Sample records for computer image system

  1. An integrated compact airborne multispectral imaging system using embedded computer

    NASA Astrophysics Data System (ADS)

    Zhang, Yuedong; Wang, Li; Zhang, Xuguo

    2015-08-01

    An integrated compact airborne multispectral imaging system using embedded computer based control system was developed for small aircraft multispectral imaging application. The multispectral imaging system integrates CMOS camera, filter wheel with eight filters, two-axis stabilized platform, miniature POS (position and orientation system) and embedded computer. The embedded computer has excellent universality and expansibility, and has advantages in volume and weight for airborne platform, so it can meet the requirements of control system of the integrated airborne multispectral imaging system. The embedded computer controls the camera parameters setting, filter wheel and stabilized platform working, image and POS data acquisition, and stores the image and data. The airborne multispectral imaging system can connect peripheral device use the ports of the embedded computer, so the system operation and the stored image data management are easy. This airborne multispectral imaging system has advantages of small volume, multi-function, and good expansibility. The imaging experiment results show that this system has potential for multispectral remote sensing in applications such as resource investigation and environmental monitoring.

  2. Medical image computing for computer-supported diagnostics and therapy. Advances and perspectives.

    PubMed

    Handels, H; Ehrhardt, J

    2009-01-01

    Medical image computing has become one of the most challenging fields in medical informatics. In image-based diagnostics of the future software assistance will become more and more important, and image analysis systems integrating advanced image computing methods are needed to extract quantitative image parameters to characterize the state and changes of image structures of interest (e.g. tumors, organs, vessels, bones etc.) in a reproducible and objective way. Furthermore, in the field of software-assisted and navigated surgery medical image computing methods play a key role and have opened up new perspectives for patient treatment. However, further developments are needed to increase the grade of automation, accuracy, reproducibility and robustness. Moreover, the systems developed have to be integrated into the clinical workflow. For the development of advanced image computing systems methods of different scientific fields have to be adapted and used in combination. The principal methodologies in medical image computing are the following: image segmentation, image registration, image analysis for quantification and computer assisted image interpretation, modeling and simulation as well as visualization and virtual reality. Especially, model-based image computing techniques open up new perspectives for prediction of organ changes and risk analysis of patients and will gain importance in diagnostic and therapy of the future. From a methodical point of view the authors identify the following future trends and perspectives in medical image computing: development of optimized application-specific systems and integration into the clinical workflow, enhanced computational models for image analysis and virtual reality training systems, integration of different image computing methods, further integration of multimodal image data and biosignals and advanced methods for 4D medical image computing. The development of image analysis systems for diagnostic support or operation planning is a complex interdisciplinary process. Image computing methods enable new insights into the patient's image data and have the future potential to improve medical diagnostics and patient treatment.

  3. Computer system for definition of the quantitative geometry of musculature from CT images.

    PubMed

    Daniel, Matej; Iglic, Ales; Kralj-Iglic, Veronika; Konvicková, Svatava

    2005-02-01

    The computer system for quantitative determination of musculoskeletal geometry from computer tomography (CT) images has been developed. The computer system processes series of CT images to obtain three-dimensional (3D) model of bony structures where the effective muscle fibres can be interactively defined. Presented computer system has flexible modular structure and is suitable also for educational purposes.

  4. Improved Interactive Medical-Imaging System

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.; Twombly, Ian A.; Senger, Steven

    2003-01-01

    An improved computational-simulation system for interactive medical imaging has been invented. The system displays high-resolution, three-dimensional-appearing images of anatomical objects based on data acquired by such techniques as computed tomography (CT) and magnetic-resonance imaging (MRI). The system enables users to manipulate the data to obtain a variety of views for example, to display cross sections in specified planes or to rotate images about specified axes. Relative to prior such systems, this system offers enhanced capabilities for synthesizing images of surgical cuts and for collaboration by users at multiple, remote computing sites.

  5. Image-Processing Software For A Hypercube Computer

    NASA Technical Reports Server (NTRS)

    Lee, Meemong; Mazer, Alan S.; Groom, Steven L.; Williams, Winifred I.

    1992-01-01

    Concurrent Image Processing Executive (CIPE) is software system intended to develop and use image-processing application programs on concurrent computing environment. Designed to shield programmer from complexities of concurrent-system architecture, it provides interactive image-processing environment for end user. CIPE utilizes architectural characteristics of particular concurrent system to maximize efficiency while preserving architectural independence from user and programmer. CIPE runs on Mark-IIIfp 8-node hypercube computer and associated SUN-4 host computer.

  6. Low-cost space-varying FIR filter architecture for computational imaging systems

    NASA Astrophysics Data System (ADS)

    Feng, Guotong; Shoaib, Mohammed; Schwartz, Edward L.; Dirk Robinson, M.

    2010-01-01

    Recent research demonstrates the advantage of designing electro-optical imaging systems by jointly optimizing the optical and digital subsystems. The optical systems designed using this joint approach intentionally introduce large and often space-varying optical aberrations that produce blurry optical images. Digital sharpening restores reduced contrast due to these intentional optical aberrations. Computational imaging systems designed in this fashion have several advantages including extended depth-of-field, lower system costs, and improved low-light performance. Currently, most consumer imaging systems lack the necessary computational resources to compensate for these optical systems with large aberrations in the digital processor. Hence, the exploitation of the advantages of the jointly designed computational imaging system requires low-complexity algorithms enabling space-varying sharpening. In this paper, we describe a low-cost algorithmic framework and associated hardware enabling the space-varying finite impulse response (FIR) sharpening required to restore largely aberrated optical images. Our framework leverages the space-varying properties of optical images formed using rotationally-symmetric optical lens elements. First, we describe an approach to leverage the rotational symmetry of the point spread function (PSF) about the optical axis allowing computational savings. Second, we employ a specially designed bank of sharpening filters tuned to the specific radial variation common to optical aberrations. We evaluate the computational efficiency and image quality achieved by using this low-cost space-varying FIR filter architecture.

  7. Metasurface optics for full-color computational imaging.

    PubMed

    Colburn, Shane; Zhan, Alan; Majumdar, Arka

    2018-02-01

    Conventional imaging systems comprise large and expensive optical components that successively mitigate aberrations. Metasurface optics offers a route to miniaturize imaging systems by replacing bulky components with flat and compact implementations. The diffractive nature of these devices, however, induces severe chromatic aberrations, and current multiwavelength and narrowband achromatic metasurfaces cannot support full visible spectrum imaging (400 to 700 nm). We combine principles of both computational imaging and metasurface optics to build a system with a single metalens of numerical aperture ~0.45, which generates in-focus images under white light illumination. Our metalens exhibits a spectrally invariant point spread function that enables computational reconstruction of captured images with a single digital filter. This work connects computational imaging and metasurface optics and demonstrates the capabilities of combining these disciplines by simultaneously reducing aberrations and downsizing imaging systems using simpler optics.

  8. High-resolution ophthalmic imaging system

    DOEpatents

    Olivier, Scot S.; Carrano, Carmen J.

    2007-12-04

    A system for providing an improved resolution retina image comprising an imaging camera for capturing a retina image and a computer system operatively connected to the imaging camera, the computer producing short exposures of the retina image and providing speckle processing of the short exposures to provide the improved resolution retina image. The system comprises the steps of capturing a retina image, producing short exposures of the retina image, and speckle processing the short exposures of the retina image to provide the improved resolution retina image.

  9. Emerging Computer Media: On Image Interaction

    NASA Astrophysics Data System (ADS)

    Lippman, Andrew B.

    1982-01-01

    Emerging technologies such as inexpensive, powerful local computing, optical digital videodiscs, and the technologies of human-machine interaction are initiating a revolution in both image storage systems and image interaction systems. This paper will present a review of new approaches to computer media predicated upon three dimensional position sensing, speech recognition, and high density image storage. Examples will be shown such as the Spatial Data Management Systems wherein the free use of place results in intuitively clear retrieval systems and potentials for image association; the Movie-Map, wherein inherently static media generate dynamic views of data, and conferencing work-in-progress wherein joint processing is stressed. Application to medical imaging will be suggested, but the primary emphasis is on the general direction of imaging and reference systems. We are passing the age of simple possibility of computer graphics and image porcessing and entering the age of ready usability.

  10. Computer image generation: Reconfigurability as a strategy in high fidelity space applications

    NASA Technical Reports Server (NTRS)

    Bartholomew, Michael J.

    1989-01-01

    The demand for realistic, high fidelity, computer image generation systems to support space simulation is well established. However, as the number and diversity of space applications increase, the complexity and cost of computer image generation systems also increase. One strategy used to harmonize cost with varied requirements is establishment of a reconfigurable image generation system that can be adapted rapidly and easily to meet new and changing requirements. The reconfigurability strategy through the life cycle of system conception, specification, design, implementation, operation, and support for high fidelity computer image generation systems are discussed. The discussion is limited to those issues directly associated with reconfigurability and adaptability of a specialized scene generation system in a multi-faceted space applications environment. Examples and insights gained through the recent development and installation of the Improved Multi-function Scene Generation System at Johnson Space Center, Systems Engineering Simulator are reviewed and compared with current simulator industry practices. The results are clear; the strategy of reconfigurability applied to space simulation requirements provides a viable path to supporting diverse applications with an adaptable computer image generation system.

  11. [A computer-aided image diagnosis and study system].

    PubMed

    Li, Zhangyong; Xie, Zhengxiang

    2004-08-01

    The revolution in information processing, particularly the digitizing of medicine, has changed the medical study, work and management. This paper reports a method to design a system for computer-aided image diagnosis and study. Combined with some good idea of graph-text system and picture archives communicate system (PACS), the system was realized and used for "prescription through computer", "managing images" and "reading images under computer and helping the diagnosis". Also typical examples were constructed in a database and used to teach the beginners. The system was developed by the visual developing tools based on object oriented programming (OOP) and was carried into operation on the Windows 9X platform. The system possesses friendly man-machine interface.

  12. Image Processing System

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Mallinckrodt Institute of Radiology (MIR) is using a digital image processing system which employs NASA-developed technology. MIR's computer system is the largest radiology system in the world. It is used in diagnostic imaging. Blood vessels are injected with x-ray dye, and the images which are produced indicate whether arteries are hardened or blocked. A computer program developed by Jet Propulsion Laboratory known as Mini-VICAR/IBIS was supplied to MIR by COSMIC. The program provides the basis for developing the computer imaging routines for data processing, contrast enhancement and picture display.

  13. High-speed on-chip windowed centroiding using photodiode-based CMOS imager

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor); Sun, Chao (Inventor); Yang, Guang (Inventor); Cunningham, Thomas J. (Inventor); Hancock, Bruce (Inventor)

    2003-01-01

    A centroid computation system is disclosed. The system has an imager array, a switching network, computation elements, and a divider circuit. The imager array has columns and rows of pixels. The switching network is adapted to receive pixel signals from the image array. The plurality of computation elements operates to compute inner products for at least x and y centroids. The plurality of computation elements has only passive elements to provide inner products of pixel signals the switching network. The divider circuit is adapted to receive the inner products and compute the x and y centroids.

  14. High-speed on-chip windowed centroiding using photodiode-based CMOS imager

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor); Sun, Chao (Inventor); Yang, Guang (Inventor); Cunningham, Thomas J. (Inventor); Hancock, Bruce (Inventor)

    2004-01-01

    A centroid computation system is disclosed. The system has an imager array, a switching network, computation elements, and a divider circuit. The imager array has columns and rows of pixels. The switching network is adapted to receive pixel signals from the image array. The plurality of computation elements operates to compute inner products for at least x and y centroids. The plurality of computation elements has only passive elements to provide inner products of pixel signals the switching network. The divider circuit is adapted to receive the inner products and compute the x and y centroids.

  15. Comprehensive Digital Imaging Network Project At Georgetown University Hospital

    NASA Astrophysics Data System (ADS)

    Mun, Seong K.; Stauffer, Douglas; Zeman, Robert; Benson, Harold; Wang, Paul; Allman, Robert

    1987-10-01

    The radiology practice is going through rapid changes due to the introduction of state-of-the-art computed based technologies. For the last twenty years we have witnessed the introduction of many new medical diagnostic imaging systems such as x-ray computed tomo-graphy, digital subtraction angiography (DSA), computerized nuclear medicine, single pho-ton emission computed tomography (SPECT), positron emission tomography (PET) and more re-cently, computerized digital radiography and nuclear magnetic resonance imaging (MRI). Other than the imaging systems, there has been a steady introduction of computed based information systems for radiology departments and hospitals.

  16. A translational registration system for LANDSAT image segments

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Erthal, G. J.; Velasco, F. R. D.; Mascarenhas, N. D. D.

    1983-01-01

    The use of satellite images obtained from various dates is essential for crop forecast systems. In order to make possible a multitemporal analysis, it is necessary that images belonging to each acquisition have pixel-wise correspondence. A system developed to obtain, register and record image segments from LANDSAT images in computer compatible tapes is described. The translational registration of the segments is performed by correlating image edges in different acquisitions. The system was constructed for the Burroughs B6800 computer in ALGOL language.

  17. Design and Construction of Detector and Data Acquisition Elements for Proton Computed Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fermi Research Alliance; Northern Illinois University

    2015-07-15

    Proton computed tomography (pCT) offers an alternative to x-ray imaging with potential for three-dimensional imaging, reduced radiation exposure, and in-situ imaging. Northern Illinois University (NIU) is developing a second-generation proton computed tomography system with a goal of demonstrating the feasibility of three-dimensional imaging within clinically realistic imaging times. The second-generation pCT system is comprised of a tracking system, a calorimeter, data acquisition, a computing farm, and software algorithms. The proton beam encounters the upstream tracking detectors, the patient or phantom, the downstream tracking detectors, and a calorimeter. The schematic layout of the PCT system is shown. The data acquisition sendsmore » the proton scattering information to an offline computing farm. Major innovations of the second generation pCT project involve an increased data acquisition rate ( MHz range) and development of three-dimensional imaging algorithms. The Fermilab Particle Physics Division and Northern Illinois Center for Accelerator and Detector Development at Northern Illinois University worked together to design and construct the tracking detectors, calorimeter, readout electronics and detector mounting system.« less

  18. System design and implementation of digital-image processing using computational grids

    NASA Astrophysics Data System (ADS)

    Shen, Zhanfeng; Luo, Jiancheng; Zhou, Chenghu; Huang, Guangyu; Ma, Weifeng; Ming, Dongping

    2005-06-01

    As a special type of digital image, remotely sensed images are playing increasingly important roles in our daily lives. Because of the enormous amounts of data involved, and the difficulties of data processing and transfer, an important issue for current computer and geo-science experts is developing internet technology to implement rapid remotely sensed image processing. Computational grids are able to solve this problem effectively. These networks of computer workstations enable the sharing of data and resources, and are used by computer experts to solve imbalances of network resources and lopsided usage. In China, computational grids combined with spatial-information-processing technology have formed a new technology: namely, spatial-information grids. In the field of remotely sensed images, spatial-information grids work more effectively for network computing, data processing, resource sharing, task cooperation and so on. This paper focuses mainly on the application of computational grids to digital-image processing. Firstly, we describe the architecture of digital-image processing on the basis of computational grids, its implementation is then discussed in detail with respect to the technology of middleware. The whole network-based intelligent image-processing system is evaluated on the basis of the experimental analysis of remotely sensed image-processing tasks; the results confirm the feasibility of the application of computational grids to digital-image processing.

  19. Computer Human Interaction for Image Information Systems.

    ERIC Educational Resources Information Center

    Beard, David Volk

    1991-01-01

    Presents an approach to developing viable image computer-human interactions (CHI) involving user metaphors for comprehending image data and methods for locating, accessing, and displaying computer images. A medical-image radiology workstation application is used as an example, and feedback and evaluation methods are discussed. (41 references) (LRW)

  20. Legal issues of computer imaging in plastic surgery: a primer.

    PubMed

    Chávez, A E; Dagum, P; Koch, R J; Newman, J P

    1997-11-01

    Although plastic surgeons are increasingly incorporating computer imaging techniques into their practices, many fear the possibility of legally binding themselves to achieve surgical results identical to those reflected in computer images. Computer imaging allows surgeons to manipulate digital photographs of patients to project possible surgical outcomes. Some of the many benefits imaging techniques pose include improving doctor-patient communication, facilitating the education and training of residents, and reducing administrative and storage costs. Despite the many advantages computer imaging systems offer, however, surgeons understandably worry that imaging systems expose them to immense legal liability. The possible exploitation of computer imaging by novice surgeons as a marketing tool, coupled with the lack of consensus regarding the treatment of computer images, adds to the concern of surgeons. A careful analysis of the law, however, reveals that surgeons who use computer imaging carefully and conservatively, and adopt a few simple precautions, substantially reduce their vulnerability to legal claims. In particular, surgeons face possible claims of implied contract, failure to instruct, and malpractice from their use or failure to use computer imaging. Nevertheless, legal and practical obstacles frustrate each of those causes of actions. Moreover, surgeons who incorporate a few simple safeguards into their practice may further reduce their legal susceptibility.

  1. Computer systems for annotation of single molecule fragments

    DOEpatents

    Schwartz, David Charles; Severin, Jessica

    2016-07-19

    There are provided computer systems for visualizing and annotating single molecule images. Annotation systems in accordance with this disclosure allow a user to mark and annotate single molecules of interest and their restriction enzyme cut sites thereby determining the restriction fragments of single nucleic acid molecules. The markings and annotations may be automatically generated by the system in certain embodiments and they may be overlaid translucently onto the single molecule images. An image caching system may be implemented in the computer annotation systems to reduce image processing time. The annotation systems include one or more connectors connecting to one or more databases capable of storing single molecule data as well as other biomedical data. Such diverse array of data can be retrieved and used to validate the markings and annotations. The annotation systems may be implemented and deployed over a computer network. They may be ergonomically optimized to facilitate user interactions.

  2. Analyses of requirements for computer control and data processing experiment subsystems. Volume 2: ATM experiment S-056 image data processing system software development

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The IDAPS (Image Data Processing System) is a user-oriented, computer-based, language and control system, which provides a framework or standard for implementing image data processing applications, simplifies set-up of image processing runs so that the system may be used without a working knowledge of computer programming or operation, streamlines operation of the image processing facility, and allows multiple applications to be run in sequence without operator interaction. The control system loads the operators, interprets the input, constructs the necessary parameters for each application, and cells the application. The overlay feature of the IBSYS loader (IBLDR) provides the means of running multiple operators which would otherwise overflow core storage.

  3. Energy and Technology Review

    NASA Astrophysics Data System (ADS)

    Poggio, Andrew J.

    1988-10-01

    This issue of Energy and Technology Review contains: Neutron Penumbral Imaging of Laser-Fusion Targets--using our new penumbral-imaging diagnostic, we have obtained the first images that can be used to measure directly the deuterium-tritium burn region in laser-driven fusion targets; Computed Tomography for Nondestructive Evaluation--various computed tomography systems and computational techniques are used in nondestructive evaluation; Three-Dimensional Image Analysis for Studying Nuclear Chromatin Structure--we have developed an optic-electronic system for acquiring cross-sectional views of cell nuclei, and computer codes to analyze these images and reconstruct the three-dimensional structures they represent; Imaging in the Nuclear Test Program--advanced techniques produce images of unprecedented detail and resolution from Nevada Test Site data; and Computational X-Ray Holography--visible-light experiments and numerically simulated holograms test our ideas about an X-ray microscope for biological research.

  4. A programmable computational image sensor for high-speed vision

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Shi, Cong; Long, Xitian; Wu, Nanjian

    2013-08-01

    In this paper we present a programmable computational image sensor for high-speed vision. This computational image sensor contains four main blocks: an image pixel array, a massively parallel processing element (PE) array, a row processor (RP) array and a RISC core. The pixel-parallel PE is responsible for transferring, storing and processing image raw data in a SIMD fashion with its own programming language. The RPs are one dimensional array of simplified RISC cores, it can carry out complex arithmetic and logic operations. The PE array and RP array can finish great amount of computation with few instruction cycles and therefore satisfy the low- and middle-level high-speed image processing requirement. The RISC core controls the whole system operation and finishes some high-level image processing algorithms. We utilize a simplified AHB bus as the system bus to connect our major components. Programming language and corresponding tool chain for this computational image sensor are also developed.

  5. Computer-Based Image Analysis for Plus Disease Diagnosis in Retinopathy of Prematurity: Performance of the "i-ROP" System and Image Features Associated With Expert Diagnosis.

