Andrew; Derbyshire, Stuart; Townsend, D. W.; Kinahan, Paul E.; Mintun, M. A.; Nichols, T.

    1996-01-01

    Pain is a serious medical problem; it inflicts huge economic loss and personal suffering. Pain signals are conducted via small, non- and partially myelinated A-delta and C nerve fibers and lasers are particularly well suited to stimulating these fibers. Large myelinated fibers convey touch and vibration information and these fibers are also discharged when contact thermodes and other touch pain stimuli are used and this would give a more muddled signal for functional imaging experiments. The advantages of lasers over conventional methods of pain stimulation are good temporal resolution, no variable parameters are involved such as contact area and they give very reproducible results. Accurate inter-stimulus changes can be achieved by computer control of the laser pulse duration, pulse height and repetition rate and this flexibility enables complex stimulation paradigms to be realized. We present a flexible carbon dioxide laser system designed to generate these stimuli for the study of human cerebral pain responses. We discuss the advantages within research of this system over other methods of pain stimulation such as thermal, electrical and magnetic. The stimulator is used in conjunction with functional magnetic resonance imaging, positron emission tomography and electrophysiological methods of imaging the brain's activity. This combination is a powerful tool for the study of pain-induced activity in different areas of the brain. An accurate understanding of the brain's response to pain will help in research into the areas of rheumatoid arthritis and chronic back pain.

  9. Multineuronal vectorization is more efficient than time-segmental vectorization for information extraction from neuronal activities in the inferior temporal cortex.

    PubMed

    Kaneko, Hidekazu; Tamura, Hiroshi; Tate, Shunta; Kawashima, Takahiro; Suzuki, Shinya S; Fujita, Ichiro

    2010-08-01

    In order for patients with disabilities to control assistive devices with their own neural activity, multineuronal spike trains must be efficiently decoded because only limited computational resources can be used to generate prosthetic control signals in portable real-time applications. In this study, we compare the abilities of two vectorizing procedures (multineuronal and time-segmental) to extract information from spike trains during the same total neuron-seconds. In the multineuronal vectorizing procedure, we defined a response vector whose components represented the spike counts of one to five neurons. In the time-segmental vectorizing procedure, a response vector consisted of components representing a neuron's spike counts for one to five time-segment(s) of a response period of 1 s. Spike trains were recorded from neurons in the inferior temporal cortex of monkeys presented with visual stimuli. We examined whether the amount of information of the visual stimuli carried by these neurons differed between the two vectorizing procedures. The amount of information calculated with the multineuronal vectorizing procedure, but not the time-segmental vectorizing procedure, significantly increased with the dimensions of the response vector. We conclude that the multineuronal vectorizing procedure is superior to the time-segmental vectorizing procedure in efficiently extracting information from neuronal signals. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  10. Using a Function Generator to Produce Auditory and Visual Demonstrations.

    ERIC Educational Resources Information Center

    Woods, Charles B.

    1998-01-01

    Identifies a function generator as an instrument that produces time-varying electrical signals of frequency, wavelength, and amplitude. Sending these signals to a speaker or a light-emitting diode can demonstrate how specific characteristics of auditory or visual stimuli relate to perceptual experiences. Provides specific instructions for using…

  11. A truly human interface: interacting face-to-face with someone whose words are determined by a computer program

    PubMed Central

    Corti, Kevin; Gillespie, Alex

    2015-01-01

    We use speech shadowing to create situations wherein people converse in person with a human whose words are determined by a conversational agent computer program. Speech shadowing involves a person (the shadower) repeating vocal stimuli originating from a separate communication source in real-time. Humans shadowing for conversational agent sources (e.g., chat bots) become hybrid agents (“echoborgs”) capable of face-to-face interlocution. We report three studies that investigated people’s experiences interacting with echoborgs and the extent to which echoborgs pass as autonomous humans. First, participants in a Turing Test spoke with a chat bot via either a text interface or an echoborg. Human shadowing did not improve the chat bot’s chance of passing but did increase interrogators’ ratings of how human-like the chat bot seemed. In our second study, participants had to decide whether their interlocutor produced words generated by a chat bot or simply pretended to be one. Compared to those who engaged a text interface, participants who engaged an echoborg were more likely to perceive their interlocutor as pretending to be a chat bot. In our third study, participants were naïve to the fact that their interlocutor produced words generated by a chat bot. Unlike those who engaged a text interface, the vast majority of participants who engaged an echoborg did not sense a robotic interaction. These findings have implications for android science, the Turing Test paradigm, and human–computer interaction. The human body, as the delivery mechanism of communication, fundamentally alters the social psychological dynamics of interactions with machine intelligence. PMID:26042066

  12. Preparing computers for affective communication: a psychophysiological concept and preliminary results.

    PubMed

    Whang, Min Cheol; Lim, Joa Sang; Boucsein, Wolfram

    Despite rapid advances in technology, computers remain incapable of responding to human emotions. An exploratory study was conducted to find out what physiological parameters might be useful to differentiate among 4 emotional states, based on 2 dimensions: pleasantness versus unpleasantness and arousal versus relaxation. The 4 emotions were induced by exposing 26 undergraduate students to different combinations of olfactory and auditory stimuli, selected in a pretest from 12 stimuli by subjective ratings of arousal and valence. Changes in electroencephalographic (EEG), heart rate variability, and electrodermal measures were used to differentiate the 4 emotions. EEG activity separates pleasantness from unpleasantness only in the aroused but not in the relaxed domain, where electrodermal parameters are the differentiating ones. All three classes of parameters contribute to a separation between arousal and relaxation in the positive valence domain, whereas the latency of the electrodermal response is the only differentiating parameter in the negative domain. We discuss how such a psychophysiological approach may be incorporated into a systemic model of a computer responsive to affective communication from the user.

  13. Effects of Posture and Stimulus Spectral Composition on Peripheral Physiological Responses to Loud Sounds

    PubMed Central

    Koch, Jennifer; Flemming, Jan; Zeffiro, Thomas; Rufer, Michael; Orr, Scott P.; Mueller-Pfeiffer, Christoph

    2016-01-01

    In the “loud-tone” procedure, a series of brief, loud, pure-tone stimuli are presented in a task-free situation. It is an established paradigm for measuring autonomic sensitization in posttraumatic stress disorder (PTSD). Successful use of this procedure during fMRI requires elicitation of brain responses that have sufficient signal-noise ratios when recorded in a supine, rather than sitting, position. We investigated the modulating effects of posture and stimulus spectral composition on peripheral psychophysiological responses to loud sounds. Healthy subjects (N = 24) weekly engaged in a loud-tone-like procedure that presented 500 msec, 95 dB sound pressure level, pure-tone or white-noise stimuli, either while sitting or supine and while peripheral physiological responses were recorded. Heart rate, skin conductance, and eye blink electromyographic responses were larger to white-noise than pure-tone stimuli (p’s < 0.001, generalized eta squared 0.073–0.076). Psychophysiological responses to the stimuli were similar in the sitting and supine position (p’s ≥ 0.082). Presenting white noise, rather than pure-tone, stimuli may improve the detection sensitivity of the neural concomitants of heightened autonomic responses by generating larger responses. Recording in the supine position appears to have little or no impact on psychophysiological response magnitudes to the auditory stimuli. PMID:27583659

  14. Pioglitazone inhibits LOX-1 expression in human coronary artery endothelial cells by reducing intracellular superoxide radical generation.

    PubMed

    Mehta, Jawahar L; Hu, Bo; Chen, Jiawei; Li, Dayuan

    2003-12-01

    LOX-1, a novel lectin-like receptor for oxidized LDL (ox-LDL), is expressed in response to ox-LDL, angiotensin II (Ang II), tumor necrosis factor (TNF)-alpha, and other stress stimuli. It is highly expressed in atherosclerotic tissues. Peroxisome proliferator-activated receptor (PPAR)-gamma ligands, such as pioglitazone, exert antiatherosclerotic effects. This study examined the regulation of LOX-1 expression in human coronary artery endothelial cells (HCAECs) by pioglitazone. Fourth generation HCAECs were treated with ox-LDL, Ang II, or TNF-alpha with or without pioglitazone pretreatment. All 3 stimuli upregulated LOX-1 expression (mRNA and protein). Pioglitazone, in a concentration-dependent manner, reduced LOX-1 expression (P<0.01 versus ox-LDL, Ang II, or TNF-alpha alone). Ox-LDL, Ang II, and TNF-alpha each enhanced intracellular superoxide radical generation, and pioglitazone pretreatment reduced superoxide generation (P<0.01 versus ox-LDL, Ang II, or TNF-alpha). Furthermore, all 3 stimuli upregulated the expression of the transcription factors nuclear factor-kappaB and activator protein-1 (determined by electrophoretic mobility shift assay), and pioglitazone pretreatment reduced this expression (P<0.01 versus ox-LDL, Ang II, or TNF-alpha). To determine the biological significance of pioglitazone-mediated downregulation of LOX-1, we studied monocyte adhesion to ox-LDL-treated HCAECs. Pioglitazone reduced the adhesion of monocytes to activated HCAECs in a fashion similar to that produced by antisense to LOX-1 mRNA. These observations suggest that the PPAR-gamma ligand pioglitazone reduces intracellular superoxide radical generation and subsequently reduces the expression of transcription factors, expression of the LOX-1 gene, and monocyte adhesion to activated endothelium. The salutary effect of PPAR-gamma ligands in atherogenesis may involve the inhibition of LOX-1 and the adhesion of monocytes to endothelium.

  15. Assessment of Grating Acuity in Infants and Toddlers Using an Electronic Acuity Card: The Dobson Card.

    PubMed

    Mohan, Kathleen M; Miller, Joseph M; Harvey, Erin M; Gerhart, Kimberly D; Apple, Howard P; Apple, Deborah; Smith, Jordana M; Davis, Amy L; Leonard-Green, Tina; Campus, Irene; Dennis, Leslie K

    2016-01-01

    To determine if testing binocular visual acuity in infants and toddlers using the Acuity Card Procedure (ACP) with electronic grating stimuli yields clinically useful data. Participants were infants and toddlers ages 5 to 36.7 months referred by pediatricians due to failed automated vision screening. The ACP was used to test binocular grating acuity. Stimuli were presented on the Dobson Card. The Dobson Card consists of a handheld matte-black plexiglass frame with two flush-mounted tablet computers and is similar in size and form to commercially available printed grating acuity testing stimuli (Teller Acuity Cards II [TACII]; Stereo Optical, Inc., Chicago, IL). On each trial, one tablet displayed a square-wave grating and the other displayed a luminance-matched uniform gray patch. Stimuli were roughly equivalent to the stimuli available in the printed TACII stimuli. After acuity testing, each child received a cycloplegic eye examination. Based on cycloplegic retinoscopy, patients were categorized as having high or low refractive error per American Association for Pediatric Ophthalmology and Strabismus vision screening referral criteria. Mean acuities for high and low refractive error groups were compared using analysis of covariance, controlling for age. Mean visual acuity was significantly poorer in children with high refractive error than in those with low refractive error (P = .015). Electronic stimuli presented using the ACP can yield clinically useful measurements of grating acuity in infants and toddlers. Further research is needed to determine the optimal conditions and procedures for obtaining accurate and clinically useful automated measurements of visual acuity in infants and toddlers. Copyright 2016, SLACK Incorporated.

  16. Increased Evoked Potentials to Arousing Auditory Stimuli during Sleep: Implication for the Understanding of Dream Recall

    PubMed Central

    Vallat, Raphael; Lajnef, Tarek; Eichenlaub, Jean-Baptiste; Berthomier, Christian; Jerbi, Karim; Morlet, Dominique; Ruby, Perrine M.

    2017-01-01

    High dream recallers (HR) show a larger brain reactivity to auditory stimuli during wakefulness and sleep as compared to low dream recallers (LR) and also more intra-sleep wakefulness (ISW), but no other modification of the sleep macrostructure. To further understand the possible causal link between brain responses, ISW and dream recall, we investigated the sleep microstructure of HR and LR, and tested whether the amplitude of auditory evoked potentials (AEPs) was predictive of arousing reactions during sleep. Participants (18 HR, 18 LR) were presented with sounds during a whole night of sleep in the lab and polysomnographic data were recorded. Sleep microstructure (arousals, rapid eye movements (REMs), muscle twitches (MTs), spindles, KCs) was assessed using visual, semi-automatic and automatic validated methods. AEPs to arousing (awakenings or arousals) and non-arousing stimuli were subsequently computed. No between-group difference in the microstructure of sleep was found. In N2 sleep, auditory arousing stimuli elicited a larger parieto-occipital positivity and an increased late frontal negativity as compared to non-arousing stimuli. As compared to LR, HR showed more arousing stimuli and more long awakenings, regardless of the sleep stage but did not show more numerous or longer arousals. These results suggest that the amplitude of the brain response to stimuli during sleep determine subsequent awakening and that awakening duration (and not arousal) is the critical parameter for dream recall. Notably, our results led us to propose that the minimum necessary duration of an awakening during sleep for a successful encoding of dreams into long-term memory is approximately 2 min. PMID:28377708

  17. Predictions of psychophysical measurements for sinusoidal amplitude modulated (SAM) pulse-train stimuli from a stochastic model.

    PubMed

    Xu, Yifang; Collins, Leslie M

    2007-08-01

    Two approaches have been proposed to reduce the synchrony of the neural response to electrical stimuli in cochlear implants. One approach involves adding noise to the pulse-train stimulus, and the other is based on using a high-rate pulse-train carrier. Hypotheses regarding the efficacy of the two approaches can be tested using computational models of neural responsiveness prior to time-intensive psychophysical studies. In our previous work, we have used such models to examine the effects of noise on several psychophysical measures important to speech recognition. However, to date there has been no parallel analytic solution investigating the neural response to the high-rate pulse-train stimuli and their effect on psychophysical measures. This work investigates the properties of the neural response to high-rate pulse-train stimuli with amplitude modulated envelopes using a stochastic auditory nerve model. The statistics governing the neural response to each pulse are derived using a recursive method. The agreement between the theoretical predictions and model simulations is demonstrated for sinusoidal amplitude modulated (SAM) high rate pulse-train stimuli. With our approach, predicting the neural response in modern implant devices becomes tractable. Psychophysical measurements are also predicted using the stochastic auditory nerve model for SAM high-rate pulse-train stimuli. Changes in dynamic range (DR) and intensity discrimination are compared with that observed for noise-modulated pulse-train stimuli. Modulation frequency discrimination is also studied as a function of stimulus level and pulse rate. Results suggest that high rate carriers may positively impact such psychophysical measures.

  18. Extracting Social Information from Chemosensory Cues: Consideration of Several Scenarios and Their Functional Implications

    PubMed Central

    Ben-Shaul, Yoram

    2015-01-01

    Across all sensory modalities, stimuli can vary along multiple dimensions. Efficient extraction of information requires sensitivity to those stimulus dimensions that provide behaviorally relevant information. To derive social information from chemosensory cues, sensory systems must embed information about the relationships between behaviorally relevant traits of individuals and the distributions of the chemical cues that are informative about these traits. In simple cases, the mere presence of one particular compound is sufficient to guide appropriate behavior. However, more generally, chemosensory information is conveyed via relative levels of multiple chemical cues, in non-trivial ways. The computations and networks needed to derive information from multi-molecule stimuli are distinct from those required by single molecule cues. Our current knowledge about how socially relevant information is encoded by chemical blends, and how it is extracted by chemosensory systems is very limited. This manuscript explores several scenarios and the neuronal computations required to identify them. PMID:26635515

  19. Influence of Customer Quality Perception on the Effectiveness of Commercial Stimuli for Electronic Products.

    PubMed

    Garrido-Morgado, Álvaro; González-Benito, Óscar; Martos-Partal, Mercedes

    2016-01-01

    Creating and maintaining customer loyalty are strategic requirements for modern business. In the current competitive context, product quality, and brand experience are crucial in building and maintaining customer loyalty. Consumer loyalty, which may be classified into cognitive loyalty and affective loyalty, is related to customers' quality perception. Cue utilization theory distinguishes two dimensions for perceived quality, extrinsic quality-linked to the brand-and intrinsic quality-related with internal product characteristics. We propose that (i) cognitive loyalty is more influenced by intrinsic product quality whereas extrinsic product quality (brand name) is more salient for affective loyalty and, (ii) different commercial stimuli have a differential effectiveness on intrinsic and extrinsic perceived quality. In fact, in this study, we analyze how perceived quality dimensions may influence the effectiveness of two different commercial stimuli: displays and advertising flyers. While displays work within the point of sale under time-constrained conditions where consumers are more likely to use heuristics to simplify their decisions, advertising flyers work outside of the point of sale under low time-constrained conditions, and therefore favor a more reasoned purchase decision where systematic processing will be more likely. We analyze the role of quality perception in determining the effectiveness of both these commercial stimuli for selling products that induce high purchase involvement and perceived risk. The empirical analysis focuses on computer products sold by one of Europe's largest computer retailers and it combines scanner, observational, and survey data. The results show that both dimensions of quality perceptions moderate the influence of displays and advertising flyers on sales, but their impact is different on each commercial stimuli. Extrinsic quality perception increases to a greater extent the effect of displays due to the use of a brand name heuristic. However, intrinsic quality perception improves to a greater extent the effect of advertising flyers, which in turn are more closely related to systematic decision processing.

  20. Influence of Customer Quality Perception on the Effectiveness of Commercial Stimuli for Electronic Products

    PubMed Central

    Garrido-Morgado, Álvaro; González-Benito, Óscar; Martos-Partal, Mercedes

    2016-01-01

    Creating and maintaining customer loyalty are strategic requirements for modern business. In the current competitive context, product quality, and brand experience are crucial in building and maintaining customer loyalty. Consumer loyalty, which may be classified into cognitive loyalty and affective loyalty, is related to customers' quality perception. Cue utilization theory distinguishes two dimensions for perceived quality, extrinsic quality—linked to the brand—and intrinsic quality—related with internal product characteristics. We propose that (i) cognitive loyalty is more influenced by intrinsic product quality whereas extrinsic product quality (brand name) is more salient for affective loyalty and, (ii) different commercial stimuli have a differential effectiveness on intrinsic and extrinsic perceived quality. In fact, in this study, we analyze how perceived quality dimensions may influence the effectiveness of two different commercial stimuli: displays and advertising flyers. While displays work within the point of sale under time-constrained conditions where consumers are more likely to use heuristics to simplify their decisions, advertising flyers work outside of the point of sale under low time-constrained conditions, and therefore favor a more reasoned purchase decision where systematic processing will be more likely. We analyze the role of quality perception in determining the effectiveness of both these commercial stimuli for selling products that induce high purchase involvement and perceived risk. The empirical analysis focuses on computer products sold by one of Europe's largest computer retailers and it combines scanner, observational, and survey data. The results show that both dimensions of quality perceptions moderate the influence of displays and advertising flyers on sales, but their impact is different on each commercial stimuli. Extrinsic quality perception increases to a greater extent the effect of displays due to the use of a brand name heuristic. However, intrinsic quality perception improves to a greater extent the effect of advertising flyers, which in turn are more closely related to systematic decision processing. PMID:27014144

  1. Sources of avoidance motivation: Valence effects from physical effort and mental rotation.

    PubMed

    Morsella, Ezequiel; Feinberg, Giles H; Cigarchi, Sepeedeh; Newton, James W; Williams, Lawrence E

    2011-09-01

    When reaching goals, organisms must simultaneously meet the overarching goal of conserving energy. According to the law of least effort, organisms will select the means associated with the least effort. The mechanisms underlying this bias remain unknown. One hypothesis is that organisms come to avoid situations associated with unnecessary effort by generating a negative valence toward the stimuli associated with such situations. Accordingly, merely using a dysfunctional, 'slow' computer mouse causes participants to dislike ambient neutral images (Study 1). In Study 2, nonsense shapes were liked less when associated with effortful processing (135° of mental rotation) versus easier processing (45° of rotation). Complementing 'fluency' effects found in perceptuo-semantic research, valence emerged from action-related processing in a principled fashion. The findings imply that negative valence associations may underlie avoidance motivations, and have practical implications for educational/workplace contexts in which effort and positive affect are conducive to success.

  2. Computation of linear acceleration through an internal model in the macaque cerebellum

    PubMed Central

    Laurens, Jean; Meng, Hui; Angelaki, Dora E.

    2013-01-01

    A combination of theory and behavioral findings has supported a role for internal models in the resolution of sensory ambiguities and sensorimotor processing. Although the cerebellum has been proposed as a candidate for implementation of internal models, concrete evidence from neural responses is lacking. Here we exploit un-natural motion stimuli, which induce incorrect self-motion perception and eye movements, to explore the neural correlates of an internal model proposed to compensate for Einstein’s equivalence principle and generate neural estimates of linear acceleration and gravity. We show that caudal cerebellar vermis Purkinje cells and cerebellar nuclei neurons selective for actual linear acceleration also encode erroneous linear acceleration, as expected from the internal model hypothesis, even when no actual linear acceleration occurs. These findings provide strong evidence that the cerebellum might be involved in the implementation of internal models that mimic physical principles to interpret sensory signals, as previously hypothesized by theorists. PMID:24077562

  3. The color-vision approach to emotional space: cortical evoked potential data.

    PubMed

    Boucsein, W; Schaefer, F; Sokolov, E N; Schröder, C; Furedy, J J

    2001-01-01

    A framework for accounting for emotional phenomena proposed by Sokolov and Boucsein (2000) employs conceptual dimensions that parallel those of hue, brightness, and saturation in color vision. The approach that employs the concepts of emotional quality. intensity, and saturation has been supported by psychophysical emotional scaling data gathered from a few trained observers. We report cortical evoked potential data obtained during the change between different emotions expressed in schematic faces. Twenty-five subjects (13 male, 12 female) were presented with a positive, a negative, and a neutral computer-generated face with random interstimulus intervals in a within-subjects design, together with four meaningful and four meaningless control stimuli made up from the same elements. Frontal, central, parietal, and temporal ERPs were recorded from each hemisphere. Statistically significant outcomes in the P300 and N200 range support the potential fruitfulness of the proposed color-vision-model-based approach to human emotional space.

  4. The habenula encodes negative motivational value associated with primary punishment in humans.

    PubMed

    Lawson, Rebecca P; Seymour, Ben; Loh, Eleanor; Lutti, Antoine; Dolan, Raymond J; Dayan, Peter; Weiskopf, Nikolaus; Roiser, Jonathan P

    2014-08-12

    Learning what to approach, and what to avoid, involves assigning value to environmental cues that predict positive and negative events. Studies in animals indicate that the lateral habenula encodes the previously learned negative motivational value of stimuli. However, involvement of the habenula in dynamic trial-by-trial aversive learning has not been assessed, and the functional role of this structure in humans remains poorly characterized, in part, due to its small size. Using high-resolution functional neuroimaging and computational modeling of reinforcement learning, we demonstrate positive habenula responses to the dynamically changing values of cues signaling painful electric shocks, which predict behavioral suppression of responses to those cues across individuals. By contrast, negative habenula responses to monetary reward cue values predict behavioral invigoration. Our findings show that the habenula plays a key role in an online aversive learning system and in generating associated motivated behavior in humans.

  5. Genetically Identified Suppressed-by-Contrast Retinal Ganglion Cells Reliably Signal Self-Generated Visual Stimuli

    PubMed Central

    Tien, Nai-Wen; Pearson, James T.; Heller, Charles R.; Demas, Jay

    2015-01-01

    Spike trains of retinal ganglion cells (RGCs) are the sole source of visual information to the brain; and understanding how the ∼20 RGC types in mammalian retinae respond to diverse visual features and events is fundamental to understanding vision. Suppressed-by-contrast (SbC) RGCs stand apart from all other RGC types in that they reduce rather than increase firing rates in response to light increments (ON) and decrements (OFF). Here, we genetically identify and morphologically characterize SbC-RGCs in mice, and target them for patch-clamp recordings under two-photon guidance. We find that strong ON inhibition (glycine > GABA) outweighs weak ON excitation, and that inhibition (glycine > GABA) coincides with decreases in excitation at light OFF. These input patterns explain the suppressive spike responses of SbC-RGCs, which are observed in dim and bright light conditions. Inhibition to SbC-RGC is driven by rectified receptive field subunits, leading us to hypothesize that SbC-RGCs could signal pattern-independent changes in the retinal image. Indeed, we find that shifts of random textures matching saccade-like eye movements in mice elicit robust inhibitory inputs and suppress spiking of SbC-RGCs over a wide range of texture contrasts and spatial frequencies. Similarly, stimuli based on kinematic analyses of mouse blinking consistently suppress SbC-RGC spiking. Receiver operating characteristics show that SbC-RGCs are reliable indicators of self-generated visual stimuli that may contribute to central processing of blinks and saccades. SIGNIFICANCE STATEMENT This study genetically identifies and morphologically characterizes suppressed-by-contrast retinal ganglion cells (SbC-RGCs) in mice. Targeted patch-clamp recordings from SbC-RGCs under two-photon guidance elucidate the synaptic mechanisms mediating spike suppression to contrast steps, and reveal that SbC-RGCs respond reliably to stimuli mimicking saccade-like eye movements and blinks. The similarity of responses to saccade-like eye movements and blinks suggests that SbC-RGCs may provide a unified signal for self-generated visual stimuli. PMID:26224863

  6. Effects of asynchrony and ear of presentation on the pitch of mistuned partials in harmonic and frequency-shifted complex tones.

    PubMed

    Brunstrom, J M; Roberts, B

    2001-07-01

    When a partial of a periodic complex is mistuned, its change in pitch is greater than expected. Two experiments examined whether these partial-pitch shifts are related to the computation of global pitch. In experiment 1, stimuli were either harmonic or frequency-shifted (25% of F0) complexes. One partial was mistuned by +/- 4% and played with leading and lagging portions of 500 ms each, relative to the other components (1 s), in both monaural and dichotic contexts. Subjects indicated whether the mistuned partial was higher or lower in pitch when concurrent with the other components. Responses were positively correlated with the direction of mistuning in all conditions. In experiment 2, stimuli from each condition were compared with synchronous equivalents. Subjects matched a pure tone to the pitch of the mistuned partial (component 4). The results showed that partial-pitch shifts are not reduced in size by asynchrony. Similar asynchronies are known to produce a near-exclusion of a mistuned partial from the global-pitch computation. This mismatch indicates that global and partial pitch are derived from different processes. The similarity of the partial-pitch shifts observed for harmonic and frequency-shifted stimuli suggests that they arise from a grouping mechanism that is sensitive to spectral regularity.

  7. A Gaze Independent Brain-Computer Interface Based on Visual Stimulation through Closed Eyelids

    NASA Astrophysics Data System (ADS)

    Hwang, Han-Jeong; Ferreria, Valeria Y.; Ulrich, Daniel; Kilic, Tayfun; Chatziliadis, Xenofon; Blankertz, Benjamin; Treder, Matthias

    2015-10-01

    A classical brain-computer interface (BCI) based on visual event-related potentials (ERPs) is of limited application value for paralyzed patients with severe oculomotor impairments. In this study, we introduce a novel gaze independent BCI paradigm that can be potentially used for such end-users because visual stimuli are administered on closed eyelids. The paradigm involved verbally presented questions with 3 possible answers. Online BCI experiments were conducted with twelve healthy subjects, where they selected one option by attending to one of three different visual stimuli. It was confirmed that typical cognitive ERPs can be evidently modulated by the attention of a target stimulus in eyes-closed and gaze independent condition, and further classified with high accuracy during online operation (74.58% ± 17.85 s.d.; chance level 33.33%), demonstrating the effectiveness of the proposed novel visual ERP paradigm. Also, stimulus-specific eye movements observed during stimulation were verified as reflex responses to light stimuli, and they did not contribute to classification. To the best of our knowledge, this study is the first to show the possibility of using a gaze independent visual ERP paradigm in an eyes-closed condition, thereby providing another communication option for severely locked-in patients suffering from complex ocular dysfunctions.

