Sample records for computer graphics applications

  1. Computer graphics and the graphic artist

    NASA Technical Reports Server (NTRS)

    Taylor, N. L.; Fedors, E. G.; Pinelli, T. E.

    1985-01-01

    A centralized computer graphics system is being developed at the NASA Langley Research Center. This system was required to satisfy multiuser needs, ranging from presentation quality graphics prepared by a graphic artist to 16-mm movie simulations generated by engineers and scientists. While the major thrust of the central graphics system was directed toward engineering and scientific applications, hardware and software capabilities to support the graphic artists were integrated into the design. This paper briefly discusses the importance of computer graphics in research; the central graphics system in terms of systems, software, and hardware requirements; the application of computer graphics to graphic arts, discussed in terms of the requirements for a graphic arts workstation; and the problems encountered in applying computer graphics to the graphic arts. The paper concludes by presenting the status of the central graphics system.

  2. Living Color Frame System: PC graphics tool for data visualization

    NASA Technical Reports Server (NTRS)

    Truong, Long V.

    1993-01-01

    Living Color Frame System (LCFS) is a personal computer software tool for generating real-time graphics applications. It is highly applicable for a wide range of data visualization in virtual environment applications. Engineers often use computer graphics to enhance the interpretation of data under observation. These graphics become more complicated when 'run time' animations are required, such as found in many typical modern artificial intelligence and expert systems. Living Color Frame System solves many of these real-time graphics problems.

  3. A study of computer graphics technology in application of communication resource management

    NASA Astrophysics Data System (ADS)

    Li, Jing; Zhou, Liang; Yang, Fei

    2017-08-01

    With the development of computer technology, computer graphics technology has been widely used. Especially, the success of object-oriented technology and multimedia technology promotes the development of graphics technology in the computer software system. Therefore, the computer graphics theory and application technology have become an important topic in the field of computer, while the computer graphics technology becomes more and more extensive in various fields of application. In recent years, with the development of social economy, especially the rapid development of information technology, the traditional way of communication resource management cannot effectively meet the needs of resource management. In this case, the current communication resource management is still using the original management tools and management methods, resource management equipment management and maintenance, which brought a lot of problems. It is very difficult for non-professionals to understand the equipment and the situation in communication resource management. Resource utilization is relatively low, and managers cannot quickly and accurately understand the resource conditions. Aimed at the above problems, this paper proposes to introduce computer graphics technology into the communication resource management. The introduction of computer graphics not only makes communication resource management more vivid, but also reduces the cost of resource management and improves work efficiency.

  4. Computer graphics application in the engineering design integration system

    NASA Technical Reports Server (NTRS)

    Glatt, C. R.; Abel, R. W.; Hirsch, G. N.; Alford, G. E.; Colquitt, W. N.; Stewart, W. A.

    1975-01-01

    The computer graphics aspect of the Engineering Design Integration (EDIN) system and its application to design problems were discussed. Three basic types of computer graphics may be used with the EDIN system for the evaluation of aerospace vehicles preliminary designs: offline graphics systems using vellum-inking or photographic processes, online graphics systems characterized by direct coupled low cost storage tube terminals with limited interactive capabilities, and a minicomputer based refresh terminal offering highly interactive capabilities. The offline line systems are characterized by high quality (resolution better than 0.254 mm) and slow turnaround (one to four days). The online systems are characterized by low cost, instant visualization of the computer results, slow line speed (300 BAUD), poor hard copy, and the early limitations on vector graphic input capabilities. The recent acquisition of the Adage 330 Graphic Display system has greatly enhanced the potential for interactive computer aided design.

  5. A Laboratory Application of Microcomputer Graphics.

    ERIC Educational Resources Information Center

    Gehring, Kalle B.; Moore, John W.

    1983-01-01

    A PASCAL graphics and instrument interface program for a Z80/S-100 based microcomputer was developed. The computer interfaces to a stopped-flow spectrophotometer replacing a storage oscilloscope and polaroid camera. Applications of this system are discussed, indicating that graphics and analog-to-digital boards have transformed the computer into…

  6. Interactive computer graphics applications for compressible aerodynamics

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.

    1994-01-01

    Three computer applications have been developed to solve inviscid compressible fluids problems using interactive computer graphics. The first application is a compressible flow calculator which solves for isentropic flow, normal shocks, and oblique shocks or centered expansions produced by two dimensional ramps. The second application couples the solutions generated by the first application to a more graphical presentation of the results to produce a desk top simulator of three compressible flow problems: 1) flow past a single compression ramp; 2) flow past two ramps in series; and 3) flow past two opposed ramps. The third application extends the results of the second to produce a design tool which solves for the flow through supersonic external or mixed compression inlets. The applications were originally developed to run on SGI or IBM workstations running GL graphics. They are currently being extended to solve additional types of flow problems and modified to operate on any X-based workstation.

  7. Engineering computer graphics in gas turbine engine design, analysis and manufacture

    NASA Technical Reports Server (NTRS)

    Lopatka, R. S.

    1975-01-01

    A time-sharing and computer graphics facility designed to provide effective interactive tools to a large number of engineering users with varied requirements was described. The application of computer graphics displays at several levels of hardware complexity and capability is discussed, with examples of graphics systems tracing gas turbine product development, beginning with preliminary design through manufacture. Highlights of an operating system stylized for interactive engineering graphics is described.

  8. The Use of Computer Graphics in the Design Process.

    ERIC Educational Resources Information Center

    Palazzi, Maria

    This master's thesis examines applications of computer technology to the field of industrial design and ways in which technology can transform the traditional process. Following a statement of the problem, the history and applications of the fields of computer graphics and industrial design are reviewed. The traditional industrial design process…

  9. General aviation design synthesis utilizing interactive computer graphics

    NASA Technical Reports Server (NTRS)

    Galloway, T. L.; Smith, M. R.

    1976-01-01

    Interactive computer graphics is a fast growing area of computer application, due to such factors as substantial cost reductions in hardware, general availability of software, and expanded data communication networks. In addition to allowing faster and more meaningful input/output, computer graphics permits the use of data in graphic form to carry out parametric studies for configuration selection and for assessing the impact of advanced technologies on general aviation designs. The incorporation of interactive computer graphics into a NASA developed general aviation synthesis program is described, and the potential uses of the synthesis program in preliminary design are demonstrated.

  10. PC graphics generation and management tool for real-time applications

    NASA Technical Reports Server (NTRS)

    Truong, Long V.

    1992-01-01

    A graphics tool was designed and developed for easy generation and management of personal computer graphics. It also provides methods and 'run-time' software for many common artificial intelligence (AI) or expert system (ES) applications.

  11. Some research advances in computer graphics that will enhance applications to engineering design

    NASA Technical Reports Server (NTRS)

    Allan, J. J., III

    1975-01-01

    Research in man/machine interactions and graphics hardware/software that will enhance applications to engineering design was described. Research aspects of executive systems, command languages, and networking used in the computer applications laboratory are mentioned. Finally, a few areas where little or no research is being done were identified.

  12. A System for Generating Instructional Computer Graphics.

    ERIC Educational Resources Information Center

    Nygard, Kendall E.; Ranganathan, Babusankar

    1983-01-01

    Description of the Tektronix-Based Interactive Graphics System for Instruction (TIGSI), which was developed for generating graphics displays in computer-assisted instruction materials, discusses several applications (e.g., reinforcing learning of concepts, principles, rules, and problem-solving techniques) and presents advantages of the TIGSI…

  13. Orthorectification by Using Gpgpu Method

    NASA Astrophysics Data System (ADS)

    Sahin, H.; Kulur, S.

    2012-07-01

    Thanks to the nature of the graphics processing, the newly released products offer highly parallel processing units with high-memory bandwidth and computational power of more than teraflops per second. The modern GPUs are not only powerful graphic engines but also they are high level parallel programmable processors with very fast computing capabilities and high-memory bandwidth speed compared to central processing units (CPU). Data-parallel computations can be shortly described as mapping data elements to parallel processing threads. The rapid development of GPUs programmability and capabilities attracted the attentions of researchers dealing with complex problems which need high level calculations. This interest has revealed the concepts of "General Purpose Computation on Graphics Processing Units (GPGPU)" and "stream processing". The graphic processors are powerful hardware which is really cheap and affordable. So the graphic processors became an alternative to computer processors. The graphic chips which were standard application hardware have been transformed into modern, powerful and programmable processors to meet the overall needs. Especially in recent years, the phenomenon of the usage of graphics processing units in general purpose computation has led the researchers and developers to this point. The biggest problem is that the graphics processing units use different programming models unlike current programming methods. Therefore, an efficient GPU programming requires re-coding of the current program algorithm by considering the limitations and the structure of the graphics hardware. Currently, multi-core processors can not be programmed by using traditional programming methods. Event procedure programming method can not be used for programming the multi-core processors. GPUs are especially effective in finding solution for repetition of the computing steps for many data elements when high accuracy is needed. Thus, it provides the computing process more quickly and accurately. Compared to the GPUs, CPUs which perform just one computing in a time according to the flow control are slower in performance. This structure can be evaluated for various applications of computer technology. In this study covers how general purpose parallel programming and computational power of the GPUs can be used in photogrammetric applications especially direct georeferencing. The direct georeferencing algorithm is coded by using GPGPU method and CUDA (Compute Unified Device Architecture) programming language. Results provided by this method were compared with the traditional CPU programming. In the other application the projective rectification is coded by using GPGPU method and CUDA programming language. Sample images of various sizes, as compared to the results of the program were evaluated. GPGPU method can be used especially in repetition of same computations on highly dense data, thus finding the solution quickly.

  14. An introduction to real-time graphical techniques for analyzing multivariate data

    NASA Astrophysics Data System (ADS)

    Friedman, Jerome H.; McDonald, John Alan; Stuetzle, Werner

    1987-08-01

    Orion I is a graphics system used to study applications of computer graphics - especially interactive motion graphics - in statistics. Orion I is the newest of a family of "Prim" systems, whose most striking common feature is the use of real-time motion graphics to display three dimensional scatterplots. Orion I differs from earlier Prim systems through the use of modern and relatively inexpensive raster graphics and microprocessor technology. It also delivers more computing power to its user; Orion I can perform more sophisticated real-time computations than were possible on previous such systems. We demonstrate some of Orion I's capabilities in our film: "Exploring data with Orion I".

  15. Programming Language Software For Graphics Applications

    NASA Technical Reports Server (NTRS)

    Beckman, Brian C.

    1993-01-01

    New approach reduces repetitive development of features common to different applications. High-level programming language and interactive environment with access to graphical hardware and software created by adding graphical commands and other constructs to standardized, general-purpose programming language, "Scheme". Designed for use in developing other software incorporating interactive computer-graphics capabilities into application programs. Provides alternative to programming entire applications in C or FORTRAN, specifically ameliorating design and implementation of complex control and data structures typifying applications with interactive graphics. Enables experimental programming and rapid development of prototype software, and yields high-level programs serving as executable versions of software-design documentation.

  16. Computer architectures for computational physics work done by Computational Research and Technology Branch and Advanced Computational Concepts Group

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Slides are reproduced that describe the importance of having high performance number crunching and graphics capability. They also indicate the types of research and development underway at Ames Research Center to ensure that, in the near term, Ames is a smart buyer and user, and in the long-term that Ames knows the best possible solutions for number crunching and graphics needs. The drivers for this research are real computational physics applications of interest to Ames and NASA. They are concerned with how to map the applications, and how to maximize the physics learned from the results of the calculations. The computer graphics activities are aimed at getting maximum information from the three-dimensional calculations by using the real time manipulation of three-dimensional data on the Silicon Graphics workstation. Work is underway on new algorithms that will permit the display of experimental results that are sparse and random, the same way that the dense and regular computed results are displayed.

  17. X based interactive computer graphics applications for aerodynamic design and education

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.; Higgs, C. Fred, III

    1995-01-01

    Six computer applications packages have been developed to solve a variety of aerodynamic problems in an interactive environment on a single workstation. The packages perform classical one dimensional analysis under the control of a graphical user interface and can be used for preliminary design or educational purposes. The programs were originally developed on a Silicon Graphics workstation and used the GL version of the FORMS library as the graphical user interface. These programs have recently been converted to the XFORMS library of X based graphics widgets and have been tested on SGI, IBM, Sun, HP and PC-Lunix computers. The paper will show results from the new VU-DUCT program as a prime example. VU-DUCT has been developed as an educational package for the study of subsonic open and closed loop wind tunnels.

  18. Performance evaluation of throughput computing workloads using multi-core processors and graphics processors

    NASA Astrophysics Data System (ADS)

    Dave, Gaurav P.; Sureshkumar, N.; Blessy Trencia Lincy, S. S.

    2017-11-01

    Current trend in processor manufacturing focuses on multi-core architectures rather than increasing the clock speed for performance improvement. Graphic processors have become as commodity hardware for providing fast co-processing in computer systems. Developments in IoT, social networking web applications, big data created huge demand for data processing activities and such kind of throughput intensive applications inherently contains data level parallelism which is more suited for SIMD architecture based GPU. This paper reviews the architectural aspects of multi/many core processors and graphics processors. Different case studies are taken to compare performance of throughput computing applications using shared memory programming in OpenMP and CUDA API based programming.

  19. Another Program For Generating Interactive Graphics

    NASA Technical Reports Server (NTRS)

    Costenbader, Jay; Moleski, Walt; Szczur, Martha; Howell, David; Engelberg, Norm; Li, Tin P.; Misra, Dharitri; Miller, Philip; Neve, Leif; Wolf, Karl; hide

    1991-01-01

    VAX/Ultrix version of Transportable Applications Environment Plus (TAE+) computer program provides integrated, portable software environment for developing and running interactive window, text, and graphical-object-based application software systems. Enables programmer or nonprogrammer to construct easily custom software interface between user and application program and to move resulting interface program and its application program to different computers. When used throughout company for wide range of applications, makes both application program and computer seem transparent, with noticeable improvements in learning curve. Available in form suitable for following six different groups of computers: DEC VAX station and other VMS VAX computers, Macintosh II computers running AUX, Apollo Domain Series 3000, DEC VAX and reduced-instruction-set-computer workstations running Ultrix, Sun 3- and 4-series workstations running Sun OS and IBM RT/PC's and PS/2 computers running AIX, and HP 9000 S

  20. An application of interactive computer graphics technology to the design of dispersal mechanisms

    NASA Technical Reports Server (NTRS)

    Richter, B. J.; Welch, B. H.

    1977-01-01

    Interactive computer graphics technology is combined with a general purpose mechanisms computer code to study the operational behavior of three guided bomb dispersal mechanism designs. These studies illustrate the use of computer graphics techniques to discover operational anomalies, to assess the effectiveness of design improvements, to reduce the time and cost of the modeling effort, and to provide the mechanism designer with a visual understanding of the physical operation of such systems.

  1. GPU-computing in econophysics and statistical physics

    NASA Astrophysics Data System (ADS)

    Preis, T.

    2011-03-01

    A recent trend in computer science and related fields is general purpose computing on graphics processing units (GPUs), which can yield impressive performance. With multiple cores connected by high memory bandwidth, today's GPUs offer resources for non-graphics parallel processing. This article provides a brief introduction into the field of GPU computing and includes examples. In particular computationally expensive analyses employed in financial market context are coded on a graphics card architecture which leads to a significant reduction of computing time. In order to demonstrate the wide range of possible applications, a standard model in statistical physics - the Ising model - is ported to a graphics card architecture as well, resulting in large speedup values.

  2. DDP-516 Computer Graphics System Capabilities

    DOT National Transportation Integrated Search

    1972-06-01

    This report describes the capabilities of the DDP-516 Computer Graphics System. One objective of this report is to acquaint DOT management and project planners with the system's current capabilities, applications hardware and software. The Appendix i...

  3. Laserprinter applications in a medical graphics department.

    PubMed

    Lynch, P J

    1987-01-01

    Our experience with the Apple Macintosh and LaserWriter equipment has convinced us that lasergraphics holds much current and future promise in the creation of line graphics and typography for the biomedical community. Although we continue to use other computer graphics equipment to produce color slides and an occasional pen-plotter graphic, the most rapidly growing segment of our graphics workload is in material well-suited to production on the Macintosh/LaserWriter system. At present our goal is to integrate all of our computer graphics production (color slides, video paint graphics and monochrome print graphics) into a single Macintosh-based system within the next two years. The software and hardware currently available are capable of producing a wide range of science graphics very quickly and inexpensively. The cost-effectiveness, versatility and relatively low initial investment required to install this equipment make it an attractive alternative for cost-recovery departments just entering the field of computer graphics.

  4. The development of an engineering computer graphics laboratory

    NASA Technical Reports Server (NTRS)

    Anderson, D. C.; Garrett, R. E.

    1975-01-01

    Hardware and software systems developed to further research and education in interactive computer graphics were described, as well as several of the ongoing application-oriented projects, educational graphics programs, and graduate research projects. The software system consists of a FORTRAN 4 subroutine package, in conjunction with a PDP 11/40 minicomputer as the primary computation processor and the Imlac PDS-1 as an intelligent display processor. The package comprises a comprehensive set of graphics routines for dynamic, structured two-dimensional display manipulation, and numerous routines to handle a variety of input devices at the Imlac.

  5. Architectures for single-chip image computing

    NASA Astrophysics Data System (ADS)

    Gove, Robert J.

    1992-04-01

    This paper will focus on the architectures of VLSI programmable processing components for image computing applications. TI, the maker of industry-leading RISC, DSP, and graphics components, has developed an architecture for a new-generation of image processors capable of implementing a plurality of image, graphics, video, and audio computing functions. We will show that the use of a single-chip heterogeneous MIMD parallel architecture best suits this class of processors--those which will dominate the desktop multimedia, document imaging, computer graphics, and visualization systems of this decade.

  6. Applications of Computer Graphics in Engineering

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Various applications of interactive computer graphics to the following areas of science and engineering were described: design and analysis of structures, configuration geometry, animation, flutter analysis, design and manufacturing, aircraft design and integration, wind tunnel data analysis, architecture and construction, flight simulation, hydrodynamics, curve and surface fitting, gas turbine engine design, analysis, and manufacturing, packaging of printed circuit boards, spacecraft design.

  7. RADIK: An Interactive Graphics and Text Editor.

    DTIC Science & Technology

    RADIK is an interactive graphics and text editing system designed for use with an ADAGE AGT/10 graphics computer, either in a stand-alone mode, or in...designing RADIK . A brief summary of results and applications is presented and implementation of RADIK is proposed. Assembly language computer programs developed during the work are appended for reference. (Author)

  8. Fundamentals of computer graphics for artists and designers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, B.A.

    1986-01-01

    This tutorial provides introductory information about computer graphics slanted towards novice users from artist/designer backgrounds. The goal is to describe the applications and terminology sufficiently to provide a base of knowledge for discussions with vendors.

  9. Tools for computer graphics applications

    NASA Technical Reports Server (NTRS)

    Phillips, R. L.

    1976-01-01

    Extensive research in computer graphics has produced a collection of basic algorithms and procedures whose utility spans many disciplines. These tools are described in terms of their fundamental aspects, implementations, applications, and availability. Programs which are discussed include basic data plotting, curve smoothing, and depiction of three dimensional surfaces. As an aid to potential users of these tools, particular attention is given to discussing their availability and, where applicable, their cost.

  10. Program Aids Visualization Of Data

    NASA Technical Reports Server (NTRS)

    Truong, L. V.

    1995-01-01

    Living Color Frame System (LCFS) computer program developed to solve some problems that arise in connection with generation of real-time graphical displays of numerical data and of statuses of systems. Need for program like LCFS arises because computer graphics often applied for better understanding and interpretation of data under observation and these graphics become more complicated when animation required during run time. Eliminates need for custom graphical-display software for application programs. Written in Turbo C++.

  11. Application of Computer Graphics to Graphing in Algebra and Trigonometry. Final Report.

    ERIC Educational Resources Information Center

    Morris, J. Richard

    This project was designed to improve the graphing competency of students in elementary algebra, intermediate algebra, and trigonometry courses at Virginia Commonwealth University. Computer graphics programs were designed using an Apple II Plus computer and implemented using Pascal. The software package is interactive and gives students control…

  12. The control data "GIRAFFE" system for interactive graphic finite element analysis

    NASA Technical Reports Server (NTRS)

    Park, S.; Brandon, D. M., Jr.

    1975-01-01

    The Graphical Interface for Finite Elements (GIRAFFE) general purpose interactive graphics application package was described. This system may be used as a pre/post processor for structural analysis computer programs. It facilitates the operations of creating, editing, or reviewing all the structural input/output data on a graphics terminal in a time-sharing mode of operation. An application program for a simple three-dimensional plate problem was illustrated.

  13. Computer graphics testbed to simulate and test vision systems for space applications

    NASA Technical Reports Server (NTRS)

    Cheatham, John B.

    1991-01-01

    Artificial intelligence concepts are applied to robotics. Artificial neural networks, expert systems and laser imaging techniques for autonomous space robots are being studied. A computer graphics laser range finder simulator developed by Wu has been used by Weiland and Norwood to study use of artificial neural networks for path planning and obstacle avoidance. Interest is expressed in applications of CLIPS, NETS, and Fuzzy Control. These applications are applied to robot navigation.

  14. GRAPHICS MANAGER (GFXMGR): An interactive graphics software program for the Advanced Electronics Design (AED) graphics controller, Model 767

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faculjak, D.A.

    1988-03-01

    Graphics Manager (GFXMGR) is menu-driven, user-friendly software designed to interactively create, edit, and delete graphics displays on the Advanced Electronics Design (AED) graphics controller, Model 767. The software runs on the VAX family of computers and has been used successfully in security applications to create and change site layouts (maps) of specific facilities. GFXMGR greatly benefits graphics development by minimizing display-development time, reducing tedium on the part of the user, and improving system performance. It is anticipated that GFXMGR can be used to create graphics displays for many types of applications. 8 figs., 2 tabs.

  15. Advanced mathematical on-line analysis in nuclear experiments. Usage of parallel computing CUDA routines in standard root analysis

    NASA Astrophysics Data System (ADS)

    Grzeszczuk, A.; Kowalski, S.

    2015-04-01

    Compute Unified Device Architecture (CUDA) is a parallel computing platform developed by Nvidia for increase speed of graphics by usage of parallel mode for processes calculation. The success of this solution has opened technology General-Purpose Graphic Processor Units (GPGPUs) for applications not coupled with graphics. The GPGPUs system can be applying as effective tool for reducing huge number of data for pulse shape analysis measures, by on-line recalculation or by very quick system of compression. The simplified structure of CUDA system and model of programming based on example Nvidia GForce GTX580 card are presented by our poster contribution in stand-alone version and as ROOT application.

  16. Three varieties of realism in computer graphics

    NASA Astrophysics Data System (ADS)

    Ferwerda, James A.

    2003-06-01

    This paper describes three varieties of realism that need to be considered in evaluating computer graphics images and defines the criteria that need to be met if each kind of realism is to be achieved. The paper introduces a conceptual framework for thinking about realism in images, and describes a set of research tools for measuring image realism and assessing its value in graphics applications.

  17. The Triangle: a Multiprocessor Architecture for Fast Curve and Surface Generation.

    DTIC Science & Technology

    1987-08-01

    design , curves and surfaces, graphics hardware. 20...curves, B-splines, computer-aided geometric design ; curves and sur- faces, graphics hardware. (k 12). -/ .... This work was supported in part by the...34 Electronic Design , October 30, 1986. 21. M. A. Penna and R. R. Patterson, Projective Geometry and its Applications to Computer Graphics , Prentice-Hall, Englewood Cliffs, N.J., 1985. 70,e, 41100vr -~ ~ - -- --

  18. CHARGE Image Generator: Theory of Operation and Author Language Support. Technical Report 75-3.

    ERIC Educational Resources Information Center

    Gunwaldsen, Roger L.

    The image generator function and author language software support for the CHARGE (Color Halftone Area Graphics Environment) Interactive Graphics System are described. Designed initially for use in computer-assisted instruction (CAI) systems, the CHARGE Interactive Graphics System can provide graphic displays for various applications including…

  19. A comprehensive overview of the applications of artificial life.

    PubMed

    Kim, Kyung-Joong; Cho, Sung-Bae

    2006-01-01

    We review the applications of artificial life (ALife), the creation of synthetic life on computers to study, simulate, and understand living systems. The definition and features of ALife are shown by application studies. ALife application fields treated include robot control, robot manufacturing, practical robots, computer graphics, natural phenomenon modeling, entertainment, games, music, economics, Internet, information processing, industrial design, simulation software, electronics, security, data mining, and telecommunications. In order to show the status of ALife application research, this review primarily features a survey of about 180 ALife application articles rather than a selected representation of a few articles. Evolutionary computation is the most popular method for designing such applications, but recently swarm intelligence, artificial immune network, and agent-based modeling have also produced results. Applications were initially restricted to the robotics and computer graphics, but presently, many different applications in engineering areas are of interest.

  20. Computer graphics testbed to simulate and test vision systems for space applications

    NASA Technical Reports Server (NTRS)

    Cheatham, John B.

    1991-01-01

    Research activity has shifted from computer graphics and vision systems to the broader scope of applying concepts of artificial intelligence to robotics. Specifically, the research is directed toward developing Artificial Neural Networks, Expert Systems, and Laser Imaging Techniques for Autonomous Space Robots.

  1. Graphics Flutter Analysis Methods, an interactive computing system at Lockheed-California Company

    NASA Technical Reports Server (NTRS)

    Radovcich, N. A.

    1975-01-01

    An interactive computer graphics system, Graphics Flutter Analysis Methods (GFAM), was developed to complement FAMAS, a matrix-oriented batch computing system, and other computer programs in performing complex numerical calculations using a fully integrated data management system. GFAM has many of the matrix operation capabilities found in FAMAS, but on a smaller scale, and is utilized when the analysis requires a high degree of interaction between the engineer and computer, and schedule constraints exclude the use of batch entry programs. Applications of GFAM to a variety of preliminary design, development design, and project modification programs suggest that interactive flutter analysis using matrix representations is a feasible and cost effective computing tool.

  2. Animated computer graphics models of space and earth sciences data generated via the massively parallel processor

    NASA Technical Reports Server (NTRS)

    Treinish, Lloyd A.; Gough, Michael L.; Wildenhain, W. David

    1987-01-01

    The capability was developed of rapidly producing visual representations of large, complex, multi-dimensional space and earth sciences data sets via the implementation of computer graphics modeling techniques on the Massively Parallel Processor (MPP) by employing techniques recently developed for typically non-scientific applications. Such capabilities can provide a new and valuable tool for the understanding of complex scientific data, and a new application of parallel computing via the MPP. A prototype system with such capabilities was developed and integrated into the National Space Science Data Center's (NSSDC) Pilot Climate Data System (PCDS) data-independent environment for computer graphics data display to provide easy access to users. While developing these capabilities, several problems had to be solved independently of the actual use of the MPP, all of which are outlined.

  3. A High Performance VLSI Computer Architecture For Computer Graphics

    NASA Astrophysics Data System (ADS)

    Chin, Chi-Yuan; Lin, Wen-Tai

    1988-10-01

    A VLSI computer architecture, consisting of multiple processors, is presented in this paper to satisfy the modern computer graphics demands, e.g. high resolution, realistic animation, real-time display etc.. All processors share a global memory which are partitioned into multiple banks. Through a crossbar network, data from one memory bank can be broadcasted to many processors. Processors are physically interconnected through a hyper-crossbar network (a crossbar-like network). By programming the network, the topology of communication links among processors can be reconfigurated to satisfy specific dataflows of different applications. Each processor consists of a controller, arithmetic operators, local memory, a local crossbar network, and I/O ports to communicate with other processors, memory banks, and a system controller. Operations in each processor are characterized into two modes, i.e. object domain and space domain, to fully utilize the data-independency characteristics of graphics processing. Special graphics features such as 3D-to-2D conversion, shadow generation, texturing, and reflection, can be easily handled. With the current high density interconnection (MI) technology, it is feasible to implement a 64-processor system to achieve 2.5 billion operations per second, a performance needed in most advanced graphics applications.

  4. Alternatives for Saving and Viewing CAD Graphics for the Web.

    ERIC Educational Resources Information Center

    Harris, La Verne Abe; Sadowski, Mary A.

    2001-01-01

    Introduces some alternatives for preparing and viewing computer aided design (CAD) graphics for Internet output on a budget, without the fear of copyright infringement, and without having to go back to college to learn a complex graphic application. (Author/YDS)

  5. Interactive computer graphics system for structural sizing and analysis of aircraft structures

    NASA Technical Reports Server (NTRS)

    Bendavid, D.; Pipano, A.; Raibstein, A.; Somekh, E.

    1975-01-01

    A computerized system for preliminary sizing and analysis of aircraft wing and fuselage structures was described. The system is based upon repeated application of analytical program modules, which are interactively interfaced and sequence-controlled during the iterative design process with the aid of design-oriented graphics software modules. The entire process is initiated and controlled via low-cost interactive graphics terminals driven by a remote computer in a time-sharing mode.

  6. Computer Applications in the Design Process.

    ERIC Educational Resources Information Center

    Winchip, Susan

    Computer Assisted Design (CAD) and Computer Assisted Manufacturing (CAM) are emerging technologies now being used in home economics and interior design applications. A microcomputer in a computer network system is capable of executing computer graphic functions such as three-dimensional modeling, as well as utilizing office automation packages to…

  7. Users guide for EASI graphics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasser, D.W.

    1978-03-01

    EASI (Estimate of Adversary Sequence Interruption) is an analytical technique for measuring the effectiveness of physical protection systems. EASI Graphics is a computer graphics extension of EASI which provides a capability for performing sensitivity and trade-off analyses of the parameters of a physical protection system. This document reports on the implementation of EASI Graphics and illustrates its application with some examples.

  8. Configurable software for satellite graphics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartzman, P D

    An important goal in interactive computer graphics is to provide users with both quick system responses for basic graphics functions and enough computing power for complex calculations. One solution is to have a distributed graphics system in which a minicomputer and a powerful large computer share the work. The most versatile type of distributed system is an intelligent satellite system in which the minicomputer is programmable by the application user and can do most of the work while the large remote machine is used for difficult computations. At New York University, the hardware was configured from available equipment. The levelmore » of system intelligence resulted almost completely from software development. Unlike previous work with intelligent satellites, the resulting system had system control centered in the satellite. It also had the ability to reconfigure software during realtime operation. The design of the system was done at a very high level using set theoretic language. The specification clearly illustrated processor boundaries and interfaces. The high-level specification also produced a compact, machine-independent virtual graphics data structure for picture representation. The software was written in a systems implementation language; thus, only one set of programs was needed for both machines. A user can program both machines in a single language. Tests of the system with an application program indicate that is has very high potential. A major result of this work is the demonstration that a gigantic investment in new hardware is not necessary for computing facilities interested in graphics.« less

  9. Program Helps Generate And Manage Graphics

    NASA Technical Reports Server (NTRS)

    Truong, L. V.

    1994-01-01

    Living Color Frame Maker (LCFM) computer program generates computer-graphics frames. Graphical frames saved as text files, in readable and disclosed format, easily retrieved and manipulated by user programs for wide range of real-time visual information applications. LCFM implemented in frame-based expert system for visual aids in management of systems. Monitoring, diagnosis, and/or control, diagrams of circuits or systems brought to "life" by use of designated video colors and intensities to symbolize status of hardware components (via real-time feedback from sensors). Status of systems can be displayed. Written in C++ using Borland C++ 2.0 compiler for IBM PC-series computers and compatible computers running MS-DOS.

  10. Application of computer graphics in the design of custom orthopedic implants.

    PubMed

    Bechtold, J E

    1986-10-01

    Implementation of newly developed computer modelling techniques and computer graphics displays and software have greatly aided the orthopedic design engineer and physician in creating a custom implant with good anatomic conformity in a short turnaround time. Further advances in computerized design and manufacturing will continue to simplify the development of custom prostheses and enlarge their niche in the joint replacement market.

  11. Graphics processing unit based computation for NDE applications

    NASA Astrophysics Data System (ADS)

    Nahas, C. A.; Rajagopal, Prabhu; Balasubramaniam, Krishnan; Krishnamurthy, C. V.

    2012-05-01

    Advances in parallel processing in recent years are helping to improve the cost of numerical simulation. Breakthroughs in Graphical Processing Unit (GPU) based computation now offer the prospect of further drastic improvements. The introduction of 'compute unified device architecture' (CUDA) by NVIDIA (the global technology company based in Santa Clara, California, USA) has made programming GPUs for general purpose computing accessible to the average programmer. Here we use CUDA to develop parallel finite difference schemes as applicable to two problems of interest to NDE community, namely heat diffusion and elastic wave propagation. The implementations are for two-dimensions. Performance improvement of the GPU implementation against serial CPU implementation is then discussed.

  12. Computer graphics for management: An abstract of capabilities and applications of the EIS system

    NASA Technical Reports Server (NTRS)

    Solem, B. J.

    1975-01-01

    The Executive Information Services (EIS) system, developed as a computer-based, time-sharing tool for making and implementing management decisions, and including computer graphics capabilities, was described. The following resources are available through the EIS languages: centralized corporate/gov't data base, customized and working data bases, report writing, general computational capability, specialized routines, modeling/programming capability, and graphics. Nearly all EIS graphs can be created by a single, on-line instruction. A large number of options are available, such as selection of graphic form, line control, shading, placement on the page, multiple images on a page, control of scaling and labeling, plotting of cum data sets, optical grid lines, and stack charts. The following are examples of areas in which the EIS system may be used: research, estimating services, planning, budgeting, and performance measurement, national computer hook-up negotiations.

  13. Quantum rendering

    NASA Astrophysics Data System (ADS)

    Lanzagorta, Marco O.; Gomez, Richard B.; Uhlmann, Jeffrey K.

    2003-08-01

    In recent years, computer graphics has emerged as a critical component of the scientific and engineering process, and it is recognized as an important computer science research area. Computer graphics are extensively used for a variety of aerospace and defense training systems and by Hollywood's special effects companies. All these applications require the computer graphics systems to produce high quality renderings of extremely large data sets in short periods of time. Much research has been done in "classical computing" toward the development of efficient methods and techniques to reduce the rendering time required for large datasets. Quantum Computing's unique algorithmic features offer the possibility of speeding up some of the known rendering algorithms currently used in computer graphics. In this paper we discuss possible implementations of quantum rendering algorithms. In particular, we concentrate on the implementation of Grover's quantum search algorithm for Z-buffering, ray-tracing, radiosity, and scene management techniques. We also compare the theoretical performance between the classical and quantum versions of the algorithms.

  14. PC-CUBE: A Personal Computer Based Hypercube

    NASA Technical Reports Server (NTRS)

    Ho, Alex; Fox, Geoffrey; Walker, David; Snyder, Scott; Chang, Douglas; Chen, Stanley; Breaden, Matt; Cole, Terry

    1988-01-01

    PC-CUBE is an ensemble of IBM PCs or close compatibles connected in the hypercube topology with ordinary computer cables. Communication occurs at the rate of 115.2 K-band via the RS-232 serial links. Available for PC-CUBE is the Crystalline Operating System III (CrOS III), Mercury Operating System, CUBIX and PLOTIX which are parallel I/O and graphics libraries. A CrOS performance monitor was developed to facilitate the measurement of communication and computation time of a program and their effects on performance. Also available are CXLISP, a parallel version of the XLISP interpreter; GRAFIX, some graphics routines for the EGA and CGA; and a general execution profiler for determining execution time spent by program subroutines. PC-CUBE provides a programming environment similar to all hypercube systems running CrOS III, Mercury and CUBIX. In addition, every node (personal computer) has its own graphics display monitor and storage devices. These allow data to be displayed or stored at every processor, which has much instructional value and enables easier debugging of applications. Some application programs which are taken from the book Solving Problems on Concurrent Processors (Fox 88) were implemented with graphics enhancement on PC-CUBE. The applications range from solving the Mandelbrot set, Laplace equation, wave equation, long range force interaction, to WaTor, an ecological simulation.

  15. General-Purpose Software For Computer Graphics

    NASA Technical Reports Server (NTRS)

    Rogers, Joseph E.

    1992-01-01

    NASA Device Independent Graphics Library (NASADIG) is general-purpose computer-graphics package for computer-based engineering and management applications which gives opportunity to translate data into effective graphical displays for presentation. Features include two- and three-dimensional plotting, spline and polynomial interpolation, control of blanking of areas, multiple log and/or linear axes, control of legends and text, control of thicknesses of curves, and multiple text fonts. Included are subroutines for definition of areas and axes of plots; setup and display of text; blanking of areas; setup of style, interpolation, and plotting of lines; control of patterns and of shading of colors; control of legends, blocks of text, and characters; initialization of devices; and setting of mixed alphabets. Written in FORTRAN 77.

  16. A survey of GPU-based medical image computing techniques

    PubMed Central

    Shi, Lin; Liu, Wen; Zhang, Heye; Xie, Yongming

    2012-01-01

    Medical imaging currently plays a crucial role throughout the entire clinical applications from medical scientific research to diagnostics and treatment planning. However, medical imaging procedures are often computationally demanding due to the large three-dimensional (3D) medical datasets to process in practical clinical applications. With the rapidly enhancing performances of graphics processors, improved programming support, and excellent price-to-performance ratio, the graphics processing unit (GPU) has emerged as a competitive parallel computing platform for computationally expensive and demanding tasks in a wide range of medical image applications. The major purpose of this survey is to provide a comprehensive reference source for the starters or researchers involved in GPU-based medical image processing. Within this survey, the continuous advancement of GPU computing is reviewed and the existing traditional applications in three areas of medical image processing, namely, segmentation, registration and visualization, are surveyed. The potential advantages and associated challenges of current GPU-based medical imaging are also discussed to inspire future applications in medicine. PMID:23256080

  17. Application of computer generated color graphic techniques to the processing and display of three dimensional fluid dynamic data

    NASA Technical Reports Server (NTRS)

    Anderson, B. H.; Putt, C. W.; Giamati, C. C.

    1981-01-01

    Color coding techniques used in the processing of remote sensing imagery were adapted and applied to the fluid dynamics problems associated with turbofan mixer nozzles. The computer generated color graphics were found to be useful in reconstructing the measured flow field from low resolution experimental data to give more physical meaning to this information and in scanning and interpreting the large volume of computer generated data from the three dimensional viscous computer code used in the analysis.

  18. Optimizing ion channel models using a parallel genetic algorithm on graphical processors.

    PubMed

    Ben-Shalom, Roy; Aviv, Amit; Razon, Benjamin; Korngreen, Alon

    2012-01-01

    We have recently shown that we can semi-automatically constrain models of voltage-gated ion channels by combining a stochastic search algorithm with ionic currents measured using multiple voltage-clamp protocols. Although numerically successful, this approach is highly demanding computationally, with optimization on a high performance Linux cluster typically lasting several days. To solve this computational bottleneck we converted our optimization algorithm for work on a graphical processing unit (GPU) using NVIDIA's CUDA. Parallelizing the process on a Fermi graphic computing engine from NVIDIA increased the speed ∼180 times over an application running on an 80 node Linux cluster, considerably reducing simulation times. This application allows users to optimize models for ion channel kinetics on a single, inexpensive, desktop "super computer," greatly reducing the time and cost of building models relevant to neuronal physiology. We also demonstrate that the point of algorithm parallelization is crucial to its performance. We substantially reduced computing time by solving the ODEs (Ordinary Differential Equations) so as to massively reduce memory transfers to and from the GPU. This approach may be applied to speed up other data intensive applications requiring iterative solutions of ODEs. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. LCFM - LIVING COLOR FRAME MAKER: PC GRAPHICS GENERATION AND MANAGEMENT TOOL FOR REAL-TIME APPLICATIONS

    NASA Technical Reports Server (NTRS)

    Truong, L. V.

    1994-01-01

    Computer graphics are often applied for better understanding and interpretation of data under observation. These graphics become more complicated when animation is required during "run-time", as found in many typical modern artificial intelligence and expert systems. Living Color Frame Maker is a solution to many of these real-time graphics problems. Living Color Frame Maker (LCFM) is a graphics generation and management tool for IBM or IBM compatible personal computers. To eliminate graphics programming, the graphic designer can use LCFM to generate computer graphics frames. The graphical frames are then saved as text files, in a readable and disclosed format, which can be easily accessed and manipulated by user programs for a wide range of "real-time" visual information applications. For example, LCFM can be implemented in a frame-based expert system for visual aids in management of systems. For monitoring, diagnosis, and/or controlling purposes, circuit or systems diagrams can be brought to "life" by using designated video colors and intensities to symbolize the status of hardware components (via real-time feedback from sensors). Thus status of the system itself can be displayed. The Living Color Frame Maker is user friendly with graphical interfaces, and provides on-line help instructions. All options are executed using mouse commands and are displayed on a single menu for fast and easy operation. LCFM is written in C++ using the Borland C++ 2.0 compiler for IBM PC series computers and compatible computers running MS-DOS. The program requires a mouse and an EGA/VGA display. A minimum of 77K of RAM is also required for execution. The documentation is provided in electronic form on the distribution medium in WordPerfect format. A sample MS-DOS executable is provided on the distribution medium. The standard distribution medium for this program is one 5.25 inch 360K MS-DOS format diskette. The contents of the diskette are compressed using the PKWARE archiving tools. The utility to unarchive the files, PKUNZIP.EXE, is included. The Living Color Frame Maker tool was developed in 1992.

  20. Multiprocessor graphics computation and display using transputers

    NASA Technical Reports Server (NTRS)

    Ellis, Graham K.

    1988-01-01

    A package of two-dimensional graphics routines was developed to run on a transputer-based parallel processing system. These routines were designed to enable applications programmers to easily generate and display results from the transputer network in a graphic format. The graphics procedures were designed for the lowest possible network communication overhead for increased performance. The routines were designed for ease of use and to present an intuitive approach to generating graphics on the transputer parallel processing system.

  1. Computer Graphics and Creativity/Problem Solving Skills with Deaf and Severely Language Disordered Students: Parts I, II, and III.

    ERIC Educational Resources Information Center

    Rose, Susan; And Others

    Three papers focus on applications of computer graphics with deaf and severely language impaired children. The first describes a drawing tablet software that allowed students to use visual and manipulative characteristics to enhance problem solving and creativity skills. Students were thus able to solve problems without the obstacles of language.…

  2. Use of interactive graphics in bridge analysis and design.

    DOT National Transportation Integrated Search

    1983-01-01

    This study evaluated the role of computer-aided design (CAD), including interactive graphics, in engineering design applications, especially in the design activities of the Virginia Department of Highways and Transportation. A review of the hardware ...

  3. Ink Jet For Business Graphic Application

    NASA Astrophysics Data System (ADS)

    Hooper, Dana H.

    1987-04-01

    This talk covers the use of Computer generated color output in the preparation of professional, memorable presentations. The focus is on this application and today's business graphic marketplace. To provide a background, on overview of the factors and trends influencing the market for color hard copy output is essential. The availability of lower cost computing technology, improved graphic software and user interfaces and the availability of color copiers is combining with the latest generation of color ink jet printers to cause a strong growth in the use of color hardcopy devices in the business graphics marketplace. The market is expected to grow at a compound annual growth rate in excess of 25% and reach a level of 5 Billion by 1990. Color lasography and ink jet technology based products are expected to increase share significantly primarily at the expense of pen plotters. Essential to the above mentioned growth is the latest generation of products. The Xerox 4020 Color Ink Jet Printer embodies the latest ink jet technology and is a good example of this new generation of products. The printer brings highly reliable color to a broad range of business users. The 4020 is driven by over 50 software packages allowing users compatibility and supporting a variety of applications. The 4020 is easy to operate and maintain and capable of producing excellent hardcopy and transparencies at an attractive price point. Several specific applications areas were discussed. Images were typically created on an IBM PC or compatible with a graphics application package and output to the Xerox 4020 Color Ink Jet Printer. Bar charts, line graphs, pie charts, integrated text and graphics, reports and maps were displayed with a brief description. Additionally, the use of color in brainscanning to discern and communicate information and in computer generated Art demonstrate the wide variety of potential applications. Images may be output to paper or to transparency for overhead presentation. The future of color in the business graphics market looks bright and will continue to be strongly influenced by future product introductions.

  4. Common Graphics Library (CGL). Volume 1: LEZ user's guide

    NASA Technical Reports Server (NTRS)

    Taylor, Nancy L.; Hammond, Dana P.; Hofler, Alicia S.; Miner, David L.

    1988-01-01

    Users are introduced to and instructed in the use of the Langley Easy (LEZ) routines of the Common Graphics Library (CGL). The LEZ routines form an application independent graphics package which enables the user community to view data quickly and easily, while providing a means of generating scientific charts conforming to the publication and/or viewgraph process. A distinct advantage for using the LEZ routines is that the underlying graphics package may be replaced or modified without requiring the users to change their application programs. The library is written in ANSI FORTRAN 77, and currently uses a CORE-based underlying graphics package, and is therefore machine independent, providing support for centralized and/or distributed computer systems.

  5. Graphics Processing Units for HEP trigger systems

    NASA Astrophysics Data System (ADS)

    Ammendola, R.; Bauce, M.; Biagioni, A.; Chiozzi, S.; Cotta Ramusino, A.; Fantechi, R.; Fiorini, M.; Giagu, S.; Gianoli, A.; Lamanna, G.; Lonardo, A.; Messina, A.; Neri, I.; Paolucci, P. S.; Piandani, R.; Pontisso, L.; Rescigno, M.; Simula, F.; Sozzi, M.; Vicini, P.

    2016-07-01

    General-purpose computing on GPUs (Graphics Processing Units) is emerging as a new paradigm in several fields of science, although so far applications have been tailored to the specific strengths of such devices as accelerator in offline computation. With the steady reduction of GPU latencies, and the increase in link and memory throughput, the use of such devices for real-time applications in high-energy physics data acquisition and trigger systems is becoming ripe. We will discuss the use of online parallel computing on GPU for synchronous low level trigger, focusing on CERN NA62 experiment trigger system. The use of GPU in higher level trigger system is also briefly considered.

  6. Computer graphics in architecture and engineering

    NASA Technical Reports Server (NTRS)

    Greenberg, D. P.

    1975-01-01

    The present status of the application of computer graphics to the building profession or architecture and its relationship to other scientific and technical areas were discussed. It was explained that, due to the fragmented nature of architecture and building activities (in contrast to the aerospace industry), a comprehensive, economic utilization of computer graphics in this area is not practical and its true potential cannot now be realized due to the present inability of architects and structural, mechanical, and site engineers to rely on a common data base. Future emphasis will therefore have to be placed on a vertical integration of the construction process and effective use of a three-dimensional data base, rather than on waiting for any technological breakthrough in interactive computing.

  7. Human-computer interfaces applied to numerical solution of the Plateau problem

    NASA Astrophysics Data System (ADS)

    Elias Fabris, Antonio; Soares Bandeira, Ivana; Ramos Batista, Valério

    2015-09-01

    In this work we present a code in Matlab to solve the Problem of Plateau numerically, and the code will include human-computer interface. The Problem of Plateau has applications in areas of knowledge like, for instance, Computer Graphics. The solution method will be the same one of the Surface Evolver, but the difference will be a complete graphical interface with the user. This will enable us to implement other kinds of interface like ocular mouse, voice, touch, etc. To date, Evolver does not include any graphical interface, which restricts its use by the scientific community. Specially, its use is practically impossible for most of the Physically Challenged People.

  8. Software Graphics Processing Unit (sGPU) for Deep Space Applications

    NASA Technical Reports Server (NTRS)

    McCabe, Mary; Salazar, George; Steele, Glen

    2015-01-01

    A graphics processing capability will be required for deep space missions and must include a range of applications, from safety-critical vehicle health status to telemedicine for crew health. However, preliminary radiation testing of commercial graphics processing cards suggest they cannot operate in the deep space radiation environment. Investigation into an Software Graphics Processing Unit (sGPU)comprised of commercial-equivalent radiation hardened/tolerant single board computers, field programmable gate arrays, and safety-critical display software shows promising results. Preliminary performance of approximately 30 frames per second (FPS) has been achieved. Use of multi-core processors may provide a significant increase in performance.

  9. Computer-Aided Geometry Modeling

    NASA Technical Reports Server (NTRS)

    Shoosmith, J. N. (Compiler); Fulton, R. E. (Compiler)

    1984-01-01

    Techniques in computer-aided geometry modeling and their application are addressed. Mathematical modeling, solid geometry models, management of geometric data, development of geometry standards, and interactive and graphic procedures are discussed. The applications include aeronautical and aerospace structures design, fluid flow modeling, and gas turbine design.

  10. Computer Graphics-aided systems analysis: application to well completion design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detamore, J.E.; Sarma, M.P.

    1985-03-01

    The development of an engineering tool (in the form of a computer model) for solving design and analysis problems related with oil and gas well production operations is discussed. The development of the method is based on integrating the concepts of ''Systems Analysis'' with the techniques of ''Computer Graphics''. The concepts behind the method are very general in nature. This paper, however, illustrates the application of the method in solving gas well completion design problems. The use of the method will save time and improve the efficiency of such design and analysis problems. The method can be extended to othermore » design and analysis aspects of oil and gas wells.« less

  11. Accelerated Adaptive MGS Phase Retrieval

    NASA Technical Reports Server (NTRS)

    Lam, Raymond K.; Ohara, Catherine M.; Green, Joseph J.; Bikkannavar, Siddarayappa A.; Basinger, Scott A.; Redding, David C.; Shi, Fang

    2011-01-01

    The Modified Gerchberg-Saxton (MGS) algorithm is an image-based wavefront-sensing method that can turn any science instrument focal plane into a wavefront sensor. MGS characterizes optical systems by estimating the wavefront errors in the exit pupil using only intensity images of a star or other point source of light. This innovative implementation of MGS significantly accelerates the MGS phase retrieval algorithm by using stream-processing hardware on conventional graphics cards. Stream processing is a relatively new, yet powerful, paradigm to allow parallel processing of certain applications that apply single instructions to multiple data (SIMD). These stream processors are designed specifically to support large-scale parallel computing on a single graphics chip. Computationally intensive algorithms, such as the Fast Fourier Transform (FFT), are particularly well suited for this computing environment. This high-speed version of MGS exploits commercially available hardware to accomplish the same objective in a fraction of the original time. The exploit involves performing matrix calculations in nVidia graphic cards. The graphical processor unit (GPU) is hardware that is specialized for computationally intensive, highly parallel computation. From the software perspective, a parallel programming model is used, called CUDA, to transparently scale multicore parallelism in hardware. This technology gives computationally intensive applications access to the processing power of the nVidia GPUs through a C/C++ programming interface. The AAMGS (Accelerated Adaptive MGS) software takes advantage of these advanced technologies, to accelerate the optical phase error characterization. With a single PC that contains four nVidia GTX-280 graphic cards, the new implementation can process four images simultaneously to produce a JWST (James Webb Space Telescope) wavefront measurement 60 times faster than the previous code.