    PubMed

    Ataer-Cansizoglu, Esra; Bolon-Canedo, Veronica; Campbell, J Peter; Bozkurt, Alican; Erdogmus, Deniz; Kalpathy-Cramer, Jayashree; Patel, Samir; Jonas, Karyn; Chan, R V Paul; Ostmo, Susan; Chiang, Michael F

    2015-11-01

    We developed and evaluated the performance of a novel computer-based image analysis system for grading plus disease in retinopathy of prematurity (ROP), and identified the image features, shapes, and sizes that best correlate with expert diagnosis. A dataset of 77 wide-angle retinal images from infants screened for ROP was collected. A reference standard diagnosis was determined for each image by combining image grading from 3 experts with the clinical diagnosis from ophthalmoscopic examination. Manually segmented images were cropped into a range of shapes and sizes, and a computer algorithm was developed to extract tortuosity and dilation features from arteries and veins. Each feature was fed into our system to identify the set of characteristics that yielded the highest-performing system compared to the reference standard, which we refer to as the "i-ROP" system. Among the tested crop shapes, sizes, and measured features, point-based measurements of arterial and venous tortuosity (combined), and a large circular cropped image (with radius 6 times the disc diameter), provided the highest diagnostic accuracy. The i-ROP system achieved 95% accuracy for classifying preplus and plus disease compared to the reference standard. This was comparable to the performance of the 3 individual experts (96%, 94%, 92%), and significantly higher than the mean performance of 31 nonexperts (81%). This comprehensive analysis of computer-based plus disease suggests that it may be feasible to develop a fully-automated system based on wide-angle retinal images that performs comparably to expert graders at three-level plus disease discrimination. Computer-based image analysis, using objective and quantitative retinal vascular features, has potential to complement clinical ROP diagnosis by ophthalmologists.

  6. Imaging systems and methods for obtaining and using biometric information

    DOEpatents

    McMakin, Douglas L [Richland, WA; Kennedy, Mike O [Richland, WA

    2010-11-30

    Disclosed herein are exemplary embodiments of imaging systems and methods of using such systems. In one exemplary embodiment, one or more direct images of the body of a clothed subject are received, and a motion signature is determined from the one or more images. In this embodiment, the one or more images show movement of the body of the subject over time, and the motion signature is associated with the movement of the subject's body. In certain implementations, the subject can be identified based at least in part on the motion signature. Imaging systems for performing any of the disclosed methods are also disclosed herein. Furthermore, the disclosed imaging, rendering, and analysis methods can be implemented, at least in part, as one or more computer-readable media comprising computer-executable instructions for causing a computer to perform the respective methods.

  7. Security screening via computational imaging using frequency-diverse metasurface apertures

    NASA Astrophysics Data System (ADS)

    Smith, David R.; Reynolds, Matthew S.; Gollub, Jonah N.; Marks, Daniel L.; Imani, Mohammadreza F.; Yurduseven, Okan; Arnitz, Daniel; Pedross-Engel, Andreas; Sleasman, Timothy; Trofatter, Parker; Boyarsky, Michael; Rose, Alec; Odabasi, Hayrettin; Lipworth, Guy

    2017-05-01

    Computational imaging is a proven strategy for obtaining high-quality images with fast acquisition rates and simpler hardware. Metasurfaces provide exquisite control over electromagnetic fields, enabling the radiated field to be molded into unique patterns. The fusion of these two concepts can bring about revolutionary advances in the design of imaging systems for security screening. In the context of computational imaging, each field pattern serves as a single measurement of a scene; imaging a scene can then be interpreted as estimating the reflectivity distribution of a target from a set of measurements. As with any computational imaging system, the key challenge is to arrive at a minimal set of measurements from which a diffraction-limited image can be resolved. Here, we show that the information content of a frequency-diverse metasurface aperture can be maximized by design, and used to construct a complete millimeter-wave imaging system spanning a 2 m by 2 m area, consisting of 96 metasurfaces, capable of producing diffraction-limited images of human-scale targets. The metasurfacebased frequency-diverse system presented in this work represents an inexpensive, but tremendously flexible alternative to traditional hardware paradigms, offering the possibility of low-cost, real-time, and ubiquitous screening platforms.

  8. Importance of balanced architectures in the design of high-performance imaging systems

    NASA Astrophysics Data System (ADS)

    Sgro, Joseph A.; Stanton, Paul C.

    1999-03-01

    Imaging systems employed in demanding military and industrial applications, such as automatic target recognition and computer vision, typically require real-time high-performance computing resources. While high- performances computing systems have traditionally relied on proprietary architectures and custom components, recent advances in high performance general-purpose microprocessor technology have produced an abundance of low cost components suitable for use in high-performance computing systems. A common pitfall in the design of high performance imaging system, particularly systems employing scalable multiprocessor architectures, is the failure to balance computational and memory bandwidth. The performance of standard cluster designs, for example, in which several processors share a common memory bus, is typically constrained by memory bandwidth. The symptom characteristic of this problem is failure to the performance of the system to scale as more processors are added. The problem becomes exacerbated if I/O and memory functions share the same bus. The recent introduction of microprocessors with large internal caches and high performance external memory interfaces makes it practical to design high performance imaging system with balanced computational and memory bandwidth. Real word examples of such designs will be presented, along with a discussion of adapting algorithm design to best utilize available memory bandwidth.

  9. Advantages and disadvantages of computer imaging in cosmetic surgery.

    PubMed

    Koch, R J; Chavez, A; Dagum, P; Newman, J P

    1998-02-01

    Despite the growing popularity of computer imaging systems, it is not clear whether the medical and legal advantages of using such a system outweigh the disadvantages. The purpose of this report is to evaluate these aspects, and provide some protective guidelines in the use of computer imaging in cosmetic surgery. The positive and negative aspects of computer imaging from a medical and legal perspective are reviewed. Also, specific issues are examined by a legal panel. The greatest advantages are potential problem patient exclusion, and enhanced physician-patient communication. Disadvantages include cost, user learning curve, and potential liability. Careful use of computer imaging should actually reduce one's liability when all aspects are considered. Recommendations for such use and specific legal issues are discussed.

  10. Imperceptible watermarking for security of fundus images in tele-ophthalmology applications and computer-aided diagnosis of retina diseases.

    PubMed

    Singh, Anushikha; Dutta, Malay Kishore

    2017-12-01

    The authentication and integrity verification of medical images is a critical and growing issue for patients in e-health services. Accurate identification of medical images and patient verification is an essential requirement to prevent error in medical diagnosis. The proposed work presents an imperceptible watermarking system to address the security issue of medical fundus images for tele-ophthalmology applications and computer aided automated diagnosis of retinal diseases. In the proposed work, patient identity is embedded in fundus image in singular value decomposition domain with adaptive quantization parameter to maintain perceptual transparency for variety of fundus images like healthy fundus or disease affected image. In the proposed method insertion of watermark in fundus image does not affect the automatic image processing diagnosis of retinal objects & pathologies which ensure uncompromised computer-based diagnosis associated with fundus image. Patient ID is correctly recovered from watermarked fundus image for integrity verification of fundus image at the diagnosis centre. The proposed watermarking system is tested in a comprehensive database of fundus images and results are convincing. results indicate that proposed watermarking method is imperceptible and it does not affect computer vision based automated diagnosis of retinal diseases. Correct recovery of patient ID from watermarked fundus image makes the proposed watermarking system applicable for authentication of fundus images for computer aided diagnosis and Tele-ophthalmology applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. An Ibm PC/AT-Based Image Acquisition And Processing System For Quantitative Image Analysis

    NASA Astrophysics Data System (ADS)

    Kim, Yongmin; Alexander, Thomas

    1986-06-01

    In recent years, a large number of applications have been developed for image processing systems in the area of biological imaging. We have already finished the development of a dedicated microcomputer-based image processing and analysis system for quantitative microscopy. The system's primary function has been to facilitate and ultimately automate quantitative image analysis tasks such as the measurement of cellular DNA contents. We have recognized from this development experience, and interaction with system users, biologists and technicians, that the increasingly widespread use of image processing systems, and the development and application of new techniques for utilizing the capabilities of such systems, would generate a need for some kind of inexpensive general purpose image acquisition and processing system specially tailored for the needs of the medical community. We are currently engaged in the development and testing of hardware and software for a fairly high-performance image processing computer system based on a popular personal computer. In this paper, we describe the design and development of this system. Biological image processing computer systems have now reached a level of hardware and software refinement where they could become convenient image analysis tools for biologists. The development of a general purpose image processing system for quantitative image analysis that is inexpensive, flexible, and easy-to-use represents a significant step towards making the microscopic digital image processing techniques more widely applicable not only in a research environment as a biologist's workstation, but also in clinical environments as a diagnostic tool.

  12. APPLEPIPS /Apple Personal Image Processing System/ - An interactive digital image processing system for the Apple II microcomputer

    NASA Technical Reports Server (NTRS)

    Masuoka, E.; Rose, J.; Quattromani, M.

    1981-01-01

    Recent developments related to microprocessor-based personal computers have made low-cost digital image processing systems a reality. Image analysis systems built around these microcomputers provide color image displays for images as large as 256 by 240 pixels in sixteen colors. Descriptive statistics can be computed for portions of an image, and supervised image classification can be obtained. The systems support Basic, Fortran, Pascal, and assembler language. A description is provided of a system which is representative of the new microprocessor-based image processing systems currently on the market. While small systems may never be truly independent of larger mainframes, because they lack 9-track tape drives, the independent processing power of the microcomputers will help alleviate some of the turn-around time problems associated with image analysis and display on the larger multiuser systems.

  13. Visidep (TM): A Three-Dimensional Imaging System For The Unaided Eye

    NASA Astrophysics Data System (ADS)

    McLaurin, A. Porter; Jones, Edwin R.; Cathey, LeConte

    1984-05-01

    The VISIDEP process for creating images in three dimensions on flat screens is suitable for photographic, electrographic and computer generated imaging systems. Procedures for generating these images vary from medium to medium due to the specific requirements of each technology. Imaging requirements for photographic and electrographic media are more directly tied to the hardware than are computer based systems. Applications of these technologies are not limited to entertainment, but have implications for training, interactive computer/video systems, medical imaging, and inspection equipment. Through minor modification the system can provide three-dimensional images with accurately measureable relationships for robotics and adds this factor for future developments in artificial intelligence. In almost any area requiring image analysis or critical review, VISIDEP provides the added advantage of three-dimensionality. All of this is readily accomplished without aids to the human eye. The system can be viewed in full color, false-color infra-red, and monochromatic modalities from any angle and is also viewable with a single eye. Thus, the potential of application for this developing system is extensive and covers the broad spectrum of human endeavor from entertainment to scientific study.

  14. Computer aided detection system for lung cancer using computer tomography scans

    NASA Astrophysics Data System (ADS)

    Mahesh, Shanthi; Rakesh, Spoorthi; Patil, Vidya C.

    2018-04-01

    Lung Cancer is a disease can be defined as uncontrolled cell growth in tissues of the lung. If we detect the Lung Cancer in its early stage, then that could be the key of its cure. In this work the non-invasive methods are studied for assisting in nodule detection. It supplies a Computer Aided Diagnosis System (CAD) for early detection of lung cancer nodules from the Computer Tomography (CT) images. CAD system is the one which helps to improve the diagnostic performance of radiologists in their image interpretations. The main aim of this technique is to develop a CAD system for finding the lung cancer using the lung CT images and classify the nodule as Benign or Malignant. For classifying cancer cells, SVM classifier is used. Here, image processing techniques have been used to de-noise, to enhance, for segmentation and edge detection of an image is used to extract the area, perimeter and shape of nodule. The core factors of this research are Image quality and accuracy.

  15. What Is A Picture Archiving And Communication System (PACS)?

    NASA Astrophysics Data System (ADS)

    Marceau, Carla

    1982-01-01

    A PACS is a digital system for acquiring, storing, moving and displaying picture or image information. It is an alternative to film jackets that has been made possible by recent breakthroughs in computer technology: telecommunications, local area nets and optical disks. The fundamental concept of the digital representation of image information is introduced. It is shown that freeing images from a material representation on film or paper leads to a dramatic increase in flexibility in our use of the images. The ultimate goal of a medical PACS system is a radiology department without film jackets. The inherent nature of digital images and the power of the computer allow instant free "copies" of images to be made and thrown away. These copies can be transmitted to distant sites in seconds, without the "original" ever leaving the archives of the radiology department. The result is a radiology department with much freer access to patient images and greater protection against lost or misplaced image information. Finally, images in digital form can be treated as data for the computer in image processing, which includes enhancement, reconstruction and even computer-aided analysis.

  16. A FPGA-based architecture for real-time image matching

    NASA Astrophysics Data System (ADS)

    Wang, Jianhui; Zhong, Sheng; Xu, Wenhui; Zhang, Weijun; Cao, Zhiguo

    2013-10-01

    Image matching is a fundamental task in computer vision. It is used to establish correspondence between two images taken at different viewpoint or different time from the same scene. However, its large computational complexity has been a challenge to most embedded systems. This paper proposes a single FPGA-based image matching system, which consists of SIFT feature detection, BRIEF descriptor extraction and BRIEF matching. It optimizes the FPGA architecture for the SIFT feature detection to reduce the FPGA resources utilization. Moreover, we implement BRIEF description and matching on FPGA also. The proposed system can implement image matching at 30fps (frame per second) for 1280x720 images. Its processing speed can meet the demand of most real-life computer vision applications.

  17. Comparison of computed radiography and conventional radiography in detection of small volume pneumoperitoneum.

    PubMed

    Marolf, Angela; Blaik, Margaret; Ackerman, Norman; Watson, Elizabeth; Gibson, Nicole; Thompson, Margret

    2008-01-01

    The role of digital imaging is increasing as these systems are becoming more affordable and accessible. Advantages of computed radiography compared with conventional film/screen combinations include improved contrast resolution and postprocessing capabilities. Computed radiography's spatial resolution is inferior to conventional radiography; however, this limitation is considered clinically insignificant. This study prospectively compared digital imaging and conventional radiography in detecting small volume pneumoperitoneum. Twenty cadaver dogs (15-30 kg) were injected with 0.25, 0.25, and 0.5 ml for 1 ml total of air intra-abdominally, and radiographed sequentially using computed and conventional radiographic technologies. Three radiologists independently evaluated the images, and receiver operating curve (ROC) analysis compared the two imaging modalities. There was no statistical difference between computed and conventional radiography in detecting free abdominal air, but overall computed radiography was relatively more sensitive based on ROC analysis. Computed radiographic images consistently and significantly demonstrated a minimal amount of 0.5 ml of free air based on ROC analysis. However, no minimal air amount was consistently or significantly detected with conventional film. Readers were more likely to detect free air on lateral computed images than the other projections, with no significant increased sensitivity between film/screen projections. Further studies are indicated to determine the differences or lack thereof between various digital imaging systems and conventional film/screen systems.

  18. Raster Scan Computer Image Generation (CIG) System Based On Refresh Memory

    NASA Astrophysics Data System (ADS)

    Dichter, W.; Doris, K.; Conkling, C.

    1982-06-01

    A full color, Computer Image Generation (CIG) raster visual system has been developed which provides a high level of training sophistication by utilizing advanced semiconductor technology and innovative hardware and firmware techniques. Double buffered refresh memory and efficient algorithms eliminate the problem of conventional raster line ordering by allowing the generated image to be stored in a random fashion. Modular design techniques and simplified architecture provide significant advantages in reduced system cost, standardization of parts, and high reliability. The major system components are a general purpose computer to perform interfacing and data base functions; a geometric processor to define the instantaneous scene image; a display generator to convert the image to a video signal; an illumination control unit which provides final image processing; and a CRT monitor for display of the completed image. Additional optional enhancements include texture generators, increased edge and occultation capability, curved surface shading, and data base extensions.

  19. [Basic concept in computer assisted surgery].

    PubMed

    Merloz, Philippe; Wu, Hao

    2006-03-01

    To investigate application of medical digital imaging systems and computer technologies in orthopedics. The main computer-assisted surgery systems comprise the four following subcategories. (1) A collection and recording process for digital data on each patient, including preoperative images (CT scans, MRI, standard X-rays), intraoperative visualization (fluoroscopy, ultrasound), and intraoperative position and orientation of surgical instruments or bone sections (using 3D localises). Data merging based on the matching of preoperative imaging (CT scans, MRI, standard X-rays) and intraoperative visualization (anatomical landmarks, or bone surfaces digitized intraoperatively via 3D localiser; intraoperative ultrasound images processed for delineation of bone contours). (2) In cases where only intraoperative images are used for computer-assisted surgical navigation, the calibration of the intraoperative imaging system replaces the merged data system, which is then no longer necessary. (3) A system that provides aid in decision-making, so that the surgical approach is planned on basis of multimodal information: the interactive positioning of surgical instruments or bone sections transmitted via pre- or intraoperative images, display of elements to guide surgical navigation (direction, axis, orientation, length and diameter of a surgical instrument, impingement, etc. ). And (4) A system that monitors the surgical procedure, thereby ensuring that the optimal strategy defined at the preoperative stage is taken into account. It is possible that computer-assisted orthopedic surgery systems will enable surgeons to better assess the accuracy and reliability of the various operative techniques, an indispensable stage in the optimization of surgery.

  20. Novel Image Quality Control Systems(Add-On). Innovative Computational Methods for Inverse Problems in Optical and SAR Imaging

    DTIC Science & Technology

    2007-02-28

    Iterative Ultrasonic Signal and Image Deconvolution for Estimation of the Complex Medium Response, International Journal of Imaging Systems and...1767-1782, 2006. 31. Z. Mu, R. Plemmons, and P. Santago. Iterative Ultrasonic Signal and Image Deconvolution for Estimation of the Complex...rigorous mathematical and computational research on inverse problems in optical imaging of direct interest to the Army and also the intelligence agencies

  1. Detailed description of the Mayo/IBM PACS

    NASA Astrophysics Data System (ADS)

    Gehring, Dale G.; Persons, Kenneth R.; Rothman, Melvyn L.; Salutz, James R.; Morin, Richard L.

    1991-07-01

    The Mayo Clinic and IBM/Rochester have jointly developed a picture archiving system (PACS) for use with Mayo's MRI and Neuro-CT imaging modalities. The system was developed to replace the imaging system's vendor-supplied magnetic tape archiving capability. The system consists of seven MR imagers and nine CT scanners, each interfaced to the PACS via IBM Personal System/2(tm) (PS/2) computers, which act as gateways from the imaging modality to the PACS network. The PAC system operates on the token-ring component of Mayo's city-wide local area network. Also on the PACS network are four optical storage subsystems used for image archival, three optical subsystems used for image retrieval, an IBM Application System/400(tm) (AS/400) computer used for database management and multiple PS/2-based image display systems and their image servers.

  2. Computational efficiency improvements for image colorization

    NASA Astrophysics Data System (ADS)

    Yu, Chao; Sharma, Gaurav; Aly, Hussein

    2013-03-01

    We propose an efficient algorithm for colorization of greyscale images. As in prior work, colorization is posed as an optimization problem: a user specifies the color for a few scribbles drawn on the greyscale image and the color image is obtained by propagating color information from the scribbles to surrounding regions, while maximizing the local smoothness of colors. In this formulation, colorization is obtained by solving a large sparse linear system, which normally requires substantial computation and memory resources. Our algorithm improves the computational performance through three innovations over prior colorization implementations. First, the linear system is solved iteratively without explicitly constructing the sparse matrix, which significantly reduces the required memory. Second, we formulate each iteration in terms of integral images obtained by dynamic programming, reducing repetitive computation. Third, we use a coarseto- fine framework, where a lower resolution subsampled image is first colorized and this low resolution color image is upsampled to initialize the colorization process for the fine level. The improvements we develop provide significant speedup and memory savings compared to the conventional approach of solving the linear system directly using off-the-shelf sparse solvers, and allow us to colorize images with typical sizes encountered in realistic applications on typical commodity computing platforms.

  3. The development of a specialized processor for a space-based multispectral earth imager

    NASA Astrophysics Data System (ADS)

    Khedr, Mostafa E.

    2008-10-01

    This work was done in the Department of Computer Engineering, Lvov Polytechnic National University, Lvov, Ukraine, as a thesis entitled "Space Imager Computer System for Raw Video Data Processing" [1]. This work describes the synthesis and practical implementation of a specialized computer system for raw data control and processing onboard a satellite MultiSpectral earth imager. This computer system is intended for satellites with resolution in the range of one meter with 12-bit precession. The design is based mostly on general off-the-shelf components such as (FPGAs) plus custom designed software for interfacing with PC and test equipment. The designed system was successfully manufactured and now fully functioning in orbit.