  8. Effect of a combination of flip and zooming stimuli on the performance of a visual brain-computer interface for spelling.

    PubMed

    Cheng, Jiao; Jin, Jing; Daly, Ian; Zhang, Yu; Wang, Bei; Wang, Xingyu; Cichocki, Andrzej

    2018-02-13

    Brain-computer interface (BCI) systems can allow their users to communicate with the external world by recognizing intention directly from their brain activity without the assistance of the peripheral motor nervous system. The P300-speller is one of the most widely used visual BCI applications. In previous studies, a flip stimulus (rotating the background area of the character) that was based on apparent motion, suffered from less refractory effects. However, its performance was not improved significantly. In addition, a presentation paradigm that used a "zooming" action (changing the size of the symbol) has been shown to evoke relatively higher P300 amplitudes and obtain a better BCI performance. To extend this method of stimuli presentation within a BCI and, consequently, to improve BCI performance, we present a new paradigm combining both the flip stimulus with a zooming action. This new presentation modality allowed BCI users to focus their attention more easily. We investigated whether such an action could combine the advantages of both types of stimuli presentation to bring a significant improvement in performance compared to the conventional flip stimulus. The experimental results showed that the proposed paradigm could obtain significantly higher classification accuracies and bit rates than the conventional flip paradigm (p<0.01).

  9. Stimulus specificity of a steady-state visual-evoked potential-based brain-computer interface.

    PubMed

    Ng, Kian B; Bradley, Andrew P; Cunnington, Ross

    2012-06-01

    The mechanisms of neural excitation and inhibition when given a visual stimulus are well studied. It has been established that changing stimulus specificity such as luminance contrast or spatial frequency can alter the neuronal activity and thus modulate the visual-evoked response. In this paper, we study the effect that stimulus specificity has on the classification performance of a steady-state visual-evoked potential-based brain-computer interface (SSVEP-BCI). For example, we investigate how closely two visual stimuli can be placed before they compete for neural representation in the cortex and thus influence BCI classification accuracy. We characterize stimulus specificity using the four stimulus parameters commonly encountered in SSVEP-BCI design: temporal frequency, spatial size, number of simultaneously displayed stimuli and their spatial proximity. By varying these quantities and measuring the SSVEP-BCI classification accuracy, we are able to determine the parameters that provide optimal performance. Our results show that superior SSVEP-BCI accuracy is attained when stimuli are placed spatially more than 5° apart, with size that subtends at least 2° of visual angle, when using a tagging frequency of between high alpha and beta band. These findings may assist in deciding the stimulus parameters for optimal SSVEP-BCI design.

  10. Stimulus specificity of a steady-state visual-evoked potential-based brain-computer interface

    NASA Astrophysics Data System (ADS)

    Ng, Kian B.; Bradley, Andrew P.; Cunnington, Ross

    2012-06-01

    The mechanisms of neural excitation and inhibition when given a visual stimulus are well studied. It has been established that changing stimulus specificity such as luminance contrast or spatial frequency can alter the neuronal activity and thus modulate the visual-evoked response. In this paper, we study the effect that stimulus specificity has on the classification performance of a steady-state visual-evoked potential-based brain-computer interface (SSVEP-BCI). For example, we investigate how closely two visual stimuli can be placed before they compete for neural representation in the cortex and thus influence BCI classification accuracy. We characterize stimulus specificity using the four stimulus parameters commonly encountered in SSVEP-BCI design: temporal frequency, spatial size, number of simultaneously displayed stimuli and their spatial proximity. By varying these quantities and measuring the SSVEP-BCI classification accuracy, we are able to determine the parameters that provide optimal performance. Our results show that superior SSVEP-BCI accuracy is attained when stimuli are placed spatially more than 5° apart, with size that subtends at least 2° of visual angle, when using a tagging frequency of between high alpha and beta band. These findings may assist in deciding the stimulus parameters for optimal SSVEP-BCI design.

  11. Biosonar resolving power: echo-acoustic perception of surface structures in the submillimeter range.

    PubMed

    Simon, Ralph; Knörnschild, Mirjam; Tschapka, Marco; Schneider, Annkathrin; Passauer, Nadine; Kalko, Elisabeth K V; von Helversen, Otto

    2014-01-01

    The minimum distance for which two points still can be separated from each other defines the resolving power of a visual system. In an echo-acoustic context, the resolving power is usually measured as the smallest perceivable distance of two reflecting surfaces on the range axis and is found to be around half a millimeter for bats employing frequency modulated (FM) echolocation calls. Only few studies measured such thresholds with physical objects, most often bats were trained on virtual echoes i.e., echoes generated and played back by a computer; moreover, bats were sitting while they received the stimuli. In these studies differences in structure depth between 200 and 340 μm were found. However, these low thresholds were never verified for free-flying bats and real physical objects. Here, we show behavioral evidence that the echo-acoustic resolving power for surface structures in fact can be as low as measured for computer generated echoes and even lower, sometimes below 100 μm. We found this exceptional fine discrimination ability only when one of the targets showed spectral interferences in the frequency range of the bats' echolocation call while the other target did not. This result indicates that surface structure is likely to be perceived as a spectral quality rather than being perceived strictly in the time domain. Further, it points out that sonar resolving power directly depends on the highest frequency/shortest wavelength of the signal employed.

  12. Aesthetic perception of visual textures: a holistic exploration using texture analysis, psychological experiment, and perception modeling.

    PubMed

    Liu, Jianli; Lughofer, Edwin; Zeng, Xianyi

    2015-01-01

    Modeling human aesthetic perception of visual textures is important and valuable in numerous industrial domains, such as product design, architectural design, and decoration. Based on results from a semantic differential rating experiment, we modeled the relationship between low-level basic texture features and aesthetic properties involved in human aesthetic texture perception. First, we compute basic texture features from textural images using four classical methods. These features are neutral, objective, and independent of the socio-cultural context of the visual textures. Then, we conduct a semantic differential rating experiment to collect from evaluators their aesthetic perceptions of selected textural stimuli. In semantic differential rating experiment, eights pairs of aesthetic properties are chosen, which are strongly related to the socio-cultural context of the selected textures and to human emotions. They are easily understood and connected to everyday life. We propose a hierarchical feed-forward layer model of aesthetic texture perception and assign 8 pairs of aesthetic properties to different layers. Finally, we describe the generation of multiple linear and non-linear regression models for aesthetic prediction by taking dimensionality-reduced texture features and aesthetic properties of visual textures as dependent and independent variables, respectively. Our experimental results indicate that the relationships between each layer and its neighbors in the hierarchical feed-forward layer model of aesthetic texture perception can be fitted well by linear functions, and the models thus generated can successfully bridge the gap between computational texture features and aesthetic texture properties.

  13. Biosonar resolving power: echo-acoustic perception of surface structures in the submillimeter range

    PubMed Central

    Simon, Ralph; Knörnschild, Mirjam; Tschapka, Marco; Schneider, Annkathrin; Passauer, Nadine; Kalko, Elisabeth K. V.; von Helversen, Otto

    2014-01-01

    The minimum distance for which two points still can be separated from each other defines the resolving power of a visual system. In an echo-acoustic context, the resolving power is usually measured as the smallest perceivable distance of two reflecting surfaces on the range axis and is found to be around half a millimeter for bats employing frequency modulated (FM) echolocation calls. Only few studies measured such thresholds with physical objects, most often bats were trained on virtual echoes i.e., echoes generated and played back by a computer; moreover, bats were sitting while they received the stimuli. In these studies differences in structure depth between 200 and 340 μm were found. However, these low thresholds were never verified for free-flying bats and real physical objects. Here, we show behavioral evidence that the echo-acoustic resolving power for surface structures in fact can be as low as measured for computer generated echoes and even lower, sometimes below 100 μm. We found this exceptional fine discrimination ability only when one of the targets showed spectral interferences in the frequency range of the bats′ echolocation call while the other target did not. This result indicates that surface structure is likely to be perceived as a spectral quality rather than being perceived strictly in the time domain. Further, it points out that sonar resolving power directly depends on the highest frequency/shortest wavelength of the signal employed. PMID:24616703

  14. Detection of Stress Levels from Biosignals Measured in Virtual Reality Environments Using a Kernel-Based Extreme Learning Machine.

    PubMed

    Cho, Dongrae; Ham, Jinsil; Oh, Jooyoung; Park, Jeanho; Kim, Sayup; Lee, Nak-Kyu; Lee, Boreom

    2017-10-24

    Virtual reality (VR) is a computer technique that creates an artificial environment composed of realistic images, sounds, and other sensations. Many researchers have used VR devices to generate various stimuli, and have utilized them to perform experiments or to provide treatment. In this study, the participants performed mental tasks using a VR device while physiological signals were measured: a photoplethysmogram (PPG), electrodermal activity (EDA), and skin temperature (SKT). In general, stress is an important factor that can influence the autonomic nervous system (ANS). Heart-rate variability (HRV) is known to be related to ANS activity, so we used an HRV derived from the PPG peak interval. In addition, the peak characteristics of the skin conductance (SC) from EDA and SKT variation can also reflect ANS activity; we utilized them as well. Then, we applied a kernel-based extreme-learning machine (K-ELM) to correctly classify the stress levels induced by the VR task to reflect five different levels of stress situations: baseline, mild stress, moderate stress, severe stress, and recovery. Twelve healthy subjects voluntarily participated in the study. Three physiological signals were measured in stress environment generated by VR device. As a result, the average classification accuracy was over 95% using K-ELM and the integrated feature (IT = HRV + SC + SKT). In addition, the proposed algorithm can embed a microcontroller chip since K-ELM algorithm have very short computation time. Therefore, a compact wearable device classifying stress levels using physiological signals can be developed.

  15. Is Neural Activity Detected by ERP-Based Brain-Computer Interfaces Task Specific?

    PubMed

    Wenzel, Markus A; Almeida, Inês; Blankertz, Benjamin

    2016-01-01

    Brain-computer interfaces (BCIs) that are based on event-related potentials (ERPs) can estimate to which stimulus a user pays particular attention. In typical BCIs, the user silently counts the selected stimulus (which is repeatedly presented among other stimuli) in order to focus the attention. The stimulus of interest is then inferred from the electroencephalogram (EEG). Detecting attention allocation implicitly could be also beneficial for human-computer interaction (HCI), because it would allow software to adapt to the user's interest. However, a counting task would be inappropriate for the envisaged implicit application in HCI. Therefore, the question was addressed if the detectable neural activity is specific for silent counting, or if it can be evoked also by other tasks that direct the attention to certain stimuli. Thirteen people performed a silent counting, an arithmetic and a memory task. The tasks required the subjects to pay particular attention to target stimuli of a random color. The stimulus presentation was the same in all three tasks, which allowed a direct comparison of the experimental conditions. Classifiers that were trained to detect the targets in one task, according to patterns present in the EEG signal, could detect targets in all other tasks (irrespective of some task-related differences in the EEG). The neural activity detected by the classifiers is not strictly task specific but can be generalized over tasks and is presumably a result of the attention allocation or of the augmented workload. The results may hold promise for the transfer of classification algorithms from BCI research to implicit relevance detection in HCI.

  16. Targeted intervention: Computational approaches to elucidate and predict relapse in alcoholism.

    PubMed

    Heinz, Andreas; Deserno, Lorenz; Zimmermann, Ulrich S; Smolka, Michael N; Beck, Anne; Schlagenhauf, Florian

    2017-05-01

    Alcohol use disorder (AUD) and addiction in general is characterized by failures of choice resulting in repeated drug intake despite severe negative consequences. Behavioral change is hard to accomplish and relapse after detoxification is common and can be promoted by consumption of small amounts of alcohol as well as exposure to alcohol-associated cues or stress. While those environmental factors contributing to relapse have long been identified, the underlying psychological and neurobiological mechanism on which those factors act are to date incompletely understood. Based on the reinforcing effects of drugs of abuse, animal experiments showed that drug, cue and stress exposure affect Pavlovian and instrumental learning processes, which can increase salience of drug cues and promote habitual drug intake. In humans, computational approaches can help to quantify changes in key learning mechanisms during the development and maintenance of alcohol dependence, e.g. by using sequential decision making in combination with computational modeling to elucidate individual differences in model-free versus more complex, model-based learning strategies and their neurobiological correlates such as prediction error signaling in fronto-striatal circuits. Computational models can also help to explain how alcohol-associated cues trigger relapse: mechanisms such as Pavlovian-to-Instrumental Transfer can quantify to which degree Pavlovian conditioned stimuli can facilitate approach behavior including alcohol seeking and intake. By using generative models of behavioral and neural data, computational approaches can help to quantify individual differences in psychophysiological mechanisms that underlie the development and maintenance of AUD and thus promote targeted intervention. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Habituation as an adaptive shift in response strategy mediated by neuropeptides

    NASA Astrophysics Data System (ADS)

    Ardiel, Evan L.; Yu, Alex J.; Giles, Andrew C.; Rankin, Catharine H.

    2017-08-01

    Habituation is a non-associative form of learning characterized by a decremented response to repeated stimulation. It is typically framed as a process of selective attention, allowing animals to ignore irrelevant stimuli in order to free up limited cognitive resources. However, habituation can also occur to threatening and toxic stimuli, suggesting that habituation may serve other functions. Here we took advantage of a high-throughput Caenorhabditis elegans learning assay to investigate habituation to noxious stimuli. Using real-time computer vision software for automated behavioral tracking and optogenetics for controlled activation of a polymodal nociceptor, ASH, we found that neuropeptides mediated habituation and performed an RNAi screen to identify candidate receptors. Through subsequent mutant analysis and cell-type-specific gene expression, we found that pigment-dispersing factor (PDF) neuropeptides function redundantly to promote habituation via PDFR-1-mediated cAMP signaling in both neurons and muscles. Behavioral analysis during learning acquisition suggests that response habituation and sensitization of locomotion are parts of a shifting behavioral strategy orchestrated by pigment dispersing factor signaling to promote dispersal away from repeated aversive stimuli.

  18. Comparison of the BCI Performance between the Semitransparent Face Pattern and the Traditional Face Pattern.

    PubMed

    Cheng, Jiao; Jin, Jing; Wang, Xingyu

    2017-01-01

    Brain-computer interface (BCI) systems allow users to communicate with the external world by recognizing the brain activity without the assistance of the peripheral motor nervous system. P300-based BCI is one of the most common used BCI systems that can obtain high classification accuracy and information transfer rate (ITR). Face stimuli can result in large event-related potentials and improve the performance of P300-based BCI. However, previous studies on face stimuli focused mainly on the effect of various face types (i.e., face expression, face familiarity, and multifaces) on the BCI performance. Studies on the influence of face transparency differences are scarce. Therefore, we investigated the effect of semitransparent face pattern (STF-P) (the subject could see the target character when the stimuli were flashed) and traditional face pattern (F-P) (the subject could not see the target character when the stimuli were flashed) on the BCI performance from the transparency perspective. Results showed that STF-P obtained significantly higher classification accuracy and ITR than those of F-P ( p < 0.05).

  19. How glitter relates to gold: similarity-dependent reward prediction errors in the human striatum.

    PubMed

    Kahnt, Thorsten; Park, Soyoung Q; Burke, Christopher J; Tobler, Philippe N

    2012-11-14

    Optimal choices benefit from previous learning. However, it is not clear how previously learned stimuli influence behavior to novel but similar stimuli. One possibility is to generalize based on the similarity between learned and current stimuli. Here, we use neuroscientific methods and a novel computational model to inform the question of how stimulus generalization is implemented in the human brain. Behavioral responses during an intradimensional discrimination task showed similarity-dependent generalization. Moreover, a peak shift occurred, i.e., the peak of the behavioral generalization gradient was displaced from the rewarded conditioned stimulus in the direction away from the unrewarded conditioned stimulus. To account for the behavioral responses, we designed a similarity-based reinforcement learning model wherein prediction errors generalize across similar stimuli and update their value. We show that this model predicts a similarity-dependent neural generalization gradient in the striatum as well as changes in responding during extinction. Moreover, across subjects, the width of generalization was negatively correlated with functional connectivity between the striatum and the hippocampus. This result suggests that hippocampus-striatal connections contribute to stimulus-specific value updating by controlling the width of generalization. In summary, our results shed light onto the neurobiology of a fundamental, similarity-dependent learning principle that allows learning the value of stimuli that have never been encountered.

  20. Extracting alpha band modulation during visual spatial attention without flickering stimuli using common spatial pattern.

    PubMed

    Fujisawa, Junya; Touyama, Hideaki; Hirose, Michitaka

    2008-01-01

    In this paper, alpha band modulation during visual spatial attention without visual stimuli was focused. Visual spatial attention has been expected to provide a new channel of non-invasive independent brain computer interface (BCI), but little work has been done on the new interfacing method. The flickering stimuli used in previous work cause a decline of independency and have difficulties in a practical use. Therefore we investigated whether visual spatial attention could be detected without such stimuli. Further, the common spatial patterns (CSP) were for the first time applied to the brain states during visual spatial attention. The performance evaluation was based on three brain states of left, right and center direction attention. The 30-channel scalp electroencephalographic (EEG) signals over occipital cortex were recorded for five subjects. Without CSP, the analyses made 66.44 (range 55.42 to 72.27) % of average classification performance in discriminating left and right attention classes. With CSP, the averaged classification accuracy was 75.39 (range 63.75 to 86.13) %. It is suggested that CSP is useful in the context of visual spatial attention, and the alpha band modulation during visual spatial attention without flickering stimuli has the possibility of a new channel for independent BCI as well as motor imagery.

  1. Exploring the Use of Isolated Expressions and Film Clips to Evaluate Emotion Recognition by People with Traumatic Brain Injury

    PubMed Central

    Zupan, Barbra; Neumann, Dawn

    2016-01-01

    The current study presented 60 people with traumatic brain injury (TBI) and 60 controls with isolated facial emotion expressions, isolated vocal emotion expressions, and multimodal (i.e., film clips) stimuli that included contextual cues. All stimuli were presented via computer. Participants were required to indicate how the person in each stimulus was feeling using a forced-choice format. Additionally, for the film clips, participants had to indicate how they felt in response to the stimulus, and the level of intensity with which they experienced that emotion. PMID:27213280

  2. Comparison of the ballistic contractile responses generated during microstimulation of single human motor axons with brief irregular and regular stimuli.

    PubMed

    Leitch, Michael; Macefield, Vaughan G

    2017-08-01

    Ballistic contractions are induced by brief, high-frequency (60-100 Hz) trains of action potentials in motor axons. During ramp voluntary contractions, human motoneurons exhibit significant discharge variability of ∼20% and have been shown to be advantageous to the neuromuscular system. We hypothesized that ballistic contractions incorporating discharge variability would generate greater isometric forces than regular trains with zero variability. High-impedance tungsten microelectrodes were inserted into human fibular nerve, and single motor axons were stimulated with both irregular and constant-frequency stimuli at mean frequencies ranging from 57.8 to 68.9 Hz. Irregular trains generated significantly greater isometric peak forces than regular trains over identical mean frequencies. The high forces generated by ballistic contractions are not based solely on high frequencies, but rather a combination of high firing rates and discharge irregularity. It appears that irregular ballistic trains take advantage of the "catchlike property" of muscle, allowing augmentation of force. Muscle Nerve 56: 292-297, 2017. © 2016 Wiley Periodicals, Inc.

  3. Modeling open-set spoken word recognition in postlingually deafened adults after cochlear implantation: some preliminary results with the neighborhood activation model.

    PubMed

    Meyer, Ted A; Frisch, Stefan A; Pisoni, David B; Miyamoto, Richard T; Svirsky, Mario A

    2003-07-01

    Do cochlear implants provide enough information to allow adult cochlear implant users to understand words in ways that are similar to listeners with acoustic hearing? Can we use a computational model to gain insight into the underlying mechanisms used by cochlear implant users to recognize spoken words? The Neighborhood Activation Model has been shown to be a reasonable model of word recognition for listeners with normal hearing. The Neighborhood Activation Model assumes that words are recognized in relation to other similar-sounding words in a listener's lexicon. The probability of correctly identifying a word is based on the phoneme perception probabilities from a listener's closed-set consonant and vowel confusion matrices modified by the relative frequency of occurrence of the target word compared with similar-sounding words (neighbors). Common words with few similar-sounding neighbors are more likely to be selected as responses than less common words with many similar-sounding neighbors. Recent studies have shown that several of the assumptions of the Neighborhood Activation Model also hold true for cochlear implant users. Closed-set consonant and vowel confusion matrices were obtained from 26 postlingually deafened adults who use cochlear implants. Confusion matrices were used to represent input errors to the Neighborhood Activation Model. Responses to the different stimuli were then generated by the Neighborhood Activation Model after incorporating the frequency of occurrence counts of the stimuli and their neighbors. Model outputs were compared with obtained performance measures on the Consonant-Vowel Nucleus-Consonant word test. Information transmission analysis was used to assess whether the Neighborhood Activation Model was able to successfully generate and predict word and individual phoneme recognition by cochlear implant users. The Neighborhood Activation Model predicted Consonant-Vowel Nucleus-Consonant test words at levels similar to those correctly identified by the cochlear implant users. The Neighborhood Activation Model also predicted phoneme feature information well. The results obtained suggest that the Neighborhood Activation Model provides a reasonable explanation of word recognition by postlingually deafened adults after cochlear implantation. It appears that multichannel cochlear implants give cochlear implant users access to their mental lexicons in a manner that is similar to listeners with acoustic hearing. The lexical properties of the test stimuli used to assess performance are important to spoken-word recognition and should be included in further models of the word recognition process.

  4. Distributed Fading Memory for Stimulus Properties in the Primary Visual Cortex

    PubMed Central

    Singer, Wolf; Maass, Wolfgang

    2009-01-01

    It is currently not known how distributed neuronal responses in early visual areas carry stimulus-related information. We made multielectrode recordings from cat primary visual cortex and applied methods from machine learning in order to analyze the temporal evolution of stimulus-related information in the spiking activity of large ensembles of around 100 neurons. We used sequences of up to three different visual stimuli (letters of the alphabet) presented for 100 ms and with intervals of 100 ms or larger. Most of the information about visual stimuli extractable by sophisticated methods of machine learning, i.e., support vector machines with nonlinear kernel functions, was also extractable by simple linear classification such as can be achieved by individual neurons. New stimuli did not erase information about previous stimuli. The responses to the most recent stimulus contained about equal amounts of information about both this and the preceding stimulus. This information was encoded both in the discharge rates (response amplitudes) of the ensemble of neurons and, when using short time constants for integration (e.g., 20 ms), in the precise timing of individual spikes (≤∼20 ms), and persisted for several 100 ms beyond the offset of stimuli. The results indicate that the network from which we recorded is endowed with fading memory and is capable of performing online computations utilizing information about temporally sequential stimuli. This result challenges models assuming frame-by-frame analyses of sequential inputs. PMID:20027205

  5. Induction of Social Behavior in Zebrafish: Live Versus Computer Animated Fish as Stimuli

    PubMed Central

    Qin, Meiying; Wong, Albert; Seguin, Diane

    2014-01-01

    Abstract The zebrafish offers an excellent compromise between system complexity and practical simplicity and has been suggested as a translational research tool for the analysis of human brain disorders associated with abnormalities of social behavior. Unlike laboratory rodents zebrafish are diurnal, thus visual cues may be easily utilized in the analysis of their behavior and brain function. Visual cues, including the sight of conspecifics, have been employed to induce social behavior in zebrafish. However, the method of presentation of these cues and the question of whether computer animated images versus live stimulus fish have differential effects have not been systematically analyzed. Here, we compare the effects of five stimulus presentation types: live conspecifics in the experimental tank or outside the tank, playback of video-recorded live conspecifics, computer animated images of conspecifics presented by two software applications, the previously employed General Fish Animator, and a new application Zebrafish Presenter. We report that all stimuli were equally effective and induced a robust social response (shoaling) manifesting as reduced distance between stimulus and experimental fish. We conclude that presentation of live stimulus fish, or 3D images, is not required and 2D computer animated images are sufficient to induce robust and consistent social behavioral responses in zebrafish. PMID:24575942

  6. Induction of social behavior in zebrafish: live versus computer animated fish as stimuli.

    PubMed

    Qin, Meiying; Wong, Albert; Seguin, Diane; Gerlai, Robert

    2014-06-01

    The zebrafish offers an excellent compromise between system complexity and practical simplicity and has been suggested as a translational research tool for the analysis of human brain disorders associated with abnormalities of social behavior. Unlike laboratory rodents zebrafish are diurnal, thus visual cues may be easily utilized in the analysis of their behavior and brain function. Visual cues, including the sight of conspecifics, have been employed to induce social behavior in zebrafish. However, the method of presentation of these cues and the question of whether computer animated images versus live stimulus fish have differential effects have not been systematically analyzed. Here, we compare the effects of five stimulus presentation types: live conspecifics in the experimental tank or outside the tank, playback of video-recorded live conspecifics, computer animated images of conspecifics presented by two software applications, the previously employed General Fish Animator, and a new application Zebrafish Presenter. We report that all stimuli were equally effective and induced a robust social response (shoaling) manifesting as reduced distance between stimulus and experimental fish. We conclude that presentation of live stimulus fish, or 3D images, is not required and 2D computer animated images are sufficient to induce robust and consistent social behavioral responses in zebrafish.

  7. NeuroPhysics: Studying how neurons create the perception of space-time using Physics' tools and techniques

    NASA Astrophysics Data System (ADS)

    Dhingra, Shonali; Sandler, Roman; Rios, Rodrigo; Vuong, Cliff; Mehta, Mayank

    All animals naturally perceive the abstract concept of space-time. A brain region called the Hippocampus is known to be important in creating these perceptions, but the underlying mechanisms are unknown. In our lab we employ several experimental and computational techniques from Physics to tackle this fundamental puzzle. Experimentally, we use ideas from Nanoscience and Materials Science to develop techniques to measure the activity of hippocampal neurons, in freely-behaving animals. Computationally, we develop models to study neuronal activity patterns, which are point processes that are highly stochastic and multidimensional. We then apply these techniques to collect and analyze neuronal signals from rodents while they're exploring space in Real World or Virtual Reality with various stimuli. Our findings show that under these conditions neuronal activity depends on various parameters, such as sensory cues including visual and auditory, and behavioral cues including, linear and angular, position and velocity. Further, neuronal networks create internally-generated rhythms, which influence perception of space and time. In totality, these results further our understanding of how the brain develops a cognitive map of our surrounding space, and keep track of time.

  8. Architecture of the parallel hierarchical network for fast image recognition

    NASA Astrophysics Data System (ADS)

    Timchenko, Leonid; Wójcik, Waldemar; Kokriatskaia, Natalia; Kutaev, Yuriy; Ivasyuk, Igor; Kotyra, Andrzej; Smailova, Saule

    2016-09-01

    Multistage integration of visual information in the brain allows humans to respond quickly to most significant stimuli while maintaining their ability to recognize small details in the image. Implementation of this principle in technical systems can lead to more efficient processing procedures. The multistage approach to image processing includes main types of cortical multistage convergence. The input images are mapped into a flexible hierarchy that reflects complexity of image data. Procedures of the temporal image decomposition and hierarchy formation are described in mathematical expressions. The multistage system highlights spatial regularities, which are passed through a number of transformational levels to generate a coded representation of the image that encapsulates a structure on different hierarchical levels in the image. At each processing stage a single output result is computed to allow a quick response of the system. The result is presented as an activity pattern, which can be compared with previously computed patterns on the basis of the closest match. With regard to the forecasting method, its idea lies in the following. In the results synchronization block, network-processed data arrive to the database where a sample of most correlated data is drawn using service parameters of the parallel-hierarchical network.