  12. Graphic analysis of resources by numerical evaluation techniques (Garnet)

    USGS Publications Warehouse

    Olson, A.C.

    1977-01-01

    An interactive computer program for graphical analysis has been developed by the U.S. Geological Survey. The program embodies five goals, (1) economical use of computer resources, (2) simplicity for user applications, (3) interactive on-line use, (4) minimal core requirements, and (5) portability. It is designed to aid (1) the rapid analysis of point-located data, (2) structural mapping, and (3) estimation of area resources. ?? 1977.

  13. CHIRAL--A Computer Aided Application of the Cahn-Ingold-Prelog Rules.

    ERIC Educational Resources Information Center

    Meyer, Edgar F., Jr.

    1978-01-01

    A computer program is described for identification of chiral centers in molecules. Essential input to the program includes both atomic and bonding information. The program does not require computer graphic input-output. (BB)

  14. Emerging Trends in Technology Education Computer Applications.

    ERIC Educational Resources Information Center

    Hazari, Sunil I.

    1993-01-01

    Graphical User Interface (GUI)--and its variant, pen computing--is rapidly replacing older types of operating environments. Despite its heavier demand for processing power, GUI has many advantages. (SK)

  15. The design and implementation of CRT displays in the TCV real-time simulation

    NASA Technical Reports Server (NTRS)

    Leavitt, J. B.; Tariq, S. I.; Steinmetz, G. G.

    1975-01-01

    The design and application of computer graphics to the Terminal Configured Vehicle (TCV) program were described. A Boeing 737-100 series aircraft was modified with a second flight deck and several computers installed in the passenger cabin. One of the elements in support of the TCV program is a sophisticated simulation system developed to duplicate the operation of the aft flight deck. This facility consists of an aft flight deck simulator, equipped with realistic flight instrumentation, a CDC 6600 computer, and an Adage graphics terminal; this terminal presents to the simulator pilot displays similar to those used on the aircraft with equivalent man-machine interactions. These two displays form the primary flight instrumentation for the pilot and are dynamic images depicting critical flight information. The graphics terminal is a high speed interactive refresh-type graphics system. To support the cockpit display, two remote CRT's were wired in parallel with two of the Adage scopes.

  16. Applications of computer-graphics animation for motion-perception research

    NASA Technical Reports Server (NTRS)

    Proffitt, D. R.; Kaiser, M. K.

    1986-01-01

    The advantages and limitations of using computer animated stimuli in studying motion perception are presented and discussed. Most current programs of motion perception research could not be pursued without the use of computer graphics animation. Computer generated displays afford latitudes of freedom and control that are almost impossible to attain through conventional methods. There are, however, limitations to this presentational medium. At present, computer generated displays present simplified approximations of the dynamics in natural events. Very little is known about how the differences between natural events and computer simulations influence perceptual processing. In practice, the differences are assumed to be irrelevant to the questions under study, and that findings with computer generated stimuli will generalize to natural events.

  17. Mesh generation for two-dimensional regions using the Tektronix DVST (direct view storage tube) graphics terminal

    NASA Technical Reports Server (NTRS)

    Gabrielson, V. K.

    1975-01-01

    The computer program DVMESH and the use of the Tektronix DVST graphics terminal were described for applications of preparing mesh data for use in various two-dimensional axisymmetric finite element stress analysis and heat transfer codes.

  18. A simplified application of the method of operators to the calculation of disturbed motions of an airplane

    NASA Technical Reports Server (NTRS)

    Jones, Robert T

    1937-01-01

    A simplified treatment of the application of Heaviside's operational methods to problems of airplane dynamics is given. Certain graphical methods and logarithmic formulas that lessen the amount of computation involved are explained. The problem representing a gust disturbance or control manipulation is taken up and it is pointed out that in certain cases arbitrary control manipulations may be dealt with as though they imposed specific constraints on the airplane, thus avoiding the necessity of any integration. The application of the calculations described in the text is illustrated by several examples chosen to show the use of the methods and the practicability of the graphical and logarithmic computations described.

  19. A Visual Tool for Computer Supported Learning: The Robot Motion Planning Example

    ERIC Educational Resources Information Center

    Elnagar, Ashraf; Lulu, Leena

    2007-01-01

    We introduce an effective computer aided learning visual tool (CALVT) to teach graph-based applications. We present the robot motion planning problem as an example of such applications. The proposed tool can be used to simulate and/or further to implement practical systems in different areas of computer science such as graphics, computational…

  20. Applications of the pipeline environment for visual informatics and genomics computations

    PubMed Central

    2011-01-01

    Background Contemporary informatics and genomics research require efficient, flexible and robust management of large heterogeneous data, advanced computational tools, powerful visualization, reliable hardware infrastructure, interoperability of computational resources, and detailed data and analysis-protocol provenance. The Pipeline is a client-server distributed computational environment that facilitates the visual graphical construction, execution, monitoring, validation and dissemination of advanced data analysis protocols. Results This paper reports on the applications of the LONI Pipeline environment to address two informatics challenges - graphical management of diverse genomics tools, and the interoperability of informatics software. Specifically, this manuscript presents the concrete details of deploying general informatics suites and individual software tools to new hardware infrastructures, the design, validation and execution of new visual analysis protocols via the Pipeline graphical interface, and integration of diverse informatics tools via the Pipeline eXtensible Markup Language syntax. We demonstrate each of these processes using several established informatics packages (e.g., miBLAST, EMBOSS, mrFAST, GWASS, MAQ, SAMtools, Bowtie) for basic local sequence alignment and search, molecular biology data analysis, and genome-wide association studies. These examples demonstrate the power of the Pipeline graphical workflow environment to enable integration of bioinformatics resources which provide a well-defined syntax for dynamic specification of the input/output parameters and the run-time execution controls. Conclusions The LONI Pipeline environment http://pipeline.loni.ucla.edu provides a flexible graphical infrastructure for efficient biomedical computing and distributed informatics research. The interactive Pipeline resource manager enables the utilization and interoperability of diverse types of informatics resources. The Pipeline client-server model provides computational power to a broad spectrum of informatics investigators - experienced developers and novice users, user with or without access to advanced computational-resources (e.g., Grid, data), as well as basic and translational scientists. The open development, validation and dissemination of computational networks (pipeline workflows) facilitates the sharing of knowledge, tools, protocols and best practices, and enables the unbiased validation and replication of scientific findings by the entire community. PMID:21791102

  1. Graphics Processing Unit Assisted Thermographic Compositing

    NASA Technical Reports Server (NTRS)

    Ragasa, Scott; Russell, Samuel S.

    2012-01-01

    Objective Develop a software application utilizing high performance computing techniques, including general purpose graphics processing units (GPGPUs), for the analysis and visualization of large thermographic data sets. Over the past several years, an increasing effort among scientists and engineers to utilize graphics processing units (GPUs) in a more general purpose fashion is allowing for previously unobtainable levels of computation by individual workstations. As data sets grow, the methods to work them grow at an equal, and often greater, pace. Certain common computations can take advantage of the massively parallel and optimized hardware constructs of the GPU which yield significant increases in performance. These common computations have high degrees of data parallelism, that is, they are the same computation applied to a large set of data where the result does not depend on other data elements. Image processing is one area were GPUs are being used to greatly increase the performance of certain analysis and visualization techniques.

  2. Hard Copy Market Overview

    NASA Astrophysics Data System (ADS)

    Testan, Peter R.

    1987-04-01

    A number of Color Hard Copy (CHC) market drivers are currently indicating strong growth in the use of CHC technologies for the business graphics marketplace. These market drivers relate to product, software, color monitors and color copiers. The use of color in business graphics allows more information to be relayed than is normally the case in a monochrome format. The communicative powers of full-color computer generated output in the business graphics application area will continue to induce end users to desire and require color in their future applications. A number of color hard copy technologies will be utilized in the presentation graphics arena. Thermal transfer, ink jet, photographic and electrophotographic technologies are all expected to be utilized in the business graphics presentation application area in the future. Since the end of 1984, the availability of color application software packages has grown significantly. Sales revenue generated by business graphics software is expected to grow at a compound annual growth rate of just over 40 percent to 1990. Increased availability of packages to allow the integration of text and graphics is expected. Currently, the latest versions of page description languages such as Postscript, Interpress and DDL all support color output. The use of color monitors will also drive the demand for color hard copy in the business graphics market place. The availability of higher resolution screens is allowing color monitors to be easily used for both text and graphics applications in the office environment. During 1987, the sales of color monitors are expected to surpass the sales of monochrome monitors. Another major color hard copy market driver will be the color copier. In order to take advantage of the communications power of computer generated color output, multiple copies are required for distribution. Product introductions of a new generation of color copiers is now underway with additional introductions expected during 1987. The color hard copy market continues to be in a state of constant change, typical of any immature market. However, much of the change is positive. During 1985, the color hard copy market generated 1.2 billion. By 1990, total market revenue is expected to exceed 5.5 billion. The business graphics CHC application area is expected to grow at a compound annual growth rate greater than 40 percent to 1990.

  3. Computational Virtual Reality (VR) as a human-computer interface in the operation of telerobotic systems

    NASA Technical Reports Server (NTRS)

    Bejczy, Antal K.

    1995-01-01

    This presentation focuses on the application of computer graphics or 'virtual reality' (VR) techniques as a human-computer interface tool in the operation of telerobotic systems. VR techniques offer very valuable task realization aids for planning, previewing and predicting robotic actions, operator training, and for visual perception of non-visible events like contact forces in robotic tasks. The utility of computer graphics in telerobotic operation can be significantly enhanced by high-fidelity calibration of virtual reality images to actual TV camera images. This calibration will even permit the creation of artificial (synthetic) views of task scenes for which no TV camera views are available.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Errion, S.M.; Thommes, M.M. Caruthers, C.M.

    Using the Apple LaserWriter at ANL (ANL/TM 452) explains how Argonne computer users (with CMS, MVS, or VAX/VMS accounts) can print quality text and graphics on the Apple LaserWriter. Currently, applications at Argonne that are compatible with the Apple LaserWriter include Waterloo Script, CA/ISSCO graphics software (i.e., Cuechart, Tellagraf, and Disspla), SAS/Graph, ANSYS (version 4.2), and some personal computer test and graphics software. This manual does not attempt to cover use of the Apple LaserWriter with other applications, though some information on the handling of PostScript-compatible files may be valid for other applications. Refer to the documentation of those applicationsmore » to learn how they work with the Apple LaserWriter. Most of the information in this manual applies to the Allied Linotype L300P typesetter in Building 222. However, the typesetter is not a high volume output device and should be used primarily for high quality (1250 and 2500 dots per inch) final copy output for Laboratory publications prior to making printing plates. You should print all drafts and proof pages on LaserWriers or other printers compatible with the PostScript page description language. Consult with Graphic Arts (at extension 2-5603) to determine the availability of the typesetter for printing the final copy of your document or graphics application. Since the Apple LaserWriter itself produces good quality output (300 dots per inch), we expect that most internal documents consisting of test or graphics will continue to be printed at LaserWriters distributed throughout the Laboratory. 5 figs., 2 tabs.« less

  5. Computer Series, 78.

    ERIC Educational Resources Information Center

    Moore, John W., Ed.

    1986-01-01

    Presents six brief articles dealing with the use of computers in teaching various topics in chemistry. Describes hardware and software applications which relate to protein graphics, computer simulated metabolism, interfaces between microcomputers and measurement devices, courseware available for spectrophotometers, and the calculation of elemental…

  6. A Plasma Display Terminal.

    ERIC Educational Resources Information Center

    Stifle, Jack

    A graphics terminal designed for use as a remote computer input/output terminal is described. Although the terminal is intended for use in teaching applications, it has several features which make it useful in many other computer terminal applications. These features include: a 10-inch square plasma display panel, permanent storage of information…

  7. User's manual for EZPLOT version 5.5: A FORTRAN program for 2-dimensional graphic display of data

    NASA Technical Reports Server (NTRS)

    Garbinski, Charles; Redin, Paul C.; Budd, Gerald D.

    1988-01-01

    EZPLOT is a computer applications program that converts data resident on a file into a plot displayed on the screen of a graphics terminal. This program generates either time history or x-y plots in response to commands entered interactively from a terminal keyboard. Plot parameters consist of a single independent parameter and from one to eight dependent parameters. Various line patterns, symbol shapes, axis scales, text labels, and data modification techniques are available. This user's manual describes EZPLOT as it is implemented on the Ames Research Center, Dryden Research Facility ELXSI computer using DI-3000 graphics software tools.

  8. Development of the Computer Interface Literacy Measure.

    ERIC Educational Resources Information Center

    Turner, G. Marc; Sweany, Noelle Wall; Husman, Jenefer

    2000-01-01

    Discussion of computer literacy and the rapidly changing face of technology focuses on a study that redefined computer literacy to include competencies for using graphical user interfaces for operating systems, hypermedia applications, and the Internet. Describes the development and testing of the Computer Interface Literacy Measure with…

  9. Computational Particle Dynamic Simulations on Multicore Processors (CPDMu) Final Report Phase I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmalz, Mark S

    2011-07-24

    Statement of Problem - Department of Energy has many legacy codes for simulation of computational particle dynamics and computational fluid dynamics applications that are designed to run on sequential processors and are not easily parallelized. Emerging high-performance computing architectures employ massively parallel multicore architectures (e.g., graphics processing units) to increase throughput. Parallelization of legacy simulation codes is a high priority, to achieve compatibility, efficiency, accuracy, and extensibility. General Statement of Solution - A legacy simulation application designed for implementation on mainly-sequential processors has been represented as a graph G. Mathematical transformations, applied to G, produce a graph representation {und G}more » for a high-performance architecture. Key computational and data movement kernels of the application were analyzed/optimized for parallel execution using the mapping G {yields} {und G}, which can be performed semi-automatically. This approach is widely applicable to many types of high-performance computing systems, such as graphics processing units or clusters comprised of nodes that contain one or more such units. Phase I Accomplishments - Phase I research decomposed/profiled computational particle dynamics simulation code for rocket fuel combustion into low and high computational cost regions (respectively, mainly sequential and mainly parallel kernels), with analysis of space and time complexity. Using the research team's expertise in algorithm-to-architecture mappings, the high-cost kernels were transformed, parallelized, and implemented on Nvidia Fermi GPUs. Measured speedups (GPU with respect to single-core CPU) were approximately 20-32X for realistic model parameters, without final optimization. Error analysis showed no loss of computational accuracy. Commercial Applications and Other Benefits - The proposed research will constitute a breakthrough in solution of problems related to efficient parallel computation of particle and fluid dynamics simulations. These problems occur throughout DOE, military and commercial sectors: the potential payoff is high. We plan to license or sell the solution to contractors for military and domestic applications such as disaster simulation (aerodynamic and hydrodynamic), Government agencies (hydrological and environmental simulations), and medical applications (e.g., in tomographic image reconstruction). Keywords - High-performance Computing, Graphic Processing Unit, Fluid/Particle Simulation. Summary for Members of Congress - Department of Energy has many simulation codes that must compute faster, to be effective. The Phase I research parallelized particle/fluid simulations for rocket combustion, for high-performance computing systems.« less

  10. Beyond the Renderer: Software Architecture for Parallel Graphics and Visualization

    NASA Technical Reports Server (NTRS)

    Crockett, Thomas W.

    1996-01-01

    As numerous implementations have demonstrated, software-based parallel rendering is an effective way to obtain the needed computational power for a variety of challenging applications in computer graphics and scientific visualization. To fully realize their potential, however, parallel renderers need to be integrated into a complete environment for generating, manipulating, and delivering visual data. We examine the structure and components of such an environment, including the programming and user interfaces, rendering engines, and image delivery systems. We consider some of the constraints imposed by real-world applications and discuss the problems and issues involved in bringing parallel rendering out of the lab and into production.

  11. Evaluating virtual hosted desktops for graphics-intensive astronomy

    NASA Astrophysics Data System (ADS)

    Meade, B. F.; Fluke, C. J.

    2018-04-01

    Visualisation of data is critical to understanding astronomical phenomena. Today, many instruments produce datasets that are too big to be downloaded to a local computer, yet many of the visualisation tools used by astronomers are deployed only on desktop computers. Cloud computing is increasingly used to provide a computation and simulation platform in astronomy, but it also offers great potential as a visualisation platform. Virtual hosted desktops, with graphics processing unit (GPU) acceleration, allow interactive, graphics-intensive desktop applications to operate co-located with astronomy datasets stored in remote data centres. By combining benchmarking and user experience testing, with a cohort of 20 astronomers, we investigate the viability of replacing physical desktop computers with virtual hosted desktops. In our work, we compare two Apple MacBook computers (one old and one new, representing hardware and opposite ends of the useful lifetime) with two virtual hosted desktops: one commercial (Amazon Web Services) and one in a private research cloud (the Australian NeCTAR Research Cloud). For two-dimensional image-based tasks and graphics-intensive three-dimensional operations - typical of astronomy visualisation workflows - we found that benchmarks do not necessarily provide the best indication of performance. When compared to typical laptop computers, virtual hosted desktops can provide a better user experience, even with lower performing graphics cards. We also found that virtual hosted desktops are equally simple to use, provide greater flexibility in choice of configuration, and may actually be a more cost-effective option for typical usage profiles.

  12. Volumetric graphics in liquid using holographic femtosecond laser pulse excitations

    NASA Astrophysics Data System (ADS)

    Kumagai, Kota; Hayasaki, Yoshio

    2017-06-01

    Much attention has been paid to the development of three-dimensional volumetric displays in the fields of optics and computer graphics, and it is a dream of we display researchers. However, full-color volumetric displays are challenging because many voxels with different colors have to be formed to render volumetric graphics in real three-dimensional space. Here, we show a new volumetric display in which microbubble voxels are three-dimensionally generated in a liquid by focused femtosecond laser pulses. Use of a high-viscosity liquid, which is the key idea of this system, slows down the movement of the microbubbles, and as a result, volumetric graphics can be displayed. This "volumetric bubble display" has a wide viewing angle and simple refresh and requires no addressing wires because it involves optical access to transparent liquid and achieves full-color graphics composed on light-scattering voxels controlled by illumination light sources. In addition, a bursting of bubble graphics system using an ultrasonic vibrator also has been demonstrated. This technology will open up a wide range of applications in three-dimensional displays, augmented reality and computer graphics.

  13. Potential Application of a Graphical Processing Unit to Parallel Computations in the NUBEAM Code

    NASA Astrophysics Data System (ADS)

    Payne, J.; McCune, D.; Prater, R.

    2010-11-01

    NUBEAM is a comprehensive computational Monte Carlo based model for neutral beam injection (NBI) in tokamaks. NUBEAM computes NBI-relevant profiles in tokamak plasmas by tracking the deposition and the slowing of fast ions. At the core of NUBEAM are vector calculations used to track fast ions. These calculations have recently been parallelized to run on MPI clusters. However, cost and interlink bandwidth limit the ability to fully parallelize NUBEAM on an MPI cluster. Recent implementation of double precision capabilities for Graphical Processing Units (GPUs) presents a cost effective and high performance alternative or complement to MPI computation. Commercially available graphics cards can achieve up to 672 GFLOPS double precision and can handle hundreds of thousands of threads. The ability to execute at least one thread per particle simultaneously could significantly reduce the execution time and the statistical noise of NUBEAM. Progress on implementation on a GPU will be presented.

  14. Graphics modelling of non-contact thickness measuring robotics work cell

    NASA Technical Reports Server (NTRS)

    Warren, Charles W.

    1990-01-01

    A system was developed for measuring, in real time, the thickness of a sprayable insulation during its application. The system was graphically modelled, off-line, using a state-of-the-art graphics workstation and associated software. This model was to contain a 3D color model of a workcell containing a robot and an air bearing turntable. A communication link was established between the graphics workstations and the robot's controller. Sequences of robot motion generated by the computer simulation are transmitted to the robot for execution.

  15. DECUS Proceedings; Fall 1971, Papers and Presentations.

    ERIC Educational Resources Information Center

    1971

    Papers and presentations at the 1971 symposium of the Digital Equipment Computer Users Society (DECUS) are presented. The papers deal with medical and physiological applications, computer graphics, simulation education, small computer executive systems, management information tools, data acquisition systems, and high level languages. Although many…

  16. A breakthrough for experiencing and understanding simulated physics

    NASA Technical Reports Server (NTRS)

    Watson, Val

    1988-01-01

    The use of computer simulation in physics research is discussed, focusing on improvements to graphic workstations. Simulation capabilities and applications of enhanced visualization tools are outlined. The elements of an ideal computer simulation are presented and the potential for improving various simulation elements is examined. The interface between the human and the computer and simulation models are considered. Recommendations are made for changes in computer simulation practices and applications of simulation technology in education.

  17. Real Time Computer Graphics From Body Motion

    NASA Astrophysics Data System (ADS)

    Fisher, Scott; Marion, Ann

    1983-10-01

    This paper focuses on the recent emergence and development of real, time, computer-aided body tracking technologies and their use in combination with various computer graphics imaging techniques. The convergence of these, technologies in our research results, in an interactive display environment. in which multipde, representations of a given body motion can be displayed in real time. Specific reference, to entertainment applications is described in the development of a real time, interactive stage set in which dancers can 'draw' with their bodies as they move, through the space. of the stage or manipulate virtual elements of the set with their gestures.

  18. Three-dimensional structural analysis using interactive graphics

    NASA Technical Reports Server (NTRS)

    Biffle, J.; Sumlin, H. A.

    1975-01-01

    The application of computer interactive graphics to three-dimensional structural analysis was described, with emphasis on the following aspects: (1) structural analysis, and (2) generation and checking of input data and examination of the large volume of output data (stresses, displacements, velocities, accelerations). Handling of three-dimensional input processing with a special MESH3D computer program was explained. Similarly, a special code PLTZ may be used to perform all the needed tasks for output processing from a finite element code. Examples were illustrated.

  19. General purpose molecular dynamics simulations fully implemented on graphics processing units

    NASA Astrophysics Data System (ADS)

    Anderson, Joshua A.; Lorenz, Chris D.; Travesset, A.

    2008-05-01

    Graphics processing units (GPUs), originally developed for rendering real-time effects in computer games, now provide unprecedented computational power for scientific applications. In this paper, we develop a general purpose molecular dynamics code that runs entirely on a single GPU. It is shown that our GPU implementation provides a performance equivalent to that of fast 30 processor core distributed memory cluster. Our results show that GPUs already provide an inexpensive alternative to such clusters and discuss implications for the future.

  20. SIMD Optimization of Linear Expressions for Programmable Graphics Hardware

    PubMed Central

    Bajaj, Chandrajit; Ihm, Insung; Min, Jungki; Oh, Jinsang

    2009-01-01

    The increased programmability of graphics hardware allows efficient graphical processing unit (GPU) implementations of a wide range of general computations on commodity PCs. An important factor in such implementations is how to fully exploit the SIMD computing capacities offered by modern graphics processors. Linear expressions in the form of ȳ = Ax̄ + b̄, where A is a matrix, and x̄, ȳ and b̄ are vectors, constitute one of the most basic operations in many scientific computations. In this paper, we propose a SIMD code optimization technique that enables efficient shader codes to be generated for evaluating linear expressions. It is shown that performance can be improved considerably by efficiently packing arithmetic operations into four-wide SIMD instructions through reordering of the operations in linear expressions. We demonstrate that the presented technique can be used effectively for programming both vertex and pixel shaders for a variety of mathematical applications, including integrating differential equations and solving a sparse linear system of equations using iterative methods. PMID:19946569

  1. Computer graphics testbed to simulate and test vision systems for space applications

    NASA Technical Reports Server (NTRS)

    Cheatham, John B.; Wu, Chris K.; Lin, Y. H.

    1991-01-01

    A system was developed for displaying computer graphics images of space objects and the use of the system was demonstrated as a testbed for evaluating vision systems for space applications. In order to evaluate vision systems, it is desirable to be able to control all factors involved in creating the images used for processing by the vision system. Considerable time and expense is involved in building accurate physical models of space objects. Also, precise location of the model relative to the viewer and accurate location of the light source require additional effort. As part of this project, graphics models of space objects such as the Solarmax satellite are created that the user can control the light direction and the relative position of the object and the viewer. The work is also aimed at providing control of hue, shading, noise and shadows for use in demonstrating and testing imaging processing techniques. The simulated camera data can provide XYZ coordinates, pitch, yaw, and roll for the models. A physical model is also being used to provide comparison of camera images with the graphics images.

  2. Virtual hand: a 3D tactile interface to virtual environments

    NASA Astrophysics Data System (ADS)

    Rogowitz, Bernice E.; Borrel, Paul

    2008-02-01

    We introduce a novel system that allows users to experience the sensation of touch in a computer graphics environment. In this system, the user places his/her hand on an array of pins, which is moved about space on a 6 degree-of-freedom robot arm. The surface of the pins defines a surface in the virtual world. This "virtual hand" can move about the virtual world. When the virtual hand encounters an object in the virtual world, the heights of the pins are adjusted so that they represent the object's shape, surface, and texture. A control system integrates pin and robot arm motions to transmit information about objects in the computer graphics world to the user. It also allows the user to edit, change and move the virtual objects, shapes and textures. This system provides a general framework for touching, manipulating, and modifying objects in a 3-D computer graphics environment, which may be useful in a wide range of applications, including computer games, computer aided design systems, and immersive virtual worlds.

  3. Image reproduction with interactive graphics

    NASA Technical Reports Server (NTRS)

    Buckner, J. D.; Council, H. W.; Edwards, T. R.

    1974-01-01

    Software application or development in optical image digital data processing requires a fast, good quality, yet inexpensive hard copy of processed images. To achieve this, a Cambo camera with an f 2.8/150-mm Xenotar lens in a Copal shutter having a Graflok back for 4 x 5 Polaroid type 57 pack-film has been interfaced to an existing Adage, AGT-30/Electro-Mechanical Research, EMR 6050 graphic computer system. Time-lapse photography in conjunction with a log to linear voltage transformation has resulted in an interactive system capable of producing a hard copy in 54 sec. The interactive aspect of the system lies in a Tektronix 4002 graphic computer terminal and its associated hard copy unit.

  4. Proceedings for the 4th Annual Micros on Parade Conference (4th, Houston, Texas, June 7-8, 1985).

    ERIC Educational Resources Information Center

    Amburgey, Valeria, Ed.; Olivier, Terry A., Ed.

    This document contains 25 presentations on five broad topics: the interface of computers with instruction; computer applications; computer graphics; computer programming; and general interest sessions. A foreword by Dr. Valeria Amburgey of Sam Houston State University precedes the following papers: (1) "Fourth and Fifth Grade Computer Centers…

  5. 10 CFR 2.1003 - Availability of material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... its license application for a geologic repository, the NRC shall make available no later than thirty... privilege in § 2.1006, graphic-oriented documentary material that includes raw data, computer runs, computer... discrepancies; (ii) Gauge, meter and computer settings; (iii) Probe locations; (iv) Logging intervals and rates...

  6. 10 CFR 2.1003 - Availability of material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... its license application for a geologic repository, the NRC shall make available no later than thirty... privilege in § 2.1006, graphic-oriented documentary material that includes raw data, computer runs, computer... discrepancies; (ii) Gauge, meter and computer settings; (iii) Probe locations; (iv) Logging intervals and rates...

  7. Augmenting reality in Direct View Optical (DVO) overlay applications

    NASA Astrophysics Data System (ADS)

    Hogan, Tim; Edwards, Tim

    2014-06-01

    The integration of overlay displays into rifle scopes can transform precision Direct View Optical (DVO) sights into intelligent interactive fire-control systems. Overlay displays can provide ballistic solutions within the sight for dramatically improved targeting, can fuse sensor video to extend targeting into nighttime or dirty battlefield conditions, and can overlay complex situational awareness information over the real-world scene. High brightness overlay solutions for dismounted soldier applications have previously been hindered by excessive power consumption, weight and bulk making them unsuitable for man-portable, battery powered applications. This paper describes the advancements and capabilities of a high brightness, ultra-low power text and graphics overlay display module developed specifically for integration into DVO weapon sight applications. Central to the overlay display module was the development of a new general purpose low power graphics controller and dual-path display driver electronics. The graphics controller interface is a simple 2-wire RS-232 serial interface compatible with existing weapon systems such as the IBEAM ballistic computer and the RULR and STORM laser rangefinders (LRF). The module features include multiple graphics layers, user configurable fonts and icons, and parameterized vector rendering, making it suitable for general purpose DVO overlay applications. The module is configured for graphics-only operation for daytime use and overlays graphics with video for nighttime applications. The miniature footprint and ultra-low power consumption of the module enables a new generation of intelligent DVO systems and has been implemented for resolutions from VGA to SXGA, in monochrome and color, and in graphics applications with and without sensor video.

  8. Future Directions in Computer Graphics and Visualization: From CG&A's Editorial Board

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Encarnacao, L. M.; Chuang, Yung-Yu; Stork, Andre

    2015-01-01

    With many new members joining the CG&A editorial board over the past year, and with a renewed commitment to not only document the state of the art in computer graphics research and applications but to anticipate and where possible foster future areas of scientific discourse and industrial practice, we asked editorial and advisory council members about where they see their fields of expertise going. The answers compiled here aren’t meant to be all encompassing or deterministic when it comes to the opportunities computer graphics and interactive visualization hold for the future. Instead, we aim to accomplish two things: give amore » more in-depth introduction of members of the editorial board to the CG&A readership and encourage cross-disciplinary discourse toward approaching, complementing, or disputing the visions laid out in this compilation.« less

  9. Social Gaming and Learning Applications: A Driving Force for the Future of Virtual and Augmented Reality?

    NASA Astrophysics Data System (ADS)

    Dörner, Ralf; Lok, Benjamin; Broll, Wolfgang

    Backed by a large consumer market, entertainment and education applications have spurred developments in the fields of real-time rendering and interactive computer graphics. Relying on Computer Graphics methodologies, Virtual Reality and Augmented Reality benefited indirectly from this; however, there is no large scale demand for VR and AR in gaming and learning. What are the shortcomings of current VR/AR technology that prevent a widespread use in these application areas? What advances in VR/AR will be necessary? And what might future “VR-enhanced” gaming and learning look like? Which role can and will Virtual Humans play? Concerning these questions, this article analyzes the current situation and provides an outlook on future developments. The focus is on social gaming and learning.

  10. uPy: a ubiquitous computer graphics Python API with Biological Modeling Applications

    PubMed Central

    Autin, L.; Johnson, G.; Hake, J.; Olson, A.; Sanner, M.

    2015-01-01

    In this paper we describe uPy, an extension module for the Python programming language that provides a uniform abstraction of the APIs of several 3D computer graphics programs called hosts, including: Blender, Maya, Cinema4D, and DejaVu. A plugin written with uPy is a unique piece of code that will run in all uPy-supported hosts. We demonstrate the creation of complex plug-ins for molecular/cellular modeling and visualization and discuss how uPy can more generally simplify programming for many types of projects (not solely science applications) intended for multi-host distribution. uPy is available at http://upy.scripps.edu PMID:24806987

  11. Combining 3D structure of real video and synthetic objects

    NASA Astrophysics Data System (ADS)

    Kim, Man-Bae; Song, Mun-Sup; Kim, Do-Kyoon

    1998-04-01

    This paper presents a new approach of combining real video and synthetic objects. The purpose of this work is to use the proposed technology in the fields of advanced animation, virtual reality, games, and so forth. Computer graphics has been used in the fields previously mentioned. Recently, some applications have added real video to graphic scenes for the purpose of augmenting the realism that the computer graphics lacks in. This approach called augmented or mixed reality can produce more realistic environment that the entire use of computer graphics. Our approach differs from the virtual reality and augmented reality in the manner that computer- generated graphic objects are combined to 3D structure extracted from monocular image sequences. The extraction of the 3D structure requires the estimation of 3D depth followed by the construction of a height map. Graphic objects are then combined to the height map. The realization of our proposed approach is carried out in the following steps: (1) We derive 3D structure from test image sequences. The extraction of the 3D structure requires the estimation of depth and the construction of a height map. Due to the contents of the test sequence, the height map represents the 3D structure. (2) The height map is modeled by Delaunay triangulation or Bezier surface and each planar surface is texture-mapped. (3) Finally, graphic objects are combined to the height map. Because 3D structure of the height map is already known, Step (3) is easily manipulated. Following this procedure, we produced an animation video demonstrating the combination of the 3D structure and graphic models. Users can navigate the realistic 3D world whose associated image is rendered on the display monitor.

  12. HeNCE: A Heterogeneous Network Computing Environment

    DOE PAGES

    Beguelin, Adam; Dongarra, Jack J.; Geist, George Al; ...

    1994-01-01

    Network computing seeks to utilize the aggregate resources of many networked computers to solve a single problem. In so doing it is often possible to obtain supercomputer performance from an inexpensive local area network. The drawback is that network computing is complicated and error prone when done by hand, especially if the computers have different operating systems and data formats and are thus heterogeneous. The heterogeneous network computing environment (HeNCE) is an integrated graphical environment for creating and running parallel programs over a heterogeneous collection of computers. It is built on a lower level package called parallel virtual machine (PVM).more » The HeNCE philosophy of parallel programming is to have the programmer graphically specify the parallelism of a computation and to automate, as much as possible, the tasks of writing, compiling, executing, debugging, and tracing the network computation. Key to HeNCE is a graphical language based on directed graphs that describe the parallelism and data dependencies of an application. Nodes in the graphs represent conventional Fortran or C subroutines and the arcs represent data and control flow. This article describes the present state of HeNCE, its capabilities, limitations, and areas of future research.« less

  13. Computer Software Management and Information Center

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Computer programs for passive anti-roll tank, earth resources laboratory applications, the NIMBUS-7 coastal zone color scanner derived products, transportable applications executive, plastic and failure analysis of composites, velocity gradient method for calculating velocities in an axisymmetric annular duct, an integrated procurement management system, data I/O PRON for the Motorola exorcisor, aerodynamic shock-layer shape, kinematic modeling, hardware library for a graphics computer, and a file archival system are documented.

  14. Increasing productivity of the McAuto CAD/CAE system by user-specific applications programming

    NASA Technical Reports Server (NTRS)

    Plotrowski, S. M.; Vu, T. H.

    1985-01-01

    Significant improvements in the productivity of the McAuto Computer-Aided Design/Computer-Aided Engineering (CAD/CAE) system were achieved by applications programming using the system's own Graphics Interactive Programming language (GRIP) and the interface capabilities with the main computer on which the system resides. The GRIP programs for creating springs, bar charts, finite element model representations and aiding management planning are presented as examples.

  15. GPU computing in medical physics: a review.

    PubMed

    Pratx, Guillem; Xing, Lei

    2011-05-01

    The graphics processing unit (GPU) has emerged as a competitive platform for computing massively parallel problems. Many computing applications in medical physics can be formulated as data-parallel tasks that exploit the capabilities of the GPU for reducing processing times. The authors review the basic principles of GPU computing as well as the main performance optimization techniques, and survey existing applications in three areas of medical physics, namely image reconstruction, dose calculation and treatment plan optimization, and image processing.

  16. Bayes' theorem application in the measure information diagnostic value assessment

    NASA Astrophysics Data System (ADS)

    Orzechowski, Piotr D.; Makal, Jaroslaw; Nazarkiewicz, Andrzej

    2006-03-01

    The paper presents Bayesian method application in the measure information diagnostic value assessment that is used in the computer-aided diagnosis system. The computer system described here has been created basing on the Bayesian Network and is used in Benign Prostatic Hyperplasia (BPH) diagnosis. The graphic diagnostic model enables to juxtapose experts' knowledge with data.

  17. [Hardware for graphics systems].

    PubMed

    Goetz, C

    1991-02-01

    In all personal computer applications, be it for private or professional use, the decision of which "brand" of computer to buy is of central importance. In the USA Apple computers are mainly used in universities, while in Europe computers of the so-called "industry standard" by IBM (or clones thereof) have been increasingly used for many years. Independently of any brand name considerations, the computer components purchased must meet the current (and projected) needs of the user. Graphic capabilities and standards, processor speed, the use of co-processors, as well as input and output devices such as "mouse", printers and scanners are discussed. This overview is meant to serve as a decision aid. Potential users are given a short but detailed summary of current technical features.

  18. Implementing Simulation Design of Experiments and Remote Execution on a High Performance Computing Cluster

    DTIC Science & Technology

    2007-09-01

    example, an application developed in Sun’s Netbeans [2007] integrated development environment (IDE) uses Swing class object for graphical user... Netbeans Version 5.5.1 [Computer Software]. Santa Clara, CA: Sun Microsystems. Process Modeler Version 7.0 [Computer Software]. Santa Clara, Ca

  19. Learning about Computers through Art History and Art Practice.

    ERIC Educational Resources Information Center

    Lichtman, Loy

    1996-01-01

    Describes a Victoria University (Australia) program that combines art history, computer graphics, and studio practice. Discusses the social applications of technology, the creation and manipulation of computer imagery, and the ways that these impact traditional concepts of art. The program has proven particularly successful with female students.…

  20. Computer animation for minimally invasive surgery: computer system requirements and preferred implementations

    NASA Astrophysics Data System (ADS)

    Pieper, Steven D.; McKenna, Michael; Chen, David; McDowall, Ian E.

    1994-04-01

    We are interested in the application of computer animation to surgery. Our current project, a navigation and visualization tool for knee arthroscopy, relies on real-time computer graphics and the human interface technologies associated with virtual reality. We believe that this new combination of techniques will lead to improved surgical outcomes and decreased health care costs. To meet these expectations in the medical field, the system must be safe, usable, and cost-effective. In this paper, we outline some of the most important hardware and software specifications in the areas of video input and output, spatial tracking, stereoscopic displays, computer graphics models and libraries, mass storage and network interfaces, and operating systems. Since this is a fairly new combination of technologies and a new application, our justification for our specifications are drawn from the current generation of surgical technology and by analogy to other fields where virtual reality technology has been more extensively applied and studied.

  1. Advanced display object selection methods for enhancing user-computer productivity

    NASA Technical Reports Server (NTRS)

    Osga, Glenn A.

    1993-01-01

    The User-Interface Technology Branch at NCCOSC RDT&E Division has been conducting a series of studies to address the suitability of commercial off-the-shelf (COTS) graphic user-interface (GUI) methods for efficiency and performance in critical naval combat systems. This paper presents an advanced selection algorithm and method developed to increase user performance when making selections on tactical displays. The method has also been applied with considerable success to a variety of cursor and pointing tasks. Typical GUI's allow user selection by: (1) moving a cursor with a pointing device such as a mouse, trackball, joystick, touchscreen; and (2) placing the cursor on the object. Examples of GUI objects are the buttons, icons, folders, scroll bars, etc. used in many personal computer and workstation applications. This paper presents an improved method of selection and the theoretical basis for the significant performance gains achieved with various input devices tested. The method is applicable to all GUI styles and display sizes, and is particularly useful for selections on small screens such as notebook computers. Considering the amount of work-hours spent pointing and clicking across all styles of available graphic user-interfaces, the cost/benefit in applying this method to graphic user-interfaces is substantial, with the potential for increasing productivity across thousands of users and applications.

  2. Transputer parallel processing at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Ellis, Graham K.

    1989-01-01

    The transputer parallel processing lab at NASA Lewis Research Center (LeRC) consists of 69 processors (transputers) that can be connected into various networks for use in general purpose concurrent processing applications. The main goal of the lab is to develop concurrent scientific and engineering application programs that will take advantage of the computational speed increases available on a parallel processor over the traditional sequential processor. Current research involves the development of basic programming tools. These tools will help standardize program interfaces to specific hardware by providing a set of common libraries for applications programmers. The thrust of the current effort is in developing a set of tools for graphics rendering/animation. The applications programmer currently has two options for on-screen plotting. One option can be used for static graphics displays and the other can be used for animated motion. The option for static display involves the use of 2-D graphics primitives that can be called from within an application program. These routines perform the standard 2-D geometric graphics operations in real-coordinate space as well as allowing multiple windows on a single screen.

  3. A Linux Workstation for High Performance Graphics

    NASA Technical Reports Server (NTRS)

    Geist, Robert; Westall, James

    2000-01-01

    The primary goal of this effort was to provide a low-cost method of obtaining high-performance 3-D graphics using an industry standard library (OpenGL) on PC class computers. Previously, users interested in doing substantial visualization or graphical manipulation were constrained to using specialized, custom hardware most often found in computers from Silicon Graphics (SGI). We provided an alternative to expensive SGI hardware by taking advantage of third-party, 3-D graphics accelerators that have now become available at very affordable prices. To make use of this hardware our goal was to provide a free, redistributable, and fully-compatible OpenGL work-alike library so that existing bodies of code could simply be recompiled. for PC class machines running a free version of Unix. This should allow substantial cost savings while greatly expanding the population of people with access to a serious graphics development and viewing environment. This should offer a means for NASA to provide a spectrum of graphics performance to its scientists, supplying high-end specialized SGI hardware for high-performance visualization while fulfilling the requirements of medium and lower performance applications with generic, off-the-shelf components and still maintaining compatibility between the two.

  4. Exploiting graphics processing units for computational biology and bioinformatics.

    PubMed

    Payne, Joshua L; Sinnott-Armstrong, Nicholas A; Moore, Jason H

    2010-09-01

    Advances in the video gaming industry have led to the production of low-cost, high-performance graphics processing units (GPUs) that possess more memory bandwidth and computational capability than central processing units (CPUs), the standard workhorses of scientific computing. With the recent release of generalpurpose GPUs and NVIDIA's GPU programming language, CUDA, graphics engines are being adopted widely in scientific computing applications, particularly in the fields of computational biology and bioinformatics. The goal of this article is to concisely present an introduction to GPU hardware and programming, aimed at the computational biologist or bioinformaticist. To this end, we discuss the primary differences between GPU and CPU architecture, introduce the basics of the CUDA programming language, and discuss important CUDA programming practices, such as the proper use of coalesced reads, data types, and memory hierarchies. We highlight each of these topics in the context of computing the all-pairs distance between instances in a dataset, a common procedure in numerous disciplines of scientific computing. We conclude with a runtime analysis of the GPU and CPU implementations of the all-pairs distance calculation. We show our final GPU implementation to outperform the CPU implementation by a factor of 1700.

  5. Employing OpenCL to Accelerate Ab Initio Calculations on Graphics Processing Units.

    PubMed

    Kussmann, Jörg; Ochsenfeld, Christian

    2017-06-13

    We present an extension of our graphics processing units (GPU)-accelerated quantum chemistry package to employ OpenCL compute kernels, which can be executed on a wide range of computing devices like CPUs, Intel Xeon Phi, and AMD GPUs. Here, we focus on the use of AMD GPUs and discuss differences as compared to CUDA-based calculations on NVIDIA GPUs. First illustrative timings are presented for hybrid density functional theory calculations using serial as well as parallel compute environments. The results show that AMD GPUs are as fast or faster than comparable NVIDIA GPUs and provide a viable alternative for quantum chemical applications.

  6. Advanced computer graphic techniques for laser range finder (LRF) simulation

    NASA Astrophysics Data System (ADS)

    Bedkowski, Janusz; Jankowski, Stanislaw

    2008-11-01

    This paper show an advanced computer graphic techniques for laser range finder (LRF) simulation. The LRF is the common sensor for unmanned ground vehicle, autonomous mobile robot and security applications. The cost of the measurement system is extremely high, therefore the simulation tool is designed. The simulation gives an opportunity to execute algorithm such as the obstacle avoidance[1], slam for robot localization[2], detection of vegetation and water obstacles in surroundings of the robot chassis[3], LRF measurement in crowd of people[1]. The Axis Aligned Bounding Box (AABB) and alternative technique based on CUDA (NVIDIA Compute Unified Device Architecture) is presented.

  7. Program For Generating Interactive Displays

    NASA Technical Reports Server (NTRS)

    Costenbader, Jay; Moleski, Walt; Szczur, Martha; Howell, David; Engelberg, Norm; Li, Tin P.; Misra, Dharitri; Miller, Philip; Neve, Leif; Wolf, Karl; hide

    1991-01-01

    Sun/Unix version of Transportable Applications Environment Plus (TAE+) computer program provides integrated, portable software environment for developing and running interactive window, text, and graphical-object-based application software systems. Enables programmer or nonprogrammer to construct easily custom software interface between user and application program and to move resulting interface program and its application program to different computers. Plus viewed as productivity tool for application developers and application end users, who benefit from resultant consistent and well-designed user interface sheltering them from intricacies of computer. Available in form suitable for following six different groups of computers: DEC VAX station and other VMS VAX computers, Macintosh II computers running AUX, Apollo Domain Series 3000, DEC VAX and reduced-instruction-set-computer workstations running Ultrix, Sun 3- and 4-series workstations running Sun OS and IBM RT/PC and PS/2 compute

  8. A space systems perspective of graphics simulation integration

    NASA Technical Reports Server (NTRS)

    Brown, R.; Gott, C.; Sabionski, G.; Bochsler, D.

    1987-01-01

    Creation of an interactive display environment can expose issues in system design and operation not apparent from nongraphics development approaches. Large amounts of information can be presented in a short period of time. Processes can be simulated and observed before committing resources. In addition, changes in the economics of computing have enabled broader graphics usage beyond traditional engineering and design into integrated telerobotics and Artificial Intelligence (AI) applications. The highly integrated nature of space operations often tend to rely upon visually intensive man-machine communication to ensure success. Graphics simulation activities at the Mission Planning and Analysis Division (MPAD) of NASA's Johnson Space Center are focusing on the evaluation of a wide variety of graphical analysis within the context of present and future space operations. Several telerobotics and AI applications studies utilizing graphical simulation are described. The presentation includes portions of videotape illustrating technology developments involving: (1) coordinated manned maneuvering unit and remote manipulator system operations, (2) a helmet mounted display system, and (3) an automated rendezous application utilizing expert system and voice input/output technology.

  9. Interactive graphics system for IBM 1800 computer

    NASA Technical Reports Server (NTRS)

    Carleton, T. P.; Howell, D. R.; Mish, W. H.

    1972-01-01

    A FORTRAN compatible software system that has been developed to provide an interactive graphics capability for the IBM 1800 computer is described. The interactive graphics hardware consists of a Hewlett-Packard 1300A cathode ray tube, Sanders photopen, digital to analog converters, pulse counter, and necessary interface. The hardware is available from IBM as several related RPQ's. The software developed permits the application programmer to use IBM 1800 FORTRAN to develop a display on the cathode ray tube which consists of one or more independent units called pictures. The software permits a great deal of flexibility in the manipulation of these pictures and allows the programmer to use the photopen to interact with the displayed data and make decisions based on information returned by the photopen.

  10. Application of interactive computer graphics in wind-tunnel dynamic model testing

    NASA Technical Reports Server (NTRS)

    Doggett, R. V., Jr.; Hammond, C. E.

    1975-01-01

    The computer-controlled data-acquisition system recently installed for use with a transonic dynamics tunnel was described. This includes a discussion of the hardware/software features of the system. A subcritical response damping technique, called the combined randomdec/moving-block method, for use in windtunnel-model flutter testing, that has been implemented on the data-acquisition system, is described in some detail. Some results using the method are presented and the importance of using interactive graphics in applying the technique in near real time during wind-tunnel test operations is discussed.

  11. New space sensor and mesoscale data analysis

    NASA Technical Reports Server (NTRS)

    Hickey, John S.

    1987-01-01

    The developed Earth Science and Application Division (ESAD) system/software provides the research scientist with the following capabilities: an extensive data base management capibility to convert various experiment data types into a standard format; and interactive analysis and display package (AVE80); an interactive imaging/color graphics capability utilizing the Apple III and IBM PC workstations integrated into the ESAD computer system; and local and remote smart-terminal capability which provides color video, graphics, and Laserjet output. Recommendations for updating and enhancing the performance of the ESAD computer system are listed.

  12. Application of AI techniques to a voice-actuated computer system for reconstructing and displaying magnetic resonance imaging data

    NASA Astrophysics Data System (ADS)

    Sherley, Patrick L.; Pujol, Alfonso, Jr.; Meadow, John S.

    1990-07-01

    To provide a means of rendering complex computer architectures languages and input/output modalities transparent to experienced and inexperienced users research is being conducted to develop a voice driven/voice response computer graphics imaging system. The system will be used for reconstructing and displaying computed tomography and magnetic resonance imaging scan data. In conjunction with this study an artificial intelligence (Al) control strategy was developed to interface the voice components and support software to the computer graphics functions implemented on the Sun Microsystems 4/280 color graphics workstation. Based on generated text and converted renditions of verbal utterances by the user the Al control strategy determines the user''s intent and develops and validates a plan. The program type and parameters within the plan are used as input to the graphics system for reconstructing and displaying medical image data corresponding to that perceived intent. If the plan is not valid the control strategy queries the user for additional information. The control strategy operates in a conversation mode and vocally provides system status reports. A detailed examination of the various AT techniques is presented with major emphasis being placed on their specific roles within the total control strategy structure. 1.