  4. Computer imaging and workflow systems in the business office.

    PubMed

    Adams, W T; Veale, F H; Helmick, P M

    1999-05-01

    Computer imaging and workflow technology automates many business processes that currently are performed using paper processes. Documents are scanned into the imaging system and placed in electronic patient account folders. Authorized users throughout the organization, including preadmission, verification, admission, billing, cash posting, customer service, and financial counseling staff, have online access to the information they need when they need it. Such streamlining of business functions can increase collections and customer satisfaction while reducing labor, supply, and storage costs. Because the costs of a comprehensive computer imaging and workflow system can be considerable, healthcare organizations should consider implementing parts of such systems that can be cost-justified or include implementation as part of a larger strategic technology initiative.

  5. Real-time computer treatment of THz passive device images with the high image quality

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.

    2012-06-01

    We demonstrate real-time computer code improving significantly the quality of images captured by the passive THz imaging system. The code is not only designed for a THz passive device: it can be applied to any kind of such devices and active THz imaging systems as well. We applied our code for computer processing of images captured by four passive THz imaging devices manufactured by different companies. It should be stressed that computer processing of images produced by different companies requires using the different spatial filters usually. The performance of current version of the computer code is greater than one image per second for a THz image having more than 5000 pixels and 24 bit number representation. Processing of THz single image produces about 20 images simultaneously corresponding to various spatial filters. The computer code allows increasing the number of pixels for processed images without noticeable reduction of image quality. The performance of the computer code can be increased many times using parallel algorithms for processing the image. We develop original spatial filters which allow one to see objects with sizes less than 2 cm. The imagery is produced by passive THz imaging devices which captured the images of objects hidden under opaque clothes. For images with high noise we develop an approach which results in suppression of the noise after using the computer processing and we obtain the good quality image. With the aim of illustrating the efficiency of the developed approach we demonstrate the detection of the liquid explosive, ordinary explosive, knife, pistol, metal plate, CD, ceramics, chocolate and other objects hidden under opaque clothes. The results demonstrate the high efficiency of our approach for the detection of hidden objects and they are a very promising solution for the security problem.

  6. Classroom Laboratory Report: Using an Image Database System in Engineering Education.

    ERIC Educational Resources Information Center

    Alam, Javed; And Others

    1991-01-01

    Describes an image database system assembled using separate computer components that was developed to overcome text-only computer hardware storage and retrieval limitations for a pavement design class. (JJK)

  7. Fast iterative image reconstruction using sparse matrix factorization with GPU acceleration

    NASA Astrophysics Data System (ADS)

    Zhou, Jian; Qi, Jinyi

    2011-03-01

    Statistically based iterative approaches for image reconstruction have gained much attention in medical imaging. An accurate system matrix that defines the mapping from the image space to the data space is the key to high-resolution image reconstruction. However, an accurate system matrix is often associated with high computational cost and huge storage requirement. Here we present a method to address this problem by using sparse matrix factorization and parallel computing on a graphic processing unit (GPU).We factor the accurate system matrix into three sparse matrices: a sinogram blurring matrix, a geometric projection matrix, and an image blurring matrix. The sinogram blurring matrix models the detector response. The geometric projection matrix is based on a simple line integral model. The image blurring matrix is to compensate for the line-of-response (LOR) degradation due to the simplified geometric projection matrix. The geometric projection matrix is precomputed, while the sinogram and image blurring matrices are estimated by minimizing the difference between the factored system matrix and the original system matrix. The resulting factored system matrix has much less number of nonzero elements than the original system matrix and thus substantially reduces the storage and computation cost. The smaller size also allows an efficient implement of the forward and back projectors on GPUs, which have limited amount of memory. Our simulation studies show that the proposed method can dramatically reduce the computation cost of high-resolution iterative image reconstruction. The proposed technique is applicable to image reconstruction for different imaging modalities, including x-ray CT, PET, and SPECT.

  8. System Optimization and Iterative Image Reconstruction in Photoacoustic Computed Tomography for Breast Imaging

    NASA Astrophysics Data System (ADS)

    Lou, Yang

    Photoacoustic computed tomography(PACT), also known as optoacoustic tomography (OAT), is an emerging imaging technique that has developed rapidly in recent years. The combination of the high optical contrast and the high acoustic resolution of this hybrid imaging technique makes it a promising candidate for human breast imaging, where conventional imaging techniques including X-ray mammography, B-mode ultrasound, and MRI suffer from low contrast, low specificity for certain breast types, and additional risks related to ionizing radiation. Though significant works have been done to push the frontier of PACT breast imaging, it is still challenging to successfully build a PACT breast imaging system and apply it to wide clinical use because of various practical reasons. First, computer simulation studies are often conducted to guide imaging system designs, but the numerical phantoms employed in most previous works consist of simple geometries and do not reflect the true anatomical structures within the breast. Therefore the effectiveness of such simulation-guided PACT system in clinical experiments will be compromised. Second, it is challenging to design a system to simultaneously illuminate the entire breast with limited laser power. Some heuristic designs have been proposed where the illumination is non-stationary during the imaging procedure, but the impact of employing such a design has not been carefully studied. Third, current PACT imaging systems are often optimized with respect to physical measures such as resolution or signal-to-noise ratio (SNR). It would be desirable to establish an assessing framework where the detectability of breast tumor can be directly quantified, therefore the images produced by such optimized imaging systems are not only visually appealing, but most informative in terms of the tumor detection task. Fourth, when imaging a large three-dimensional (3D) object such as the breast, iterative reconstruction algorithms are often utilized to alleviate the need to collect densely sampled measurement data hence a long scanning time. However, the heavy computation burden associated with iterative algorithms largely hinders its application in PACT breast imaging. This dissertation is dedicated to address these aforementioned problems in PACT breast imaging. A method that generates anatomically realistic numerical breast phantoms is first proposed to facilitate computer simulation studies in PACT. The non-stationary illumination designs for PACT breast imaging are then systematically investigated in terms of its impact on reconstructed images. We then apply signal detection theory to assess different system designs to demonstrate how an objective, task-based measure can be established for PACT breast imaging. To address the slow computation time of iterative algorithms for PACT imaging, we propose an acceleration method that employs an approximated but much faster adjoint operator during iterations, which can reduce the computation time by a factor of six without significantly compromising image quality. Finally, some clinical results are presented to demonstrate that the PACT breast imaging can resolve most major and fine vascular structures within the breast, along with some pathological biomarkers that may indicate tumor development.

  9. The microcomputer in the dental office: a new diagnostic aid.

    PubMed

    van der Stelt, P F

    1985-06-01

    The first computer applications in the dental office were based upon standard accountancy procedures. Recently, more and more computer applications have become available to meet the specific requirements of dental practice. This implies not only business procedures, but also facilities to store patient records in the system and retrieve them easily. Another development concerns the automatic calculation of diagnostic data such as those provided in cephalometric analysis. Furthermore, growth and surgical results in the craniofacial area can be predicted by computerized extrapolation. Computers have been useful in obtaining the patient's anamnestic data objectively and for the making of decisions based on such data. Computer-aided instruction systems have been developed for undergraduate students to bridge the gap between textbook and patient interaction without the risks inherent in the latter. Radiology will undergo substantial changes as a result of the application of electronic imaging devices instead of the conventional radiographic films. Computer-assisted electronic imaging will enable image processing, image enhancement, pattern recognition and data transmission for consultation and storage purposes. Image processing techniques will increase image quality whilst still allowing low-dose systems. Standardization of software and system configuration and the development of 'user friendly' programs is the major concern for the near future.

  10. High frame-rate computational ghost imaging system using an optical fiber phased array and a low-pixel APD array.

    PubMed

    Liu, Chunbo; Chen, Jingqiu; Liu, Jiaxin; Han, Xiang'e

    2018-04-16

    To obtain a high imaging frame rate, a computational ghost imaging system scheme is proposed based on optical fiber phased array (OFPA). Through high-speed electro-optic modulators, the randomly modulated OFPA can provide much faster speckle projection, which can be precomputed according to the geometry of the fiber array and the known phases for modulation. Receiving the signal light with a low-pixel APD array can effectively decrease the requirement on sampling quantity and computation complexity owing to the reduced data dimensionality while avoiding the image aliasing due to the spatial periodicity of the speckles. The results of analysis and simulation show that the frame rate of the proposed imaging system can be significantly improved compared with traditional systems.

  11. Search systems and computer-implemented search methods

    DOEpatents

    Payne, Deborah A.; Burtner, Edwin R.; Hampton, Shawn D.; Gillen, David S.; Henry, Michael J.

    2017-03-07

    Search systems and computer-implemented search methods are described. In one aspect, a search system includes a communications interface configured to access a plurality of data items of a collection, wherein the data items include a plurality of image objects individually comprising image data utilized to generate an image of the respective data item. The search system may include processing circuitry coupled with the communications interface and configured to process the image data of the data items of the collection to identify a plurality of image content facets which are indicative of image content contained within the images and to associate the image objects with the image content facets and a display coupled with the processing circuitry and configured to depict the image objects associated with the image content facets.

  12. Search systems and computer-implemented search methods

    DOEpatents

    Payne, Deborah A.; Burtner, Edwin R.; Bohn, Shawn J.; Hampton, Shawn D.; Gillen, David S.; Henry, Michael J.

    2015-12-22

    Search systems and computer-implemented search methods are described. In one aspect, a search system includes a communications interface configured to access a plurality of data items of a collection, wherein the data items include a plurality of image objects individually comprising image data utilized to generate an image of the respective data item. The search system may include processing circuitry coupled with the communications interface and configured to process the image data of the data items of the collection to identify a plurality of image content facets which are indicative of image content contained within the images and to associate the image objects with the image content facets and a display coupled with the processing circuitry and configured to depict the image objects associated with the image content facets.

  13. An information gathering system for medical image inspection

    NASA Astrophysics Data System (ADS)

    Lee, Young-Jin; Bajcsy, Peter

    2005-04-01

    We present an information gathering system for medical image inspection that consists of software tools for capturing computer-centric and human-centric information. Computer-centric information includes (1) static annotations, such as (a) image drawings enclosing any selected area, a set of areas with similar colors, a set of salient points, and (b) textual descriptions associated with either image drawings or links between pairs of image drawings, and (2) dynamic (or temporal) information, such as mouse movements, zoom level changes, image panning and frame selections from an image stack. Human-centric information is represented by video and audio signals that are acquired by computer-mounted cameras and microphones. The short-term goal of the presented system is to facilitate learning of medical novices from medical experts, while the long-term goal is to data mine all information about image inspection for assisting in making diagnoses. In this work, we built basic software functionality for gathering computer-centric and human-centric information of the aforementioned variables. Next, we developed the information playback capabilities of all gathered information for educational purposes. Finally, we prototyped text-based and image template-based search engines to retrieve information from recorded annotations, for example, (a) find all annotations containing the word "blood vessels", or (b) search for similar areas to a selected image area. The information gathering system for medical image inspection reported here has been tested with images from the Histology Atlas database.

  14. A Medical Image Backup Architecture Based on a NoSQL Database and Cloud Computing Services.

    PubMed

    Santos Simões de Almeida, Luan Henrique; Costa Oliveira, Marcelo

    2015-01-01

    The use of digital systems for storing medical images generates a huge volume of data. Digital images are commonly stored and managed on a Picture Archiving and Communication System (PACS), under the DICOM standard. However, PACS is limited because it is strongly dependent on the server's physical space. Alternatively, Cloud Computing arises as an extensive, low cost, and reconfigurable resource. However, medical images contain patient information that can not be made available in a public cloud. Therefore, a mechanism to anonymize these images is needed. This poster presents a solution for this issue by taking digital images from PACS, converting the information contained in each image file to a NoSQL database, and using cloud computing to store digital images.

  15. A specialized plug-in software module for computer-aided quantitative measurement of medical images.

    PubMed

    Wang, Q; Zeng, Y J; Huo, P; Hu, J L; Zhang, J H

    2003-12-01

    This paper presents a specialized system for quantitative measurement of medical images. Using Visual C++, we developed a computer-aided software based on Image-Pro Plus (IPP), a software development platform. When transferred to the hard disk of a computer by an MVPCI-V3A frame grabber, medical images can be automatically processed by our own IPP plug-in for immunohistochemical analysis, cytomorphological measurement and blood vessel segmentation. In 34 clinical studies, the system has shown its high stability, reliability and ease of utility.

  16. Architectures for single-chip image computing

    NASA Astrophysics Data System (ADS)

    Gove, Robert J.

    1992-04-01

    This paper will focus on the architectures of VLSI programmable processing components for image computing applications. TI, the maker of industry-leading RISC, DSP, and graphics components, has developed an architecture for a new-generation of image processors capable of implementing a plurality of image, graphics, video, and audio computing functions. We will show that the use of a single-chip heterogeneous MIMD parallel architecture best suits this class of processors--those which will dominate the desktop multimedia, document imaging, computer graphics, and visualization systems of this decade.

  17. Sharp-Focus Composite Microscope Imaging by Computer

    NASA Technical Reports Server (NTRS)

    Wall, R. J.

    1983-01-01

    Enhanced depth of focus aids medical analysis. Computer image-processing system synthesizes sharply-focused composite picture from series of photomicrographs of same object taken at different depths. Computer rejects blured parts of each photomicrograph. Remaining in focus portions form focused composite. System used to study alveolar lung tissue and has applications in medicine and physical sciences.

  18. Computer analysis of arteriograms

    NASA Technical Reports Server (NTRS)

    Selzer, R. H.; Armstrong, J. H.; Beckenbach, E. B.; Blankenhorn, D. H.; Crawford, D. W.; Brooks, S. H.; Sanmarco, M. E.

    1977-01-01

    A computer system has been developed to quantify the degree of atherosclerosis in the human femoral artery. The analysis involves first scanning and digitizing angiographic film, then tracking the outline of the arterial image and finally computing the relative amount of roughness or irregularity in the vessel wall. The image processing system and method are described.

  19. A User's Applications of Imaging Techniques: The University of Maryland Historic Textile Database.

    ERIC Educational Resources Information Center

    Anderson, Clarita S.

    1991-01-01

    Describes the incorporation of textile images into the University of Maryland Historic Textile Database by a computer user rather than a computer expert. Selection of a database management system is discussed, and PICTUREPOWER, a system that integrates photographic quality images with text and numeric information in databases, is described. (three…

  20. Survey of computer vision technology for UVA navigation

    NASA Astrophysics Data System (ADS)

    Xie, Bo; Fan, Xiang; Li, Sijian

    2017-11-01

    Navigation based on computer version technology, which has the characteristics of strong independence, high precision and is not susceptible to electrical interference, has attracted more and more attention in the filed of UAV navigation research. Early navigation project based on computer version technology mainly applied to autonomous ground robot. In recent years, the visual navigation system is widely applied to unmanned machine, deep space detector and underwater robot. That further stimulate the research of integrated navigation algorithm based on computer version technology. In China, with many types of UAV development and two lunar exploration, the three phase of the project started, there has been significant progress in the study of visual navigation. The paper expounds the development of navigation based on computer version technology in the filed of UAV navigation research and draw a conclusion that visual navigation is mainly applied to three aspects as follows.(1) Acquisition of UAV navigation parameters. The parameters, including UAV attitude, position and velocity information could be got according to the relationship between the images from sensors and carrier's attitude, the relationship between instant matching images and the reference images and the relationship between carrier's velocity and characteristics of sequential images.(2) Autonomous obstacle avoidance. There are many ways to achieve obstacle avoidance in UAV navigation. The methods based on computer version technology ,including feature matching, template matching, image frames and so on, are mainly introduced. (3) The target tracking, positioning. Using the obtained images, UAV position is calculated by using optical flow method, MeanShift algorithm, CamShift algorithm, Kalman filtering and particle filter algotithm. The paper expounds three kinds of mainstream visual system. (1) High speed visual system. It uses parallel structure, with which image detection and processing are carried out at high speed. The system is applied to rapid response system. (2) The visual system of distributed network. There are several discrete image data acquisition sensor in different locations, which transmit image data to the node processor to increase the sampling rate. (3) The visual system combined with observer. The system combines image sensors with the external observers to make up for lack of visual equipment. To some degree, these systems overcome lacks of the early visual system, including low frequency, low processing efficiency and strong noise. In the end, the difficulties of navigation based on computer version technology in practical application are briefly discussed. (1) Due to the huge workload of image operation , the real-time performance of the system is poor. (2) Due to the large environmental impact , the anti-interference ability of the system is poor.(3) Due to the ability to work in a particular environment, the system has poor adaptability.

  1. Novel techniques for data decomposition and load balancing for parallel processing of vision systems: Implementation and evaluation using a motion estimation system

    NASA Technical Reports Server (NTRS)

    Choudhary, Alok Nidhi; Leung, Mun K.; Huang, Thomas S.; Patel, Janak H.

    1989-01-01

    Computer vision systems employ a sequence of vision algorithms in which the output of an algorithm is the input of the next algorithm in the sequence. Algorithms that constitute such systems exhibit vastly different computational characteristics, and therefore, require different data decomposition techniques and efficient load balancing techniques for parallel implementation. However, since the input data for a task is produced as the output data of the previous task, this information can be exploited to perform knowledge based data decomposition and load balancing. Presented here are algorithms for a motion estimation system. The motion estimation is based on the point correspondence between the involved images which are a sequence of stereo image pairs. Researchers propose algorithms to obtain point correspondences by matching feature points among stereo image pairs at any two consecutive time instants. Furthermore, the proposed algorithms employ non-iterative procedures, which results in saving considerable amounts of computation time. The system consists of the following steps: (1) extraction of features; (2) stereo match of images in one time instant; (3) time match of images from consecutive time instants; (4) stereo match to compute final unambiguous points; and (5) computation of motion parameters.

  2. A head movement image (HMI)-controlled computer mouse for people with disabilities.

    PubMed

    Chen, Yu-Luen; Chen, Weoi-Luen; Kuo, Te-Son; Lai, Jin-Shin

    2003-02-04

    This study proposes image processing and microprocessor technology for use in developing a head movement image (HMI)-controlled computer mouse system for the spinal cord injured (SCI). The system controls the movement and direction of the mouse cursor by capturing head movement images using a marker installed on the user's headset. In the clinical trial, this new mouse system was compared with an infrared-controlled mouse system on various tasks with nine subjects with SCI. The results were favourable to the new mouse system. The differences between the new mouse system and the infrared-controlled mouse were reaching statistical significance in each of the test situations (p<0.05). The HMI-controlled computer mouse improves the input speed. People with disabilities need only wear the headset and move their heads to freely control the movement of the mouse cursor.

  3. SU-D-BRD-02: A Web-Based Image Processing and Plan Evaluation Platform (WIPPEP) for Future Cloud-Based Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chai, X; Liu, L; Xing, L

    Purpose: Visualization and processing of medical images and radiation treatment plan evaluation have traditionally been constrained to local workstations with limited computation power and ability of data sharing and software update. We present a web-based image processing and planning evaluation platform (WIPPEP) for radiotherapy applications with high efficiency, ubiquitous web access, and real-time data sharing. Methods: This software platform consists of three parts: web server, image server and computation server. Each independent server communicates with each other through HTTP requests. The web server is the key component that provides visualizations and user interface through front-end web browsers and relay informationmore » to the backend to process user requests. The image server serves as a PACS system. The computation server performs the actual image processing and dose calculation. The web server backend is developed using Java Servlets and the frontend is developed using HTML5, Javascript, and jQuery. The image server is based on open source DCME4CHEE PACS system. The computation server can be written in any programming language as long as it can send/receive HTTP requests. Our computation server was implemented in Delphi, Python and PHP, which can process data directly or via a C++ program DLL. Results: This software platform is running on a 32-core CPU server virtually hosting the web server, image server, and computation servers separately. Users can visit our internal website with Chrome browser, select a specific patient, visualize image and RT structures belonging to this patient and perform image segmentation running Delphi computation server and Monte Carlo dose calculation on Python or PHP computation server. Conclusion: We have developed a webbased image processing and plan evaluation platform prototype for radiotherapy. This system has clearly demonstrated the feasibility of performing image processing and plan evaluation platform through a web browser and exhibited potential for future cloud based radiotherapy.« less

  4. Autonomous control systems: applications to remote sensing and image processing

    NASA Astrophysics Data System (ADS)

    Jamshidi, Mohammad

    2001-11-01

    One of the main challenges of any control (or image processing) paradigm is being able to handle complex systems under unforeseen uncertainties. A system may be called complex here if its dimension (order) is too high and its model (if available) is nonlinear, interconnected, and information on the system is uncertain such that classical techniques cannot easily handle the problem. Examples of complex systems are power networks, space robotic colonies, national air traffic control system, and integrated manufacturing plant, the Hubble Telescope, the International Space Station, etc. Soft computing, a consortia of methodologies such as fuzzy logic, neuro-computing, genetic algorithms and genetic programming, has proven to be powerful tools for adding autonomy and semi-autonomy to many complex systems. For such systems the size of soft computing control architecture will be nearly infinite. In this paper new paradigms using soft computing approaches are utilized to design autonomous controllers and image enhancers for a number of application areas. These applications are satellite array formations for synthetic aperture radar interferometry (InSAR) and enhancement of analog and digital images.