  9. Active Inference and Learning in the Cerebellum.

    PubMed

    Friston, Karl; Herreros, Ivan

    2016-09-01

    This letter offers a computational account of Pavlovian conditioning in the cerebellum based on active inference and predictive coding. Using eyeblink conditioning as a canonical paradigm, we formulate a minimal generative model that can account for spontaneous blinking, startle responses, and (delay or trace) conditioning. We then establish the face validity of the model using simulated responses to unconditioned and conditioned stimuli to reproduce the sorts of behavior that are observed empirically. The scheme's anatomical validity is then addressed by associating variables in the predictive coding scheme with nuclei and neuronal populations to match the (extrinsic and intrinsic) connectivity of the cerebellar (eyeblink conditioning) system. Finally, we try to establish predictive validity by reproducing selective failures of delay conditioning, trace conditioning, and extinction using (simulated and reversible) focal lesions. Although rather metaphorical, the ensuing scheme can account for a remarkable range of anatomical and neurophysiological aspects of cerebellar circuitry-and the specificity of lesion-deficit mappings that have been established experimentally. From a computational perspective, this work shows how conditioning or learning can be formulated in terms of minimizing variational free energy (or maximizing Bayesian model evidence) using exactly the same principles that underlie predictive coding in perception.

  10. Inverted-U Function Relating Cortical Plasticity and Task Difficulty

    PubMed Central

    Engineer, Navzer D.; Engineer, Crystal T.; Reed, Amanda C.; Pandya, Pritesh K.; Jakkamsetti, Vikram; Moucha, Raluca; Kilgard, Michael P.

    2012-01-01

    Many psychological and physiological studies with simple stimuli have suggested that perceptual learning specifically enhances the response of primary sensory cortex to task-relevant stimuli. The aim of this study was to determine whether auditory discrimination training on complex tasks enhances primary auditory cortex responses to a target sequence relative to non-target and novel sequences. We collected responses from more than 2,000 sites in 31 rats trained on one of six discrimination tasks that differed primarily in the similarity of the target and distractor sequences. Unlike training with simple stimuli, long-term training with complex stimuli did not generate target specific enhancement in any of the groups. Instead, cortical receptive field size decreased, latency decreased, and paired pulse depression decreased in rats trained on the tasks of intermediate difficulty while tasks that were too easy or too difficult either did not alter or degraded cortical responses. These results suggest an inverted-U function relating neural plasticity and task difficulty. PMID:22249158

  11. Distraction and mind-wandering under load.

    PubMed

    Forster, Sophie

    2013-01-01

    Attention research over the last several decades has provided rich insights into the determinants of distraction, including distractor characteristics, task features, and individual differences. Load Theory represented a particularly important breakthrough, highlighting the critical role of the level and nature of task-load in determining both the efficiency of distractor rejection and the stage of processing at which this occurs. However, until recently studies of distraction were restricted to those measuring rather specific forms of distraction by external stimuli which I argue that, although intended to be irrelevant, were in fact task-relevant. In daily life, attention may be distracted by a wide range of stimuli, which may often be entirely unrelated to any task being performed, and may include not only external stimuli but also internally generated stimuli such as task-unrelated thoughts. This review outlines recent research examining these more general, entirely task-irrelevant, forms of distraction within the framework of Load Theory. I discuss the relation between different forms of distraction, and the universality of load effects across different distractor types and individuals.

  12. Temporal dynamics of contingency extraction from tonal and verbal auditory sequences.

    PubMed

    Bendixen, Alexandra; Schwartze, Michael; Kotz, Sonja A

    2015-09-01

    Consecutive sound events are often to some degree predictive of each other. Here we investigated the brain's capacity to detect contingencies between consecutive sounds by means of electroencephalography (EEG) during passive listening. Contingencies were embedded either within tonal or verbal stimuli. Contingency extraction was measured indirectly via the elicitation of the mismatch negativity (MMN) component of the event-related potential (ERP) by contingency violations. MMN results indicate that structurally identical forms of predictability can be extracted from both tonal and verbal stimuli. We also found similar generators to underlie the processing of contingency violations across stimulus types, as well as similar performance in an active-listening follow-up test. However, the process of passive contingency extraction was considerably slower (twice as many rule exemplars were needed) for verbal than for tonal stimuli These results suggest caution in transferring findings on complex predictive regularity processing obtained with tonal stimuli directly to the speech domain. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. A behavior analytic analogue of learning to use synonyms, syntax, and parts of speech.

    PubMed

    Chase, Philip N; Ellenwood, David W; Madden, Gregory

    2008-01-01

    Matching-to-sample and sequence training procedures were used to develop responding to stimulus classes that were considered analogous to 3 aspects of verbal behavior: identifying synonyms and parts of speech, and using syntax. Matching-to-sample procedures were used to train 12 paired associates from among 24 stimuli. These pairs were analogous to synonyms. Then, sequence characteristics were trained to 6 of the stimuli. The result was the formation of 3 classes of 4 stimuli, with the classes controlling a sequence response analogous to a simple ordering syntax: first, second, and third. Matching-to-sample procedures were then used to add 4 stimuli to each class. These stimuli, without explicit sequence training, also began to control the same sequence responding as the other members of their class. Thus, three 8-member functionally equivalent sequence classes were formed. These classes were considered to be analogous to parts of speech. Further testing revealed three 8-member equivalence classes and 512 different sequences of first, second, and third. The study indicated that behavior analytic procedures may be used to produce some generative aspects of verbal behavior related to simple syntax and semantics.

  14. Involvement of the mentalizing network in social and non-social high construal.

    PubMed

    Baetens, Kris; Ma, Ning; Steen, Johan; Van Overwalle, Frank

    2014-06-01

    The dorsomedial prefrontal cortex (dmPFC) is consistently involved in tasks requiring the processing of mental states, and much rarer so by tasks that do not involve mental state inferences. We hypothesized that the dmPFC might be more generally involved in high construal of stimuli, defined as the formation of concepts or ideas by omitting non-essential features of stimuli, irrespective of their social or non-social nature. In an fMRI study, we presented pictures of a person engaged in everyday activities (social stimuli) or of objects (non-social stimuli) and induced a higher level of construal by instructing participants to generate personality traits of the person or categories to which the objects belonged. This was contrasted against a lower level task where participants had to describe these same pictures visually. As predicted, we found strong involvement of the dmPFC in high construal, with substantial overlap across social and non-social stimuli, including shared activation in the vmPFC/OFC, parahippocampal, fusiform and angular gyrus, precuneus, posterior cingulate and right cerebellum. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  15. Seeing music: The perception of melodic 'ups and downs' modulates the spatial processing of visual stimuli.

    PubMed

    Romero-Rivas, Carlos; Vera-Constán, Fátima; Rodríguez-Cuadrado, Sara; Puigcerver, Laura; Fernández-Prieto, Irune; Navarra, Jordi

    2018-05-10

    Musical melodies have "peaks" and "valleys". Although the vertical component of pitch and music is well-known, the mechanisms underlying its mental representation still remain elusive. We show evidence regarding the importance of previous experience with melodies for crossmodal interactions to emerge. The impact of these crossmodal interactions on other perceptual and attentional processes was also studied. Melodies including two tones with different frequency (e.g., E4 and D3) were repeatedly presented during the study. These melodies could either generate strong predictions (e.g., E4-D3-E4-D3-E4-[D3]) or not (e.g., E4-D3-E4-E4-D3-[?]). After the presentation of each melody, the participants had to judge the colour of a visual stimulus that appeared in a position that was, according to the traditional vertical connotations of pitch, either congruent (e.g., high-low-high-low-[up]), incongruent (high-low-high-low-[down]) or unpredicted with respect to the melody. Behavioural and electroencephalographic responses to the visual stimuli were obtained. Congruent visual stimuli elicited faster responses at the end of the experiment than at the beginning. Additionally, incongruent visual stimuli that broke the spatial prediction generated by the melody elicited larger P3b amplitudes (reflecting 'surprise' responses). Our results suggest that the passive (but repeated) exposure to melodies elicits spatial predictions that modulate the processing of other sensory events. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Neural correlations enable invariant coding and perception of natural stimuli in weakly electric fish

    PubMed Central

    Metzen, Michael G; Hofmann, Volker; Chacron, Maurice J

    2016-01-01

    Neural representations of behaviorally relevant stimulus features displaying invariance with respect to different contexts are essential for perception. However, the mechanisms mediating their emergence and subsequent refinement remain poorly understood in general. Here, we demonstrate that correlated neural activity allows for the emergence of an invariant representation of natural communication stimuli that is further refined across successive stages of processing in the weakly electric fish Apteronotus leptorhynchus. Importantly, different patterns of input resulting from the same natural communication stimulus occurring in different contexts all gave rise to similar behavioral responses. Our results thus reveal how a generic neural circuit performs an elegant computation that mediates the emergence and refinement of an invariant neural representation of natural stimuli that most likely constitutes a neural correlate of perception. DOI: http://dx.doi.org/10.7554/eLife.12993.001 PMID:27128376

  17. Speech rate reduction and "nasality" in normal speakers.

    PubMed

    Brancewicz, T M; Reich, A R

    1989-12-01

    This study explored the effects of reduced speech rate on nasal/voice accelerometric measures and nasality ratings. Nasal/voice accelerometric measures were obtained from normal adults for various speech stimuli and speaking rates. Stimuli included three sentences (one obstruent-loaded, one semivowel-loaded, and one containing a single nasal), and /pv/ syllable trains.. Speakers read the stimuli at their normal rate, half their normal rate, and as slowly as possible. In addition, a computer program paced each speaker at rates of 1, 2, and 3 syllables per second. The nasal/voice accelerometric values revealed significant stimulus effects but no rate effects. The nasality ratings of experienced listeners, evaluated as a function of stimulus and speaking rate, were compared to the accelerometric measures. The nasality scale values demonstrated small, but statistically significant, stimulus and rate effects. However, the nasality percepts were poorly correlated with the nasal/voice accelerometric measures.

  18. Neural circuits underlying visually evoked escapes in larval zebrafish

    PubMed Central

    Dunn, Timothy W.; Gebhardt, Christoph; Naumann, Eva A.; Riegler, Clemens; Ahrens, Misha B.; Engert, Florian; Del Bene, Filippo

    2015-01-01

    SUMMARY Escape behaviors deliver organisms away from imminent catastrophe. Here, we characterize behavioral responses of freely swimming larval zebrafish to looming visual stimuli simulating predators. We report that the visual system alone can recruit lateralized, rapid escape motor programs, similar to those elicited by mechanosensory modalities. Two-photon calcium imaging of retino-recipient midbrain regions isolated the optic tectum as an important center processing looming stimuli, with ensemble activity encoding the critical image size determining escape latency. Furthermore, we describe activity in retinal ganglion cell terminals and superficial inhibitory interneurons in the tectum during looming and propose a model for how temporal dynamics in tectal periventricular neurons might arise from computations between these two fundamental constituents. Finally, laser ablations of hindbrain circuitry confirmed that visual and mechanosensory modalities share the same premotor output network. Together, we establish a circuit for the processing of aversive stimuli in the context of an innate visual behavior. PMID:26804997

  19. Signaling of the strongest stimulus in the owl optic tectum

    PubMed Central

    Mysore, Shreesh P.; Asadollahi, Ali; Knudsen, Eric I.

    2011-01-01

    Essential to the selection of the next target for gaze or attention is the ability to compare the strengths of multiple competing stimuli (bottom-up information), and to signal the strongest one. Though the optic tectum (OT) has been causally implicated in stimulus selection, how it computes the strongest stimulus is unknown. Here, we demonstrate that OT neurons in the barn owl systematically encode the relative strengths of simultaneously occurring stimuli independently of sensory modality. Moreover, special “switch-like” responses of a subset of neurons abruptly increase when the stimulus inside their receptive field becomes the strongest one. Such responses are not predicted by responses to single stimuli and, indeed, are eliminated in the absence of competitive interactions. We demonstrate that this sensory transformation substantially boosts the representation of the strongest stimulus by creating a binary discrimination signal, thereby setting the stage for potential winner-take-all target selection for gaze and attention. PMID:21471353

  20. Response-dependent dynamics of cell-specific inhibition in cortical networks in vivo

    PubMed Central

    El-Boustani, Sami; Sur, Mriganka

    2014-01-01

    In the visual cortex, inhibitory neurons alter the computations performed by target cells via combination of two fundamental operations, division and subtraction. The origins of these operations have been variously ascribed to differences in neuron classes, synapse location or receptor conductances. Here, by utilizing specific visual stimuli and single optogenetic probe pulses, we show that the function of parvalbumin-expressing and somatostatin-expressing neurons in mice in vivo is governed by the overlap of response timing between these neurons and their targets. In particular, somatostatin-expressing neurons respond at longer latencies to small visual stimuli compared with their target neurons and provide subtractive inhibition. With large visual stimuli, however, they respond at short latencies coincident with their target cells and switch to provide divisive inhibition. These results indicate that inhibition mediated by these neurons is a dynamic property of cortical circuits rather than an immutable property of neuronal classes. PMID:25504329

  1. Computational and Experimental Approaches to Visual Aesthetics

    PubMed Central

    Brachmann, Anselm; Redies, Christoph

    2017-01-01

    Aesthetics has been the subject of long-standing debates by philosophers and psychologists alike. In psychology, it is generally agreed that aesthetic experience results from an interaction between perception, cognition, and emotion. By experimental means, this triad has been studied in the field of experimental aesthetics, which aims to gain a better understanding of how aesthetic experience relates to fundamental principles of human visual perception and brain processes. Recently, researchers in computer vision have also gained interest in the topic, giving rise to the field of computational aesthetics. With computing hardware and methodology developing at a high pace, the modeling of perceptually relevant aspect of aesthetic stimuli has a huge potential. In this review, we present an overview of recent developments in computational aesthetics and how they relate to experimental studies. In the first part, we cover topics such as the prediction of ratings, style and artist identification as well as computational methods in art history, such as the detection of influences among artists or forgeries. We also describe currently used computational algorithms, such as classifiers and deep neural networks. In the second part, we summarize results from the field of experimental aesthetics and cover several isolated image properties that are believed to have a effect on the aesthetic appeal of visual stimuli. Their relation to each other and to findings from computational aesthetics are discussed. Moreover, we compare the strategies in the two fields of research and suggest that both fields would greatly profit from a joined research effort. We hope to encourage researchers from both disciplines to work more closely together in order to understand visual aesthetics from an integrated point of view. PMID:29184491

  2. Computational and Experimental Approaches to Visual Aesthetics.

    PubMed

    Brachmann, Anselm; Redies, Christoph

    2017-01-01

    Aesthetics has been the subject of long-standing debates by philosophers and psychologists alike. In psychology, it is generally agreed that aesthetic experience results from an interaction between perception, cognition, and emotion. By experimental means, this triad has been studied in the field of experimental aesthetics , which aims to gain a better understanding of how aesthetic experience relates to fundamental principles of human visual perception and brain processes. Recently, researchers in computer vision have also gained interest in the topic, giving rise to the field of computational aesthetics . With computing hardware and methodology developing at a high pace, the modeling of perceptually relevant aspect of aesthetic stimuli has a huge potential. In this review, we present an overview of recent developments in computational aesthetics and how they relate to experimental studies. In the first part, we cover topics such as the prediction of ratings, style and artist identification as well as computational methods in art history, such as the detection of influences among artists or forgeries. We also describe currently used computational algorithms, such as classifiers and deep neural networks. In the second part, we summarize results from the field of experimental aesthetics and cover several isolated image properties that are believed to have a effect on the aesthetic appeal of visual stimuli. Their relation to each other and to findings from computational aesthetics are discussed. Moreover, we compare the strategies in the two fields of research and suggest that both fields would greatly profit from a joined research effort. We hope to encourage researchers from both disciplines to work more closely together in order to understand visual aesthetics from an integrated point of view.

  3. Combat PTSD and Implicit Behavioral Tendencies for Positive Affective Stimuli: A Brief Report

    PubMed Central

    Clausen, Ashley N.; Youngren, Westley; Sisante, Jason-Flor V.; Billinger, Sandra A.; Taylor, Charles; Aupperle, Robin L.

    2016-01-01

    Background: Prior cognitive research in posttraumatic stress disorder (PTSD) has focused on automatic responses to negative affective stimuli, including attentional facilitation or disengagement and avoidance action tendencies. More recent research suggests PTSD may also relate to differences in reward processing, which has lead to theories of PTSD relating to approach-avoidance imbalances. The current pilot study assessed how combat-PTSD symptoms relate to automatic behavioral tendencies to both positive and negative affective stimuli. Method: Twenty male combat veterans completed the approach-avoidance task (AAT), Clinician Administered PTSD Scale, Beck Depression Inventory-II, and State-Trait Anger Expression Inventory-II. During the AAT, subjects pulled (approach) or pushed (avoid) a joystick in response to neutral, happy, disgust, and angry faces based on border color. Bias scores were calculated for each emotion type (avoid-approach response latency differences). Main and interaction effects for psychological symptom severity and emotion type on bias score were assessed using linear mixed models. Results: There was a significant interaction between PTSD symptoms and emotion type, driven primarily by worse symptoms relating to a greater bias to avoid happy faces. Post hoc tests revealed that veterans with worse PTSD symptoms were slower to approach as well as quicker to avoid happy faces. Neither depressive nor anger symptoms related to avoid or approach tendencies of emotional stimuli. Conclusion: Posttraumatic stress disorder severity was associated with a bias for avoiding positive affective stimuli. These results provide further evidence that PTSD may relate to aberrant processing of positively valenced, or rewarding stimuli. Implicit responses to rewarding stimuli could be an important factor in PTSD pathology and treatment. Specifically, these findings have implications for recent endeavors in using computer-based interventions to influence automatic approach-avoidance tendencies. PMID:27252673

  4. Attentional bias to pain and social threat in pediatric patients with functional abdominal pain and pain-free youth before and after performance evaluation.

    PubMed

    Beck, Joy E; Lipani, Tricia A; Baber, Kari F; Dufton, Lynette; Garber, Judy; Smith, Craig A; Walker, Lynn S

    2011-05-01

    This study investigated attentional biases for pain and social threat versus neutral stimuli in 54 youth with functional abdominal pain (FAP) and 53 healthy control subjects (ages 10 to 16 years). We assessed attentional bias using a visual probe detection task (PDT) that presented pain and social threat words in comparison to neutral words at conscious (1250 ms) and preconscious (20 ms) presentation rates. We administered the PDT before and after random assignment of participants to a laboratory stressor--failure versus success feedback regarding their performance on a challenging computer game. All analyses controlled for trait anxiety. At the conscious rate of stimulus presentation, FAP patients exhibited preferential attention toward pain compared with neutral stimuli and compared with the control group. FAP patients maintained preferential attention toward conscious pain stimuli after performance feedback in both failure and success conditions. At the preconscious rate of stimulus presentation, FAP patients' attention was neutral at baseline but increased significantly toward pain stimuli after performance feedback in both failure and success conditions. FAP patients' somatic symptoms increased in both failure and success conditions; control youth's somatic symptoms only increased after failure. Regarding social threat, neither FAP nor control youth exhibited attentional bias toward social threat compared with neutral stimuli at baseline, but both FAP and control youth in the failure condition significantly increased attention away from social threat after failure feedback. Results suggest that FAP patients preferentially attend to pain stimuli in conscious awareness. Moreover, performance evaluation may activate their preconscious attention to pain stimuli. Copyright © 2011 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  5. Inter-synaptic learning of combination rules in a cortical network model

    PubMed Central

    Lavigne, Frédéric; Avnaïm, Francis; Dumercy, Laurent

    2014-01-01

    Selecting responses in working memory while processing combinations of stimuli depends strongly on their relations stored in long-term memory. However, the learning of XOR-like combinations of stimuli and responses according to complex rules raises the issue of the non-linear separability of the responses within the space of stimuli. One proposed solution is to add neurons that perform a stage of non-linear processing between the stimuli and responses, at the cost of increasing the network size. Based on the non-linear integration of synaptic inputs within dendritic compartments, we propose here an inter-synaptic (IS) learning algorithm that determines the probability of potentiating/depressing each synapse as a function of the co-activity of the other synapses within the same dendrite. The IS learning is effective with random connectivity and without either a priori wiring or additional neurons. Our results show that IS learning generates efficacy values that are sufficient for the processing of XOR-like combinations, on the basis of the sole correlational structure of the stimuli and responses. We analyze the types of dendrites involved in terms of the number of synapses from pre-synaptic neurons coding for the stimuli and responses. The synaptic efficacy values obtained show that different dendrites specialize in the detection of different combinations of stimuli. The resulting behavior of the cortical network model is analyzed as a function of inter-synaptic vs. Hebbian learning. Combinatorial priming effects show that the retrospective activity of neurons coding for the stimuli trigger XOR-like combination-selective prospective activity of neurons coding for the expected response. The synergistic effects of inter-synaptic learning and of mixed-coding neurons are simulated. The results show that, although each mechanism is sufficient by itself, their combined effects improve the performance of the network. PMID:25221529

  6. Computational Model of Primary Visual Cortex Combining Visual Attention for Action Recognition

    PubMed Central

    Shu, Na; Gao, Zhiyong; Chen, Xiangan; Liu, Haihua

    2015-01-01

    Humans can easily understand other people’s actions through visual systems, while computers cannot. Therefore, a new bio-inspired computational model is proposed in this paper aiming for automatic action recognition. The model focuses on dynamic properties of neurons and neural networks in the primary visual cortex (V1), and simulates the procedure of information processing in V1, which consists of visual perception, visual attention and representation of human action. In our model, a family of the three-dimensional spatial-temporal correlative Gabor filters is used to model the dynamic properties of the classical receptive field of V1 simple cell tuned to different speeds and orientations in time for detection of spatiotemporal information from video sequences. Based on the inhibitory effect of stimuli outside the classical receptive field caused by lateral connections of spiking neuron networks in V1, we propose surround suppressive operator to further process spatiotemporal information. Visual attention model based on perceptual grouping is integrated into our model to filter and group different regions. Moreover, in order to represent the human action, we consider the characteristic of the neural code: mean motion map based on analysis of spike trains generated by spiking neurons. The experimental evaluation on some publicly available action datasets and comparison with the state-of-the-art approaches demonstrate the superior performance of the proposed model. PMID:26132270

  7. Estimating the Intended Sound Direction of the User: Toward an Auditory Brain-Computer Interface Using Out-of-Head Sound Localization

    PubMed Central

    Nambu, Isao; Ebisawa, Masashi; Kogure, Masumi; Yano, Shohei; Hokari, Haruhide; Wada, Yasuhiro

    2013-01-01

    The auditory Brain-Computer Interface (BCI) using electroencephalograms (EEG) is a subject of intensive study. As a cue, auditory BCIs can deal with many of the characteristics of stimuli such as tone, pitch, and voices. Spatial information on auditory stimuli also provides useful information for a BCI. However, in a portable system, virtual auditory stimuli have to be presented spatially through earphones or headphones, instead of loudspeakers. We investigated the possibility of an auditory BCI using the out-of-head sound localization technique, which enables us to present virtual auditory stimuli to users from any direction, through earphones. The feasibility of a BCI using this technique was evaluated in an EEG oddball experiment and offline analysis. A virtual auditory stimulus was presented to the subject from one of six directions. Using a support vector machine, we were able to classify whether the subject attended the direction of a presented stimulus from EEG signals. The mean accuracy across subjects was 70.0% in the single-trial classification. When we used trial-averaged EEG signals as inputs to the classifier, the mean accuracy across seven subjects reached 89.5% (for 10-trial averaging). Further analysis showed that the P300 event-related potential responses from 200 to 500 ms in central and posterior regions of the brain contributed to the classification. In comparison with the results obtained from a loudspeaker experiment, we confirmed that stimulus presentation by out-of-head sound localization achieved similar event-related potential responses and classification performances. These results suggest that out-of-head sound localization enables us to provide a high-performance and loudspeaker-less portable BCI system. PMID:23437338

  8. Top-down modulation of ventral occipito-temporal responses during visual word recognition.

    PubMed

    Twomey, Tae; Kawabata Duncan, Keith J; Price, Cathy J; Devlin, Joseph T

    2011-04-01

    Although interactivity is considered a fundamental principle of cognitive (and computational) models of reading, it has received far less attention in neural models of reading that instead focus on serial stages of feed-forward processing from visual input to orthographic processing to accessing the corresponding phonological and semantic information. In particular, the left ventral occipito-temporal (vOT) cortex is proposed to be the first stage where visual word recognition occurs prior to accessing nonvisual information such as semantics and phonology. We used functional magnetic resonance imaging (fMRI) to investigate whether there is evidence that activation in vOT is influenced top-down by the interaction of visual and nonvisual properties of the stimuli during visual word recognition tasks. Participants performed two different types of lexical decision tasks that focused on either visual or nonvisual properties of the word or word-like stimuli. The design allowed us to investigate how vOT activation during visual word recognition was influenced by a task change to the same stimuli and by a stimulus change during the same task. We found both stimulus- and task-driven modulation of vOT activation that can only be explained by top-down processing of nonvisual aspects of the task and stimuli. Our results are consistent with the hypothesis that vOT acts as an interface linking visual form with nonvisual processing in both bottom up and top down directions. Such interactive processing at the neural level is in agreement with cognitive and computational models of reading but challenges some of the assumptions made by current neuro-anatomical models of reading. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Goal-Directed and Habit-Like Modulations of Stimulus Processing during Reinforcement Learning.

    PubMed

    Luque, David; Beesley, Tom; Morris, Richard W; Jack, Bradley N; Griffiths, Oren; Whitford, Thomas J; Le Pelley, Mike E

    2017-03-15

    Recent research has shown that perceptual processing of stimuli previously associated with high-value rewards is automatically prioritized even when rewards are no longer available. It has been hypothesized that such reward-related modulation of stimulus salience is conceptually similar to an "attentional habit." Recording event-related potentials in humans during a reinforcement learning task, we show strong evidence in favor of this hypothesis. Resistance to outcome devaluation (the defining feature of a habit) was shown by the stimulus-locked P1 component, reflecting activity in the extrastriate visual cortex. Analysis at longer latencies revealed a positive component (corresponding to the P3b, from 550-700 ms) sensitive to outcome devaluation. Therefore, distinct spatiotemporal patterns of brain activity were observed corresponding to habitual and goal-directed processes. These results demonstrate that reinforcement learning engages both attentional habits and goal-directed processes in parallel. Consequences for brain and computational models of reinforcement learning are discussed. SIGNIFICANCE STATEMENT The human attentional network adapts to detect stimuli that predict important rewards. A recent hypothesis suggests that the visual cortex automatically prioritizes reward-related stimuli, driven by cached representations of reward value; that is, stimulus-response habits. Alternatively, the neural system may track the current value of the predicted outcome. Our results demonstrate for the first time that visual cortex activity is increased for reward-related stimuli even when the rewarding event is temporarily devalued. In contrast, longer-latency brain activity was specifically sensitive to transient changes in reward value. Therefore, we show that both habit-like attention and goal-directed processes occur in the same learning episode at different latencies. This result has important consequences for computational models of reinforcement learning. Copyright © 2017 the authors 0270-6474/17/373009-09$15.00/0.

  10. Audio-Visual Perception of 3D Cinematography: An fMRI Study Using Condition-Based and Computation-Based Analyses

    PubMed Central

    Ogawa, Akitoshi; Bordier, Cecile; Macaluso, Emiliano

    2013-01-01

    The use of naturalistic stimuli to probe sensory functions in the human brain is gaining increasing interest. Previous imaging studies examined brain activity associated with the processing of cinematographic material using both standard “condition-based” designs, as well as “computational” methods based on the extraction of time-varying features of the stimuli (e.g. motion). Here, we exploited both approaches to investigate the neural correlates of complex visual and auditory spatial signals in cinematography. In the first experiment, the participants watched a piece of a commercial movie presented in four blocked conditions: 3D vision with surround sounds (3D-Surround), 3D with monaural sound (3D-Mono), 2D-Surround, and 2D-Mono. In the second experiment, they watched two different segments of the movie both presented continuously in 3D-Surround. The blocked presentation served for standard condition-based analyses, while all datasets were submitted to computation-based analyses. The latter assessed where activity co-varied with visual disparity signals and the complexity of auditory multi-sources signals. The blocked analyses associated 3D viewing with the activation of the dorsal and lateral occipital cortex and superior parietal lobule, while the surround sounds activated the superior and middle temporal gyri (S/MTG). The computation-based analyses revealed the effects of absolute disparity in dorsal occipital and posterior parietal cortices and of disparity gradients in the posterior middle temporal gyrus plus the inferior frontal gyrus. The complexity of the surround sounds was associated with activity in specific sub-regions of S/MTG, even after accounting for changes of sound intensity. These results demonstrate that the processing of naturalistic audio-visual signals entails an extensive set of visual and auditory areas, and that computation-based analyses can track the contribution of complex spatial aspects characterizing such life-like stimuli. PMID:24194828

  11. Multiscale musculoskeletal modelling, data–model fusion and electromyography-informed modelling

    PubMed Central

    Zhang, J.; Heidlauf, T.; Sartori, M.; Besier, T.; Röhrle, O.; Lloyd, D.