  13. Analyzing Spacecraft Telecommunication Systems

    NASA Technical Reports Server (NTRS)

    Kordon, Mark; Hanks, David; Gladden, Roy; Wood, Eric

    2004-01-01

    Multi-Mission Telecom Analysis Tool (MMTAT) is a C-language computer program for analyzing proposed spacecraft telecommunication systems. MMTAT utilizes parameterized input and computational models that can be run on standard desktop computers to perform fast and accurate analyses of telecommunication links. MMTAT is easy to use and can easily be integrated with other software applications and run as part of almost any computational simulation. It is distributed as either a stand-alone application program with a graphical user interface or a linkable library with a well-defined set of application programming interface (API) calls. As a stand-alone program, MMTAT provides both textual and graphical output. The graphs make it possible to understand, quickly and easily, how telecommunication performance varies with variations in input parameters. A delimited text file that can be read by any spreadsheet program is generated at the end of each run. The API in the linkable-library form of MMTAT enables the user to control simulation software and to change parameters during a simulation run. Results can be retrieved either at the end of a run or by use of a function call at any time step.

  14. Downsizer - A Graphical User Interface-Based Application for Browsing, Acquiring, and Formatting Time-Series Data for Hydrologic Modeling

    USGS Publications Warehouse

    Ward-Garrison, Christian; Markstrom, Steven L.; Hay, Lauren E.

    2009-01-01

    The U.S. Geological Survey Downsizer is a computer application that selects, downloads, verifies, and formats station-based time-series data for environmental-resource models, particularly the Precipitation-Runoff Modeling System. Downsizer implements the client-server software architecture. The client presents a map-based, graphical user interface that is intuitive to modelers; the server provides streamflow and climate time-series data from over 40,000 measurement stations across the United States. This report is the Downsizer user's manual and provides (1) an overview of the software design, (2) installation instructions, (3) a description of the graphical user interface, (4) a description of selected output files, and (5) troubleshooting information.

  15. Packaging printed circuit boards: A production application of interactive graphics

    NASA Technical Reports Server (NTRS)

    Perrill, W. A.

    1975-01-01

    The structure and use of an Interactive Graphics Packaging Program (IGPP), conceived to apply computer graphics to the design of packaging electronic circuits onto printed circuit boards (PCB), were described. The intent was to combine the data storage and manipulative power of the computer with the imaginative, intuitive power of a human designer. The hardware includes a CDC 6400 computer and two CDC 777 terminals with CRT screens, light pens, and keyboards. The program is written in FORTRAN 4 extended with the exception of a few functions coded in COMPASS (assembly language). The IGPP performs four major functions for the designer: (1) data input and display, (2) component placement (automatic or manual), (3) conductor path routing (automatic or manual), and (4) data output. The most complex PCB packaged to date measured 16.5 cm by 19 cm and contained 380 components, two layers of ground planes and four layers of conductors mixed with ground planes.

  16. HiRel - Reliability/availability integrated workstation tool

    NASA Technical Reports Server (NTRS)

    Bavuso, Salvatore J.; Dugan, Joanne B.

    1992-01-01

    The HiRel software tool is described and demonstrated by application to the mission avionics subsystem of the Advanced System Integration Demonstrations (ASID) system that utilizes the PAVE PILLAR approach. HiRel marks another accomplishment toward the goal of producing a totally integrated computer-aided design (CAD) workstation design capability. Since a reliability engineer generally represents a reliability model graphically before it can be solved, the use of a graphical input description language increases productivity and decreases the incidence of error. The graphical postprocessor module HARPO makes it possible for reliability engineers to quickly analyze huge amounts of reliability/availability data to observe trends due to exploratory design changes. The addition of several powerful HARP modeling engines provides the user with a reliability/availability modeling capability for a wide range of system applications all integrated under a common interactive graphical input-output capability.

  17. Real-time autocorrelator for fluorescence correlation spectroscopy based on graphical-processor-unit architecture: method, implementation, and comparative studies

    NASA Astrophysics Data System (ADS)

    Laracuente, Nicholas; Grossman, Carl

    2013-03-01

    We developed an algorithm and software to calculate autocorrelation functions from real-time photon-counting data using the fast, parallel capabilities of graphical processor units (GPUs). Recent developments in hardware and software have allowed for general purpose computing with inexpensive GPU hardware. These devices are more suited for emulating hardware autocorrelators than traditional CPU-based software applications by emphasizing parallel throughput over sequential speed. Incoming data are binned in a standard multi-tau scheme with configurable points-per-bin size and are mapped into a GPU memory pattern to reduce time-expensive memory access. Applications include dynamic light scattering (DLS) and fluorescence correlation spectroscopy (FCS) experiments. We ran the software on a 64-core graphics pci card in a 3.2 GHz Intel i5 CPU based computer running Linux. FCS measurements were made on Alexa-546 and Texas Red dyes in a standard buffer (PBS). Software correlations were compared to hardware correlator measurements on the same signals. Supported by HHMI and Swarthmore College

  18. A Computer-Aided Writing Program for Learning Disabled Adolescents.

    ERIC Educational Resources Information Center

    Fais, Laurie; Wanderman, Richard

    The paper describes the application of a computer-assisted writing program in a special high school for learning disabled and dyslexic students and reports on a study of the program's effectiveness. Particular advantages of the Macintosh Computer for such a program are identified including use of the mouse pointing tool, graphic icons to identify…

  19. An Application of a Computer Instructional Management Package.

    ERIC Educational Resources Information Center

    Sullivan, David W.

    Following the presentation of a conceptual framework for computer-based education (CBE), this paper examines the use of one aspect of CBE, computer-managed instruction (CMI), in a Major Appliance Serving Program. The paper begins with definitions and a graphic illustration of CBE and its components and uses, i.e., CMI, tutorial or…

  20. Transactions and Answer Judging in Multimedia Instruction: A Way to Transact with Features Appearing in Video and Graphic Images.

    ERIC Educational Resources Information Center

    Casey, Carl

    1992-01-01

    Discussion of transactions in computer-based instruction for ill-structured and visual domains focuses on two transactions developed for meteorology training that provide the capability to interact with video and graphic images at a very detailed level. Potential applications for the transactions are suggested, and early evaluation reports are…

  1. Creating Realistic 3D Graphics with Excel at High School--Vector Algebra in Practice

    ERIC Educational Resources Information Center

    Benacka, Jan

    2015-01-01

    The article presents the results of an experiment in which Excel applications that depict rotatable and sizable orthographic projection of simple 3D figures with face overlapping were developed with thirty gymnasium (high school) students of age 17-19 as an introduction to 3D computer graphics. A questionnaire survey was conducted to find out…

  2. Human/Computer Interfacing in Educational Environments.

    ERIC Educational Resources Information Center

    Sarti, Luigi

    1992-01-01

    This discussion of educational applications of user interfaces covers the benefits of adopting database techniques in organizing multimedia materials; the evolution of user interface technology, including teletype interfaces, analogic overlay graphics, window interfaces, and adaptive systems; application design problems, including the…

  3. The multifacet graphically contracted function method. I. Formulation and implementation

    NASA Astrophysics Data System (ADS)

    Shepard, Ron; Gidofalvi, Gergely; Brozell, Scott R.

    2014-08-01

    The basic formulation for the multifacet generalization of the graphically contracted function (MFGCF) electronic structure method is presented. The analysis includes the discussion of linear dependency and redundancy of the arc factor parameters, the computation of reduced density matrices, Hamiltonian matrix construction, spin-density matrix construction, the computation of optimization gradients for single-state and state-averaged calculations, graphical wave function analysis, and the efficient computation of configuration state function and Slater determinant expansion coefficients. Timings are given for Hamiltonian matrix element and analytic optimization gradient computations for a range of model problems for full-CI Shavitt graphs, and it is observed that both the energy and the gradient computation scale as O(N2n4) for N electrons and n orbitals. The important arithmetic operations are within dense matrix-matrix product computational kernels, resulting in a computationally efficient procedure. An initial implementation of the method is used to present applications to several challenging chemical systems, including N2 dissociation, cubic H8 dissociation, the symmetric dissociation of H2O, and the insertion of Be into H2. The results are compared to the exact full-CI values and also to those of the previous single-facet GCF expansion form.

  4. The multifacet graphically contracted function method. I. Formulation and implementation.

    PubMed

    Shepard, Ron; Gidofalvi, Gergely; Brozell, Scott R

    2014-08-14

    The basic formulation for the multifacet generalization of the graphically contracted function (MFGCF) electronic structure method is presented. The analysis includes the discussion of linear dependency and redundancy of the arc factor parameters, the computation of reduced density matrices, Hamiltonian matrix construction, spin-density matrix construction, the computation of optimization gradients for single-state and state-averaged calculations, graphical wave function analysis, and the efficient computation of configuration state function and Slater determinant expansion coefficients. Timings are given for Hamiltonian matrix element and analytic optimization gradient computations for a range of model problems for full-CI Shavitt graphs, and it is observed that both the energy and the gradient computation scale as O(N(2)n(4)) for N electrons and n orbitals. The important arithmetic operations are within dense matrix-matrix product computational kernels, resulting in a computationally efficient procedure. An initial implementation of the method is used to present applications to several challenging chemical systems, including N2 dissociation, cubic H8 dissociation, the symmetric dissociation of H2O, and the insertion of Be into H2. The results are compared to the exact full-CI values and also to those of the previous single-facet GCF expansion form.

  5. LTCP 2D Graphical User Interface. Application Description and User's Guide

    NASA Technical Reports Server (NTRS)

    Ball, Robert; Navaz, Homayun K.

    1996-01-01

    A graphical user interface (GUI) written for NASA's LTCP (Liquid Thrust Chamber Performance) 2 dimensional computational fluid dynamic code is described. The GUI is written in C++ for a desktop personal computer running under a Microsoft Windows operating environment. Through the use of common and familiar dialog boxes, features, and tools, the user can easily and quickly create and modify input files for the LTCP code. In addition, old input files used with the LTCP code can be opened and modified using the GUI. The application is written in C++ for a desktop personal computer running under a Microsoft Windows operating environment. The program and its capabilities are presented, followed by a detailed description of each menu selection and the method of creating an input file for LTCP. A cross reference is included to help experienced users quickly find the variables which commonly need changes. Finally, the system requirements and installation instructions are provided.

  6. Thoth: Software for data visualization & statistics

    NASA Astrophysics Data System (ADS)

    Laher, R. R.

    2016-10-01

    Thoth is a standalone software application with a graphical user interface for making it easy to query, display, visualize, and analyze tabular data stored in relational databases and data files. From imported data tables, it can create pie charts, bar charts, scatter plots, and many other kinds of data graphs with simple menus and mouse clicks (no programming required), by leveraging the open-source JFreeChart library. It also computes useful table-column data statistics. A mature tool, having underwent development and testing over several years, it is written in the Java computer language, and hence can be run on any computing platform that has a Java Virtual Machine and graphical-display capability. It can be downloaded and used by anyone free of charge, and has general applicability in science, engineering, medical, business, and other fields. Special tools and features for common tasks in astronomy and astrophysical research are included in the software.

  7. HiRel: Hybrid Automated Reliability Predictor (HARP) integrated reliability tool system, (version 7.0). Volume 3: HARP Graphics Oriented (GO) input user's guide

    NASA Technical Reports Server (NTRS)

    Bavuso, Salvatore J.; Rothmann, Elizabeth; Mittal, Nitin; Koppen, Sandra Howell

    1994-01-01

    The Hybrid Automated Reliability Predictor (HARP) integrated Reliability (HiRel) tool system for reliability/availability prediction offers a toolbox of integrated reliability/availability programs that can be used to customize the user's application in a workstation or nonworkstation environment. HiRel consists of interactive graphical input/output programs and four reliability/availability modeling engines that provide analytical and simulative solutions to a wide host of highly reliable fault-tolerant system architectures and is also applicable to electronic systems in general. The tool system was designed at the outset to be compatible with most computing platforms and operating systems, and some programs have been beta tested within the aerospace community for over 8 years. This document is a user's guide for the HiRel graphical preprocessor Graphics Oriented (GO) program. GO is a graphical user interface for the HARP engine that enables the drawing of reliability/availability models on a monitor. A mouse is used to select fault tree gates or Markov graphical symbols from a menu for drawing.

  8. Wide-angle display developments by computer graphics

    NASA Technical Reports Server (NTRS)

    Fetter, William A.

    1989-01-01

    Computer graphics can now expand its new subset, wide-angle projection, to be as significant a generic capability as computer graphics itself. Some prior work in computer graphics is presented which leads to an attractive further subset of wide-angle projection, called hemispheric projection, to be a major communication media. Hemispheric film systems have long been present and such computer graphics systems are in use in simulators. This is the leading edge of capabilities which should ultimately be as ubiquitous as CRTs (cathode-ray tubes). These assertions are not from degrees in science or only from a degree in graphic design, but in a history of computer graphics innovations, laying groundwork by demonstration. The author believes that it is timely to look at several development strategies, since hemispheric projection is now at a point comparable to the early stages of computer graphics, requiring similar patterns of development again.

  9. Implementation of Networking-by-Touch to Small Unit, Network-Enabled Operations

    DTIC Science & Technology

    2010-09-01

    Monitoring – Telemanipulation ............... 54  5.  Entertainment and Educational Applications...................... 55  6.  Tactile Displays Embedded...military situational awareness systems, text and graphics applications, medical applications, entertainment and educational applications...25] ) Electromechanical transducer Electromagnetic field sensors Computer driver 21 Now, consider another simple scenario: John loves music

  10. Common Graphics Library (CGL). Volume 2: Low-level user's guide

    NASA Technical Reports Server (NTRS)

    Taylor, Nancy L.; Hammond, Dana P.; Theophilos, Pauline M.

    1989-01-01

    The intent is to instruct the users of the Low-Level routines of the Common Graphics Library (CGL). The Low-Level routines form an application-independent graphics package enabling the user community to construct and design scientific charts conforming to the publication and/or viewgraph process. The Low-Level routines allow the user to design unique or unusual report-quality charts from a set of graphics utilities. The features of these routines can be used stand-alone or in conjunction with other packages to enhance or augment their capabilities. This library is written in ANSI FORTRAN 77, and currently uses a CORE-based underlying graphics package, and is therefore machine-independent, providing support for centralized and/or distributed computer systems.

  11. Using parallel computing for the display and simulation of the space debris environment

    NASA Astrophysics Data System (ADS)

    Möckel, M.; Wiedemann, C.; Flegel, S.; Gelhaus, J.; Vörsmann, P.; Klinkrad, H.; Krag, H.

    2011-07-01

    Parallelism is becoming the leading paradigm in today's computer architectures. In order to take full advantage of this development, new algorithms have to be specifically designed for parallel execution while many old ones have to be upgraded accordingly. One field in which parallel computing has been firmly established for many years is computer graphics. Calculating and displaying three-dimensional computer generated imagery in real time requires complex numerical operations to be performed at high speed on a large number of objects. Since most of these objects can be processed independently, parallel computing is applicable in this field. Modern graphics processing units (GPUs) have become capable of performing millions of matrix and vector operations per second on multiple objects simultaneously. As a side project, a software tool is currently being developed at the Institute of Aerospace Systems that provides an animated, three-dimensional visualization of both actual and simulated space debris objects. Due to the nature of these objects it is possible to process them individually and independently from each other. Therefore, an analytical orbit propagation algorithm has been implemented to run on a GPU. By taking advantage of all its processing power a huge performance increase, compared to its CPU-based counterpart, could be achieved. For several years efforts have been made to harness this computing power for applications other than computer graphics. Software tools for the simulation of space debris are among those that could profit from embracing parallelism. With recently emerged software development tools such as OpenCL it is possible to transfer the new algorithms used in the visualization outside the field of computer graphics and implement them, for example, into the space debris simulation environment. This way they can make use of parallel hardware such as GPUs and Multi-Core-CPUs for faster computation. In this paper the visualization software will be introduced, including a comparison between the serial and the parallel method of orbit propagation. Ways of how to use the benefits of the latter method for space debris simulation will be discussed. An introduction to OpenCL will be given as well as an exemplary algorithm from the field of space debris simulation.

  12. Using parallel computing for the display and simulation of the space debris environment

    NASA Astrophysics Data System (ADS)

    Moeckel, Marek; Wiedemann, Carsten; Flegel, Sven Kevin; Gelhaus, Johannes; Klinkrad, Heiner; Krag, Holger; Voersmann, Peter

    Parallelism is becoming the leading paradigm in today's computer architectures. In order to take full advantage of this development, new algorithms have to be specifically designed for parallel execution while many old ones have to be upgraded accordingly. One field in which parallel computing has been firmly established for many years is computer graphics. Calculating and displaying three-dimensional computer generated imagery in real time requires complex numerical operations to be performed at high speed on a large number of objects. Since most of these objects can be processed independently, parallel computing is applicable in this field. Modern graphics processing units (GPUs) have become capable of performing millions of matrix and vector operations per second on multiple objects simultaneously. As a side project, a software tool is currently being developed at the Institute of Aerospace Systems that provides an animated, three-dimensional visualization of both actual and simulated space debris objects. Due to the nature of these objects it is possible to process them individually and independently from each other. Therefore, an analytical orbit propagation algorithm has been implemented to run on a GPU. By taking advantage of all its processing power a huge performance increase, compared to its CPU-based counterpart, could be achieved. For several years efforts have been made to harness this computing power for applications other than computer graphics. Software tools for the simulation of space debris are among those that could profit from embracing parallelism. With recently emerged software development tools such as OpenCL it is possible to transfer the new algorithms used in the visualization outside the field of computer graphics and implement them, for example, into the space debris simulation environment. This way they can make use of parallel hardware such as GPUs and Multi-Core-CPUs for faster computation. In this paper the visualization software will be introduced, including a comparison between the serial and the parallel method of orbit propagation. Ways of how to use the benefits of the latter method for space debris simulation will be discussed. An introduction of OpenCL will be given as well as an exemplary algorithm from the field of space debris simulation.

  13. Using the stereokinetic effect to convey depth - Computationally efficient depth-from-motion displays

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.; Proffitt, Dennis R.

    1992-01-01

    Recent developments in microelectronics have encouraged the use of 3D data bases to create compelling volumetric renderings of graphical objects. However, even with the computational capabilities of current-generation graphical systems, real-time displays of such objects are difficult, particularly when dynamic spatial transformations are involved. In this paper we discuss a type of visual stimulus (the stereokinetic effect display) that is computationally far less complex than a true three-dimensional transformation but yields an equally compelling depth impression, often perceptually indiscriminable from the true spatial transformation. Several possible applications for this technique are discussed (e.g., animating contour maps and air traffic control displays so as to evoke accurate depth percepts).

  14. Flexible Animation Computer Program

    NASA Technical Reports Server (NTRS)

    Stallcup, Scott S.

    1990-01-01

    FLEXAN (Flexible Animation), computer program animating structural dynamics on Evans and Sutherland PS300-series graphics workstation with VAX/VMS host computer. Typical application is animation of spacecraft undergoing structural stresses caused by thermal and vibrational effects. Displays distortions in shape of spacecraft. Program displays single natural mode of vibration, mode history, or any general deformation of flexible structure. Written in FORTRAN 77.

  15. A DDC Bibliography on On-Line Computer Systems, Volume I.

    ERIC Educational Resources Information Center

    Defense Documentation Center, Alexandria, VA.

    This bibliography lists 162 unclassified - unlimited reports acquired by DDC, with their abstracts, grouped into five general subject areas: programing (computers), information retrieval, time sharing, graphics, and general applications. The topical arrangement is complemented by four indexes: corporate author/monitoring agency, personal author,…

  16. 10 CFR 2.1003 - Availability of material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... months in advance of submitting its license application for a geologic repository, the NRC shall make... of privilege in § 2.1006, graphic-oriented documentary material that includes raw data, computer runs, computer programs and codes, field notes, laboratory notes, maps, diagrams and photographs, which have been...

  17. 10 CFR 2.1003 - Availability of material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... months in advance of submitting its license application for a geologic repository, the NRC shall make... of privilege in § 2.1006, graphic-oriented documentary material that includes raw data, computer runs, computer programs and codes, field notes, laboratory notes, maps, diagrams and photographs, which have been...

  18. A Real-Time High Performance Computation Architecture for Multiple Moving Target Tracking Based on Wide-Area Motion Imagery via Cloud and Graphic Processing Units

    PubMed Central

    Liu, Kui; Wei, Sixiao; Chen, Zhijiang; Jia, Bin; Chen, Genshe; Ling, Haibin; Sheaff, Carolyn; Blasch, Erik

    2017-01-01

    This paper presents the first attempt at combining Cloud with Graphic Processing Units (GPUs) in a complementary manner within the framework of a real-time high performance computation architecture for the application of detecting and tracking multiple moving targets based on Wide Area Motion Imagery (WAMI). More specifically, the GPU and Cloud Moving Target Tracking (GC-MTT) system applied a front-end web based server to perform the interaction with Hadoop and highly parallelized computation functions based on the Compute Unified Device Architecture (CUDA©). The introduced multiple moving target detection and tracking method can be extended to other applications such as pedestrian tracking, group tracking, and Patterns of Life (PoL) analysis. The cloud and GPUs based computing provides an efficient real-time target recognition and tracking approach as compared to methods when the work flow is applied using only central processing units (CPUs). The simultaneous tracking and recognition results demonstrate that a GC-MTT based approach provides drastically improved tracking with low frame rates over realistic conditions. PMID:28208684

  19. A Real-Time High Performance Computation Architecture for Multiple Moving Target Tracking Based on Wide-Area Motion Imagery via Cloud and Graphic Processing Units.

    PubMed

    Liu, Kui; Wei, Sixiao; Chen, Zhijiang; Jia, Bin; Chen, Genshe; Ling, Haibin; Sheaff, Carolyn; Blasch, Erik

    2017-02-12

    This paper presents the first attempt at combining Cloud with Graphic Processing Units (GPUs) in a complementary manner within the framework of a real-time high performance computation architecture for the application of detecting and tracking multiple moving targets based on Wide Area Motion Imagery (WAMI). More specifically, the GPU and Cloud Moving Target Tracking (GC-MTT) system applied a front-end web based server to perform the interaction with Hadoop and highly parallelized computation functions based on the Compute Unified Device Architecture (CUDA©). The introduced multiple moving target detection and tracking method can be extended to other applications such as pedestrian tracking, group tracking, and Patterns of Life (PoL) analysis. The cloud and GPUs based computing provides an efficient real-time target recognition and tracking approach as compared to methods when the work flow is applied using only central processing units (CPUs). The simultaneous tracking and recognition results demonstrate that a GC-MTT based approach provides drastically improved tracking with low frame rates over realistic conditions.

  20. A Survey Of Techniques for Managing and Leveraging Caches in GPUs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittal, Sparsh

    2014-09-01

    Initially introduced as special-purpose accelerators for graphics applications, graphics processing units (GPUs) have now emerged as general purpose computing platforms for a wide range of applications. To address the requirements of these applications, modern GPUs include sizable hardware-managed caches. However, several factors, such as unique architecture of GPU, rise of CPU–GPU heterogeneous computing, etc., demand effective management of caches to achieve high performance and energy efficiency. Recently, several techniques have been proposed for this purpose. In this paper, we survey several architectural and system-level techniques proposed for managing and leveraging GPU caches. We also discuss the importance and challenges ofmore » cache management in GPUs. The aim of this paper is to provide the readers insights into cache management techniques for GPUs and motivate them to propose even better techniques for leveraging the full potential of caches in the GPUs of tomorrow.« less

  1. Acceleration of GPU-based Krylov solvers via data transfer reduction

    DOE PAGES

    Anzt, Hartwig; Tomov, Stanimire; Luszczek, Piotr; ...

    2015-04-08

    Krylov subspace iterative solvers are often the method of choice when solving large sparse linear systems. At the same time, hardware accelerators such as graphics processing units continue to offer significant floating point performance gains for matrix and vector computations through easy-to-use libraries of computational kernels. However, as these libraries are usually composed of a well optimized but limited set of linear algebra operations, applications that use them often fail to reduce certain data communications, and hence fail to leverage the full potential of the accelerator. In this study, we target the acceleration of Krylov subspace iterative methods for graphicsmore » processing units, and in particular the Biconjugate Gradient Stabilized solver that significant improvement can be achieved by reformulating the method to reduce data-communications through application-specific kernels instead of using the generic BLAS kernels, e.g. as provided by NVIDIA’s cuBLAS library, and by designing a graphics processing unit specific sparse matrix-vector product kernel that is able to more efficiently use the graphics processing unit’s computing power. Furthermore, we derive a model estimating the performance improvement, and use experimental data to validate the expected runtime savings. Finally, considering that the derived implementation achieves significantly higher performance, we assert that similar optimizations addressing algorithm structure, as well as sparse matrix-vector, are crucial for the subsequent development of high-performance graphics processing units accelerated Krylov subspace iterative methods.« less

  2. High-performance floating-point image computing workstation for medical applications

    NASA Astrophysics Data System (ADS)

    Mills, Karl S.; Wong, Gilman K.; Kim, Yongmin

    1990-07-01

    The medical imaging field relies increasingly on imaging and graphics techniques in diverse applications with needs similar to (or more stringent than) those of the military, industrial and scientific communities. However, most image processing and graphics systems available for use in medical imaging today are either expensive, specialized, or in most cases both. High performance imaging and graphics workstations which can provide real-time results for a number of applications, while maintaining affordability and flexibility, can facilitate the application of digital image computing techniques in many different areas. This paper describes the hardware and software architecture of a medium-cost floating-point image processing and display subsystem for the NeXT computer, and its applications as a medical imaging workstation. Medical imaging applications of the workstation include use in a Picture Archiving and Communications System (PACS), in multimodal image processing and 3-D graphics workstation for a broad range of imaging modalities, and as an electronic alternator utilizing its multiple monitor display capability and large and fast frame buffer. The subsystem provides a 2048 x 2048 x 32-bit frame buffer (16 Mbytes of image storage) and supports both 8-bit gray scale and 32-bit true color images. When used to display 8-bit gray scale images, up to four different 256-color palettes may be used for each of four 2K x 2K x 8-bit image frames. Three of these image frames can be used simultaneously to provide pixel selectable region of interest display. A 1280 x 1024 pixel screen with 1: 1 aspect ratio can be windowed into the frame buffer for display of any portion of the processed image or images. In addition, the system provides hardware support for integer zoom and an 82-color cursor. This subsystem is implemented on an add-in board occupying a single slot in the NeXT computer. Up to three boards may be added to the NeXT for multiple display capability (e.g., three 1280 x 1024 monitors, each with a 16-Mbyte frame buffer). Each add-in board provides an expansion connector to which an optional image computing coprocessor board may be added. Each coprocessor board supports up to four processors for a peak performance of 160 MFLOPS. The coprocessors can execute programs from external high-speed microcode memory as well as built-in internal microcode routines. The internal microcode routines provide support for 2-D and 3-D graphics operations, matrix and vector arithmetic, and image processing in integer, IEEE single-precision floating point, or IEEE double-precision floating point. In addition to providing a library of C functions which links the NeXT computer to the add-in board and supports its various operational modes, algorithms and medical imaging application programs are being developed and implemented for image display and enhancement. As an extension to the built-in algorithms of the coprocessors, 2-D Fast Fourier Transform (FF1), 2-D Inverse FFF, convolution, warping and other algorithms (e.g., Discrete Cosine Transform) which exploit the parallel architecture of the coprocessor board are being implemented.

  3. The Application of Logic Programming to Communication Education.

    ERIC Educational Resources Information Center

    Sanford, David L.

    Recommending that communication students be required to learn to use computers not merely as number crunchers, word processors, data bases, and graphics generators, but also as logical inference makers, this paper examines the recently developed technology of logical programing in computer languages. It presents two syllogisms and shows how they…

  4. Where's the C in STEM?

    ERIC Educational Resources Information Center

    Heldman, Bill

    2010-01-01

    With few exceptions, students interact with technology in one way or another every day. And yet, in most U.S. schools, the term "computer science" (CS) refers only to generic skills classes, such as keyboarding and computer applications. Even most Web programming classes usually teach students only how to use conventional graphical user…

  5. Adaptive Animation of Human Motion for E-Learning Applications

    ERIC Educational Resources Information Center

    Li, Frederick W. B.; Lau, Rynson W. H.; Komura, Taku; Wang, Meng; Siu, Becky

    2007-01-01

    Human motion animation has been one of the major research topics in the field of computer graphics for decades. Techniques developed in this area help present human motions in various applications. This is crucial for enhancing the realism as well as promoting the user interest in the applications. To carry this merit to e-learning applications,…

  6. High Performance Molecular Visualization: In-Situ and Parallel Rendering with EGL.

    PubMed

    Stone, John E; Messmer, Peter; Sisneros, Robert; Schulten, Klaus

    2016-05-01

    Large scale molecular dynamics simulations produce terabytes of data that is impractical to transfer to remote facilities. It is therefore necessary to perform visualization tasks in-situ as the data are generated, or by running interactive remote visualization sessions and batch analyses co-located with direct access to high performance storage systems. A significant challenge for deploying visualization software within clouds, clusters, and supercomputers involves the operating system software required to initialize and manage graphics acceleration hardware. Recently, it has become possible for applications to use the Embedded-system Graphics Library (EGL) to eliminate the requirement for windowing system software on compute nodes, thereby eliminating a significant obstacle to broader use of high performance visualization applications. We outline the potential benefits of this approach in the context of visualization applications used in the cloud, on commodity clusters, and supercomputers. We discuss the implementation of EGL support in VMD, a widely used molecular visualization application, and we outline benefits of the approach for molecular visualization tasks on petascale computers, clouds, and remote visualization servers. We then provide a brief evaluation of the use of EGL in VMD, with tests using developmental graphics drivers on conventional workstations and on Amazon EC2 G2 GPU-accelerated cloud instance types. We expect that the techniques described here will be of broad benefit to many other visualization applications.

  7. High Performance Molecular Visualization: In-Situ and Parallel Rendering with EGL

    PubMed Central

    Stone, John E.; Messmer, Peter; Sisneros, Robert; Schulten, Klaus

    2016-01-01

    Large scale molecular dynamics simulations produce terabytes of data that is impractical to transfer to remote facilities. It is therefore necessary to perform visualization tasks in-situ as the data are generated, or by running interactive remote visualization sessions and batch analyses co-located with direct access to high performance storage systems. A significant challenge for deploying visualization software within clouds, clusters, and supercomputers involves the operating system software required to initialize and manage graphics acceleration hardware. Recently, it has become possible for applications to use the Embedded-system Graphics Library (EGL) to eliminate the requirement for windowing system software on compute nodes, thereby eliminating a significant obstacle to broader use of high performance visualization applications. We outline the potential benefits of this approach in the context of visualization applications used in the cloud, on commodity clusters, and supercomputers. We discuss the implementation of EGL support in VMD, a widely used molecular visualization application, and we outline benefits of the approach for molecular visualization tasks on petascale computers, clouds, and remote visualization servers. We then provide a brief evaluation of the use of EGL in VMD, with tests using developmental graphics drivers on conventional workstations and on Amazon EC2 G2 GPU-accelerated cloud instance types. We expect that the techniques described here will be of broad benefit to many other visualization applications. PMID:27747137

  8. Documentation of a graphical display program for the saturated- unsaturated transport (SUTRA) finite-element simulation model

    USGS Publications Warehouse

    Souza, W.R.

    1987-01-01

    This report documents a graphical display program for the U. S. Geological Survey finite-element groundwater flow and solute transport model. Graphic features of the program, SUTRA-PLOT (SUTRA-PLOT = saturated/unsaturated transport), include: (1) plots of the finite-element mesh, (2) velocity vector plots, (3) contour plots of pressure, solute concentration, temperature, or saturation, and (4) a finite-element interpolator for gridding data prior to contouring. SUTRA-PLOT is written in FORTRAN 77 on a PRIME 750 computer system, and requires Version 9.0 or higher of the DISSPLA graphics library. The program requires two input files: the SUTRA input data list and the SUTRA simulation output listing. The program is menu driven and specifications for individual types of plots are entered and may be edited interactively. Installation instruction, a source code listing, and a description of the computer code are given. Six examples of plotting applications are used to demonstrate various features of the plotting program. (Author 's abstract)

  9. The multifacet graphically contracted function method. I. Formulation and implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shepard, Ron; Brozell, Scott R.; Gidofalvi, Gergely

    2014-08-14

    The basic formulation for the multifacet generalization of the graphically contracted function (MFGCF) electronic structure method is presented. The analysis includes the discussion of linear dependency and redundancy of the arc factor parameters, the computation of reduced density matrices, Hamiltonian matrix construction, spin-density matrix construction, the computation of optimization gradients for single-state and state-averaged calculations, graphical wave function analysis, and the efficient computation of configuration state function and Slater determinant expansion coefficients. Timings are given for Hamiltonian matrix element and analytic optimization gradient computations for a range of model problems for full-CI Shavitt graphs, and it is observed that bothmore » the energy and the gradient computation scale as O(N{sup 2}n{sup 4}) for N electrons and n orbitals. The important arithmetic operations are within dense matrix-matrix product computational kernels, resulting in a computationally efficient procedure. An initial implementation of the method is used to present applications to several challenging chemical systems, including N{sub 2} dissociation, cubic H{sub 8} dissociation, the symmetric dissociation of H{sub 2}O, and the insertion of Be into H{sub 2}. The results are compared to the exact full-CI values and also to those of the previous single-facet GCF expansion form.« less

  10. A new strategic neurosurgical planning tool for brainstem cavernous malformations using interactive computer graphics with multimodal fusion images.

    PubMed

    Kin, Taichi; Nakatomi, Hirofumi; Shojima, Masaaki; Tanaka, Minoru; Ino, Kenji; Mori, Harushi; Kunimatsu, Akira; Oyama, Hiroshi; Saito, Nobuhito

    2012-07-01

    In this study, the authors used preoperative simulation employing 3D computer graphics (interactive computer graphics) to fuse all imaging data for brainstem cavernous malformations. The authors evaluated whether interactive computer graphics or 2D imaging correlated better with the actual operative field, particularly in identifying a developmental venous anomaly (DVA). The study population consisted of 10 patients scheduled for surgical treatment of brainstem cavernous malformations. Data from preoperative imaging (MRI, CT, and 3D rotational angiography) were automatically fused using a normalized mutual information method, and then reconstructed by a hybrid method combining surface rendering and volume rendering methods. With surface rendering, multimodality and multithreshold techniques for 1 tissue were applied. The completed interactive computer graphics were used for simulation of surgical approaches and assumed surgical fields. Preoperative diagnostic rates for a DVA associated with brainstem cavernous malformation were compared between conventional 2D imaging and interactive computer graphics employing receiver operating characteristic (ROC) analysis. The time required for reconstruction of 3D images was 3-6 hours for interactive computer graphics. Observation in interactive mode required approximately 15 minutes. Detailed anatomical information for operative procedures, from the craniotomy to microsurgical operations, could be visualized and simulated three-dimensionally as 1 computer graphic using interactive computer graphics. Virtual surgical views were consistent with actual operative views. This technique was very useful for examining various surgical approaches. Mean (±SEM) area under the ROC curve for rate of DVA diagnosis was significantly better for interactive computer graphics (1.000±0.000) than for 2D imaging (0.766±0.091; p<0.001, Mann-Whitney U-test). The authors report a new method for automatic registration of preoperative imaging data from CT, MRI, and 3D rotational angiography for reconstruction into 1 computer graphic. The diagnostic rate of DVA associated with brainstem cavernous malformation was significantly better using interactive computer graphics than with 2D images. Interactive computer graphics was also useful in helping to plan the surgical access corridor.

  11. A computer program for processing impedance cardiographic data: Improving accuracy through user-interactive software

    NASA Technical Reports Server (NTRS)

    Cowings, Patricia S.; Naifeh, Karen; Thrasher, Chet

    1988-01-01

    This report contains the source code and documentation for a computer program used to process impedance cardiography data. The cardiodynamic measures derived from impedance cardiography are ventricular stroke column, cardiac output, cardiac index and Heather index. The program digitizes data collected from the Minnesota Impedance Cardiograph, Electrocardiography (ECG), and respiratory cycles and then stores these data on hard disk. It computes the cardiodynamic functions using interactive graphics and stores the means and standard deviations of each 15-sec data epoch on floppy disk. This software was designed on a Digital PRO380 microcomputer and used version 2.0 of P/OS, with (minimally) a 4-channel 16-bit analog/digital (A/D) converter. Applications software is written in FORTRAN 77, and uses Digital's Pro-Tool Kit Real Time Interface Library, CORE Graphic Library, and laboratory routines. Source code can be readily modified to accommodate alternative detection, A/D conversion and interactive graphics. The object code utilizing overlays and multitasking has a maximum of 50 Kbytes.

  12. The VISPA internet platform for outreach, education and scientific research in various experiments

    NASA Astrophysics Data System (ADS)

    van Asseldonk, D.; Erdmann, M.; Fischer, B.; Fischer, R.; Glaser, C.; Heidemann, F.; Müller, G.; Quast, T.; Rieger, M.; Urban, M.; Welling, C.

    2015-12-01

    VISPA provides a graphical front-end to computing infrastructures giving its users all functionality needed for working conditions comparable to a personal computer. It is a framework that can be extended with custom applications to support individual needs, e.g. graphical interfaces for experiment-specific software. By design, VISPA serves as a multipurpose platform for many disciplines and experiments as demonstrated in the following different use-cases. A GUI to the analysis framework OFFLINE of the Pierre Auger collaboration, submission and monitoring of computing jobs, university teaching of hundreds of students, and outreach activity, especially in CERN's open data initiative. Serving heterogeneous user groups and applications gave us lots of experience. This helps us in maturing the system, i.e. improving the robustness and responsiveness, and the interplay of the components. Among the lessons learned are the choice of a file system, the implementation of websockets, efficient load balancing, and the fine-tuning of existing technologies like the RPC over SSH. We present in detail the improved server setup and report on the performance, the user acceptance and the realized applications of the system.

  13. Computations of unsteady multistage compressor flows in a workstation environment

    NASA Technical Reports Server (NTRS)

    Gundy-Burlet, Karen L.

    1992-01-01

    High-end graphics workstations are becoming a necessary tool in the computational fluid dynamics environment. In addition to their graphic capabilities, workstations of the latest generation have powerful floating-point-operation capabilities. As workstations become common, they could provide valuable computing time for such applications as turbomachinery flow calculations. This report discusses the issues involved in implementing an unsteady, viscous multistage-turbomachinery code (STAGE-2) on workstations. It then describes work in which the workstation version of STAGE-2 was used to study the effects of axial-gap spacing on the time-averaged and unsteady flow within a 2 1/2-stage compressor. The results included time-averaged surface pressures, time-averaged pressure contours, standard deviation of pressure contours, pressure amplitudes, and force polar plots.

  14. Human sense utilization method on real-time computer graphics

    NASA Astrophysics Data System (ADS)

    Maehara, Hideaki; Ohgashi, Hitoshi; Hirata, Takao

    1997-06-01

    We are developing an adjustment method of real-time computer graphics, to obtain effective ones which give audience various senses intended by producer, utilizing human sensibility technologically. Generally, production of real-time computer graphics needs much adjustment of various parameters, such as 3D object models/their motions/attributes/view angle/parallax etc., in order that the graphics gives audience superior effects as reality of materials, sense of experience and so on. And it is also known it costs much to adjust such various parameters by trial and error. A graphics producer often evaluates his graphics to improve it. For example, it may lack 'sense of speed' or be necessary to be given more 'sense of settle down,' to improve it. On the other hand, we can know how the parameters in computer graphics affect such senses by means of statistically analyzing several samples of computer graphics which provide different senses. We paid attention to these two facts, so that we designed an adjustment method of the parameters by inputting phases of sense into a computer. By the way of using this method, it becomes possible to adjust real-time computer graphics more effectively than by conventional way of trial and error.

  15. Augmented Computer Mouse Would Measure Applied Force

    NASA Technical Reports Server (NTRS)

    Li, Larry C. H.

    1993-01-01

    Proposed computer mouse measures force of contact applied by user. Adds another dimension to two-dimensional-position-measuring capability of conventional computer mouse; force measurement designated to represent any desired continuously variable function of time and position, such as control force, acceleration, velocity, or position along axis perpendicular to computer video display. Proposed mouse enhances sense of realism and intuition in interaction between operator and computer. Useful in such applications as three-dimensional computer graphics, computer games, and mathematical modeling of dynamics.

  16. The Case for Open Source Software: The Interactional Discourse Lab

    ERIC Educational Resources Information Center

    Choi, Seongsook

    2016-01-01

    Computational techniques and software applications for the quantitative content analysis of texts are now well established, and many qualitative data software applications enable the manipulation of input variables and the visualization of complex relations between them via interactive and informative graphical interfaces. Although advances in…

  17. Color graphics, interactive processing, and the supercomputer

    NASA Technical Reports Server (NTRS)

    Smith-Taylor, Rudeen

    1987-01-01

    The development of a common graphics environment for the NASA Langley Research Center user community and the integration of a supercomputer into this environment is examined. The initial computer hardware, the software graphics packages, and their configurations are described. The addition of improved computer graphics capability to the supercomputer, and the utilization of the graphic software and hardware are discussed. Consideration is given to the interactive processing system which supports the computer in an interactive debugging, processing, and graphics environment.

  18. Graphical user interface for wireless sensor networks simulator

    NASA Astrophysics Data System (ADS)

    Paczesny, Tomasz; Paczesny, Daniel; Weremczuk, Jerzy

    2008-01-01

    Wireless Sensor Networks (WSN) are currently very popular area of development. It can be suited in many applications form military through environment monitoring, healthcare, home automation and others. Those networks, when working in dynamic, ad-hoc model, need effective protocols which must differ from common computer networks algorithms. Research on those protocols would be difficult without simulation tool, because real applications often use many nodes and tests on such a big networks take much effort and costs. The paper presents Graphical User Interface (GUI) for simulator which is dedicated for WSN studies, especially in routing and data link protocols evaluation.

  19. An Approach to Providing a User Interface for Military Computer-Aided-Instruction in 1980.

    ERIC Educational Resources Information Center

    Gallenson, Louis

    A recent needs study determined that most of the terminal requirements for military computer assisted instruction (CAI) applications can be satisfied with mainstream commercial terminals. Additional development, however, is likely to be required to satisfy two of the capabilities (limited graphics and prerecorded visuals). The expected…

  20. Automatic 3D Building Detection and Modeling from Airborne LiDAR Point Clouds

    ERIC Educational Resources Information Center

    Sun, Shaohui

    2013-01-01

    Urban reconstruction, with an emphasis on man-made structure modeling, is an active research area with broad impact on several potential applications. Urban reconstruction combines photogrammetry, remote sensing, computer vision, and computer graphics. Even though there is a huge volume of work that has been done, many problems still remain…

  1. Practical experience with graphical user interfaces and object-oriented design in the clinical laboratory.

    PubMed

    Wells, I G; Cartwright, R Y; Farnan, L P

    1993-12-15

    The computing strategy in our laboratories evolved from research in Artificial Intelligence, and is based on powerful software tools running on high performance desktop computers with a graphical user interface. This allows most tasks to be regarded as design problems rather than implementation projects, and both rapid prototyping and an object-oriented approach to be employed during the in-house development and enhancement of the laboratory information systems. The practical application of this strategy is discussed, with particular reference to the system designer, the laboratory user and the laboratory customer. Routine operation covers five departments, and the systems are stable, flexible and well accepted by the users. Client-server computing, currently undergoing final trials, is seen as the key to further development, and this approach to Pathology computing has considerable potential for the future.

  2. How Computer Graphics Work.

    ERIC Educational Resources Information Center

    Prosise, Jeff

    This document presents the principles behind modern computer graphics without straying into the arcane languages of mathematics and computer science. Illustrations accompany the clear, step-by-step explanations that describe how computers draw pictures. The 22 chapters of the book are organized into 5 sections. "Part 1: Computer Graphics in…

  3. Computer Graphics.

    ERIC Educational Resources Information Center

    Halpern, Jeanne W.

    1970-01-01

    Computer graphics have been called the most exciting development in computer technology. At the University of Michigan, three kinds of graphics output equipment are now being used: symbolic printers, line plotters or drafting devices, and cathode-ray tubes (CRT). Six examples are given that demonstrate the range of graphics use at the University.…

  4. Real time emotion aware applications: a case study employing emotion evocative pictures and neuro-physiological sensing enhanced by Graphic Processor Units.

    PubMed

    Konstantinidis, Evdokimos I; Frantzidis, Christos A; Pappas, Costas; Bamidis, Panagiotis D

    2012-07-01

    In this paper the feasibility of adopting Graphic Processor Units towards real-time emotion aware computing is investigated for boosting the time consuming computations employed in such applications. The proposed methodology was employed in analysis of encephalographic and electrodermal data gathered when participants passively viewed emotional evocative stimuli. The GPU effectiveness when processing electroencephalographic and electrodermal recordings is demonstrated by comparing the execution time of chaos/complexity analysis through nonlinear dynamics (multi-channel correlation dimension/D2) and signal processing algorithms (computation of skin conductance level/SCL) into various popular programming environments. Apart from the beneficial role of parallel programming, the adoption of special design techniques regarding memory management may further enhance the time minimization which approximates a factor of 30 in comparison with ANSI C language (single-core sequential execution). Therefore, the use of GPU parallel capabilities offers a reliable and robust solution for real-time sensing the user's affective state. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. MAVIS III -- A Windows 95/NT Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardwick, M.F.

    1997-12-01

    MAVIS (Modeling and Analysis of Explosive Valve Interactions) is a computer program that simulates operation of explosively actuated valve. MAVIS was originally written in Fortran in the mid 1970`s and was primarily run on the Sandia Vax computers in use through the early 1990`s. During the mid to late 1980`s MAVIS was upgraded to include the effects of plastic deformation and it became MAVIS II. When the Vax computers were retired, the Gas Transfer System (GTS) Development Department ported the code to the Macintosh and PC platforms, where it ran as a simple console application. All graphical output was lostmore » during these ports. GTS code developers recently completed an upgrade that provides a Windows 95/NT MAVIS application and restores all of the original graphical output. This upgrade is called MAVIS III version 1.0. This report serves both as a user`s manual for MAVIS III v 1.0 and as a general software development reference.« less

  6. Application of control theory to dynamic systems simulation

    NASA Technical Reports Server (NTRS)

    Auslander, D. M.; Spear, R. C.; Young, G. E.

    1982-01-01

    The application of control theory is applied to dynamic systems simulation. Theory and methodology applicable to controlled ecological life support systems are considered. Spatial effects on system stability, design of control systems with uncertain parameters, and an interactive computing language (PARASOL-II) designed for dynamic system simulation, report quality graphics, data acquisition, and simple real time control are discussed.

  7. Videotex--A Thousand and One Applications. Videotex in General.

    ERIC Educational Resources Information Center

    Department of External Affairs, Ottawa (Ontario).

    This promotional brochure, one of 10 in a series on videotex, explains applications of videotex and the North American Presentation Level Protocol Syntax (NAPLPS) standard system (known as Telidon in Canada) for creating, storing, and transmitting text and color graphics information on a television screen or computer terminal. The specific…

  8. A survey of GPU-based acceleration techniques in MRI reconstructions

    PubMed Central

    Wang, Haifeng; Peng, Hanchuan; Chang, Yuchou

    2018-01-01

    Image reconstruction in magnetic resonance imaging (MRI) clinical applications has become increasingly more complicated. However, diagnostic and treatment require very fast computational procedure. Modern competitive platforms of graphics processing unit (GPU) have been used to make high-performance parallel computations available, and attractive to common consumers for computing massively parallel reconstruction problems at commodity price. GPUs have also become more and more important for reconstruction computations, especially when deep learning starts to be applied into MRI reconstruction. The motivation of this survey is to review the image reconstruction schemes of GPU computing for MRI applications and provide a summary reference for researchers in MRI community. PMID:29675361

  9. A survey of GPU-based acceleration techniques in MRI reconstructions.

    PubMed

    Wang, Haifeng; Peng, Hanchuan; Chang, Yuchou; Liang, Dong

    2018-03-01

    Image reconstruction in magnetic resonance imaging (MRI) clinical applications has become increasingly more complicated. However, diagnostic and treatment require very fast computational procedure. Modern competitive platforms of graphics processing unit (GPU) have been used to make high-performance parallel computations available, and attractive to common consumers for computing massively parallel reconstruction problems at commodity price. GPUs have also become more and more important for reconstruction computations, especially when deep learning starts to be applied into MRI reconstruction. The motivation of this survey is to review the image reconstruction schemes of GPU computing for MRI applications and provide a summary reference for researchers in MRI community.

  10. Pc-Based Floating Point Imaging Workstation

    NASA Astrophysics Data System (ADS)

    Guzak, Chris J.; Pier, Richard M.; Chinn, Patty; Kim, Yongmin

    1989-07-01

    The medical, military, scientific and industrial communities have come to rely on imaging and computer graphics for solutions to many types of problems. Systems based on imaging technology are used to acquire and process images, and analyze and extract data from images that would otherwise be of little use. Images can be transformed and enhanced to reveal detail and meaning that would go undetected without imaging techniques. The success of imaging has increased the demand for faster and less expensive imaging systems and as these systems become available, more and more applications are discovered and more demands are made. From the designer's perspective the challenge to meet these demands forces him to attack the problem of imaging from a different perspective. The computing demands of imaging algorithms must be balanced against the desire for affordability and flexibility. Systems must be flexible and easy to use, ready for current applications but at the same time anticipating new, unthought of uses. Here at the University of Washington Image Processing Systems Lab (IPSL) we are focusing our attention on imaging and graphics systems that implement imaging algorithms for use in an interactive environment. We have developed a PC-based imaging workstation with the goal to provide powerful and flexible, floating point processing capabilities, along with graphics functions in an affordable package suitable for diverse environments and many applications.

  11. The application of the large particles method of numerical modeling of the process of carbonic nanostructures synthesis in plasma

    NASA Astrophysics Data System (ADS)

    Abramov, G. V.; Gavrilov, A. N.