  5. Computers are stepping stones to improved imaging.

    PubMed

    Freiherr, G

    1991-02-01

    Never before has the radiology industry embraced the computer with such enthusiasm. Graphics supercomputers as well as UNIX- and RISC-based computing platforms are turning up in every digital imaging modality and especially in systems designed to enhance and transmit images, says author Greg Freiherr on assignment for Computers in Healthcare at the Radiological Society of North America conference in Chicago.

  6. HORN-6 special-purpose clustered computing system for electroholography.

    PubMed

    Ichihashi, Yasuyuki; Nakayama, Hirotaka; Ito, Tomoyoshi; Masuda, Nobuyuki; Shimobaba, Tomoyoshi; Shiraki, Atsushi; Sugie, Takashige

    2009-08-03

    We developed the HORN-6 special-purpose computer for holography. We designed and constructed the HORN-6 board to handle an object image composed of one million points and constructed a cluster system composed of 16 HORN-6 boards. Using this HORN-6 cluster system, we succeeded in creating a computer-generated hologram of a three-dimensional image composed of 1,000,000 points at a rate of 1 frame per second, and a computer-generated hologram of an image composed of 100,000 points at a rate of 10 frames per second, which is near video rate, when the size of a computer-generated hologram is 1,920 x 1,080. The calculation speed is approximately 4,600 times faster than that of a personal computer with an Intel 3.4-GHz Pentium 4 CPU.

  7. FAST: framework for heterogeneous medical image computing and visualization.

    PubMed

    Smistad, Erik; Bozorgi, Mohammadmehdi; Lindseth, Frank

    2015-11-01

    Computer systems are becoming increasingly heterogeneous in the sense that they consist of different processors, such as multi-core CPUs and graphic processing units. As the amount of medical image data increases, it is crucial to exploit the computational power of these processors. However, this is currently difficult due to several factors, such as driver errors, processor differences, and the need for low-level memory handling. This paper presents a novel FrAmework for heterogeneouS medical image compuTing and visualization (FAST). The framework aims to make it easier to simultaneously process and visualize medical images efficiently on heterogeneous systems. FAST uses common image processing programming paradigms and hides the details of memory handling from the user, while enabling the use of all processors and cores on a system. The framework is open-source, cross-platform and available online. Code examples and performance measurements are presented to show the simplicity and efficiency of FAST. The results are compared to the insight toolkit (ITK) and the visualization toolkit (VTK) and show that the presented framework is faster with up to 20 times speedup on several common medical imaging algorithms. FAST enables efficient medical image computing and visualization on heterogeneous systems. Code examples and performance evaluations have demonstrated that the toolkit is both easy to use and performs better than existing frameworks, such as ITK and VTK.

  8. ROS-IGTL-Bridge: an open network interface for image-guided therapy using the ROS environment.

    PubMed

    Frank, Tobias; Krieger, Axel; Leonard, Simon; Patel, Niravkumar A; Tokuda, Junichi

    2017-08-01

    With the growing interest in advanced image-guidance for surgical robot systems, rapid integration and testing of robotic devices and medical image computing software are becoming essential in the research and development. Maximizing the use of existing engineering resources built on widely accepted platforms in different fields, such as robot operating system (ROS) in robotics and 3D Slicer in medical image computing could simplify these tasks. We propose a new open network bridge interface integrated in ROS to ensure seamless cross-platform data sharing. A ROS node named ROS-IGTL-Bridge was implemented. It establishes a TCP/IP network connection between the ROS environment and external medical image computing software using the OpenIGTLink protocol. The node exports ROS messages to the external software over the network and vice versa simultaneously, allowing seamless and transparent data sharing between the ROS-based devices and the medical image computing platforms. Performance tests demonstrated that the bridge could stream transforms, strings, points, and images at 30 fps in both directions successfully. The data transfer latency was <1.2 ms for transforms, strings and points, and 25.2 ms for color VGA images. A separate test also demonstrated that the bridge could achieve 900 fps for transforms. Additionally, the bridge was demonstrated in two representative systems: a mock image-guided surgical robot setup consisting of 3D slicer, and Lego Mindstorms with ROS as a prototyping and educational platform for IGT research; and the smart tissue autonomous robot surgical setup with 3D Slicer. The study demonstrated that the bridge enabled cross-platform data sharing between ROS and medical image computing software. This will allow rapid and seamless integration of advanced image-based planning/navigation offered by the medical image computing software such as 3D Slicer into ROS-based surgical robot systems.

  9. Image change detection systems, methods, and articles of manufacture

    DOEpatents

    Jones, James L.; Lassahn, Gordon D.; Lancaster, Gregory D.

    2010-01-05

    Aspects of the invention relate to image change detection systems, methods, and articles of manufacture. According to one aspect, a method of identifying differences between a plurality of images is described. The method includes loading a source image and a target image into memory of a computer, constructing source and target edge images from the source and target images to enable processing of multiband images, displaying the source and target images on a display device of the computer, aligning the source and target edge images, switching displaying of the source image and the target image on the display device, to enable identification of differences between the source image and the target image.

  10. Auto-Versioning Systems Image Manager

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pezzaglia, Larry

    2013-08-01

    The av_sys_image_mgr utility provides an interface for the creation, manipulation, and analysis of system boot images for computer systems. It is primarily intended to provide a convenient method for managing the introduction of changes to boot images for long-lived production HPC systems.

  11. OpenID connect as a security service in Cloud-based diagnostic imaging systems

    NASA Astrophysics Data System (ADS)

    Ma, Weina; Sartipi, Kamran; Sharghi, Hassan; Koff, David; Bak, Peter

    2015-03-01

    The evolution of cloud computing is driving the next generation of diagnostic imaging (DI) systems. Cloud-based DI systems are able to deliver better services to patients without constraining to their own physical facilities. However, privacy and security concerns have been consistently regarded as the major obstacle for adoption of cloud computing by healthcare domains. Furthermore, traditional computing models and interfaces employed by DI systems are not ready for accessing diagnostic images through mobile devices. RESTful is an ideal technology for provisioning both mobile services and cloud computing. OpenID Connect, combining OpenID and OAuth together, is an emerging REST-based federated identity solution. It is one of the most perspective open standards to potentially become the de-facto standard for securing cloud computing and mobile applications, which has ever been regarded as "Kerberos of Cloud". We introduce OpenID Connect as an identity and authentication service in cloud-based DI systems and propose enhancements that allow for incorporating this technology within distributed enterprise environment. The objective of this study is to offer solutions for secure radiology image sharing among DI-r (Diagnostic Imaging Repository) and heterogeneous PACS (Picture Archiving and Communication Systems) as well as mobile clients in the cloud ecosystem. Through using OpenID Connect as an open-source identity and authentication service, deploying DI-r and PACS to private or community clouds should obtain equivalent security level to traditional computing model.

  12. Photogrammetric calibration of the NASA-Wallops Island image intensifier system

    NASA Technical Reports Server (NTRS)

    Harp, B. F.

    1972-01-01

    An image intensifier was designed for use as one of the primary tracking systems for the barium cloud experiment at Wallops Island. Two computer programs, a definitive stellar camara calibration program and a geodetic stellar camara orientation program, were originally developed at Wallops on a GE 625 computer. A mathematical procedure for determining the image intensifier distortions is outlined, and the implementation of the model in the Wallops computer programs is described. The analytical calibration of metric cameras is also discussed.

  13. End-User Imaging DISKussions.

    ERIC Educational Resources Information Center

    McConnell, Pamela Jean

    1993-01-01

    This third in a series of articles on EDIS (Electronic Document Imaging System) technology focuses on organizational issues. Highlights include computer platforms; management information systems; computer-based skills of staff; new technology and change; time factors; financial considerations; document conversion costs; the benefits of EDIS…

  14. Massively parallel information processing systems for space applications

    NASA Technical Reports Server (NTRS)

    Schaefer, D. H.

    1979-01-01

    NASA is developing massively parallel systems for ultra high speed processing of digital image data collected by satellite borne instrumentation. Such systems contain thousands of processing elements. Work is underway on the design and fabrication of the 'Massively Parallel Processor', a ground computer containing 16,384 processing elements arranged in a 128 x 128 array. This computer uses existing technology. Advanced work includes the development of semiconductor chips containing thousands of feedthrough paths. Massively parallel image analog to digital conversion technology is also being developed. The goal is to provide compact computers suitable for real-time onboard processing of images.

  15. [Development of an original computer program FISHMet: use for molecular cytogenetic diagnosis and genome mapping by fluorescent in situ hybridization (FISH)].

    PubMed

    Iurov, Iu B; Khazatskiĭ, I A; Akindinov, V A; Dovgilov, L V; Kobrinskiĭ, B A; Vorsanova, S G

    2000-08-01

    Original software FISHMet has been developed and tried for improving the efficiency of diagnosis of hereditary diseases caused by chromosome aberrations and for chromosome mapping by fluorescent in situ hybridization (FISH) method. The program allows creation and analysis of pseudocolor chromosome images and hybridization signals in the Windows 95 system, allows computer analysis and editing of the results of pseudocolor hybridization in situ, including successive imposition of initial black-and-white images created using fluorescent filters (blue, green, and red), and editing of each image individually or of a summary pseudocolor image in BMP, TIFF, and JPEG formats. Components of image computer analysis system (LOMO, Leitz Ortoplan, and Axioplan fluorescent microscopes, COHU 4910 and Sanyo VCB-3512P CCD cameras, Miro-Video, Scion LG-3 and VG-5 image capture maps, and Pentium 100 and Pentium 200 computers) and specialized software for image capture and visualization (Scion Image PC and Video-Cup) have been used with good results in the study.

  16. Advanced processing for high-bandwidth sensor systems

    NASA Astrophysics Data System (ADS)

    Szymanski, John J.; Blain, Phil C.; Bloch, Jeffrey J.; Brislawn, Christopher M.; Brumby, Steven P.; Cafferty, Maureen M.; Dunham, Mark E.; Frigo, Janette R.; Gokhale, Maya; Harvey, Neal R.; Kenyon, Garrett; Kim, Won-Ha; Layne, J.; Lavenier, Dominique D.; McCabe, Kevin P.; Mitchell, Melanie; Moore, Kurt R.; Perkins, Simon J.; Porter, Reid B.; Robinson, S.; Salazar, Alfonso; Theiler, James P.; Young, Aaron C.

    2000-11-01

    Compute performance and algorithm design are key problems of image processing and scientific computing in general. For example, imaging spectrometers are capable of producing data in hundreds of spectral bands with millions of pixels. These data sets show great promise for remote sensing applications, but require new and computationally intensive processing. The goal of the Deployable Adaptive Processing Systems (DAPS) project at Los Alamos National Laboratory is to develop advanced processing hardware and algorithms for high-bandwidth sensor applications. The project has produced electronics for processing multi- and hyper-spectral sensor data, as well as LIDAR data, while employing processing elements using a variety of technologies. The project team is currently working on reconfigurable computing technology and advanced feature extraction techniques, with an emphasis on their application to image and RF signal processing. This paper presents reconfigurable computing technology and advanced feature extraction algorithm work and their application to multi- and hyperspectral image processing. Related projects on genetic algorithms as applied to image processing will be introduced, as will the collaboration between the DAPS project and the DARPA Adaptive Computing Systems program. Further details are presented in other talks during this conference and in other conferences taking place during this symposium.

  17. Image matrix processor for fast multi-dimensional computations

    DOEpatents

    Roberson, George P.; Skeate, Michael F.

    1996-01-01

    An apparatus for multi-dimensional computation which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination.

  18. Quantitative Comparison of Virtual Monochromatic Images of Dual Energy Computed Tomography Systems: Beam Hardening Artifact Correction and Variance in Computed Tomography Numbers: A Phantom Study.

    PubMed

    Wu, Rongli; Watanabe, Yoshiyuki; Satoh, Kazuhiko; Liao, Yen-Peng; Takahashi, Hiroto; Tanaka, Hisashi; Tomiyama, Noriyuki

    2018-05-21

    The aim of this study was to quantitatively compare the reduction in beam hardening artifact (BHA) and variance in computed tomography (CT) numbers of virtual monochromatic energy (VME) images obtained with 3 dual-energy computed tomography (DECT) systems at a given radiation dose. Five different iodine concentrations were scanned using dual-energy and single-energy (120 kVp) modes. The BHA and CT number variance were evaluated. For higher iodine concentrations, 40 and 80 mgI/mL, BHA on VME imaging was significantly decreased when the energy was higher than 50 keV (P = 0.003) and 60 keV (P < 0.001) for GE, higher than 80 keV (P < 0.001) and 70 keV (P = 0.002) for Siemens, and higher than 40 keV (P < 0.001) and 60 keV (P < 0.001) for Toshiba, compared with single-energy CT imaging. Virtual monochromatic energy imaging can decrease BHA and improve CT number accuracy in different dual-energy computed tomography systems, depending on energy levels and iodine concentrations.

  19. Computer simulation of reconstructed image for computer-generated holograms

    NASA Astrophysics Data System (ADS)

    Yasuda, Tomoki; Kitamura, Mitsuru; Watanabe, Masachika; Tsumuta, Masato; Yamaguchi, Takeshi; Yoshikawa, Hiroshi

    2009-02-01

    This report presents the results of computer simulation images for image-type Computer-Generated Holograms (CGHs) observable under white light fabricated with an electron beam lithography system. The simulated image is obtained by calculating wavelength and intensity of diffracted light traveling toward the viewing point from the CGH. Wavelength and intensity of the diffracted light are calculated using FFT image generated from interference fringe data. Parallax image of CGH corresponding to the viewing point can be easily obtained using this simulation method. Simulated image from interference fringe data was compared with reconstructed image of real CGH with an Electron Beam (EB) lithography system. According to the result, the simulated image resembled the reconstructed image of the CGH closely in shape, parallax, coloring and shade. And, in accordance with the shape of the light sources the simulated images which were changed in chroma saturation and blur by using two kinds of simulations: the several light sources method and smoothing method. In addition, as the applications of the CGH, full-color CGH and CGH with multiple images were simulated. The result was that the simulated images of those CGHs closely resembled the reconstructed image of real CGHs.

  20. Influence of the Pixel Sizes of Reference Computed Tomography on Single-photon Emission Computed Tomography Image Reconstruction Using Conjugate-gradient Algorithm.

    PubMed

    Okuda, Kyohei; Sakimoto, Shota; Fujii, Susumu; Ida, Tomonobu; Moriyama, Shigeru

    The frame-of-reference using computed-tomography (CT) coordinate system on single-photon emission computed tomography (SPECT) reconstruction is one of the advanced characteristics of the xSPECT reconstruction system. The aim of this study was to reveal the influence of the high-resolution frame-of-reference on the xSPECT reconstruction. 99m Tc line-source phantom and National Electrical Manufacturers Association (NEMA) image quality phantom were scanned using the SPECT/CT system. xSPECT reconstructions were performed with the reference CT images in different sizes of the display field-of-view (DFOV) and pixel. The pixel sizes of the reconstructed xSPECT images were close to 2.4 mm, which is acquired as originally projection data, even if the reference CT resolution was varied. The full width at half maximum (FWHM) of the line-source, absolute recovery coefficient, and background variability of image quality phantom were independent on the sizes of DFOV in the reference CT images. The results of this study revealed that the image quality of the reconstructed xSPECT images is not influenced by the resolution of frame-of-reference on SPECT reconstruction.

  1. Integral Images: Efficient Algorithms for Their Computation and Storage in Resource-Constrained Embedded Vision Systems

    PubMed Central

    Ehsan, Shoaib; Clark, Adrian F.; ur Rehman, Naveed; McDonald-Maier, Klaus D.

    2015-01-01

    The integral image, an intermediate image representation, has found extensive use in multi-scale local feature detection algorithms, such as Speeded-Up Robust Features (SURF), allowing fast computation of rectangular features at constant speed, independent of filter size. For resource-constrained real-time embedded vision systems, computation and storage of integral image presents several design challenges due to strict timing and hardware limitations. Although calculation of the integral image only consists of simple addition operations, the total number of operations is large owing to the generally large size of image data. Recursive equations allow substantial decrease in the number of operations but require calculation in a serial fashion. This paper presents two new hardware algorithms that are based on the decomposition of these recursive equations, allowing calculation of up to four integral image values in a row-parallel way without significantly increasing the number of operations. An efficient design strategy is also proposed for a parallel integral image computation unit to reduce the size of the required internal memory (nearly 35% for common HD video). Addressing the storage problem of integral image in embedded vision systems, the paper presents two algorithms which allow substantial decrease (at least 44.44%) in the memory requirements. Finally, the paper provides a case study that highlights the utility of the proposed architectures in embedded vision systems. PMID:26184211

  2. Integral Images: Efficient Algorithms for Their Computation and Storage in Resource-Constrained Embedded Vision Systems.

    PubMed

    Ehsan, Shoaib; Clark, Adrian F; Naveed ur Rehman; McDonald-Maier, Klaus D

    2015-07-10

    The integral image, an intermediate image representation, has found extensive use in multi-scale local feature detection algorithms, such as Speeded-Up Robust Features (SURF), allowing fast computation of rectangular features at constant speed, independent of filter size. For resource-constrained real-time embedded vision systems, computation and storage of integral image presents several design challenges due to strict timing and hardware limitations. Although calculation of the integral image only consists of simple addition operations, the total number of operations is large owing to the generally large size of image data. Recursive equations allow substantial decrease in the number of operations but require calculation in a serial fashion. This paper presents two new hardware algorithms that are based on the decomposition of these recursive equations, allowing calculation of up to four integral image values in a row-parallel way without significantly increasing the number of operations. An efficient design strategy is also proposed for a parallel integral image computation unit to reduce the size of the required internal memory (nearly 35% for common HD video). Addressing the storage problem of integral image in embedded vision systems, the paper presents two algorithms which allow substantial decrease (at least 44.44%) in the memory requirements. Finally, the paper provides a case study that highlights the utility of the proposed architectures in embedded vision systems.

  3. Broadband Terahertz Computed Tomography Using a 5k-pixel Real-time THz Camera

    NASA Astrophysics Data System (ADS)

    Trichopoulos, Georgios C.; Sertel, Kubilay

    2015-07-01

    We present a novel THz computed tomography system that enables fast 3-dimensional imaging and spectroscopy in the 0.6-1.2 THz band. The system is based on a new real-time broadband THz camera that enables rapid acquisition of multiple cross-sectional images required in computed tomography. Tomographic reconstruction is achieved using digital images from the densely-packed large-format (80×64) focal plane array sensor located behind a hyper-hemispherical silicon lens. Each pixel of the sensor array consists of an 85 μm × 92 μm lithographically fabricated wideband dual-slot antenna, monolithically integrated with an ultra-fast diode tuned to operate in the 0.6-1.2 THz regime. Concurrently, optimum impedance matching was implemented for maximum pixel sensitivity, enabling 5 frames-per-second image acquisition speed. As such, the THz computed tomography system generates diffraction-limited resolution cross-section images as well as the three-dimensional models of various opaque and partially transparent objects. As an example, an over-the-counter vitamin supplement pill is imaged and its material composition is reconstructed. The new THz camera enables, for the first time, a practical application of THz computed tomography for non-destructive evaluation and biomedical imaging.

  4. Development of an assisting detection system for early infarct diagnosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sim, K. S.; Nia, M. E.; Ee, C. S.

    2015-04-24

    In this paper, a detection assisting system for early infarct detection is developed. This new developed method is used to assist the medical practitioners to diagnose infarct from computed tomography images of brain. Using this assisting system, the infarct could be diagnosed at earlier stages. The non-contrast computed tomography (NCCT) brain images are the data set used for this system. Detection module extracts the pixel data from NCCT brain images, and produces the colourized version of images. The proposed method showed great potential in detecting infarct, and helps medical practitioners to make earlier and better diagnoses.