    2016-01-01

    This paper proposes methods and technologies that advance the state of the art for modelling the musculoskeletal system across the spatial and temporal scales; and storing these using efficient ontologies and tools. We present population-based modelling as an efficient method to rapidly generate individual morphology from only a few measurements and to learn from the ever-increasing supply of imaging data available. We present multiscale methods for continuum muscle and bone models; and efficient mechanostatistical methods, both continuum and particle-based, to bridge the scales. Finally, we examine both the importance that muscles play in bone remodelling stimuli and the latest muscle force prediction methods that use electromyography-assisted modelling techniques to compute musculoskeletal forces that best reflect the underlying neuromuscular activity. Our proposal is that, in order to have a clinically relevant virtual physiological human, (i) bone and muscle mechanics must be considered together; (ii) models should be trained on population data to permit rapid generation and use underlying principal modes that describe both muscle patterns and morphology; and (iii) these tools need to be available in an open-source repository so that the scientific community may use, personalize and contribute to the database of models. PMID:27051510

  12. Using eye tracking to identify faking attempts during penile plethysmography assessment.

    PubMed

    Trottier, Dominique; Rouleau, Joanne-Lucine; Renaud, Patrice; Goyette, Mathieu

    2014-01-01

    Penile plethysmography (PPG) is considered the most rigorous method for sexual interest assessment. Nevertheless, it is subject to faking attempts by participants, which compromises the internal validity of the instrument. To date, various attempts have been made to limit voluntary control of sexual response during PPG assessments, without satisfactory results. This exploratory research examined eye-tracking technologies' ability to identify the presence of cognitive strategies responsible for erectile inhibition during PPG assessment. Eye movements and penile responses for 20 subjects were recorded while exploring animated human-like computer-generated stimuli in a virtual environment under three distinct viewing conditions: (a) the free visual exploration of a preferred sexual stimulus without erectile inhibition; (b) the viewing of a preferred sexual stimulus with erectile inhibition; and (c) the free visual exploration of a non-preferred sexual stimulus. Results suggest that attempts to control erectile responses generate specific eye-movement variations, characterized by a general deceleration of the exploration process and limited exploration of the erogenous zone. Findings indicate that recording eye movements can provide significant information on the presence of competing covert processes responsible for erectile inhibition. The use of eye-tracking technologies during PPG could therefore lead to improved internal validity of the plethysmographic procedure.

  13. A novel stimuli-synchronized alloy-treated matrix for space-defined gastrointestinal delivery of mesalamine in the Large White pig model.

    PubMed

    Bawa, Priya; Choonara, Yahya E; du Toit, Lisa C; Kumar, Pradeep; Ndesendo, Valence M K; Meyer, Leith C R; Pillay, Viness

    2013-03-28

    The study focussed on designing a Stimuli-Synchronized Matrix (SSM) for space-defined colonic delivery of the anti-inflammatory drug mesalamine. The configured matrix provided time-independent delivery and stimuli targeting. Formulations were optimized according to a Box-Behnken experimental design that constituted mesalamine-loaded BaSO4-crosslinked chitosan dispersed within a pectin, carboxymethylcellulose and xanthan gum complex. The complex was compressed into matrices and subsequently alloy-treated with pectin and ethylcellulose. In vitro drug release was determined in the presence and absence of colonic enzymes and the mean dissolution time was used for formulation optimization. To mechanistically elucidate the synchronous catalytic action of the enzymes pectinase and glucosidase on the matrix, computer-aided 3D modelling of active fractions of the enzyme-substrate complexes was generated to predict the orientation of residues affecting the substrate domain. Drug release profiles revealed distinct colonic enzyme responsiveness with fractions of 0.402 and 0.152 of mesalamine released in the presence and absence of enzymes, respectively after 24h. The commercial comparator product showed irreproducible release profiles over the same period (SD=0.550) compared to the SSM formulation (SD=0.037). FTIR spectra of alloy-treated matrices showed no peaks from 1589 to 1512cm(-1) after colonic enzyme exposure. With increasing enzyme exposure there were also no peaks between 1646 and 1132cm(-1). This indicated polymeric enzyme cleavage for controlled and space-defined release of mesalamine. Plasma concentration profiles in the Large White pig model produced a Cmax of 3.77±1.375μg/mL compared to 10.604±2.846μg/mL for the comparator formulation. The SSM formulation proved superior over the comparator product by providing superiorly controlled enzyme-responsive colonic drug delivery. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. An optimized ERP brain-computer interface based on facial expression changes.

    PubMed

    Jin, Jing; Daly, Ian; Zhang, Yu; Wang, Xingyu; Cichocki, Andrzej

    2014-06-01

    Interferences from spatially adjacent non-target stimuli are known to evoke event-related potentials (ERPs) during non-target flashes and, therefore, lead to false positives. This phenomenon was commonly seen in visual attention-based brain-computer interfaces (BCIs) using conspicuous stimuli and is known to adversely affect the performance of BCI systems. Although users try to focus on the target stimulus, they cannot help but be affected by conspicuous changes of the stimuli (such as flashes or presenting images) which were adjacent to the target stimulus. Furthermore, subjects have reported that conspicuous stimuli made them tired and annoyed. In view of this, the aim of this study was to reduce adjacent interference, annoyance and fatigue using a new stimulus presentation pattern based upon facial expression changes. Our goal was not to design a new pattern which could evoke larger ERPs than the face pattern, but to design a new pattern which could reduce adjacent interference, annoyance and fatigue, and evoke ERPs as good as those observed during the face pattern. Positive facial expressions could be changed to negative facial expressions by minor changes to the original facial image. Although the changes are minor, the contrast is big enough to evoke strong ERPs. In this paper, a facial expression change pattern between positive and negative facial expressions was used to attempt to minimize interference effects. This was compared against two different conditions, a shuffled pattern containing the same shapes and colours as the facial expression change pattern, but without the semantic content associated with a change in expression, and a face versus no face pattern. Comparisons were made in terms of classification accuracy and information transfer rate as well as user supplied subjective measures. The results showed that interferences from adjacent stimuli, annoyance and the fatigue experienced by the subjects could be reduced significantly (p < 0.05) by using the facial expression change patterns in comparison with the face pattern. The offline results show that the classification accuracy of the facial expression change pattern was significantly better than that of the shuffled pattern (p < 0.05) and the face pattern (p < 0.05). The facial expression change pattern presented in this paper reduced interference from adjacent stimuli and decreased the fatigue and annoyance experienced by BCI users significantly (p < 0.05) compared to the face pattern.

  15. An optimized ERP brain-computer interface based on facial expression changes

    NASA Astrophysics Data System (ADS)

    Jin, Jing; Daly, Ian; Zhang, Yu; Wang, Xingyu; Cichocki, Andrzej

    2014-06-01

    Objective. Interferences from spatially adjacent non-target stimuli are known to evoke event-related potentials (ERPs) during non-target flashes and, therefore, lead to false positives. This phenomenon was commonly seen in visual attention-based brain-computer interfaces (BCIs) using conspicuous stimuli and is known to adversely affect the performance of BCI systems. Although users try to focus on the target stimulus, they cannot help but be affected by conspicuous changes of the stimuli (such as flashes or presenting images) which were adjacent to the target stimulus. Furthermore, subjects have reported that conspicuous stimuli made them tired and annoyed. In view of this, the aim of this study was to reduce adjacent interference, annoyance and fatigue using a new stimulus presentation pattern based upon facial expression changes. Our goal was not to design a new pattern which could evoke larger ERPs than the face pattern, but to design a new pattern which could reduce adjacent interference, annoyance and fatigue, and evoke ERPs as good as those observed during the face pattern. Approach. Positive facial expressions could be changed to negative facial expressions by minor changes to the original facial image. Although the changes are minor, the contrast is big enough to evoke strong ERPs. In this paper, a facial expression change pattern between positive and negative facial expressions was used to attempt to minimize interference effects. This was compared against two different conditions, a shuffled pattern containing the same shapes and colours as the facial expression change pattern, but without the semantic content associated with a change in expression, and a face versus no face pattern. Comparisons were made in terms of classification accuracy and information transfer rate as well as user supplied subjective measures. Main results. The results showed that interferences from adjacent stimuli, annoyance and the fatigue experienced by the subjects could be reduced significantly (p < 0.05) by using the facial expression change patterns in comparison with the face pattern. The offline results show that the classification accuracy of the facial expression change pattern was significantly better than that of the shuffled pattern (p < 0.05) and the face pattern (p < 0.05). Significance. The facial expression change pattern presented in this paper reduced interference from adjacent stimuli and decreased the fatigue and annoyance experienced by BCI users significantly (p < 0.05) compared to the face pattern.

  16. Slime mould processors, logic gates and sensors.

    PubMed

    Adamatzky, A

    2015-07-28

    A heterotic, or hybrid, computation implies that two or more substrates of different physical nature are merged into a single device with indistinguishable parts. These hybrid devices then undertake coherent acts on programmable and sensible processing of information. We study the potential of heterotic computers using slime mould acting under the guidance of chemical, mechanical and optical stimuli. Plasmodium of acellular slime mould Physarum polycephalum is a gigantic single cell visible to the unaided eye. The cell shows a rich spectrum of behavioural morphological patterns in response to changing environmental conditions. Given data represented by chemical or physical stimuli, we can employ and modify the behaviour of the slime mould to make it solve a range of computing and sensing tasks. We overview results of laboratory experimental studies on prototyping of the slime mould morphological processors for approximation of Voronoi diagrams, planar shapes and solving mazes, and discuss logic gates implemented via collision of active growing zones and tactile responses of P. polycephalum. We also overview a range of electronic components--memristor, chemical, tactile and colour sensors-made of the slime mould. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  17. An Efficient ERP-Based Brain-Computer Interface Using Random Set Presentation and Face Familiarity

    PubMed Central

    Müller, Klaus-Robert; Lee, Seong-Whan

    2014-01-01

    Event-related potential (ERP)-based P300 spellers are commonly used in the field of brain-computer interfaces as an alternative channel of communication for people with severe neuro-muscular diseases. This study introduces a novel P300 based brain-computer interface (BCI) stimulus paradigm using a random set presentation pattern and exploiting the effects of face familiarity. The effect of face familiarity is widely studied in the cognitive neurosciences and has recently been addressed for the purpose of BCI. In this study we compare P300-based BCI performances of a conventional row-column (RC)-based paradigm with our approach that combines a random set presentation paradigm with (non-) self-face stimuli. Our experimental results indicate stronger deflections of the ERPs in response to face stimuli, which are further enhanced when using the self-face images, and thereby improving P300-based spelling performance. This lead to a significant reduction of stimulus sequences required for correct character classification. These findings demonstrate a promising new approach for improving the speed and thus fluency of BCI-enhanced communication with the widely used P300-based BCI setup. PMID:25384045

  18. Estimation and Identifiability of Model Parameters in Human Nociceptive Processing Using Yes-No Detection Responses to Electrocutaneous Stimulation.

    PubMed

    Yang, Huan; Meijer, Hil G E; Buitenweg, Jan R; van Gils, Stephan A

    2016-01-01

    Healthy or pathological states of nociceptive subsystems determine different stimulus-response relations measured from quantitative sensory testing. In turn, stimulus-response measurements may be used to assess these states. In a recently developed computational model, six model parameters characterize activation of nerve endings and spinal neurons. However, both model nonlinearity and limited information in yes-no detection responses to electrocutaneous stimuli challenge to estimate model parameters. Here, we address the question whether and how one can overcome these difficulties for reliable parameter estimation. First, we fit the computational model to experimental stimulus-response pairs by maximizing the likelihood. To evaluate the balance between model fit and complexity, i.e., the number of model parameters, we evaluate the Bayesian Information Criterion. We find that the computational model is better than a conventional logistic model regarding the balance. Second, our theoretical analysis suggests to vary the pulse width among applied stimuli as a necessary condition to prevent structural non-identifiability. In addition, the numerically implemented profile likelihood approach reveals structural and practical non-identifiability. Our model-based approach with integration of psychophysical measurements can be useful for a reliable assessment of states of the nociceptive system.

  19. An efficient ERP-based brain-computer interface using random set presentation and face familiarity.

    PubMed

    Yeom, Seul-Ki; Fazli, Siamac; Müller, Klaus-Robert; Lee, Seong-Whan

    2014-01-01

    Event-related potential (ERP)-based P300 spellers are commonly used in the field of brain-computer interfaces as an alternative channel of communication for people with severe neuro-muscular diseases. This study introduces a novel P300 based brain-computer interface (BCI) stimulus paradigm using a random set presentation pattern and exploiting the effects of face familiarity. The effect of face familiarity is widely studied in the cognitive neurosciences and has recently been addressed for the purpose of BCI. In this study we compare P300-based BCI performances of a conventional row-column (RC)-based paradigm with our approach that combines a random set presentation paradigm with (non-) self-face stimuli. Our experimental results indicate stronger deflections of the ERPs in response to face stimuli, which are further enhanced when using the self-face images, and thereby improving P300-based spelling performance. This lead to a significant reduction of stimulus sequences required for correct character classification. These findings demonstrate a promising new approach for improving the speed and thus fluency of BCI-enhanced communication with the widely used P300-based BCI setup.

  20. Inferring Nonlinear Neuronal Computation Based on Physiologically Plausible Inputs

    PubMed Central

    McFarland, James M.; Cui, Yuwei; Butts, Daniel A.

    2013-01-01

    The computation represented by a sensory neuron's response to stimuli is constructed from an array of physiological processes both belonging to that neuron and inherited from its inputs. Although many of these physiological processes are known to be nonlinear, linear approximations are commonly used to describe the stimulus selectivity of sensory neurons (i.e., linear receptive fields). Here we present an approach for modeling sensory processing, termed the Nonlinear Input Model (NIM), which is based on the hypothesis that the dominant nonlinearities imposed by physiological mechanisms arise from rectification of a neuron's inputs. Incorporating such ‘upstream nonlinearities’ within the standard linear-nonlinear (LN) cascade modeling structure implicitly allows for the identification of multiple stimulus features driving a neuron's response, which become directly interpretable as either excitatory or inhibitory. Because its form is analogous to an integrate-and-fire neuron receiving excitatory and inhibitory inputs, model fitting can be guided by prior knowledge about the inputs to a given neuron, and elements of the resulting model can often result in specific physiological predictions. Furthermore, by providing an explicit probabilistic model with a relatively simple nonlinear structure, its parameters can be efficiently optimized and appropriately regularized. Parameter estimation is robust and efficient even with large numbers of model components and in the context of high-dimensional stimuli with complex statistical structure (e.g. natural stimuli). We describe detailed methods for estimating the model parameters, and illustrate the advantages of the NIM using a range of example sensory neurons in the visual and auditory systems. We thus present a modeling framework that can capture a broad range of nonlinear response functions while providing physiologically interpretable descriptions of neural computation. PMID:23874185

  1. Optical droplet vaporization of nanoparticle-loaded stimuli-responsive microbubbles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Si, Ting; Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210; Li, Guangbin

    2016-03-14

    A capillary co-flow focusing process is developed to generate stimuli-responsive microbubbles (SRMs) that comprise perfluorocarbon (PFC) suspension of silver nanoparticles (SNPs) in a lipid shell. Upon continuous laser irradiation at around their surface plasmon resonance band, the SNPs effectively absorb electromagnetic energy, induce heat accumulation in SRMs, trigger PFC vaporization, and eventually lead to thermal expansion and fragmentation of the SRMs. This optical droplet vaporization (ODV) process is further simulated by a theoretical model that combines heat generation of SNPs, phase change of PFC, and thermal expansion of SRMs. The model is validated by benchtop experiments, where the ODV processmore » is monitored by microscopic imaging. The effects of primary process parameters on behaviors of ODV are predicted by the theoretical model, indicating the technical feasibility for process control and optimization in future drug delivery applications.« less

  2. The interactive processes of accommodation and vergence.

    PubMed

    Semmlow, J L; Bérard, P V; Vercher, J L; Putteman, A; Gauthier, G M

    1994-01-01

    A near target generates two different, though related stimuli: image disparity and image blur. Fixation of that near target evokes three motor responses: the so-called oculomotor "near triad". It has long been known that both disparity and blur stimuli are each capable of independently generating all three responses, and a recent theory of near triad control (the Dual Interactive Theory) describes how these stimulus components normally work together in the aid of near vision. However, this theory also indicates that when the system becomes unbalanced, as in high AC/A ratios of some accommodative esotropes, the two components will become antagonistic. In this situation, the interaction between the blur and disparity driven components exaggerates the imbalance created in the vergence motor output. Conversely, there is enhanced restoration when the AC/A ratio is effectively reduced surgically.

  3. Developmental changes in head movement kinematics during swimming in Xenopus laevis tadpoles.

    PubMed

    Hänzi, Sara; Straka, Hans

    2017-01-15

    During the post-embryonic developmental growth of animals, a number of physiological parameters such as locomotor performance, dynamics and behavioural repertoire are adjusted to match the requirements determined by changes in body size, proportions and shape. Moreover, changes in movement parameters also cause changes in the dynamics of self-generated sensory stimuli, to which motion-detecting sensory systems have to adapt. Here, we examined head movements and swimming kinematics of Xenopus laevis tadpoles with a body length of 10-45 mm (developmental stage 46-54) and compared these parameters with fictive swimming, recorded as ventral root activity in semi-intact in vitro preparations. Head movement kinematics was extracted from high-speed video recordings of freely swimming tadpoles. Analysis of these locomotor episodes indicated that the swimming frequency decreased with development, along with the angular velocity and acceleration of the head, which represent self-generated vestibular stimuli. In contrast, neither head oscillation amplitude nor forward velocity changed with development despite the ∼3-fold increase in body size. The comparison between free and fictive locomotor dynamics revealed very similar swimming frequencies for similarly sized animals, including a comparable developmental decrease of the swimming frequency. Body morphology and the motor output rhythm of the spinal central pattern generator therefore develop concurrently. This study thus describes development-specific naturalistic head motion profiles, which form the basis for more natural stimuli in future studies probing the vestibular system. © 2017. Published by The Company of Biologists Ltd.

  4. Modulation for emergent networks: serotonin and dopamine.

    PubMed

    Weng, Juyang; Paslaski, Stephen; Daly, James; VanDam, Courtland; Brown, Jacob

    2013-05-01

    In autonomous learning, value-sensitive experiences can improve the efficiency of learning. A learning network needs be motivated so that the limited computational resources and the limited lifetime are devoted to events that are of high value for the agent to compete in its environment. The neuromodulatory system of the brain is mainly responsible for developing such a motivation system. Although reinforcement learning has been extensively studied, many existing models are symbolic whose internal nodes or modules have preset meanings. Neural networks have been used to automatically generate internal emergent representations. However, modeling an emergent motivational system for neural networks is still a great challenge. By emergent, we mean that the internal representations emerge autonomously through interactions with the external environments. This work proposes a generic emergent modulatory system for emergent networks, which includes two subsystems - the serotonin system and the dopamine system. The former signals a large class of stimuli that are intrinsically aversive (e.g., stress or pain). The latter signals a large class of stimuli that are intrinsically appetitive (e.g., pleasure or sweet). We experimented with this motivational system for two settings. The first is a visual recognition setting to investigate how such a system can learn through interactions with a teacher, who does not directly give answers, but only punishments and rewards. The second is a setting for wandering in the presence of a friend and a foe. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Multisampling suprathreshold perimetry: a comparison with conventional suprathreshold and full-threshold strategies by computer simulation.

    PubMed

    Artes, Paul H; Henson, David B; Harper, Robert; McLeod, David

    2003-06-01

    To compare a multisampling suprathreshold strategy with conventional suprathreshold and full-threshold strategies in detecting localized visual field defects and in quantifying the area of loss. Probability theory was applied to examine various suprathreshold pass criteria (i.e., the number of stimuli that have to be seen for a test location to be classified as normal). A suprathreshold strategy that requires three seen or three missed stimuli per test location (multisampling suprathreshold) was selected for further investigation. Simulation was used to determine how the multisampling suprathreshold, conventional suprathreshold, and full-threshold strategies detect localized field loss. To determine the systematic error and variability in estimates of loss area, artificial fields were generated with clustered defects (0-25 field locations with 8- and 16-dB loss) and, for each condition, the number of test locations classified as defective (suprathreshold strategies) and with pattern deviation probability less than 5% (full-threshold strategy), was derived from 1000 simulated test results. The full-threshold and multisampling suprathreshold strategies had similar sensitivity to field loss. Both detected defects earlier than the conventional suprathreshold strategy. The pattern deviation probability analyses of full-threshold results underestimated the area of field loss. The conventional suprathreshold perimetry also underestimated the defect area. With multisampling suprathreshold perimetry, the estimates of defect area were less variable and exhibited lower systematic error. Multisampling suprathreshold paradigms may be a powerful alternative to other strategies of visual field testing. Clinical trials are needed to verify these findings.

  6. The sense of agency is action-effect causality perception based on cross-modal grouping.

    PubMed

    Kawabe, Takahiro; Roseboom, Warrick; Nishida, Shin'ya

    2013-07-22

    Sense of agency, the experience of controlling external events through one's actions, stems from contiguity between action- and effect-related signals. Here we show that human observers link their action- and effect-related signals using a computational principle common to cross-modal sensory grouping. We first report that the detection of a delay between tactile and visual stimuli is enhanced when both stimuli are synchronized with separate auditory stimuli (experiment 1). This occurs because the synchronized auditory stimuli hinder the potential grouping between tactile and visual stimuli. We subsequently demonstrate an analogous effect on observers' key press as an action and a sensory event. This change is associated with a modulation in sense of agency; namely, sense of agency, as evaluated by apparent compressions of action-effect intervals (intentional binding) or subjective causality ratings, is impaired when both participant's action and its putative visual effect events are synchronized with auditory tones (experiments 2 and 3). Moreover, a similar role of action-effect grouping in determining sense of agency is demonstrated when the additional signal is presented in the modality identical to an effect event (experiment 4). These results are consistent with the view that sense of agency is the result of general processes of causal perception and that cross-modal grouping plays a central role in these processes.

  7. The sense of agency is action–effect causality perception based on cross-modal grouping

    PubMed Central

    Kawabe, Takahiro; Roseboom, Warrick; Nishida, Shin'ya

    2013-01-01

    Sense of agency, the experience of controlling external events through one's actions, stems from contiguity between action- and effect-related signals. Here we show that human observers link their action- and effect-related signals using a computational principle common to cross-modal sensory grouping. We first report that the detection of a delay between tactile and visual stimuli is enhanced when both stimuli are synchronized with separate auditory stimuli (experiment 1). This occurs because the synchronized auditory stimuli hinder the potential grouping between tactile and visual stimuli. We subsequently demonstrate an analogous effect on observers' key press as an action and a sensory event. This change is associated with a modulation in sense of agency; namely, sense of agency, as evaluated by apparent compressions of action–effect intervals (intentional binding) or subjective causality ratings, is impaired when both participant's action and its putative visual effect events are synchronized with auditory tones (experiments 2 and 3). Moreover, a similar role of action–effect grouping in determining sense of agency is demonstrated when the additional signal is presented in the modality identical to an effect event (experiment 4). These results are consistent with the view that sense of agency is the result of general processes of causal perception and that cross-modal grouping plays a central role in these processes. PMID:23740784

  8. An auditory oddball brain-computer interface for binary choices.

    PubMed

    Halder, S; Rea, M; Andreoni, R; Nijboer, F; Hammer, E M; Kleih, S C; Birbaumer, N; Kübler, A

    2010-04-01

    Brain-computer interfaces (BCIs) provide non-muscular communication for individuals diagnosed with late-stage motoneuron disease (e.g., amyotrophic lateral sclerosis (ALS)). In the final stages of the disease, a BCI cannot rely on the visual modality. This study examined a method to achieve high accuracies using auditory stimuli only. We propose an auditory BCI based on a three-stimulus paradigm. This paradigm is similar to the standard oddball but includes an additional target (i.e. two target stimuli, one frequent stimulus). Three versions of the task were evaluated in which the target stimuli differed in loudness, pitch or direction. Twenty healthy participants achieved an average information transfer rate (ITR) of up to 2.46 bits/min and accuracies of 78.5%. Most subjects (14 of 20) achieved their best performance with targets differing in pitch. With this study, the viability of the paradigm was shown for healthy participants and will next be evaluated with individuals diagnosed with ALS or locked-in syndrome (LIS) after stroke. The here presented BCI offers communication with binary choices (yes/no) independent of vision. As it requires only little time per selection, it may constitute a reliable means of communication for patients who lost all motor function and have a short attention span. 2009 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Analyzing the User Behavior toward Electronic Commerce Stimuli.

    PubMed

    Lorenzo-Romero, Carlota; Alarcón-Del-Amo, María-Del-Carmen; Gómez-Borja, Miguel-Ángel

    2016-01-01

    Based on the Stimulus-Organism-Response paradigm this research analyzes the main differences between the effects of two types of web technologies: Verbal web technology (i.e., navigational structure as utilitarian stimulus) versus non-verbal web technology (music and presentation of products as hedonic stimuli). Specific webmosphere stimuli have not been examined yet as separate variables and their impact on internal and behavioral responses seems unknown. Therefore, the objective of this research consists in analyzing the impact of these web technologies -which constitute the web atmosphere or webmosphere of a website- on shopping human behavior (i.e., users' internal states -affective, cognitive, and satisfaction- and behavioral responses - approach responses, and real shopping outcomes-) within the retail online store created by computer, taking into account some mediator variables (i.e., involvement, atmospheric responsiveness, and perceived risk). A 2 ("free" versus "hierarchical" navigational structure) × 2 ("on" versus "off" music) × 2 ("moving" versus "static" images) between-subjects computer experimental design is used to test empirically this research. In addition, an integrated methodology was developed allowing the simulation, tracking and recording of virtual user behavior within an online shopping environment. As main conclusion, this study suggests that the positive responses of online consumers might increase when they are allowed to freely navigate the online stores and their experience is enriched by animate gifts and music background. The effect caused by mediator variables modifies relatively the final shopping human behavior.