    2018-03-01

    The article deals with the numerical solution of the mathematical model of the particles motion and interaction in multicomponent plasma by the example of electric arc synthesis of carbon nanostructures. The high order of the particles and the number of their interactions requires a significant input of machine resources and time for calculations. Application of the large particles method makes it possible to reduce the amount of computation and the requirements for hardware resources without affecting the accuracy of numerical calculations. The use of technology of GPGPU parallel computing using the Nvidia CUDA technology allows organizing all General purpose computation on the basis of the graphical processor graphics card. The comparative analysis of different approaches to parallelization of computations to speed up calculations with the choice of the algorithm in which to calculate the accuracy of the solution shared memory is used. Numerical study of the influence of particles density in the macro particle on the motion parameters and the total number of particle collisions in the plasma for different modes of synthesis has been carried out. The rational range of the coherence coefficient of particle in the macro particle is computed.

  12. Office Computer Software: A Comprehensive Review of Software Programs.

    ERIC Educational Resources Information Center

    Secretary, 1992

    1992-01-01

    Describes types of software including system software, application software, spreadsheets, accounting software, graphics packages, desktop publishing software, database, desktop and personal information management software, project and records management software, groupware, and shareware. (JOW)

  13. GPU-based Parallel Application Design for Emerging Mobile Devices

    NASA Astrophysics Data System (ADS)

    Gupta, Kshitij

    A revolution is underway in the computing world that is causing a fundamental paradigm shift in device capabilities and form-factor, with a move from well-established legacy desktop/laptop computers to mobile devices in varying sizes and shapes. Amongst all the tasks these devices must support, graphics has emerged as the 'killer app' for providing a fluid user interface and high-fidelity game rendering, effectively making the graphics processor (GPU) one of the key components in (present and future) mobile systems. By utilizing the GPU as a general-purpose parallel processor, this dissertation explores the GPU computing design space from an applications standpoint, in the mobile context, by focusing on key challenges presented by these devices---limited compute, memory bandwidth, and stringent power consumption requirements---while improving the overall application efficiency of the increasingly important speech recognition workload for mobile user interaction. We broadly partition trends in GPU computing into four major categories. We analyze hardware and programming model limitations in current-generation GPUs and detail an alternate programming style called Persistent Threads, identify four use case patterns, and propose minimal modifications that would be required for extending native support. We show how by manually extracting data locality and altering the speech recognition pipeline, we are able to achieve significant savings in memory bandwidth while simultaneously reducing the compute burden on GPU-like parallel processors. As we foresee GPU computing to evolve from its current 'co-processor' model into an independent 'applications processor' that is capable of executing complex work independently, we create an alternate application framework that enables the GPU to handle all control-flow dependencies autonomously at run-time while minimizing host involvement to just issuing commands, that facilitates an efficient application implementation. Finally, as compute and communication capabilities of mobile devices improve, we analyze energy implications of processing speech recognition locally (on-chip) and offloading it to servers (in-cloud).

  14. Evaluation of Digital Technology and Software Use among Business Education Teachers

    ERIC Educational Resources Information Center

    Ellis, Richard S.; Okpala, Comfort O.

    2004-01-01

    Digital video cameras are part of the evolution of multimedia digital products that have positive applications for educators, students, and industry. Multimedia digital video can be utilized by any personal computer and it allows the user to control, combine, and manipulate different types of media, such as text, sound, video, computer graphics,…

  15. Running GUI Applications on Peregrine from OSX | High-Performance Computing

    Science.gov Websites

    Learn how to use Virtual Network Computing to access a Linux graphical desktop environment on Peregrine local port (on, e.g., your laptop), starts a VNC server process that manages a virtual desktop on your virtual desktop. This is persistent, so remember it-you will use this password whenever accessing

  16. Introduction to Multimedia in Instruction. An IAT Technology Primer.

    ERIC Educational Resources Information Center

    Oblinger, Diana

    Multimedia allows computing to move from text and data into the realm of graphics, sound, images, and full-motion video, thus allowing both students and teachers to use the power of computers in new ways. Key elements of multimedia are natural presentation of information and non-linear navigation through applications for access to information on…

  17. Software Tools on the Peregrine System | High-Performance Computing | NREL

    Science.gov Websites

    Debugger or performance analysis Tool for understanding the behavior of MPI applications. Intel VTune environment for statistical computing and graphics. VirtualGL/TurboVNC Visualization and analytics Remote Tools on the Peregrine System Software Tools on the Peregrine System NREL has a variety of

  18. Computer graphics applications to crew displays

    NASA Technical Reports Server (NTRS)

    Wyzkoski, J.

    1983-01-01

    Astronauts are provided much data and information via the monochrome CRT displays on the orbiter. For this project two areas were investigated for the possible introduction of computer graphics to enhance and extend the utility of these displays. One involved reviewing the current orbiter displays and identifying those which could be improved via computer graphics. As an example, the tabular data on electrical power distribution and control was enhanced by the addition of color and bar charts. The other dealt with the development of an aid to berthing a payload with the Remote Manipulator System (RMS). This aid consists of a graphics display of the top, front and side views of the payload and cargo bay and point of resolution (POR) position and attitude data for the current location of the payload. The initial implementation was on an IBM PC clone. The demonstration software installed in the Johnson Space Center Manipulator Development Facility (MD) was reviewed. Due to current hardware limitations, the MDF verision is slow, i.e., about a 40+ seond update rate and, hence, not real-time. Despite this fact, the evaluation of this additional visual cue as an RMS operator aid indicates that this display, with modifications for speed, etc., can assist the crew. Further development is appropriate.

  19. A modern approach to storing of 3D geometry of objects in machine engineering industry

    NASA Astrophysics Data System (ADS)

    Sokolova, E. A.; Aslanov, G. A.; Sokolov, A. A.

    2017-02-01

    3D graphics is a kind of computer graphics which has absorbed a lot from the vector and raster computer graphics. It is used in interior design projects, architectural projects, advertising, while creating educational computer programs, movies, visual images of parts and products in engineering, etc. 3D computer graphics allows one to create 3D scenes along with simulation of light conditions and setting up standpoints.

  20. Distributed computation of graphics primitives on a transputer network

    NASA Technical Reports Server (NTRS)

    Ellis, Graham K.

    1988-01-01

    A method is developed for distributing the computation of graphics primitives on a parallel processing network. Off-the-shelf transputer boards are used to perform the graphics transformations and scan-conversion tasks that would normally be assigned to a single transputer based display processor. Each node in the network performs a single graphics primitive computation. Frequently requested tasks can be duplicated on several nodes. The results indicate that the current distribution of commands on the graphics network shows a performance degradation when compared to the graphics display board alone. A change to more computation per node for every communication (perform more complex tasks on each node) may cause the desired increase in throughput.

  1. An Object-Oriented Graphical User Interface for a Reusable Rocket Engine Intelligent Control System

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Musgrave, Jeffrey L.; Guo, Ten-Huei; Paxson, Daniel E.; Wong, Edmond; Saus, Joseph R.; Merrill, Walter C.

    1994-01-01

    An intelligent control system for reusable rocket engines under development at NASA Lewis Research Center requires a graphical user interface to allow observation of the closed-loop system in operation. The simulation testbed consists of a real-time engine simulation computer, a controls computer, and several auxiliary computers for diagnostics and coordination. The system is set up so that the simulation computer could be replaced by the real engine and the change would be transparent to the control system. Because of the hard real-time requirement of the control computer, putting a graphical user interface on it was not an option. Thus, a separate computer used strictly for the graphical user interface was warranted. An object-oriented LISP-based graphical user interface has been developed on a Texas Instruments Explorer 2+ to indicate the condition of the engine to the observer through plots, animation, interactive graphics, and text.

  2. HLYWD: a program for post-processing data files to generate selected plots or time-lapse graphics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munro, J.K. Jr.

    1980-05-01

    The program HLYWD is a post-processor of output files generated by large plasma simulation computations or of data files containing a time sequence of plasma diagnostics. It is intended to be used in a production mode for either type of application; i.e., it allows one to generate along with the graphics sequence, segments containing title, credits to those who performed the work, text to describe the graphics, and acknowledgement of funding agency. The current version is designed to generate 3D plots and allows one to select type of display (linear or semi-log scales), choice of normalization of function values formore » display purposes, viewing perspective, and an option to allow continuous rotations of surfaces. This program was developed with the intention of being relatively easy to use, reasonably flexible, and requiring a minimum investment of the user's time. It uses the TV80 library of graphics software and ORDERLIB system software on the CDC 7600 at the National Magnetic Fusion Energy Computing Center at Lawrence Livermore Laboratory in California.« less

  3. Contemporary issues in HIM. The application layer--III.

    PubMed

    Wear, L L; Pinkert, J R

    1993-07-01

    We have seen document preparation systems evolve from basic line editors through powerful, sophisticated desktop publishing programs. This component of the application layer is probably one of the most used, and most readily identifiable. Ask grade school children nowadays, and many will tell you that they have written a paper on a computer. Next month will be a "fun" tour through a number of other application programs we find useful. They will range from a simple notebook reminder to a sophisticated photograph processor. Application layer: Software targeted for the end user, focusing on a specific application area, and typically residing in the computer system as distinct components on top of the OS. Desktop publishing: A document preparation program that begins with the text features of a word processor, then adds the ability for a user to incorporate outputs from a variety of graphic programs, spreadsheets, and other applications. Line editor: A document preparation program that manipulates text in a file on the basis of numbered lines. Word processor: A document preparation program that can, among other things, reformat sections of documents, move and replace blocks of text, use multiple character fonts, automatically create a table of contents and index, create complex tables, and combine text and graphics.

  4. A GPU-based incompressible Navier-Stokes solver on moving overset grids

    NASA Astrophysics Data System (ADS)

    Chandar, Dominic D. J.; Sitaraman, Jayanarayanan; Mavriplis, Dimitri J.

    2013-07-01

    In pursuit of obtaining high fidelity solutions to the fluid flow equations in a short span of time, graphics processing units (GPUs) which were originally intended for gaming applications are currently being used to accelerate computational fluid dynamics (CFD) codes. With a high peak throughput of about 1 TFLOPS on a PC, GPUs seem to be favourable for many high-resolution computations. One such computation that involves a lot of number crunching is computing time accurate flow solutions past moving bodies. The aim of the present paper is thus to discuss the development of a flow solver on unstructured and overset grids and its implementation on GPUs. In its present form, the flow solver solves the incompressible fluid flow equations on unstructured/hybrid/overset grids using a fully implicit projection method. The resulting discretised equations are solved using a matrix-free Krylov solver using several GPU kernels such as gradient, Laplacian and reduction. Some of the simple arithmetic vector calculations are implemented using the CU++: An Object Oriented Framework for Computational Fluid Dynamics Applications using Graphics Processing Units, Journal of Supercomputing, 2013, doi:10.1007/s11227-013-0985-9 approach where GPU kernels are automatically generated at compile time. Results are presented for two- and three-dimensional computations on static and moving grids.

  5. Advanced Certification Program for Computer Graphic Specialists. Final Performance Report.

    ERIC Educational Resources Information Center

    Parkland Coll., Champaign, IL.

    A pioneer program in computer graphics was implemented at Parkland College (Illinois) to meet the demand for specialized technicians to visualize data generated on high performance computers. In summer 1989, 23 students were accepted into the pilot program. Courses included C programming, calculus and analytic geometry, computer graphics, and…

  6. Graphics Processing Unit Assisted Thermographic Compositing

    NASA Technical Reports Server (NTRS)

    Ragasa, Scott; McDougal, Matthew; Russell, Sam

    2013-01-01

    Objective: To develop a software application utilizing general purpose graphics processing units (GPUs) for the analysis of large sets of thermographic data. Background: Over the past few years, an increasing effort among scientists and engineers to utilize the GPU in a more general purpose fashion is allowing for supercomputer level results at individual workstations. As data sets grow, the methods to work them grow at an equal, and often greater, pace. Certain common computations can take advantage of the massively parallel and optimized hardware constructs of the GPU to allow for throughput that was previously reserved for compute clusters. These common computations have high degrees of data parallelism, that is, they are the same computation applied to a large set of data where the result does not depend on other data elements. Signal (image) processing is one area were GPUs are being used to greatly increase the performance of certain algorithms and analysis techniques.

  7. A Computer Graphics Human Figure Application Of Biostereometrics

    NASA Astrophysics Data System (ADS)

    Fetter, William A.

    1980-07-01

    A study of improved computer graphic representation of the human figure is being conducted under a National Science Foundation grant. Special emphasis is given biostereometrics as a primary data base from which applications requiring a variety of levels of detail may be prepared. For example, a human figure represented by a single point can be very useful in overview plots of a population. A crude ten point figure can be adequate for queuing theory studies and simulated movement of groups. A one hundred point figure can usefully be animated to achieve different overall body activities including male and female figures. A one thousand point figure si-milarly animated, begins to be useful in anthropometrics and kinesiology gross body movements. Extrapolations of this order-of-magnitude approach ultimately should achieve very complex data bases and a program which automatically selects the correct level of detail for the task at hand. See Summary Figure 1.

  8. GUIdock: Using Docker Containers with a Common Graphics User Interface to Address the Reproducibility of Research

    PubMed Central

    Yeung, Ka Yee

    2016-01-01

    Reproducibility is vital in science. For complex computational methods, it is often necessary, not just to recreate the code, but also the software and hardware environment to reproduce results. Virtual machines, and container software such as Docker, make it possible to reproduce the exact environment regardless of the underlying hardware and operating system. However, workflows that use Graphical User Interfaces (GUIs) remain difficult to replicate on different host systems as there is no high level graphical software layer common to all platforms. GUIdock allows for the facile distribution of a systems biology application along with its graphics environment. Complex graphics based workflows, ubiquitous in systems biology, can now be easily exported and reproduced on many different platforms. GUIdock uses Docker, an open source project that provides a container with only the absolutely necessary software dependencies and configures a common X Windows (X11) graphic interface on Linux, Macintosh and Windows platforms. As proof of concept, we present a Docker package that contains a Bioconductor application written in R and C++ called networkBMA for gene network inference. Our package also includes Cytoscape, a java-based platform with a graphical user interface for visualizing and analyzing gene networks, and the CyNetworkBMA app, a Cytoscape app that allows the use of networkBMA via the user-friendly Cytoscape interface. PMID:27045593

  9. GUIdock: Using Docker Containers with a Common Graphics User Interface to Address the Reproducibility of Research.

    PubMed

    Hung, Ling-Hong; Kristiyanto, Daniel; Lee, Sung Bong; Yeung, Ka Yee

    2016-01-01

    Reproducibility is vital in science. For complex computational methods, it is often necessary, not just to recreate the code, but also the software and hardware environment to reproduce results. Virtual machines, and container software such as Docker, make it possible to reproduce the exact environment regardless of the underlying hardware and operating system. However, workflows that use Graphical User Interfaces (GUIs) remain difficult to replicate on different host systems as there is no high level graphical software layer common to all platforms. GUIdock allows for the facile distribution of a systems biology application along with its graphics environment. Complex graphics based workflows, ubiquitous in systems biology, can now be easily exported and reproduced on many different platforms. GUIdock uses Docker, an open source project that provides a container with only the absolutely necessary software dependencies and configures a common X Windows (X11) graphic interface on Linux, Macintosh and Windows platforms. As proof of concept, we present a Docker package that contains a Bioconductor application written in R and C++ called networkBMA for gene network inference. Our package also includes Cytoscape, a java-based platform with a graphical user interface for visualizing and analyzing gene networks, and the CyNetworkBMA app, a Cytoscape app that allows the use of networkBMA via the user-friendly Cytoscape interface.

  10. A fast CT reconstruction scheme for a general multi-core PC.

    PubMed

    Zeng, Kai; Bai, Erwei; Wang, Ge

    2007-01-01

    Expensive computational cost is a severe limitation in CT reconstruction for clinical applications that need real-time feedback. A primary example is bolus-chasing computed tomography (CT) angiography (BCA) that we have been developing for the past several years. To accelerate the reconstruction process using the filtered backprojection (FBP) method, specialized hardware or graphics cards can be used. However, specialized hardware is expensive and not flexible. The graphics processing unit (GPU) in a current graphic card can only reconstruct images in a reduced precision and is not easy to program. In this paper, an acceleration scheme is proposed based on a multi-core PC. In the proposed scheme, several techniques are integrated, including utilization of geometric symmetry, optimization of data structures, single-instruction multiple-data (SIMD) processing, multithreaded computation, and an Intel C++ compilier. Our scheme maintains the original precision and involves no data exchange between the GPU and CPU. The merits of our scheme are demonstrated in numerical experiments against the traditional implementation. Our scheme achieves a speedup of about 40, which can be further improved by several folds using the latest quad-core processors.

  11. Experimental investigation of the persuasive impact of computer generated presentation graphics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogel, D.R.

    1986-01-01

    Computer generated presentation graphics are increasingly becoming a tool to aid management in communicating information and to cause an audience to accept a point of view or take action. Unfortunately, technological capability significantly exceeds current levels of user understanding and effective application. This research examines experimentally one aspect of this problem, the persuasive impact of characteristics of computer generated presentation graphics. The research was founded in theory based on the message learning approach to persuasion. Characteristics examined were color versus black and white, text versus image enhancement, and overhead transparencies versus 35 mm slides. Treatments were presented in association withmore » a videotaped presentation intended to persuade subjects to invest time and money in a set of time management seminars. Data were collected using pre-measure, post measure, and post measure follow up questionnaires. Presentation support had a direct impact on perceptions of the presenter as well as components of persuasion, i.e., attention, comprehension, yielding, and retention. Further, a strong positive relationship existed between enhanced perceptions of the presenter and attention and yielding.« less

  12. A Fast CT Reconstruction Scheme for a General Multi-Core PC

    PubMed Central

    Zeng, Kai; Bai, Erwei; Wang, Ge

    2007-01-01

    Expensive computational cost is a severe limitation in CT reconstruction for clinical applications that need real-time feedback. A primary example is bolus-chasing computed tomography (CT) angiography (BCA) that we have been developing for the past several years. To accelerate the reconstruction process using the filtered backprojection (FBP) method, specialized hardware or graphics cards can be used. However, specialized hardware is expensive and not flexible. The graphics processing unit (GPU) in a current graphic card can only reconstruct images in a reduced precision and is not easy to program. In this paper, an acceleration scheme is proposed based on a multi-core PC. In the proposed scheme, several techniques are integrated, including utilization of geometric symmetry, optimization of data structures, single-instruction multiple-data (SIMD) processing, multithreaded computation, and an Intel C++ compilier. Our scheme maintains the original precision and involves no data exchange between the GPU and CPU. The merits of our scheme are demonstrated in numerical experiments against the traditional implementation. Our scheme achieves a speedup of about 40, which can be further improved by several folds using the latest quad-core processors. PMID:18256731

  13. Computer interfaces for the visually impaired

    NASA Technical Reports Server (NTRS)

    Higgins, Gerry

    1991-01-01

    Information access via computer terminals extends to blind and low vision persons employed in many technical and nontechnical disciplines. Two aspects are detailed of providing computer technology for persons with a vision related handicap. First, research into the most effective means of integrating existing adaptive technologies into information systems was made. This was conducted to integrate off the shelf products with adaptive equipment for cohesive integrated information processing systems. Details are included that describe the type of functionality required in software to facilitate its incorporation into a speech and/or braille system. The second aspect is research into providing audible and tactile interfaces to graphics based interfaces. Parameters are included for the design and development of the Mercator Project. The project will develop a prototype system for audible access to graphics based interfaces. The system is being built within the public domain architecture of X windows to show that it is possible to provide access to text based applications within a graphical environment. This information will be valuable to suppliers to ADP equipment since new legislation requires manufacturers to provide electronic access to the visually impaired.

  14. High performance computing applications in neurobiological research

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.; Cheng, Rei; Doshay, David G.; Linton, Samuel W.; Montgomery, Kevin; Parnas, Bruce R.

    1994-01-01

    The human nervous system is a massively parallel processor of information. The vast numbers of neurons, synapses and circuits is daunting to those seeking to understand the neural basis of consciousness and intellect. Pervading obstacles are lack of knowledge of the detailed, three-dimensional (3-D) organization of even a simple neural system and the paucity of large scale, biologically relevant computer simulations. We use high performance graphics workstations and supercomputers to study the 3-D organization of gravity sensors as a prototype architecture foreshadowing more complex systems. Scaled-down simulations run on a Silicon Graphics workstation and scale-up, three-dimensional versions run on the Cray Y-MP and CM5 supercomputers.

  15. Software platform for rapid prototyping of NIRS brain computer interfacing techniques.

    PubMed

    Matthews, Fiachra; Soraghan, Christopher; Ward, Tomas E; Markham, Charles; Pearlmutter, Barak A

    2008-01-01

    This paper describes the control system of a next-generation optical brain-computer interface (BCI). Using functional near-infrared spectroscopy (fNIRS) as a BCI modality is a relatively new concept, and research has only begun to explore approaches for its implementation. It is necessary to have a system by which it is possible to investigate the signal processing and classification techniques available in the BCI community. Most importantly, these techniques must be easily testable in real-time applications. The system we describe was built using LABVIEW, a graphical programming language designed for interaction with National Instruments hardware. This platform allows complete configurability from hardware control and regulation, testing and filtering in a graphical interface environment.

  16. Application programs written by using customizing tools of a computer-aided design system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X.; Huang, R.; Juricic, D.

    1995-12-31

    Customizing tools of Computer-Aided Design Systems have been developed to such a degree as to become equivalent to powerful higher-level programming languages that are especially suitable for graphics applications. Two examples of application programs written by using AutoCAD`s customizing tools are given in some detail to illustrate their power. One tool uses AutoLISP list-processing language to develop an application program that produces four views of a given solid model. The other uses AutoCAD Developmental System, based on program modules written in C, to produce an application program that renders a freehand sketch from a given CAD drawing.

  17. Computer Recreations.

    ERIC Educational Resources Information Center

    Dewdney, A. K.

    1989-01-01

    Discussed are three examples of computer graphics including biomorphs, Truchet tilings, and fractal popcorn. The graphics are shown and the basic algorithm using multiple iteration of a particular function or mathematical operation is described. An illustration of a snail shell created by computer graphics is presented. (YP)

  18. Is There Computer Graphics after Multimedia?

    ERIC Educational Resources Information Center

    Booth, Kellogg S.

    Computer graphics has been driven by the desire to generate real-time imagery subject to constraints imposed by the human visual system. The future of computer graphics, when off-the-shelf systems have full multimedia capability and when standard computing engines render imagery faster than real-time, remains to be seen. A dedicated pipeline for…

  19. Transportable Applications Environment Plus, Version 5.1

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Transportable Applications Environment Plus (TAE+) computer program providing integrated, portable programming environment for developing and running application programs based on interactive windows, text, and graphical objects. Enables both programmers and nonprogrammers to construct own custom application interfaces easily and to move interfaces and application programs to different computers. Used to define corporate user interface, with noticeable improvements in application developer's and end user's learning curves. Main components are; WorkBench, What You See Is What You Get (WYSIWYG) software tool for design and layout of user interface; and WPT (Window Programming Tools) Package, set of callable subroutines controlling user interface of application program. WorkBench and WPT's written in C++, and remaining code written in C.

  20. CRYSNET manual. Informal report. [Hardware and software of crystallographic computing network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None,

    1976-07-01

    This manual describes the hardware and software which together make up the crystallographic computing network (CRYSNET). The manual is intended as a users' guide and also provides general information for persons without any experience with the system. CRYSNET is a network of intelligent remote graphics terminals that are used to communicate with the CDC Cyber 70/76 computing system at the Brookhaven National Laboratory (BNL) Central Scientific Computing Facility. Terminals are in active use by four research groups in the field of crystallography. A protein data bank has been established at BNL to store in machine-readable form atomic coordinates and othermore » crystallographic data for macromolecules. The bank currently includes data for more than 20 proteins. This structural information can be accessed at BNL directly by the CRYSNET graphics terminals. More than two years of experience has been accumulated with CRYSNET. During this period, it has been demonstrated that the terminals, which provide access to a large, fast third-generation computer, plus stand-alone interactive graphics capability, are useful for computations in crystallography, and in a variety of other applications as well. The terminal hardware, the actual operations of the terminals, and the operations of the BNL Central Facility are described in some detail, and documentation of the terminal and central-site software is given. (RWR)« less

  1. Real-time computation of parameter fitting and image reconstruction using graphical processing units

    NASA Astrophysics Data System (ADS)

    Locans, Uldis; Adelmann, Andreas; Suter, Andreas; Fischer, Jannis; Lustermann, Werner; Dissertori, Günther; Wang, Qiulin

    2017-06-01

    In recent years graphical processing units (GPUs) have become a powerful tool in scientific computing. Their potential to speed up highly parallel applications brings the power of high performance computing to a wider range of users. However, programming these devices and integrating their use in existing applications is still a challenging task. In this paper we examined the potential of GPUs for two different applications. The first application, created at Paul Scherrer Institut (PSI), is used for parameter fitting during data analysis of μSR (muon spin rotation, relaxation and resonance) experiments. The second application, developed at ETH, is used for PET (Positron Emission Tomography) image reconstruction and analysis. Applications currently in use were examined to identify parts of the algorithms in need of optimization. Efficient GPU kernels were created in order to allow applications to use a GPU, to speed up the previously identified parts. Benchmarking tests were performed in order to measure the achieved speedup. During this work, we focused on single GPU systems to show that real time data analysis of these problems can be achieved without the need for large computing clusters. The results show that the currently used application for parameter fitting, which uses OpenMP to parallelize calculations over multiple CPU cores, can be accelerated around 40 times through the use of a GPU. The speedup may vary depending on the size and complexity of the problem. For PET image analysis, the obtained speedups of the GPU version were more than × 40 larger compared to a single core CPU implementation. The achieved results show that it is possible to improve the execution time by orders of magnitude.

  2. CD Recorders.

    ERIC Educational Resources Information Center

    Falk, Howard

    1998-01-01

    Discussion of CD (compact disc) recorders describes recording applications, including storing large graphic files, creating audio CDs, and storing material downloaded from the Internet; backing up files; lifespan; CD recording formats; continuous recording; recording software; recorder media; vulnerability of CDs; basic computer requirements; and…

  3. Development and evaluation of a new 3-D digitization and computer graphic system to study the anatomic tissue and restoration surfaces.

    PubMed

    Dastane, A; Vaidyanathan, T K; Vaidyanathan, J; Mehra, R; Hesby, R

    1996-01-01

    It is necessary to visualize and reconstruct tissue anatomic surfaces accurately for a variety of oral rehabilitation applications such as surface wear characterization and automated fabrication of dental restorations, accuracy of reproduction of impression and die materials, etc. In this investigation, a 3-D digitization and computer-graphic system was developed for surface characterization. The hardware consists of a profiler assembly for digitization in an MTS biomechanical test system with an artificial mouth, an IBM PS/2 computer model 70 for data processing and a Hewlett-Packard laser printer for hardcopy outputs. The software used includes a commercially available Surfer 3-D graphics package, a public domain data-fitting alignment software and an inhouse Pascal program for intercommunication plus some other limited tasks. Surfaces were digitized before and after rotation by angular displacement, the digital data were interpolated by Surfer to provide a data grid and the surfaces were computer graphically reconstructed: Misaligned surfaces were aligned by the data-fitting alignment software under different choices of parameters. The effect of different interpolation parameters (e.g. grid size, method of interpolation) and extent of rotation on the alignment accuracy was determined. The results indicate that improved alignment accuracy results from optimization of interpolation parameters and minimization of the initial misorientation between the digitized surfaces. The method provides important advantages for surface reconstruction and visualization, such as overlay of sequentially generated surfaces and accurate alignment of pairs of surfaces with small misalignment.

  4. GKS utilities for FORTRAN-77

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beach, R.C.

    1992-01-01

    This document describes a number of subroutines that can be useful in GKS graphic applications programmed in FORTRAN-77. The algorithms described here include subroutines to do the following: (1) Draw text characters in a more flexible manner than is possible with basic GKS. (2) Project two-dimensional and three-dimensional space onto two-dimensional space. (3) Draw smooth curves. (4) Draw two-dimensional projections of complex three-dimensional objects. FORTRAN-77 is described in American National Standard, Programming Language, FORTRAN. GKS is described in American National Standard for Information Systems: Computer Graphics -- Graphical Kernel System (GKS) Functional Description and the FORTRAN-77 interface is described inmore » American National Standard for Information Systems: Computer Graphics -- Graphical Kernel System (GKS) FORTRAN Binding. All of the subroutine names and additional enumeration types that will be described in this document begin with the letters ``GZ.`` Since GKS itself does not have any subroutine names or enumeration types that begin with these letters, no confusion between the usual GKS subroutines and the ones described here should occur. Many concepts will have to be defined in the following chapters. When a concept is first encountered, it will be given in italics. The information around the italicized word or phrase may be taken as its definition.« less

  5. GKS utilities for FORTRAN-77

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beach, R.C.

    1992-01-01

    This document describes a number of subroutines that can be useful in GKS graphic applications programmed in FORTRAN-77. The algorithms described here include subroutines to do the following: (1) Draw text characters in a more flexible manner than is possible with basic GKS. (2) Project two-dimensional and three-dimensional space onto two-dimensional space. (3) Draw smooth curves. (4) Draw two-dimensional projections of complex three-dimensional objects. FORTRAN-77 is described in American National Standard, Programming Language, FORTRAN. GKS is described in American National Standard for Information Systems: Computer Graphics -- Graphical Kernel System (GKS) Functional Description and the FORTRAN-77 interface is described inmore » American National Standard for Information Systems: Computer Graphics -- Graphical Kernel System (GKS) FORTRAN Binding. All of the subroutine names and additional enumeration types that will be described in this document begin with the letters GZ.'' Since GKS itself does not have any subroutine names or enumeration types that begin with these letters, no confusion between the usual GKS subroutines and the ones described here should occur. Many concepts will have to be defined in the following chapters. When a concept is first encountered, it will be given in italics. The information around the italicized word or phrase may be taken as its definition.« less

  6. Effective color design for displays

    NASA Astrophysics Data System (ADS)

    MacDonald, Lindsay W.

    2002-06-01

    Visual communication is a key aspect of human-computer interaction, which contributes to the satisfaction of user and application needs. For effective design of presentations on computer displays, color should be used in conjunction with the other visual variables. The general needs of graphic user interfaces are discussed, followed by five specific tasks with differing criteria for display color specification - advertising, text, information, visualization and imaging.

  7. Human factors in the presentation of computer-generated information - Aspects of design and application in automated flight traffic

    NASA Technical Reports Server (NTRS)

    Roske-Hofstrand, Renate J.

    1990-01-01

    The man-machine interface and its influence on the characteristics of computer displays in automated air traffic is discussed. The graphical presentation of spatial relationships and the problems it poses for air traffic control, and the solution of such problems are addressed. Psychological factors involved in the man-machine interface are stressed.

  8. Graphics Processors in HEP Low-Level Trigger Systems

    NASA Astrophysics Data System (ADS)

    Ammendola, Roberto; Biagioni, Andrea; Chiozzi, Stefano; Cotta Ramusino, Angelo; Cretaro, Paolo; Di Lorenzo, Stefano; Fantechi, Riccardo; Fiorini, Massimiliano; Frezza, Ottorino; Lamanna, Gianluca; Lo Cicero, Francesca; Lonardo, Alessandro; Martinelli, Michele; Neri, Ilaria; Paolucci, Pier Stanislao; Pastorelli, Elena; Piandani, Roberto; Pontisso, Luca; Rossetti, Davide; Simula, Francesco; Sozzi, Marco; Vicini, Piero

    2016-11-01

    Usage of Graphics Processing Units (GPUs) in the so called general-purpose computing is emerging as an effective approach in several fields of science, although so far applications have been employing GPUs typically for offline computations. Taking into account the steady performance increase of GPU architectures in terms of computing power and I/O capacity, the real-time applications of these devices can thrive in high-energy physics data acquisition and trigger systems. We will examine the use of online parallel computing on GPUs for the synchronous low-level trigger, focusing on tests performed on the trigger system of the CERN NA62 experiment. To successfully integrate GPUs in such an online environment, latencies of all components need analysing, networking being the most critical. To keep it under control, we envisioned NaNet, an FPGA-based PCIe Network Interface Card (NIC) enabling GPUDirect connection. Furthermore, it is assessed how specific trigger algorithms can be parallelized and thus benefit from a GPU implementation, in terms of increased execution speed. Such improvements are particularly relevant for the foreseen Large Hadron Collider (LHC) luminosity upgrade where highly selective algorithms will be essential to maintain sustainable trigger rates with very high pileup.

  9. Computer programs to assist in high resolution thermal denaturation and circular dichroism studies on nucleic acids

    PubMed Central

    Goodman, Thomas C.; Hardies, Stephen C.; Cortez, Carlos; Hillen, Wolfgang

    1981-01-01

    Computer programs are described that direct the collection, processing, and graphical display of numerical data obtained from high resolution thermal denaturation (1-3) and circular dichroism (4) studies. Besides these specific applications, the programs may also be useful, either directly or as programming models, in other types of spectrophotometric studies employing computers, programming languages, or instruments similar to those described here (see Materials and Methods). PMID:7335498

  10. Computer Graphics Research Laboratory Quarterly Progress Report Number 49, July-September 1993

    DTIC Science & Technology

    1993-11-22

    20 Texture Sampling and Strength Guided Motion: Jeffry S. Nimeroff 23 21 Radiosity : Min-Zhi Shao 24 22 Blended Shape Primitives: Douglas DeCarlo 25 23...placement. "* Extensions of radiosity rendering. "* A discussion of blended shape primitives and the applications in computer vision and computer...user. Radiosity : An improved version of the radiosity renderer is included. This version uses a fast over- relaxation progressive refinement algorithm

  11. Graphic artist in computerland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolberg, K.M.

    1983-01-01

    The field of computer graphics is rapidly opening up to the graphic artist. It is not necessary to be a programming expert to enter this fascinating world. The capabilities of the medium are astounding: neon and metallic effects, translucent plastic and clear glass effects, sensitive 3-D shadings, limitless textures, and above all color. As with any medium, computer graphics has its advantages, such as speed, ease of form manipulation, and a variety of type fonts and alphabets. It also has its limitations, such as data input time, final output turnaround time, and not necessarily being the right medium for themore » job at hand. And finally, it is the time- and cost-saving characteristics of computer-generated visuals, opposed to original artwork, that make computer graphics a viable alternative. This paper focuses on parts of the computer graphics system in use at the Los Alamos National Laboratory to provide specific examples.« less

  12. Survey and Analysis of Environmental Requirements for Shipboard Electronic Equipment Applications. Appendix A. Volume 2.

    DTIC Science & Technology

    1991-07-31

    INTELLIGENT SCSI DMV-719 MAS MIL CONTROLLER DY-4 SYSTEMS BYTE-WIDE MEMORY CARD DMV-536 MEM MIL DY-4 SYSTEMS POWER SUPPLY UNIT DMV-870 PWR MIL P age No. 5 06/10...FORCE COMPUTERS PROCESSOR CPU-386 SERIES SBC COM FORCE COMPUTERS ADVANCED SYSTEM CONTROL ASCU -1/2 SBC COM UNITI FORCE COMPUTERS GRAPHICS CONTROLLER AGC...RECORD VENDOR: JANZ COMPUTER AG DIVISION: VENDOR ADDRESS: Im Doerener Feld 3 D-4790 Paderborn Germany MARKETING: Johannes Kunz TECHNICAL: Arnulf

  13. Update: Advancement of Contact Dynamics Modeling for Human Spaceflight Simulation Applications

    NASA Technical Reports Server (NTRS)

    Brain, Thomas A.; Kovel, Erik B.; MacLean, John R.; Quiocho, Leslie J.

    2017-01-01

    Pong is a new software tool developed at the NASA Johnson Space Center that advances interference-based geometric contact dynamics based on 3D graphics models. The Pong software consists of three parts: a set of scripts to extract geometric data from 3D graphics models, a contact dynamics engine that provides collision detection and force calculations based on the extracted geometric data, and a set of scripts for visualizing the dynamics response with the 3D graphics models. The contact dynamics engine can be linked with an external multibody dynamics engine to provide an integrated multibody contact dynamics simulation. This paper provides a detailed overview of Pong including the overall approach and modeling capabilities, which encompasses force generation from contact primitives and friction to computational performance. Two specific Pong-based examples of International Space Station applications are discussed, and the related verification and validation using this new tool are also addressed.

  14. Color engineering in the age of digital convergence

    NASA Astrophysics Data System (ADS)

    MacDonald, Lindsay W.

    1998-09-01

    Digital color imaging has developed over the past twenty years from specialized scientific applications into the mainstream of computing. In addition to the phenomenal growth of computer processing power and storage capacity, great advances have been made in the capabilities and cost-effectiveness of color imaging peripherals. The majority of imaging applications, including the graphic arts, video and film have made the transition from analogue to digital production methods. Digital convergence of computing, communications and television now heralds new possibilities for multimedia publishing and mobile lifestyles. Color engineering, the application of color science to the design of imaging products, is an emerging discipline that poses exciting challenges to the international color imaging community for training, research and standards.

  15. Optimization Model for Web Based Multimodal Interactive Simulations.

    PubMed

    Halic, Tansel; Ahn, Woojin; De, Suvranu

    2015-07-15

    This paper presents a technique for optimizing the performance of web based multimodal interactive simulations. For such applications where visual quality and the performance of simulations directly influence user experience, overloading of hardware resources may result in unsatisfactory reduction in the quality of the simulation and user satisfaction. However, optimization of simulation performance on individual hardware platforms is not practical. Hence, we present a mixed integer programming model to optimize the performance of graphical rendering and simulation performance while satisfying application specific constraints. Our approach includes three distinct phases: identification, optimization and update . In the identification phase, the computing and rendering capabilities of the client device are evaluated using an exploratory proxy code. This data is utilized in conjunction with user specified design requirements in the optimization phase to ensure best possible computational resource allocation. The optimum solution is used for rendering (e.g. texture size, canvas resolution) and simulation parameters (e.g. simulation domain) in the update phase. Test results are presented on multiple hardware platforms with diverse computing and graphics capabilities to demonstrate the effectiveness of our approach.

  16. Optimization Model for Web Based Multimodal Interactive Simulations

    PubMed Central

    Halic, Tansel; Ahn, Woojin; De, Suvranu

    2015-01-01

    This paper presents a technique for optimizing the performance of web based multimodal interactive simulations. For such applications where visual quality and the performance of simulations directly influence user experience, overloading of hardware resources may result in unsatisfactory reduction in the quality of the simulation and user satisfaction. However, optimization of simulation performance on individual hardware platforms is not practical. Hence, we present a mixed integer programming model to optimize the performance of graphical rendering and simulation performance while satisfying application specific constraints. Our approach includes three distinct phases: identification, optimization and update. In the identification phase, the computing and rendering capabilities of the client device are evaluated using an exploratory proxy code. This data is utilized in conjunction with user specified design requirements in the optimization phase to ensure best possible computational resource allocation. The optimum solution is used for rendering (e.g. texture size, canvas resolution) and simulation parameters (e.g. simulation domain) in the update phase. Test results are presented on multiple hardware platforms with diverse computing and graphics capabilities to demonstrate the effectiveness of our approach. PMID:26085713

  17. Learning Science in a Virtual Reality Application: The Impacts of Animated-Virtual Actors' Visual Complexity

    ERIC Educational Resources Information Center

    Kartiko, Iwan; Kavakli, Manolya; Cheng, Ken

    2010-01-01

    As the technology in computer graphics advances, Animated-Virtual Actors (AVAs) in Virtual Reality (VR) applications become increasingly rich and complex. Cognitive Theory of Multimedia Learning (CTML) suggests that complex visual materials could hinder novice learners from attending to the lesson properly. On the other hand, previous studies have…

  18. Integrated Spreadsheets as a Paradigm of Type II Technology Applications in Mathematics Teacher Education

    ERIC Educational Resources Information Center

    Abramovich, Sergei

    2016-01-01

    The paper presents the use of spreadsheets integrated with digital tools capable of symbolic computations and graphic constructions in a master's level capstone course for secondary mathematics teachers. Such use of spreadsheets is congruent with the Type II technology applications framework aimed at the development of conceptual knowledge in the…

  19. Experiences modeling ocean circulation problems on a 30 node commodity cluster with 3840 GPU processor cores.

    NASA Astrophysics Data System (ADS)

    Hill, C.

    2008-12-01

    Low cost graphic cards today use many, relatively simple, compute cores to deliver support for memory bandwidth of more than 100GB/s and theoretical floating point performance of more than 500 GFlop/s. Right now this performance is, however, only accessible to highly parallel algorithm implementations that, (i) can use a hundred or more, 32-bit floating point, concurrently executing cores, (ii) can work with graphics memory that resides on the graphics card side of the graphics bus and (iii) can be partially expressed in a language that can be compiled by a graphics programming tool. In this talk we describe our experiences implementing a complete, but relatively simple, time dependent shallow-water equations simulation targeting a cluster of 30 computers each hosting one graphics card. The implementation takes into account the considerations (i), (ii) and (iii) listed previously. We code our algorithm as a series of numerical kernels. Each kernel is designed to be executed by multiple threads of a single process. Kernels are passed memory blocks to compute over which can be persistent blocks of memory on a graphics card. Each kernel is individually implemented using the NVidia CUDA language but driven from a higher level supervisory code that is almost identical to a standard model driver. The supervisory code controls the overall simulation timestepping, but is written to minimize data transfer between main memory and graphics memory (a massive performance bottle-neck on current systems). Using the recipe outlined we can boost the performance of our cluster by nearly an order of magnitude, relative to the same algorithm executing only on the cluster CPU's. Achieving this performance boost requires that many threads are available to each graphics processor for execution within each numerical kernel and that the simulations working set of data can fit into the graphics card memory. As we describe, this puts interesting upper and lower bounds on the problem sizes for which this technology is currently most useful. However, many interesting problems fit within this envelope. Looking forward, we extrapolate our experience to estimate full-scale ocean model performance and applicability. Finally we describe preliminary hybrid mixed 32-bit and 64-bit experiments with graphics cards that support 64-bit arithmetic, albeit at a lower performance.

  20. Interactive graphical computer-aided design system

    NASA Technical Reports Server (NTRS)

    Edge, T. M.

    1975-01-01

    System is used for design, layout, and modification of large-scale-integrated (LSI) metal-oxide semiconductor (MOS) arrays. System is structured around small computer which provides real-time support for graphics storage display unit with keyboard, slave display unit, hard copy unit, and graphics tablet for designer/computer interface.

  1. SIGMA--A Graphical Approach to Teaching Simulation.

    ERIC Educational Resources Information Center

    Schruben, Lee W.

    1992-01-01

    SIGMA (Simulation Graphical Modeling and Analysis) is a computer graphics environment for building, testing, and experimenting with discrete event simulation models on personal computers. It uses symbolic representations (computer animation) to depict the logic of large, complex discrete event systems for easier understanding and has proven itself…

  2. Development of a Traditional/Computer-aided Graphics Course for Engineering Technology.

    ERIC Educational Resources Information Center

    Anand, Vera B.

    1985-01-01

    Describes a two-semester-hour freshman course in engineering graphics which uses both traditional and computerized instruction. Includes course description, computer graphics topics, and recommendations. Indicates that combining interactive graphics software with development of simple programs gave students a better foundation for upper-division…

  3. CPU architecture for a fast and energy-saving calculation of convolution neural networks

    NASA Astrophysics Data System (ADS)

    Knoll, Florian J.; Grelcke, Michael; Czymmek, Vitali; Holtorf, Tim; Hussmann, Stephan

    2017-06-01

    One of the most difficult problem in the use of artificial neural networks is the computational capacity. Although large search engine companies own specially developed hardware to provide the necessary computing power, for the conventional user only remains the state of the art method, which is the use of a graphic processing unit (GPU) as a computational basis. Although these processors are well suited for large matrix computations, they need massive energy. Therefore a new processor on the basis of a field programmable gate array (FPGA) has been developed and is optimized for the application of deep learning. This processor is presented in this paper. The processor can be adapted for a particular application (in this paper to an organic farming application). The power consumption is only a fraction of a GPU application and should therefore be well suited for energy-saving applications.

  4. Low-Level Graphics Cues For Solicit Image Interpretation

    NASA Astrophysics Data System (ADS)

    McAnulty, Michael A.; Gemmill, Jill P.; Kegley, Kathleen A.; Chiu, Haw-Tsang

    1984-08-01

    Several straightforward techniques for displaying arbitrary solids of the sort encountered in the life sciences are presented, all variations of simple three-dimensional scatter plots. They are all targeted for a medium cost raster display (an AED-5l2 has been used here). Practically any host computer may be used to implement them. All techniques are broadly applicable and were implemented as Master Degree projects. The major hardware constraint is data transmission speed, and this is met by minimizing the amount of graphical data, ignoring enhancement of the data, and using terminal scan-conversion and aspect firmware wherever possible. Three simple rendering techniques and the use of several graphics cues are described.

  5. R and Spatial Data

    EPA Science Inventory

    R is an open source language and environment for statistical computing and graphics that can also be used for both spatial analysis (i.e. geoprocessing and mapping of different types of spatial data) and spatial data analysis (i.e. the application of statistical descriptions and ...

  6. Input Scanners: A Growing Impact In A Diverse Marketplace

    NASA Astrophysics Data System (ADS)

    Marks, Kevin E.

    1989-08-01

    Just as newly invented photographic processes revolutionized the printing industry at the turn of the century, electronic imaging has affected almost every computer application today. To completely emulate traditionally mechanical means of information handling, computer based systems must be able to capture graphic images. Thus, there is a widespread need for the electronic camera, the digitizer, the input scanner. This paper will review how various types of input scanners are being used in many diverse applications. The following topics will be covered: - Historical overview of input scanners - New applications for scanners - Impact of scanning technology on select markets - Scanning systems issues

  7. GPUs: An Emerging Platform for General-Purpose Computation

    DTIC Science & Technology

    2007-08-01

    programming; real-time cinematic quality graphics Peak stream (26) License required (limited time no- cost evaluation program) Commercially...folding.stanford.edu (accessed 30 March 2007). 2. Fan, Z.; Qiu, F.; Kaufman, A.; Yoakum-Stover, S. GPU Cluster for High Performance Computing. ACM/IEEE...accessed 30 March 2007). 8. Goodnight, N.; Wang, R.; Humphreys, G. Computation on Programmable Graphics Hardware. IEEE Computer Graphics and

  8. GASPRNG: GPU accelerated scalable parallel random number generator library

    NASA Astrophysics Data System (ADS)

    Gao, Shuang; Peterson, Gregory D.

    2013-04-01

    Graphics processors represent a promising technology for accelerating computational science applications. Many computational science applications require fast and scalable random number generation with good statistical properties, so they use the Scalable Parallel Random Number Generators library (SPRNG). We present the GPU Accelerated SPRNG library (GASPRNG) to accelerate SPRNG in GPU-based high performance computing systems. GASPRNG includes code for a host CPU and CUDA code for execution on NVIDIA graphics processing units (GPUs) along with a programming interface to support various usage models for pseudorandom numbers and computational science applications executing on the CPU, GPU, or both. This paper describes the implementation approach used to produce high performance and also describes how to use the programming interface. The programming interface allows a user to be able to use GASPRNG the same way as SPRNG on traditional serial or parallel computers as well as to develop tightly coupled programs executing primarily on the GPU. We also describe how to install GASPRNG and use it. To help illustrate linking with GASPRNG, various demonstration codes are included for the different usage models. GASPRNG on a single GPU shows up to 280x speedup over SPRNG on a single CPU core and is able to scale for larger systems in the same manner as SPRNG. Because GASPRNG generates identical streams of pseudorandom numbers as SPRNG, users can be confident about the quality of GASPRNG for scalable computational science applications. Catalogue identifier: AEOI_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOI_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: UTK license. No. of lines in distributed program, including test data, etc.: 167900 No. of bytes in distributed program, including test data, etc.: 1422058 Distribution format: tar.gz Programming language: C and CUDA. Computer: Any PC or workstation with NVIDIA GPU (Tested on Fermi GTX480, Tesla C1060, Tesla M2070). Operating system: Linux with CUDA version 4.0 or later. Should also run on MacOS, Windows, or UNIX. Has the code been vectorized or parallelized?: Yes. Parallelized using MPI directives. RAM: 512 MB˜ 732 MB (main memory on host CPU, depending on the data type of random numbers.) / 512 MB (GPU global memory) Classification: 4.13, 6.5. Nature of problem: Many computational science applications are able to consume large numbers of random numbers. For example, Monte Carlo simulations are able to consume limitless random numbers for the computation as long as resources for the computing are supported. Moreover, parallel computational science applications require independent streams of random numbers to attain statistically significant results. The SPRNG library provides this capability, but at a significant computational cost. The GASPRNG library presented here accelerates the generators of independent streams of random numbers using graphical processing units (GPUs). Solution method: Multiple copies of random number generators in GPUs allow a computational science application to consume large numbers of random numbers from independent, parallel streams. GASPRNG is a random number generators library to allow a computational science application to employ multiple copies of random number generators to boost performance. Users can interface GASPRNG with software code executing on microprocessors and/or GPUs. Running time: The tests provided take a few minutes to run.

  9. Graphical User Interface Programming in Introductory Computer Science.

    ERIC Educational Resources Information Center

    Skolnick, Michael M.; Spooner, David L.

    Modern computing systems exploit graphical user interfaces for interaction with users; as a result, introductory computer science courses must begin to teach the principles underlying such interfaces. This paper presents an approach to graphical user interface (GUI) implementation that is simple enough for beginning students to understand, yet…

  10. The feasibility of using computer graphics in environmental evaluations : interim report, documenting historic site locations using computer graphics.

    DOT National Transportation Integrated Search

    1981-01-01

    This report describes a method for locating historic site information using a computer graphics program. If adopted for use by the Virginia Department of Highways and Transportation, this method should significantly reduce the time now required to de...

  11. Oklahoma's Mobile Computer Graphics Laboratory.

    ERIC Educational Resources Information Center

    McClain, Gerald R.