  5. Numerical image manipulation and display in solar astronomy

    NASA Technical Reports Server (NTRS)

    Levine, R. H.; Flagg, J. C.

    1977-01-01

    The paper describes the system configuration and data manipulation capabilities of a solar image display system which allows interactive analysis of visual images and on-line manipulation of digital data. Image processing features include smoothing or filtering of images stored in the display, contrast enhancement, and blinking or flickering images. A computer with a core memory of 28,672 words provides the capacity to perform complex calculations based on stored images, including computing histograms, selecting subsets of images for further analysis, combining portions of images to produce images with physical meaning, and constructing mathematical models of features in an image. Some of the processing modes are illustrated by some image sequences from solar observations.

  6. Realization of the FPGA-based reconfigurable computing environment by the example of morphological processing of a grayscale image

    NASA Astrophysics Data System (ADS)

    Shatravin, V.; Shashev, D. V.

    2018-05-01

    Currently, robots are increasingly being used in every industry. One of the most high-tech areas is creation of completely autonomous robotic devices including vehicles. The results of various global research prove the efficiency of vision systems in autonomous robotic devices. However, the use of these systems is limited because of the computational and energy resources available in the robot device. The paper describes the results of applying the original approach for image processing on reconfigurable computing environments by the example of morphological operations over grayscale images. This approach is prospective for realizing complex image processing algorithms and real-time image analysis in autonomous robotic devices.

  7. Tolerance analysis through computational imaging simulations

    NASA Astrophysics Data System (ADS)

    Birch, Gabriel C.; LaCasse, Charles F.; Stubbs, Jaclynn J.; Dagel, Amber L.; Bradley, Jon

    2017-11-01

    The modeling and simulation of non-traditional imaging systems require holistic consideration of the end-to-end system. We demonstrate this approach through a tolerance analysis of a random scattering lensless imaging system.

  8. Real-time image reconstruction and display system for MRI using a high-speed personal computer.

    PubMed

    Haishi, T; Kose, K

    1998-09-01

    A real-time NMR image reconstruction and display system was developed using a high-speed personal computer and optimized for the 32-bit multitasking Microsoft Windows 95 operating system. The system was operated at various CPU clock frequencies by changing the motherboard clock frequency and the processor/bus frequency ratio. When the Pentium CPU was used at the 200 MHz clock frequency, the reconstruction time for one 128 x 128 pixel image was 48 ms and that for the image display on the enlarged 256 x 256 pixel window was about 8 ms. NMR imaging experiments were performed with three fast imaging sequences (FLASH, multishot EPI, and one-shot EPI) to demonstrate the ability of the real-time system. It was concluded that in most cases, high-speed PC would be the best choice for the image reconstruction and display system for real-time MRI. Copyright 1998 Academic Press.

  9. Computer-aided diagnostic detection system of venous beading in retinal images

    NASA Astrophysics Data System (ADS)

    Yang, Ching-Wen; Ma, DyeJyun; Chao, ShuennChing; Wang, ChuinMu; Wen, Chia-Hsien; Lo, ChienShun; Chung, Pau-Choo; Chang, Chein-I.

    2000-05-01

    The detection of venous beading in retinal images provides an early sign of diabetic retinopathy and plays an important role as a preprocessing step in diagnosing ocular diseases. We present a computer-aided diagnostic system to automatically detect venous beading of blood vessels. It comprises of two modules, referred to as the blood vessel extraction module and the venus beading detection module. The former uses a bell-shaped Gaussian kernel with 12 azimuths to extract blood vessels while the latter applies a neural network-based shape cognitron to detect venous beading among the extracted blood vessels for diagnosis. Both modules are fully computer-automated. To evaluate the proposed system, 61 retinal images (32 beaded and 29 normal images) are used for performance evaluation.

  10. Designing a wearable navigation system for image-guided cancer resection surgery

    PubMed Central

    Shao, Pengfei; Ding, Houzhu; Wang, Jinkun; Liu, Peng; Ling, Qiang; Chen, Jiayu; Xu, Junbin; Zhang, Shiwu; Xu, Ronald

    2015-01-01

    A wearable surgical navigation system is developed for intraoperative imaging of surgical margin in cancer resection surgery. The system consists of an excitation light source, a monochromatic CCD camera, a host computer, and a wearable headset unit in either of the following two modes: head-mounted display (HMD) and Google glass. In the HMD mode, a CMOS camera is installed on a personal cinema system to capture the surgical scene in real-time and transmit the image to the host computer through a USB port. In the Google glass mode, a wireless connection is established between the glass and the host computer for image acquisition and data transport tasks. A software program is written in Python to call OpenCV functions for image calibration, co-registration, fusion, and display with augmented reality. The imaging performance of the surgical navigation system is characterized in a tumor simulating phantom. Image-guided surgical resection is demonstrated in an ex vivo tissue model. Surgical margins identified by the wearable navigation system are co-incident with those acquired by a standard small animal imaging system, indicating the technical feasibility for intraoperative surgical margin detection. The proposed surgical navigation system combines the sensitivity and specificity of a fluorescence imaging system and the mobility of a wearable goggle. It can be potentially used by a surgeon to identify the residual tumor foci and reduce the risk of recurrent diseases without interfering with the regular resection procedure. PMID:24980159

  11. Designing a wearable navigation system for image-guided cancer resection surgery.

    PubMed

    Shao, Pengfei; Ding, Houzhu; Wang, Jinkun; Liu, Peng; Ling, Qiang; Chen, Jiayu; Xu, Junbin; Zhang, Shiwu; Xu, Ronald

    2014-11-01

    A wearable surgical navigation system is developed for intraoperative imaging of surgical margin in cancer resection surgery. The system consists of an excitation light source, a monochromatic CCD camera, a host computer, and a wearable headset unit in either of the following two modes: head-mounted display (HMD) and Google glass. In the HMD mode, a CMOS camera is installed on a personal cinema system to capture the surgical scene in real-time and transmit the image to the host computer through a USB port. In the Google glass mode, a wireless connection is established between the glass and the host computer for image acquisition and data transport tasks. A software program is written in Python to call OpenCV functions for image calibration, co-registration, fusion, and display with augmented reality. The imaging performance of the surgical navigation system is characterized in a tumor simulating phantom. Image-guided surgical resection is demonstrated in an ex vivo tissue model. Surgical margins identified by the wearable navigation system are co-incident with those acquired by a standard small animal imaging system, indicating the technical feasibility for intraoperative surgical margin detection. The proposed surgical navigation system combines the sensitivity and specificity of a fluorescence imaging system and the mobility of a wearable goggle. It can be potentially used by a surgeon to identify the residual tumor foci and reduce the risk of recurrent diseases without interfering with the regular resection procedure.

  12. Image-based computer-assisted diagnosis system for benign paroxysmal positional vertigo

    NASA Astrophysics Data System (ADS)

    Kohigashi, Satoru; Nakamae, Koji; Fujioka, Hiromu

    2005-04-01

    We develop the image based computer assisted diagnosis system for benign paroxysmal positional vertigo (BPPV) that consists of the balance control system simulator, the 3D eye movement simulator, and the extraction method of nystagmus response directly from an eye movement image sequence. In the system, the causes and conditions of BPPV are estimated by searching the database for record matching with the nystagmus response for the observed eye image sequence of the patient with BPPV. The database includes the nystagmus responses for simulated eye movement sequences. The eye movement velocity is obtained by using the balance control system simulator that allows us to simulate BPPV under various conditions such as canalithiasis, cupulolithiasis, number of otoconia, otoconium size, and so on. Then the eye movement image sequence is displayed on the CRT by the 3D eye movement simulator. The nystagmus responses are extracted from the image sequence by the proposed method and are stored in the database. In order to enhance the diagnosis accuracy, the nystagmus response for a newly simulated sequence is matched with that for the observed sequence. From the matched simulation conditions, the causes and conditions of BPPV are estimated. We apply our image based computer assisted diagnosis system to two real eye movement image sequences for patients with BPPV to show its validity.

  13. Software for Acquiring Image Data for PIV

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Cheung, H. M.; Kressler, Brian

    2003-01-01

    PIV Acquisition (PIVACQ) is a computer program for acquisition of data for particle-image velocimetry (PIV). In the PIV system for which PIVACQ was developed, small particles entrained in a flow are illuminated with a sheet of light from a pulsed laser. The illuminated region is monitored by a charge-coupled-device camera that operates in conjunction with a data-acquisition system that includes a frame grabber and a counter-timer board, both installed in a single computer. The camera operates in "frame-straddle" mode where a pair of images can be obtained closely spaced in time (on the order of microseconds). The frame grabber acquires image data from the camera and stores the data in the computer memory. The counter/timer board triggers the camera and synchronizes the pulsing of the laser with acquisition of data from the camera. PIVPROC coordinates all of these functions and provides a graphical user interface, through which the user can control the PIV data-acquisition system. PIVACQ enables the user to acquire a sequence of single-exposure images, display the images, process the images, and then save the images to the computer hard drive. PIVACQ works in conjunction with the PIVPROC program which processes the images of particles into the velocity field in the illuminated plane.

  14. Real-time in situ three-dimensional integral videography and surgical navigation using augmented reality: a pilot study

    PubMed Central

    Suenaga, Hideyuki; Hoang Tran, Huy; Liao, Hongen; Masamune, Ken; Dohi, Takeyoshi; Hoshi, Kazuto; Mori, Yoshiyuki; Takato, Tsuyoshi

    2013-01-01

    To evaluate the feasibility and accuracy of a three-dimensional augmented reality system incorporating integral videography for imaging oral and maxillofacial regions, based on preoperative computed tomography data. Three-dimensional surface models of the jawbones, based on the computed tomography data, were used to create the integral videography images of a subject's maxillofacial area. The three-dimensional augmented reality system (integral videography display, computed tomography, a position tracker and a computer) was used to generate a three-dimensional overlay that was projected on the surgical site via a half-silvered mirror. Thereafter, a feasibility study was performed on a volunteer. The accuracy of this system was verified on a solid model while simulating bone resection. Positional registration was attained by identifying and tracking the patient/surgical instrument's position. Thus, integral videography images of jawbones, teeth and the surgical tool were superimposed in the correct position. Stereoscopic images viewed from various angles were accurately displayed. Change in the viewing angle did not negatively affect the surgeon's ability to simultaneously observe the three-dimensional images and the patient, without special glasses. The difference in three-dimensional position of each measuring point on the solid model and augmented reality navigation was almost negligible (<1 mm); this indicates that the system was highly accurate. This augmented reality system was highly accurate and effective for surgical navigation and for overlaying a three-dimensional computed tomography image on a patient's surgical area, enabling the surgeon to understand the positional relationship between the preoperative image and the actual surgical site, with the naked eye. PMID:23703710

  15. Woods Hole Image Processing System Software implementation; using NetCDF as a software interface for image processing

    USGS Publications Warehouse

    Paskevich, Valerie F.

    1992-01-01

    The Branch of Atlantic Marine Geology has been involved in the collection, processing and digital mosaicking of high, medium and low-resolution side-scan sonar data during the past 6 years. In the past, processing and digital mosaicking has been accomplished with a dedicated, shore-based computer system. With the need to process sidescan data in the field with increased power and reduced cost of major workstations, a need to have an image processing package on a UNIX based computer system which could be utilized in the field as well as be more generally available to Branch personnel was identified. This report describes the initial development of that package referred to as the Woods Hole Image Processing System (WHIPS). The software was developed using the Unidata NetCDF software interface to allow data to be more readily portable between different computer operating systems.

  16. MIDAS - ESO's new image processing system

    NASA Astrophysics Data System (ADS)

    Banse, K.; Crane, P.; Grosbol, P.; Middleburg, F.; Ounnas, C.; Ponz, D.; Waldthausen, H.

    1983-03-01

    The Munich Image Data Analysis System (MIDAS) is an image processing system whose heart is a pair of VAX 11/780 computers linked together via DECnet. One of these computers, VAX-A, is equipped with 3.5 Mbytes of memory, 1.2 Gbytes of disk storage, and two tape drives with 800/1600 bpi density. The other computer, VAX-B, has 4.0 Mbytes of memory, 688 Mbytes of disk storage, and one tape drive with 1600/6250 bpi density. MIDAS is a command-driven system geared toward the interactive user. The type and number of parameters in a command depends on the unique parameter invoked. MIDAS is a highly modular system that provides building blocks for the undertaking of more sophisticated applications. Presently, 175 commands are available. These include the modification of the color-lookup table interactively, to enhance various image features, and the interactive extraction of subimages.

  17. Fast computational scheme of image compression for 32-bit microprocessors

    NASA Technical Reports Server (NTRS)

    Kasperovich, Leonid

    1994-01-01

    This paper presents a new computational scheme of image compression based on the discrete cosine transform (DCT), underlying JPEG and MPEG International Standards. The algorithm for the 2-d DCT computation uses integer operations (register shifts and additions / subtractions only); its computational complexity is about 8 additions per image pixel. As a meaningful example of an on-board image compression application we consider the software implementation of the algorithm for the Mars Rover (Marsokhod, in Russian) imaging system being developed as a part of Mars-96 International Space Project. It's shown that fast software solution for 32-bit microprocessors may compete with the DCT-based image compression hardware.

  18. Generation of anatomically realistic numerical phantoms for photoacoustic and ultrasonic breast imaging

    NASA Astrophysics Data System (ADS)

    Lou, Yang; Zhou, Weimin; Matthews, Thomas P.; Appleton, Catherine M.; Anastasio, Mark A.

    2017-04-01

    Photoacoustic computed tomography (PACT) and ultrasound computed tomography (USCT) are emerging modalities for breast imaging. As in all emerging imaging technologies, computer-simulation studies play a critically important role in developing and optimizing the designs of hardware and image reconstruction methods for PACT and USCT. Using computer-simulations, the parameters of an imaging system can be systematically and comprehensively explored in a way that is generally not possible through experimentation. When conducting such studies, numerical phantoms are employed to represent the physical properties of the patient or object to-be-imaged that influence the measured image data. It is highly desirable to utilize numerical phantoms that are realistic, especially when task-based measures of image quality are to be utilized to guide system design. However, most reported computer-simulation studies of PACT and USCT breast imaging employ simple numerical phantoms that oversimplify the complex anatomical structures in the human female breast. We develop and implement a methodology for generating anatomically realistic numerical breast phantoms from clinical contrast-enhanced magnetic resonance imaging data. The phantoms will depict vascular structures and the volumetric distribution of different tissue types in the breast. By assigning optical and acoustic parameters to different tissue structures, both optical and acoustic breast phantoms will be established for use in PACT and USCT studies.

  19. Acquisition of gamma camera and physiological data by computer.

    PubMed

    Hack, S N; Chang, M; Line, B R; Cooper, J A; Robeson, G H

    1986-11-01

    We have designed, implemented, and tested a new Research Data Acquisition System (RDAS) that permits a general purpose digital computer to acquire signals from both gamma camera sources and physiological signal sources concurrently. This system overcomes the limited multi-source, high speed data acquisition capabilities found in most clinically oriented nuclear medicine computers. The RDAS can simultaneously input signals from up to four gamma camera sources with a throughput of 200 kHz per source and from up to eight physiological signal sources with an aggregate throughput of 50 kHz. Rigorous testing has found the RDAS to exhibit acceptable linearity and timing characteristics. In addition, flood images obtained by this system were compared with flood images acquired by a commercial nuclear medicine computer system. National Electrical Manufacturers Association performance standards of the flood images were found to be comparable.

  20. Computer Vision and Machine Learning for Autonomous Characterization of AM Powder Feedstocks

    NASA Astrophysics Data System (ADS)

    DeCost, Brian L.; Jain, Harshvardhan; Rollett, Anthony D.; Holm, Elizabeth A.

    2017-03-01

    By applying computer vision and machine learning methods, we develop a system to characterize powder feedstock materials for metal additive manufacturing (AM). Feature detection and description algorithms are applied to create a microstructural scale image representation that can be used to cluster, compare, and analyze powder micrographs. When applied to eight commercial feedstock powders, the system classifies powder images into the correct material systems with greater than 95% accuracy. The system also identifies both representative and atypical powder images. These results suggest the possibility of measuring variations in powders as a function of processing history, relating microstructural features of powders to properties relevant to their performance in AM processes, and defining objective material standards based on visual images. A significant advantage of the computer vision approach is that it is autonomous, objective, and repeatable.

  1. Predicting pork loin intramuscular fat using computer vision system.

    PubMed

    Liu, J-H; Sun, X; Young, J M; Bachmeier, L A; Newman, D J

    2018-09-01

    The objective of this study was to investigate the ability of computer vision system to predict pork intramuscular fat percentage (IMF%). Center-cut loin samples (n = 85) were trimmed of subcutaneous fat and connective tissue. Images were acquired and pixels were segregated to estimate image IMF% and 18 image color features for each image. Subjective IMF% was determined by a trained grader. Ether extract IMF% was calculated using ether extract method. Image color features and image IMF% were used as predictors for stepwise regression and support vector machine models. Results showed that subjective IMF% had a correlation of 0.81 with ether extract IMF% while the image IMF% had a 0.66 correlation with ether extract IMF%. Accuracy rates for regression models were 0.63 for stepwise and 0.75 for support vector machine. Although subjective IMF% has shown to have better prediction, results from computer vision system demonstrates the potential of being used as a tool in predicting pork IMF% in the future. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Computational imaging with a single-pixel detector and a consumer video projector

    NASA Astrophysics Data System (ADS)

    Sych, D.; Aksenov, M.

    2018-02-01

    Single-pixel imaging is a novel rapidly developing imaging technique that employs spatially structured illumination and a single-pixel detector. In this work, we experimentally demonstrate a fully operating modular single-pixel imaging system. Light patterns in our setup are created with help of a computer-controlled digital micromirror device from a consumer video projector. We investigate how different working modes and settings of the projector affect the quality of reconstructed images. We develop several image reconstruction algorithms and compare their performance for real imaging. Also, we discuss the potential use of the single-pixel imaging system for quantum applications.

  3. Using parallel evolutionary development for a biologically-inspired computer vision system for mobile robots.

    PubMed

    Wright, Cameron H G; Barrett, Steven F; Pack, Daniel J

    2005-01-01

    We describe a new approach to attacking the problem of robust computer vision for mobile robots. The overall strategy is to mimic the biological evolution of animal vision systems. Our basic imaging sensor is based upon the eye of the common house fly, Musca domestica. The computational algorithms are a mix of traditional image processing, subspace techniques, and multilayer neural networks.

  4. Ki-67 reactivity in breast carcinoma analyzed by a computer-assisted image system: preliminary results.

    PubMed Central

    Mir, R.; Johnson, H.; Mathur, R.; Wise, L.; Kahn, L. B.

    1995-01-01

    The proliferative index of 63 breast carcinomas was measured on Ki-67 immunostained frozen tissue sections with a computer-assisted image analysis system. The mean proliferative index in estrogen-positive breast carcinomas was lower than in estrogen-negative carcinomas. An inverse relationship between proliferative index and short-term disease-free survival was noted. Images Figure 1 Figure 2 PMID:7674345

  5. Development of Dynamic Spatial Video Camera (DSVC) for 4D observation, analysis and modeling of human body locomotion.

    PubMed

    Suzuki, Naoki; Hattori, Asaki; Hayashibe, Mitsuhiro; Suzuki, Shigeyuki; Otake, Yoshito

    2003-01-01

    We have developed an imaging system for free and quantitative observation of human locomotion in a time-spatial domain by way of real time imaging. The system is equipped with 60 computer controlled video cameras to film human locomotion from all angles simultaneously. Images are installed into the main graphic workstation and translated into a 2D image matrix. Observation of the subject from optional directions is able to be performed by selecting the view point from the optimum image sequence in this image matrix. This system also possesses a function to reconstruct 4D models of the subject's moving human body by using 60 images taken from all directions at one particular time. And this system also has the capability to visualize inner structures such as the skeletal or muscular systems of the subject by compositing computer graphics reconstructed from the MRI data set. We are planning to apply this imaging system to clinical observation in the area of orthopedics, rehabilitation and sports science.

  6. Image matrix processor for fast multi-dimensional computations

    DOEpatents

    Roberson, G.P.; Skeate, M.F.

    1996-10-15

    An apparatus for multi-dimensional computation is disclosed which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination. 10 figs.