  10. An Evaluation of Training with an Auditory P300 Brain-Computer Interface for the Japanese Hiragana Syllabary

    PubMed Central

    Halder, Sebastian; Takano, Kouji; Ora, Hiroki; Onishi, Akinari; Utsumi, Kota; Kansaku, Kenji

    2016-01-01

    Gaze-independent brain-computer interfaces (BCIs) are a possible communication channel for persons with paralysis. We investigated if it is possible to use auditory stimuli to create a BCI for the Japanese Hiragana syllabary, which has 46 Hiragana characters. Additionally, we investigated if training has an effect on accuracy despite the high amount of different stimuli involved. Able-bodied participants (N = 6) were asked to select 25 syllables (out of fifty possible choices) using a two step procedure: First the consonant (ten choices) and then the vowel (five choices). This was repeated on 3 separate days. Additionally, a person with spinal cord injury (SCI) participated in the experiment. Four out of six healthy participants reached Hiragana syllable accuracies above 70% and the information transfer rate increased from 1.7 bits/min in the first session to 3.2 bits/min in the third session. The accuracy of the participant with SCI increased from 12% (0.2 bits/min) to 56% (2 bits/min) in session three. Reliable selections from a 10 × 5 matrix using auditory stimuli were possible and performance is increased by training. We were able to show that auditory P300 BCIs can be used for communication with up to fifty symbols. This enables the use of the technology of auditory P300 BCIs with a variety of applications. PMID:27746716

  11. An Evaluation of Training with an Auditory P300 Brain-Computer Interface for the Japanese Hiragana Syllabary.

    PubMed

    Halder, Sebastian; Takano, Kouji; Ora, Hiroki; Onishi, Akinari; Utsumi, Kota; Kansaku, Kenji

    2016-01-01

    Gaze-independent brain-computer interfaces (BCIs) are a possible communication channel for persons with paralysis. We investigated if it is possible to use auditory stimuli to create a BCI for the Japanese Hiragana syllabary, which has 46 Hiragana characters. Additionally, we investigated if training has an effect on accuracy despite the high amount of different stimuli involved. Able-bodied participants ( N = 6) were asked to select 25 syllables (out of fifty possible choices) using a two step procedure: First the consonant (ten choices) and then the vowel (five choices). This was repeated on 3 separate days. Additionally, a person with spinal cord injury (SCI) participated in the experiment. Four out of six healthy participants reached Hiragana syllable accuracies above 70% and the information transfer rate increased from 1.7 bits/min in the first session to 3.2 bits/min in the third session. The accuracy of the participant with SCI increased from 12% (0.2 bits/min) to 56% (2 bits/min) in session three. Reliable selections from a 10 × 5 matrix using auditory stimuli were possible and performance is increased by training. We were able to show that auditory P300 BCIs can be used for communication with up to fifty symbols. This enables the use of the technology of auditory P300 BCIs with a variety of applications.

  12. The impact of higher-order aberrations on the strength of directional signals produced by accommodative microfluctuations

    PubMed Central

    Metlapally, Sangeetha; Tong, Jianliang L.; Tahir, Humza J.; Schor, Clifton M.

    2014-01-01

    It has been proposed that the accommodation system could perform contrast discrimination between the two dioptric extremes of accommodative microfluctuations to extract directional signals for reflex accommodation. Higher-order aberrations (HOAs) may have a significant influence on the strength of these contrast signals. Our goal was to compute the effect HOAs may have on contrast signals for stimuli within the upper defocus limit by comparing computed microcontrast fluctuations with psychophysical contrast increment thresholds (Bradley & Ohzawa, 1986). Wavefront aberrations were measured while subjects viewed a Maltese spoke stimulus monocularly. Computations were performed for accommodation or disaccommodation stimuli from a 3 Diopter (D) baseline. Microfluctuations were estimated from the standard deviation of the wavefronts over time at baseline. Through-focus Modulation Transfer, optical contrast increments (ΔC), and Weber fractions (ΔC/C) were derived from point spread functions computed from the wavefronts at baseline for 2 and 4 cycles per degree (cpd) components, with and without HOAs. The ΔCs thus computed from the wavefronts were compared with psychophysical contrast increment threshold data. Microfluctuations are potentially useful for extracting directional information for defocus values within 3 D, where contrast increments for the 2 or 4 cpd components exceed psychophysical thresholds. HOAs largely reduce contrast signals produced by microfluctuations, depending on the mean focus error, and their magnitude in individual subjects, and they may shrink the effective stimulus range for reflex accommodation. The upper defocus limit could therefore be constrained by discrimination of microcontrast fluctuations. PMID:25342542

  13. Visual-auditory integration during speech imitation in autism.

    PubMed

    Williams, Justin H G; Massaro, Dominic W; Peel, Natalie J; Bosseler, Alexis; Suddendorf, Thomas

    2004-01-01

    Children with autistic spectrum disorder (ASD) may have poor audio-visual integration, possibly reflecting dysfunctional 'mirror neuron' systems which have been hypothesised to be at the core of the condition. In the present study, a computer program, utilizing speech synthesizer software and a 'virtual' head (Baldi), delivered speech stimuli for identification in auditory, visual or bimodal conditions. Children with ASD were poorer than controls at recognizing stimuli in the unimodal conditions, but once performance on this measure was controlled for, no group difference was found in the bimodal condition. A group of participants with ASD were also trained to develop their speech-reading ability. Training improved visual accuracy and this also improved the children's ability to utilize visual information in their processing of speech. Overall results were compared to predictions from mathematical models based on integration and non-integration, and were most consistent with the integration model. We conclude that, whilst they are less accurate in recognizing stimuli in the unimodal condition, children with ASD show normal integration of visual and auditory speech stimuli. Given that training in recognition of visual speech was effective, children with ASD may benefit from multi-modal approaches in imitative therapy and language training.

  14. Contributions of the 12 neuron classes in the fly lamina to motion vision

    PubMed Central

    Tuthill, John C.; Nern, Aljoscha; Holtz, Stephen L.; Rubin, Gerald M.; Reiser, Michael B.

    2013-01-01

    SUMMARY Motion detection is a fundamental neural computation performed by many sensory systems. In the fly, local motion computation is thought to occur within the first two layers of the visual system, the lamina and medulla. We constructed specific genetic driver lines for each of the 12 neuron classes in the lamina. We then depolarized and hyperpolarized each neuron type, and quantified fly behavioral responses to a diverse set of motion stimuli. We found that only a small number of lamina output neurons are essential for motion detection, while most neurons serve to sculpt and enhance these feedforward pathways. Two classes of feedback neurons (C2 and C3), and lamina output neurons (L2 and L4), are required for normal detection of directional motion stimuli. Our results reveal a prominent role for feedback and lateral interactions in motion processing, and demonstrate that motion-dependent behaviors rely on contributions from nearly all lamina neuron classes. PMID:23849200

  15. Operant learning of Drosophila at the torque meter.

    PubMed

    Brembs, Bjoern

    2008-06-16

    For experiments at the torque meter, flies are kept on standard fly medium at 25 degrees C and 60% humidity with a 12hr light/12hr dark regime. A standardized breeding regime assures proper larval density and age-matched cohorts. Cold-anesthetized flies are glued with head and thorax to a triangle-shaped hook the day before the experiment. Attached to the torque meter via a clamp, the fly's intended flight maneuvers are measured as the angular momentum around its vertical body axis. The fly is placed in the center of a cylindrical panorama to accomplish stationary flight. An analog to digital converter card feeds the yaw torque signal into a computer which stores the trace for later analysis. The computer also controls a variety of stimuli which can be brought under the fly's control by closing the feedback loop between these stimuli and the yaw torque trace. Punishment is achieved by applying heat from an adjustable infrared laser.

  16. Contributions of the 12 neuron classes in the fly lamina to motion vision.

    PubMed

    Tuthill, John C; Nern, Aljoscha; Holtz, Stephen L; Rubin, Gerald M; Reiser, Michael B

    2013-07-10

    Motion detection is a fundamental neural computation performed by many sensory systems. In the fly, local motion computation is thought to occur within the first two layers of the visual system, the lamina and medulla. We constructed specific genetic driver lines for each of the 12 neuron classes in the lamina. We then depolarized and hyperpolarized each neuron type and quantified fly behavioral responses to a diverse set of motion stimuli. We found that only a small number of lamina output neurons are essential for motion detection, while most neurons serve to sculpt and enhance these feedforward pathways. Two classes of feedback neurons (C2 and C3), and lamina output neurons (L2 and L4), are required for normal detection of directional motion stimuli. Our results reveal a prominent role for feedback and lateral interactions in motion processing and demonstrate that motion-dependent behaviors rely on contributions from nearly all lamina neuron classes. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Mapping nonlinear receptive field structure in primate retina at single cone resolution

    PubMed Central

    Li, Peter H; Greschner, Martin; Gunning, Deborah E; Mathieson, Keith; Sher, Alexander; Litke, Alan M; Paninski, Liam

    2015-01-01

    The function of a neural circuit is shaped by the computations performed by its interneurons, which in many cases are not easily accessible to experimental investigation. Here, we elucidate the transformation of visual signals flowing from the input to the output of the primate retina, using a combination of large-scale multi-electrode recordings from an identified ganglion cell type, visual stimulation targeted at individual cone photoreceptors, and a hierarchical computational model. The results reveal nonlinear subunits in the circuity of OFF midget ganglion cells, which subserve high-resolution vision. The model explains light responses to a variety of stimuli more accurately than a linear model, including stimuli targeted to cones within and across subunits. The recovered model components are consistent with known anatomical organization of midget bipolar interneurons. These results reveal the spatial structure of linear and nonlinear encoding, at the resolution of single cells and at the scale of complete circuits. DOI: http://dx.doi.org/10.7554/eLife.05241.001 PMID:26517879

  18. Reciprocal inhibition of inhibition: A circuit motif for flexible categorization in stimulus selection

    PubMed Central

    Knudsen, Eric I.

    2011-01-01

    As a precursor to the selection of a stimulus for gaze and attention, a midbrain network categorizes stimuli into “strongest” and “others.” The categorization tracks flexibly, in real-time, the absolute strength of the strongest stimulus. In this study, we take a first principles approach to computations that are essential for such categorization. We demonstrate that classical feedforward lateral inhibition cannot produce flexible categorization. However, circuits in which the strength of lateral inhibition varies with the relative strength of competing stimuli categorize successfully. One particular implementation - reciprocal inhibition of feedforward lateral inhibition – is structurally the simplest, and it outperforms others in flexibly categorizing rapidly and reliably. Strong predictions of this anatomically supported circuit model are validated by neural responses measured in the owl midbrain. The results demonstrate the extraordinary power of a remarkably simple, neurally grounded circuit motif in producing flexible categorization, a computation fundamental to attention, perception, and decision-making. PMID:22243757

  19. Closed Loop Interactions between Spiking Neural Network and Robotic Simulators Based on MUSIC and ROS.

    PubMed

    Weidel, Philipp; Djurfeldt, Mikael; Duarte, Renato C; Morrison, Abigail

    2016-01-01

    In order to properly assess the function and computational properties of simulated neural systems, it is necessary to account for the nature of the stimuli that drive the system. However, providing stimuli that are rich and yet both reproducible and amenable to experimental manipulations is technically challenging, and even more so if a closed-loop scenario is required. In this work, we present a novel approach to solve this problem, connecting robotics and neural network simulators. We implement a middleware solution that bridges the Robotic Operating System (ROS) to the Multi-Simulator Coordinator (MUSIC). This enables any robotic and neural simulators that implement the corresponding interfaces to be efficiently coupled, allowing real-time performance for a wide range of configurations. This work extends the toolset available for researchers in both neurorobotics and computational neuroscience, and creates the opportunity to perform closed-loop experiments of arbitrary complexity to address questions in multiple areas, including embodiment, agency, and reinforcement learning.

  20. Closed Loop Interactions between Spiking Neural Network and Robotic Simulators Based on MUSIC and ROS

    PubMed Central

    Weidel, Philipp; Djurfeldt, Mikael; Duarte, Renato C.; Morrison, Abigail

    2016-01-01

    In order to properly assess the function and computational properties of simulated neural systems, it is necessary to account for the nature of the stimuli that drive the system. However, providing stimuli that are rich and yet both reproducible and amenable to experimental manipulations is technically challenging, and even more so if a closed-loop scenario is required. In this work, we present a novel approach to solve this problem, connecting robotics and neural network simulators. We implement a middleware solution that bridges the Robotic Operating System (ROS) to the Multi-Simulator Coordinator (MUSIC). This enables any robotic and neural simulators that implement the corresponding interfaces to be efficiently coupled, allowing real-time performance for a wide range of configurations. This work extends the toolset available for researchers in both neurorobotics and computational neuroscience, and creates the opportunity to perform closed-loop experiments of arbitrary complexity to address questions in multiple areas, including embodiment, agency, and reinforcement learning. PMID:27536234

  1. Exploring Human Cognition Using Large Image Databases.

    PubMed

    Griffiths, Thomas L; Abbott, Joshua T; Hsu, Anne S

    2016-07-01

    Most cognitive psychology experiments evaluate models of human cognition using a relatively small, well-controlled set of stimuli. This approach stands in contrast to current work in neuroscience, perception, and computer vision, which have begun to focus on using large databases of natural images. We argue that natural images provide a powerful tool for characterizing the statistical environment in which people operate, for better evaluating psychological theories, and for bringing the insights of cognitive science closer to real applications. We discuss how some of the challenges of using natural images as stimuli in experiments can be addressed through increased sample sizes, using representations from computer vision, and developing new experimental methods. Finally, we illustrate these points by summarizing recent work using large image databases to explore questions about human cognition in four different domains: modeling subjective randomness, defining a quantitative measure of representativeness, identifying prior knowledge used in word learning, and determining the structure of natural categories. Copyright © 2016 Cognitive Science Society, Inc.

  2. Dissociable effects of cingulate and medial frontal cortex lesions on stimulus-reward learning using a novel Pavlovian autoshaping procedure for the rat: implications for the neurobiology of emotion.

    PubMed

    Bussey, T J; Everitt, B J; Robbins, T W

    1997-10-01

    The effects of quinolinic acid-induced lesions of the anterior cingulate, posterior cingulate, and medial frontal cortices on stimulus-reward learning were investigated with a novel Pavlovian autoshaping procedure in an apparatus allowing the automated presentation of computer-graphic stimuli to rats (T. J. Bussey, J. L. Muir, & T. W. Robbins, 1994). White vertical rectangles were presented on the left or the right of a computer screen. One of these conditioned stimuli (the CS+) was always followed by the presentation of a sucrose pellet; the other, the CS-, was never followed by reward. With training, rats came to approach the CS+ more often than the CS-. Anterior cingulate cortex-lesioned rats failed to demonstrate normal discriminated approach, making significantly more approaches to the CS- than did sham-operated controls. Medial frontal cortex-lesioned rats acquired the task normally but had longer overall approach latencies. Posterior cingulate cortex lesions did not affect acquisition.

  3. Pupil light reflex evoked by light-emitting diode and computer screen: Methodology and association with need for recovery in daily life.

    PubMed

    Wang, Yang; Zekveld, Adriana A; Wendt, Dorothea; Lunner, Thomas; Naylor, Graham; Kramer, Sophia E

    2018-01-01

    Pupil light reflex (PLR) has been widely used as a method for evaluating parasympathetic activity. The first aim of the present study is to develop a PLR measurement using a computer screen set-up and compare its results with the PLR generated by a more conventional setup using light-emitting diode (LED). The parasympathetic nervous system, which is known to control the 'rest and digest' response of the human body, is considered to be associated with daily life fatigue. However, only few studies have attempted to test the relationship between self-reported daily fatigue and physiological measurement of the parasympathetic nervous system. Therefore, the second aim of this study was to investigate the relationship between daily-life fatigue, assessed using the Need for Recovery scale, and parasympathetic activity, as indicated by the PLR parameters. A pilot study was conducted first to develop a PLR measurement set-up using a computer screen. PLRs evoked by light stimuli with different characteristics were recorded to confirm the influence of light intensity, flash duration, and color on the PLRs evoked by the system. In the subsequent experimental study, we recorded the PLR of 25 adult participants to light flashes generated by the screen set-up as well as by a conventional LED set-up. PLR parameters relating to parasympathetic and sympathetic activity were calculated from the pupil responses. We tested the split-half reliability across two consecutive blocks of trials, and the relationships between the parameters of PLRs evoked by the two set-ups. Participants rated their need for recovery prior to the PLR recordings. PLR parameters acquired in the screen and LED set-ups showed good reliability for amplitude related parameters. The PLRs evoked by both set-ups were consistent, but showed systematic differences in absolute values of all parameters. Additionally, higher need for recovery was associated with faster and larger constriction of the PLR. This study assessed the PLR generated by a computer screen and the PLR generated by a LED. The good reliability within set-ups and the consistency between the PLRs evoked by the set-ups indicate that both systems provides a valid way to evoke the PLR. A higher need for recovery was associated with faster and larger constricting PLRs, suggesting increased levels of parasympathetic nervous system activity in people experiencing higher levels of need for recovery on a daily basis.

  4. Nature inspires sensors to do more with less.

    PubMed

    Mulvaney, Shawn P; Sheehan, Paul E

    2014-10-28

    The world is filled with widely varying chemical, physical, and biological stimuli. Over millennia, organisms have refined their senses to cope with these diverse stimuli, becoming virtuosos in differentiating closely related antigens, handling extremes in concentration, resetting the spent sensing mechanisms, and processing the multiple data streams being generated. Nature successfully deals with both repeating and new stimuli, demonstrating great adaptability when confronted with the latter. Interestingly, nature accomplishes these feats using a fairly simple toolbox. The sensors community continues to draw inspiration from nature's example: just look at the antibodies used as biosensor capture agents or the neural networks that process multivariate data streams. Indeed, many successful sensors have been built by simply mimicking natural systems. However, some of the most exciting breakthroughs occur when the community moves beyond mimicking nature and learns to use nature's tools in innovative ways.

  5. Unconscious Processing of Facial Emotional Valence Relation: Behavioral Evidence of Integration between Subliminally Perceived Stimuli.

    PubMed

    Liu, Chengzhen; Sun, Zhiyi; Jou, Jerwen; Cui, Qian; Zhao, Guang; Qiu, Jiang; Tu, Shen

    2016-01-01

    Although a few studies have investigated the integration between some types of unconscious stimuli, no research has yet explored the integration between unconscious emotional stimuli. This study was designed to provide behavioral evidence for the integration between unconsciously perceived emotional faces (same or different valence relation) using a modified priming paradigm. In two experiments, participants were asked to decide whether two faces in the target, which followed two subliminally presented faces of same or different emotional expressions, were of the same or different emotional valence. The interstimulus interval (ISI) between the prime and the target was manipulated (0, 53, 163 ms). In Experiment 1, prime visibility was assessed post-experiment. In Experiment 2, it was assessed on each trial. Interestingly, in both experiments, unconsciously processed valence relation of the two faces in the prime generated a negative priming effect in the response to the supraliminally presented target, independent of the length of ISI. Further analyses suggested that the negative priming was probably caused by a motor response incongruent relation between the subliminally perceived prime and the supraliminally perceived target. The visual feature incongruent relation across the prime and target was not found to play a role in the negative priming. Because the negative priming was found at short ISI, an attention mechanism as well as a motor inhibition mechanism were proposed in the generation of the negative priming effect. Overall, this study indicated that the subliminal valence relation was processed, and that integration between different unconsciously perceived stimuli could occur.

  6. Unconscious Processing of Facial Emotional Valence Relation: Behavioral Evidence of Integration between Subliminally Perceived Stimuli

    PubMed Central

    Jou, Jerwen; Cui, Qian; Zhao, Guang; Qiu, Jiang; Tu, Shen

    2016-01-01

    Although a few studies have investigated the integration between some types of unconscious stimuli, no research has yet explored the integration between unconscious emotional stimuli. This study was designed to provide behavioral evidence for the integration between unconsciously perceived emotional faces (same or different valence relation) using a modified priming paradigm. In two experiments, participants were asked to decide whether two faces in the target, which followed two subliminally presented faces of same or different emotional expressions, were of the same or different emotional valence. The interstimulus interval (ISI) between the prime and the target was manipulated (0, 53, 163 ms). In Experiment 1, prime visibility was assessed post-experiment. In Experiment 2, it was assessed on each trial. Interestingly, in both experiments, unconsciously processed valence relation of the two faces in the prime generated a negative priming effect in the response to the supraliminally presented target, independent of the length of ISI. Further analyses suggested that the negative priming was probably caused by a motor response incongruent relation between the subliminally perceived prime and the supraliminally perceived target. The visual feature incongruent relation across the prime and target was not found to play a role in the negative priming. Because the negative priming was found at short ISI, an attention mechanism as well as a motor inhibition mechanism were proposed in the generation of the negative priming effect. Overall, this study indicated that the subliminal valence relation was processed, and that integration between different unconsciously perceived stimuli could occur. PMID:27622600

  7. Mammalian TRPV4 (VR-OAC) directs behavioral responses to osmotic and mechanical stimuli in Caenorhabditis elegans

    PubMed Central

    Liedtke, Wolfgang; Tobin, David M.; Bargmann, Cornelia I.; Friedman, Jeffrey M.

    2003-01-01

    All animals detect osmotic and mechanical stimuli, but the molecular basis for these responses is incompletely understood. The vertebrate transient receptor potential channel vanilloid subfamily 4 (TRPV4) (VR-OAC) cation channel has been suggested to be an osmo/mechanosensory channel. To assess its function in vivo, we expressed TRPV4 in Caenorhabditis elegans sensory neurons and examined its ability to generate behavioral responses to sensory stimuli. C. elegans ASH neurons function as polymodal sensory neurons that generate a characteristic escape behavior in response to mechanical, osmotic, or olfactory stimuli. These behaviors require the TRPV channel OSM-9 because osm-9 mutants do not avoid nose touch, high osmolarity, or noxious odors. Expression of mammalian TRPV4 in ASH neurons of osm-9 worms restored avoidance responses to hypertonicity and nose touch, but not the response to odorant repellents. Mutations known to reduce TRPV4 channel activity also reduced its ability to direct nematode avoidance behavior. TRPV4 function in ASH required the endogenous C. elegans osmotic and nose touch avoidance genes ocr-2, odr-3, osm-10, and glr-1, indicating that TRPV4 is integrated into the normal ASH sensory apparatus. The osmotic and mechanical avoidance responses of TRPV4-expressing animals were different in their sensitivity and temperature dependence from the responses of wild-type animals, suggesting that the TRPV4 channel confers its characteristic properties on the transgenic animals' behavior. These results provide evidence that TRPV4 can function as a component of an osmotic/mechanical sensor in vivo. PMID:14581619

  8. Decision ambiguity is mediated by a late positive potential originating from cingulate cortex.

    PubMed

    Sun, Sai; Zhen, Shanshan; Fu, Zhongzheng; Wu, Daw-An; Shimojo, Shinsuke; Adolphs, Ralph; Yu, Rongjun; Wang, Shuo

    2017-08-15

    People often make decisions in the face of ambiguous information, but it remains unclear how ambiguity is represented in the brain. We used three types of ambiguous stimuli and combined EEG and fMRI to examine the neural representation of perceptual decisions under ambiguity. We identified a late positive potential, the LPP, which differentiated levels of ambiguity, and which was specifically associated with behavioral judgments about choices that were ambiguous, rather than passive perception of ambiguous stimuli. Mediation analyses together with two further control experiments confirmed that the LPP was generated only when decisions are made (not during mere perception of ambiguous stimuli), and only when those decisions involved choices on a dimension that is ambiguous. A further control experiment showed that a stronger LPP arose in the presence of ambiguous stimuli compared to when only unambiguous stimuli were present. Source modeling suggested that the LPP originated from multiple loci in cingulate cortex, a finding we further confirmed using fMRI and fMRI-guided ERP source prediction. Taken together, our findings argue for a role of an LPP originating from cingulate cortex in encoding decisions based on task-relevant perceptual ambiguity, a process that may in turn influence confidence judgment, response conflict, and error correction. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Comparing otoacoustic emissions evoked by chirp transients with constant absorbed sound power and constant incident pressure magnitude.

    PubMed

    Keefe, Douglas H; Feeney, M Patrick; Hunter, Lisa L; Fitzpatrick, Denis F

    2017-01-01

    Human ear-canal properties of transient acoustic stimuli are contrasted that utilize measured ear-canal pressures in conjunction with measured acoustic pressure reflectance and admittance. These data are referenced to the tip of a probe snugly inserted into the ear canal. Promising procedures to calibrate across frequency include stimuli with controlled levels of incident pressure magnitude, absorbed sound power, and forward pressure magnitude. An equivalent pressure at the eardrum is calculated from these measured data using a transmission-line model of ear-canal acoustics parameterized by acoustically estimated ear-canal area at the probe tip and length between the probe tip and eardrum. Chirp stimuli with constant incident pressure magnitude and constant absorbed sound power across frequency were generated to elicit transient-evoked otoacoustic emissions (TEOAEs), which were measured in normal-hearing adult ears from 0.7 to 8 kHz. TEOAE stimuli had similar peak-to-peak equivalent sound pressure levels across calibration conditions. Frequency-domain TEOAEs were compared using signal level, signal-to-noise ratio (SNR), coherence synchrony modulus (CSM), group delay, and group spread. Time-domain TEOAEs were compared using SNR, CSM, instantaneous frequency and instantaneous bandwidth. Stimuli with constant incident pressure magnitude or constant absorbed sound power across frequency produce generally similar TEOAEs up to 8 kHz.

  10. Detection of hydrodynamic stimuli by the postcranial body of Florida manatees (Trichechus manatus latirostris).

    PubMed

    Gaspard, Joseph C; Bauer, Gordon B; Mann, David A; Boerner, Katharine; Denum, Laura; Frances, Candice; Reep, Roger L

    2017-02-01

    Manatees live in shallow, frequently turbid waters. The sensory means by which they navigate in these conditions are unknown. Poor visual acuity, lack of echolocation, and modest chemosensation suggest that other modalities play an important role. Rich innervation of sensory hairs that cover the entire body and enlarged somatosensory areas of the brain suggest that tactile senses are good candidates. Previous tests of detection of underwater vibratory stimuli indicated that they use passive movement of the hairs to detect particle displacements in the vicinity of a micron or less for frequencies from 10 to 150 Hz. In the current study, hydrodynamic stimuli were created by a sinusoidally oscillating sphere that generated a dipole field at frequencies from 5 to 150 Hz. Go/no-go tests of manatee postcranial mechanoreception of hydrodynamic stimuli indicated excellent sensitivity but about an order of magnitude less than the facial region. When the vibrissae were trimmed, detection thresholds were elevated, suggesting that the vibrissae were an important means by which detection occurred. Manatees were also highly accurate in two-choice directional discrimination: greater than 90% correct at all frequencies tested. We hypothesize that manatees utilize vibrissae as a three-dimensional array to detect and localize low-frequency hydrodynamic stimuli.

  11. Perceptual mapping of chemesthetic stimuli in naïve assessors

    PubMed Central

    Byrnes, Nadia; Nestrud, Michael A.; Hayes, John E.

    2015-01-01

    Chemesthetic compounds, responsible for sensations such as burning, cooling, and astringency, are difficult stimuli to work with, especially when the evaluation task requires retasting. Here, we developed a protocol by which chemesthetic compounds can be assessed using sorting. We compared the performance of two cohorts of untrained assessors on this task, one with nose clips and the other without. Similarity matrices were analyzed using multidimensional scaling (MDS) to produce perceptual maps for the two cohorts. Overall, the groupings from the nose open cohort tended to follow a biological basis, consistent with previous findings that suggest compounds that activate a common receptor will elicit similar sensations. The nose-open and nose-pinched cohorts generated significantly different maps. The nose-pinched cohort had a higher variance in the MDS solution than the nose-open group. While the nose-open cohort generated seven clusters, the nose-pinched cohort generated only two clusters, seemingly based on the ready identification of chemesthetic sensations or not. There was less consensus regarding the attributes used to describe the samples in the nose-pinched cohort than in the nose-open cohort as well, as this cohort collectively generated more attributes but fewer were significant in regression. PMID:26236421

  12. Mechanisms defining the electrotonic potential abnormalities in simulated amyotrophic lateral sclerosis.

    PubMed

    Stephanova, D I; Krustev, S M; Negrev, N

    2012-06-01

    Electrotonic potentials allow the accommodative processes to polarizing stimuli to be assessed. Electrotonic potential transients in response to applied polarizing stimuli are caused by the kinetics of underlying axonal conductances. Here, we study these transients using our multi-layered model of the human motor nerve, in three simulated cases of the motor neuron disease amyotrophic lateral sclerosis (ALS): ALS1, ALS2 and ALS3 are three consecutively greater degrees of uniform axonal dysfunctions along the human motor nerve fibre. The results show that the responses in the ALS1 case are quite similar to the normal case. In contrast, in the ALS2 and ALS3 cases, long-lasting (100 ms) subthreshold depolarizing stimuli activate the classical "transient" Na(+) channels in the nodal and in the internodal axolemma beneath the myelin sheath; this leads to action potential generation during the early parts of the electrotonic responses in all compartments along the fibre length. The results also show that the electrotonic potentials in response to long-lasting (100 ms) subthreshold hyperpolarizing stimuli in the ALS1 and ALS2 cases are quiet similar to those of the normal case. However, the current kinetics in the ALS3 case differs from the normal case after the termination of the long-lasting hyperpolarizing stimuli. In the most abnormal ALS3 case, the activation of the Na(+) channels in the nodal and in the internodal axolemma leads to repetitive action potential generation in the late parts (100-200 ms) of the hyperpolarizing electrotonic responses. The results show that the repetitive firing, due to the progressively increased nodal and internodal ion channel dysfunction, are consistent with the loss of functional potassium channels involving both the fast and the slow potassium channel types. The results confirm that the electrotonic potentials in the three simulated ALS cases are specific indicators for the motor neuron disease ALS. The mechanisms underlying the simulated ALS are also discussed.