    This Computer Graphics Laboratory houses an IBM 1130 computer, U.C.C. plotter, printer, card reader, two key punch machines, and seminar-type classroom furniture. A "General Drafting Graphics System" (GDGS) is used, based on repetitive use of basic coordinate and plot generating commands. The system is used by 12 institutions of higher education…

  12. Traditional Engineering Graphics versus Computer-Aided Drafting: A View from Academe.

    ERIC Educational Resources Information Center

    Foster, Robert J.

    1987-01-01

    Argues for a legitimate role of manually expressed engineering graphics within engineering education as a needed support for computer-assisted drafting work. Discusses what and how students should learn as well as trends in engineering graphics education. Compares and contrasts manual and computer drafting methods. (CW)

  13. A Program of Continuing Research on Representing, Manipulating, and Reasoning about Physical Objects

    DTIC Science & Technology

    1991-09-30

    graphics with the goal of automatically converting complex graphics models into forms more appropriate for radiosity computation. 2.4 Least Constraint We...to computer graphics with the goal of automatically 7 converting complex graphics models into forms more appropriate for radiosity com- putation. 8 4

  14. Engineering Graphics Educational Outcomes for the Global Engineer: An Update

    ERIC Educational Resources Information Center

    Barr, R. E.

    2012-01-01

    This paper discusses the formulation of educational outcomes for engineering graphics that span the global enterprise. Results of two repeated faculty surveys indicate that new computer graphics tools and techniques are now the preferred mode of engineering graphical communication. Specifically, 3-D computer modeling, assembly modeling, and model…

  15. Parallel, distributed and GPU computing technologies in single-particle electron microscopy

    PubMed Central

    Schmeisser, Martin; Heisen, Burkhard C.; Luettich, Mario; Busche, Boris; Hauer, Florian; Koske, Tobias; Knauber, Karl-Heinz; Stark, Holger

    2009-01-01

    Most known methods for the determination of the structure of macromolecular complexes are limited or at least restricted at some point by their computational demands. Recent developments in information technology such as multicore, parallel and GPU processing can be used to overcome these limitations. In particular, graphics processing units (GPUs), which were originally developed for rendering real-time effects in computer games, are now ubiquitous and provide unprecedented computational power for scientific applications. Each parallel-processing paradigm alone can improve overall performance; the increased computational performance obtained by combining all paradigms, unleashing the full power of today’s technology, makes certain applications feasible that were previously virtually impossible. In this article, state-of-the-art paradigms are introduced, the tools and infrastructure needed to apply these paradigms are presented and a state-of-the-art infrastructure and solution strategy for moving scientific applications to the next generation of computer hardware is outlined. PMID:19564686

  16. Parallel, distributed and GPU computing technologies in single-particle electron microscopy.

    PubMed

    Schmeisser, Martin; Heisen, Burkhard C; Luettich, Mario; Busche, Boris; Hauer, Florian; Koske, Tobias; Knauber, Karl-Heinz; Stark, Holger

    2009-07-01

    Most known methods for the determination of the structure of macromolecular complexes are limited or at least restricted at some point by their computational demands. Recent developments in information technology such as multicore, parallel and GPU processing can be used to overcome these limitations. In particular, graphics processing units (GPUs), which were originally developed for rendering real-time effects in computer games, are now ubiquitous and provide unprecedented computational power for scientific applications. Each parallel-processing paradigm alone can improve overall performance; the increased computational performance obtained by combining all paradigms, unleashing the full power of today's technology, makes certain applications feasible that were previously virtually impossible. In this article, state-of-the-art paradigms are introduced, the tools and infrastructure needed to apply these paradigms are presented and a state-of-the-art infrastructure and solution strategy for moving scientific applications to the next generation of computer hardware is outlined.

  17. View generated database

    NASA Technical Reports Server (NTRS)

    Downward, James G.

    1992-01-01

    This document represents the final report for the View Generated Database (VGD) project, NAS7-1066. It documents the work done on the project up to the point at which all project work was terminated due to lack of project funds. The VGD was to provide the capability to accurately represent any real-world object or scene as a computer model. Such models include both an accurate spatial/geometric representation of surfaces of the object or scene, as well as any surface detail present on the object. Applications of such models are numerous, including acquisition and maintenance of work models for tele-autonomous systems, generation of accurate 3-D geometric/photometric models for various 3-D vision systems, and graphical models for realistic rendering of 3-D scenes via computer graphics.

  18. Simulated Breeding

    NASA Astrophysics Data System (ADS)

    Unemi, Tatsuo

    This chapter describes a basic framework of simulated breeding, a type of interactive evolutionary computing to breed artifacts, whose origin is Blind Watchmaker by Dawkins. These methods make it easy for humans to design a complex object adapted to his/her subjective criteria, just similarly to agricultural products we have been developing over thousands of years. Starting from randomly initialized genome, the solution candidates are improved through several generations with artificial selection. The graphical user interface helps the process of breeding with techniques of multifield user interface and partial breeding. The former improves the diversity of individuals that prevents being trapped at local optimum. The latter makes it possible for the user to fix features he/she already satisfied. These methods were examined through artistic applications by the author: SBART for graphics art and SBEAT for music. Combining with a direct genome editor and exportation to another graphical or musical tool on the computer, they can be powerful tools for artistic creation. These systems may contribute to the creation of a type of new culture.

  19. A Symbolic and Graphical Computer Representation of Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Gould, Laurence I.

    2005-04-01

    AUTONO is a Macsyma/Maxima program, designed at the University of Hartford, for solving autonomous systems of differential equations as well as for relating Lagrangians and Hamiltonians to their associated dynamical equations. AUTONO can be used in a number of fields to decipher a variety of complex dynamical systems with ease, producing their Lagrangian and Hamiltonian equations in seconds. These equations can then be incorporated into VisSim, a modeling and simulation program, which yields graphical representations of motion in a given system through easily chosen input parameters. The program, along with the VisSim differential-equations graphical package, allows for resolution and easy understanding of complex problems in a relatively short time; thus enabling quicker and more advanced computing of dynamical systems on any number of platforms---from a network of sensors on a space probe, to the behavior of neural networks, to the effects of an electromagnetic field on components in a dynamical system. A flowchart of AUTONO, along with some simple applications and VisSim output, will be shown.

  20. The application of artificial intelligent techniques to accelerator operations at McMaster University

    NASA Astrophysics Data System (ADS)

    Poehlman, W. F. S.; Garland, Wm. J.; Stark, J. W.

    1993-06-01

    In an era of downsizing and a limited pool of skilled accelerator personnel from which to draw replacements for an aging workforce, the impetus to integrate intelligent computer automation into the accelerator operator's repertoire is strong. However, successful deployment of an "Operator's Companion" is not trivial. Both graphical and human factors need to be recognized as critical areas that require extra care when formulating the Companion. They include interactive graphical user's interface that mimics, for the operator, familiar accelerator controls; knowledge of acquisition phases during development must acknowledge the expert's mental model of machine operation; and automated operations must be seen as improvements to the operator's environment rather than threats of ultimate replacement. Experiences with the PACES Accelerator Operator Companion developed at two sites over the past three years are related and graphical examples are given. The scale of the work involves multi-computer control of various start-up/shutdown and tuning procedures for Model FN and KN Van de Graaff accelerators. The response from licensing agencies has been encouraging.

  1. Definition Of Touch-Sensitive Zones For Graphical Displays

    NASA Technical Reports Server (NTRS)

    Monroe, Burt L., III; Jones, Denise R.

    1988-01-01

    Touch zones defined simply by touching, while editing done automatically. Development of touch-screen interactive computing system, tedious task. Interactive Editor for Definition of Touch-Sensitive Zones computer program increases efficiency of human/machine communications by enabling user to define each zone interactively, minimizing redundancy in programming and eliminating need for manual computation of boundaries of touch areas. Information produced during editing process written to data file, to which access gained when needed by application program.

  2. The design of an intelligent human-computer interface for the test, control and monitor system

    NASA Technical Reports Server (NTRS)

    Shoaff, William D.

    1988-01-01

    The graphical intelligence and assistance capabilities of a human-computer interface for the Test, Control, and Monitor System at Kennedy Space Center are explored. The report focuses on how a particular commercial off-the-shelf graphical software package, Data Views, can be used to produce tools that build widgets such as menus, text panels, graphs, icons, windows, and ultimately complete interfaces for monitoring data from an application; controlling an application by providing input data to it; and testing an application by both monitoring and controlling it. A complete set of tools for building interfaces is described in a manual for the TCMS toolkit. Simple tools create primitive widgets such as lines, rectangles and text strings. Intermediate level tools create pictographs from primitive widgets, and connect processes to either text strings or pictographs. Other tools create input objects; Data Views supports output objects directly, thus output objects are not considered. Finally, a set of utilities for executing, monitoring use, editing, and displaying the content of interfaces is included in the toolkit.

  3. A fast mass spring model solver for high-resolution elastic objects

    NASA Astrophysics Data System (ADS)

    Zheng, Mianlun; Yuan, Zhiyong; Zhu, Weixu; Zhang, Guian

    2017-03-01

    Real-time simulation of elastic objects is of great importance for computer graphics and virtual reality applications. The fast mass spring model solver can achieve visually realistic simulation in an efficient way. Unfortunately, this method suffers from resolution limitations and lack of mechanical realism for a surface geometry model, which greatly restricts its application. To tackle these problems, in this paper we propose a fast mass spring model solver for high-resolution elastic objects. First, we project the complex surface geometry model into a set of uniform grid cells as cages through *cages mean value coordinate method to reflect its internal structure and mechanics properties. Then, we replace the original Cholesky decomposition method in the fast mass spring model solver with a conjugate gradient method, which can make the fast mass spring model solver more efficient for detailed surface geometry models. Finally, we propose a graphics processing unit accelerated parallel algorithm for the conjugate gradient method. Experimental results show that our method can realize efficient deformation simulation of 3D elastic objects with visual reality and physical fidelity, which has a great potential for applications in computer animation.

  4. Program Aids Specification Of Multiple-Block Grids

    NASA Technical Reports Server (NTRS)

    Sorenson, R. L.; Mccann, K. M.

    1993-01-01

    3DPREP computer program aids specification of multiple-block computational grids. Highly interactive graphical preprocessing program designed for use on powerful graphical scientific computer workstation. Divided into three main parts, each corresponding to principal graphical-and-alphanumerical display. Relieves user of some burden of collecting and formatting many data needed to specify blocks and grids, and prepares input data for NASA's 3DGRAPE grid-generating computer program.

  5. Microphotocomposition--A New Publishing Resource

    ERIC Educational Resources Information Center

    Butler, Brett; Van Pelt, John

    1972-01-01

    This article describes strategies, variables, and techniques employed in developing a production facility used to date for publication of some 300,000 frames of microcomposed library catalog cards, and which is now available for other graphic arts quality computer output microfilm (COM) applications. (0 references) (Author)

  6. Image databases: Problems and perspectives

    NASA Technical Reports Server (NTRS)

    Gudivada, V. Naidu

    1989-01-01

    With the increasing number of computer graphics, image processing, and pattern recognition applications, economical storage, efficient representation and manipulation, and powerful and flexible query languages for retrieval of image data are of paramount importance. These and related issues pertinent to image data bases are examined.

  7. A pilot study comparing mouse and mouse-emulating interface devices for graphic input.

    PubMed

    Kanny, E M; Anson, D K

    1991-01-01

    Adaptive interface devices make it possible for individuals with physical disabilities to use microcomputers and thus perform many tasks that they would otherwise be unable to accomplish. Special equipment is available that purports to allow functional access to the computer for users with disabilities. As technology moves from purely keyboard applications to include graphic input, it will be necessary for assistive interface devices to support graphics as well as text entry. Headpointing systems that emulate the mouse in combination with on-screen keyboards are of particular interest to persons with severe physical impairment such as high level quadriplegia. Two such systems currently on the market are the HeadMaster and the Free Wheel. The authors have conducted a pilot study comparing graphic input speed using the mouse and two headpointing interface systems on the Macintosh computer. The study used a single subject design with six able-bodied subjects, to establish a baseline for comparison with persons with severe disabilities. Results of these preliminary data indicated that the HeadMaster was nearly as effective as the mouse and that it was superior to the Free Wheel for graphics input. This pilot study, however, demonstrated several experimental design problems that need to be addressed to make the study more robust. It also demonstrated the need to include the evaluation of text input so that the effectiveness of the interface devices with text and graphic input could be compared.

  8. COINGRAD; Control Oriented Interactive Graphical Analysis and Design.

    ERIC Educational Resources Information Center

    Volz, Richard A.; And Others

    The computer is currently a vital tool in engineering analysis and design. With the introduction of moderately priced graphics terminals, it will become even more important in the future as rapid graphic interaction between the engineer and the computer becomes more feasible in computer-aided design (CAD). To provide a vehicle for introducing…

  9. Design and Curriculum Considerations for a Computer Graphics Program in the Arts.

    ERIC Educational Resources Information Center

    Leeman, Ruedy W.

    This history and state-of-the-art review of computer graphics describes computer graphics programs and proposed programs at Sheridan College (Canada), the Rhode Island School of Design, the University of Oregon, Northern Illinois University, and Ohio State University. These programs are discussed in terms of their philosophy, curriculum, student…

  10. VTGRAPH - GRAPHIC SOFTWARE TOOL FOR VT TERMINALS

    NASA Technical Reports Server (NTRS)

    Wang, C.

    1994-01-01

    VTGRAPH is a graphics software tool for DEC/VT or VT compatible terminals which are widely used by government and industry. It is a FORTRAN or C-language callable library designed to allow the user to deal with many computer environments which use VT terminals for window management and graphic systems. It also provides a PLOT10-like package plus color or shade capability for VT240, VT241, and VT300 terminals. The program is transportable to many different computers which use VT terminals. With this graphics package, the user can easily design more friendly user interface programs and design PLOT10 programs on VT terminals with different computer systems. VTGRAPH was developed using the ReGis Graphics set which provides a full range of graphics capabilities. The basic VTGRAPH capabilities are as follows: window management, PLOT10 compatible drawing, generic program routines for two and three dimensional plotting, and color graphics or shaded graphics capability. The program was developed in VAX FORTRAN in 1988. VTGRAPH requires a ReGis graphics set terminal and a FORTRAN compiler. The program has been run on a DEC MicroVAX 3600 series computer operating under VMS 5.0, and has a virtual memory requirement of 5KB.

  11. It's a Wonderful Life: Using Public Domain Cinema Clips To Teach Affective Objectives and Illustrate Real-World Algebra Applications.

    ERIC Educational Resources Information Center

    Palmer, Loretta

    A basic algebra unit was developed at Utah Valley State College to emphasize applications of mathematical concepts in the work world, using video and computer-generated graphics to integrate textual material. The course was implemented in three introductory algebra sections involving 80 students and taught algebraic concepts using such areas as…

  12. Parallel rendering

    NASA Technical Reports Server (NTRS)

    Crockett, Thomas W.

    1995-01-01

    This article provides a broad introduction to the subject of parallel rendering, encompassing both hardware and software systems. The focus is on the underlying concepts and the issues which arise in the design of parallel rendering algorithms and systems. We examine the different types of parallelism and how they can be applied in rendering applications. Concepts from parallel computing, such as data decomposition, task granularity, scalability, and load balancing, are considered in relation to the rendering problem. We also explore concepts from computer graphics, such as coherence and projection, which have a significant impact on the structure of parallel rendering algorithms. Our survey covers a number of practical considerations as well, including the choice of architectural platform, communication and memory requirements, and the problem of image assembly and display. We illustrate the discussion with numerous examples from the parallel rendering literature, representing most of the principal rendering methods currently used in computer graphics.

  13. Solar physics applications of computer graphics and image processing

    NASA Technical Reports Server (NTRS)

    Altschuler, M. D.

    1985-01-01

    Computer graphics devices coupled with computers and carefully developed software provide new opportunities to achieve insight into the geometry and time evolution of scalar, vector, and tensor fields and to extract more information quickly and cheaply from the same image data. Two or more different fields which overlay in space can be calculated from the data (and the physics), then displayed from any perspective, and compared visually. The maximum regions of one field can be compared with the gradients of another. Time changing fields can also be compared. Images can be added, subtracted, transformed, noise filtered, frequency filtered, contrast enhanced, color coded, enlarged, compressed, parameterized, and histogrammed, in whole or section by section. Today it is possible to process multiple digital images to reveal spatial and temporal correlations and cross correlations. Data from different observatories taken at different times can be processed, interpolated, and transformed to a common coordinate system.

  14. Creation and application of three-dimensional computer-graphic animations for introduction to radiological physics and technology.

    PubMed

    Hasegawa, Tomoyuki; Kojima, Haruna; Masu, Chisato; Fukushima, Yasuhiro; Kojima, Hironori; Konokawa, Kiminori; Isobe, Tomonori; Sato, Eisuke; Murayama, Hideo; Maruyama, Koichi; Umeda, Tokuo

    2010-01-01

    Physics-related subjects are important in the educational fields of radiological physics and technology. However, conventional teaching tools, for example texts, equations, and two-dimensional figures, are not very effective in attracting the interest of students. Therefore, we have created several multimedia educational materials covering radiological physics and technology. Each educational presentation includes several segments of high-quality computer-graphic animations designed to attract students' interest. We used personal computers (PCs) and commercial software to create and compile these. Undergraduate and graduate students and teachers and related professionals contributed to the design and creation of the educational materials as part of student research. The educational materials can be displayed on a PC monitor and manipulated with popular free software. Opinion surveys conducted in undergraduate courses at Kitasato University support the effectiveness of our educational tools in helping students gain a better understanding of the subjects offered and in raising their interest.

  15. Acceleration of the Smith-Waterman algorithm using single and multiple graphics processors

    NASA Astrophysics Data System (ADS)

    Khajeh-Saeed, Ali; Poole, Stephen; Blair Perot, J.

    2010-06-01

    Finding regions of similarity between two very long data streams is a computationally intensive problem referred to as sequence alignment. Alignment algorithms must allow for imperfect sequence matching with different starting locations and some gaps and errors between the two data sequences. Perhaps the most well known application of sequence matching is the testing of DNA or protein sequences against genome databases. The Smith-Waterman algorithm is a method for precisely characterizing how well two sequences can be aligned and for determining the optimal alignment of those two sequences. Like many applications in computational science, the Smith-Waterman algorithm is constrained by the memory access speed and can be accelerated significantly by using graphics processors (GPUs) as the compute engine. In this work we show that effective use of the GPU requires a novel reformulation of the Smith-Waterman algorithm. The performance of this new version of the algorithm is demonstrated using the SSCA#1 (Bioinformatics) benchmark running on one GPU and on up to four GPUs executing in parallel. The results indicate that for large problems a single GPU is up to 45 times faster than a CPU for this application, and the parallel implementation shows linear speed up on up to 4 GPUs.

  16. Advanced techniques in reliability model representation and solution

    NASA Technical Reports Server (NTRS)

    Palumbo, Daniel L.; Nicol, David M.

    1992-01-01

    The current tendency of flight control system designs is towards increased integration of applications and increased distribution of computational elements. The reliability analysis of such systems is difficult because subsystem interactions are increasingly interdependent. Researchers at NASA Langley Research Center have been working for several years to extend the capability of Markov modeling techniques to address these problems. This effort has been focused in the areas of increased model abstraction and increased computational capability. The reliability model generator (RMG) is a software tool that uses as input a graphical object-oriented block diagram of the system. RMG uses a failure-effects algorithm to produce the reliability model from the graphical description. The ASSURE software tool is a parallel processing program that uses the semi-Markov unreliability range evaluator (SURE) solution technique and the abstract semi-Markov specification interface to the SURE tool (ASSIST) modeling language. A failure modes-effects simulation is used by ASSURE. These tools were used to analyze a significant portion of a complex flight control system. The successful combination of the power of graphical representation, automated model generation, and parallel computation leads to the conclusion that distributed fault-tolerant system architectures can now be analyzed.

  17. InteractiveROSETTA: a graphical user interface for the PyRosetta protein modeling suite.

    PubMed

    Schenkelberg, Christian D; Bystroff, Christopher

    2015-12-15

    Modern biotechnical research is becoming increasingly reliant on computational structural modeling programs to develop novel solutions to scientific questions. Rosetta is one such protein modeling suite that has already demonstrated wide applicability to a number of diverse research projects. Unfortunately, Rosetta is largely a command-line-driven software package which restricts its use among non-computational researchers. Some graphical interfaces for Rosetta exist, but typically are not as sophisticated as commercial software. Here, we present InteractiveROSETTA, a graphical interface for the PyRosetta framework that presents easy-to-use controls for several of the most widely used Rosetta protocols alongside a sophisticated selection system utilizing PyMOL as a visualizer. InteractiveROSETTA is also capable of interacting with remote Rosetta servers, facilitating sophisticated protocols that are not accessible in PyRosetta or which require greater computational resources. InteractiveROSETTA is freely available at https://github.com/schenc3/InteractiveROSETTA/releases and relies upon a separate download of PyRosetta which is available at http://www.pyrosetta.org after obtaining a license (free for academic use). © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Graphics Processing Unit Assisted Thermographic Compositing

    NASA Technical Reports Server (NTRS)

    Ragasa, Scott; McDougal, Matthew; Russell, Sam

    2012-01-01

    Objective: To develop a software application utilizing general purpose graphics processing units (GPUs) for the analysis of large sets of thermographic data. Background: Over the past few years, an increasing effort among scientists and engineers to utilize the GPU in a more general purpose fashion is allowing for supercomputer level results at individual workstations. As data sets grow, the methods to work them grow at an equal, and often great, pace. Certain common computations can take advantage of the massively parallel and optimized hardware constructs of the GPU to allow for throughput that was previously reserved for compute clusters. These common computations have high degrees of data parallelism, that is, they are the same computation applied to a large set of data where the result does not depend on other data elements. Signal (image) processing is one area were GPUs are being used to greatly increase the performance of certain algorithms and analysis techniques. Technical Methodology/Approach: Apply massively parallel algorithms and data structures to the specific analysis requirements presented when working with thermographic data sets.

  19. Parallel Rendering of Large Time-Varying Volume Data

    NASA Technical Reports Server (NTRS)

    Garbutt, Alexander E.

    2005-01-01

    Interactive visualization of large time-varying 3D volume datasets has been and still is a great challenge to the modem computational world. It stretches the limits of the memory capacity, the disk space, the network bandwidth and the CPU speed of a conventional computer. In this SURF project, we propose to develop a parallel volume rendering program on SGI's Prism, a cluster computer equipped with state-of-the-art graphic hardware. The proposed program combines both parallel computing and hardware rendering in order to achieve an interactive rendering rate. We use 3D texture mapping and a hardware shader to implement 3D volume rendering on each workstation. We use SGI's VisServer to enable remote rendering using Prism's graphic hardware. And last, we will integrate this new program with ParVox, a parallel distributed visualization system developed at JPL. At the end of the project, we Will demonstrate remote interactive visualization using this new hardware volume renderer on JPL's Prism System using a time-varying dataset from selected JPL applications.

  20. RenderMan design principles

    NASA Technical Reports Server (NTRS)

    Apodaca, Tony; Porter, Tom

    1989-01-01

    The two worlds of interactive graphics and realistic graphics have remained separate. Fast graphics hardware runs simple algorithms and generates simple looking images. Photorealistic image synthesis software runs slowly on large expensive computers. The time has come for these two branches of computer graphics to merge. The speed and expense of graphics hardware is no longer the barrier to the wide acceptance of photorealism. There is every reason to believe that high quality image synthesis will become a standard capability of every graphics machine, from superworkstation to personal computer. The significant barrier has been the lack of a common language, an agreed-upon set of terms and conditions, for 3-D modeling systems to talk to 3-D rendering systems for computing an accurate rendition of that scene. Pixar has introduced RenderMan to serve as that common language. RenderMan, specifically the extensibility it offers in shading calculations, is discussed.

  1. User Interface Technology Transfer to NASA's Virtual Wind Tunnel System

    NASA Technical Reports Server (NTRS)

    vanDam, Andries

    1998-01-01

    Funded by NASA grants for four years, the Brown Computer Graphics Group has developed novel 3D user interfaces for desktop and immersive scientific visualization applications. This past grant period supported the design and development of a software library, the 3D Widget Library, which supports the construction and run-time management of 3D widgets. The 3D Widget Library is a mechanism for transferring user interface technology from the Brown Graphics Group to the Virtual Wind Tunnel system at NASA Ames as well as the public domain.

  2. GPU accelerated FDTD solver and its application in MRI.

    PubMed

    Chi, J; Liu, F; Jin, J; Mason, D G; Crozier, S

    2010-01-01

    The finite difference time domain (FDTD) method is a popular technique for computational electromagnetics (CEM). The large computational power often required, however, has been a limiting factor for its applications. In this paper, we will present a graphics processing unit (GPU)-based parallel FDTD solver and its successful application to the investigation of a novel B1 shimming scheme for high-field magnetic resonance imaging (MRI). The optimized shimming scheme exhibits considerably improved transmit B(1) profiles. The GPU implementation dramatically shortened the runtime of FDTD simulation of electromagnetic field compared with its CPU counterpart. The acceleration in runtime has made such investigation possible, and will pave the way for other studies of large-scale computational electromagnetic problems in modern MRI which were previously impractical.

  3. The use of graphics in the design of the human-telerobot interface

    NASA Technical Reports Server (NTRS)

    Stuart, Mark A.; Smith, Randy L.

    1989-01-01

    The Man-Systems Telerobotics Laboratory (MSTL) of NASA's Johnson Space Center employs computer graphics tools in their design and evaluation of the Flight Telerobotic Servicer (FTS) human/telerobot interface on the Shuttle and on the Space Station. It has been determined by the MSTL that the use of computer graphics can promote more expedient and less costly design endeavors. Several specific examples of computer graphics applied to the FTS user interface by the MSTL are described.

  4. Interplay of Computer and Paper-Based Sketching in Graphic Design

    ERIC Educational Resources Information Center

    Pan, Rui; Kuo, Shih-Ping; Strobel, Johannes

    2013-01-01

    The purpose of this study is to investigate student designers' attitude and choices towards the use of computers and paper sketches when involved in a graphic design process. 65 computer graphic technology undergraduates participated in this research. A mixed method study with survey and in-depth interviews was applied to answer the research…

  5. Graphical Man/Machine Communications

    DTIC Science & Technology

    Progress is reported concerning the use of computer controlled graphical displays in the areas of radiaton diffusion and hydrodynamics, general...ventricular dynamics. Progress is continuing on the use of computer graphics in architecture. Some progress in halftone graphics is reported with no basic...developments presented. Colored halftone perspective pictures are being used to represent multivariable situations. Nonlinear waveform processing is

  6. Advantages of GPU technology in DFT calculations of intercalated graphene

    NASA Astrophysics Data System (ADS)

    Pešić, J.; Gajić, R.

    2014-09-01

    Over the past few years, the expansion of general-purpose graphic-processing unit (GPGPU) technology has had a great impact on computational science. GPGPU is the utilization of a graphics-processing unit (GPU) to perform calculations in applications usually handled by the central processing unit (CPU). Use of GPGPUs as a way to increase computational power in the material sciences has significantly decreased computational costs in already highly demanding calculations. A level of the acceleration and parallelization depends on the problem itself. Some problems can benefit from GPU acceleration and parallelization, such as the finite-difference time-domain algorithm (FTDT) and density-functional theory (DFT), while others cannot take advantage of these modern technologies. A number of GPU-supported applications had emerged in the past several years (www.nvidia.com/object/gpu-applications.html). Quantum Espresso (QE) is reported as an integrated suite of open source computer codes for electronic-structure calculations and materials modeling at the nano-scale. It is based on DFT, the use of a plane-waves basis and a pseudopotential approach. Since the QE 5.0 version, it has been implemented as a plug-in component for standard QE packages that allows exploiting the capabilities of Nvidia GPU graphic cards (www.qe-forge.org/gf/proj). In this study, we have examined the impact of the usage of GPU acceleration and parallelization on the numerical performance of DFT calculations. Graphene has been attracting attention worldwide and has already shown some remarkable properties. We have studied an intercalated graphene, using the QE package PHonon, which employs GPU. The term ‘intercalation’ refers to a process whereby foreign adatoms are inserted onto a graphene lattice. In addition, by intercalating different atoms between graphene layers, it is possible to tune their physical properties. Our experiments have shown there are benefits from using GPUs, and we reached an acceleration of several times compared to standard CPU calculations.

  7. User Interface Design for Military AR Applications

    DTIC Science & Technology

    2010-12-12

    virtual objects with the real world: seeing ultrasound imagery within the patient. In: Computer graphics (SIGGRAPH ’ 92 proceedings), vol 26, pp 203–210... airborne reconnaissance and weapon delivery. In: Proceedings of symposium for image display and recording, US Air Force Avionics Laboratory, Wright

  8. Monitors.

    ERIC Educational Resources Information Center

    Powell, David

    1984-01-01

    Provides guidelines for selecting a monitor to suit specific applications, explains the process by which graphics images are produced on a CRT monitor, and describes four types of flat-panel displays being used in the newest lap-sized portable computers. A comparison chart provides prices and specifications for over 80 monitors. (MBR)

  9. Grasping Reality Through Illusion: Interactive Graphics Serving Science

    DTIC Science & Technology

    1988-03-01

    SIGGRAPH, or riding techniques to the enhancement of scientific computing. StarTours at Disneyland shows how stunningly far we ........ have come. We need...supercomputer References matching and steering tools. Such tools must be Bergman, L., Fuchs, H., Grant , E., Spach, S. [1986] universal and application

  10. Helical gears with circular arc teeth: Generation, geometry, precision and adjustment to errors, computer aided simulation of conditions of meshing and bearing contact

    NASA Technical Reports Server (NTRS)

    Litvin, Faydor L.; Tsay, Chung-Biau

    1987-01-01

    The authors have proposed a method for the generation of circular arc helical gears which is based on the application of standard equipment, worked out all aspects of the geometry of the gears, proposed methods for the computer aided simulation of conditions of meshing and bearing contact, investigated the influence of manufacturing and assembly errors, and proposed methods for the adjustment of gears to these errors. The results of computer aided solutions are illustrated with computer graphics.

  11. Computer-Graphics Emulation of Chemical Instrumentation: Absorption Spectrophotometers.

    ERIC Educational Resources Information Center

    Gilbert, D. D.; And Others

    1982-01-01

    Describes interactive, computer-graphics program emulating behavior of high resolution, ultraviolet-visible analog recording spectrophotometer. Graphics terminal behaves as recording absorption spectrophotometer. Objective of the emulation is study of optimization of the instrument to yield accurate absorption spectra, including…

  12. A "Large and Graceful Sinuosity": John Herschel's Graphical Method

    NASA Astrophysics Data System (ADS)

    Hankins, Thomas L.

    2006-12-01

    In 1833 John Herschel published a graphical method for determining the orbits of double stars. He argued that this method, which depended on human judgment rather than mathematical analysis, gave better results than computation, given the uncertainty in the data. Herschel found that astronomy and terrestrial physics were especially suitable for graphical treatment, and he expected that graphs would soon become important in all areas of science. He argued with William Whewell and James D. Forbes over the process of induction, over the application of probability, and over the moral content of science. Graphs entered into all these debates, but because they constituted a method, not a metaphysics, they were acceptable to most practicing scientists and became increasingly popular throughout the nineteenth century.

  13. ARC SDK: A toolbox for distributed computing and data applications

    NASA Astrophysics Data System (ADS)

    Skou Andersen, M.; Cameron, D.; Lindemann, J.

    2014-06-01

    Grid middleware suites provide tools to perform the basic tasks of job submission and retrieval and data access, however these tools tend to be low-level, operating on individual jobs or files and lacking in higher-level concepts. User communities therefore generally develop their own application-layer software catering to their specific communities' needs on top of the Grid middleware. It is thus important for the Grid middleware to provide a friendly, well documented and simple to use interface for the applications to build upon. The Advanced Resource Connector (ARC), developed by NorduGrid, provides a Software Development Kit (SDK) which enables applications to use the middleware for job and data management. This paper presents the architecture and functionality of the ARC SDK along with an example graphical application developed with the SDK. The SDK consists of a set of libraries accessible through Application Programming Interfaces (API) in several languages. It contains extensive documentation and example code and is available on multiple platforms. The libraries provide generic interfaces and rely on plugins to support a given technology or protocol and this modular design makes it easy to add a new plugin if the application requires supporting additional technologies.The ARC Graphical Clients package is a graphical user interface built on top of the ARC SDK and the Qt toolkit and it is presented here as a fully functional example of an application. It provides a graphical interface to enable job submission and management at the click of a button, and allows data on any Grid storage system to be manipulated using a visual file system hierarchy, as if it were a regular file system.

  14. Forward and adjoint spectral-element simulations of seismic wave propagation using hardware accelerators

    NASA Astrophysics Data System (ADS)

    Peter, Daniel; Videau, Brice; Pouget, Kevin; Komatitsch, Dimitri

    2015-04-01

    Improving the resolution of tomographic images is crucial to answer important questions on the nature of Earth's subsurface structure and internal processes. Seismic tomography is the most prominent approach where seismic signals from ground-motion records are used to infer physical properties of internal structures such as compressional- and shear-wave speeds, anisotropy and attenuation. Recent advances in regional- and global-scale seismic inversions move towards full-waveform inversions which require accurate simulations of seismic wave propagation in complex 3D media, providing access to the full 3D seismic wavefields. However, these numerical simulations are computationally very expensive and need high-performance computing (HPC) facilities for further improving the current state of knowledge. During recent years, many-core architectures such as graphics processing units (GPUs) have been added to available large HPC systems. Such GPU-accelerated computing together with advances in multi-core central processing units (CPUs) can greatly accelerate scientific applications. There are mainly two possible choices of language support for GPU cards, the CUDA programming environment and OpenCL language standard. CUDA software development targets NVIDIA graphic cards while OpenCL was adopted mainly by AMD graphic cards. In order to employ such hardware accelerators for seismic wave propagation simulations, we incorporated a code generation tool BOAST into an existing spectral-element code package SPECFEM3D_GLOBE. This allows us to use meta-programming of computational kernels and generate optimized source code for both CUDA and OpenCL languages, running simulations on either CUDA or OpenCL hardware accelerators. We show here applications of forward and adjoint seismic wave propagation on CUDA/OpenCL GPUs, validating results and comparing performances for different simulations and hardware usages.

  15. Descriptive and Computer Aided Drawing Perspective on an Unfolded Polyhedral Projection Surface

    NASA Astrophysics Data System (ADS)

    Dzwierzynska, Jolanta

    2017-10-01

    The aim of the herby study is to develop a method of direct and practical mapping of perspective on an unfolded prism polyhedral projection surface. The considered perspective representation is a rectilinear central projection onto a surface composed of several flat elements. In the paper two descriptive methods of drawing perspective are presented: direct and indirect. The graphical mapping of the effects of the representation is realized directly on the unfolded flat projection surface. That is due to the projective and graphical connection between points displayed on the polyhedral background and their counterparts received on the unfolded flat surface. For a significant improvement of the construction of line, analytical algorithms are formulated. They draw a perspective image of a segment of line passing through two different points determined by their coordinates in a spatial coordinate system of axis x, y, z. Compared to other perspective construction methods that use information about points, for computer vision and the computer aided design, our algorithms utilize data about lines, which are applied very often in architectural forms. Possibility of drawing lines in the considered perspective enables drawing an edge perspective image of an architectural object. The application of the changeable base elements of perspective as a horizon height and a station point location enable drawing perspective image from different viewing positions. The analytical algorithms for drawing perspective images are formulated in Mathcad software, however, they can be implemented in the majority of computer graphical packages, which can make drawing perspective more efficient and easier. The representation presented in the paper and the way of its direct mapping on the flat unfolded projection surface can find application in presentation of architectural space in advertisement and art.

  16. Development and Evaluation of Sterographic Display for Lung Cancer Screening

    DTIC Science & Technology

    2008-12-01

    burden. Application of GPUs – With the evolution of commodity graphics processing units (GPUs) for accelerating games on personal computers, over the...units, which are designed for rendering computer games , are readily available and can be programmed to perform the kinds of real-time calculations...575-581, 1994. 12. Anderson CM, Saloner D, Tsuruda JS, Shapeero LG, Lee RE. "Artifacts in maximun-intensity-projection display of MR angiograms

  17. Computer simulation of gear tooth manufacturing processes

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri; Huston, Ronald L.

    1990-01-01

    The use of computer graphics to simulate gear tooth manufacturing procedures is discussed. An analytical basis for the simulation is established for spur gears. The simulation itself, however, is developed not only for spur gears, but for straight bevel gears as well. The applications of the developed procedure extend from the development of finite element models of heretofore intractable geometrical forms, to exploring the fabrication of nonstandard tooth forms.

  18. Acceleration of High Angular Momentum Electron Repulsion Integrals and Integral Derivatives on Graphics Processing Units.

    PubMed

    Miao, Yipu; Merz, Kenneth M

    2015-04-14

    We present an efficient implementation of ab initio self-consistent field (SCF) energy and gradient calculations that run on Compute Unified Device Architecture (CUDA) enabled graphical processing units (GPUs) using recurrence relations. We first discuss the machine-generated code that calculates the electron-repulsion integrals (ERIs) for different ERI types. Next we describe the porting of the SCF gradient calculation to GPUs, which results in an acceleration of the computation of the first-order derivative of the ERIs. However, only s, p, and d ERIs and s and p derivatives could be executed simultaneously on GPUs using the current version of CUDA and generation of NVidia GPUs using a previously described algorithm [Miao and Merz J. Chem. Theory Comput. 2013, 9, 965-976.]. Hence, we developed an algorithm to compute f type ERIs and d type ERI derivatives on GPUs. Our benchmarks shows the performance GPU enable ERI and ERI derivative computation yielded speedups of 10-18 times relative to traditional CPU execution. An accuracy analysis using double-precision calculations demonstrates that the overall accuracy is satisfactory for most applications.

  19. Graphics processing units in bioinformatics, computational biology and systems biology.

    PubMed

    Nobile, Marco S; Cazzaniga, Paolo; Tangherloni, Andrea; Besozzi, Daniela

    2017-09-01

    Several studies in Bioinformatics, Computational Biology and Systems Biology rely on the definition of physico-chemical or mathematical models of biological systems at different scales and levels of complexity, ranging from the interaction of atoms in single molecules up to genome-wide interaction networks. Traditional computational methods and software tools developed in these research fields share a common trait: they can be computationally demanding on Central Processing Units (CPUs), therefore limiting their applicability in many circumstances. To overcome this issue, general-purpose Graphics Processing Units (GPUs) are gaining an increasing attention by the scientific community, as they can considerably reduce the running time required by standard CPU-based software, and allow more intensive investigations of biological systems. In this review, we present a collection of GPU tools recently developed to perform computational analyses in life science disciplines, emphasizing the advantages and the drawbacks in the use of these parallel architectures. The complete list of GPU-powered tools here reviewed is available at http://bit.ly/gputools. © The Author 2016. Published by Oxford University Press.

  20. Curriculum Design of Computer Graphics Programs: A Survey of Art/Design Programs at the University Level.

    ERIC Educational Resources Information Center

    McKee, Richard Lee

    This master's thesis reports the results of a survey submitted to over 30 colleges and universities that currently offer computer graphics courses or are in the planning stage of curriculum design. Intended to provide a profile of the computer graphics programs and insight into the process of curriculum design, the survey gathered data on program…

  1. Interactive computer graphics and its role in control system design of large space structures

    NASA Technical Reports Server (NTRS)

    Reddy, A. S. S. R.

    1985-01-01

    This paper attempts to show the relevance of interactive computer graphics in the design of control systems to maintain attitude and shape of large space structures to accomplish the required mission objectives. The typical phases of control system design, starting from the physical model such as modeling the dynamics, modal analysis, and control system design methodology are reviewed and the need of the interactive computer graphics is demonstrated. Typical constituent parts of large space structures such as free-free beams and free-free plates are used to demonstrate the complexity of the control system design and the effectiveness of the interactive computer graphics.

  2. Computer Tomography and Hybrid Optical/Digital Methods for Aerodynamic Measurements.

    DTIC Science & Technology

    1987-12-28

    Industrial Applications of Corn- on Axisymnnietric Flame ’Iempnlw res Measured by Holo- puted Tornographv arid NMI? Imiaging (Optical Society of graphic...Pontificia Universidad Catolica de Chile. Escuela de Ingenieria . Santiago, equal. The optical path length difference (OPD) be- Chile. tween the two rays

  3. Key Issues in Instructional Computer Graphics.

    ERIC Educational Resources Information Center

    Wozny, Michael J.

    1981-01-01

    Addresses key issues facing universities which plan to establish instructional computer graphics facilities, including computer-aided design/computer aided manufacturing systems, role in curriculum, hardware, software, writing instructional software, faculty involvement, operations, and research. Thirty-seven references and two appendices are…

  4. Methods for evaluating the predictive accuracy of structural dynamic models

    NASA Technical Reports Server (NTRS)

    Hasselman, T. K.; Chrostowski, Jon D.

    1990-01-01

    Uncertainty of frequency response using the fuzzy set method and on-orbit response prediction using laboratory test data to refine an analytical model are emphasized with respect to large space structures. Two aspects of the fuzzy set approach were investigated relative to its application to large structural dynamics problems: (1) minimizing the number of parameters involved in computing possible intervals; and (2) the treatment of extrema which may occur in the parameter space enclosed by all possible combinations of the important parameters of the model. Extensive printer graphics were added to the SSID code to help facilitate model verification, and an application of this code to the LaRC Ten Bay Truss is included in the appendix to illustrate this graphics capability.

  5. Interactive computer graphics - Why's, wherefore's and examples

    NASA Technical Reports Server (NTRS)

    Gregory, T. J.; Carmichael, R. L.

    1983-01-01

    The benefits of using computer graphics in design are briefly reviewed. It is shown that computer graphics substantially aids productivity by permitting errors in design to be found immediately and by greatly reducing the cost of fixing the errors and the cost of redoing the process. The possibilities offered by computer-generated displays in terms of information content are emphasized, along with the form in which the information is transferred. The human being is ideally and naturally suited to dealing with information in picture format, and the content rate in communication with pictures is several orders of magnitude greater than with words or even graphs. Since science and engineering involve communicating ideas, concepts, and information, the benefits of computer graphics cannot be overestimated.

  6. Multilevel Summation of Electrostatic Potentials Using Graphics Processing Units*

    PubMed Central

    Hardy, David J.; Stone, John E.; Schulten, Klaus

    2009-01-01

    Physical and engineering practicalities involved in microprocessor design have resulted in flat performance growth for traditional single-core microprocessors. The urgent need for continuing increases in the performance of scientific applications requires the use of many-core processors and accelerators such as graphics processing units (GPUs). This paper discusses GPU acceleration of the multilevel summation method for computing electrostatic potentials and forces for a system of charged atoms, which is a problem of paramount importance in biomolecular modeling applications. We present and test a new GPU algorithm for the long-range part of the potentials that computes a cutoff pair potential between lattice points, essentially convolving a fixed 3-D lattice of “weights” over all sub-cubes of a much larger lattice. The implementation exploits the different memory subsystems provided on the GPU to stream optimally sized data sets through the multiprocessors. We demonstrate for the full multilevel summation calculation speedups of up to 26 using a single GPU and 46 using multiple GPUs, enabling the computation of a high-resolution map of the electrostatic potential for a system of 1.5 million atoms in under 12 seconds. PMID:20161132

  7. Graphics Software For VT Terminals

    NASA Technical Reports Server (NTRS)

    Wang, Caroline

    1991-01-01

    VTGRAPH graphics software tool for DEC/VT computer terminal or terminals compatible with it, widely used by government and industry. Callable in FORTRAN or C language, library program enabling user to cope with many computer environments in which VT terminals used for window management and graphic systems. Provides PLOT10-like package plus color or shade capability for VT240, VT241, and VT300 terminals. User can easily design more-friendly user-interface programs and design PLOT10 programs on VT terminals with different computer systems. Requires ReGis graphics set terminal and FORTRAN compiler.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Song

    CFD (Computational Fluid Dynamics) is a widely used technique in engineering design field. It uses mathematical methods to simulate and predict flow characteristics in a certain physical space. Since the numerical result of CFD computation is very hard to understand, VR (virtual reality) and data visualization techniques are introduced into CFD post-processing to improve the understandability and functionality of CFD computation. In many cases CFD datasets are very large (multi-gigabytes), and more and more interactions between user and the datasets are required. For the traditional VR application, the limitation of computing power is a major factor to prevent visualizing largemore » dataset effectively. This thesis presents a new system designing to speed up the traditional VR application by using parallel computing and distributed computing, and the idea of using hand held device to enhance the interaction between a user and VR CFD application as well. Techniques in different research areas including scientific visualization, parallel computing, distributed computing and graphical user interface designing are used in the development of the final system. As the result, the new system can flexibly be built on heterogeneous computing environment, dramatically shorten the computation time.« less

  9. Graphical Requirements for Force Level Planning. Volume 2

    DTIC Science & Technology

    1991-09-01

    technology review includes graphics algorithms, computer hardware, computer software, and design methodologies. The technology can either exist today or...level graphics language. 7.4 User Interface Design Tools As user interfaces have become more sophisticated, they have become harder to develop. Xl...Setphen M. Pizer, editors. Proceedings 1986 Workshop on Interactive 31) Graphics , October 1986. 18 J. S. Dumas. Designing User Interface Software. Prentice

  10. The Graphical User Interface: Crisis, Danger, and Opportunity.

    ERIC Educational Resources Information Center

    Boyd, L. H.; And Others

    1990-01-01

    This article describes differences between the graphical user interface and traditional character-based interface systems, identifies potential problems posed by graphic computing environments for blind computer users, and describes some programs and strategies that are being developed to provide access to those environments. (Author/JDD)

  11. The use of computer graphics in the visual analysis of the proposed Sunshine Ski Area expansion

    Treesearch

    Mark Angelo

    1979-01-01

    This paper describes the use of computer graphics in designing part of the Sunshine Ski Area in Banff National Park. The program used was capable of generating perspective landscape drawings from a number of different viewpoints. This allowed managers to predict, and subsequently reduce, the adverse visual impacts of ski-run development. Computer graphics have proven,...

  12. The Performance Improvement of the Lagrangian Particle Dispersion Model (LPDM) Using Graphics Processing Unit (GPU) Computing

    DTIC Science & Technology

    2017-08-01

    access to the GPU for general purpose processing .5 CUDA is designed to work easily with multiple programming languages , including Fortran. CUDA is a...Using Graphics Processing Unit (GPU) Computing by Leelinda P Dawson Approved for public release; distribution unlimited...The Performance Improvement of the Lagrangian Particle Dispersion Model (LPDM) Using Graphics Processing Unit (GPU) Computing by Leelinda

  13. Computer Corner: Computer Graphics for the Vibrating String.

    ERIC Educational Resources Information Center

    Smith, David A.; Cunningham, R. Stephen

    1986-01-01

    Computer graphics are used to display the sum of the first few terms of the series solution for the problem of the vibrating string frequently discussed in introductory courses on differential equations. (MNS)

  14. Integrating Commercial Off-The-Shelf (COTS) graphics and extended memory packages with CLIPS

    NASA Technical Reports Server (NTRS)

    Callegari, Andres C.

    1990-01-01

    This paper addresses the question of how to mix CLIPS with graphics and how to overcome PC's memory limitations by using the extended memory available in the computer. By adding graphics and extended memory capabilities, CLIPS can be converted into a complete and powerful system development tool, on the other most economical and popular computer platform. New models of PCs have amazing processing capabilities and graphic resolutions that cannot be ignored and should be used to the fullest of their resources. CLIPS is a powerful expert system development tool, but it cannot be complete without the support of a graphics package needed to create user interfaces and general purpose graphics, or without enough memory to handle large knowledge bases. Now, a well known limitation on the PC's is the usage of real memory which limits CLIPS to use only 640 Kb of real memory, but now that problem can be solved by developing a version of CLIPS that uses extended memory. The user has access of up to 16 MB of memory on 80286 based computers and, practically, all the available memory (4 GB) on computers that use the 80386 processor. So if we give CLIPS a self-configuring graphics package that will automatically detect the graphics hardware and pointing device present in the computer, and we add the availability of the extended memory that exists in the computer (with no special hardware needed), the user will be able to create more powerful systems at a fraction of the cost and on the most popular, portable, and economic platform available such as the PC platform.

  15. Geometric Models for Collaborative Search and Filtering

    ERIC Educational Resources Information Center

    Bitton, Ephrat

    2011-01-01

    This dissertation explores the use of geometric and graphical models for a variety of information search and filtering applications. These models serve to provide an intuitive understanding of the problem domains and as well as computational efficiencies to our solution approaches. We begin by considering a search and rescue scenario where both…

  16. ONR Summer Scholars for the 1992 PREFACE Program

    DTIC Science & Technology

    1992-12-31

    s) being researched. Participants were impressed with the nature of the research endeavors and potential commercial applications. More importantly...n/c Dorm Director (0. Portugues ) $ 1,500.00 $ 1,500.00 Tutor Counselors (5 @ $600.00 each) $ 1.800.00 1,200.00 3,000.00 Computer Graphics Support (J

  17. Instructional authoring by direct manipulation of simulations: Exploratory applications of RAPIDS. RAPIDS 2 authoring manual

    NASA Technical Reports Server (NTRS)

    1990-01-01

    RAPIDS II is a simulation-based intelligent tutoring system environment. It is a system for producing computer-based training courses that are built on the foundation of graphical simulations. RAPIDS II simulations can be animated and they can have continuously updating elements.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Fernandez, Ignacio; Pla-Castells, Marta; Martinez-Dura, Rafael J.

    A model of a cable and pulleys is presented that can be used in Real Time Computer Graphics applications. The model is formulated by the coupling of a damped spring and a variable coefficient wave equation, and can be integrated in more complex mechanical models of lift systems, such as cranes, elevators, etc. with a high degree of interactivity.

  19. The Changing Business Environment: Implications for Vocational Curricula. State-of-the-Art Paper.

    ERIC Educational Resources Information Center

    Smith, E. Ray; Stallard, John J.