  7. Computer vision camera with embedded FPGA processing

    NASA Astrophysics Data System (ADS)

    Lecerf, Antoine; Ouellet, Denis; Arias-Estrada, Miguel

    2000-03-01

    Traditional computer vision is based on a camera-computer system in which the image understanding algorithms are embedded in the computer. To circumvent the computational load of vision algorithms, low-level processing and imaging hardware can be integrated in a single compact module where a dedicated architecture is implemented. This paper presents a Computer Vision Camera based on an open architecture implemented in an FPGA. The system is targeted to real-time computer vision tasks where low level processing and feature extraction tasks can be implemented in the FPGA device. The camera integrates a CMOS image sensor, an FPGA device, two memory banks, and an embedded PC for communication and control tasks. The FPGA device is a medium size one equivalent to 25,000 logic gates. The device is connected to two high speed memory banks, an IS interface, and an imager interface. The camera can be accessed for architecture programming, data transfer, and control through an Ethernet link from a remote computer. A hardware architecture can be defined in a Hardware Description Language (like VHDL), simulated and synthesized into digital structures that can be programmed into the FPGA and tested on the camera. The architecture of a classical multi-scale edge detection algorithm based on a Laplacian of Gaussian convolution has been developed to show the capabilities of the system.

  8. Computer-aided diagnosis workstation and telemedicine network system for chest diagnosis based on multislice CT images

    NASA Astrophysics Data System (ADS)

    Satoh, Hitoshi; Niki, Noboru; Eguchi, Kenji; Ohmatsu, Hironobu; Kakinuma, Ryutaru; Moriyama, Noriyuki

    2009-02-01

    Mass screening based on multi-helical CT images requires a considerable number of images to be read. It is this time-consuming step that makes the use of helical CT for mass screening impractical at present. Moreover, the doctor who diagnoses a medical image is insufficient in Japan. To overcome these problems, we have provided diagnostic assistance methods to medical screening specialists by developing a lung cancer screening algorithm that automatically detects suspected lung cancers in helical CT images, a coronary artery calcification screening algorithm that automatically detects suspected coronary artery calcification and a vertebra body analysis algorithm for quantitative evaluation of osteoporosis likelihood by using helical CT scanner for the lung cancer mass screening. The functions to observe suspicious shadow in detail are provided in computer-aided diagnosis workstation with these screening algorithms. We also have developed the telemedicine network by using Web medical image conference system with the security improvement of images transmission, Biometric fingerprint authentication system and Biometric face authentication system. Biometric face authentication used on site of telemedicine makes "Encryption of file" and "Success in login" effective. As a result, patients' private information is protected. We can share the screen of Web medical image conference system from two or more web conference terminals at the same time. An opinion can be exchanged mutually by using a camera and a microphone that are connected with workstation. Based on these diagnostic assistance methods, we have developed a new computer-aided workstation and a new telemedicine network that can display suspected lesions three-dimensionally in a short time. The results of this study indicate that our radiological information system without film by using computer-aided diagnosis workstation and our telemedicine network system can increase diagnostic speed, diagnostic accuracy and security improvement of medical information.

  9. Study of Image Qualities From 6D Robot-Based CBCT Imaging System of Small Animal Irradiator.

    PubMed

    Sharma, Sunil; Narayanasamy, Ganesh; Clarkson, Richard; Chao, Ming; Moros, Eduardo G; Zhang, Xin; Yan, Yulong; Boerma, Marjan; Paudel, Nava; Morrill, Steven; Corry, Peter; Griffin, Robert J

    2017-01-01

    To assess the quality of cone beam computed tomography images obtained by a robotic arm-based and image-guided small animal conformal radiation therapy device. The small animal conformal radiation therapy device is equipped with a 40 to 225 kV X-ray tube mounted on a custom made gantry, a 1024 × 1024 pixels flat panel detector (200 μm resolution), a programmable 6 degrees of freedom robot for cone beam computed tomography imaging and conformal delivery of radiation doses. A series of 2-dimensional radiographic projection images were recorded in cone beam mode by placing and rotating microcomputed tomography phantoms on the "palm' of the robotic arm. Reconstructed images were studied for image quality (spatial resolution, image uniformity, computed tomography number linearity, voxel noise, and artifacts). Geometric accuracy was measured to be 2% corresponding to 0.7 mm accuracy on a Shelley microcomputed tomography QA phantom. Qualitative resolution of reconstructed axial computed tomography slices using the resolution coils was within 200 μm. Quantitative spatial resolution was found to be 3.16 lp/mm. Uniformity of the system was measured within 34 Hounsfield unit on a QRM microcomputed tomography water phantom. Computed tomography numbers measured using the linearity plate were linear with material density ( R 2 > 0.995). Cone beam computed tomography images of the QRM multidisk phantom had minimal artifacts. Results showed that the small animal conformal radiation therapy device is capable of producing high-quality cone beam computed tomography images for precise and conformal small animal dose delivery. With its high-caliber imaging capabilities, the small animal conformal radiation therapy device is a powerful tool for small animal research.

  10. Digital image processing of bone - Problems and potentials

    NASA Technical Reports Server (NTRS)

    Morey, E. R.; Wronski, T. J.

    1980-01-01

    The development of a digital image processing system for bone histomorphometry and fluorescent marker monitoring is discussed. The system in question is capable of making measurements of UV or light microscope features on a video screen with either video or computer-generated images, and comprises a microscope, low-light-level video camera, video digitizer and display terminal, color monitor, and PDP 11/34 computer. Capabilities demonstrated in the analysis of an undecalcified rat tibia include the measurement of perimeter and total bone area, and the generation of microscope images, false color images, digitized images and contoured images for further analysis. Software development will be based on an existing software library, specifically the mini-VICAR system developed at JPL. It is noted that the potentials of the system in terms of speed and reliability far exceed any problems associated with hardware and software development.

  11. Computer-aided light sheet flow visualization using photogrammetry

    NASA Technical Reports Server (NTRS)

    Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.

    1994-01-01

    A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and a visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) results, was chosen to interactively display the reconstructed light sheet images with the numerical surface geometry for the model or aircraft under study. The photogrammetric reconstruction technique and the image processing and computer graphics techniques and equipment are described. Results of the computer-aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images with CFD solutions in the same graphics environment is also demonstrated.

  12. Computer-Aided Light Sheet Flow Visualization

    NASA Technical Reports Server (NTRS)

    Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.

    1993-01-01

    A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) data sets, was chosen to interactively display the reconstructed light sheet images, along with the numerical surface geometry for the model or aircraft under study. A description is provided of the photogrammetric reconstruction technique, and the image processing and computer graphics techniques and equipment. Results of the computer aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images and CFD solutions in the same graphics environment is also demonstrated.

  13. Computer-aided light sheet flow visualization

    NASA Technical Reports Server (NTRS)

    Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.

    1993-01-01

    A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) data sets, was chosen to interactively display the reconstructed light sheet images, along with the numerical surface geometry for the model or aircraft under study. A description is provided of the photogrammetric reconstruction technique, and the image processing and computer graphics techniques and equipment. Results of the computer aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images and CFD solutions in the same graphics environment is also demonstrated.

  14. Systems, computer-implemented methods, and tangible computer-readable storage media for wide-field interferometry

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G. (Inventor); Leisawitz, David T. (Inventor); Rinehart, Stephen A. (Inventor); Memarsadeghi, Nargess (Inventor)

    2012-01-01

    Disclosed herein are systems, computer-implemented methods, and tangible computer-readable storage media for wide field imaging interferometry. The method includes for each point in a two dimensional detector array over a field of view of an image: gathering a first interferogram from a first detector and a second interferogram from a second detector, modulating a path-length for a signal from an image associated with the first interferogram in the first detector, overlaying first data from the modulated first detector and second data from the second detector, and tracking the modulating at every point in a two dimensional detector array comprising the first detector and the second detector over a field of view for the image. The method then generates a wide-field data cube based on the overlaid first data and second data for each point. The method can generate an image from the wide-field data cube.

  15. A web-based computer aided system for liver surgery planning: initial implementation on RayPlus

    NASA Astrophysics Data System (ADS)

    Luo, Ming; Yuan, Rong; Sun, Zhi; Li, Tianhong; Xie, Qingguo

    2016-03-01

    At present, computer aided systems for liver surgery design and risk evaluation are widely used in clinical all over the world. However, most systems are local applications that run on high-performance workstations, and the images have to processed offline. Compared with local applications, a web-based system is accessible anywhere and for a range of regardless of relative processing power or operating system. RayPlus (http://rayplus.life.hust.edu.cn), a B/S platform for medical image processing, was developed to give a jump start on web-based medical image processing. In this paper, we implement a computer aided system for liver surgery planning on the architecture of RayPlus. The system consists of a series of processing to CT images including filtering, segmentation, visualization and analyzing. Each processing is packaged into an executable program and runs on the server side. CT images in DICOM format are processed step by to interactive modeling on browser with zero-installation and server-side computing. The system supports users to semi-automatically segment the liver, intrahepatic vessel and tumor from the pre-processed images. Then, surface and volume models are built to analyze the vessel structure and the relative position between adjacent organs. The results show that the initial implementation meets satisfactorily its first-order objectives and provide an accurate 3D delineation of the liver anatomy. Vessel labeling and resection simulation are planned to add in the future. The system is available on Internet at the link mentioned above and an open username for testing is offered.

  16. Comparison of three-dimensional surface-imaging systems.

    PubMed

    Tzou, Chieh-Han John; Artner, Nicole M; Pona, Igor; Hold, Alina; Placheta, Eva; Kropatsch, Walter G; Frey, Manfred

    2014-04-01

    In recent decades, three-dimensional (3D) surface-imaging technologies have gained popularity worldwide, but because most published articles that mention them are technical, clinicians often have difficulties gaining a proper understanding of them. This article aims to provide the reader with relevant information on 3D surface-imaging systems. In it, we compare the most recent technologies to reveal their differences. We have accessed five international companies with the latest technologies in 3D surface-imaging systems: 3dMD, Axisthree, Canfield, Crisalix and Dimensional Imaging (Di3D; in alphabetical order). We evaluated their technical equipment, independent validation studies and corporate backgrounds. The fastest capturing devices are the 3dMD and Di3D systems, capable of capturing images within 1.5 and 1 ms, respectively. All companies provide software for tissue modifications. Additionally, 3dMD, Canfield and Di3D can fuse computed tomography (CT)/cone-beam computed tomography (CBCT) images into their 3D surface-imaging data. 3dMD and Di3D provide 4D capture systems, which allow capturing the movement of a 3D surface over time. Crisalix greatly differs from the other four systems as it is purely web based and realised via cloud computing. 3D surface-imaging systems are becoming important in today's plastic surgical set-ups, taking surgeons to a new level of communication with patients, surgical planning and outcome evaluation. Technologies used in 3D surface-imaging systems and their intended field of application vary within the companies evaluated. Potential users should define their requirements and assignment of 3D surface-imaging systems in their clinical as research environment before making the final decision for purchase. Copyright © 2014 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  17. [Mobile phone-computer wireless interactive graphics transmission technology and its medical application].

    PubMed

    Huang, Shuo; Liu, Jing

    2010-05-01

    Application of clinical digital medical imaging has raised many tough issues to tackle, such as data storage, management, and information sharing. Here we investigated a mobile phone based medical image management system which is capable of achieving personal medical imaging information storage, management and comprehensive health information analysis. The technologies related to the management system spanning the wireless transmission technology, the technical capabilities of phone in mobile health care and management of mobile medical database were discussed. Taking medical infrared images transmission between phone and computer as an example, the working principle of the present system was demonstrated.

  18. Bio-inspired approach to multistage image processing

    NASA Astrophysics Data System (ADS)

    Timchenko, Leonid I.; Pavlov, Sergii V.; Kokryatskaya, Natalia I.; Poplavska, Anna A.; Kobylyanska, Iryna M.; Burdenyuk, Iryna I.; Wójcik, Waldemar; Uvaysova, Svetlana; Orazbekov, Zhassulan; Kashaganova, Gulzhan

    2017-08-01

    Multistage integration of visual information in the brain allows people to respond quickly to most significant stimuli while preserving the ability to recognize small details in the image. Implementation of this principle in technical systems can lead to more efficient processing procedures. The multistage approach to image processing, described in this paper, comprises main types of cortical multistage convergence. One of these types occurs within each visual pathway and the other between the pathways. This approach maps input images into a flexible hierarchy which reflects the complexity of the image data. The procedures of temporal image decomposition and hierarchy formation are described in mathematical terms. The multistage system highlights spatial regularities, which are passed through a number of transformational levels to generate a coded representation of the image which encapsulates, in a computer manner, structure on different hierarchical levels in the image. At each processing stage a single output result is computed to allow a very quick response from the system. The result is represented as an activity pattern, which can be compared with previously computed patterns on the basis of the closest match.

  19. Viewing Welds By Computer Tomography

    NASA Technical Reports Server (NTRS)

    Pascua, Antonio G.; Roy, Jagatjit

    1990-01-01

    Computer tomography system used to inspect welds for root penetration. Source illuminates rotating welded part with fan-shaped beam of x rays or gamma rays. Detectors in circular array on opposite side of part intercept beam and convert it into electrical signals. Computer processes signals into image of cross section of weld. Image displayed on video monitor. System offers only nondestructive way to check penetration from outside when inner surfaces inaccessible.

  20. A framework for optimizing micro-CT in dual-modality micro-CT/XFCT small-animal imaging system

    NASA Astrophysics Data System (ADS)

    Vedantham, Srinivasan; Shrestha, Suman; Karellas, Andrew; Cho, Sang Hyun

    2017-09-01

    Dual-modality Computed Tomography (CT)/X-ray Fluorescence Computed Tomography (XFCT) can be a valuable tool for imaging and quantifying the organ and tissue distribution of small concentrations of high atomic number materials in small-animal system. In this work, the framework for optimizing the micro-CT imaging system component of the dual-modality system is described, either when the micro-CT images are concurrently acquired with XFCT and using the x-ray spectral conditions for XFCT, or when the micro-CT images are acquired sequentially and independently of XFCT. This framework utilizes the cascaded systems analysis for task-specific determination of the detectability index using numerical observer models at a given radiation dose, where the radiation dose is determined using Monte Carlo simulations.

  1. Three-dimensional image acquisition and reconstruction system on a mobile device based on computer-generated integral imaging.

    PubMed

    Erdenebat, Munkh-Uchral; Kim, Byeong-Jun; Piao, Yan-Ling; Park, Seo-Yeon; Kwon, Ki-Chul; Piao, Mei-Lan; Yoo, Kwan-Hee; Kim, Nam

    2017-10-01

    A mobile three-dimensional image acquisition and reconstruction system using a computer-generated integral imaging technique is proposed. A depth camera connected to the mobile device acquires the color and depth data of a real object simultaneously, and an elemental image array is generated based on the original three-dimensional information for the object, with lens array specifications input into the mobile device. The three-dimensional visualization of the real object is reconstructed on the mobile display through optical or digital reconstruction methods. The proposed system is implemented successfully and the experimental results certify that the system is an effective and interesting method of displaying real three-dimensional content on a mobile device.

  2. A novel mechatronic tool for computer-assisted arthroscopy.

    PubMed

    Dario, P; Carrozza, M C; Marcacci, M; D'Attanasio, S; Magnami, B; Tonet, O; Megali, G

    2000-03-01

    This paper describes a novel mechatronic tool for arthroscopy, which is at the same time a smart tool for traditional arthroscopy and the main component of a system for computer-assisted arthroscopy. The mechatronic arthroscope has a cable-actuated servomotor-driven multi-joint mechanical structure, is equipped with a position sensor measuring the orientation of the tip and with a force sensor detecting possible contact with delicate tissues in the knee, and incorporates an embedded microcontroller for sensor signal processing, motor driving and interfacing with the surgeon and/or the system control unit. When used manually, the mechatronic arthroscope enhances the surgeon's capabilities by enabling him/her to easily control tip motion and to prevent undesired contacts. When the tool is integrated in a complete system for computer-assisted arthroscopy, the trajectory of the arthroscope is reconstructed in real time by an optical tracking system using infrared emitters located in the handle, providing advantages in terms of improved intervention accuracy. The computer-assisted arthroscopy system comprises an image processing module for segmentation and three-dimensional reconstruction of preoperative computer tomography or magnetic resonance images, a registration module for measuring the position of the knee joint, tracking the trajectory of the operating tools, and matching preoperative and intra-operative images, and a human-machine interface that displays the enhanced reality scenario and data from the mechatronic arthroscope in a friendly and intuitive manner. By integrating preoperative and intra-operative images and information provided by the mechatronic arthroscope, the system allows virtual navigation in the knee joint during the planning phase and computer guidance by augmented reality during the intervention. This paper describes in detail the characteristics of the mechatronic arthroscope and of the system for computer-assisted arthroscopy and discusses experimental results obtained with a preliminary version of the tool and of the system.

  3. STEREOMATRIX 3-D display system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiteside, Stephen Earl

    1973-08-01

    STEREOMATRIX is a large-screen interactive 3-D laser display system which presents computer-generated wire figures stereoscopically. The presented image can be rotated, translated, and scaled by the system user and the perspective of the image is changed according to the position of the user. A cursor may be positioned in three dimensions to identify points and allows communication with the computer.

  4. OpenID Connect as a security service in cloud-based medical imaging systems.

    PubMed

    Ma, Weina; Sartipi, Kamran; Sharghigoorabi, Hassan; Koff, David; Bak, Peter

    2016-04-01

    The evolution of cloud computing is driving the next generation of medical imaging systems. However, privacy and security concerns have been consistently regarded as the major obstacles for adoption of cloud computing by healthcare domains. OpenID Connect, combining OpenID and OAuth together, is an emerging representational state transfer-based federated identity solution. It is one of the most adopted open standards to potentially become the de facto standard for securing cloud computing and mobile applications, which is also regarded as "Kerberos of cloud." We introduce OpenID Connect as an authentication and authorization service in cloud-based diagnostic imaging (DI) systems, and propose enhancements that allow for incorporating this technology within distributed enterprise environments. The objective of this study is to offer solutions for secure sharing of medical images among diagnostic imaging repository (DI-r) and heterogeneous picture archiving and communication systems (PACS) as well as Web-based and mobile clients in the cloud ecosystem. The main objective is to use OpenID Connect open-source single sign-on and authorization service and in a user-centric manner, while deploying DI-r and PACS to private or community clouds should provide equivalent security levels to traditional computing model.