  13. Distraction and Mind-Wandering Under Load

    PubMed Central

    Forster, Sophie

    2013-01-01

    Attention research over the last several decades has provided rich insights into the determinants of distraction, including distractor characteristics, task features, and individual differences. Load Theory represented a particularly important breakthrough, highlighting the critical role of the level and nature of task-load in determining both the efficiency of distractor rejection and the stage of processing at which this occurs. However, until recently studies of distraction were restricted to those measuring rather specific forms of distraction by external stimuli which I argue that, although intended to be irrelevant, were in fact task-relevant. In daily life, attention may be distracted by a wide range of stimuli, which may often be entirely unrelated to any task being performed, and may include not only external stimuli but also internally generated stimuli such as task-unrelated thoughts. This review outlines recent research examining these more general, entirely task-irrelevant, forms of distraction within the framework of Load Theory. I discuss the relation between different forms of distraction, and the universality of load effects across different distractor types and individuals. PMID:23734138

  14. Enhancing and reducing chirality by opposite circularly-polarized light irradiation on crystalline chiral domains consisting of nonchiral photoresponsive W-shaped liquid crystal molecules.

    PubMed

    Choi, Suk-Won; Takezoe, Hideo

    2016-09-28

    We found possible chirality enhancement and reduction in chiral domains formed by photoresponsive W-shaped molecules by irradiation with circularly polarized light (CPL). The W-shaped molecules exhibit a unique smectic phase with spontaneously segregated chiral domains, although the molecules are nonchiral. The chirality control was generated in the crystalline phase, which shows chiral segregation as in the upper smectic phase, and the result appeared to be as follows: for a certain chiral domain, right-CPL stimuli enhanced the chirality, while left-CPL stimuli reduced the chirality, and vice versa for another chiral domain. Interestingly, no domain-size change could be observed after CPL irradiation, suggesting some changes in the causes of chirality. In this way, the present system can recognize the handedness of the applied chiral stimuli. In other words, the present material can be used as a sensitive chiral-stimuli-recognizing material and should find invaluable applications, including in chiroptical switches, sensors, and memories as well as in chiral recognition.

  15. Mechanisms of Habitual Approach

    PubMed Central

    Anderson, Brian A.; Folk, Charles L.; Garrison, Rebecca; Rogers, Leeland

    2016-01-01

    Reward learning has a powerful influence on the attention system, causing previously reward-associated stimuli to automatically capture attention. Difficulty ignoring stimuli associated with drug reward has been linked to addiction relapse, and the attention system of drug-dependent patients seems especially influenced by reward history. This and other evidence suggests that value-driven attention has consequences for behavior and decision-making, facilitating a bias to approach and consume the previously reward-associated stimulus even when doing so runs counter to current goals and priorities. Yet, a mechanism linking value-driven attention to behavioral responding and a general approach bias is lacking. Here we show that previously reward-associated stimuli escape inhibitory processing in a go/no-go task. Control experiments confirmed that this value-dependent failure of goal-directed inhibition could not be explained by search history or residual motivation, but depended specifically on the learned association between particular stimuli and reward outcome. When a previously high-value stimulus is encountered, the response codes generated by that stimulus are automatically afforded high priority, bypassing goal-directed cognitive processes involved in suppressing task-irrelevant behavior. PMID:27054684

  16. The Relationship between Parameters of Long-Latency Evoked Potentials in a Multisensory Design.

    PubMed

    Hernández, Oscar H; García-Martínez, Rolando; Monteón, Victor

    2016-10-01

    In previous papers, we have shown that parameters of the omitted stimulus potential (OSP), which occurs at the end of a train of sensory stimuli, strongly depend on the modality. A train of stimuli also produces long-latency evoked potentials (LLEP) at the beginning of the train. This study is an extension of the OSP research, and it tested the relationship between parameters (ie, rate of rise, amplitude, and peak latency) of the P2 waves when trains of auditory, visual, or somatosensory stimuli were applied. The dynamics of the first 3 potentials in the train, related to habituation, were also studied. Twenty healthy young college volunteers participated in the study. As in the OSP, the P2 was faster and higher for auditory than for visual or somatosensory stimuli. The first P2 was swifter and higher than the second and the third potentials. The strength of habituation depends on the sensory modality and the parameter used. All these findings support the view that many long-latency brain potentials could share neural mechanisms related to wave generation. © EEG and Clinical Neuroscience Society (ECNS) 2015.

  17. Brief report: atypical neuromagnetic responses to illusory auditory pitch in children with autism spectrum disorders.

    PubMed

    Brock, Jon; Bzishvili, Samantha; Reid, Melanie; Hautus, Michael; Johnson, Blake W

    2013-11-01

    Atypical auditory perception is a widely recognised but poorly understood feature of autism. In the current study, we used magnetoencephalography to measure the brain responses of 10 autistic children as they listened passively to dichotic pitch stimuli, in which an illusory tone is generated by sub-millisecond inter-aural timing differences in white noise. Relative to control stimuli that contain no inter-aural timing differences, dichotic pitch stimuli typically elicit an object related negativity (ORN) response, associated with the perceptual segregation of the tone and the carrier noise into distinct auditory objects. Autistic children failed to demonstrate an ORN, suggesting a failure of segregation; however, comparison with the ORNs of age-matched typically developing controls narrowly failed to attain significance. More striking, the autistic children demonstrated a significant differential response to the pitch stimulus, peaking at around 50 ms. This was not present in the control group, nor has it been found in other groups tested using similar stimuli. This response may be a neural signature of atypical processing of pitch in at least some autistic individuals.

  18. The Inversion of Sensory Processing by Feedback Pathways: A Model of Visual Cognitive Functions.

    ERIC Educational Resources Information Center

    Harth, E.; And Others

    1987-01-01

    Explains the hierarchic structure of the mammalian visual system. Proposes a model in which feedback pathways serve to modify sensory stimuli in ways that enhance and complete sensory input patterns. Investigates the functioning of the system through computer simulations. (ML)

  19. Increased Early Processing of Task-Irrelevant Auditory Stimuli in Older Adults

    PubMed Central

    Tusch, Erich S.; Alperin, Brittany R.; Holcomb, Phillip J.; Daffner, Kirk R.

    2016-01-01

    The inhibitory deficit hypothesis of cognitive aging posits that older adults’ inability to adequately suppress processing of irrelevant information is a major source of cognitive decline. Prior research has demonstrated that in response to task-irrelevant auditory stimuli there is an age-associated increase in the amplitude of the N1 wave, an ERP marker of early perceptual processing. Here, we tested predictions derived from the inhibitory deficit hypothesis that the age-related increase in N1 would be 1) observed under an auditory-ignore, but not auditory-attend condition, 2) attenuated in individuals with high executive capacity (EC), and 3) augmented by increasing cognitive load of the primary visual task. ERPs were measured in 114 well-matched young, middle-aged, young-old, and old-old adults, designated as having high or average EC based on neuropsychological testing. Under the auditory-ignore (visual-attend) task, participants ignored auditory stimuli and responded to rare target letters under low and high load. Under the auditory-attend task, participants ignored visual stimuli and responded to rare target tones. Results confirmed an age-associated increase in N1 amplitude to auditory stimuli under the auditory-ignore but not auditory-attend task. Contrary to predictions, EC did not modulate the N1 response. The load effect was the opposite of expectation: the N1 to task-irrelevant auditory events was smaller under high load. Finally, older adults did not simply fail to suppress the N1 to auditory stimuli in the task-irrelevant modality; they generated a larger response than to identical stimuli in the task-relevant modality. In summary, several of the study’s findings do not fit the inhibitory-deficit hypothesis of cognitive aging, which may need to be refined or supplemented by alternative accounts. PMID:27806081

  20. Noise Enhances Action Potential Generation in Mouse Sensory Neurons via Stochastic Resonance.

    PubMed

    Onorato, Irene; D'Alessandro, Giuseppina; Di Castro, Maria Amalia; Renzi, Massimiliano; Dobrowolny, Gabriella; Musarò, Antonio; Salvetti, Marco; Limatola, Cristina; Crisanti, Andrea; Grassi, Francesca

    2016-01-01

    Noise can enhance perception of tactile and proprioceptive stimuli by stochastic resonance processes. However, the mechanisms underlying this general phenomenon remain to be characterized. Here we studied how externally applied noise influences action potential firing in mouse primary sensory neurons of dorsal root ganglia, modelling a basic process in sensory perception. Since noisy mechanical stimuli may cause stochastic fluctuations in receptor potential, we examined the effects of sub-threshold depolarizing current steps with superimposed random fluctuations. We performed whole cell patch clamp recordings in cultured neurons of mouse dorsal root ganglia. Noise was added either before and during the step, or during the depolarizing step only, to focus onto the specific effects of external noise on action potential generation. In both cases, step + noise stimuli triggered significantly more action potentials than steps alone. The normalized power norm had a clear peak at intermediate noise levels, demonstrating that the phenomenon is driven by stochastic resonance. Spikes evoked in step + noise trials occur earlier and show faster rise time as compared to the occasional ones elicited by steps alone. These data suggest that external noise enhances, via stochastic resonance, the recruitment of transient voltage-gated Na channels, responsible for action potential firing in response to rapid step-wise depolarizing currents.

  1. Noise Enhances Action Potential Generation in Mouse Sensory Neurons via Stochastic Resonance

    PubMed Central

    Onorato, Irene; D'Alessandro, Giuseppina; Di Castro, Maria Amalia; Renzi, Massimiliano; Dobrowolny, Gabriella; Musarò, Antonio; Salvetti, Marco; Limatola, Cristina; Crisanti, Andrea; Grassi, Francesca

    2016-01-01

    Noise can enhance perception of tactile and proprioceptive stimuli by stochastic resonance processes. However, the mechanisms underlying this general phenomenon remain to be characterized. Here we studied how externally applied noise influences action potential firing in mouse primary sensory neurons of dorsal root ganglia, modelling a basic process in sensory perception. Since noisy mechanical stimuli may cause stochastic fluctuations in receptor potential, we examined the effects of sub-threshold depolarizing current steps with superimposed random fluctuations. We performed whole cell patch clamp recordings in cultured neurons of mouse dorsal root ganglia. Noise was added either before and during the step, or during the depolarizing step only, to focus onto the specific effects of external noise on action potential generation. In both cases, step + noise stimuli triggered significantly more action potentials than steps alone. The normalized power norm had a clear peak at intermediate noise levels, demonstrating that the phenomenon is driven by stochastic resonance. Spikes evoked in step + noise trials occur earlier and show faster rise time as compared to the occasional ones elicited by steps alone. These data suggest that external noise enhances, via stochastic resonance, the recruitment of transient voltage-gated Na channels, responsible for action potential firing in response to rapid step-wise depolarizing currents. PMID:27525414

  2. Auditory mismatch negativity deficits in long-term heavy cannabis users.

    PubMed

    Roser, Patrik; Della, Beate; Norra, Christine; Uhl, Idun; Brüne, Martin; Juckel, Georg

    2010-09-01

    Mismatch negativity (MMN) is an auditory event-related potential indicating auditory sensory memory and information processing. The present study tested the hypothesis that chronic cannabis use is associated with deficient MMN generation. MMN was investigated in age- and gender-matched chronic cannabis users (n = 30) and nonuser controls (n = 30). The cannabis users were divided into two groups according to duration and quantity of cannabis consumption. The MMNs resulting from a pseudorandomized sequence of 2 × 900 auditory stimuli were recorded by 32-channel EEG. The standard stimuli were 1,000 Hz, 80 dB SPL and 90 ms duration. The deviant stimuli differed in duration (50 ms) or frequency (1,200 Hz). There were no significant differences in MMN values between cannabis users and nonuser controls in both deviance conditions. With regard to subgroups, reduced amplitudes of frequency MMN at frontal electrodes were found in long-term (≥8 years of use) and heavy (≥15 joints/week) users compared to short-term and light users. The results indicate that chronic cannabis use may cause a specific impairment of auditory information processing. In particular, duration and quantity of cannabis use could be identified as important factors of deficient MMN generation.

  3. Initiale Aktivität und Willkürverhalten bei Tieren

    NASA Astrophysics Data System (ADS)

    Heisenberg, Martin

    1983-02-01

    Initiation as a basic property of behavioral activity is functionally analyzed and discussed at the level of voluntary behavior. Fixed action patterns often are not released by stimuli but are generated by the animal itself through brain processes of the Darwinian type. Analogous to mutations, behavioral “subroutines” are brought up by chance and are subjected to selection either by the change in the situation (trial and the elimination of error) or by mental activity suppressing inappropriate behavior even before it is executed.Initiation improves the chance of survival. It is a prerequisite of goal-oriented behavior, an essential constituent of operant conditioning and presumably the first step in the evolution of thought. According to I. Kant a person is free if, by following his own directive, he does what has to be done. This definition meets the two central criteria of initiation: the independence of releasing stimuli and the adaptive value of the behavior generated.

  4. The mismatch negativity: A review of underlying mechanisms

    PubMed Central

    Garrido, Marta I.; Kilner, James M.; Stephan, Klaas E.; Friston, Karl J.

    2009-01-01

    The mismatch negativity (MMN) is a brain response to violations of a rule, established by a sequence of sensory stimuli (typically in the auditory domain) [Näätänen R. Attention and brain function. Hillsdale, NJ: Lawrence Erlbaum; 1992]. The MMN reflects the brain’s ability to perform automatic comparisons between consecutive stimuli and provides an electrophysiological index of sensory learning and perceptual accuracy. Although the MMN has been studied extensively, the neurophysiological mechanisms underlying the MMN are not well understood. Several hypotheses have been put forward to explain the generation of the MMN; amongst these accounts, the “adaptation hypothesis” and the “model adjustment hypothesis” have received the most attention. This paper presents a review of studies that focus on neuronal mechanisms underlying the MMN generation, discusses the two major explanatory hypotheses, and proposes predictive coding as a general framework that attempts to unify both. PMID:19181570

  5. Consistency of Border-Ownership Cells across Artificial Stimuli, Natural Stimuli, and Stimuli with Ambiguous Contours.

    PubMed

    Hesse, Janis K; Tsao, Doris Y

    2016-11-02

    Segmentation and recognition of objects in a visual scene are two problems that are hard to solve separately from each other. When segmenting an ambiguous scene, it is helpful to already know the present objects and their shapes. However, for recognizing an object in clutter, one would like to consider its isolated segment alone to avoid confounds from features of other objects. Border-ownership cells (Zhou et al., 2000) appear to play an important role in segmentation, as they signal the side-of-figure of artificial stimuli. The present work explores the role of border-ownership cells in dorsal macaque visual areas V2 and V3 in the segmentation of natural object stimuli and locally ambiguous stimuli. We report two major results. First, compared with previous estimates, we found a smaller percentage of cells that were consistent across artificial stimuli used previously. Second, we found that the average response of those neurons that did respond consistently to the side-of-figure of artificial stimuli also consistently signaled, as a population, the side-of-figure for borders of single faces, occluding faces and, with higher latencies, even stimuli with illusory contours, such as Mooney faces and natural faces completely missing local edge information. In contrast, the local edge or the outlines of the face alone could not always evoke a significant border-ownership signal. Our results underscore that border ownership is coded by a population of cells, and indicate that these cells integrate a variety of cues, including low-level features and global object context, to compute the segmentation of the scene. To distinguish different objects in a natural scene, the brain must segment the image into regions corresponding to objects. The so-called "border-ownership" cells appear to be dedicated to this task, as they signal for a given edge on which side the object is that owns it. Here, we report that individual border-ownership cells are unreliable when tested across a battery of artificial stimuli used previously but can signal border-ownership consistently as a population. We show that these border-ownership population signals are also suited for signaling border-ownership for natural objects and at longer latency, even for stimuli without local edge information. Our results suggest that border-ownership cells integrate both local, low-level and global, high-level cues to segment the scene. Copyright © 2016 the authors 0270-6474/16/3611338-12$15.00/0.

  6. Stimuli-Responsive Polymers for Actuation.

    PubMed

    Zhang, Qiang Matthew; Serpe, Michael J

    2017-06-02

    A variety of stimuli-responsive polymers have been developed and used as actuators and/or artificial muscles, with the movement being driven by an external stimulus, such as electrical potential. This Review highlights actuators constructed from liquid-crystal elastomers, dielectric elastomers, ionic polymers, and conducting polymers. The Review covers recent examples of a variety of actuators generated from these materials and their utility. The mechanism of actuation will be detailed for most examples in order to stimulate possible future research, and lead to new applications and advanced applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Activity in the human brain predicting differential heart rate responses to emotional facial expressions.

    PubMed

    Critchley, Hugo D; Rotshtein, Pia; Nagai, Yoko; O'Doherty, John; Mathias, Christopher J; Dolan, Raymond J

    2005-02-01

    The James-Lange theory of emotion proposes that automatically generated bodily reactions not only color subjective emotional experience of stimuli, but also necessitate a mechanism by which these bodily reactions are differentially generated to reflect stimulus quality. To examine this putative mechanism, we simultaneously measured brain activity and heart rate to identify regions where neural activity predicted the magnitude of heart rate responses to emotional facial expressions. Using a forewarned reaction time task, we showed that orienting heart rate acceleration to emotional face stimuli was modulated as a function of the emotion depicted. The magnitude of evoked heart rate increase, both across the stimulus set and within each emotion category, was predicted by level of activity within a matrix of interconnected brain regions, including amygdala, insula, anterior cingulate, and brainstem. We suggest that these regions provide a substrate for translating visual perception of emotional facial expression into differential cardiac responses and thereby represent an interface for selective generation of visceral reactions that contribute to the embodied component of emotional reaction.

  8. How learning one category influences the learning of another: intercategory generalization based on analogy and specific stimulus information.

    PubMed

    Nahinsky, Irwin D; Lucas, Barbara A; Edgell, Stephen E; Overfelt, Joseph; Loeb, Richard

    2004-01-01

    We investigated the effect of learning one category structure on the learning of a related category structure. Photograph-name combinations, called identifiers, were associated with values of four demographic attributes. Two problems were related by analogous demographic attributes, common identifiers, or both to examine the impact of common identifier, related general characteristics, and the interaction of the two variables in mediating learning transfer from one category structure to another. Problems sharing the same identifier information prompted greater positive transfer than those not sharing the same identifier information. In contrast, analogous defining characteristics in the two problems did not facilitate transfer. We computed correlations between responses to first-problem stimuli and responses to analogous second-problem stimuli for each participant. The analogous characteristics produced a tendency to respond in the same way to corresponding stimuli in the two problems. The results support an alignment between category structures related by analogous defining characteristics, which is facilitated by specific identifier information shared by two category structures.

  9. Visual attention distracter insertion for improved EEG rapid serial visual presentation (RSVP) target stimuli detection

    NASA Astrophysics Data System (ADS)

    Khosla, Deepak; Huber, David J.; Martin, Kevin

    2017-05-01

    This paper† describes a technique in which we improve upon the prior performance of the Rapid Serial Visual Presentation (RSVP) EEG paradigm for image classification though the insertion of visual attention distracters and overall sequence reordering based upon the expected ratio of rare to common "events" in the environment and operational context. Inserting distracter images maintains the ratio of common events to rare events at an ideal level, maximizing the rare event detection via P300 EEG response to the RSVP stimuli. The method has two steps: first, we compute the optimal number of distracters needed for an RSVP stimuli based on the desired sequence length and expected number of targets and insert the distracters into the RSVP sequence, and then we reorder the RSVP sequence to maximize P300 detection. We show that by reducing the ratio of target events to nontarget events using this method, we can allow RSVP sequences with more targets without sacrificing area under the ROC curve (azimuth).

  10. A neural basis for the spatial suppression of visual motion perception

    PubMed Central

    Liu, Liu D; Haefner, Ralf M; Pack, Christopher C

    2016-01-01

    In theory, sensory perception should be more accurate when more neurons contribute to the representation of a stimulus. However, psychophysical experiments that use larger stimuli to activate larger pools of neurons sometimes report impoverished perceptual performance. To determine the neural mechanisms underlying these paradoxical findings, we trained monkeys to discriminate the direction of motion of visual stimuli that varied in size across trials, while simultaneously recording from populations of motion-sensitive neurons in cortical area MT. We used the resulting data to constrain a computational model that explained the behavioral data as an interaction of three main mechanisms: noise correlations, which prevented stimulus information from growing with stimulus size; neural surround suppression, which decreased sensitivity for large stimuli; and a read-out strategy that emphasized neurons with receptive fields near the stimulus center. These results suggest that paradoxical percepts reflect tradeoffs between sensitivity and noise in neuronal populations. DOI: http://dx.doi.org/10.7554/eLife.16167.001 PMID:27228283

  11. Sequencing the Cortical Processing of Pitch-Evoking Stimuli using EEG Analysis and Source Estimation

    PubMed Central

    Butler, Blake E.; Trainor, Laurel J.

    2012-01-01

    Cues to pitch include spectral cues that arise from tonotopic organization and temporal cues that arise from firing patterns of auditory neurons. fMRI studies suggest a common pitch center is located just beyond primary auditory cortex along the lateral aspect of Heschl’s gyrus, but little work has examined the stages of processing for the integration of pitch cues. Using electroencephalography, we recorded cortical responses to high-pass filtered iterated rippled noise (IRN) and high-pass filtered complex harmonic stimuli, which differ in temporal and spectral content. The two stimulus types were matched for pitch saliency, and a mismatch negativity (MMN) response was elicited by infrequent pitch changes. The P1 and N1 components of event-related potentials (ERPs) are thought to arise from primary and secondary auditory areas, respectively, and to result from simple feature extraction. MMN is generated in secondary auditory cortex and is thought to act on feature-integrated auditory objects. We found that peak latencies of both P1 and N1 occur later in response to IRN stimuli than to complex harmonic stimuli, but found no latency differences between stimulus types for MMN. The location of each ERP component was estimated based on iterative fitting of regional sources in the auditory cortices. The sources of both the P1 and N1 components elicited by IRN stimuli were located dorsal to those elicited by complex harmonic stimuli, whereas no differences were observed for MMN sources across stimuli. Furthermore, the MMN component was located between the P1 and N1 components, consistent with fMRI studies indicating a common pitch region in lateral Heschl’s gyrus. These results suggest that while the spectral and temporal processing of different pitch-evoking stimuli involves different cortical areas during early processing, by the time the object-related MMN response is formed, these cues have been integrated into a common representation of pitch. PMID:22740836

  12. The Novelty Exploration Bonus and Its Attentional Modulation

    ERIC Educational Resources Information Center

    Krebs, Ruth M.; Schott, Bjorn H.; Schutze, Hartmut; Duzel, Emrah

    2009-01-01

    We hypothesized that novel stimuli represent salient learning signals that can motivate "exploration" in search for potential rewards. In computational theories of reinforcement learning, this is referred to as the novelty "exploration bonus" for rewards. If true, stimulus novelty should enhance the reward anticipation signals in brain areas that…

  13. Hidden Hearing Loss and Computational Models of the Auditory Pathway: Predicting Speech Intelligibility Decline

    DTIC Science & Technology

    2016-11-28

    of low spontaneous rate auditory nerve fibers (ANFs) and reduction of auditory brainstem response wave-I amplitudes. The goal of this research is...auditory nerve (AN) responses to speech stimuli under a variety of difficult listening conditions. The resulting cochlear neurogram, a spectrogram

  14. Division of Attention Relative to Response Between Attended and Unattended Stimuli.

    ERIC Educational Resources Information Center

    Kantowitz, Barry H.

    Research was conducted to investigate two general classes of human attention models, early-selection models which claim that attentional selecting precedes memory and meaning extraction mechanisms, and late-selection models which posit the reverse. This research involved two components: (1) the development of simple, efficient, computer-oriented…

  15. Visual-Auditory Integration during Speech Imitation in Autism

    ERIC Educational Resources Information Center

    Williams, Justin H. G.; Massaro, Dominic W.; Peel, Natalie J.; Bosseler, Alexis; Suddendorf, Thomas

    2004-01-01

    Children with autistic spectrum disorder (ASD) may have poor audio-visual integration, possibly reflecting dysfunctional "mirror neuron" systems which have been hypothesised to be at the core of the condition. In the present study, a computer program, utilizing speech synthesizer software and a "virtual" head (Baldi), delivered speech stimuli for…

  16. Equivalent Stimuli Are More Strongly Related after Training with Delayed Matching than after Simultaneous Matching: A Study Using the Implicit Relational Assessment Procedure (IRAP)

    ERIC Educational Resources Information Center

    Bortoloti, Renato; de Rose, Julio C.

    2012-01-01

    Bortoloti and de Rose (2009) found evidence that the level of functional transfer is higher in equivalence classes generated by delayed matching to sample (DMTS) than in classes generated by simultaneous matching (SMTS). We attempted to replicate these findings with the Implicit Relational Assessment Procedure (IRAP). Two experimental groups…

  17. Theta band oscillations reflect more than entrainment: behavioral and neural evidence demonstrates an active chunking process.

    PubMed

    Teng, Xiangbin; Tian, Xing; Doelling, Keith; Poeppel, David

    2017-10-17

    Parsing continuous acoustic streams into perceptual units is fundamental to auditory perception. Previous studies have uncovered a cortical entrainment mechanism in the delta and theta bands (~1-8 Hz) that correlates with formation of perceptual units in speech, music, and other quasi-rhythmic stimuli. Whether cortical oscillations in the delta-theta bands are passively entrained by regular acoustic patterns or play an active role in parsing the acoustic stream is debated. Here, we investigate cortical oscillations using novel stimuli with 1/f modulation spectra. These 1/f signals have no rhythmic structure but contain information over many timescales because of their broadband modulation characteristics. We chose 1/f modulation spectra with varying exponents of f, which simulate the dynamics of environmental noise, speech, vocalizations, and music. While undergoing magnetoencephalography (MEG) recording, participants listened to 1/f stimuli and detected embedded target tones. Tone detection performance varied across stimuli of different exponents and can be explained by local signal-to-noise ratio computed using a temporal window around 200 ms. Furthermore, theta band oscillations, surprisingly, were observed for all stimuli, but robust phase coherence was preferentially displayed by stimuli with exponents 1 and 1.5. We constructed an auditory processing model to quantify acoustic information on various timescales and correlated the model outputs with the neural results. We show that cortical oscillations reflect a chunking of segments, > 200 ms. These results suggest an active auditory segmentation mechanism, complementary to entrainment, operating on a timescale of ~200 ms to organize acoustic information. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. Simulator of human visual perception

    NASA Astrophysics Data System (ADS)

    Bezzubik, Vitalii V.; Belashenkov, Nickolai R.