    The widespread use of the micro/personal computer and related technological advancements are having important impacts on information management in the modern electronic office. Some of the most common software applications include word processing, spread sheet analysis, data management, graphics, and communications. Ancillary hardware/software…

  20. Digging the Virtual Past

    ERIC Educational Resources Information Center

    Polymeropoulou, Panagiota

    2014-01-01

    In this paper we will investigate the way that the technological progress and the Informatics contributed greatly to the field of Archaeology. There will be analyzed the terms of virtual archaeology and virtual reality in archaeology and there will be an extended reference to the applications and the computer graphics that archaeologists could use…

  1. Computer Graphics: KidPix, the MacIntosh, and Students with Cognitive Disorders.

    ERIC Educational Resources Information Center

    Olson, Cindy

    This teacher's guide provides an overview of KidPix software and contains adaptive applications of the software for Cognitively Disabled-Borderline (CDB) students. Ten lesson plans are given, including: (1) "USing Rubber Stamps/Rubber Stamp Editor"; (2) "Portrait"; (3) "Create a Pattern"; (4) "Garden Mural";…

  2. Telepresence system development for application to the control of remote robotic systems

    NASA Technical Reports Server (NTRS)

    Crane, Carl D., III; Duffy, Joseph; Vora, Rajul; Chiang, Shih-Chien

    1989-01-01

    The recent developments of techniques which assist an operator in the control of remote robotic systems are described. In particular, applications are aimed at two specific scenarios: The control of remote robot manipulators; and motion planning for remote transporter vehicles. Common to both applications is the use of realistic computer graphics images which provide the operator with pertinent information. The specific system developments for several recently completed and ongoing telepresence research projects are described.

  3. 3D graphics, virtual reality, and motion-onset visual evoked potentials in neurogaming.

    PubMed

    Beveridge, R; Wilson, S; Coyle, D

    2016-01-01

    A brain-computer interface (BCI) offers movement-free control of a computer application and is achieved by reading and translating the cortical activity of the brain into semantic control signals. Motion-onset visual evoked potentials (mVEP) are neural potentials employed in BCIs and occur when motion-related stimuli are attended visually. mVEP dynamics are correlated with the position and timing of the moving stimuli. To investigate the feasibility of utilizing the mVEP paradigm with video games of various graphical complexities including those of commercial quality, we conducted three studies over four separate sessions comparing the performance of classifying five mVEP responses with variations in graphical complexity and style, in-game distractions, and display parameters surrounding mVEP stimuli. To investigate the feasibility of utilizing contemporary presentation modalities in neurogaming, one of the studies compared mVEP classification performance when stimuli were presented using the oculus rift virtual reality headset. Results from 31 independent subjects were analyzed offline. The results show classification performances ranging up to 90% with variations in conditions in graphical complexity having limited effect on mVEP performance; thus, demonstrating the feasibility of using the mVEP paradigm within BCI-based neurogaming. © 2016 Elsevier B.V. All rights reserved.

  4. Virtual ellipsometry on layered micro-facet surfaces.

    PubMed

    Wang, Chi; Wilkie, Alexander; Harcuba, Petr; Novosad, Lukas

    2017-09-18

    Microfacet-based BRDF models are a common tool to describe light scattering from glossy surfaces. Apart from their wide-ranging applications in optics, such models also play a significant role in computer graphics for photorealistic rendering purposes. In this paper, we mainly investigate the computer graphics aspect of this technology, and present a polarisation-aware brute force simulation of light interaction with both single and multiple layered micro-facet surfaces. Such surface models are commonly used in computer graphics, but the resulting BRDF is ultimately often only approximated. Recently, there has been work to try to make these approximations more accurate, and to better understand the behaviour of existing analytical models. However, these brute force verification attempts still emitted the polarisation state of light and, as we found out, this renders them prone to mis-estimating the shape of the resulting BRDF lobe for some particular material types, such as smooth layered dielectric surfaces. For these materials, non-polarising computations can mis-estimate some areas of the resulting BRDF shape by up to 23%. But we also identified some other material types, such as dielectric layers over rough conductors, for which the difference turned out to be almost negligible. The main contribution of our work is to clearly demonstrate that the effect of polarisation is important for accurate simulation of certain material types, and that there are also other common materials for which it can apparently be ignored. As this required a BRDF simulator that we could rely on, a secondary contribution is that we went to considerable lengths to validate our software. We compare it against a state-of-art model from graphics, a library from optics, and also against ellipsometric measurements of real surface samples.

  5. Windows Program For Driving The TDU-850 Printer

    NASA Technical Reports Server (NTRS)

    Parrish, Brett T.

    1995-01-01

    Program provides WYSIWYG compatibility between video display and printout. PDW is Microsoft Windows printer-driver computer program for use with Raytheon TDU-850 printer. Provides previously unavailable linkage between printer and IBM PC-compatible computers running Microsoft Windows. Enhances capabilities of Raytheon TDU-850 hardcopier by emulating all textual and graphical features normally supported by laser/ink-jet printers and makes printer compatible with any Microsoft Windows application. Also provides capabilities not found in laser/ink-jet printer drivers by providing certain Windows applications with ability to render high quality, true gray-scale photographic hardcopy on TDU-850. Written in C language.

  6. [Mobile phone-computer wireless interactive graphics transmission technology and its medical application].

    PubMed

    Huang, Shuo; Liu, Jing

    2010-05-01

    Application of clinical digital medical imaging has raised many tough issues to tackle, such as data storage, management, and information sharing. Here we investigated a mobile phone based medical image management system which is capable of achieving personal medical imaging information storage, management and comprehensive health information analysis. The technologies related to the management system spanning the wireless transmission technology, the technical capabilities of phone in mobile health care and management of mobile medical database were discussed. Taking medical infrared images transmission between phone and computer as an example, the working principle of the present system was demonstrated.

  7. ENGINEERING APPLICATIONS OF ANALOG COMPUTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryant, L.T.; Janicke, M.J.; Just, L.C.

    1963-10-31

    Six experiments from the fields of reactor engineering, heat transfer, and dynamics are presented to illustrate the engineering applications of analog computers. The steps required for producing the analog solution are shown, as well as complete information for duplicating the solution. Graphical results are provided. The experiments include: deceleration of a reactor control rod, pressure variations through a packed bed, reactor kinetics over many decades with thermal feedback, a vibrating system with two degrees of freedom, temperature distribution in a radiating fin, temperature distribution in an infinite slab considering variable thermal properties, and iodine -xenon buildup in a reactor. (M.C.G.)

  8. The use of interactive computer vision and robot hand controllers for enhancing manufacturing safety

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville I.; Jacobus, Charles J.; Peurach, Thomas M.; Mitchell, Brian T.

    1994-01-01

    Current available robotic systems provide limited support for CAD-based model-driven visualization, sensing algorithm development and integration, and automated graphical planning systems. This paper describes ongoing work which provides the functionality necessary to apply advanced robotics to automated manufacturing and assembly operations. An interface has been built which incorporates 6-DOF tactile manipulation, displays for three dimensional graphical models, and automated tracking functions which depend on automated machine vision. A set of tools for single and multiple focal plane sensor image processing and understanding has been demonstrated which utilizes object recognition models. The resulting tool will enable sensing and planning from computationally simple graphical objects. A synergistic interplay between human and operator vision is created from programmable feedback received from the controller. This approach can be used as the basis for implementing enhanced safety in automated robotics manufacturing, assembly, repair and inspection tasks in both ground and space applications. Thus, an interactive capability has been developed to match the modeled environment to the real task environment for safe and predictable task execution.

  9. The use of interactive computer vision and robot hand controllers for enhancing manufacturing safety

    NASA Astrophysics Data System (ADS)

    Marzwell, Neville I.; Jacobus, Charles J.; Peurach, Thomas M.; Mitchell, Brian T.

    1994-02-01

    Current available robotic systems provide limited support for CAD-based model-driven visualization, sensing algorithm development and integration, and automated graphical planning systems. This paper describes ongoing work which provides the functionality necessary to apply advanced robotics to automated manufacturing and assembly operations. An interface has been built which incorporates 6-DOF tactile manipulation, displays for three dimensional graphical models, and automated tracking functions which depend on automated machine vision. A set of tools for single and multiple focal plane sensor image processing and understanding has been demonstrated which utilizes object recognition models. The resulting tool will enable sensing and planning from computationally simple graphical objects. A synergistic interplay between human and operator vision is created from programmable feedback received from the controller. This approach can be used as the basis for implementing enhanced safety in automated robotics manufacturing, assembly, repair and inspection tasks in both ground and space applications. Thus, an interactive capability has been developed to match the modeled environment to the real task environment for safe and predictable task execution.

  10. Estimation of High-Dimensional Graphical Models Using Regularized Score Matching

    PubMed Central

    Lin, Lina; Drton, Mathias; Shojaie, Ali

    2017-01-01

    Graphical models are widely used to model stochastic dependences among large collections of variables. We introduce a new method of estimating undirected conditional independence graphs based on the score matching loss, introduced by Hyvärinen (2005), and subsequently extended in Hyvärinen (2007). The regularized score matching method we propose applies to settings with continuous observations and allows for computationally efficient treatment of possibly non-Gaussian exponential family models. In the well-explored Gaussian setting, regularized score matching avoids issues of asymmetry that arise when applying the technique of neighborhood selection, and compared to existing methods that directly yield symmetric estimates, the score matching approach has the advantage that the considered loss is quadratic and gives piecewise linear solution paths under ℓ1 regularization. Under suitable irrepresentability conditions, we show that ℓ1-regularized score matching is consistent for graph estimation in sparse high-dimensional settings. Through numerical experiments and an application to RNAseq data, we confirm that regularized score matching achieves state-of-the-art performance in the Gaussian case and provides a valuable tool for computationally efficient estimation in non-Gaussian graphical models. PMID:28638498

  11. High-performance dynamic quantum clustering on graphics processors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wittek, Peter, E-mail: peterwittek@acm.org

    2013-01-15

    Clustering methods in machine learning may benefit from borrowing metaphors from physics. Dynamic quantum clustering associates a Gaussian wave packet with the multidimensional data points and regards them as eigenfunctions of the Schroedinger equation. The clustering structure emerges by letting the system evolve and the visual nature of the algorithm has been shown to be useful in a range of applications. Furthermore, the method only uses matrix operations, which readily lend themselves to parallelization. In this paper, we develop an implementation on graphics hardware and investigate how this approach can accelerate the computations. We achieve a speedup of up tomore » two magnitudes over a multicore CPU implementation, which proves that quantum-like methods and acceleration by graphics processing units have a great relevance to machine learning.« less

  12. A Graphical Approach to Quantitative Structural Geology.

    ERIC Educational Resources Information Center

    De Paor, Declan G.

    1986-01-01

    Describes how computer graphic methods can be used in teaching structural geology. Describes the design of a graphics workstation for the Apple microcomputer. Includes a listing of commands used with software to plot structures in a digitized form. Argues for the establishment of computer laboratories for structural geology classes. (TW)

  13. Computer Graphics and Physics Teaching.

    ERIC Educational Resources Information Center

    Bork, Alfred M.; Ballard, Richard

    New, more versatile and inexpensive terminals will make computer graphics more feasible in science instruction than before. This paper describes the use of graphics in physics teaching at the University of California at Irvine. Commands and software are detailed in established programs, which include a lunar landing simulation and a program which…

  14. Learning with Interactive Computer Graphics in the Undergraduate Neuroscience Classroom

    ERIC Educational Resources Information Center

    Pani, John R.; Chariker, Julia H.; Naaz, Farah; Mattingly, William; Roberts, Joshua; Sephton, Sandra E.

    2014-01-01

    Instruction of neuroanatomy depends on graphical representation and extended self-study. As a consequence, computer-based learning environments that incorporate interactive graphics should facilitate instruction in this area. The present study evaluated such a system in the undergraduate neuroscience classroom. The system used the method of…

  15. Inexpensive Timeshared Graphics on the SIGMA 7.

    ERIC Educational Resources Information Center

    Bork, Alfred M.

    This paper gives a technical description of various computer graphics programs developed on the Sigma 7 computer. Terminals used are the Adage 100 and the Tektronix 4002-4010. Commands are Metasymbol procedures which access Metasymbol library subroutines; programs can also be coupled with FORTRAN programs. Available, inexpensive graphic terminals…

  16. Computer Graphics and Metaphorical Elaboration for Learning Science Concepts.

    ERIC Educational Resources Information Center

    ChanLin, Lih-Juan; Chan, Kung-Chi

    This study explores the instructional impact of using computer multimedia to integrate metaphorical verbal information into graphical representations of biotechnology concepts. The combination of text and graphics into a single metaphor makes concepts dual-coded, and therefore more comprehensible and memorable for the student. Visual stimuli help…

  17. MSIX - A general and user-friendly platform for RAM analysis

    NASA Astrophysics Data System (ADS)

    Pan, Z. J.; Blemel, Peter

    The authors present a CAD (computer-aided design) platform supporting RAM (reliability, availability, and maintainability) analysis with efficient system description and alternative evaluation. The design concepts, implementation techniques, and application results are described. This platform is user-friendly because of its graphic environment, drawing facilities, object orientation, self-tutoring, and access to the operating system. The programs' independency and portability make them generally applicable to various analysis tasks.

  18. Graphics supercomputer for computational fluid dynamics research

    NASA Astrophysics Data System (ADS)

    Liaw, Goang S.

    1994-11-01

    The objective of this project is to purchase a state-of-the-art graphics supercomputer to improve the Computational Fluid Dynamics (CFD) research capability at Alabama A & M University (AAMU) and to support the Air Force research projects. A cutting-edge graphics supercomputer system, Onyx VTX, from Silicon Graphics Computer Systems (SGI), was purchased and installed. Other equipment including a desktop personal computer, PC-486 DX2 with a built-in 10-BaseT Ethernet card, a 10-BaseT hub, an Apple Laser Printer Select 360, and a notebook computer from Zenith were also purchased. A reading room has been converted to a research computer lab by adding some furniture and an air conditioning unit in order to provide an appropriate working environments for researchers and the purchase equipment. All the purchased equipment were successfully installed and are fully functional. Several research projects, including two existing Air Force projects, are being performed using these facilities.

  19. Real-time graphics for the Space Station Freedom cupola, developed in the Systems Engineering Simulator

    NASA Technical Reports Server (NTRS)

    Red, Michael T.; Hess, Philip W.

    1989-01-01

    Among the Lyndon B. Johnson Space Center's responsibilities for Space Station Freedom is the cupola. Attached to the resource node, the cupola is a windowed structure that will serve as the space station's secondary control center. From the cupola, operations involving the mobile service center and orbital maneuvering vehicle will be conducted. The Systems Engineering Simulator (SES), located in building 16, activated a real-time man-in-the-loop cupola simulator in November 1987. The SES cupola is an engineering tool with the flexibility to evolve in both hardware and software as the final cupola design matures. Two workstations are simulated with closed-circuit television monitors, rotational and translational hand controllers, programmable display pushbuttons, and graphics display with trackball and keyboard. The displays and controls of the SES cupola are driven by a Silicon Graphics Integrated Raster Imaging System (IRIS) 4D/70 GT computer. Through the use of an interactive display builder program, SES, cupola display pages consisting of two dimensional and three dimensional graphics are constructed. These display pages interact with the SES via the IRIS real-time graphics interface. The focus is on the real-time graphics interface applications software developed on the IRIS.

  20. A multiresolution approach to iterative reconstruction algorithms in X-ray computed tomography.

    PubMed

    De Witte, Yoni; Vlassenbroeck, Jelle; Van Hoorebeke, Luc

    2010-09-01

    In computed tomography, the application of iterative reconstruction methods in practical situations is impeded by their high computational demands. Especially in high resolution X-ray computed tomography, where reconstruction volumes contain a high number of volume elements (several giga voxels), this computational burden prevents their actual breakthrough. Besides the large amount of calculations, iterative algorithms require the entire volume to be kept in memory during reconstruction, which quickly becomes cumbersome for large data sets. To overcome this obstacle, we present a novel multiresolution reconstruction, which greatly reduces the required amount of memory without significantly affecting the reconstructed image quality. It is shown that, combined with an efficient implementation on a graphical processing unit, the multiresolution approach enables the application of iterative algorithms in the reconstruction of large volumes at an acceptable speed using only limited resources.

  1. Adaptive-optics optical coherence tomography processing using a graphics processing unit.

    PubMed

    Shafer, Brandon A; Kriske, Jeffery E; Kocaoglu, Omer P; Turner, Timothy L; Liu, Zhuolin; Lee, John Jaehwan; Miller, Donald T

    2014-01-01

    Graphics processing units are increasingly being used for scientific computing for their powerful parallel processing abilities, and moderate price compared to super computers and computing grids. In this paper we have used a general purpose graphics processing unit to process adaptive-optics optical coherence tomography (AOOCT) images in real time. Increasing the processing speed of AOOCT is an essential step in moving the super high resolution technology closer to clinical viability.

  2. For Drafting Programs--Computer Graphics in Industrial Tech.

    ERIC Educational Resources Information Center

    Sutliff, Ron

    1980-01-01

    Posits that computer-aided drafting and design should be introduced to students in industrial technology programs. Discusses ways the technical educator can get involved in computer graphics to familiarize students with it without a large outlay of money. (JOW)

  3. Developments in the application of the geometrical theory of diffraction and computer graphics to aircraft inter-antenna coupling analysis

    NASA Astrophysics Data System (ADS)

    Bogusz, Michael

    1993-01-01

    The need for a systematic methodology for the analysis of aircraft electromagnetic compatibility (EMC) problems is examined. The available computer aids used in aircraft EMC analysis are assessed and a theoretical basis is established for the complex algorithms which identify and quantify electromagnetic interactions. An overview is presented of one particularly well established aircraft antenna to antenna EMC analysis code, the Aircraft Inter-Antenna Propagation with Graphics (AAPG) Version 07 software. The specific new algorithms created to compute cone geodesics and their associated path losses and to graph the physical coupling path are discussed. These algorithms are validated against basic principles. Loss computations apply the uniform geometrical theory of diffraction and are subsequently compared to measurement data. The increased modelling and analysis capabilities of the newly developed AAPG Version 09 are compared to those of Version 07. Several models of real aircraft, namely the Electronic Systems Trainer Challenger, are generated and provided as a basis for this preliminary comparative assessment. Issues such as software reliability, algorithm stability, and quality of hardcopy output are also discussed.

  4. Computer Instructional Aids for Undergraduate Control Education.

    ERIC Educational Resources Information Center

    Volz, Richard A.; And Others

    Engineering is coming to rely more and more heavily upon the computer for computations, analyses, and graphic displays which aid the design process. A general purpose simulation system, the Time-shared Automatic Control Laboratory (TACL), and a set of computer-aided design programs, Control Oriented Interactive Graphic Analysis and Design…

  5. Graphics with Special Interfaces for Disabled People.

    ERIC Educational Resources Information Center

    Tronconi, A.; And Others

    The paper describes new software and special input devices to allow physically impaired children to utilize the graphic capabilities of personal computers. Special input devices for computer graphics access--the voice recognition card, the single switch, or the mouse emulator--can be used either singly or in combination by the disabled to control…

  6. The effects of 3D interactive animated graphics on student learning and attitudes in computer-based instruction

    NASA Astrophysics Data System (ADS)

    Moon, Hye Sun

    Visuals are most extensively used as instructional tools in education to present spatially-based information. Recent computer technology allows the generation of 3D animated visuals to extend the presentation in computer-based instruction. Animated visuals in 3D representation not only possess motivational value that promotes positive attitudes toward instruction but also facilitate learning when the subject matter requires dynamic motion and 3D visual cue. In this study, three questions are explored: (1) how 3D graphics affects student learning and attitude, in comparison with 2D graphics; (2) how animated graphics affects student learning and attitude, in comparison with static graphics; and (3) whether the use of 3D graphics, when they are supported by interactive animation, is the most effective visual cues to improve learning and to develop positive attitudes. A total of 145 eighth-grade students participated in a 2 x 2 factorial design study. The subjects were randomly assigned to one of four computer-based instructions: 2D static; 2D animated; 3D static; and 3D animated. The results indicated that: (1) Students in the 3D graphic condition exhibited more positive attitudes toward instruction than those in the 2D graphic condition. No group differences were found between the posttest score of 3D graphic condition and that of 2D graphic condition. However, students in the 3D graphic condition took less time for information retrieval on posttest than those in the 2D graphic condition. (2) Students in the animated graphic condition exhibited slightly more positive attitudes toward instruction than those in the static graphic condition. No group differences were found between the posttest score of animated graphic condition and that of static graphic condition. However, students in the animated graphic condition took less time for information retrieval on posttest than those in the static graphic condition. (3) Students in the 3D animated graphic condition exhibited more positive attitudes toward instruction than those in other treatment conditions (2D static, 2D animated, and 3D static conditions). No group differences were found in the posttest scores among four treatment conditions. However, students in the 3D animated condition took less time for information retrieval on posttest than those in other treatment conditions.

  7. On computing Laplace's coefficients and their derivatives.

    NASA Astrophysics Data System (ADS)

    Gerasimov, I. A.; Vinnikov, E. L.

    The algorithm of computing Laplace's coefficients and their derivatives is proposed with application of recurrent relations. The A.G.M.-method is used for the calculation of values L0(0), L0(1). The FORTRAN-program corresponding to the algorithm is given. The precision control was provided with numerical integrating by Simpsons method. The behavior of Laplace's coefficients and their third derivatives whith varying indices K, n for fixed values of the α-parameter is presented graphically.

  8. The Montana experience

    NASA Technical Reports Server (NTRS)

    Dundas, T. R.

    1981-01-01

    The development and capabilities of the Montana geodata system are discussed. The system is entirely dependent on the state's central data processing facility which serves all agencies and is therefore restricted to batch mode processing. The computer graphics equipment is briefly described along with its application to state lands and township mapping and the production of water quality interval maps.

  9. Comprehension and Recall of Television's Computerized Image: An Exploratory Study.

    ERIC Educational Resources Information Center

    Metallinos, Nikos; Chartrand, Sylvie

    This exploratory study of the effects of the new visual communications media imagery (e.g., video games, digital television, and computer graphics) on the visual perception process is designed to provide a theoretical framework for research, introduce appropriate research instruments for such study, and experiment with the application of biometric…

  10. Real-Time Computer Graphics Simulation of Blockplay in Early Childhood

    ERIC Educational Resources Information Center

    Albin-Clark, A.; Howard, T. L. J.; Anderson, B.

    2011-01-01

    Observation of young children is commonplace in educational settings. For trainee practitioners however, gaining access at convenient times can be difficult. Even then, small snapshots of observable activity can only ever be captured. We describe the design and development of a cross-platform software application which can be used to support…

  11. permGPU: Using graphics processing units in RNA microarray association studies.

    PubMed

    Shterev, Ivo D; Jung, Sin-Ho; George, Stephen L; Owzar, Kouros

    2010-06-16

    Many analyses of microarray association studies involve permutation, bootstrap resampling and cross-validation, that are ideally formulated as embarrassingly parallel computing problems. Given that these analyses are computationally intensive, scalable approaches that can take advantage of multi-core processor systems need to be developed. We have developed a CUDA based implementation, permGPU, that employs graphics processing units in microarray association studies. We illustrate the performance and applicability of permGPU within the context of permutation resampling for a number of test statistics. An extensive simulation study demonstrates a dramatic increase in performance when using permGPU on an NVIDIA GTX 280 card compared to an optimized C/C++ solution running on a conventional Linux server. permGPU is available as an open-source stand-alone application and as an extension package for the R statistical environment. It provides a dramatic increase in performance for permutation resampling analysis in the context of microarray association studies. The current version offers six test statistics for carrying out permutation resampling analyses for binary, quantitative and censored time-to-event traits.

  12. Artist Material BRDF Database for Computer Graphics Rendering

    NASA Astrophysics Data System (ADS)

    Ashbaugh, Justin C.

    The primary goal of this thesis was to create a physical library of artist material samples. This collection provides necessary data for the development of a gonio-imaging system for use in museums to more accurately document their collections. A sample set was produced consisting of 25 panels and containing nearly 600 unique samples. Selected materials are representative of those commonly used by artists both past and present. These take into account the variability in visual appearance resulting from the materials and application techniques used. Five attributes of variability were identified including medium, color, substrate, application technique and overcoat. Combinations of these attributes were selected based on those commonly observed in museum collections and suggested by surveying experts in the field. For each sample material, image data is collected and used to measure an average bi-directional reflectance distribution function (BRDF). The results are available as a public-domain image and optical database of artist materials at art-si.org. Additionally, the database includes specifications for each sample along with other information useful for computer graphics rendering such as the rectified sample images and normal maps.

  13. Image formation simulation for computer-aided inspection planning of machine vision systems

    NASA Astrophysics Data System (ADS)

    Irgenfried, Stephan; Bergmann, Stephan; Mohammadikaji, Mahsa; Beyerer, Jürgen; Dachsbacher, Carsten; Wörn, Heinz

    2017-06-01

    In this work, a simulation toolset for Computer Aided Inspection Planning (CAIP) of systems for automated optical inspection (AOI) is presented along with a versatile two-robot-setup for verification of simulation and system planning results. The toolset helps to narrow down the large design space of optical inspection systems in interaction with a system expert. The image formation taking place in optical inspection systems is simulated using GPU-based real time graphics and high quality off-line-rendering. The simulation pipeline allows a stepwise optimization of the system, from fast evaluation of surface patch visibility based on real time graphics up to evaluation of image processing results based on off-line global illumination calculation. A focus of this work is on the dependency of simulation quality on measuring, modeling and parameterizing the optical surface properties of the object to be inspected. The applicability to real world problems is demonstrated by taking the example of planning a 3D laser scanner application. Qualitative and quantitative comparison results of synthetic and real images are presented.

  14. Computer Science Research at Langley

    NASA Technical Reports Server (NTRS)

    Voigt, S. J. (Editor)

    1982-01-01

    A workshop was held at Langley Research Center, November 2-5, 1981, to highlight ongoing computer science research at Langley and to identify additional areas of research based upon the computer user requirements. A panel discussion was held in each of nine application areas, and these are summarized in the proceedings. Slides presented by the invited speakers are also included. A survey of scientific, business, data reduction, and microprocessor computer users helped identify areas of focus for the workshop. Several areas of computer science which are of most concern to the Langley computer users were identified during the workshop discussions. These include graphics, distributed processing, programmer support systems and tools, database management, and numerical methods.

  15. Light reflection models for computer graphics.

    PubMed

    Greenberg, D P

    1989-04-14

    During the past 20 years, computer graphic techniques for simulating the reflection of light have progressed so that today images of photorealistic quality can be produced. Early algorithms considered direct lighting only, but global illumination phenomena with indirect lighting, surface interreflections, and shadows can now be modeled with ray tracing, radiosity, and Monte Carlo simulations. This article describes the historical development of computer graphic algorithms for light reflection and pictorially illustrates what will be commonly available in the near future.

  16. Telemetry Monitoring and Display Using LabVIEW

    NASA Technical Reports Server (NTRS)

    Wells, George; Baroth, Edmund C.

    1993-01-01

    The Measurement Technology Center of the Instrumentation Section configures automated data acquisition systems to meet the diverse needs of JPL's experimental research community. These systems are based on personal computers or workstations (Apple, IBM/Compatible, Hewlett-Packard, and Sun Microsystems) and often include integrated data analysis, visualization and experiment control functions in addition to data acquisition capabilities. These integrated systems may include sensors, signal conditioning, data acquisition interface cards, software, and a user interface. Graphical programming is used to simplify configuration of such systems. Employment of a graphical programming language is the most important factor in enabling the implementation of data acquisition, analysis, display and visualization systems at low cost. Other important factors are the use of commercial software packages and off-the-shelf data acquisition hardware where possible. Understanding the experimenter's needs is also critical. An interactive approach to user interface construction and training of operators is also important. One application was created as a result of a competative effort between a graphical programming language team and a text-based C language programming team to verify the advantages of using a graphical programming language approach. With approximately eight weeks of funding over a period of three months, the text-based programming team accomplished about 10% of the basic requirements, while the Macintosh/LabVIEW team accomplished about 150%, having gone beyond the original requirements to simulate a telemetry stream and provide utility programs. This application verified that using graphical programming can significantly reduce software development time. As a result of this initial effort, additional follow-on work was awarded to the graphical programming team.

  17. Analysis of impact of general-purpose graphics processor units in supersonic flow modeling

    NASA Astrophysics Data System (ADS)

    Emelyanov, V. N.; Karpenko, A. G.; Kozelkov, A. S.; Teterina, I. V.; Volkov, K. N.; Yalozo, A. V.

    2017-06-01

    Computational methods are widely used in prediction of complex flowfields associated with off-normal situations in aerospace engineering. Modern graphics processing units (GPU) provide architectures and new programming models that enable to harness their large processing power and to design computational fluid dynamics (CFD) simulations at both high performance and low cost. Possibilities of the use of GPUs for the simulation of external and internal flows on unstructured meshes are discussed. The finite volume method is applied to solve three-dimensional unsteady compressible Euler and Navier-Stokes equations on unstructured meshes with high resolution numerical schemes. CUDA technology is used for programming implementation of parallel computational algorithms. Solutions of some benchmark test cases on GPUs are reported, and the results computed are compared with experimental and computational data. Approaches to optimization of the CFD code related to the use of different types of memory are considered. Speedup of solution on GPUs with respect to the solution on central processor unit (CPU) is compared. Performance measurements show that numerical schemes developed achieve 20-50 speedup on GPU hardware compared to CPU reference implementation. The results obtained provide promising perspective for designing a GPU-based software framework for applications in CFD.

  18. Accelerating sino-atrium computer simulations with graphic processing units.

    PubMed

    Zhang, Hong; Xiao, Zheng; Lin, Shien-fong

    2015-01-01

    Sino-atrial node cells (SANCs) play a significant role in rhythmic firing. To investigate their role in arrhythmia and interactions with the atrium, computer simulations based on cellular dynamic mathematical models are generally used. However, the large-scale computation usually makes research difficult, given the limited computational power of Central Processing Units (CPUs). In this paper, an accelerating approach with Graphic Processing Units (GPUs) is proposed in a simulation consisting of the SAN tissue and the adjoining atrium. By using the operator splitting method, the computational task was made parallel. Three parallelization strategies were then put forward. The strategy with the shortest running time was further optimized by considering block size, data transfer and partition. The results showed that for a simulation with 500 SANCs and 30 atrial cells, the execution time taken by the non-optimized program decreased 62% with respect to a serial program running on CPU. The execution time decreased by 80% after the program was optimized. The larger the tissue was, the more significant the acceleration became. The results demonstrated the effectiveness of the proposed GPU-accelerating methods and their promising applications in more complicated biological simulations.

  19. Design Application Translates 2-D Graphics to 3-D Surfaces

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Fabric Images Inc., specializing in the printing and manufacturing of fabric tension architecture for the retail, museum, and exhibit/tradeshow communities, designed software to translate 2-D graphics for 3-D surfaces prior to print production. Fabric Images' fabric-flattening design process models a 3-D surface based on computer-aided design (CAD) specifications. The surface geometry of the model is used to form a 2-D template, similar to a flattening process developed by NASA's Glenn Research Center. This template or pattern is then applied in the development of a 2-D graphic layout. Benefits of this process include 11.5 percent time savings per project, less material wasted, and the ability to improve upon graphic techniques and offer new design services. Partners include Exhibitgroup/Giltspur (end-user client: TAC Air, a division of Truman Arnold Companies Inc.), Jack Morton Worldwide (end-user client: Nickelodeon), as well as 3D Exhibits Inc., and MG Design Associates Corp.

  20. A Browser-Based Multi-User Working Environment for Physicists

    NASA Astrophysics Data System (ADS)

    Erdmann, M.; Fischer, R.; Glaser, C.; Klingebiel, D.; Komm, M.; Müller, G.; Rieger, M.; Steggemann, J.; Urban, M.; Winchen, T.

    2014-06-01

    Many programs in experimental particle physics do not yet have a graphical interface, or demand strong platform and software requirements. With the most recent development of the VISPA project, we provide graphical interfaces to existing software programs and access to multiple computing clusters through standard web browsers. The scalable clientserver system allows analyses to be performed in sizable teams, and disburdens the individual physicist from installing and maintaining a software environment. The VISPA graphical interfaces are implemented in HTML, JavaScript and extensions to the Python webserver. The webserver uses SSH and RPC to access user data, code and processes on remote sites. As example applications we present graphical interfaces for steering the reconstruction framework OFFLINE of the Pierre-Auger experiment, and the analysis development toolkit PXL. The browser based VISPA system was field-tested in biweekly homework of a third year physics course by more than 100 students. We discuss the system deployment and the evaluation by the students.

  1. Interactive graphical system for small-angle scattering analysis of polydisperse systems

    NASA Astrophysics Data System (ADS)

    Konarev, P. V.; Volkov, V. V.; Svergun, D. I.

    2016-09-01

    A program suite for one-dimensional small-angle scattering analysis of polydisperse systems and multiple data sets is presented. The main program, POLYSAS, has a menu-driven graphical user interface calling computational modules from ATSAS package to perform data treatment and analysis. The graphical menu interface allows one to process multiple (time, concentration or temperature-dependent) data sets and interactively change the parameters for the data modelling using sliders. The graphical representation of the data is done via the Winteracter-based program SASPLOT. The package is designed for the analysis of polydisperse systems and mixtures, and permits one to obtain size distributions and evaluate the volume fractions of the components using linear and non-linear fitting algorithms as well as model-independent singular value decomposition. The use of the POLYSAS package is illustrated by the recent examples of its application to study concentration-dependent oligomeric states of proteins and time kinetics of polymer micelles for anticancer drug delivery.

  2. Distributed 3D Information Visualization - Towards Integration of the Dynamic 3D Graphics and Web Services

    NASA Astrophysics Data System (ADS)

    Vucinic, Dean; Deen, Danny; Oanta, Emil; Batarilo, Zvonimir; Lacor, Chris

    This paper focuses on visualization and manipulation of graphical content in distributed network environments. The developed graphical middleware and 3D desktop prototypes were specialized for situational awareness. This research was done in the LArge Scale COllaborative decision support Technology (LASCOT) project, which explored and combined software technologies to support human-centred decision support system for crisis management (earthquake, tsunami, flooding, airplane or oil-tanker incidents, chemical, radio-active or other pollutants spreading, etc.). The performed state-of-the-art review did not identify any publicly available large scale distributed application of this kind. Existing proprietary solutions rely on the conventional technologies and 2D representations. Our challenge was to apply the "latest" available technologies, such Java3D, X3D and SOAP, compatible with average computer graphics hardware. The selected technologies are integrated and we demonstrate: the flow of data, which originates from heterogeneous data sources; interoperability across different operating systems and 3D visual representations to enhance the end-users interactions.

  3. ERM TLB Teaching-Learning Behavior News

    ERIC Educational Resources Information Center

    LeBold, William K., Ed.

    1978-01-01

    Describes a graduate electrical engineering mini-course, computer graphics gaming and simulation, classroom management and student progress records, student reaction to instruction, and computer graphics in undergraduate education. (SL)

  4. A study of application of remote sensing to river forecasting. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A project is described whose goal was to define, implement and evaluate a pilot demonstration test to show the practicability of applying remotely sensed data to operational river forecasting in gaged or previously ungaged watersheds. A secondary objective was to provide NASA with documentation describing the computer programs that comprise the streamflow forecasting simulation model used. A computer-based simulation model was adapted to a streamflow forecasting application and implemented in an IBM System/360 Model 44 computer, operating in a dedicated mode, with operator interactive control through a Model 2250 keyboard/graphic CRT terminal. The test site whose hydrologic behavior was simulated is a small basin (365 square kilometers) designated Town Creek near Geraldine, Alabama.

  5. Effects of computer-based graphic organizers to solve one-step word problems for middle school students with mild intellectual disability: A preliminary study.

    PubMed

    Sheriff, Kelli A; Boon, Richard T

    2014-08-01

    The purpose of this study was to examine the effects of computer-based graphic organizers, using Kidspiration 3© software, to solve one-step word problems. Participants included three students with mild intellectual disability enrolled in a functional academic skills curriculum in a self-contained classroom. A multiple probe single-subject research design (Horner & Baer, 1978) was used to evaluate the effectiveness of computer-based graphic organizers to solving mathematical one-step word problems. During the baseline phase, the students completed a teacher-generated worksheet that consisted of nine functional word problems in a traditional format using a pencil, paper, and a calculator. In the intervention and maintenance phases, the students were instructed to complete the word problems using a computer-based graphic organizer. Results indicated that all three of the students improved in their ability to solve the one-step word problems using computer-based graphic organizers compared to traditional instructional practices. Limitations of the study and recommendations for future research directions are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Blend Shape Interpolation and FACS for Realistic Avatar

    NASA Astrophysics Data System (ADS)

    Alkawaz, Mohammed Hazim; Mohamad, Dzulkifli; Basori, Ahmad Hoirul; Saba, Tanzila

    2015-03-01

    The quest of developing realistic facial animation is ever-growing. The emergence of sophisticated algorithms, new graphical user interfaces, laser scans and advanced 3D tools imparted further impetus towards the rapid advancement of complex virtual human facial model. Face-to-face communication being the most natural way of human interaction, the facial animation systems became more attractive in the information technology era for sundry applications. The production of computer-animated movies using synthetic actors are still challenging issues. Proposed facial expression carries the signature of happiness, sadness, angry or cheerful, etc. The mood of a particular person in the midst of a large group can immediately be identified via very subtle changes in facial expressions. Facial expressions being very complex as well as important nonverbal communication channel are tricky to synthesize realistically using computer graphics. Computer synthesis of practical facial expressions must deal with the geometric representation of the human face and the control of the facial animation. We developed a new approach by integrating blend shape interpolation (BSI) and facial action coding system (FACS) to create a realistic and expressive computer facial animation design. The BSI is used to generate the natural face while the FACS is employed to reflect the exact facial muscle movements for four basic natural emotional expressions such as angry, happy, sad and fear with high fidelity. The results in perceiving the realistic facial expression for virtual human emotions based on facial skin color and texture may contribute towards the development of virtual reality and game environment of computer aided graphics animation systems.

  7. Big system: Interactive graphics for the engineer

    NASA Technical Reports Server (NTRS)

    Quenneville, C. E.

    1975-01-01

    The BCS Interactive Graphics System (BIG System) approach to graphics was presented, along with several significant engineering applications. The BIG System precompiler, the graphics support library, and the function requirements of graphics applications are discussed. It was concluded that graphics standardization and a device independent code can be developed to assure maximum graphic terminal transferability.

  8. Case Study: Audio-Guided Learning, with Computer Graphics.

    ERIC Educational Resources Information Center

    Koumi, Jack; Daniels, Judith

    1994-01-01

    Describes teaching packages which involve the use of audiotape recordings with personal computers in Open University (United Kingdom) mathematics courses. Topics addressed include software development; computer graphics; pedagogic principles for distance education; feedback, including course evaluations and student surveys; and future plans.…

  9. Computer Aided Design: Instructional Manual. The North Dakota High Technology Mobile Laboratory Project.

    ERIC Educational Resources Information Center

    Cheng, Wan-Lee

    This instructional manual contains 12 learning activity packets for use in a workshop in computer-aided design and drafting (CADD). The lessons cover the following topics: introduction to computer graphics and computer-aided design/drafting; coordinate systems; advance space graphics hardware configuration and basic features of the IBM PC…

  10. Toward a Singleton Undergraduate Computer Graphics Course in Small and Medium-Sized Colleges

    ERIC Educational Resources Information Center

    Shesh, Amit

    2013-01-01

    This article discusses the evolution of a single undergraduate computer graphics course over five semesters, driven by a primary question: if one could offer only one undergraduate course in graphics, what would it include? This constraint is relevant to many small and medium-sized colleges that lack resources, adequate expertise, and enrollment…

  11. Young Children and Turtle Graphics Programming: Generating and Debugging Simple Turtle Programs.

    ERIC Educational Resources Information Center

    Cuneo, Diane O.

    Turtle graphics is a popular vehicle for introducing children to computer programming. Children combine simple graphic commands to get a display screen cursor (called a turtle) to draw designs on the screen. The purpose of this study was to examine young children's abilities to function in a simple computer programming environment. Four- and…

  12. Visual Debugging of Object-Oriented Systems With the Unified Modeling Language

    DTIC Science & Technology

    2004-03-01

    to be “the systematic and imaginative use of the technology of interactive computer graphics and the disciplines of graphic design , typography ... Graphics volume 23 no 6, pp893-901, 1999. [SHN98] Shneiderman, B. Designing the User Interface. Strategies for Effective Human-Computer Interaction...System Design Objectives ................................................................................ 44 3.3 System Architecture

  13. Novel low-cost 2D/3D switchable autostereoscopic system for notebook computers and other portable devices

    NASA Astrophysics Data System (ADS)

    Eichenlaub, Jesse B.

    1995-03-01

    Mounting a lenticular lens in front of a flat panel display is a well known, inexpensive, and easy way to create an autostereoscopic system. Such a lens produces half resolution 3D images because half the pixels on the LCD are seen by the left eye and half by the right eye. This may be acceptable for graphics, but it makes full resolution text, as displayed by common software, nearly unreadable. Very fine alignment tolerances normally preclude the possibility of removing and replacing the lens in order to switch between 2D and 3D applications. Lenticular lens based displays are therefore limited to use as dedicated 3D devices. DTI has devised a technique which removes this limitation, allowing switching between full resolution 2D and half resolution 3D imaging modes. A second element, in the form of a concave lenticular lens array whose shape is exactly the negative of the first lens, is mounted on a hinge so that it can be swung down over the first lens array. When so positioned the two lenses cancel optically, allowing the user to see full resolution 2D for text or numerical applications. The two lenses, having complementary shapes, naturally tend to nestle together and snap into perfect alignment when pressed together--thus obviating any need for user operated alignment mechanisms. This system represents an ideal solution for laptop and notebook computer applications. It was devised to meet the stringent requirements of a laptop computer manufacturer including very compact size, very low cost, little impact on existing manufacturing or assembly procedures, and compatibility with existing full resolution 2D text- oriented software as well as 3D graphics. Similar requirements apply to high and electronic calculators, several models of which now use LCDs for the display of graphics.

  14. On an Additive Semigraphoid Model for Statistical Networks With Application to Pathway Analysis.

    PubMed

    Li, Bing; Chun, Hyonho; Zhao, Hongyu

    2014-09-01

    We introduce a nonparametric method for estimating non-gaussian graphical models based on a new statistical relation called additive conditional independence, which is a three-way relation among random vectors that resembles the logical structure of conditional independence. Additive conditional independence allows us to use one-dimensional kernel regardless of the dimension of the graph, which not only avoids the curse of dimensionality but also simplifies computation. It also gives rise to a parallel structure to the gaussian graphical model that replaces the precision matrix by an additive precision operator. The estimators derived from additive conditional independence cover the recently introduced nonparanormal graphical model as a special case, but outperform it when the gaussian copula assumption is violated. We compare the new method with existing ones by simulations and in genetic pathway analysis.

  15. A Responsive Client for Distributed Visualization

    NASA Astrophysics Data System (ADS)

    Bollig, E. F.; Jensen, P. A.; Erlebacher, G.; Yuen, D. A.; Momsen, A. R.

    2006-12-01

    As grids, web services and distributed computing continue to gain popularity in the scientific community, demand for virtual laboratories likewise increases. Today organizations such as the Virtual Laboratory for Earth and Planetary Sciences (VLab) are dedicated to developing web-based portals to perform various simulations remotely while abstracting away details of the underlying computation. Two of the biggest challenges in portal- based computing are fast visualization and smooth interrogation without over taxing clients resources. In response to this challenge, we have expanded on our previous data storage strategy and thick client visualization scheme [1] to develop a client-centric distributed application that utilizes remote visualization of large datasets and makes use of the local graphics processor for improved interactivity. Rather than waste precious client resources for visualization, a combination of 3D graphics and 2D server bitmaps are used to simulate the look and feel of local rendering. Java Web Start and Java Bindings for OpenGL enable install-on- demand functionality as well as low level access to client graphics for all platforms. Powerful visualization services based on VTK and auto-generated by the WATT compiler [2] are accessible through a standard web API. Data is permanently stored on compute nodes while separate visualization nodes fetch data requested by clients, caching it locally to prevent unnecessary transfers. We will demonstrate application capabilities in the context of simulated charge density visualization within the VLab portal. In addition, we will address generalizations of our application to interact with a wider number of WATT services and performance bottlenecks. [1] Ananthuni, R., Karki, B.B., Bollig, E.F., da Silva, C.R.S., Erlebacher, G., "A Web-Based Visualization and Reposition Scheme for Scientific Data," In Press, Proceedings of the 2006 International Conference on Modeling Simulation and Visualization Methods (MSV'06) (2006). [2] Jensen, P.A., Yuen, D.A., Erlebacher, G., Bollig, E.F., Kigelman, D.G., Shukh, E.A., Automated Generation of Web Services for Visualization Toolkits, Eos Trans. AGU, 86(52), Fall Meet. Suppl., Abstract IN42A-06, 2005.

  16. L3 Interactive Data Language

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hohn, Michael; Adams, Paul

    2006-09-05

    The L3 system is a computational steering environment for image processing and scientific computing. It consists of an interactive graphical language and interface. Its purpose is to help advanced users in controlling their computational software and assist in the management of data accumulated during numerical experiments. L3 provides a combination of features not found in other environments; these are: - textual and graphical construction of programs - persistence of programs and associated data - direct mapping between the scripts, the parameters, and the produced data - implicit hierarchial data organization - full programmability, including conditionals and functions - incremental executionmore » of programs The software includes the l3 language and the graphical environment. The language is a single-assignment functional language; the implementation consists of lexer, parser, interpreter, storage handler, and editing support, The graphical environment is an event-driven nested list viewer/editor providing graphical elements corresponding to the language. These elements are both the represenation of a users program and active interfaces to the values computed by that program.« less

  17. Digital Image Correlation Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, Dan; Crozier, Paul; Reu, Phil

    DICe is an open source digital image correlation (DIC) tool intended for use as a module in an external application or as a standalone analysis code. It's primary capability is computing full-field displacements and strains from sequences of digital These images are typically of a material sample undergoing a materials characterization experiment, but DICe is also useful for other applications (for example, trajectory tracking). DICe is machine portable (Windows, Linux and Mac) and can be effectively deployed on a high performance computing platform. Capabilities from DICe can be invoked through a library interface, via source code integration of DICe classesmore » or through a graphical user interface.« less

  18. COPASI and its applications in biotechnology.

    PubMed

    Bergmann, Frank T; Hoops, Stefan; Klahn, Brian; Kummer, Ursula; Mendes, Pedro; Pahle, Jürgen; Sahle, Sven

    2017-11-10

    COPASI is software used for the creation, modification, simulation and computational analysis of kinetic models in various fields. It is open-source, available for all major platforms and provides a user-friendly graphical user interface, but is also controllable via the command line and scripting languages. These are likely reasons for its wide acceptance. We begin this review with a short introduction describing the general approaches and techniques used in computational modeling in the biosciences. Next we introduce the COPASI package, and its capabilities, before looking at typical applications of COPASI in biotechnology. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Analysis of the Optimum Receiver Design Problem Using Interactive Computer Graphics.

    DTIC Science & Technology

    1981-12-01

    7 _AD A115 498A l AR FORCE INST OF TECH WR16HT-PATTERSON AF8 OH SCHOO--ETC F/6 9/2 ANALYSIS OF THE OPTIMUM RECEIVER DESIGN PROBLEM USING INTERACTI...ANALYSIS OF THE OPTIMUM RECEIVER DESIGN PROBLEM USING INTERACTIVE COMPUTER GRAPHICS THESIS AFIT/GE/EE/81D-39 Michael R. Mazzuechi Cpt USA Approved for...public release; distribution unlimited AFIT/GE/EE/SlD-39 ANALYSIS OF THE OPTIMUM RECEIVER DESIGN PROBLEM USING INTERACTIVE COMPUTER GRAPHICS THESIS

  20. Discrim: a computer program using an interactive approach to dissect a mixture of normal or lognormal distributions

    USGS Publications Warehouse

    Bridges, N.J.; McCammon, R.B.

    1980-01-01

    DISCRIM is an interactive computer graphics program that dissects mixtures of normal or lognormal distributions. The program was written in an effort to obtain a more satisfactory solution to the dissection problem than that offered by a graphical or numerical approach alone. It combines graphic and analytic techniques using a Tektronix1 terminal in a time-share computing environment. The main program and subroutines were written in the FORTRAN language. ?? 1980.

  1. A study of methods to predict and measure the transmission of sound through the walls of light aircraft. A survey of techniques for visualization of noise fields

    NASA Technical Reports Server (NTRS)

    Marshall, S. E.; Bernhard, R.

    1984-01-01

    A survey of the most widely used methods for visualizing acoustic phenomena is presented. Emphasis is placed on acoustic processes in the audible frequencies. Many visual problems are analyzed on computer graphic systems. A brief description of the current technology in computer graphics is included. The visualization technique survey will serve as basis for recommending an optimum scheme for displaying acoustic fields on computer graphic systems.

  2. A 500 megabyte/second disk array

    NASA Technical Reports Server (NTRS)

    Ruwart, Thomas M.; Okeefe, Matthew T.

    1994-01-01

    Applications at the Army High Performance Computing Research Center's (AHPCRC) Graphic and Visualization Laboratory (GVL) at the University of Minnesota require a tremendous amount of I/O bandwidth and this appetite for data is growing. Silicon Graphics workstations are used to perform the post-processing, visualization, and animation of multi-terabyte size datasets produced by scientific simulations performed of AHPCRC supercomputers. The M.A.X. (Maximum Achievable Xfer) was designed to find the maximum achievable I/O performance of the Silicon Graphics CHALLENGE/Onyx-class machines that run these applications. Running a fully configured Onyx machine with 12-150MHz R4400 processors, 512MB of 8-way interleaved memory, 31 fast/wide SCSI-2 channel each with a Ciprico disk array controller we were able to achieve a maximum sustained transfer rate of 509.8 megabytes per second. However, after analyzing the results it became clear that the true maximum transfer rate is somewhat beyond this figure and we will need to do further testing with more disk array controllers in order to find the true maximum.