  5. Repetitive element signature-based visualization, distance computation, and classification of 1766 microbial genomes.

    PubMed

    Lee, Kang-Hoon; Shin, Kyung-Seop; Lim, Debora; Kim, Woo-Chan; Chung, Byung Chang; Han, Gyu-Bum; Roh, Jeongkyu; Cho, Dong-Ho; Cho, Kiho

    2015-07-01

    The genomes of living organisms are populated with pleomorphic repetitive elements (REs) of varying densities. Our hypothesis that genomic RE landscapes are species/strain/individual-specific was implemented into the Genome Signature Imaging system to visualize and compute the RE-based signatures of any genome. Following the occurrence profiling of 5-nucleotide REs/words, the information from top-50 frequency words was transformed into a genome-specific signature and visualized as Genome Signature Images (GSIs), using a CMYK scheme. An algorithm for computing distances among GSIs was formulated using the GSIs' variables (word identity, frequency, and frequency order). The utility of the GSI-distance computation system was demonstrated with control genomes. GSI-based computation of genome-relatedness among 1766 microbes (117 archaea and 1649 bacteria) identified their clustering patterns; although the majority paralleled the established classification, some did not. The Genome Signature Imaging system, with its visualization and distance computation functions, enables genome-scale evolutionary studies involving numerous genomes with varying sizes. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Cloud Computing and Its Applications in GIS

    NASA Astrophysics Data System (ADS)

    Kang, Cao

    2011-12-01

    Cloud computing is a novel computing paradigm that offers highly scalable and highly available distributed computing services. The objectives of this research are to: 1. analyze and understand cloud computing and its potential for GIS; 2. discover the feasibilities of migrating truly spatial GIS algorithms to distributed computing infrastructures; 3. explore a solution to host and serve large volumes of raster GIS data efficiently and speedily. These objectives thus form the basis for three professional articles. The first article is entitled "Cloud Computing and Its Applications in GIS". This paper introduces the concept, structure, and features of cloud computing. Features of cloud computing such as scalability, parallelization, and high availability make it a very capable computing paradigm. Unlike High Performance Computing (HPC), cloud computing uses inexpensive commodity computers. The uniform administration systems in cloud computing make it easier to use than GRID computing. Potential advantages of cloud-based GIS systems such as lower barrier to entry are consequently presented. Three cloud-based GIS system architectures are proposed: public cloud- based GIS systems, private cloud-based GIS systems and hybrid cloud-based GIS systems. Public cloud-based GIS systems provide the lowest entry barriers for users among these three architectures, but their advantages are offset by data security and privacy related issues. Private cloud-based GIS systems provide the best data protection, though they have the highest entry barriers. Hybrid cloud-based GIS systems provide a compromise between these extremes. The second article is entitled "A cloud computing algorithm for the calculation of Euclidian distance for raster GIS". Euclidean distance is a truly spatial GIS algorithm. Classical algorithms such as the pushbroom and growth ring techniques require computational propagation through the entire raster image, which makes it incompatible with the distributed nature of cloud computing. This paper presents a parallel Euclidean distance algorithm that works seamlessly with the distributed nature of cloud computing infrastructures. The mechanism of this algorithm is to subdivide a raster image into sub-images and wrap them with a one pixel deep edge layer of individually computed distance information. Each sub-image is then processed by a separate node, after which the resulting sub-images are reassembled into the final output. It is shown that while any rectangular sub-image shape can be used, those approximating squares are computationally optimal. This study also serves as a demonstration of this subdivide and layer-wrap strategy, which would enable the migration of many truly spatial GIS algorithms to cloud computing infrastructures. However, this research also indicates that certain spatial GIS algorithms such as cost distance cannot be migrated by adopting this mechanism, which presents significant challenges for the development of cloud-based GIS systems. The third article is entitled "A Distributed Storage Schema for Cloud Computing based Raster GIS Systems". This paper proposes a NoSQL Database Management System (NDDBMS) based raster GIS data storage schema. NDDBMS has good scalability and is able to use distributed commodity computers, which make it superior to Relational Database Management Systems (RDBMS) in a cloud computing environment. In order to provide optimized data service performance, the proposed storage schema analyzes the nature of commonly used raster GIS data sets. It discriminates two categories of commonly used data sets, and then designs corresponding data storage models for both categories. As a result, the proposed storage schema is capable of hosting and serving enormous volumes of raster GIS data speedily and efficiently on cloud computing infrastructures. In addition, the scheme also takes advantage of the data compression characteristics of Quadtrees, thus promoting efficient data storage. Through this assessment of cloud computing technology, the exploration of the challenges and solutions to the migration of GIS algorithms to cloud computing infrastructures, and the examination of strategies for serving large amounts of GIS data in a cloud computing infrastructure, this dissertation lends support to the feasibility of building a cloud-based GIS system. However, there are still challenges that need to be addressed before a full-scale functional cloud-based GIS system can be successfully implemented. (Abstract shortened by UMI.)

  7. Application of AI techniques to a voice-actuated computer system for reconstructing and displaying magnetic resonance imaging data

    NASA Astrophysics Data System (ADS)

    Sherley, Patrick L.; Pujol, Alfonso, Jr.; Meadow, John S.

    1990-07-01

    To provide a means of rendering complex computer architectures languages and input/output modalities transparent to experienced and inexperienced users research is being conducted to develop a voice driven/voice response computer graphics imaging system. The system will be used for reconstructing and displaying computed tomography and magnetic resonance imaging scan data. In conjunction with this study an artificial intelligence (Al) control strategy was developed to interface the voice components and support software to the computer graphics functions implemented on the Sun Microsystems 4/280 color graphics workstation. Based on generated text and converted renditions of verbal utterances by the user the Al control strategy determines the user''s intent and develops and validates a plan. The program type and parameters within the plan are used as input to the graphics system for reconstructing and displaying medical image data corresponding to that perceived intent. If the plan is not valid the control strategy queries the user for additional information. The control strategy operates in a conversation mode and vocally provides system status reports. A detailed examination of the various AT techniques is presented with major emphasis being placed on their specific roles within the total control strategy structure. 1.

  8. Computational high-resolution optical imaging of the living human retina

    NASA Astrophysics Data System (ADS)

    Shemonski, Nathan D.; South, Fredrick A.; Liu, Yuan-Zhi; Adie, Steven G.; Scott Carney, P.; Boppart, Stephen A.

    2015-07-01

    High-resolution in vivo imaging is of great importance for the fields of biology and medicine. The introduction of hardware-based adaptive optics (HAO) has pushed the limits of optical imaging, enabling high-resolution near diffraction-limited imaging of previously unresolvable structures. In ophthalmology, when combined with optical coherence tomography, HAO has enabled a detailed three-dimensional visualization of photoreceptor distributions and individual nerve fibre bundles in the living human retina. However, the introduction of HAO hardware and supporting software adds considerable complexity and cost to an imaging system, limiting the number of researchers and medical professionals who could benefit from the technology. Here we demonstrate a fully automated computational approach that enables high-resolution in vivo ophthalmic imaging without the need for HAO. The results demonstrate that computational methods in coherent microscopy are applicable in highly dynamic living systems.

  9. Image Processing Using a Parallel Architecture.

    DTIC Science & Technology

    1987-12-01

    ENG/87D-25 Abstract This study developed a set o± low level image processing tools on a parallel computer that allows concurrent processing of images...environment, the set of tools offers a significant reduction in the time required to perform some commonly used image processing operations. vI IMAGE...step toward developing these systems, a structured set of image processing tools was implemented using a parallel computer. More important than

  10. Image Analysis via Soft Computing: Prototype Applications at NASA KSC and Product Commercialization

    NASA Technical Reports Server (NTRS)

    Dominguez, Jesus A.; Klinko, Steve

    2011-01-01

    This slide presentation reviews the use of "soft computing" which differs from "hard computing" in that it is more tolerant of imprecision, partial truth, uncertainty, and approximation and its use in image analysis. Soft computing provides flexible information processing to handle real life ambiguous situations and achieve tractability, robustness low solution cost, and a closer resemblance to human decision making. Several systems are or have been developed: Fuzzy Reasoning Edge Detection (FRED), Fuzzy Reasoning Adaptive Thresholding (FRAT), Image enhancement techniques, and visual/pattern recognition. These systems are compared with examples that show the effectiveness of each. NASA applications that are reviewed are: Real-Time (RT) Anomaly Detection, Real-Time (RT) Moving Debris Detection and the Columbia Investigation. The RT anomaly detection reviewed the case of a damaged cable for the emergency egress system. The use of these techniques is further illustrated in the Columbia investigation with the location and detection of Foam debris. There are several applications in commercial usage: image enhancement, human screening and privacy protection, visual inspection, 3D heart visualization, tumor detections and x ray image enhancement.

  11. Is there a preference for linearity when viewing natural images?

    NASA Astrophysics Data System (ADS)

    Kane, David; Bertamío, Marcelo

    2015-01-01

    The system gamma of the imaging pipeline, defined as the product of the encoding and decoding gammas, is typically greater than one and is stronger for images viewed with a dark background (e.g. cinema) than those viewed in lighter conditions (e.g. office displays).1-3 However, for high dynamic range (HDR) images reproduced on a low dynamic range (LDR) monitor, subjects often prefer a system gamma of less than one,4 presumably reflecting the greater need for histogram equalization in HDR images. In this study we ask subjects to rate the perceived quality of images presented on a LDR monitor using various levels of system gamma. We reveal that the optimal system gamma is below one for images with a HDR and approaches or exceeds one for images with a LDR. Additionally, the highest quality scores occur for images where a system gamma of one is optimal, suggesting a preference for linearity (where possible). We find that subjective image quality scores can be predicted by computing the degree of histogram equalization of the lightness distribution. Accordingly, an optimal, image dependent system gamma can be computed that maximizes perceived image quality.

  12. The image acquisition system design of floor grinder

    NASA Astrophysics Data System (ADS)

    Wang, Yang-jiang; Liu, Wei; Liu, Hui-qin

    2018-01-01

    Based on linear CCD, high resolution image real-time acquisition system serves as designing a set of image acquisition system for floor grinder through the calculation of optical imaging system. The entire image acquisition system can collect images of ground before and after the work of the floor grinder, and the data is transmitted through the Bluetooth system to the computer and compared to realize real-time monitoring of its working condition. The system provides technical support for the design of unmanned ground grinders.

  13. Computer-aided diagnosis workstation and network system for chest diagnosis based on multislice CT images

    NASA Astrophysics Data System (ADS)

    Satoh, Hitoshi; Niki, Noboru; Eguchi, Kenji; Moriyama, Noriyuki; Ohmatsu, Hironobu; Masuda, Hideo; Machida, Suguru

    2008-03-01

    Mass screening based on multi-helical CT images requires a considerable number of images to be read. It is this time-consuming step that makes the use of helical CT for mass screening impractical at present. To overcome this problem, we have provided diagnostic assistance methods to medical screening specialists by developing a lung cancer screening algorithm that automatically detects suspected lung cancers in helical CT images, a coronary artery calcification screening algorithm that automatically detects suspected coronary artery calcification and a vertebra body analysis algorithm for quantitative evaluation of osteoporosis likelihood by using helical CT scanner for the lung cancer mass screening. The function to observe suspicious shadow in detail are provided in computer-aided diagnosis workstation with these screening algorithms. We also have developed the telemedicine network by using Web medical image conference system with the security improvement of images transmission, Biometric fingerprint authentication system and Biometric face authentication system. Biometric face authentication used on site of telemedicine makes "Encryption of file" and Success in login" effective. As a result, patients' private information is protected. Based on these diagnostic assistance methods, we have developed a new computer-aided workstation and a new telemedicine network that can display suspected lesions three-dimensionally in a short time. The results of this study indicate that our radiological information system without film by using computer-aided diagnosis workstation and our telemedicine network system can increase diagnostic speed, diagnostic accuracy and security improvement of medical information.

  14. MACMULTIVIEW 5.1

    NASA Technical Reports Server (NTRS)

    Norikane, L.

    1994-01-01

    MacMultiview is an interactive tool for the Macintosh II family which allows one to display and make computations utilizing polarimetric radar data collected by the Jet Propulsion Laboratory's imaging SAR (synthetic aperture radar) polarimeter system. The system includes the single-frequency L-band sensor mounted on the NASA CV990 aircraft and its replacement, the multi-frequency P-, L-, and C-band sensors mounted on the NASA DC-8. MacMultiview provides two basic functions: computation of synthesized polarimetric images and computation of polarization signatures. The radar data can be used to compute a variety of images. The total power image displays the sum of the polarized and unpolarized components of the backscatter for each pixel. The magnitude/phase difference image displays the HH (horizontal transmit and horizontal receive polarization) to VV (vertical transmit and vertical receive polarization) phase difference using color. Magnitude is displayed using intensity. The user may also select any transmit and receive polarization combination from which an image is synthesized. This image displays the backscatter which would have been observed had the sensor been configured using the selected transmit and receive polarizations. MacMultiview can also be used to compute polarization signatures, three dimensional plots of backscatter versus transmit and receive polarizations. The standard co-polarization signatures (transmit and receive polarizations are the same) and cross-polarization signatures (transmit and receive polarizations are orthogonal) can be plotted for any rectangular subset of pixels within a radar data set. In addition, the ratio of co- and cross-polarization signatures computed from different subsets within the same data set can also be computed. Computed images can be saved in a variety of formats: byte format (headerless format which saves the image as a string of byte values), MacMultiview (a byte image preceded by an ASCII header), and PICT2 format (standard format readable by MacMultiview and other image processing programs for the Macintosh). Images can also be printed on PostScript output devices. Polarization signatures can be saved in either a PICT format or as a text file containing PostScript commands and printed on any QuickDraw output device. The associated Stokes matrices can be stored in a text file. MacMultiview is written in C-language for Macintosh II series computers. MacMultiview will only run on Macintosh II series computers with 8-bit video displays (gray shades or color). The program also requires a minimum configuration of System 6.0, Finder 6.1, and 1Mb of RAM. MacMultiview is NOT compatible with System 7.0. It requires 32-Bit QuickDraw. Note: MacMultiview may not be fully compatible with preliminary versions of 32-Bit QuickDraw. Macintosh Programmer's Workshop and Macintosh Programmer's Workshop C (version 3.0) are required for recompiling and relinking. The standard distribution medium for this package is a set of three 800K 3.5 inch diskettes in Macintosh format. This program was developed in 1989 and updated in 1991. MacMultiview is a copyrighted work with all copyright vested in NASA. QuickDraw, Finder, Macintosh, and System 7 are trademarks of Apple Computer, Inc.

  15. Small Interactive Image Processing System (SMIPS) users manual

    NASA Technical Reports Server (NTRS)

    Moik, J. G.

    1973-01-01

    The Small Interactive Image Processing System (SMIP) is designed to facilitate the acquisition, digital processing and recording of image data as well as pattern recognition in an interactive mode. Objectives of the system are ease of communication with the computer by personnel who are not expert programmers, fast response to requests for information on pictures, complete error recovery as well as simplification of future programming efforts for extension of the system. The SMIP system is intended for operation under OS/MVT on an IBM 360/75 or 91 computer equipped with the IBM-2250 Model 1 display unit. This terminal is used as an interface between user and main computer. It has an alphanumeric keyboard, a programmed function keyboard and a light pen which are used for specification of input to the system. Output from the system is displayed on the screen as messages and pictures.

  16. Photography/Digital Imaging: Parallel & Paradoxical Histories.

    ERIC Educational Resources Information Center

    Witte, Mary Stieglitz

    With the introduction of photography and photomechanical printing processes in the 19th century, the first age of machine pictures and reproductions emerged. The 20th century introduced computer image processing systems, creating a digital imaging revolution. Rather than concentrating on the adversarial aspects of the computer's influence on…

  17. An imaging system for PLIF/Mie measurements for a combusting flow

    NASA Technical Reports Server (NTRS)

    Wey, C. C.; Ghorashi, B.; Marek, C. J.; Wey, C.

    1990-01-01

    The equipment required to establish an imaging system can be divided into four parts: (1) the light source and beam shaping optics; (2) camera and recording; (3) image acquisition and processing; and (4) computer and output systems. A pulsed, Nd:YAG-pummped, frequency-doubled dye laser which can freeze motion in the flowfield is used for an illumination source. A set of lenses is used to form the laser beam into a sheet. The induced fluorescence is collected by an UV-enhanced lens and passes through an UV-enhanced microchannel plate intensifier which is optically coupled to a gated solid state CCD camera. The output of the camera is simultaneously displayed on a monitor and recorded on either a laser videodisc set of a Super VHS VCR. This videodisc set is controlled by a minicomputer via a connection to the RS-232C interface terminals. The imaging system is connected to the host computer by a bus repeater and can be multiplexed between four video input sources. Sample images from a planar shear layer experiment are presented to show the processing capability of the imaging system with the host computer.

  18. High resolution propagation-based imaging system for in vivo dynamic computed tomography of lungs in small animals

    NASA Astrophysics Data System (ADS)

    Preissner, M.; Murrie, R. P.; Pinar, I.; Werdiger, F.; Carnibella, R. P.; Zosky, G. R.; Fouras, A.; Dubsky, S.

    2018-04-01

    We have developed an x-ray imaging system for in vivo four-dimensional computed tomography (4DCT) of small animals for pre-clinical lung investigations. Our customized laboratory facility is capable of high resolution in vivo imaging at high frame rates. Characterization using phantoms demonstrate a spatial resolution of slightly below 50 μm at imaging rates of 30 Hz, and the ability to quantify material density differences of at least 3%. We benchmark our system against existing small animal pre-clinical CT scanners using a quality factor that combines spatial resolution, image noise, dose and scan time. In vivo 4DCT images obtained on our system demonstrate resolution of important features such as blood vessels and small airways, of which the smallest discernible were measured as 55–60 μm in cross section. Quantitative analysis of the images demonstrate regional differences in ventilation between injured and healthy lungs.

  19. Correction of Visual Perception Based on Neuro-Fuzzy Learning for the Humanoid Robot TEO.

    PubMed

    Hernandez-Vicen, Juan; Martinez, Santiago; Garcia-Haro, Juan Miguel; Balaguer, Carlos

    2018-03-25

    New applications related to robotic manipulation or transportation tasks, with or without physical grasping, are continuously being developed. To perform these activities, the robot takes advantage of different kinds of perceptions. One of the key perceptions in robotics is vision. However, some problems related to image processing makes the application of visual information within robot control algorithms difficult. Camera-based systems have inherent errors that affect the quality and reliability of the information obtained. The need of correcting image distortion slows down image parameter computing, which decreases performance of control algorithms. In this paper, a new approach to correcting several sources of visual distortions on images in only one computing step is proposed. The goal of this system/algorithm is the computation of the tilt angle of an object transported by a robot, minimizing image inherent errors and increasing computing speed. After capturing the image, the computer system extracts the angle using a Fuzzy filter that corrects at the same time all possible distortions, obtaining the real angle in only one processing step. This filter has been developed by the means of Neuro-Fuzzy learning techniques, using datasets with information obtained from real experiments. In this way, the computing time has been decreased and the performance of the application has been improved. The resulting algorithm has been tried out experimentally in robot transportation tasks in the humanoid robot TEO (Task Environment Operator) from the University Carlos III of Madrid.

  20. Correction of Visual Perception Based on Neuro-Fuzzy Learning for the Humanoid Robot TEO

    PubMed Central

    2018-01-01

    New applications related to robotic manipulation or transportation tasks, with or without physical grasping, are continuously being developed. To perform these activities, the robot takes advantage of different kinds of perceptions. One of the key perceptions in robotics is vision. However, some problems related to image processing makes the application of visual information within robot control algorithms difficult. Camera-based systems have inherent errors that affect the quality and reliability of the information obtained. The need of correcting image distortion slows down image parameter computing, which decreases performance of control algorithms. In this paper, a new approach to correcting several sources of visual distortions on images in only one computing step is proposed. The goal of this system/algorithm is the computation of the tilt angle of an object transported by a robot, minimizing image inherent errors and increasing computing speed. After capturing the image, the computer system extracts the angle using a Fuzzy filter that corrects at the same time all possible distortions, obtaining the real angle in only one processing step. This filter has been developed by the means of Neuro-Fuzzy learning techniques, using datasets with information obtained from real experiments. In this way, the computing time has been decreased and the performance of the application has been improved. The resulting algorithm has been tried out experimentally in robot transportation tasks in the humanoid robot TEO (Task Environment Operator) from the University Carlos III of Madrid. PMID:29587392

  1. Computational Modeling and Real-Time Control of Patient-Specific Laser Treatment of Cancer

    PubMed Central

    Fuentes, D.; Oden, J. T.; Diller, K. R.; Hazle, J. D.; Elliott, A.; Shetty, A.; Stafford, R. J.

    2014-01-01

    An adaptive feedback control system is presented which employs a computational model of bioheat transfer in living tissue to guide, in real-time, laser treatments of prostate cancer monitored by magnetic resonance thermal imaging (MRTI). The system is built on what can be referred to as cyberinfrastructure - a complex structure of high-speed network, large-scale parallel computing devices, laser optics, imaging, visualizations, inverse-analysis algorithms, mesh generation, and control systems that guide laser therapy to optimally control the ablation of cancerous tissue. The computational system has been successfully tested on in-vivo, canine prostate. Over the course of an 18 minute laser induced thermal therapy (LITT) performed at M.D. Anderson Cancer Center (MDACC) in Houston, Texas, the computational models were calibrated to intra-operative real time thermal imaging treatment data and the calibrated models controlled the bioheat transfer to within 5°C of the predetermined treatment plan. The computational arena is in Austin, Texas and managed at the Institute for Computational Engineering and Sciences (ICES). The system is designed to control the bioheat transfer remotely while simultaneously providing real-time remote visualization of the on-going treatment. Post operative histology of the canine prostate reveal that the damage region was within the targeted 1.2cm diameter treatment objective. PMID:19148754

  2. Computational modeling and real-time control of patient-specific laser treatment of cancer.

    PubMed

    Fuentes, D; Oden, J T; Diller, K R; Hazle, J D; Elliott, A; Shetty, A; Stafford, R J

    2009-04-01

    An adaptive feedback control system is presented which employs a computational model of bioheat transfer in living tissue to guide, in real-time, laser treatments of prostate cancer monitored by magnetic resonance thermal imaging. The system is built on what can be referred to as cyberinfrastructure-a complex structure of high-speed network, large-scale parallel computing devices, laser optics, imaging, visualizations, inverse-analysis algorithms, mesh generation, and control systems that guide laser therapy to optimally control the ablation of cancerous tissue. The computational system has been successfully tested on in vivo, canine prostate. Over the course of an 18 min laser-induced thermal therapy performed at M.D. Anderson Cancer Center (MDACC) in Houston, Texas, the computational models were calibrated to intra-operative real-time thermal imaging treatment data and the calibrated models controlled the bioheat transfer to within 5 degrees C of the predetermined treatment plan. The computational arena is in Austin, Texas and managed at the Institute for Computational Engineering and Sciences (ICES). The system is designed to control the bioheat transfer remotely while simultaneously providing real-time remote visualization of the on-going treatment. Post-operative histology of the canine prostate reveal that the damage region was within the targeted 1.2 cm diameter treatment objective.