    2016-04-01

    Difference of Circs (DoC) model allowing to simulate the response of neurons - ganglion cells as a reaction to stimuli is represented and studied in relation with representation of receptive fields of human retina. According to this model the response of neurons is reduced to execution of simple arithmetic operations and the results of these calculations well correlate with experimental data in wide range of stimuli parameters. The simplicity of the model and reliability of reproducing of responses allow to propose the conception of a device which can simulate the signals generated by ganglion cells as a reaction to presented stimuli. The signals produced according to DoC model are considered as a result of primary processing of information received from receptors independently of their type and may be sent to higher levels of nervous system of living creatures for subsequent processing. Such device may be used as a prosthesis for disabled organ.

  19. A microfluidic device to study neuronal and motor responses to acute chemical stimuli in zebrafish.

    PubMed

    Candelier, Raphaël; Murmu, Meena Sriti; Romano, Sebastián Alejo; Jouary, Adrien; Debrégeas, Georges; Sumbre, Germán

    2015-07-21

    Zebrafish larva is a unique model for whole-brain functional imaging and to study sensory-motor integration in the vertebrate brain. To take full advantage of this system, one needs to design sensory environments that can mimic the complex spatiotemporal stimulus patterns experienced by the animal in natural conditions. We report on a novel open-ended microfluidic device that delivers pulses of chemical stimuli to agarose-restrained larvae with near-millisecond switching rate and unprecedented spatial and concentration accuracy and reproducibility. In combination with two-photon calcium imaging and recordings of tail movements, we found that stimuli of opposite hedonic values induced different circuit activity patterns. Moreover, by precisely controlling the duration of the stimulus (50-500 ms), we found that the probability of generating a gustatory-induced behavior is encoded by the number of neurons activated. This device may open new ways to dissect the neural-circuit principles underlying chemosensory perception.

  20. The role of early visual cortex in visual short-term memory and visual attention.

    PubMed

    Offen, Shani; Schluppeck, Denis; Heeger, David J

    2009-06-01

    We measured cortical activity with functional magnetic resonance imaging to probe the involvement of early visual cortex in visual short-term memory and visual attention. In four experimental tasks, human subjects viewed two visual stimuli separated by a variable delay period. The tasks placed differential demands on short-term memory and attention, but the stimuli were visually identical until after the delay period. Early visual cortex exhibited sustained responses throughout the delay when subjects performed attention-demanding tasks, but delay-period activity was not distinguishable from zero when subjects performed a task that required short-term memory. This dissociation reveals different computational mechanisms underlying the two processes.

  1. Shape recognition contributions to figure-ground reversal: which route counts?

    PubMed

    Peterson, M A; Harvey, E M; Weidenbacher, H J

    1991-11-01

    Observers viewed upright and inverted versions of figure-ground stimuli, in which Gestalt variables specified that the center was figure. In upright versions, the surround was high in denotivity, in that most viewers agreed it depicted the same shape; in inverted versions, the surround was low in denotivity. The surround was maintained as figure longer and was more likely to be obtained as figure when the stimuli were upright rather than inverted. In four experiments, these effects reflected inputs to figure-ground computations from orientation-specific shape representations only. To account for these findings, a nonratiomorphic mechanism is proposed that enables shape recognition processes before figure-ground relationships are determined.

  2. Synthetic biology expands chemical control of microorganisms.

    PubMed

    Ford, Tyler J; Silver, Pamela A

    2015-10-01

    The tools of synthetic biology allow researchers to change the ways engineered organisms respond to chemical stimuli. Decades of basic biology research and new efforts in computational protein and RNA design have led to the development of small molecule sensors that can be used to alter organism function. These new functions leap beyond the natural propensities of the engineered organisms. They can range from simple fluorescence or growth reporting to pathogen killing, and can involve metabolic coordination among multiple cells or organisms. Herein, we discuss how synthetic biology alters microorganisms' responses to chemical stimuli resulting in the development of microbes as toxicity sensors, disease treatments, and chemical factories. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Impaired Early Attentional Processes in Parkinson’s Disease: A High-Resolution Event-Related Potentials Study

    PubMed Central

    Bocquillon, Perrine; Bourriez, Jean-Louis; Palmero-Soler, Ernesto; Defebvre, Luc; Derambure, Philippe; Dujardin, Kathy

    2015-01-01

    Introduction The selection of task-relevant information requires both the focalization of attention on the task and resistance to interference from irrelevant stimuli. A previous study using the P3 component of the event-related potentials suggested that a reduced ability to resist interference could be responsible for attention disorders at early stages of Parkinson’s disease (PD), with a possible role of the dorsolateral prefrontal cortex (DLPFC). Methods Our objective was to better determine the origin of this impairment, by studying an earlier ERP component, the N2, and its subcomponents, as they reflect early inhibition processes and as they are known to have sources in the anterior cingulate cortex (ACC), which is involved together with the DLPFC in inhibition processes. Fifteen early-stage PD patients and 15 healthy controls (HCs) performed a three-stimulus visual oddball paradigm, consisting in detecting target inputs amongst standard stimuli, while resisting interference from distracter ones. A 128-channel electroencephalogram was recorded during this task and the generators of the N2 subcomponents were identified using standardized weighted low-resolution electromagnetic tomography (swLORETA). Results PD patients displayed fewer N2 generators than HCs in both the DLPFC and the ACC, for all types of stimuli. In contrast to controls, PD patients did not show any differences between their generators for different N2 subcomponents. Conclusion Our data suggest that impaired inhibition in PD results from dysfunction of the DLPFC and the ACC during the early stages of attentional processes. PMID:26135906

  4. Knowledge of response location alone is not sufficient to generate social inhibition of return.

    PubMed

    Welsh, Timothy N; Manzone, Joseph; McDougall, Laura

    2014-11-01

    Previous research has revealed that the inhibition of return (IOR) effect emerges when individuals respond to a target at the same location as their own previous response or the previous response of a co-actor. The latter social IOR effect is thought to occur because the observation of co-actor's response evokes a representation of that action in the observer and that the observation-evoked response code subsequently activates the inhibitory mechanisms underlying IOR. The present study was conducted to determine if knowledge of the co-actor's response alone is sufficient to evoke social IOR. Pairs of participants completed responses to targets that appeared at different button locations. Button contact generated location-contingent auditory stimuli (high and low tones in Experiment 1 and colour words in Experiment 2). In the Full condition, the observer saw the response and heard the auditory stimuli. In the Auditory Only condition, the observer did not see the co-actor's response, but heard the auditory stimuli generated via button contact to indicate response endpoint. It was found that, although significant individual and social IOR effects emerged in the Full conditions, there were no social IOR effects in the Auditory Only conditions. These findings suggest that knowledge of the co-actor's response alone via auditory information is not sufficient to activate the inhibitory processes leading to IOR. The activation of the mechanisms that lead to social IOR seems to be dependent on processing channels that code the spatial characteristics of action. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Attentional bias in excessive Internet gamers: Experimental investigations using an addiction Stroop and a visual probe.

    PubMed

    Jeromin, Franziska; Nyenhuis, Nele; Barke, Antonia

    2016-03-01

    Background and aims Internet Gaming Disorder is included in the Diagnostic and statistical manual of mental disorders (5 th edition) as a disorder that merits further research. The diagnostic criteria are based on those for Substance Use Disorder and Gambling Disorder. Excessive gamblers and persons with Substance Use Disorder show attentional biases towards stimuli related to their addictions. We investigated whether excessive Internet gamers show a similar attentional bias, by using two established experimental paradigms. Methods We measured reaction times of excessive Internet gamers and non-gamers (N = 51, 23.7 ± 2.7 years) by using an addiction Stroop with computer-related and neutral words, as well as a visual probe with computer-related and neutral pictures. Mixed design analyses of variance with the between-subjects factor group (gamer/non-gamer) and the within-subjects factor stimulus type (computer-related/neutral) were calculated for the reaction times as well as for valence and familiarity ratings of the stimulus material. Results In the addiction Stroop, an interaction for group × word type was found: Only gamers showed longer reaction times to computer-related words compared to neutral words, thus exhibiting an attentional bias. In the visual probe, no differences in reaction time between computer-related and neutral pictures were found in either group, but the gamers were faster overall. Conclusions An attentional bias towards computer-related stimuli was found in excessive Internet gamers, by using an addiction Stroop but not by using a visual probe. A possible explanation for the discrepancy could lie in the fact that the visual probe may have been too easy for the gamers.

  6. Attentional bias in excessive Internet gamers: Experimental investigations using an addiction Stroop and a visual probe

    PubMed Central

    Jeromin, Franziska; Nyenhuis, Nele; Barke, Antonia

    2016-01-01

    Background and aims Internet Gaming Disorder is included in the Diagnostic and statistical manual of mental disorders (5th edition) as a disorder that merits further research. The diagnostic criteria are based on those for Substance Use Disorder and Gambling Disorder. Excessive gamblers and persons with Substance Use Disorder show attentional biases towards stimuli related to their addictions. We investigated whether excessive Internet gamers show a similar attentional bias, by using two established experimental paradigms. Methods We measured reaction times of excessive Internet gamers and non-gamers (N = 51, 23.7 ± 2.7 years) by using an addiction Stroop with computer-related and neutral words, as well as a visual probe with computer-related and neutral pictures. Mixed design analyses of variance with the between-subjects factor group (gamer/non-gamer) and the within-subjects factor stimulus type (computer-related/neutral) were calculated for the reaction times as well as for valence and familiarity ratings of the stimulus material. Results In the addiction Stroop, an interaction for group × word type was found: Only gamers showed longer reaction times to computer-related words compared to neutral words, thus exhibiting an attentional bias. In the visual probe, no differences in reaction time between computer-related and neutral pictures were found in either group, but the gamers were faster overall. Conclusions An attentional bias towards computer-related stimuli was found in excessive Internet gamers, by using an addiction Stroop but not by using a visual probe. A possible explanation for the discrepancy could lie in the fact that the visual probe may have been too easy for the gamers. PMID:28092198

  7. Interaction techniques for radiology workstations: impact on users' productivity

    NASA Astrophysics Data System (ADS)

    Moise, Adrian; Atkins, M. Stella

    2004-04-01

    As radiologists progress from reading images presented on film to modern computer systems with images presented on high-resolution displays, many new problems arise. Although the digital medium has many advantages, the radiologist"s job becomes cluttered with many new tasks related to image manipulation. This paper presents our solution for supporting radiologists" interpretation of digital images by automating image presentation during sequential interpretation steps. Our method supports scenario based interpretation, which group data temporally, according to the mental paradigm of the physician. We extended current hanging protocols with support for "stages". A stage reflects the presentation of digital information required to complete a single step within a complex task. We demonstrated the benefits of staging in a user study with 20 lay subjects involved in a visual conjunctive search for targets, similar to a radiology task of identifying anatomical abnormalities. We designed a task and a set of stimuli which allowed us to simulate the interpretation workflow from a typical radiology scenario - reading a chest computed radiography exam when a prior study is also available. The simulation was possible by abstracting the radiologist"s task and the basic workstation navigation functionality. We introduced "Stages," an interaction technique attuned to the radiologist"s interpretation task. Compared to the traditional user interface, Stages generated a 14% reduction in the average interpretation.

  8. Investigations of rhesus monkey video-task performance: evidence for enrichment

    NASA Technical Reports Server (NTRS)

    Washburn, D. A.; Rumbaugh, D. M.

    1992-01-01

    We have developed the Language Research Center's Computerized Test System (LRC-CTS) for psychological research. Basically, the LRC-CTS is a battery of software tasks--computerized versions of many of the classic testing paradigms of cognitive and comparative psychology--and the hardware required to administer them. An XT- or 386-compatible computer is connected to a color monitor, onto which computer-generated stimuli are presented. Sound feedback is delivered through an external speaker/amplifier, and a joystick is used as an input device. The animals reach through the mesh of their home cages to manipulate the joystick, which causes isomorphic movements of a cursor on the screen thereby allowing animals to respond according to the varied demands of the tasks. Correct responses are rewarded with a fruit-flavored chow pellet. Using this technology, we have trained and tested rhesus monkeys, a variety of apes, human adults, and normally developing or mentally retarded human children. Other labs using the LRC-CTS are beginning to report encouraging results with other monkey species as well. From this research, a number of interesting and important psychological findings have resulted. In the present paper, however, evidence will be reviewed which suggests that the LRC-CTS is an effective means of providing environmental enrichment to singly housed rhesus monkeys.

  9. Cortical Transformation of Spatial Processing for Solving the Cocktail Party Problem: A Computational Model123

    PubMed Central

    Dong, Junzi; Colburn, H. Steven

    2016-01-01

    In multisource, “cocktail party” sound environments, human and animal auditory systems can use spatial cues to effectively separate and follow one source of sound over competing sources. While mechanisms to extract spatial cues such as interaural time differences (ITDs) are well understood in precortical areas, how such information is reused and transformed in higher cortical regions to represent segregated sound sources is not clear. We present a computational model describing a hypothesized neural network that spans spatial cue detection areas and the cortex. This network is based on recent physiological findings that cortical neurons selectively encode target stimuli in the presence of competing maskers based on source locations (Maddox et al., 2012). We demonstrate that key features of cortical responses can be generated by the model network, which exploits spatial interactions between inputs via lateral inhibition, enabling the spatial separation of target and interfering sources while allowing monitoring of a broader acoustic space when there is no competition. We present the model network along with testable experimental paradigms as a starting point for understanding the transformation and organization of spatial information from midbrain to cortex. This network is then extended to suggest engineering solutions that may be useful for hearing-assistive devices in solving the cocktail party problem. PMID:26866056

  10. Cortical Transformation of Spatial Processing for Solving the Cocktail Party Problem: A Computational Model(1,2,3).

    PubMed

    Dong, Junzi; Colburn, H Steven; Sen, Kamal

    2016-01-01

    In multisource, "cocktail party" sound environments, human and animal auditory systems can use spatial cues to effectively separate and follow one source of sound over competing sources. While mechanisms to extract spatial cues such as interaural time differences (ITDs) are well understood in precortical areas, how such information is reused and transformed in higher cortical regions to represent segregated sound sources is not clear. We present a computational model describing a hypothesized neural network that spans spatial cue detection areas and the cortex. This network is based on recent physiological findings that cortical neurons selectively encode target stimuli in the presence of competing maskers based on source locations (Maddox et al., 2012). We demonstrate that key features of cortical responses can be generated by the model network, which exploits spatial interactions between inputs via lateral inhibition, enabling the spatial separation of target and interfering sources while allowing monitoring of a broader acoustic space when there is no competition. We present the model network along with testable experimental paradigms as a starting point for understanding the transformation and organization of spatial information from midbrain to cortex. This network is then extended to suggest engineering solutions that may be useful for hearing-assistive devices in solving the cocktail party problem.

  11. Human photosensitivity: from pathophysiology to treatment.

    PubMed

    Verrotti, A; Tocco, A M; Salladini, C; Latini, G; Chiarelli, F

    2005-11-01

    Photosensitivity is a condition detected on the electroencephalography (EEG) as a paroxysmal reaction to Intermittent Photic Stimulation (IPS). This EEG response, elicited by IPS or by other visual stimuli of daily life, is called Photo Paroxysmal Response (PPR). PPRs are well documented in epileptic and non-epileptic subjects. Photosensitivity rarely in normal individuals evolves into epilepsy. Photosensitive epilepsy is a rare refex epilepsy characterized by seizures in photosensitive individuals. The development of modern technology has increased the exposition to potential seizure precipitants in people of all ages, but especially in children and adolescents. Actually, videogames, computers and televisions are the most common triggers in daily life of susceptible persons. The mechanisms of generation of PPR are poorly understood, but genetic factors play an important rule. The control of visually induced seizures has, generally a good prognosis. In patients known to be visually sensitive, avoidance of obvious source and stimulus modifications are very important and useful to seizure prevention, but in the large majority of patients with epilepsy and photosensitivity antiepileptic drugs are needed.

  12. Unified-theory-of-reinforcement neural networks do not simulate the blocking effect.

    PubMed

    Calvin, Nicholas T; J McDowell, J

    2015-11-01

    For the last 20 years the unified theory of reinforcement (Donahoe et al., 1993) has been used to develop computer simulations to evaluate its plausibility as an account for behavior. The unified theory of reinforcement states that operant and respondent learning occurs via the same neural mechanisms. As part of a larger project to evaluate the operant behavior predicted by the theory, this project was the first replication of neural network models based on the unified theory of reinforcement. In the process of replicating these neural network models it became apparent that a previously published finding, namely, that the networks simulate the blocking phenomenon (Donahoe et al., 1993), was a misinterpretation of the data. We show that the apparent blocking produced by these networks is an artifact of the inability of these networks to generate the same conditioned response to multiple stimuli. The piecemeal approach to evaluate the unified theory of reinforcement via simulation is critiqued and alternatives are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Neural components of topographical representation

    PubMed Central

    Aguirre, Geoffrey K.; Zarahn, Eric; D’Esposito, Mark

    1998-01-01

    Studies of patients with focal brain damage suggest that topographical representation is subserved by dissociable neural subcomponents. This article offers a condensed review of the literature of “topographical disorientation” and describes several functional MRI studies designed to test hypotheses generated by that review. Three hypotheses are considered: (i) The parahippocampal cortex is critically involved in the acquisition of exocentric spatial information in humans; (ii) separable, posterior, dorsal, and ventral cortical regions subserve the perception and long term representation of position and identity, respectively, of landmarks; and (iii) there is a distinct area of the ventral occipitotemporal cortex that responds maximally to building stimuli and may play a role in the perception of salient landmarks. We conclude with a discussion of the inferential limitations of neuroimaging and lesion studies. It is proposed that combining these two approaches allows for inferences regarding the computational involvement of a neuroanatomical substrate in a given cognitive process although neither method can strictly support this conclusion alone. PMID:9448249

  14. Differences in gamma frequencies across visual cortex restrict their possible use in computation.

    PubMed

    Ray, Supratim; Maunsell, John H R

    2010-09-09

    Neuronal oscillations in the gamma band (30-80 Hz) have been suggested to play a central role in feature binding or establishing channels for neural communication. For these functions, the gamma rhythm frequency must be consistent across neural assemblies encoding the features of a stimulus. Here we test the dependence of gamma frequency on stimulus contrast in V1 cortex of awake behaving macaques and show that gamma frequency increases monotonically with contrast. Changes in stimulus contrast over time leads to a reliable gamma frequency modulation on a fast timescale. Further, large stimuli whose contrast varies across space generate gamma rhythms at significantly different frequencies in simultaneously recorded neuronal assemblies separated by as little as 400 microm, making the gamma rhythm a poor candidate for binding or communication, at least in V1. Instead, our results suggest that the gamma rhythm arises from local interactions between excitation and inhibition. 2010 Elsevier Inc. All rights reserved.

  15. Internal structure and swelling behaviour of in silico microgel particles

    NASA Astrophysics Data System (ADS)

    Rovigatti, Lorenzo; Gnan, Nicoletta; Zaccarelli, Emanuela

    2018-01-01

    Microgels are soft colloids that, by virtue of their polymeric nature, can react to external stimuli such as temperature or pH by changing their size. The resulting swelling/deswelling transition can be exploited in fundamental research as well as for many diverse practical applications, ranging from art restoration to medicine. Such an extraordinary versatility stems from the complex internal structure of the individual microgels, each of which is a crosslinked polymer network. Here we employ a recently-introduced computational method to generate realistic microgel configurations and look at their structural properties, both in real and Fourier space, for several temperatures across the volume phase transition as a function of the crosslinker concentration and of the confining radius employed during the ‘in-silico’ synthesis. We find that the chain-length distribution of the resulting networks can be analytically predicted by a simple theoretical argument. In addition, we find that our results are well-fitted to the fuzzy-sphere model, which correctly reproduces the density profile of the microgels under study.

  16. Contextual modulation and stimulus selectivity in extrastriate cortex.

    PubMed

    Krause, Matthew R; Pack, Christopher C

    2014-11-01

    Contextual modulation is observed throughout the visual system, using techniques ranging from single-neuron recordings to behavioral experiments. Its role in generating feature selectivity within the retina and primary visual cortex has been extensively described in the literature. Here, we describe how similar computations can also elaborate feature selectivity in the extrastriate areas of both the dorsal and ventral streams of the primate visual system. We discuss recent work that makes use of normalization models to test specific roles for contextual modulation in visual cortex function. We suggest that contextual modulation renders neuronal populations more selective for naturalistic stimuli. Specifically, we discuss contextual modulation's role in processing optic flow in areas MT and MST and for representing naturally occurring curvature and contours in areas V4 and IT. We also describe how the circuitry that supports contextual modulation is robust to variations in overall input levels. Finally, we describe how this theory relates to other hypothesized roles for contextual modulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. An experimental vestibular neural prosthesis: design and preliminary results with rhesus monkeys stimulated with modulated pulses.

    PubMed

    Nie, Kaibao; Ling, Leo; Bierer, Steven M; Kaneko, Chris R S; Fuchs, Albert F; Oxford, Trey; Rubinstein, Jay T; Phillips, James O

    2013-06-01

    A vestibular neural prosthesis was designed on the basis of a cochlear implant for treatment of Meniere's disease and other vestibular disorders. Computer control software was developed to generate patterned pulse stimuli for exploring optimal parameters to activate the vestibular nerve. Two rhesus monkeys were implanted with the prototype vestibular prosthesis and they were behaviorally evaluated post implantation surgery. Horizontal and vertical eye movement responses to patterned electrical pulse stimulations were collected on both monkeys. Pulse amplitude modulated (PAM) and pulse rate modulated (PRM) trains were applied to the lateral canal of each implanted animal. Robust slow-phase nystagmus responses following the PAM or PRM modulation pattern were observed in both implanted monkeys in the direction consistent with the activation of the implanted canal. Both PAM and PRM pulse trains can elicit a significant amount of in-phase modulated eye velocity changes and they could potentially be used for efficiently coding head rotational signals in future vestibular neural prostheses.

  18. Highlight shapes and perception of gloss for real and photographed objects.

    PubMed

    van Assen, Jan Jaap R; Wijntjes, Maarten W A; Pont, Sylvia C

    2016-01-01

    Gloss perception strongly depends on the three-dimensional shape and the illumination of the object under consideration. In this study we investigated the influence of the spatial structure of the illumination on gloss perception. A diffuse light box in combination with differently shaped masks was used to produce a set of six simple and complex highlight shapes. The geometry of the simple highlight shapes was inspired by conventional artistic practice (e.g., ring flash for photography, window shape for painting and disk or square for cartoons). In the box we placed spherical stimuli that were painted in six degrees of glossiness. This resulted in a stimulus set of six highlight shapes and six gloss levels, a total of 36 stimuli. We performed three experiments of which two took place using digital photographs on a computer monitor and one with the real spheres in the light box. The observers had to perform a comparison task in which they chose which of two stimuli was glossiest and a rating task in which they rated the glossiness. The results show that, perhaps surprisingly, more complex highlight shapes were perceived to produce a less glossy appearance than simple highlight shapes such as a disk or square. These findings were confirmed for both viewing conditions, on a computer display and in a real setting. The results show that variations in the spatial structure of "rather simple" illumination of the "extended source" type highlight influences perceived glossiness.

  19. Analyzing the User Behavior toward Electronic Commerce Stimuli

    PubMed Central

    Lorenzo-Romero, Carlota; Alarcón-del-Amo, María-del-Carmen; Gómez-Borja, Miguel-Ángel

    2016-01-01

    Based on the Stimulus-Organism-Response paradigm this research analyzes the main differences between the effects of two types of web technologies: Verbal web technology (i.e., navigational structure as utilitarian stimulus) versus non-verbal web technology (music and presentation of products as hedonic stimuli). Specific webmosphere stimuli have not been examined yet as separate variables and their impact on internal and behavioral responses seems unknown. Therefore, the objective of this research consists in analyzing the impact of these web technologies –which constitute the web atmosphere or webmosphere of a website– on shopping human behavior (i.e., users’ internal states -affective, cognitive, and satisfaction- and behavioral responses – approach responses, and real shopping outcomes-) within the retail online store created by computer, taking into account some mediator variables (i.e., involvement, atmospheric responsiveness, and perceived risk). A 2 (“free” versus “hierarchical” navigational structure) × 2 (“on” versus “off” music) × 2 (“moving” versus “static” images) between-subjects computer experimental design is used to test empirically this research. In addition, an integrated methodology was developed allowing the simulation, tracking and recording of virtual user behavior within an online shopping environment. As main conclusion, this study suggests that the positive responses of online consumers might increase when they are allowed to freely navigate the online stores and their experience is enriched by animate gifts and music background. The effect caused by mediator variables modifies relatively the final shopping human behavior. PMID:27965549

  20. Decision making and preferences for acoustic signals in choice situations by female crickets.

    PubMed

    Gabel, Eileen; Kuntze, Janine; Hennig, R Matthias

    2015-08-01

    Multiple attributes usually have to be assessed when choosing a mate. Efficient choice of the best mate is complicated if the available cues are not positively correlated, as is often the case during acoustic communication. Because of varying distances of signalers, a female may be confronted with signals of diverse quality at different intensities. Here, we examined how available cues are weighted for a decision by female crickets. Two songs with different temporal patterns and/or sound intensities were presented in a choice paradigm and compared with female responses from a no-choice test. When both patterns were presented at equal intensity, preference functions became wider in choice situations compared with a no-choice paradigm. When the stimuli in two-choice tests were presented at different intensities, this effect was counteracted as preference functions became narrower compared with choice tests using stimuli of equal intensity. The weighting of intensity differences depended on pattern quality and was therefore non-linear. A simple computational model based on pattern and intensity cues reliably predicted female decisions. A comparison of processing schemes suggested that the computations for pattern recognition and directionality are performed in a network with parallel topology. However, the computational flow of information corresponded to serial processing. © 2015. Published by The Company of Biologists Ltd.

  1. A computational feedforward model predicts categorization of masked emotional body language for longer, but not for shorter, latencies.

    PubMed

    Stienen, Bernard M C; Schindler, Konrad; de Gelder, Beatrice

    2012-07-01

    Given the presence of massive feedback loops in brain networks, it is difficult to disentangle the contribution of feedforward and feedback processing to the recognition of visual stimuli, in this case, of emotional body expressions. The aim of the work presented in this letter is to shed light on how well feedforward processing explains rapid categorization of this important class of stimuli. By means of parametric masking, it may be possible to control the contribution of feedback activity in human participants. A close comparison is presented between human recognition performance and the performance of a computational neural model that exclusively modeled feedforward processing and was engineered to fulfill the computational requirements of recognition. Results show that the longer the stimulus onset asynchrony (SOA), the closer the performance of the human participants was to the values predicted by the model, with an optimum at an SOA of 100 ms. At short SOA latencies, human performance deteriorated, but the categorization of the emotional expressions was still above baseline. The data suggest that, although theoretically, feedback arising from inferotemporal cortex is likely to be blocked when the SOA is 100 ms, human participants still seem to rely on more local visual feedback processing to equal the model's performance.

  2. Modeling Open-Set Spoken Word Recognition in Postlingually Deafened Adults after Cochlear Implantation: Some Preliminary Results with the Neighborhood Activation Model

    PubMed Central

    Meyer, Ted A.; Frisch, Stefan A.; Pisoni, David B.; Miyamoto, Richard T.; Svirsky, Mario A.