  3. HiRel: Hybrid Automated Reliability Predictor (HARP) integrated reliability tool system, (version 7.0). Volume 4: HARP Output (HARPO) graphics display user's guide

    NASA Technical Reports Server (NTRS)

    Sproles, Darrell W.; Bavuso, Salvatore J.

    1994-01-01

    The Hybrid Automated Reliability Predictor (HARP) integrated Reliability (HiRel) tool system for reliability/availability prediction offers a toolbox of integrated reliability/availability programs that can be used to customize the user's application in a workstation or nonworkstation environment. HiRel consists of interactive graphical input/output programs and four reliability/availability modeling engines that provide analytical and simulative solutions to a wide host of highly reliable fault-tolerant system architectures and is also applicable to electronic systems in general. The tool system was designed at the outset to be compatible with most computing platforms and operating systems and some programs have been beta tested within the aerospace community for over 8 years. This document is a user's guide for the HiRel graphical postprocessor program HARPO (HARP Output). HARPO reads ASCII files generated by HARP. It provides an interactive plotting capability that can be used to display alternate model data for trade-off analyses. File data can also be imported to other commercial software programs.

  4. Study on application of dynamic monitoring of land use based on mobile GIS technology

    NASA Astrophysics Data System (ADS)

    Tian, Jingyi; Chu, Jian; Guo, Jianxing; Wang, Lixin

    2006-10-01

    The land use dynamic monitoring is an important mean to maintain the real-time update of the land use data. Mobile GIS technology integrates GIS, GPS and Internet. It can update the historic al data in real time with site-collected data and realize the data update in large scale with high precision. The Monitoring methods on the land use change data with the mobile GIS technology were discussed. Mobile terminal of mobile GIS has self-developed for this study with GPS-25 OEM and notebook computer. The RTD (real-time difference) operation mode is selected. Mobile GIS system of dynamic monitoring of land use have developed with Visual C++ as operation platform, MapObjects control as graphic platform and MSCmm control as communication platform, which realizes organic integration of GPS, GPRS and GIS. This system has such following basic functions as data processing, graphic display, graphic editing, attribute query and navigation. Qinhuangdao city was selected as the experiential area. Shown by the study result, the mobile GIS integration system of dynamic monitoring of land use developed by this study has practical application value.

  5. A Latency-Tolerant Partitioner for Distributed Computing on the Information Power Grid

    NASA Technical Reports Server (NTRS)

    Das, Sajal K.; Harvey, Daniel J.; Biwas, Rupak; Kwak, Dochan (Technical Monitor)

    2001-01-01

    NASA's Information Power Grid (IPG) is an infrastructure designed to harness the power of graphically distributed computers, databases, and human expertise, in order to solve large-scale realistic computational problems. This type of a meta-computing environment is necessary to present a unified virtual machine to application developers that hides the intricacies of a highly heterogeneous environment and yet maintains adequate security. In this paper, we present a novel partitioning scheme. called MinEX, that dynamically balances processor workloads while minimizing data movement and runtime communication, for applications that are executed in a parallel distributed fashion on the IPG. We also analyze the conditions that are required for the IPG to be an effective tool for such distributed computations. Our results show that MinEX is a viable load balancer provided the nodes of the IPG are connected by a high-speed asynchronous interconnection network.

  6. The PyRosetta Toolkit: a graphical user interface for the Rosetta software suite.

    PubMed

    Adolf-Bryfogle, Jared; Dunbrack, Roland L

    2013-01-01

    The Rosetta Molecular Modeling suite is a command-line-only collection of applications that enable high-resolution modeling and design of proteins and other molecules. Although extremely useful, Rosetta can be difficult to learn for scientists with little computational or programming experience. To that end, we have created a Graphical User Interface (GUI) for Rosetta, called the PyRosetta Toolkit, for creating and running protocols in Rosetta for common molecular modeling and protein design tasks and for analyzing the results of Rosetta calculations. The program is highly extensible so that developers can add new protocols and analysis tools to the PyRosetta Toolkit GUI.

  7. Software Management System

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A software management system, originally developed for Goddard Space Flight Center (GSFC) by Century Computing, Inc. has evolved from a menu and command oriented system to a state-of-the art user interface development system supporting high resolution graphics workstations. Transportable Applications Environment (TAE) was initially distributed through COSMIC and backed by a TAE support office at GSFC. In 1993, Century Computing assumed the support and distribution functions and began marketing TAE Plus, the system's latest version. The software is easy to use and does not require programming experience.

  8. NERVA dynamic analysis methodology, SPRVIB

    NASA Technical Reports Server (NTRS)

    Vronay, D. F.

    1972-01-01

    The general dynamic computer code called SPRVIB (Spring Vib) developed in support of the NERVA (nuclear engine for rocket vehicle application) program is described. Using normal mode techniques, the program computes kinematical responses of a structure caused by various combinations of harmonic and elliptic forcing functions or base excitations. Provision is made for a graphical type of force or base excitation input to the structure. A description of the required input format and a listing of the program are presented, along with several examples illustrating the use of the program. SPRVIB is written in FORTRAN 4 computer language for use on the CDC 6600 or the IBM 360/75 computers.

  9. GeoBuilder: a geometric algorithm visualization and debugging system for 2D and 3D geometric computing.

    PubMed

    Wei, Jyh-Da; Tsai, Ming-Hung; Lee, Gen-Cher; Huang, Jeng-Hung; Lee, Der-Tsai

    2009-01-01

    Algorithm visualization is a unique research topic that integrates engineering skills such as computer graphics, system programming, database management, computer networks, etc., to facilitate algorithmic researchers in testing their ideas, demonstrating new findings, and teaching algorithm design in the classroom. Within the broad applications of algorithm visualization, there still remain performance issues that deserve further research, e.g., system portability, collaboration capability, and animation effect in 3D environments. Using modern technologies of Java programming, we develop an algorithm visualization and debugging system, dubbed GeoBuilder, for geometric computing. The GeoBuilder system features Java's promising portability, engagement of collaboration in algorithm development, and automatic camera positioning for tracking 3D geometric objects. In this paper, we describe the design of the GeoBuilder system and demonstrate its applications.

  10. Measuring Cognitive Load in Test Items: Static Graphics versus Animated Graphics

    ERIC Educational Resources Information Center

    Dindar, M.; Kabakçi Yurdakul, I.; Inan Dönmez, F.

    2015-01-01

    The majority of multimedia learning studies focus on the use of graphics in learning process but very few of them examine the role of graphics in testing students' knowledge. This study investigates the use of static graphics versus animated graphics in a computer-based English achievement test from a cognitive load theory perspective. Three…

  11. Optimized resolved rate control of seven-degree-of-freedom Laboratory Telerobotic Manipulator (LTM) with application to three-dimensional graphics simulation

    NASA Technical Reports Server (NTRS)

    Barker, L. Keith; Mckinney, William S., Jr.

    1989-01-01

    The Laboratory Telerobotic Manipulator (LTM) is a seven-degree-of-freedom robot arm. Two of the arms were delivered to Langley Research Center for ground-based research to assess the use of redundant degree-of-freedom robot arms in space operations. Resolved-rate control equations for the LTM are derived. The equations are based on a scheme developed at the Oak Ridge National Laboratory for computing optimized joint angle rates in real time. The optimized joint angle rates actually represent a trade-off, as the hand moves, between small rates (least-squares solution) and those rates which work toward satisfying a specified performance criterion of joint angles. In singularities where the optimization scheme cannot be applied, alternate control equations are devised. The equations developed were evaluated using a real-time computer simulation to control a 3-D graphics model of the LTM.

  12. APEX_SCOPE: A graphical user interface for visualization of multi-modal data in inter-disciplinary studies.

    PubMed

    Kanbar, Lara J; Shalish, Wissam; Precup, Doina; Brown, Karen; Sant'Anna, Guilherme M; Kearney, Robert E

    2017-07-01

    In multi-disciplinary studies, different forms of data are often collected for analysis. For example, APEX, a study on the automated prediction of extubation readiness in extremely preterm infants, collects clinical parameters and cardiorespiratory signals. A variety of cardiorespiratory metrics are computed from these signals and used to assign a cardiorespiratory pattern at each time. In such a situation, exploratory analysis requires a visualization tool capable of displaying these different types of acquired and computed signals in an integrated environment. Thus, we developed APEX_SCOPE, a graphical tool for the visualization of multi-modal data comprising cardiorespiratory signals, automated cardiorespiratory metrics, automated respiratory patterns, manually classified respiratory patterns, and manual annotations by clinicians during data acquisition. This MATLAB-based application provides a means for collaborators to view combinations of signals to promote discussion, generate hypotheses and develop features.

  13. Advances in Software Tools for Pre-processing and Post-processing of Overset Grid Computations

    NASA Technical Reports Server (NTRS)

    Chan, William M.

    2004-01-01

    Recent developments in three pieces of software for performing pre-processing and post-processing work on numerical computations using overset grids are presented. The first is the OVERGRID graphical interface which provides a unified environment for the visualization, manipulation, generation and diagnostics of geometry and grids. Modules are also available for automatic boundary conditions detection, flow solver input preparation, multiple component dynamics input preparation and dynamics animation, simple solution viewing for moving components, and debris trajectory analysis input preparation. The second is a grid generation script library that enables rapid creation of grid generation scripts. A sample of recent applications will be described. The third is the OVERPLOT graphical interface for displaying and analyzing history files generated by the flow solver. Data displayed include residuals, component forces and moments, number of supersonic and reverse flow points, and various dynamics parameters.

  14. Pointing Device Performance in Steering Tasks.

    PubMed

    Senanayake, Ransalu; Goonetilleke, Ravindra S

    2016-06-01

    Use of touch-screen-based interactions is growing rapidly. Hence, knowing the maneuvering efficacy of touch screens relative to other pointing devices is of great importance in the context of graphical user interfaces. Movement time, accuracy, and user preferences of four pointing device settings were evaluated on a computer with 14 participants aged 20.1 ± 3.13 years. It was found that, depending on the difficulty of the task, the optimal settings differ for ballistic and visual control tasks. With a touch screen, resting the arm increased movement time for steering tasks. When both performance and comfort are considered, whether to use a mouse or a touch screen for person-computer interaction depends on the steering difficulty. Hence, a input device should be chosen based on the application, and should be optimized to match the graphical user interface. © The Author(s) 2016.

  15. Interactive Display of Surfaces Using Subdivision Surfaces and Wavelets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duchaineau, M A; Bertram, M; Porumbescu, S

    2001-10-03

    Complex surfaces and solids are produced by large-scale modeling and simulation activities in a variety of disciplines. Productive interaction with these simulations requires that these surfaces or solids be viewable at interactive rates--yet many of these surfaced solids can contain hundreds of millions of polygondpolyhedra. Interactive display of these objects requires compression techniques to minimize storage, and fast view-dependent triangulation techniques to drive the graphics hardware. In this paper, we review recent advances in subdivision-surface wavelet compression and optimization that can be used to provide a framework for both compression and triangulation. These techniques can be used to produce suitablemore » approximations of complex surfaces of arbitrary topology, and can be used to determine suitable triangulations for display. The techniques can be used in a variety of applications in computer graphics, computer animation and visualization.« less

  16. Graphics and composite material computer program enhancements for SPAR

    NASA Technical Reports Server (NTRS)

    Farley, G. L.; Baker, D. J.

    1980-01-01

    User documentation is provided for additional computer programs developed for use in conjunction with SPAR. These programs plot digital data, simplify input for composite material section properties, and compute lamina stresses and strains. Sample problems are presented including execution procedures, program input, and graphical output.

  17. Concept Learning through Image Processing.

    ERIC Educational Resources Information Center

    Cifuentes, Lauren; Yi-Chuan, Jane Hsieh

    This study explored computer-based image processing as a study strategy for middle school students' science concept learning. Specifically, the research examined the effects of computer graphics generation on science concept learning and the impact of using computer graphics to show interrelationships among concepts during study time. The 87…

  18. Python as a federation tool for GENESIS 3.0.

    PubMed

    Cornelis, Hugo; Rodriguez, Armando L; Coop, Allan D; Bower, James M

    2012-01-01

    The GENESIS simulation platform was one of the first broad-scale modeling systems in computational biology to encourage modelers to develop and share model features and components. Supported by a large developer community, it participated in innovative simulator technologies such as benchmarking, parallelization, and declarative model specification and was the first neural simulator to define bindings for the Python scripting language. An important feature of the latest version of GENESIS is that it decomposes into self-contained software components complying with the Computational Biology Initiative federated software architecture. This architecture allows separate scripting bindings to be defined for different necessary components of the simulator, e.g., the mathematical solvers and graphical user interface. Python is a scripting language that provides rich sets of freely available open source libraries. With clean dynamic object-oriented designs, they produce highly readable code and are widely employed in specialized areas of software component integration. We employ a simplified wrapper and interface generator to examine an application programming interface and make it available to a given scripting language. This allows independent software components to be 'glued' together and connected to external libraries and applications from user-defined Python or Perl scripts. We illustrate our approach with three examples of Python scripting. (1) Generate and run a simple single-compartment model neuron connected to a stand-alone mathematical solver. (2) Interface a mathematical solver with GENESIS 3.0 to explore a neuron morphology from either an interactive command-line or graphical user interface. (3) Apply scripting bindings to connect the GENESIS 3.0 simulator to external graphical libraries and an open source three dimensional content creation suite that supports visualization of models based on electron microscopy and their conversion to computational models. Employed in this way, the stand-alone software components of the GENESIS 3.0 simulator provide a framework for progressive federated software development in computational neuroscience.

  19. Python as a Federation Tool for GENESIS 3.0

    PubMed Central

    Cornelis, Hugo; Rodriguez, Armando L.; Coop, Allan D.; Bower, James M.

    2012-01-01

    The GENESIS simulation platform was one of the first broad-scale modeling systems in computational biology to encourage modelers to develop and share model features and components. Supported by a large developer community, it participated in innovative simulator technologies such as benchmarking, parallelization, and declarative model specification and was the first neural simulator to define bindings for the Python scripting language. An important feature of the latest version of GENESIS is that it decomposes into self-contained software components complying with the Computational Biology Initiative federated software architecture. This architecture allows separate scripting bindings to be defined for different necessary components of the simulator, e.g., the mathematical solvers and graphical user interface. Python is a scripting language that provides rich sets of freely available open source libraries. With clean dynamic object-oriented designs, they produce highly readable code and are widely employed in specialized areas of software component integration. We employ a simplified wrapper and interface generator to examine an application programming interface and make it available to a given scripting language. This allows independent software components to be ‘glued’ together and connected to external libraries and applications from user-defined Python or Perl scripts. We illustrate our approach with three examples of Python scripting. (1) Generate and run a simple single-compartment model neuron connected to a stand-alone mathematical solver. (2) Interface a mathematical solver with GENESIS 3.0 to explore a neuron morphology from either an interactive command-line or graphical user interface. (3) Apply scripting bindings to connect the GENESIS 3.0 simulator to external graphical libraries and an open source three dimensional content creation suite that supports visualization of models based on electron microscopy and their conversion to computational models. Employed in this way, the stand-alone software components of the GENESIS 3.0 simulator provide a framework for progressive federated software development in computational neuroscience. PMID:22276101

  20. Adaptation of a Control Center Development Environment for Industrial Process Control

    NASA Technical Reports Server (NTRS)

    Killough, Ronnie L.; Malik, James M.

    1994-01-01

    In the control center, raw telemetry data is received for storage, display, and analysis. This raw data must be combined and manipulated in various ways by mathematical computations to facilitate analysis, provide diversified fault detection mechanisms, and enhance display readability. A development tool called the Graphical Computation Builder (GCB) has been implemented which provides flight controllers with the capability to implement computations for use in the control center. The GCB provides a language that contains both general programming constructs and language elements specifically tailored for the control center environment. The GCB concept allows staff who are not skilled in computer programming to author and maintain computer programs. The GCB user is isolated from the details of external subsystem interfaces and has access to high-level functions such as matrix operators, trigonometric functions, and unit conversion macros. The GCB provides a high level of feedback during computation development that improves upon the often cryptic errors produced by computer language compilers. An equivalent need can be identified in the industrial data acquisition and process control domain: that of an integrated graphical development tool tailored to the application to hide the operating system, computer language, and data acquisition interface details. The GCB features a modular design which makes it suitable for technology transfer without significant rework. Control center-specific language elements can be replaced by elements specific to industrial process control.

  1. GPU Accelerated Prognostics

    NASA Technical Reports Server (NTRS)

    Gorospe, George E., Jr.; Daigle, Matthew J.; Sankararaman, Shankar; Kulkarni, Chetan S.; Ng, Eley

    2017-01-01

    Prognostic methods enable operators and maintainers to predict the future performance for critical systems. However, these methods can be computationally expensive and may need to be performed each time new information about the system becomes available. In light of these computational requirements, we have investigated the application of graphics processing units (GPUs) as a computational platform for real-time prognostics. Recent advances in GPU technology have reduced cost and increased the computational capability of these highly parallel processing units, making them more attractive for the deployment of prognostic software. We present a survey of model-based prognostic algorithms with considerations for leveraging the parallel architecture of the GPU and a case study of GPU-accelerated battery prognostics with computational performance results.

  2. Dynamic graph system for a semantic database

    DOEpatents

    Mizell, David

    2016-04-12

    A method and system in a computer system for dynamically providing a graphical representation of a data store of entries via a matrix interface is disclosed. A dynamic graph system provides a matrix interface that exposes to an application program a graphical representation of data stored in a data store such as a semantic database storing triples. To the application program, the matrix interface represents the graph as a sparse adjacency matrix that is stored in compressed form. Each entry of the data store is considered to represent a link between nodes of the graph. Each entry has a first field and a second field identifying the nodes connected by the link and a third field with a value for the link that connects the identified nodes. The first, second, and third fields represent the rows, column, and elements of the adjacency matrix.

  3. Dynamic graph system for a semantic database

    DOEpatents

    Mizell, David

    2015-01-27

    A method and system in a computer system for dynamically providing a graphical representation of a data store of entries via a matrix interface is disclosed. A dynamic graph system provides a matrix interface that exposes to an application program a graphical representation of data stored in a data store such as a semantic database storing triples. To the application program, the matrix interface represents the graph as a sparse adjacency matrix that is stored in compressed form. Each entry of the data store is considered to represent a link between nodes of the graph. Each entry has a first field and a second field identifying the nodes connected by the link and a third field with a value for the link that connects the identified nodes. The first, second, and third fields represent the rows, column, and elements of the adjacency matrix.

  4. Hyperbolic Harmonic Mapping for Surface Registration

    PubMed Central

    Shi, Rui; Zeng, Wei; Su, Zhengyu; Jiang, Jian; Damasio, Hanna; Lu, Zhonglin; Wang, Yalin; Yau, Shing-Tung; Gu, Xianfeng

    2016-01-01

    Automatic computation of surface correspondence via harmonic map is an active research field in computer vision, computer graphics and computational geometry. It may help document and understand physical and biological phenomena and also has broad applications in biometrics, medical imaging and motion capture inducstries. Although numerous studies have been devoted to harmonic map research, limited progress has been made to compute a diffeomorphic harmonic map on general topology surfaces with landmark constraints. This work conquers this problem by changing the Riemannian metric on the target surface to a hyperbolic metric so that the harmonic mapping is guaranteed to be a diffeomorphism under landmark constraints. The computational algorithms are based on Ricci flow and nonlinear heat diffusion methods. The approach is general and robust. We employ our algorithm to study the constrained surface registration problem which applies to both computer vision and medical imaging applications. Experimental results demonstrate that, by changing the Riemannian metric, the registrations are always diffeomorphic and achieve relatively high performance when evaluated with some popular surface registration evaluation standards. PMID:27187948

  5. The Application and Evaluation of PLATO IV in AF Technical Training.

    ERIC Educational Resources Information Center

    Mockovak, William P.; And Others

    The Air Force has been plagued with the rising cost of technical training and has increasingly turned to computer-assisted instruction (CAI) for better cost effectiveness. Toward this aim a trial of PLATO IV, a CAI system utilizing a graphic display and centered at the University of Illinois, was initiated at the Chanute and Sheppard training…

  6. Using a Modular Construction Kit for the Realization of an Interactive Computer Graphics Course.

    ERIC Educational Resources Information Center

    Klein, Reinhard; Hanisch, Frank

    Recently, platform independent software components, like JavaBeans, have appeared that allow writing reusable components and composing them in a visual builder tool into new applications. This paper describes the use of such models to transform an existing course into a modular construction kit consisting of components of teaching text and program…

  7. Fire characteristics charts for fire behavior and U.S. fire danger rating

    Treesearch

    Faith Ann Heinsch; Pat Andrews

    2010-01-01

    The fire characteristics chart is a graphical method of presenting U.S. National Fire Danger Rating indices or primary surface or crown fire behavior characteristics. A desktop computer application has been developed to produce fire characteristics charts in a format suitable for inclusion in reports and presentations. Many options include change of scales, colors,...

  8. Interoperability through standardization: Electronic mail, and X Window systems

    NASA Technical Reports Server (NTRS)

    Amin, Ashok T.

    1993-01-01

    Since the introduction of computing machines, there has been continual advances in computer and communication technologies and approaching limits. The user interface has evolved from a row of switches, character based interface using teletype terminals and then video terminals, to present day graphical user interface. It is expected that next significant advances will come in the availability of services, such as electronic mail and directory services, as the standards for applications are developed and in the 'easy to use' interfaces, such as Graphical User Interface for example Window and X Window, which are being standardized. Various proprietary electronic mail (email) systems are in use within organizations at each center of NASA. Each system provides email services to users within an organization, however the support for email services across organizations and across centers exists at centers to a varying degree and is often easy to use. A recent NASA email initiative is intended 'to provide a simple way to send email across organizational boundaries without disruption of installed base.' The initiative calls for integration of existing organizational email systems through gateways connected by a message switch, supporting X.400 and SMTP protocols, to create a NASA wide email system and for implementation of NASA wide email directory services based on OSI standard X.500. A brief overview of MSFC efforts as a part of this initiative are described. Window based graphical user interfaces make computers easy to use. X window protocol has been developed at Massachusetts Institute of Technology in 1984/1985 to provide uniform window based interface in a distributed computing environment with heterogenous computers. It has since become a standard supported by a number of major manufacturers. Z Windows systems, terminals and workstations, and X Window applications are becoming available. However impact of its use in the Local Area Network environment on the network traffic are not well understood. It is expected that the use of X Windows systems will increase at MSFC especially for Unix based systems. An overview of X Window protocol is presented and its impact on the network traffic is examined. It is proposed that an analytical model of X Window systems in the network environment be developed and validated through the use of measurements to generate application and user profiles.

  9. Defining protein electrostatic recognition processes

    NASA Astrophysics Data System (ADS)

    Getzoff, Elizabeth D.; Roberts, Victoria A.

    The objective is to elucidate the nature of electrostatic forces controlling protein recognition processes by using a tightly coupled computational and interactive computer graphics approach. The TURNIP program was developed to determine the most favorable precollision orientations for two molecules by systematic search of all orientations and evaluation of the resulting electrostatic interactions. TURNIP was applied to the transient interaction between two electron transfer metalloproteins, plastocyanin and cytochrome c. The results suggest that the productive electron-transfer complex involves interaction of the positive region of cytochrome c with the negative patch of plastocyanin, consistent with experimental data. Application of TURNIP to the formation of the stable complex between the HyHEL-5 antibody and its protein antigen lysozyme showed that long-distance electrostatic forces guide lysozyme toward the HyHEL-5 binding site, but do not fine tune its orientation. Determination of docked antigen/antibody complexes requires including steric as well as electrostatic interactions, as was done for the U10 mutant of the anti-phosphorylcholine antibody S107. The graphics program Flex, a convenient desktop workstation program for visualizing molecular dynamics and normal mode motions, was enhanced. Flex now has a user interface and was rewritten to use standard graphics libraries, so as to run on most desktop workstations.

  10. Accelerating image recognition on mobile devices using GPGPU

    NASA Astrophysics Data System (ADS)

    Bordallo López, Miguel; Nykänen, Henri; Hannuksela, Jari; Silvén, Olli; Vehviläinen, Markku

    2011-01-01

    The future multi-modal user interfaces of battery-powered mobile devices are expected to require computationally costly image analysis techniques. The use of Graphic Processing Units for computing is very well suited for parallel processing and the addition of programmable stages and high precision arithmetic provide for opportunities to implement energy-efficient complete algorithms. At the moment the first mobile graphics accelerators with programmable pipelines are available, enabling the GPGPU implementation of several image processing algorithms. In this context, we consider a face tracking approach that uses efficient gray-scale invariant texture features and boosting. The solution is based on the Local Binary Pattern (LBP) features and makes use of the GPU on the pre-processing and feature extraction phase. We have implemented a series of image processing techniques in the shader language of OpenGL ES 2.0, compiled them for a mobile graphics processing unit and performed tests on a mobile application processor platform (OMAP3530). In our contribution, we describe the challenges of designing on a mobile platform, present the performance achieved and provide measurement results for the actual power consumption in comparison to using the CPU (ARM) on the same platform.

  11. Sculpting proteins interactively: continual energy minimization embedded in a graphical modeling system.

    PubMed

    Surles, M C; Richardson, J S; Richardson, D C; Brooks, F P

    1994-02-01

    We describe a new paradigm for modeling proteins in interactive computer graphics systems--continual maintenance of a physically valid representation, combined with direct user control and visualization. This is achieved by a fast algorithm for energy minimization, capable of real-time performance on all atoms of a small protein, plus graphically specified user tugs. The modeling system, called Sculpt, rigidly constrains bond lengths, bond angles, and planar groups (similar to existing interactive modeling programs), while it applies elastic restraints to minimize the potential energy due to torsions, hydrogen bonds, and van der Waals and electrostatic interactions (similar to existing batch minimization programs), and user-specified springs. The graphical interface can show bad and/or favorable contacts, and individual energy terms can be turned on or off to determine their effects and interactions. Sculpt finds a local minimum of the total energy that satisfies all the constraints using an augmented Lagrange-multiplier method; calculation time increases only linearly with the number of atoms because the matrix of constraint gradients is sparse and banded. On a 100-MHz MIPS R4000 processor (Silicon Graphics Indigo), Sculpt achieves 11 updates per second on a 20-residue fragment and 2 updates per second on an 80-residue protein, using all atoms except non-H-bonding hydrogens, and without electrostatic interactions. Applications of Sculpt are described: to reverse the direction of bundle packing in a designed 4-helix bundle protein, to fold up a 2-stranded beta-ribbon into an approximate beta-barrel, and to design the sequence and conformation of a 30-residue peptide that mimics one partner of a protein subunit interaction. Computer models that are both interactive and physically realistic (within the limitations of a given force field) have 2 significant advantages: (1) they make feasible the modeling of very large changes (such as needed for de novo design), and (2) they help the user understand how different energy terms interact to stabilize a given conformation. The Sculpt paradigm combines many of the best features of interactive graphical modeling, energy minimization, and actual physical models, and we propose it as an especially productive way to use current and future increases in computer speed.

  12. Computer Art--A New Tool in Advertising Graphics.

    ERIC Educational Resources Information Center

    Wassmuth, Birgit L.

    Using computers to produce art began with scientists, mathematicians, and individuals with strong technical backgrounds who used the graphic material as visualizations of data in technical fields. People are using computer art in advertising, as well as in painting; sculpture; music; textile, product, industrial, and interior design; architecture;…

  13. WWW creates new interactive 3D graphics and collaborative environments for medical research and education.

    PubMed

    Samothrakis, S; Arvanitis, T N; Plataniotis, A; McNeill, M D; Lister, P F

    1997-11-01

    Virtual Reality Modelling Language (VRML) is the start of a new era for medicine and the World Wide Web (WWW). Scientists can use VRML across the Internet to explore new three-dimensional (3D) worlds, share concepts and collaborate together in a virtual environment. VRML enables the generation of virtual environments through the use of geometric, spatial and colour data structures to represent 3D objects and scenes. In medicine, researchers often want to interact with scientific data, which in several instances may also be dynamic (e.g. MRI data). This data is often very large and is difficult to visualise. A 3D graphical representation can make the information contained in such large data sets more understandable and easier to interpret. Fast networks and satellites can reliably transfer large data sets from computer to computer. This has led to the adoption of remote tale-working in many applications including medical applications. Radiology experts, for example, can view and inspect in near real-time a 3D data set acquired from a patient who is in another part of the world. Such technology is destined to improve the quality of life for many people. This paper introduces VRML (including some technical details) and discusses the advantages of VRML in application developing.

  14. Deep Learning in Medical Imaging: General Overview

    PubMed Central

    Lee, June-Goo; Jun, Sanghoon; Cho, Young-Won; Lee, Hyunna; Kim, Guk Bae

    2017-01-01

    The artificial neural network (ANN)–a machine learning technique inspired by the human neuronal synapse system–was introduced in the 1950s. However, the ANN was previously limited in its ability to solve actual problems, due to the vanishing gradient and overfitting problems with training of deep architecture, lack of computing power, and primarily the absence of sufficient data to train the computer system. Interest in this concept has lately resurfaced, due to the availability of big data, enhanced computing power with the current graphics processing units, and novel algorithms to train the deep neural network. Recent studies on this technology suggest its potentially to perform better than humans in some visual and auditory recognition tasks, which may portend its applications in medicine and healthcare, especially in medical imaging, in the foreseeable future. This review article offers perspectives on the history, development, and applications of deep learning technology, particularly regarding its applications in medical imaging. PMID:28670152

  15. Deep Learning in Medical Imaging: General Overview.

    PubMed

    Lee, June-Goo; Jun, Sanghoon; Cho, Young-Won; Lee, Hyunna; Kim, Guk Bae; Seo, Joon Beom; Kim, Namkug

    2017-01-01

    The artificial neural network (ANN)-a machine learning technique inspired by the human neuronal synapse system-was introduced in the 1950s. However, the ANN was previously limited in its ability to solve actual problems, due to the vanishing gradient and overfitting problems with training of deep architecture, lack of computing power, and primarily the absence of sufficient data to train the computer system. Interest in this concept has lately resurfaced, due to the availability of big data, enhanced computing power with the current graphics processing units, and novel algorithms to train the deep neural network. Recent studies on this technology suggest its potentially to perform better than humans in some visual and auditory recognition tasks, which may portend its applications in medicine and healthcare, especially in medical imaging, in the foreseeable future. This review article offers perspectives on the history, development, and applications of deep learning technology, particularly regarding its applications in medical imaging.

  16. Graphic Design Is Not a Medium.

    ERIC Educational Resources Information Center

    Gruber, John Edward, Jr.

    2001-01-01

    Discusses graphic design and reviews its development from analog processes to a digital tool with the use of computers. Topics include graphical user interfaces; the need for visual communication concepts; transmedia as opposed to repurposing; and graphic design instruction in higher education. (LRW)

  17. A graphics subsystem retrofit design for the bladed-disk data acquisition system. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Carney, R. R.

    1983-01-01

    A graphics subsystem retrofit design for the turbojet blade vibration data acquisition system is presented. The graphics subsystem will operate in two modes permitting the system operator to view blade vibrations on an oscilloscope type of display. The first mode is a real-time mode that displays only gross blade characteristics, such as maximum deflections and standing waves. This mode is used to aid the operator in determining when to collect detailed blade vibration data. The second mode of operation is a post-processing mode that will animate the actual blade vibrations using the detailed data collected on an earlier data collection run. The operator can vary the rate of payback to view differring characteristics of blade vibrations. The heart of the graphics subsystem is a modified version of AMD's ""super sixteen'' computer, called the graphics preprocessor computer (GPC). This computer is based on AMD's 2900 series of bit-slice components.

  18. An Interactive Version of MULR04 With Enhanced Graphic Capability

    ERIC Educational Resources Information Center

    Burkholder, Joel H.

    1978-01-01

    An existing computer program for computing multiple regression analyses is made interactive in order to alleviate core storage requirements. Also, some improvements in the graphics aspects of the program are included. (JKS)

  19. Real-time interactive simulation: using touch panels, graphics tablets, and video-terminal keyboards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venhuizen, J.R.

    1983-01-01

    A Simulation Laboratory utilizing only digital computers for interactive computing must rely on CRT based graphics devices for output devices, and keyboards, graphics tablets, and touch panels, etc., for input devices. The devices all work well, with the combination of a CRT with a touch panel mounted on it as the most flexible combination of input/output devices for interactive simulation.

  20. Engineering Design Graphics: Into the 21st Century

    ERIC Educational Resources Information Center

    Harris, La Verne Abe; Meyers, Frederick

    2007-01-01

    Graphical plans for construction of machinery and architecture have evolved over the last 6,000 years beginning from hieroglyphics to drawings on printable media, from the "Golden Age" of engineering graphics to the innovation of computer graphics and prototyping. The evolution of engineering design graphics as a profession has also evolved. Years…

  1. ARCGRAPH SYSTEM - AMES RESEARCH GRAPHICS SYSTEM

    NASA Technical Reports Server (NTRS)

    Hibbard, E. A.

    1994-01-01

    Ames Research Graphics System, ARCGRAPH, is a collection of libraries and utilities which assist researchers in generating, manipulating, and visualizing graphical data. In addition, ARCGRAPH defines a metafile format that contains device independent graphical data. This file format is used with various computer graphics manipulation and animation packages at Ames, including SURF (COSMIC Program ARC-12381) and GAS (COSMIC Program ARC-12379). In its full configuration, the ARCGRAPH system consists of a two stage pipeline which may be used to output graphical primitives. Stage one is associated with the graphical primitives (i.e. moves, draws, color, etc.) along with the creation and manipulation of the metafiles. Five distinct data filters make up stage one. They are: 1) PLO which handles all 2D vector primitives, 2) POL which handles all 3D polygonal primitives, 3) RAS which handles all 2D raster primitives, 4) VEC which handles all 3D raster primitives, and 5) PO2 which handles all 2D polygonal primitives. Stage two is associated with the process of displaying graphical primitives on a device. To generate the various graphical primitives, create and reprocess ARCGRAPH metafiles, and access the device drivers in the VDI (Video Device Interface) library, users link their applications to ARCGRAPH's GRAFIX library routines. Both FORTRAN and C language versions of the GRAFIX and VDI libraries exist for enhanced portability within these respective programming environments. The ARCGRAPH libraries were developed on a VAX running VMS. Minor documented modification of various routines, however, allows the system to run on the following computers: Cray X-MP running COS (no C version); Cray 2 running UNICOS; DEC VAX running BSD 4.3 UNIX, or Ultrix; SGI IRIS Turbo running GL2-W3.5 and GL2-W3.6; Convex C1 running UNIX; Amhdahl 5840 running UTS; Alliant FX8 running UNIX; Sun 3/160 running UNIX (no native device driver); Stellar GS1000 running Stellex (no native device driver); and an SGI IRIS 4D running IRIX (no native device driver). Currently with version 7.0 of ARCGRAPH, the VDI library supports the following output devices: A VT100 terminal with a RETRO-GRAPHICS board installed, a VT240 using the Tektronix 4010 emulation capability, an SGI IRIS turbo using the native GL2 library, a Tektronix 4010, a Tektronix 4105, and the Tektronix 4014. ARCGRAPH version 7.0 was developed in 1988.

  2. Real-time graphic display utility for nuclear safety applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, S.; Huang, X.; Taylor, J.

    2006-07-01

    With the increasing interests in the nuclear energy, new nuclear power plants will be constructed and licensed, and older generation ones will be upgraded for assuring continuing operation. The tendency of adopting the latest proven technology and the fact of older parts becoming obsolete have made the upgrades imperative. One of the areas for upgrades is the older CRT display being replaced by the latest graphics displays running under modern real time operating system (RTOS) with safety graded modern computer. HFC has developed a graphic display utility (GDU) under the QNX RTOS. A standard off-the-shelf software with a long historymore » of performance in industrial applications, QNX RTOS used for safety applications has been examined via a commercial dedication process that is consistent with the regulatory guidelines. Through a commercial survey, a design life cycle and an operating history evaluation, and necessary tests dictated by the dedication plan, it is reasonably confirmed that the QNX RTOS was essentially equivalent to what would be expected in the nuclear industry. The developed GDU operates and communicates with the existing equipment through a dedicated serial channel of a flat panel controller (FPC) module. The FPC module drives a flat panel display (FPD) monitor. A touch screen mounted on the FPD serves as the normal operator interface with the FPC/FPD monitor system. The GDU can be used not only for replacing older CRTs but also in new applications. The replacement of the older CRT does not disturb the function of the existing equipment. It not only provides modern proven technology upgrade but also improves human ergonomics. The FPC, which can be used as a standalone controller running with the GDU, is an integrated hardware and software module. It operates as a single board computer within a control system, and applies primarily to the graphics display, targeting, keyboard and mouse. During normal system operation, the GDU has two sources of data input: a serial interface with field equipment and a serial input from the FPD touch screen. The mechanism for data collection from the field equipment consists of the regular exchange of the data update request messages and target commands sent to the equipment and the update messages returned to the FPC. The data updates from field equipment control displays presented on the graphic pages. Touch screen contacts are decoded to identify physical position that was contacted. If that position corresponds with one of the buttons on the graphic page, the software uses that input to initiate the function defined for the particular button contacted. In this paper, the FPC will be illustrated as a standalone system as well as a module in a dedicated control system. The GDU design concepts and its design flow will be demonstrated. The dedication process of the QNX RTOS needed for the GDU will be highlighted. Finally, the GDU with a specific application example used in one of the nuclear power plants will be presented. (authors)« less

  3. The use of computer graphic simulation in the development of on-orbit tele-robotic systems

    NASA Technical Reports Server (NTRS)

    Fernandez, Ken; Hinman, Elaine

    1987-01-01

    This paper describes the use of computer graphic simulation techniques to resolve critical design and operational issues for robotic systems used for on-orbit operations. These issues are robot motion control, robot path-planning/verification, and robot dynamics. The major design issues in developing effective telerobotic systems are discussed, and the use of ROBOSIM, a NASA-developed computer graphic simulation tool, to address these issues is presented. Simulation plans for the Space Station and the Orbital Maneuvering Vehicle are presented and discussed.

  4. Use of graphics in the design office at the Military Aircraft Division of the British Aircraft Corporation

    NASA Technical Reports Server (NTRS)

    Coles, W. A.

    1975-01-01

    The CAD/CAM interactive computer graphics system was described; uses to which it has been put were shown, and current developments of the system were outlined. The system supports batch, time sharing, and fully interactive graphic processing. Engineers using the system may switch between these methods of data processing and problem solving to make the best use of the available resources. It is concluded that the introduction of on-line computing in the form of teletypes, storage tubes, and fully interactive graphics has resulted in large increases in productivity and reduced timescales in the geometric computing, numerical lofting and part programming areas, together with a greater utilization of the system in the technical departments.

  5. SpineCreator: a Graphical User Interface for the Creation of Layered Neural Models.

    PubMed

    Cope, A J; Richmond, P; James, S S; Gurney, K; Allerton, D J

    2017-01-01

    There is a growing requirement in computational neuroscience for tools that permit collaborative model building, model sharing, combining existing models into a larger system (multi-scale model integration), and are able to simulate models using a variety of simulation engines and hardware platforms. Layered XML model specification formats solve many of these problems, however they are difficult to write and visualise without tools. Here we describe a new graphical software tool, SpineCreator, which facilitates the creation and visualisation of layered models of point spiking neurons or rate coded neurons without requiring the need for programming. We demonstrate the tool through the reproduction and visualisation of published models and show simulation results using code generation interfaced directly into SpineCreator. As a unique application for the graphical creation of neural networks, SpineCreator represents an important step forward for neuronal modelling.

  6. Interactive display of molecular models using a microcomputer system

    NASA Technical Reports Server (NTRS)

    Egan, J. T.; Macelroy, R. D.

    1980-01-01

    A simple, microcomputer-based, interactive graphics display system has been developed for the presentation of perspective views of wire frame molecular models. The display system is based on a TERAK 8510a graphics computer system with a display unit consisting of microprocessor, television display and keyboard subsystems. The operating system includes a screen editor, file manager, PASCAL and BASIC compilers and command options for linking and executing programs. The graphics program, written in USCD PASCAL, involves the centering of the coordinate system, the transformation of centered model coordinates into homogeneous coordinates, the construction of a viewing transformation matrix to operate on the coordinates, clipping invisible points, perspective transformation and scaling to screen coordinates; commands available include ZOOM, ROTATE, RESET, and CHANGEVIEW. Data file structure was chosen to minimize the amount of disk storage space. Despite the inherent slowness of the system, its low cost and flexibility suggests general applicability.

  7. Fast image interpolation for motion estimation using graphics hardware

    NASA Astrophysics Data System (ADS)

    Kelly, Francis; Kokaram, Anil

    2004-05-01

    Motion estimation and compensation is the key to high quality video coding. Block matching motion estimation is used in most video codecs, including MPEG-2, MPEG-4, H.263 and H.26L. Motion estimation is also a key component in the digital restoration of archived video and for post-production and special effects in the movie industry. Sub-pixel accurate motion vectors can improve the quality of the vector field and lead to more efficient video coding. However sub-pixel accuracy requires interpolation of the image data. Image interpolation is a key requirement of many image processing algorithms. Often interpolation can be a bottleneck in these applications, especially in motion estimation due to the large number pixels involved. In this paper we propose using commodity computer graphics hardware for fast image interpolation. We use the full search block matching algorithm to illustrate the problems and limitations of using graphics hardware in this way.

  8. Web Program for Development of GUIs for Cluster Computers

    NASA Technical Reports Server (NTRS)

    Czikmantory, Akos; Cwik, Thomas; Klimeck, Gerhard; Hua, Hook; Oyafuso, Fabiano; Vinyard, Edward

    2003-01-01

    WIGLAF (a Web Interface Generator and Legacy Application Facade) is a computer program that provides a Web-based, distributed, graphical-user-interface (GUI) framework that can be adapted to any of a broad range of application programs, written in any programming language, that are executed remotely on any cluster computer system. WIGLAF enables the rapid development of a GUI for controlling and monitoring a specific application program running on the cluster and for transferring data to and from the application program. The only prerequisite for the execution of WIGLAF is a Web-browser program on a user's personal computer connected with the cluster via the Internet. WIGLAF has a client/server architecture: The server component is executed on the cluster system, where it controls the application program and serves data to the client component. The client component is an applet that runs in the Web browser. WIGLAF utilizes the Extensible Markup Language to hold all data associated with the application software, Java to enable platform-independent execution on the cluster system and the display of a GUI generator through the browser, and the Java Remote Method Invocation software package to provide simple, effective client/server networking.

  9. AlaScan: A Graphical User Interface for Alanine Scanning Free-Energy Calculations.

    PubMed

    Ramadoss, Vijayaraj; Dehez, François; Chipot, Christophe

    2016-06-27

    Computation of the free-energy changes that underlie molecular recognition and association has gained significant importance due to its considerable potential in drug discovery. The massive increase of computational power in recent years substantiates the application of more accurate theoretical methods for the calculation of binding free energies. The impact of such advances is the application of parent approaches, like computational alanine scanning, to investigate in silico the effect of amino-acid replacement in protein-ligand and protein-protein complexes, or probe the thermostability of individual proteins. Because human effort represents a significant cost that precludes the routine use of this form of free-energy calculations, minimizing manual intervention constitutes a stringent prerequisite for any such systematic computation. With this objective in mind, we propose a new plug-in, referred to as AlaScan, developed within the popular visualization program VMD to automate the major steps in alanine-scanning calculations, employing free-energy perturbation as implemented in the widely used molecular dynamics code NAMD. The AlaScan plug-in can be utilized upstream, to prepare input files for selected alanine mutations. It can also be utilized downstream to perform the analysis of different alanine-scanning calculations and to report the free-energy estimates in a user-friendly graphical user interface, allowing favorable mutations to be identified at a glance. The plug-in also assists the end-user in assessing the reliability of the calculation through rapid visual inspection.

  10. GPU-based acceleration of computations in nonlinear finite element deformation analysis.

    PubMed

    Mafi, Ramin; Sirouspour, Shahin

    2014-03-01

    The physics of deformation for biological soft-tissue is best described by nonlinear continuum mechanics-based models, which then can be discretized by the FEM for a numerical solution. However, computational complexity of such models have limited their use in applications requiring real-time or fast response. In this work, we propose a graphic processing unit-based implementation of the FEM using implicit time integration for dynamic nonlinear deformation analysis. This is the most general formulation of the deformation analysis. It is valid for large deformations and strains and can account for material nonlinearities. The data-parallel nature and the intense arithmetic computations of nonlinear FEM equations make it particularly suitable for implementation on a parallel computing platform such as graphic processing unit. In this work, we present and compare two different designs based on the matrix-free and conventional preconditioned conjugate gradients algorithms for solving the FEM equations arising in deformation analysis. The speedup achieved with the proposed parallel implementations of the algorithms will be instrumental in the development of advanced surgical simulators and medical image registration methods involving soft-tissue deformation. Copyright © 2013 John Wiley & Sons, Ltd.

  11. Identification of natural images and computer-generated graphics based on statistical and textural features.

    PubMed

    Peng, Fei; Li, Jiao-ting; Long, Min

    2015-03-01

    To discriminate the acquisition pipelines of digital images, a novel scheme for the identification of natural images and computer-generated graphics is proposed based on statistical and textural features. First, the differences between them are investigated from the view of statistics and texture, and 31 dimensions of feature are acquired for identification. Then, LIBSVM is used for the classification. Finally, the experimental results are presented. The results show that it can achieve an identification accuracy of 97.89% for computer-generated graphics, and an identification accuracy of 97.75% for natural images. The analyses also demonstrate the proposed method has excellent performance, compared with some existing methods based only on statistical features or other features. The method has a great potential to be implemented for the identification of natural images and computer-generated graphics. © 2014 American Academy of Forensic Sciences.

  12. Computer Graphics in Research: Some State -of-the-Art Systems

    ERIC Educational Resources Information Center

    Reddy, R.; And Others

    1975-01-01

    A description is given of the structure and functional characteristics of three types of interactive computer graphic systems, developed by the Department of Computer Science at Carnegie-Mellon; a high-speed programmable display capable of displaying 50,000 short vectors, flicker free; a shaded-color video display for the display of gray-scale…

  13. GPU-accelerated Lattice Boltzmann method for anatomical extraction in patient-specific computational hemodynamics

    NASA Astrophysics Data System (ADS)

    Yu, H.; Wang, Z.; Zhang, C.; Chen, N.; Zhao, Y.; Sawchuk, A. P.; Dalsing, M. C.; Teague, S. D.; Cheng, Y.

    2014-11-01

    Existing research of patient-specific computational hemodynamics (PSCH) heavily relies on software for anatomical extraction of blood arteries. Data reconstruction and mesh generation have to be done using existing commercial software due to the gap between medical image processing and CFD, which increases computation burden and introduces inaccuracy during data transformation thus limits the medical applications of PSCH. We use lattice Boltzmann method (LBM) to solve the level-set equation over an Eulerian distance field and implicitly and dynamically segment the artery surfaces from radiological CT/MRI imaging data. The segments seamlessly feed to the LBM based CFD computation of PSCH thus explicit mesh construction and extra data management are avoided. The LBM is ideally suited for GPU (graphic processing unit)-based parallel computing. The parallel acceleration over GPU achieves excellent performance in PSCH computation. An application study will be presented which segments an aortic artery from a chest CT dataset and models PSCH of the segmented artery.

  14. A Novel Shape Parameterization Approach

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    1999-01-01

    This paper presents a novel parameterization approach for complex shapes suitable for a multidisciplinary design optimization application. The approach consists of two basic concepts: (1) parameterizing the shape perturbations rather than the geometry itself and (2) performing the shape deformation by means of the soft objects animation algorithms used in computer graphics. Because the formulation presented in this paper is independent of grid topology, we can treat computational fluid dynamics and finite element grids in a similar manner. The proposed approach is simple, compact, and efficient. Also, the analytical sensitivity derivatives are easily computed for use in a gradient-based optimization. This algorithm is suitable for low-fidelity (e.g., linear aerodynamics and equivalent laminated plate structures) and high-fidelity analysis tools (e.g., nonlinear computational fluid dynamics and detailed finite element modeling). This paper contains the implementation details of parameterizing for planform, twist, dihedral, thickness, and camber. The results are presented for a multidisciplinary design optimization application consisting of nonlinear computational fluid dynamics, detailed computational structural mechanics, performance, and a simple propulsion module.

  15. Programmable personality interface for the dynamic infrared scene generator (IRSG2)

    NASA Astrophysics Data System (ADS)

    Buford, James A., Jr.; Mobley, Scott B.; Mayhall, Anthony J.; Braselton, William J.

    1998-07-01

    As scene generator platforms begin to rely specifically on commercial off-the-shelf (COTS) hardware and software components, the need for high speed programmable personality interfaces (PPIs) are required for interfacing to Infrared (IR) flight computer/processors and complex IR projectors in the hardware-in-the-loop (HWIL) simulation facilities. Recent technological advances and innovative applications of established technologies are beginning to allow development of cost effective PPIs to interface to COTS scene generators. At the U.S. Army Aviation and Missile Command (AMCOM) Missile Research, Development, and Engineering Center (MRDEC) researchers have developed such a PPI to reside between the AMCOM MRDEC IR Scene Generator (IRSG) and either a missile flight computer or the dynamic Laser Diode Array Projector (LDAP). AMCOM MRDEC has developed several PPIs for the first and second generation IRSGs (IRSG1 and IRSG2), which are based on Silicon Graphics Incorporated (SGI) Onyx and Onyx2 computers with Reality Engine 2 (RE2) and Infinite Reality (IR/IR2) graphics engines. This paper provides an overview of PPIs designed, integrated, tested, and verified at AMCOM MRDEC, specifically the IRSG2's PPI.

  16. A computer graphics system for visualizing spacecraft in orbit

    NASA Technical Reports Server (NTRS)

    Eyles, Don E.

    1989-01-01

    To carry out unanticipated operations with resources already in space is part of the rationale for a permanently manned space station in Earth orbit. The astronauts aboard a space station will require an on-board, spatial display tool to assist the planning and rehearsal of upcoming operations. Such a tool can also help astronauts to monitor and control such operations as they occur, especially in cases where first-hand visibility is not possible. A computer graphics visualization system designed for such an application and currently implemented as part of a ground-based simulation is described. The visualization system presents to the user the spatial information available in the spacecraft's computers by drawing a dynamic picture containing the planet Earth, the Sun, a star field, and up to two spacecraft. The point of view within the picture can be controlled by the user to obtain a number of specific visualization functions. The elements of the display, the methods used to control the display's point of view, and some of the ways in which the system can be used are described.

  17. Three-directional motion-compensation mask-based novel look-up table on graphics processing units for video-rate generation of digital holographic videos of three-dimensional scenes.

    PubMed

    Kwon, Min-Woo; Kim, Seung-Cheol; Kim, Eun-Soo

    2016-01-20

    A three-directional motion-compensation mask-based novel look-up table method is proposed and implemented on graphics processing units (GPUs) for video-rate generation of digital holographic videos of three-dimensional (3D) scenes. Since the proposed method is designed to be well matched with the software and memory structures of GPUs, the number of compute-unified-device-architecture kernel function calls can be significantly reduced. This results in a great increase of the computational speed of the proposed method, allowing video-rate generation of the computer-generated hologram (CGH) patterns of 3D scenes. Experimental results reveal that the proposed method can generate 39.8 frames of Fresnel CGH patterns with 1920×1080 pixels per second for the test 3D video scenario with 12,088 object points on dual GPU boards of NVIDIA GTX TITANs, and they confirm the feasibility of the proposed method in the practical application fields of electroholographic 3D displays.

  18. System for assisted mobility using eye movements based on electrooculography.

    PubMed

    Barea, Rafael; Boquete, Luciano; Mazo, Manuel; López, Elena

    2002-12-01

    This paper describes an eye-control method based on electrooculography (EOG) to develop a system for assisted mobility. One of its most important features is its modularity, making it adaptable to the particular needs of each user according to the type and degree of handicap involved. An eye model based on electroculographic signal is proposed and its validity is studied. Several human-machine interfaces (HMI) based on EOG are commented, focusing our study on guiding and controlling a wheelchair for disabled people, where the control is actually effected by eye movements within the socket. Different techniques and guidance strategies are then shown with comments on the advantages and disadvantages of each one. The system consists of a standard electric wheelchair with an on-board computer, sensors and a graphic user interface run by the computer. On the other hand, this eye-control method can be applied to handle graphical interfaces, where the eye is used as a mouse computer. Results obtained show that this control technique could be useful in multiple applications, such as mobility and communication aid for handicapped persons.

  19. A network-based distributed, media-rich computing and information environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, R.L.

    1995-12-31

    Sunrise is a Los Alamos National Laboratory (LANL) project started in October 1993. It is intended to be a prototype National Information Infrastructure development project. A main focus of Sunrise is to tie together enabling technologies (networking, object-oriented distributed computing, graphical interfaces, security, multi-media technologies, and data-mining technologies) with several specific applications. A diverse set of application areas was chosen to ensure that the solutions developed in the project are as generic as possible. Some of the application areas are materials modeling, medical records and image analysis, transportation simulations, and K-12 education. This paper provides a description of Sunrise andmore » a view of the architecture and objectives of this evolving project. The primary objectives of Sunrise are three-fold: (1) To develop common information-enabling tools for advanced scientific research and its applications to industry; (2) To enhance the capabilities of important research programs at the Laboratory; (3) To define a new way of collaboration between computer science and industrially-relevant research.« less

  20. Visual Information (6)

    DTIC Science & Technology

    1987-12-01

    definition 33., below). 7. Commercial VI Production. A completed VI production, purchased off-the- shelf; i.e., from the stocks of a vendor. 8. Computer ...Generated Graphics. The production of graphics through an electronic medium based on a computer or computer techniques. 9. Contract VI Production. A VI...displays, presentations, and exhibits prepared manually, by machine, or by computer . 16. Indirect Costs. An item of cost (or the aggregate thereof) that is

  1. Space Spurred Computer Graphics

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Dicomed Corporation was asked by NASA in the early 1970s to develop processing capabilities for recording images sent from Mars by Viking spacecraft. The company produced a film recorder which increased the intensity levels and the capability for color recording. This development led to a strong technology base resulting in sophisticated computer graphics equipment. Dicomed systems are used to record CAD (computer aided design) and CAM (computer aided manufacturing) equipment, to update maps and produce computer generated animation.

  2. A Theoretical Analysis of Learning with Graphics--Implications for Computer Graphics Design.

    ERIC Educational Resources Information Center

    ChanLin, Lih-Juan

    This paper reviews the literature pertinent to learning with graphics. The dual coding theory provides explanation about how graphics are stored and precessed in semantic memory. The level of processing theory suggests how graphics can be employed in learning to encourage deeper processing. In addition to dual coding theory and level of processing…

  3. Graphic and movie illustrations of human prenatal development and their application to embryological education based on the human embryo specimens in the Kyoto collection.

    PubMed

    Yamada, Shigehito; Uwabe, Chigako; Nakatsu-Komatsu, Tomoko; Minekura, Yutaka; Iwakura, Masaji; Motoki, Tamaki; Nishimiya, Kazuhiko; Iiyama, Masaaki; Kakusho, Koh; Minoh, Michihiko; Mizuta, Shinobu; Matsuda, Tetsuya; Matsuda, Yoshimasa; Haishi, Tomoyuki; Kose, Katsumi; Fujii, Shingo; Shiota, Kohei

    2006-02-01

    Morphogenesis in the developing embryo takes place in three dimensions, and in addition, the dimension of time is another important factor in development. Therefore, the presentation of sequential morphological changes occurring in the embryo (4D visualization) is essential for understanding the complex morphogenetic events and the underlying mechanisms. Until recently, 3D visualization of embryonic structures was possible only by reconstruction from serial histological sections, which was tedious and time-consuming. During the past two decades, 3D imaging techniques have made significant advances thanks to the progress in imaging and computer technologies, computer graphics, and other related techniques. Such novel tools have enabled precise visualization of the 3D topology of embryonic structures and to demonstrate spatiotemporal 4D sequences of organogenesis. Here, we describe a project in which staged human embryos are imaged by the magnetic resonance (MR) microscope, and 3D images of embryos and their organs at each developmental stage were reconstructed based on the MR data, with the aid of computer graphics techniques. On the basis of the 3D models of staged human embryos, we constructed a data set of 3D images of human embryos and made movies to illustrate the sequential process of human morphogenesis. Furthermore, a computer-based self-learning program of human embryology is being developed for educational purposes, using the photographs, histological sections, MR images, and 3D models of staged human embryos. Copyright 2005 Wiley-Liss, Inc.

  4. The development and application of CFD technology in mechanical engineering

    NASA Astrophysics Data System (ADS)

    Wei, Yufeng

    2017-12-01

    Computational Fluid Dynamics (CFD) is an analysis of the physical phenomena involved in fluid flow and heat conduction by computer numerical calculation and graphical display. The numerical method simulates the complexity of the physical problem and the precision of the numerical solution, which is directly related to the hardware speed of the computer and the hardware such as memory. With the continuous improvement of computer performance and CFD technology, it has been widely applied to the field of water conservancy engineering, environmental engineering and industrial engineering. This paper summarizes the development process of CFD, the theoretical basis, the governing equations of fluid mechanics, and introduces the various methods of numerical calculation and the related development of CFD technology. Finally, CFD technology in the mechanical engineering related applications are summarized. It is hoped that this review will help researchers in the field of mechanical engineering.

  5. Development of user guidelines for ECAS display design, volume 1

    NASA Technical Reports Server (NTRS)

    Dodson, D. W.; Shields, N. L., Jr.

    1978-01-01

    Experiment computer application software (ECAS) display design and command usage guidelines were developed, which if followed by spacelab experiments, would standardize methods and techniques for data presentation and commanding via ECAS. These guidelines would provide some commonality among experiments which would enhance crew training and flight operations. The guidelines are applicable to all onboard experiment displays, whether allocated by ECAS or a dedicated experiment processor. A brief description of the spacelab data display system characteristics and of the services provided by the experiment computer operating system is included. Guidelines concerning data presentation and layout of alphanumeric and graphic information are presented along with guidelines concerning keyboard commanding and command feedback.

  6. Viewpoints: A New Computer Program for Interactive Exploration of Large Multivariate Space Science and Astrophysics Data.

    NASA Astrophysics Data System (ADS)

    Levit, Creon; Gazis, P.

    2006-06-01

    The graphics processing units (GPUs) built in to all professional desktop and laptop computers currently on the market are capable of transforming, filtering, and rendering hundreds of millions of points per second. We present a prototype open-source cross-platform (windows, linux, Apple OSX) application which leverages some of the power latent in the GPU to enable smooth interactive exploration and analysis of large high-dimensional data using a variety of classical and recent techniques. The targeted application area is the interactive analysis of complex, multivariate space science and astrophysics data sets, with dimensionalities that may surpass 100 and sample sizes that may exceed 10^6-10^8.

  7. A basis for solid modeling of gear teeth with application in design and manufacture

    NASA Technical Reports Server (NTRS)

    Huston, Ronald L.; Mavriplis, Dimitrios; Oswald, Fred B.; Liu, Yung Sheng

    1992-01-01

    A new approach to modeling gear tooth surfaces is discussed. A computer graphics solid modeling procedure is used to simulate the tooth fabrication process. This procedure is based on the principles of differential geometry that pertain to envelopes of curves and surfaces. The procedure is illustrated with the modeling of spur, helical, bevel, spiral bevel, and hypoid gear teeth. Applications in design and manufacturing are discussed. Extensions to nonstandard tooth forms, to cams, and to rolling element bearings are proposed.

  8. A Basis for Solid Modeling of Gear Teeth with Application in Design and Manufacture

    NASA Technical Reports Server (NTRS)

    Huston, Ronald L.; Mavriplis, Dimitrios; Oswald, Fred B.; Liu, Yung Sheng

    1994-01-01

    This paper discusses a new approach to modeling gear tooth surfaces. A computer graphics solid modeling procedure is used to simulate the tooth fabrication processes. This procedure is based on the principles of differential geometry that pertain to envelopes of curves and surfaces. The procedure is illustrated with the modeling of spur, helical, bevel, spiral bevel and hypoid gear teeth. Applications in design and manufacturing arc discussed. Extensions to nonstandard tooth forms, to cams, and to rolling element hearings are proposed.

  9. Handbook of applied mathematics for engineers and scientists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, M.

    1991-12-31

    This book is intended to be reference for applications of mathematics in a wide range of topics of interest to engineers and scientists. An unusual feature of this book is that it covers a large number of topics from elementary algebra, trigonometry, and calculus to computer graphics and cybernetics. The level of mathematics covers high school through about the junior level of an engineering curriculum in a major univeristy. Throughout, the emphasis is on applications of mathematics rather than on rigorous proofs.

  10. Image understanding and the man-machine interface II; Proceedings of the Meeting, Los Angeles, CA, Jan. 17, 18, 1989

    NASA Technical Reports Server (NTRS)

    Barrett, Eamon B. (Editor); Pearson, James J. (Editor)

    1989-01-01

    Image understanding concepts and models, image understanding systems and applications, advanced digital processors and software tools, and advanced man-machine interfaces are among the topics discussed. Particular papers are presented on such topics as neural networks for computer vision, object-based segmentation and color recognition in multispectral images, the application of image algebra to image measurement and feature extraction, and the integration of modeling and graphics to create an infrared signal processing test bed.

  11. Using FastX on the Peregrine System | High-Performance Computing | NREL

    Science.gov Websites

    with full 3D hardware acceleration. The traditional method of displaying graphics applications to a remote X server (indirect rendering) supports 3D hardware acceleration, but this approach causes all of the OpenGL commands and 3D data to be sent over the network to be rendered on the client machine. With

  12. Visualizing planetary data by using 3D engines

    NASA Astrophysics Data System (ADS)

    Elgner, S.; Adeli, S.; Gwinner, K.; Preusker, F.; Kersten, E.; Matz, K.-D.; Roatsch, T.; Jaumann, R.; Oberst, J.

    2017-09-01

    We examined 3D gaming engines for their usefulness in visualizing large planetary image data sets. These tools allow us to include recent developments in the field of computer graphics in our scientific visualization systems and present data products interactively and in higher quality than before. We started to set up the first applications which will take use of virtual reality (VR) equipment.

  13. Spreadsheet Applications using VisiCalc and Lotus 1-2-3 Programs.

    ERIC Educational Resources Information Center

    Cortland-Madison Board of Cooperative Educational Services, Cortland, NY.

    The VisiCalc program is visual calculation on a computer making use of an electronic worksheet that is beneficial to the business user in dealing with numerous accounting and clerical procedures. The Lotus 1-2-3 program begins with VisiCalc and improves upon it by adding graphics and a database as well as more efficient ways to manipulate and…

  14. Addressing the Digital Divide in Contemporary Biology: Lessons from Teaching UNIX.

    PubMed

    Mangul, Serghei; Martin, Lana S; Hoffmann, Alexander; Pellegrini, Matteo; Eskin, Eleazar

    2017-10-01

    Life and medical science researchers increasingly rely on applications that lack a graphical interface. Scientists who are not trained in computer science face an enormous challenge analyzing high-throughput data. We present a training model for use of command-line tools when the learner has little to no prior knowledge of UNIX. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Ergonomic aspects of a virtual environment.

    PubMed

    Ahasan, M R; Väyrynen, S

    1999-01-01

    A virtual environment is an interactive graphic system mediated through computer technology that allows a certain level of reality or a sense of presence to access virtual information. To create reality in a virtual environment, ergonomics issues are explored in this paper, aiming to develop the design of presentation formats with related information, that is possible to attain and to maintain user-friendly application.

  16. A Switching-Mode Power Supply Design Tool to Improve Learning in a Power Electronics Course

    ERIC Educational Resources Information Center

    Miaja, P. F.; Lamar, D. G.; de Azpeitia, M.; Rodriguez, A.; Rodriguez, M.; Hernando, M. M.

    2011-01-01

    The static design of ac/dc and dc/dc switching-mode power supplies (SMPS) relies on a simple but repetitive process. Although specific spreadsheets, available in various computer-aided design (CAD) programs, are widely used, they are difficult to use in educational applications. In this paper, a graphic tool programmed in MATLAB is presented,…

  17. Image Processing

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Computer Graphics Center of North Carolina State University uses LAS, a COSMIC program, to analyze and manipulate data from Landsat and SPOT providing information for government and commercial land resource application projects. LAS is used to interpret aircraft/satellite data and enables researchers to improve image-based classification accuracies. The system is easy to use and has proven to be a valuable remote sensing training tool.

  18. Multivariate Density Estimation and Remote Sensing

    NASA Technical Reports Server (NTRS)

    Scott, D. W.

    1983-01-01

    Current efforts to develop methods and computer algorithms to effectively represent multivariate data commonly encountered in remote sensing applications are described. While this may involve scatter diagrams, multivariate representations of nonparametric probability density estimates are emphasized. The density function provides a useful graphical tool for looking at data and a useful theoretical tool for classification. This approach is called a thunderstorm data analysis.

  19. AREVA Developments for an Efficient and Reliable use of Monte Carlo codes for Radiation Transport Applications

    NASA Astrophysics Data System (ADS)

    Chapoutier, Nicolas; Mollier, François; Nolin, Guillaume; Culioli, Matthieu; Mace, Jean-Reynald

    2017-09-01

    In the context of the rising of Monte Carlo transport calculations for any kind of application, AREVA recently improved its suite of engineering tools in order to produce efficient Monte Carlo workflow. Monte Carlo codes, such as MCNP or TRIPOLI, are recognized as reference codes to deal with a large range of radiation transport problems. However the inherent drawbacks of theses codes - laboring input file creation and long computation time - contrast with the maturity of the treatment of the physical phenomena. The goals of the recent AREVA developments were to reach similar efficiency as other mature engineering sciences such as finite elements analyses (e.g. structural or fluid dynamics). Among the main objectives, the creation of a graphical user interface offering CAD tools for geometry creation and other graphical features dedicated to the radiation field (source definition, tally definition) has been reached. The computations times are drastically reduced compared to few years ago thanks to the use of massive parallel runs, and above all, the implementation of hybrid variance reduction technics. From now engineering teams are capable to deliver much more prompt support to any nuclear projects dealing with reactors or fuel cycle facilities from conceptual phase to decommissioning.

  20. VIEW-Station software and its graphical user interface

    NASA Astrophysics Data System (ADS)

    Kawai, Tomoaki; Okazaki, Hiroshi; Tanaka, Koichiro; Tamura, Hideyuki

    1992-04-01

    VIEW-Station is a workstation-based image processing system which merges the state-of-the- art software environment of Unix with the computing power of a fast image processor. VIEW- Station has a hierarchical software architecture, which facilitates device independence when porting across various hardware configurations, and provides extensibility in the development of application systems. The core image computing language is V-Sugar. V-Sugar provides a set of image-processing datatypes and allows image processing algorithms to be simply expressed, using a functional notation. VIEW-Station provides a hardware independent window system extension called VIEW-Windows. In terms of GUI (Graphical User Interface) VIEW-Station has two notable aspects. One is to provide various types of GUI as visual environments for image processing execution. Three types of interpreters called (mu) V- Sugar, VS-Shell and VPL are provided. Users may choose whichever they prefer based on their experience and tasks. The other notable aspect is to provide facilities to create GUI for new applications on the VIEW-Station system. A set of widgets are available for construction of task-oriented GUI. A GUI builder called VIEW-Kid is developed for WYSIWYG interactive interface design.

  1. Commercial Off-The-Shelf (COTS) Graphics Processing Board (GPB) Radiation Test Evaluation Report

    NASA Technical Reports Server (NTRS)

    Salazar, George A.; Steele, Glen F.

    2013-01-01

    Large round trip communications latency for deep space missions will require more onboard computational capabilities to enable the space vehicle to undertake many tasks that have traditionally been ground-based, mission control responsibilities. As a result, visual display graphics will be required to provide simpler vehicle situational awareness through graphical representations, as well as provide capabilities never before done in a space mission, such as augmented reality for in-flight maintenance or Telepresence activities. These capabilities will require graphics processors and associated support electronic components for high computational graphics processing. In an effort to understand the performance of commercial graphics card electronics operating in the expected radiation environment, a preliminary test was performed on five commercial offthe- shelf (COTS) graphics cards. This paper discusses the preliminary evaluation test results of five COTS graphics processing cards tested to the International Space Station (ISS) low earth orbit radiation environment. Three of the five graphics cards were tested to a total dose of 6000 rads (Si). The test articles, test configuration, preliminary results, and recommendations are discussed.

  2. GPU-accelerated computation of electron transfer.

    PubMed

    Höfinger, Siegfried; Acocella, Angela; Pop, Sergiu C; Narumi, Tetsu; Yasuoka, Kenji; Beu, Titus; Zerbetto, Francesco

    2012-11-05

    Electron transfer is a fundamental process that can be studied with the help of computer simulation. The underlying quantum mechanical description renders the problem a computationally intensive application. In this study, we probe the graphics processing unit (GPU) for suitability to this type of problem. Time-critical components are identified via profiling of an existing implementation and several different variants are tested involving the GPU at increasing levels of abstraction. A publicly available library supporting basic linear algebra operations on the GPU turns out to accelerate the computation approximately 50-fold with minor dependence on actual problem size. The performance gain does not compromise numerical accuracy and is of significant value for practical purposes. Copyright © 2012 Wiley Periodicals, Inc.

  3. The application of NASCAD as a NASTRAN pre- and post-processor

    NASA Technical Reports Server (NTRS)

    Peltzman, Alan N.

    1987-01-01

    The NASA Computer Aided Design (NASCAD) graphics package provides an effective way to interactively create, view, and refine analytic data models. NASCAD's macro language, combined with its powerful 3-D geometric data base allows the user important flexibility and speed in constructing his model. This flexibility has the added benefit of enabling the user to keep pace with any new NASTRAN developments. NASCAD allows models to be conveniently viewed and plotted to best advantage in both pre- and post-process phases of development, providing useful visual feedback to the analysis process. NASCAD, used as a graphics compliment to NASTRAN, can play a valuable role in the process of finite element modeling.

  4. Software Design for Interactive Graphic Radiation Treatment Simulation Systems*

    PubMed Central

    Kalet, Ira J.; Sweeney, Christine; Jacky, Jonathan

    1990-01-01

    We examine issues in the design of interactive computer graphic simulation programs for radiation treatment planning (RTP), as well as expert system programs that automate parts of the RTP process, in light of ten years of experience at designing, building and using such programs. An experiment in object-oriented design using standard Pascal shows that while some advantage is gained from the design, it is still difficult to achieve modularity and to integrate expert system components. A new design based on the Common LISP Object System (CLOS) is described. This series of designs for RTP software shows that this application benefits in specific ways from object-oriented design methods and appropriate languages and tools.

  5. LUMIS Interactive graphics operating instructions and system specifications

    NASA Technical Reports Server (NTRS)

    Bryant, N. A.; Yu, T. C.; Landini, A. J.

    1976-01-01

    The LUMIS program has designed an integrated geographic information system to assist program managers and planning groups in metropolitan regions. Described is the system designed to interactively interrogate a data base, display graphically a portion of the region enclosed in the data base, and perform cross tabulations of variables within each city block, block group, or census tract. The system is designed to interface with U. S. Census DIME file technology, but can accept alternative districting conventions. The system is described on three levels: (1) introduction to the systems's concept and potential applications; (2) the method of operating the system on an interactive terminal; and (3) a detailed system specification for computer facility personnel.

  6. Exploratory research for the development of a computer aided software design environment with the software technology program

    NASA Technical Reports Server (NTRS)

    Hardwick, Charles

    1991-01-01

    Field studies were conducted by MCC to determine areas of research of mutual interest to MCC and JSC. NASA personnel from the Information Systems Directorate and research faculty from UHCL/RICIS visited MCC in Austin, Texas to examine tools and applications under development in the MCC Software Technology Program. MCC personnel presented workshops in hypermedia, design knowledge capture, and design recovery on site at JSC for ISD personnel. The following programs were installed on workstations in the Software Technology Lab, NASA/JSC: (1) GERM (Graphic Entity Relations Modeler); (2) gIBIS (Graphic Issues Based Information System); and (3) DESIRE (Design Recovery tool). These applications were made available to NASA for inspection and evaluation. Programs developed in the MCC Software Technology Program run on the SUN workstation. The programs do not require special configuration, but they will require larger than usual amounts of disk space and RAM to operate properly.

  7. Integration of rocket turbine design and analysis through computer graphics

    NASA Technical Reports Server (NTRS)

    Hsu, Wayne; Boynton, Jim

    1988-01-01

    An interactive approach with engineering computer graphics is used to integrate the design and analysis processes of a rocket engine turbine into a progressive and iterative design procedure. The processes are interconnected through pre- and postprocessors. The graphics are used to generate the blade profiles, their stacking, finite element generation, and analysis presentation through color graphics. Steps of the design process discussed include pitch-line design, axisymmetric hub-to-tip meridional design, and quasi-three-dimensional analysis. The viscous two- and three-dimensional analysis codes are executed after acceptable designs are achieved and estimates of initial losses are confirmed.

  8. Interactive Computing and Graphics in Undergraduate Digital Signal Processing. Microcomputing Working Paper Series F 84-9.

    ERIC Educational Resources Information Center

    Onaral, Banu; And Others

    This report describes the development of a Drexel University electrical and computer engineering course on digital filter design that used interactive computing and graphics, and was one of three courses in a senior-level sequence on digital signal processing (DSP). Interactive and digital analysis/design routines and the interconnection of these…

  9. ResidPlots-2: Computer Software for IRT Graphical Residual Analyses

    ERIC Educational Resources Information Center

    Liang, Tie; Han, Kyung T.; Hambleton, Ronald K.

    2009-01-01

    This article discusses the ResidPlots-2, a computer software that provides a powerful tool for IRT graphical residual analyses. ResidPlots-2 consists of two components: a component for computing residual statistics and another component for communicating with users and for plotting the residual graphs. The features of the ResidPlots-2 software are…

  10. Computer animation challenges for computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Vines, Mauricio; Lee, Won-Sook; Mavriplis, Catherine

    2012-07-01

    Computer animation requirements differ from those of traditional computational fluid dynamics (CFD) investigations in that visual plausibility and rapid frame update rates trump physical accuracy. We present an overview of the main techniques for fluid simulation in computer animation, starting with Eulerian grid approaches, the Lattice Boltzmann method, Fourier transform techniques and Lagrangian particle introduction. Adaptive grid methods, precomputation of results for model reduction, parallelisation and computation on graphical processing units (GPUs) are reviewed in the context of accelerating simulation computations for animation. A survey of current specific approaches for the application of these techniques to the simulation of smoke, fire, water, bubbles, mixing, phase change and solid-fluid coupling is also included. Adding plausibility to results through particle introduction, turbulence detail and concentration on regions of interest by level set techniques has elevated the degree of accuracy and realism of recent animations. Basic approaches are described here. Techniques to control the simulation to produce a desired visual effect are also discussed. Finally, some references to rendering techniques and haptic applications are mentioned to provide the reader with a complete picture of the challenges of simulating fluids in computer animation.

  11. Iconographic dental typography. A dental character font for computer graphics.

    PubMed

    McCormack, J

    1991-06-08

    The recent massive increase in available memory for microcomputers now allows multiple font faces to be stored in computer RAM memory for instant access to the screen and for printed output. Fonts can be constructed in which the characters are not just letters or numbers, but are miniature graphic icons--in this instance pictures of teeth. When printed on an appropriate laser printer, this produces printed graphics of publishing quality.

  12. Graphics and Flow Visualization of Computer Generated Flow Fields

    NASA Technical Reports Server (NTRS)

    Kathong, M.; Tiwari, S. N.

    1987-01-01

    Flow field variables are visualized using color representations described on surfaces that are interpolated from computational grids and transformed to digital images. Techniques for displaying two and three dimensional flow field solutions are addressed. The transformations and the use of an interactive graphics program for CFD flow field solutions, called PLOT3D, which runs on the color graphics IRIS workstation are described. An overview of the IRIS workstation is also described.

  13. Taming Crowded Visual Scenes

    DTIC Science & Technology

    2014-08-12

    Nolan Warner, Mubarak Shah. Tracking in Dense Crowds Using Prominenceand Neighborhood Motion Concurrence, IEEE Transactions on Pattern Analysis...of  computer  vision,   computer   graphics  and  evacuation  dynamics  by  providing  a  common  platform,  and  provides...areas  that  includes  Computer  Vision,  Computer   Graphics ,  and  Pedestrian   Evacuation  Dynamics.  Despite  the

  14. Exploration computer applications to primary dispersion halos: Kougarok tin prospect, Seward Peninsula, Alaska, USA

    USGS Publications Warehouse

    Reid, Jeffrey C.

    1989-01-01

    Computer processing and high resolution graphics display of geochemical data were used to quickly, accurately, and efficiently obtain important decision-making information for tin (cassiterite) exploration, Seward Peninsula, Alaska (USA). Primary geochemical dispersion patterns were determined for tin-bearing intrusive granite phases of Late Cretaceous age with exploration bedrock lithogeochemistry at the Kougarok tin prospect. Expensive diamond drilling footage was required to reach exploration objectives. Recognition of element distribution and dispersion patterns was useful in subsurface interpretation and correlation, and to aid location of other holes.

  15. Human Factors Model

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Jack is an advanced human factors software package that provides a three dimensional model for predicting how a human will interact with a given system or environment. It can be used for a broad range of computer-aided design applications. Jack was developed by the computer Graphics Research Laboratory of the University of Pennsylvania with assistance from NASA's Johnson Space Center, Ames Research Center and the Army. It is the University's first commercial product. Jack is still used for academic purposes at the University of Pennsylvania. Commercial rights were given to Transom Technologies, Inc.

  16. Design of Mariner 9 Science Sequences using Interactive Graphics Software

    NASA Technical Reports Server (NTRS)

    Freeman, J. E.; Sturms, F. M, Jr.; Webb, W. A.

    1973-01-01

    This paper discusses the analyst/computer system used to design the daily science sequences required to carry out the desired Mariner 9 science plan. The Mariner 9 computer environment, the development and capabilities of the science sequence design software, and the techniques followed in the daily mission operations are discussed. Included is a discussion of the overall mission operations organization and the individual components which played an essential role in the sequence design process. A summary of actual sequences processed, a discussion of problems encountered, and recommendations for future applications are given.

  17. Application of Microsoft's ActiveX and DirectX technologies to the visulization of physical system dynamics

    NASA Astrophysics Data System (ADS)

    Mann, Christopher; Narasimhamurthi, Natarajan

    1998-08-01

    This paper discusses a specific implementation of a web and complement based simulation systems. The overall simulation container is implemented within a web page viewed with Microsoft's Internet Explorer 4.0 web browser. Microsoft's ActiveX/Distributed Component Object Model object interfaces are used in conjunction with the Microsoft DirectX graphics APIs to provide visualization functionality for the simulation. The MathWorks' Matlab computer aided control system design program is used as an ActiveX automation server to provide the compute engine for the simulations.

  18. The recovery and utilization of space suit range-of-motion data

    NASA Technical Reports Server (NTRS)

    Reinhardt, AL; Walton, James S.

    1988-01-01

    A technique for recovering data for the range of motion of a subject wearing a space suit is described along with the validation of this technique on an EVA space suit. Digitized data are automatically acquired from video images of the subject; three-dimensional trajectories are recovered from these data, and can be displayed using three-dimensional computer graphics. Target locations are recovered using a unique video processor and close-range photogrammetry. It is concluded that such data can be used in such applications as the animation of anthropometric computer models.

  19. Estimating aquifer transmissivity from specific capacity using MATLAB.

    PubMed

    McLin, Stephen G

    2005-01-01

    Historically, specific capacity information has been used to calculate aquifer transmissivity when pumping test data are unavailable. This paper presents a simple computer program written in the MATLAB programming language that estimates transmissivity from specific capacity data while correcting for aquifer partial penetration and well efficiency. The program graphically plots transmissivity as a function of these factors so that the user can visually estimate their relative importance in a particular application. The program is compatible with any computer operating system running MATLAB, including Windows, Macintosh OS, Linux, and Unix. Two simple examples illustrate program usage.

  20. Designer: A Knowledge-Based Graphic Design Assistant.

    ERIC Educational Resources Information Center

    Weitzman, Louis

    This report describes Designer, an interactive tool for assisting with the design of two-dimensional graphic interfaces for instructional systems. The system, which consists of a color graphics interface to a mathematical simulation, provides enhancements to the Graphics Editor component of Steamer (a computer-based training system designed to aid…

  1. Using Three-Dimensional Interactive Graphics To Teach Equipment Procedures.

    ERIC Educational Resources Information Center

    Hamel, Cheryl J.; Ryan-Jones, David L.

    1997-01-01

    Focuses on how three-dimensional graphical and interactive features of computer-based instruction can enhance learning and support human cognition during technical training of equipment procedures. Presents guidelines for using three-dimensional interactive graphics to teach equipment procedures based on studies of the effects of graphics, motion,…

  2. Integrated multi sensors and camera video sequence application for performance monitoring in archery

    NASA Astrophysics Data System (ADS)

    Taha, Zahari; Arif Mat-Jizat, Jessnor; Amirul Abdullah, Muhammad; Muazu Musa, Rabiu; Razali Abdullah, Mohamad; Fauzi Ibrahim, Mohamad; Hanafiah Shaharudin, Mohd Ali

    2018-03-01

    This paper explains the development of a comprehensive archery performance monitoring software which consisted of three camera views and five body sensors. The five body sensors evaluate biomechanical related variables of flexor and extensor muscle activity, heart rate, postural sway and bow movement during archery performance. The three camera views with the five body sensors are integrated into a single computer application which enables the user to view all the data in a single user interface. The five body sensors’ data are displayed in a numerical and graphical form in real-time. The information transmitted by the body sensors are computed with an embedded algorithm that automatically transforms the summary of the athlete’s biomechanical performance and displays in the application interface. This performance will be later compared to the pre-computed psycho-fitness performance from the prefilled data into the application. All the data; camera views, body sensors; performance-computations; are recorded for further analysis by a sports scientist. Our developed application serves as a powerful tool for assisting the coach and athletes to observe and identify any wrong technique employ during training which gives room for correction and re-evaluation to improve overall performance in the sport of archery.

  3. Numerical Simulation Of Cutting Of Gear Teeth

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.; Huston, Ronald L.; Mavriplis, Dimitrios

    1994-01-01

    Shapes of gear teeth produced by gear cutters of specified shape simulated computationally, according to approach based on principles of differential geometry. Results of computer simulation displayed as computer graphics and/or used in analyses of design, manufacturing, and performance of gears. Applicable to both standard and non-standard gear-tooth forms. Accelerates and facilitates analysis of alternative designs of gears and cutters. Simulation extended to study generation of surfaces other than gears. Applied to cams, bearings, and surfaces of arbitrary rolling elements as well as to gears. Possible to develop analogous procedures for simulating manufacture of skin surfaces like automobile fenders, airfoils, and ship hulls.

  4. The development of the Canadian Mobile Servicing System Kinematic Simulation Facility

    NASA Technical Reports Server (NTRS)

    Beyer, G.; Diebold, B.; Brimley, W.; Kleinberg, H.

    1989-01-01

    Canada will develop a Mobile Servicing System (MSS) as its contribution to the U.S./International Space Station Freedom. Components of the MSS will include a remote manipulator (SSRMS), a Special Purpose Dexterous Manipulator (SPDM), and a mobile base (MRS). In order to support requirements analysis and the evaluation of operational concepts related to the use of the MSS, a graphics based kinematic simulation/human-computer interface facility has been created. The facility consists of the following elements: (1) A two-dimensional graphics editor allowing the rapid development of virtual control stations; (2) Kinematic simulations of the space station remote manipulators (SSRMS and SPDM), and mobile base; and (3) A three-dimensional graphics model of the space station, MSS, orbiter, and payloads. These software elements combined with state of the art computer graphics hardware provide the capability to prototype MSS workstations, evaluate MSS operational capabilities, and investigate the human-computer interface in an interactive simulation environment. The graphics technology involved in the development and use of this facility is described.

  5. Microcomputer Simulated CAD for Engineering Graphics.

    ERIC Educational Resources Information Center

    Huggins, David L.; Myers, Roy E.

    1983-01-01

    Describes a simulated computer-aided-graphics (CAD) program at The Pennsylvania State University. Rationale for the program, facilities, microcomputer equipment (Apple) used, and development of a software package for simulating applied engineering graphics are considered. (JN)

  6. Artwork Interactive Design System (AIDS) program description

    NASA Technical Reports Server (NTRS)

    Johnson, B. T.; Taylor, J. F.

    1976-01-01

    An artwork interactive design system is described which provides the microelectronic circuit designer/engineer a tool to perform circuit design, automatic layout modification, standard cell design, and artwork verification at a graphics computer terminal using a graphics tablet at the designer/computer interface.

  7. Computer Graphics Instruction in VizClass

    ERIC Educational Resources Information Center

    Grimes, Douglas; Warschauer, Mark; Hutchinson, Tara; Kuester, Falko

    2005-01-01

    "VizClass" is a university classroom environment designed to offer students in computer graphics and engineering courses up-to-date visualization technologies. Three digital whiteboards and a three-dimensional stereoscopic display provide complementary display surfaces. Input devices include touchscreens on the digital whiteboards, remote…

  8. Computer-aided design of large-scale integrated circuits - A concept

    NASA Technical Reports Server (NTRS)

    Schansman, T. T.

    1971-01-01

    Circuit design and mask development sequence are improved by using general purpose computer with interactive graphics capability establishing efficient two way communications link between design engineer and system. Interactive graphics capability places design engineer in direct control of circuit development.

  9. Development of web-GIS system for analysis of georeferenced geophysical data

    NASA Astrophysics Data System (ADS)

    Okladnikov, I.; Gordov, E. P.; Titov, A. G.; Bogomolov, V. Y.; Genina, E.; Martynova, Y.; Shulgina, T. M.

    2012-12-01

    Georeferenced datasets (meteorological databases, modeling and reanalysis results, remote sensing products, etc.) are currently actively used in numerous applications including modeling, interpretation and forecast of climatic and ecosystem changes for various spatial and temporal scales. Due to inherent heterogeneity of environmental datasets as well as their huge size which might constitute up to tens terabytes for a single dataset at present studies in the area of climate and environmental change require a special software support. A dedicated web-GIS information-computational system for analysis of georeferenced climatological and meteorological data has been created. The information-computational system consists of 4 basic parts: computational kernel developed using GNU Data Language (GDL), a set of PHP-controllers run within specialized web-portal, JavaScript class libraries for development of typical components of web mapping application graphical user interface (GUI) based on AJAX technology, and an archive of geophysical datasets. Computational kernel comprises of a number of dedicated modules for querying and extraction of data, mathematical and statistical data analysis, visualization, and preparing output files in geoTIFF and netCDF format containing processing results. Specialized web-portal consists of a web-server Apache, complying OGC standards Geoserver software which is used as a base for presenting cartographical information over the Web, and a set of PHP-controllers implementing web-mapping application logic and governing computational kernel. JavaScript libraries aiming at graphical user interface development are based on GeoExt library combining ExtJS Framework and OpenLayers software. The archive of geophysical data consists of a number of structured environmental datasets represented by data files in netCDF, HDF, GRIB, ESRI Shapefile formats. For processing by the system are available: two editions of NCEP/NCAR Reanalysis, JMA/CRIEPI JRA-25 Reanalysis, ECMWF ERA-40 Reanalysis, ECMWF ERA Interim Reanalysis, MRI/JMA APHRODITE's Water Resources Project Reanalysis, DWD Global Precipitation Climatology Centre's data, GMAO Modern Era-Retrospective analysis for Research and Applications, meteorological observational data for the territory of the former USSR for the 20th century, results of modeling by global and regional climatological models, and others. The system is already involved into a scientific research process. Particularly, recently the system was successfully used for analysis of Siberia climate changes and its impact in the region. The Web-GIS information-computational system for geophysical data analysis provides specialists involved into multidisciplinary research projects with reliable and practical instruments for complex analysis of climate and ecosystems changes on global and regional scales. Using it even unskilled user without specific knowledge can perform computational processing and visualization of large meteorological, climatological and satellite monitoring datasets through unified web-interface in a common graphical web-browser. This work is partially supported by the Ministry of education and science of the Russian Federation (contract #07.514.114044), projects IV.31.1.5, IV.31.2.7, RFBR grants #10-07-00547a, #11-05-01190a, and integrated project SB RAS #131.

  10. Use of a graphics processing unit (GPU) to facilitate real-time 3D graphic presentation of the patient skin-dose distribution during fluoroscopic interventional procedures

    PubMed Central

    Rana, Vijay; Rudin, Stephen; Bednarek, Daniel R.

    2012-01-01

    We have developed a dose-tracking system (DTS) that calculates the radiation dose to the patient’s skin in real-time by acquiring exposure parameters and imaging-system-geometry from the digital bus on a Toshiba Infinix C-arm unit. The cumulative dose values are then displayed as a color map on an OpenGL-based 3D graphic of the patient for immediate feedback to the interventionalist. Determination of those elements on the surface of the patient 3D-graphic that intersect the beam and calculation of the dose for these elements in real time demands fast computation. Reducing the size of the elements results in more computation load on the computer processor and therefore a tradeoff occurs between the resolution of the patient graphic and the real-time performance of the DTS. The speed of the DTS for calculating dose to the skin is limited by the central processing unit (CPU) and can be improved by using the parallel processing power of a graphics processing unit (GPU). Here, we compare the performance speed of GPU-based DTS software to that of the current CPU-based software as a function of the resolution of the patient graphics. Results show a tremendous improvement in speed using the GPU. While an increase in the spatial resolution of the patient graphics resulted in slowing down the computational speed of the DTS on the CPU, the speed of the GPU-based DTS was hardly affected. This GPU-based DTS can be a powerful tool for providing accurate, real-time feedback about patient skin-dose to physicians while performing interventional procedures. PMID:24027616

  11. Use of a graphics processing unit (GPU) to facilitate real-time 3D graphic presentation of the patient skin-dose distribution during fluoroscopic interventional procedures.

    PubMed

    Rana, Vijay; Rudin, Stephen; Bednarek, Daniel R

    2012-02-23

    We have developed a dose-tracking system (DTS) that calculates the radiation dose to the patient's skin in real-time by acquiring exposure parameters and imaging-system-geometry from the digital bus on a Toshiba Infinix C-arm unit. The cumulative dose values are then displayed as a color map on an OpenGL-based 3D graphic of the patient for immediate feedback to the interventionalist. Determination of those elements on the surface of the patient 3D-graphic that intersect the beam and calculation of the dose for these elements in real time demands fast computation. Reducing the size of the elements results in more computation load on the computer processor and therefore a tradeoff occurs between the resolution of the patient graphic and the real-time performance of the DTS. The speed of the DTS for calculating dose to the skin is limited by the central processing unit (CPU) and can be improved by using the parallel processing power of a graphics processing unit (GPU). Here, we compare the performance speed of GPU-based DTS software to that of the current CPU-based software as a function of the resolution of the patient graphics. Results show a tremendous improvement in speed using the GPU. While an increase in the spatial resolution of the patient graphics resulted in slowing down the computational speed of the DTS on the CPU, the speed of the GPU-based DTS was hardly affected. This GPU-based DTS can be a powerful tool for providing accurate, real-time feedback about patient skin-dose to physicians while performing interventional procedures.

  12. x-y-recording in transmission electron microscopy. A versatile and inexpensive interface to personal computers with application to stereology.

    PubMed

    Rickmann, M; Siklós, L; Joó, F; Wolff, J R

    1990-09-01

    An interface for IBM XT/AT-compatible computers is described which has been designed to read the actual specimen stage position of electron microscopes. The complete system consists of (i) optical incremental encoders attached to the x- and y-stage drivers of the microscope, (ii) two keypads for operator input, (iii) an interface card fitted to the bus of the personal computer, (iv) a standard configuration IBM XT (or compatible) personal computer optionally equipped with a (v) HP Graphic Language controllable colour plotter. The small size of the encoders and their connection to the stage drivers by simple ribbed belts allows an easy adaptation of the system to most electron microscopes. Operation of the interface card itself is supported by any high-level language available for personal computers. By the modular concept of these languages, the system can be customized to various applications, and no computer expertise is needed for actual operation. The present configuration offers an inexpensive attachment, which covers a wide range of applications from a simple notebook to high-resolution (200-nm) mapping of tissue. Since section coordinates can be processed in real-time, stereological estimations can be derived directly "on microscope". This is exemplified by an application in which particle numbers were determined by the disector method.

  13. Dimensionality of visual complexity in computer graphics scenes

    NASA Astrophysics Data System (ADS)

    Ramanarayanan, Ganesh; Bala, Kavita; Ferwerda, James A.; Walter, Bruce

    2008-02-01

    How do human observers perceive visual complexity in images? This problem is especially relevant for computer graphics, where a better understanding of visual complexity can aid in the development of more advanced rendering algorithms. In this paper, we describe a study of the dimensionality of visual complexity in computer graphics scenes. We conducted an experiment where subjects judged the relative complexity of 21 high-resolution scenes, rendered with photorealistic methods. Scenes were gathered from web archives and varied in theme, number and layout of objects, material properties, and lighting. We analyzed the subject responses using multidimensional scaling of pooled subject responses. This analysis embedded the stimulus images in a two-dimensional space, with axes that roughly corresponded to "numerosity" and "material / lighting complexity". In a follow-up analysis, we derived a one-dimensional complexity ordering of the stimulus images. We compared this ordering with several computable complexity metrics, such as scene polygon count and JPEG compression size, and did not find them to be very correlated. Understanding the differences between these measures can lead to the design of more efficient rendering algorithms in computer graphics.

  14. Effective correlator for RadioAstron project

    NASA Astrophysics Data System (ADS)

    Sergeev, Sergey

    This paper presents the implementation of programme FX-correlator for Very Long Baseline Interferometry, adapted for the project "RadioAstron". Software correlator implemented for heterogeneous computing systems using graphics accelerators. It is shown that for the task interferometry implementation of the graphics hardware has a high efficiency. The host processor of heterogeneous computing system, performs the function of forming the data flow for graphics accelerators, the number of which corresponds to the number of frequency channels. So, for the Radioastron project, such channels is seven. Each accelerator is perform correlation matrix for all bases for a single frequency channel. Initial data is converted to the floating-point format, is correction for the corresponding delay function and computes the entire correlation matrix simultaneously. Calculation of the correlation matrix is performed using the sliding Fourier transform. Thus, thanks to the compliance of a solved problem for architecture graphics accelerators, managed to get a performance for one processor platform Kepler, which corresponds to the performance of this task, the computing cluster platforms Intel on four nodes. This task successfully scaled not only on a large number of graphics accelerators, but also on a large number of nodes with multiple accelerators.

  15. Guide to making time-lapse graphics using the facilities of the National Magnetic Fusion Energy Computing Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munro, J.K. Jr.

    1980-05-01

    The advent of large, fast computers has opened the way to modeling more complex physical processes and to handling very large quantities of experimental data. The amount of information that can be processed in a short period of time is so great that use of graphical displays assumes greater importance as a means of displaying this information. Information from dynamical processes can be displayed conveniently by use of animated graphics. This guide presents the basic techniques for generating black and white animated graphics, with consideration of aesthetic, mechanical, and computational problems. The guide is intended for use by someone whomore » wants to make movies on the National Magnetic Fusion Energy Computing Center (NMFECC) CDC-7600. Problems encountered by a geographically remote user are given particular attention. Detailed information is given that will allow a remote user to do some file checking and diagnosis before giving graphics files to the system for processing into film in order to spot problems without having to wait for film to be delivered. Source listings of some useful software are given in appendices along with descriptions of how to use it. 3 figures, 5 tables.« less

  16. Investigating the Impact of Computer Technology on the Teaching and Learning of Graphic Arts in Nigeria Osun State College of Education Ila-Orangun as a Case Study

    ERIC Educational Resources Information Center

    Abass, Bada Tayo

    2012-01-01

    This paper focused on the use of computer technology in the teaching and learning of graphic arts in Nigeria colleges of Education. Osun State Colleges of Education Ila-Orangun was used as a case study. The population of the study consisted of all Graphic students in Nigeria colleges of Education. 50 subjects were used for the study while…

  17. Simulation of Robot Kinematics Using Interactive Computer Graphics.

    ERIC Educational Resources Information Center

    Leu, M. C.; Mahajan, R.

    1984-01-01

    Development of a robot simulation program based on geometric transformation softwares available in most computer graphics systems and program features are described. The program can be extended to simulate robots coordinating with external devices (such as tools, fixtures, conveyors) using geometric transformations to describe the…

  18. Target Information Processing: A Joint Decision and Estimation Approach

    DTIC Science & Technology

    2012-03-29

    ground targets ( track - before - detect ) using computer cluster and graphics processing unit. Estimation and filtering theory is one of the most important...targets ( track - before - detect ) using computer cluster and graphics processing unit. Estimation and filtering theory is one of the most important

  19. Computer Graphics Simulations of Sampling Distributions.

    ERIC Educational Resources Information Center

    Gordon, Florence S.; Gordon, Sheldon P.

    1989-01-01

    Describes the use of computer graphics simulations to enhance student understanding of sampling distributions that arise in introductory statistics. Highlights include the distribution of sample proportions, the distribution of the difference of sample means, the distribution of the difference of sample proportions, and the distribution of sample…

  20. A Simple Graphical Method for Quantification of Disaster Management Surge Capacity Using Computer Simulation and Process-control Tools.

    PubMed

    Franc, Jeffrey Michael; Ingrassia, Pier Luigi; Verde, Manuela; Colombo, Davide; Della Corte, Francesco

    2015-02-01

    Surge capacity, or the ability to manage an extraordinary volume of patients, is fundamental for hospital management of mass-casualty incidents. However, quantification of surge capacity is difficult and no universal standard for its measurement has emerged, nor has a standardized statistical method been advocated. As mass-casualty incidents are rare, simulation may represent a viable alternative to measure surge capacity. Hypothesis/Problem The objective of the current study was to develop a statistical method for the quantification of surge capacity using a combination of computer simulation and simple process-control statistical tools. Length-of-stay (LOS) and patient volume (PV) were used as metrics. The use of this method was then demonstrated on a subsequent computer simulation of an emergency department (ED) response to a mass-casualty incident. In the derivation phase, 357 participants in five countries performed 62 computer simulations of an ED response to a mass-casualty incident. Benchmarks for ED response were derived from these simulations, including LOS and PV metrics for triage, bed assignment, physician assessment, and disposition. In the application phase, 13 students of the European Master in Disaster Medicine (EMDM) program completed the same simulation scenario, and the results were compared to the standards obtained in the derivation phase. Patient-volume metrics included number of patients to be triaged, assigned to rooms, assessed by a physician, and disposed. Length-of-stay metrics included median time to triage, room assignment, physician assessment, and disposition. Simple graphical methods were used to compare the application phase group to the derived benchmarks using process-control statistical tools. The group in the application phase failed to meet the indicated standard for LOS from admission to disposition decision. This study demonstrates how simulation software can be used to derive values for objective benchmarks of ED surge capacity using PV and LOS metrics. These objective metrics can then be applied to other simulation groups using simple graphical process-control tools to provide a numeric measure of surge capacity. Repeated use in simulations of actual EDs may represent a potential means of objectively quantifying disaster management surge capacity. It is hoped that the described statistical method, which is simple and reusable, will be useful for investigators in this field to apply to their own research.

Top