    2012-01-01

    Hypotheses Do cochlear implants provide enough information to allow adult cochlear implant users to understand words in ways that are similar to listeners with acoustic hearing? Can we use a computational model to gain insight into the underlying mechanisms used by cochlear implant users to recognize spoken words? Background The Neighborhood Activation Model has been shown to be a reasonable model of word recognition for listeners with normal hearing. The Neighborhood Activation Model assumes that words are recognized in relation to other similar-sounding words in a listener’s lexicon. The probability of correctly identifying a word is based on the phoneme perception probabilities from a listener’s closed-set consonant and vowel confusion matrices modified by the relative frequency of occurrence of the target word compared with similar-sounding words (neighbors). Common words with few similar-sounding neighbors are more likely to be selected as responses than less common words with many similar-sounding neighbors. Recent studies have shown that several of the assumptions of the Neighborhood Activation Model also hold true for cochlear implant users. Methods Closed-set consonant and vowel confusion matrices were obtained from 26 postlingually deafened adults who use cochlear implants. Confusion matrices were used to represent input errors to the Neighborhood Activation Model. Responses to the different stimuli were then generated by the Neighborhood Activation Model after incorporating the frequency of occurrence counts of the stimuli and their neighbors. Model outputs were compared with obtained performance measures on the Consonant-Vowel Nucleus-Consonant word test. Information transmission analysis was used to assess whether the Neighborhood Activation Model was able to successfully generate and predict word and individual phoneme recognition by cochlear implant users. Results The Neighborhood Activation Model predicted Consonant-Vowel Nucleus-Consonant test words at levels similar to those correctly identified by the cochlear implant users. The Neighborhood Activation Model also predicted phoneme feature information well. Conclusion The results obtained suggest that the Neighborhood Activation Model provides a reasonable explanation of word recognition by postlingually deafened adults after cochlear implantation. It appears that multichannel cochlear implants give cochlear implant users access to their mental lexicons in a manner that is similar to listeners with acoustic hearing. The lexical properties of the test stimuli used to assess performance are important to spoken-word recognition and should be included in further models of the word recognition process. PMID:12851554

  3. Anhedonia reflects impairment in making relative value judgments between positive and neutral stimuli in schizophrenia.

    PubMed

    Strauss, Gregory P; Visser, Katherine Frost; Keller, William R; Gold, James M; Buchanan, Robert W

    2018-02-27

    Anhedonia (i.e., diminished capacity to experience pleasure) has traditionally been viewed as a core symptom of schizophrenia (SZ). However, modern laboratory-based studies suggest that this definition may be incorrect, as hedonic capacity may be intact. Alternative conceptualizations have proposed that anhedonia may reflect an impairment in generating mental representations of affective value that are needed to guide decision-making and initiate motivated behavior. The current study evaluated this hypothesis in 42 outpatients with SZ and 19 healthy controls (CN) who completed two tasks: (a) an emotional experience task that required them to indicate how positive, negative, and calm/excited they felt in response to a single emotional or neutral photograph; (b) a relative value judgment task where they selected which of 2 photographs they preferred. Results indicated that SZ and CN reported similar levels of positive emotion and arousal in response to emotional and neutral stimuli; however, SZ reported higher negative affect for neutral and pleasant stimuli than CN. In the relative value judgment task, CN displayed clear preference for stimuli differing in valence; however, SZ showed less distinct preferences for positive over neutral stimuli. Findings suggest that although in-the-moment experiences of positive emotion to singular stimuli may be intact in SZ, the ability to make relative value judgments that are needed to guide decision-making is impaired. Original conceptualizations of anhedonia as a diminished capacity for pleasure in SZ may be inaccurate; anhedonia may more accurately reflect a deficit in relative value judgment that results from impaired value representation. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. The rate of change of vergence-accommodation conflict affects visual discomfort.

    PubMed

    Kim, Joohwan; Kane, David; Banks, Martin S

    2014-12-01

    Stereoscopic (S3D) displays create conflicts between the distance to which the eyes must converge and the distance to which the eyes must accommodate. Such conflicts require the viewer to overcome the normal coupling between vergence and accommodation, and this effort appears to cause viewer discomfort. Vergence-accommodation coupling is driven by the phasic components of the underlying control systems, and those components respond to relatively fast changes in vergence and accommodative stimuli. Given the relationship between phasic changes and vergence-accommodation coupling, we examined how the rate of change in the vergence-accommodation conflict affects viewer discomfort. We used a stereoscopic display that allows independent manipulation of the stimuli to vergence and accommodation. We presented stimuli that simulate natural viewing (i.e., vergence and accommodative stimuli changed together) and stimuli that simulate S3D viewing (i.e., vergence stimulus changes but accommodative stimulus remains fixed). The changes occurred at 0.01, 0.05, or 0.25 Hz. The lowest rate is too slow to stimulate the phasic components while the highest rate is well within the phasic range. The results were consistent with our expectation: somewhat greater discomfort was experienced when stimulus distance changed rapidly, particularly in S3D viewing when the vergence stimulus changed but the accommodative stimulus did not. These results may help in the generation of guidelines for the creation and viewing of stereo content with acceptable viewer comfort.

  5. Neural Responses in Parietal and Occipital Areas in Response to Visual Events Are Modulated by Prior Multisensory Stimuli

    PubMed Central

    Innes-Brown, Hamish; Barutchu, Ayla; Crewther, David P.

    2013-01-01

    The effect of multi-modal vs uni-modal prior stimuli on the subsequent processing of a simple flash stimulus was studied in the context of the audio-visual ‘flash-beep’ illusion, in which the number of flashes a person sees is influenced by accompanying beep stimuli. EEG recordings were made while combinations of simple visual and audio-visual stimuli were presented. The experiments found that the electric field strength related to a flash stimulus was stronger when it was preceded by a multi-modal flash/beep stimulus, compared to when it was preceded by another uni-modal flash stimulus. This difference was found to be significant in two distinct timeframes – an early timeframe, from 130–160 ms, and a late timeframe, from 300–320 ms. Source localisation analysis found that the increased activity in the early interval was localised to an area centred on the inferior and superior parietal lobes, whereas the later increase was associated with stronger activity in an area centred on primary and secondary visual cortex, in the occipital lobe. The results suggest that processing of a visual stimulus can be affected by the presence of an immediately prior multisensory event. Relatively long-lasting interactions generated by the initial auditory and visual stimuli altered the processing of a subsequent visual stimulus. PMID:24391939

  6. Comparing otoacoustic emissions evoked by chirp transients with constant absorbed sound power and constant incident pressure magnitude

    PubMed Central

    Keefe, Douglas H.; Feeney, M. Patrick; Hunter, Lisa L.; Fitzpatrick, Denis F.

    2017-01-01

    Human ear-canal properties of transient acoustic stimuli are contrasted that utilize measured ear-canal pressures in conjunction with measured acoustic pressure reflectance and admittance. These data are referenced to the tip of a probe snugly inserted into the ear canal. Promising procedures to calibrate across frequency include stimuli with controlled levels of incident pressure magnitude, absorbed sound power, and forward pressure magnitude. An equivalent pressure at the eardrum is calculated from these measured data using a transmission-line model of ear-canal acoustics parameterized by acoustically estimated ear-canal area at the probe tip and length between the probe tip and eardrum. Chirp stimuli with constant incident pressure magnitude and constant absorbed sound power across frequency were generated to elicit transient-evoked otoacoustic emissions (TEOAEs), which were measured in normal-hearing adult ears from 0.7 to 8 kHz. TEOAE stimuli had similar peak-to-peak equivalent sound pressure levels across calibration conditions. Frequency-domain TEOAEs were compared using signal level, signal-to-noise ratio (SNR), coherence synchrony modulus (CSM), group delay, and group spread. Time-domain TEOAEs were compared using SNR, CSM, instantaneous frequency and instantaneous bandwidth. Stimuli with constant incident pressure magnitude or constant absorbed sound power across frequency produce generally similar TEOAEs up to 8 kHz. PMID:28147608

  7. 'Ecstasy' as a social drug: MDMA preferentially affects responses to emotional stimuli with social content.

    PubMed

    Wardle, Margaret C; Kirkpatrick, Matthew G; de Wit, Harriet

    2014-08-01

    3,4-Methylenedioxymethamphetamine (MDMA, 'ecstasy') is used recreationally to improve mood and sociability, and has generated clinical interest as a possible adjunct to psychotherapy. One way that MDMA may produce positive 'prosocial' effects is by changing responses to emotional stimuli, especially stimuli with social content. Here, we examined for the first time how MDMA affects subjective responses to positive, negative and neutral emotional pictures with and without social content. We hypothesized that MDMA would dose-dependently increase reactivity to positive emotional stimuli and dampen reactivity to negative stimuli, and that these effects would be most pronounced for pictures with people in them. The data were obtained from two studies using similar designs with healthy occasional MDMA users (total N = 101). During each session, participants received MDMA (0, 0.75 and 1.5 mg/kg oral), and then rated their positive and negative responses to standardized positive, negative and neutral pictures with and without social content. MDMA increased positive ratings of positive social pictures, but reduced positive ratings of non-social positive pictures. We speculate this 'socially selective' effect contributes to the prosocial effects of MDMA by increasing the comparative value of social contact and closeness with others. This effect may also contribute to its attractiveness to recreational users. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  8. Automatic Realistic Real Time Stimulation/Recording in Weakly Electric Fish: Long Time Behavior Characterization in Freely Swimming Fish and Stimuli Discrimination

    PubMed Central

    Forlim, Caroline G.; Pinto, Reynaldo D.

    2014-01-01

    Weakly electric fish are unique model systems in neuroethology, that allow experimentalists to non-invasively, access, central nervous system generated spatio-temporal electric patterns of pulses with roles in at least 2 complex and incompletely understood abilities: electrocommunication and electrolocation. Pulse-type electric fish alter their inter pulse intervals (IPIs) according to different behavioral contexts as aggression, hiding and mating. Nevertheless, only a few behavioral studies comparing the influence of different stimuli IPIs in the fish electric response have been conducted. We developed an apparatus that allows real time automatic realistic stimulation and simultaneous recording of electric pulses in freely moving Gymnotus carapo for several days. We detected and recorded pulse timestamps independently of the fish’s position for days. A stimulus fish was mimicked by a dipole electrode that reproduced the voltage time series of real conspecific according to previously recorded timestamp sequences. We characterized fish behavior and the eletrocommunication in 2 conditions: stimulated by IPIs pre-recorded from other fish and random IPI ones. All stimuli pulses had the exact Gymontus carapo waveform. All fish presented a surprisingly long transient exploratory behavior (more than 8 h) when exposed to a new environment in the absence of electrical stimuli. Further, we also show that fish are able to discriminate between real and random stimuli distributions by changing several characteristics of their IPI distribution. PMID:24400122

  9. Challenging Cognitive Control by Mirrored Stimuli in Working Memory Matching

    PubMed Central

    Wirth, Maria; Gaschler, Robert

    2017-01-01

    Cognitive conflict has often been investigated by placing automatic processing originating from learned associations in competition with instructed task demands. Here we explore whether mirror generalization as a congenital mechanism can be employed to create cognitive conflict. Past research suggests that the visual system automatically generates an invariant representation of visual objects and their mirrored counterparts (i.e., mirror generalization), and especially so for lateral reversals (e.g., a cup seen from the left side vs. right side). Prior work suggests that mirror generalization can be reduced or even overcome by learning (i.e., for those visual objects for which it is not appropriate, such as letters d and b). We, therefore, minimized prior practice on resolving conflicts involving mirror generalization by using kanji stimuli as non-verbal and unfamiliar material. In a 1-back task, participants had to check a stream of kanji stimuli for identical repetitions and avoid miss-categorizing mirror reversed stimuli as exact repetitions. Consistent with previous work, lateral reversals led to profound slowing of reaction times and lower accuracy in Experiment 1. Yet, different from previous reports suggesting that lateral reversals lead to stronger conflict, similar slowing for vertical and horizontal mirror transformations was observed in Experiment 2. Taken together, the results suggest that transformations of visual stimuli can be employed to challenge cognitive control in the 1-back task. PMID:28503160

  10. Quantifying utricular stimulation during natural behavior

    PubMed Central

    Rivera, Angela R. V.; Davis, Julian; Grant, Wally; Blob, Richard W.; Peterson, Ellengene; Neiman, Alexander B.; Rowe, Michael

    2012-01-01

    The use of natural stimuli in neurophysiological studies has led to significant insights into the encoding strategies used by sensory neurons. To investigate these encoding strategies in vestibular receptors and neurons, we have developed a method for calculating the stimuli delivered to a vestibular organ, the utricle, during natural (unrestrained) behaviors, using the turtle as our experimental preparation. High-speed digital video sequences are used to calculate the dynamic gravito-inertial (GI) vector acting on the head during behavior. X-ray computed tomography (CT) scans are used to determine the orientation of the otoconial layer (OL) of the utricle within the head, and the calculated GI vectors are then rotated into the plane of the OL. Thus, the method allows us to quantify the spatio-temporal structure of stimuli to the OL during natural behaviors. In the future, these waveforms can be used as stimuli in neurophysiological experiments to understand how natural signals are encoded by vestibular receptors and neurons. We provide one example of the method which shows that turtle feeding behaviors can stimulate the utricle at frequencies higher than those typically used in vestibular studies. This method can be adapted to other species, to other vestibular end organs, and to other methods of quantifying head movements. PMID:22753360

  11. Mutual information estimation reveals global associations between stimuli and biological processes

    PubMed Central

    Suzuki, Taiji; Sugiyama, Masashi; Kanamori, Takafumi; Sese, Jun

    2009-01-01

    Background Although microarray gene expression analysis has become popular, it remains difficult to interpret the biological changes caused by stimuli or variation of conditions. Clustering of genes and associating each group with biological functions are often used methods. However, such methods only detect partial changes within cell processes. Herein, we propose a method for discovering global changes within a cell by associating observed conditions of gene expression with gene functions. Results To elucidate the association, we introduce a novel feature selection method called Least-Squares Mutual Information (LSMI), which computes mutual information without density estimaion, and therefore LSMI can detect nonlinear associations within a cell. We demonstrate the effectiveness of LSMI through comparison with existing methods. The results of the application to yeast microarray datasets reveal that non-natural stimuli affect various biological processes, whereas others are no significant relation to specific cell processes. Furthermore, we discover that biological processes can be categorized into four types according to the responses of various stimuli: DNA/RNA metabolism, gene expression, protein metabolism, and protein localization. Conclusion We proposed a novel feature selection method called LSMI, and applied LSMI to mining the association between conditions of yeast and biological processes through microarray datasets. In fact, LSMI allows us to elucidate the global organization of cellular process control. PMID:19208155

  12. Strong Recurrent Networks Compute the Orientation-Tuning of Surround Modulation in Primate V1

    PubMed Central

    Shushruth, S.; Mangapathy, Pradeep; Ichida, Jennifer M.; Bressloff, Paul C.; Schwabe, Lars; Angelucci, Alessandra

    2012-01-01

    In macaque primary visual cortex (V1) neuronal responses to stimuli inside the receptive field (RF) are modulated by stimuli in the RF surround. This modulation is orientation-specific. Previous studies suggested that for some cells this specificity may not be fixed, but changes with the stimulus orientation presented to the RF. We demonstrate, in recording studies, that this tuning behavior is instead highly prevalent in V1 and, in theoretical work, that it arises only if V1 operates in a regime of strong local recurrence. Strongest surround suppression occurs when the stimuli in the RF and the surround are iso-oriented, and strongest facilitation when the stimuli are cross-oriented. This is the case even when the RF is sub-optimally activated by a stimulus of non-preferred orientation, but only if this stimulus can activate the cell when presented alone. This tuning behavior emerges from the interaction of lateral inhibition (via the surround pathways), which is tuned to the RF’s preferred orientation, with weakly-tuned, but strong, local recurrent connections, causing maximal withdrawal of recurrent excitation at the feedforward input orientation. Thus, horizontal and feedback modulation of strong recurrent circuits allows the tuning of contextual effects to change with changing feedforward inputs. PMID:22219292

  13. A Steady-State Visual Evoked Potential Brain-Computer Interface System Evaluation as an In-Vehicle Warning Device

    NASA Astrophysics Data System (ADS)

    Riyahi, Pouria

    This thesis is part of current research at Center for Intelligence Systems Research (CISR) at The George Washington University for developing new in-vehicle warning systems via Brain-Computer Interfaces (BCIs). The purpose of conducting this research is to contribute to the current gap between BCI and in-vehicle safety studies. It is based on the premise that accurate and timely monitoring of human (driver) brain's signal to external stimuli could significantly aide in detection of driver's intentions and development of effective warning systems. The thesis starts with introducing the concept of BCI and its development history while it provides a literature review on the nature of brain signals. The current advancement and increasing demand for commercial and non-medical BCI products are described. In addition, the recent research attempts in transportation safety to study drivers' behavior or responses through brain signals are reviewed. The safety studies, which are focused on employing a reliable and practical BCI system as an in-vehicle assistive device, are also introduced. A major focus of this thesis research has been on the evaluation and development of the signal processing algorithms which can effectively filter and process brain signals when the human subject is subjected to Visual LED (Light Emitting Diodes) stimuli at different frequencies. The stimulated brain generates a voltage potential, referred to as Steady-State Visual Evoked Potential (SSVEP). Therefore, a newly modified analysis algorithm for detecting the brain visual signals is proposed. These algorithms are designed to reach a satisfactory accuracy rate without preliminary trainings, hence focusing on eliminating the need for lengthy training of human subjects. Another important concern is the ability of the algorithms to find correlation of brain signals with external visual stimuli in real-time. The developed analysis models are based on algorithms which are capable of generating results for real-time processing of BCI devices. All of these methods are evaluated through two sets of recorded brain signals which were recorded by g.TEC CO. as an external source and recorded brain signals during our car driving simulator experiments. The final discussion is about how the presence of an SSVEP based warning system could affect drivers' performances which is defined by their reaction distance and Time to Collision (TTC). Three different scenarios with and without warning LEDs were planned to measure the subjects' normal driving behavior and their performance while they use a warning system during their driving task. Finally, warning scenarios are divided into short and long warning periods without and with informing the subjects, respectively. The long warning period scenario attempts to determine the level of drivers' distraction or vigilance during driving. The good outcome of warning scenarios can bridge between vehicle safety studies and online BCI system design research. The preliminary results show some promise of the developed methods for in-vehicle safety systems. However, for any decisive conclusion that considers using a BCI system as a helpful in-vehicle assistive device requires far deeper scrutinizing.

  14. NeuCube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data.

    PubMed

    Kasabov, Nikola K

    2014-04-01

    The brain functions as a spatio-temporal information processing machine. Spatio- and spectro-temporal brain data (STBD) are the most commonly collected data for measuring brain response to external stimuli. An enormous amount of such data has been already collected, including brain structural and functional data under different conditions, molecular and genetic data, in an attempt to make a progress in medicine, health, cognitive science, engineering, education, neuro-economics, Brain-Computer Interfaces (BCI), and games. Yet, there is no unifying computational framework to deal with all these types of data in order to better understand this data and the processes that generated it. Standard machine learning techniques only partially succeeded and they were not designed in the first instance to deal with such complex data. Therefore, there is a need for a new paradigm to deal with STBD. This paper reviews some methods of spiking neural networks (SNN) and argues that SNN are suitable for the creation of a unifying computational framework for learning and understanding of various STBD, such as EEG, fMRI, genetic, DTI, MEG, and NIRS, in their integration and interaction. One of the reasons is that SNN use the same computational principle that generates STBD, namely spiking information processing. This paper introduces a new SNN architecture, called NeuCube, for the creation of concrete models to map, learn and understand STBD. A NeuCube model is based on a 3D evolving SNN that is an approximate map of structural and functional areas of interest of the brain related to the modeling STBD. Gene information is included optionally in the form of gene regulatory networks (GRN) if this is relevant to the problem and the data. A NeuCube model learns from STBD and creates connections between clusters of neurons that manifest chains (trajectories) of neuronal activity. Once learning is applied, a NeuCube model can reproduce these trajectories, even if only part of the input STBD or the stimuli data is presented, thus acting as an associative memory. The NeuCube framework can be used not only to discover functional pathways from data, but also as a predictive system of brain activities, to predict and possibly, prevent certain events. Analysis of the internal structure of a model after training can reveal important spatio-temporal relationships 'hidden' in the data. NeuCube will allow the integration in one model of various brain data, information and knowledge, related to a single subject (personalized modeling) or to a population of subjects. The use of NeuCube for classification of STBD is illustrated in a case study problem of EEG data. NeuCube models result in a better accuracy of STBD classification than standard machine learning techniques. They are robust to noise (so typical in brain data) and facilitate a better interpretation of the results and understanding of the STBD and the brain conditions under which data was collected. Future directions for the use of SNN for STBD are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Perceptual and category processing of the Uncanny Valley hypothesis' dimension of human likeness: some methodological issues.

    PubMed

    Cheetham, Marcus; Jancke, Lutz

    2013-06-03

    Mori's Uncanny Valley Hypothesis(1,2) proposes that the perception of humanlike characters such as robots and, by extension, avatars (computer-generated characters) can evoke negative or positive affect (valence) depending on the object's degree of visual and behavioral realism along a dimension of human likeness (DHL) (Figure 1). But studies of affective valence of subjective responses to variously realistic non-human characters have produced inconsistent findings (3, 4, 5, 6). One of a number of reasons for this is that human likeness is not perceived as the hypothesis assumes. While the DHL can be defined following Mori's description as a smooth linear change in the degree of physical humanlike similarity, subjective perception of objects along the DHL can be understood in terms of the psychological effects of categorical perception (CP) (7). Further behavioral and neuroimaging investigations of category processing and CP along the DHL and of the potential influence of the dimension's underlying category structure on affective experience are needed. This protocol therefore focuses on the DHL and allows examination of CP. Based on the protocol presented in the video as an example, issues surrounding the methodology in the protocol and the use in "uncanny" research of stimuli drawn from morph continua to represent the DHL are discussed in the article that accompanies the video. The use of neuroimaging and morph stimuli to represent the DHL in order to disentangle brain regions neurally responsive to physical human-like similarity from those responsive to category change and category processing is briefly illustrated.

  16. Perceptual and Category Processing of the Uncanny Valley Hypothesis' Dimension of Human Likeness: Some Methodological Issues

    PubMed Central

    Cheetham, Marcus; Jancke, Lutz

    2013-01-01

    Mori's Uncanny Valley Hypothesis1,2 proposes that the perception of humanlike characters such as robots and, by extension, avatars (computer-generated characters) can evoke negative or positive affect (valence) depending on the object's degree of visual and behavioral realism along a dimension of human likeness (DHL) (Figure 1). But studies of affective valence of subjective responses to variously realistic non-human characters have produced inconsistent findings 3, 4, 5, 6. One of a number of reasons for this is that human likeness is not perceived as the hypothesis assumes. While the DHL can be defined following Mori's description as a smooth linear change in the degree of physical humanlike similarity, subjective perception of objects along the DHL can be understood in terms of the psychological effects of categorical perception (CP) 7. Further behavioral and neuroimaging investigations of category processing and CP along the DHL and of the potential influence of the dimension's underlying category structure on affective experience are needed. This protocol therefore focuses on the DHL and allows examination of CP. Based on the protocol presented in the video as an example, issues surrounding the methodology in the protocol and the use in "uncanny" research of stimuli drawn from morph continua to represent the DHL are discussed in the article that accompanies the video. The use of neuroimaging and morph stimuli to represent the DHL in order to disentangle brain regions neurally responsive to physical human-like similarity from those responsive to category change and category processing is briefly illustrated. PMID:23770728

  17. Macroscopic phase-resetting curves for spiking neural networks

    NASA Astrophysics Data System (ADS)

    Dumont, Grégory; Ermentrout, G. Bard; Gutkin, Boris

    2017-10-01

    The study of brain rhythms is an open-ended, and challenging, subject of interest in neuroscience. One of the best tools for the understanding of oscillations at the single neuron level is the phase-resetting curve (PRC). Synchronization in networks of neurons, effects of noise on the rhythms, effects of transient stimuli on the ongoing rhythmic activity, and many other features can be understood by the PRC. However, most macroscopic brain rhythms are generated by large populations of neurons, and so far it has been unclear how the PRC formulation can be extended to these more common rhythms. In this paper, we describe a framework to determine a macroscopic PRC (mPRC) for a network of spiking excitatory and inhibitory neurons that generate a macroscopic rhythm. We take advantage of a thermodynamic approach combined with a reduction method to simplify the network description to a small number of ordinary differential equations. From this simplified but exact reduction, we can compute the mPRC via the standard adjoint method. Our theoretical findings are illustrated with and supported by numerical simulations of the full spiking network. Notably our mPRC framework allows us to predict the difference between effects of transient inputs to the excitatory versus the inhibitory neurons in the network.

  18. Portable Brain-Computer Interface for the Intensive Care Unit Patient Communication Using Subject-Dependent SSVEP Identification.

    PubMed

    Dehzangi, Omid; Farooq, Muhamed

    2018-01-01

    A major predicament for Intensive Care Unit (ICU) patients is inconsistent and ineffective communication means. Patients rated most communication sessions as difficult and unsuccessful. This, in turn, can cause distress, unrecognized pain, anxiety, and fear. As such, we designed a portable BCI system for ICU communications (BCI4ICU) optimized to operate effectively in an ICU environment. The system utilizes a wearable EEG cap coupled with an Android app designed on a mobile device that serves as visual stimuli and data processing module. Furthermore, to overcome the challenges that BCI systems face today in real-world scenarios, we propose a novel subject-specific Gaussian Mixture Model- (GMM-) based training and adaptation algorithm. First, we incorporate subject-specific information in the training phase of the SSVEP identification model using GMM-based training and adaptation. We evaluate subject-specific models against other subjects. Subsequently, from the GMM discriminative scores, we generate the transformed vectors, which are passed to our predictive model. Finally, the adapted mixture mean scores of the subject-specific GMMs are utilized to generate the high-dimensional supervectors. Our experimental results demonstrate that the proposed system achieved 98.7% average identification accuracy, which is promising in order to provide effective and consistent communication for patients in the intensive care.

  19. Modality of fear cues affects acoustic startle potentiation but not heart-rate response in patients with dental phobia

    PubMed Central

    Wannemüller, André; Sartory, Gudrun; Elsesser, Karin; Lohrmann, Thomas; Jöhren, Hans P.

    2015-01-01

    The acoustic startle response (SR) has consistently been shown to be enhanced by fear-arousing cross-modal background stimuli in phobics. Intra-modal fear-potentiation of acoustic SR was rarely investigated and generated inconsistent results. The present study compared the acoustic SR to phobia-related sounds with that to phobia-related pictures in 104 dental phobic patients and 22 controls. Acoustic background stimuli were dental treatment noises and birdsong and visual stimuli were dental treatment and neutral control pictures. Background stimuli were presented for 4 s, randomly followed by the administration of the startle stimulus. In addition to SR, heart-rate (HR) was recorded throughout the trials. Irrespective of their content, background pictures elicited greater SR than noises in both groups with a trend for phobic participants to show startle potentiation to phobia-related pictures but not noises. Unlike controls, phobics showed HR acceleration to both dental pictures and noises. HR acceleration of the phobia group was significantly positively correlated with SR in the noise condition only. The acoustic SR to phobia-related noises is likely to be inhibited by prolonged sensorimotor gating. PMID:25774142

  20. Comparisons of transient evoked otoacoustic emissions using chirp and click stimuli

    PubMed Central

    Keefe, Douglas H.; Feeney, M. Patrick; Hunter, Lisa L.; Fitzpatrick, Denis F.

    2016-01-01

    Transient-evoked otoacoustic emission (TEOAE) responses (0.7–8 kHz) were measured in normal-hearing adult ears using click stimuli and chirps whose local frequency increased or decreased linearly with time over the stimulus duration. Chirp stimuli were created by allpass filtering a click with relatively constant incident pressure level over frequency. Chirp TEOAEs were analyzed as a nonlinear residual signal by inverse allpass filtering each chirp response into an equivalent click response. Multi-window spectral and temporal averaging reduced noise levels compared to a single-window average. Mean TEOAE levels using click and chirp stimuli were similar with respect to their standard errors in adult ears. TEOAE group delay, group spread, instantaneous frequency, and instantaneous bandwidth were similar overall for chirp and click conditions, except for small differences showing nonlinear interactions differing across stimulus conditions. These results support the theory of a similar generation mechanism on the basilar membrane for both click and chirp conditions based on coherent reflection within the tonotopic region. TEOAE temporal fine structure was invariant across changes in stimulus level, which is analogous to the intensity invariance of click-evoked basilar-membrane displacement data. PMID:27914441

Top