  3. Using the phase-space imager to analyze partially coherent imaging systems: bright-field, phase contrast, differential interference contrast, differential phase contrast, and spiral phase contrast

    NASA Astrophysics Data System (ADS)

    Mehta, Shalin B.; Sheppard, Colin J. R.

    2010-05-01

    Various methods that use large illumination aperture (i.e. partially coherent illumination) have been developed for making transparent (i.e. phase) specimens visible. These methods were developed to provide qualitative contrast rather than quantitative measurement-coherent illumination has been relied upon for quantitative phase analysis. Partially coherent illumination has some important advantages over coherent illumination and can be used for measurement of the specimen's phase distribution. However, quantitative analysis and image computation in partially coherent systems have not been explored fully due to the lack of a general, physically insightful and computationally efficient model of image formation. We have developed a phase-space model that satisfies these requirements. In this paper, we employ this model (called the phase-space imager) to elucidate five different partially coherent systems mentioned in the title. We compute images of an optical fiber under these systems and verify some of them with experimental images. These results and simulated images of a general phase profile are used to compare the contrast and the resolution of the imaging systems. We show that, for quantitative phase imaging of a thin specimen with matched illumination, differential phase contrast offers linear transfer of specimen information to the image. We also show that the edge enhancement properties of spiral phase contrast are compromised significantly as the coherence of illumination is reduced. The results demonstrate that the phase-space imager model provides a useful framework for analysis, calibration, and design of partially coherent imaging methods.

  4. Pc-Based Floating Point Imaging Workstation

    NASA Astrophysics Data System (ADS)

    Guzak, Chris J.; Pier, Richard M.; Chinn, Patty; Kim, Yongmin

    1989-07-01

    The medical, military, scientific and industrial communities have come to rely on imaging and computer graphics for solutions to many types of problems. Systems based on imaging technology are used to acquire and process images, and analyze and extract data from images that would otherwise be of little use. Images can be transformed and enhanced to reveal detail and meaning that would go undetected without imaging techniques. The success of imaging has increased the demand for faster and less expensive imaging systems and as these systems become available, more and more applications are discovered and more demands are made. From the designer's perspective the challenge to meet these demands forces him to attack the problem of imaging from a different perspective. The computing demands of imaging algorithms must be balanced against the desire for affordability and flexibility. Systems must be flexible and easy to use, ready for current applications but at the same time anticipating new, unthought of uses. Here at the University of Washington Image Processing Systems Lab (IPSL) we are focusing our attention on imaging and graphics systems that implement imaging algorithms for use in an interactive environment. We have developed a PC-based imaging workstation with the goal to provide powerful and flexible, floating point processing capabilities, along with graphics functions in an affordable package suitable for diverse environments and many applications.

  5. Computer vision in cell biology.

    PubMed

    Danuser, Gaudenz

    2011-11-23

    Computer vision refers to the theory and implementation of artificial systems that extract information from images to understand their content. Although computers are widely used by cell biologists for visualization and measurement, interpretation of image content, i.e., the selection of events worth observing and the definition of what they mean in terms of cellular mechanisms, is mostly left to human intuition. This Essay attempts to outline roles computer vision may play and should play in image-based studies of cellular life. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. A tetrahedron beam computed tomography benchtop system with a multiple pixel field emission x-ray tube.

    PubMed

    Xu, Xiaochao; Kim, Joshua; Laganis, Philip; Schulze, Derek; Liang, Yongguang; Zhang, Tiezhi

    2011-10-01

    To demonstrate the feasibility of Tetrahedron Beam Computed Tomography (TBCT) using a carbon nanotube (CNT) multiple pixel field emission x-ray (MPFEX) tube. A multiple pixel x-ray source facilitates the creation of novel x-ray imaging modalities. In a previous publication, the authors proposed a Tetrahedron Beam Computed Tomography (TBCT) imaging system which comprises a linear source array and a linear detector array that are orthogonal to each other. TBCT is expected to reduce scatter compared with Cone Beam Computed Tomography (CBCT) and to have better detector performance. Therefore, it may produce improved image quality for image guided radiotherapy. In this study, a TBCT benchtop system has been developed with an MPFEX tube. The tube has 75 CNT cold cathodes, which generate 75 x-ray focal spots on an elongated anode, and has 4 mm pixel spacing. An in-house-developed, 5-row CT detector array using silicon photodiodes and CdWO(4) scintillators was employed in the system. Hardware and software were developed for tube control and detector data acquisition. The raw data were preprocessed for beam hardening and detector response linearity and were reconstructed with an FDK-based image reconstruction algorithm. The focal spots were measured at about 1 × 2 mm(2) using a star phantom. Each cathode generates around 3 mA cathode current with 2190 V gate voltage. The benchtop system is able to perform TBCT scans with a prolonged scanning time. Images of a commercial CT phantom were successfully acquired. A prototype system was developed, and preliminary phantom images were successfully acquired. MPFEX is a promising x-ray source for TBCT. Further improvement of tube output is needed in order for it to be used in clinical TBCT systems.

  7. Framework for 2D-3D image fusion of infrared thermography with preoperative MRI.

    PubMed

    Hoffmann, Nico; Weidner, Florian; Urban, Peter; Meyer, Tobias; Schnabel, Christian; Radev, Yordan; Schackert, Gabriele; Petersohn, Uwe; Koch, Edmund; Gumhold, Stefan; Steiner, Gerald; Kirsch, Matthias

    2017-11-27

    Multimodal medical image fusion combines information of one or more images in order to improve the diagnostic value. While previous applications mainly focus on merging images from computed tomography, magnetic resonance imaging (MRI), ultrasonic and single-photon emission computed tomography, we propose a novel approach for the registration and fusion of preoperative 3D MRI with intraoperative 2D infrared thermography. Image-guided neurosurgeries are based on neuronavigation systems, which further allow us track the position and orientation of arbitrary cameras. Hereby, we are able to relate the 2D coordinate system of the infrared camera with the 3D MRI coordinate system. The registered image data are now combined by calibration-based image fusion in order to map our intraoperative 2D thermographic images onto the respective brain surface recovered from preoperative MRI. In extensive accuracy measurements, we found that the proposed framework achieves a mean accuracy of 2.46 mm.

  8. Implementation and applications of dual-modality imaging

    NASA Astrophysics Data System (ADS)

    Hasegawa, Bruce H.; Barber, William C.; Funk, Tobias; Hwang, Andrew B.; Taylor, Carmen; Sun, Mingshan; Seo, Youngho

    2004-06-01

    In medical diagnosis, functional or physiological data can be acquired using radionuclide imaging with positron emission tomography or with single-photon emission computed tomography. However, anatomical or structural data can be acquired using X-ray computed tomography. In dual-modality imaging, both radionuclide and X-ray detectors are incorporated in an imaging system to allow both functional and structural data to be acquired in a single procedure without removing the patient from the imaging system. In a clinical setting, dual-modality imaging systems commonly are used to localize radiopharmaceutical uptake with respect to the patient's anatomy. This helps the clinician to differentiate disease from regions of normal radiopharmaceutical accumulation, to improve diagnosis or cancer staging, or to facilitate planning for radiation therapy or surgery. While initial applications of dual-modality imaging were developed for clinical imaging on humans, it now is recognized that these systems have potentially important applications for imaging small animals involved in experimental studies including basic investigations of mammalian biology and development of new pharmaceuticals for diagnosis or treatment of disease.

  9. Comparison of digital intraoral scanners by single-image capture system and full-color movie system.

    PubMed

    Yamamoto, Meguru; Kataoka, Yu; Manabe, Atsufumi

    2017-01-01

    The use of dental computer-aided design/computer-aided manufacturing (CAD/CAM) restoration is rapidly increasing. This study was performed to evaluate the marginal and internal cement thickness and the adhesive gap of internal cavities comprising CAD/CAM materials using two digital impression acquisition methods and micro-computed tomography. Images obtained by a single-image acquisition system (Bluecam Ver. 4.0) and a full-color video acquisition system (Omnicam Ver. 4.2) were divided into the BL and OM groups, respectively. Silicone impressions were prepared from an ISO-standard metal mold, and CEREC Stone BC and New Fuji Rock IMP were used to create working models (n=20) in the BL and OM groups (n=10 per group), respectively. Individual inlays were designed in a conventional manner using designated software, and all restorations were prepared using CEREC inLab MC XL. These were assembled with the corresponding working models used for measurement, and the level of fit was examined by three-dimensional analysis based on micro-computed tomography. Significant differences in the marginal and internal cement thickness and adhesive gap spacing were found between the OM and BL groups. The full-color movie capture system appears to be a more optimal restoration system than the single-image capture system.

  10. Computational Video for Collaborative Applications

    DTIC Science & Technology

    2003-03-01

    Plenoptic Modeling: An Image- Based Rendering System.” SIGGRAPH 95, 39-46. [18] McMillan, L. An Image-Based Approach to Three-Dimensional Computer... Plenoptic modeling and rendering from image sequences taken by hand-held camera. Proc. DAGM 99, pages 94–101. [8] Y. Horry, K. Anjyo, and K. Arai

  11. Fiber Optic Communication System For Medical Images

    NASA Astrophysics Data System (ADS)

    Arenson, Ronald L.; Morton, Dan E.; London, Jack W.

    1982-01-01

    This paper discusses a fiber optic communication system linking ultrasound devices, Computerized tomography scanners, Nuclear Medicine computer system, and a digital fluoro-graphic system to a central radiology research computer. These centrally archived images are available for near instantaneous recall at various display consoles. When a suitable laser optical disk is available for mass storage, more extensive image archiving will be added to the network including digitized images of standard radiographs for comparison purposes and for remote display in such areas as the intensive care units, the operating room, and selected outpatient departments. This fiber optic system allows for a transfer of high resolution images in less than a second over distances exceeding 2,000 feet. The advantages of using fiber optic cables instead of typical parallel or serial communication techniques will be described. The switching methodology and communication protocols will also be discussed.

  12. Onboard functional and molecular imaging: A design investigation for robotic multipinhole SPECT

    PubMed Central

    Bowsher, James; Yan, Susu; Roper, Justin; Giles, William; Yin, Fang-Fang

    2014-01-01

    Purpose: Onboard imaging—currently performed primarily by x-ray transmission modalities—is essential in modern radiation therapy. As radiation therapy moves toward personalized medicine, molecular imaging, which views individual gene expression, may also be important onboard. Nuclear medicine methods, such as single photon emission computed tomography (SPECT), are premier modalities for molecular imaging. The purpose of this study is to investigate a robotic multipinhole approach to onboard SPECT. Methods: Computer-aided design (CAD) studies were performed to assess the feasibility of maneuvering a robotic SPECT system about a patient in position for radiation therapy. In order to obtain fast, high-quality SPECT images, a 49-pinhole SPECT camera was designed which provides high sensitivity to photons emitted from an imaging region of interest. This multipinhole system was investigated by computer-simulation studies. Seventeen hot spots 10 and 7 mm in diameter were placed in the breast region of a supine female phantom. Hot spot activity concentration was six times that of background. For the 49-pinhole camera and a reference, more conventional, broad field-of-view (FOV) SPECT system, projection data were computer simulated for 4-min scans and SPECT images were reconstructed. Hot-spot localization was evaluated using a nonprewhitening forced-choice numerical observer. Results: The CAD simulation studies found that robots could maneuver SPECT cameras about patients in position for radiation therapy. In the imaging studies, most hot spots were apparent in the 49-pinhole images. Average localization errors for 10-mm- and 7-mm-diameter hot spots were 0.4 and 1.7 mm, respectively, for the 49-pinhole system, and 3.1 and 5.7 mm, respectively, for the reference broad-FOV system. Conclusions: A robot could maneuver a multipinhole SPECT system about a patient in position for radiation therapy. The system could provide onboard functional and molecular imaging with 4-min scan times. PMID:24387490

  13. Onboard functional and molecular imaging: A design investigation for robotic multipinhole SPECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowsher, James, E-mail: james.bowsher@duke.edu; Giles, William; Yin, Fang-Fang

    2014-01-15

    Purpose: Onboard imaging—currently performed primarily by x-ray transmission modalities—is essential in modern radiation therapy. As radiation therapy moves toward personalized medicine, molecular imaging, which views individual gene expression, may also be important onboard. Nuclear medicine methods, such as single photon emission computed tomography (SPECT), are premier modalities for molecular imaging. The purpose of this study is to investigate a robotic multipinhole approach to onboard SPECT. Methods: Computer-aided design (CAD) studies were performed to assess the feasibility of maneuvering a robotic SPECT system about a patient in position for radiation therapy. In order to obtain fast, high-quality SPECT images, a 49-pinholemore » SPECT camera was designed which provides high sensitivity to photons emitted from an imaging region of interest. This multipinhole system was investigated by computer-simulation studies. Seventeen hot spots 10 and 7 mm in diameter were placed in the breast region of a supine female phantom. Hot spot activity concentration was six times that of background. For the 49-pinhole camera and a reference, more conventional, broad field-of-view (FOV) SPECT system, projection data were computer simulated for 4-min scans and SPECT images were reconstructed. Hot-spot localization was evaluated using a nonprewhitening forced-choice numerical observer. Results: The CAD simulation studies found that robots could maneuver SPECT cameras about patients in position for radiation therapy. In the imaging studies, most hot spots were apparent in the 49-pinhole images. Average localization errors for 10-mm- and 7-mm-diameter hot spots were 0.4 and 1.7 mm, respectively, for the 49-pinhole system, and 3.1 and 5.7 mm, respectively, for the reference broad-FOV system. Conclusions: A robot could maneuver a multipinhole SPECT system about a patient in position for radiation therapy. The system could provide onboard functional and molecular imaging with 4-min scan times.« less

  14. Experiment and application of soft x-ray grazing incidence optical scattering phenomena

    NASA Astrophysics Data System (ADS)

    Chen, Shuyan; Li, Cheng; Zhang, Yang; Su, Liping; Geng, Tao; Li, Kun

    2017-08-01

    For short wavelength imaging systems,surface scattering effects is one of important factors degrading imaging performance. Study of non-intuitive surface scatter effects resulting from practical optical fabrication tolerances is a necessary work for optical performance evaluation of high resolution short wavelength imaging systems. In this paper, Soft X-ray optical scattering distribution is measured by a soft X-ray reflectometer installed by my lab, for different sample mirrors、wavelength and grazing angle. Then aim at space solar telescope, combining these scattered light distributions, and surface scattering numerical model of grazing incidence imaging system, PSF and encircled energy of optical system of space solar telescope are computed. We can conclude that surface scattering severely degrade imaging performance of grazing incidence systems through analysis and computation.

  15. Real-time emulation of neural images in the outer retinal circuit.

    PubMed

    Hasegawa, Jun; Yagi, Tetsuya

    2008-12-01

    We describe a novel real-time system that emulates the architecture and functionality of the vertebrate retina. This system reconstructs the neural images formed by the retinal neurons in real time by using a combination of analog and digital systems consisting of a neuromorphic silicon retina chip, a field-programmable gate array, and a digital computer. While the silicon retina carries out the spatial filtering of input images instantaneously, using the embedded resistive networks that emulate the receptive field structure of the outer retinal neurons, the digital computer carries out the temporal filtering of the spatially filtered images to emulate the dynamical properties of the outer retinal circuits. The emulations of the neural image, including 128 x 128 bipolar cells, are carried out at a frame rate of 62.5 Hz. The emulation of the response to the Hermann grid and a spot of light and an annulus of lights has demonstrated that the system responds as expected by previous physiological and psychophysical observations. Furthermore, the emulated dynamics of neural images in response to natural scenes revealed the complex nature of retinal neuron activity. We have concluded that the system reflects the spatiotemporal responses of bipolar cells in the vertebrate retina. The proposed emulation system is expected to aid in understanding the visual computation in the retina and the brain.

  16. XVD Image Display Program

    NASA Technical Reports Server (NTRS)

    Deen, Robert G.; Andres, Paul M.; Mortensen, Helen B.; Parizher, Vadim; McAuley, Myche; Bartholomew, Paul

    2009-01-01

    The XVD [X-Windows VICAR (video image communication and retrieval) Display] computer program offers an interactive display of VICAR and PDS (planetary data systems) images. It is designed to efficiently display multiple-GB images and runs on Solaris, Linux, or Mac OS X systems using X-Windows.

  17. 77 FR 59941 - Prospective Grant of Exclusive License: Terahertz Scanning Systems for Cancer Pathology

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-01

    ... Computer-Controlled Adaptive Near Field Imaging of Biological Systems'' Patent application No. Territory... licensure describe and claim a terahertz (THz) imaging system that may overcome the limitations of existing.... Additionally, the THz imaging system describes a sensor head geometry that eliminates the requirement to...

  18. Internet (WWW) based system of ultrasonic image processing tools for remote image analysis.

    PubMed

    Zeng, Hong; Fei, Ding-Yu; Fu, Cai-Ting; Kraft, Kenneth A

    2003-07-01

    Ultrasonic Doppler color imaging can provide anatomic information and simultaneously render flow information within blood vessels for diagnostic purpose. Many researchers are currently developing ultrasound image processing algorithms in order to provide physicians with accurate clinical parameters from the images. Because researchers use a variety of computer languages and work on different computer platforms to implement their algorithms, it is difficult for other researchers and physicians to access those programs. A system has been developed using World Wide Web (WWW) technologies and HTTP communication protocols to publish our ultrasonic Angle Independent Doppler Color Image (AIDCI) processing algorithm and several general measurement tools on the Internet, where authorized researchers and physicians can easily access the program using web browsers to carry out remote analysis of their local ultrasonic images or images provided from the database. In order to overcome potential incompatibility between programs and users' computer platforms, ActiveX technology was used in this project. The technique developed may also be used for other research fields.

  19. Image compression system and method having optimized quantization tables

    NASA Technical Reports Server (NTRS)

    Ratnakar, Viresh (Inventor); Livny, Miron (Inventor)

    1998-01-01

    A digital image compression preprocessor for use in a discrete cosine transform-based digital image compression device is provided. The preprocessor includes a gathering mechanism for determining discrete cosine transform statistics from input digital image data. A computing mechanism is operatively coupled to the gathering mechanism to calculate a image distortion array and a rate of image compression array based upon the discrete cosine transform statistics for each possible quantization value. A dynamic programming mechanism is operatively coupled to the computing mechanism to optimize the rate of image compression array against the image distortion array such that a rate-distortion-optimal quantization table is derived. In addition, a discrete cosine transform-based digital image compression device and a discrete cosine transform-based digital image compression and decompression system are provided. Also, a method for generating a rate-distortion-optimal quantization table, using discrete cosine transform-based digital image compression, and operating a discrete cosine transform-based digital image compression and decompression system are provided.

  20. Non-photorealistic rendering of virtual implant models for computer-assisted fluoroscopy-based surgical procedures

    NASA Astrophysics Data System (ADS)

    Zheng, Guoyan

    2007-03-01

    Surgical navigation systems visualize the positions and orientations of surgical instruments and implants as graphical overlays onto a medical image of the operated anatomy on a computer monitor. The orthopaedic surgical navigation systems could be categorized according to the image modalities that are used for the visualization of surgical action. In the so-called CT-based systems or 'surgeon-defined anatomy' based systems, where a 3D volume or surface representation of the operated anatomy could be constructed from the preoperatively acquired tomographic data or through intraoperatively digitized anatomy landmarks, a photorealistic rendering of the surgical action has been identified to greatly improve usability of these navigation systems. However, this may not hold true when the virtual representation of surgical instruments and implants is superimposed onto 2D projection images in a fluoroscopy-based navigation system due to the so-called image occlusion problem. Image occlusion occurs when the field of view of the fluoroscopic image is occupied by the virtual representation of surgical implants or instruments. In these situations, the surgeon may miss part of the image details, even if transparency and/or wire-frame rendering is used. In this paper, we propose to use non-photorealistic rendering to overcome this difficulty. Laboratory testing results on foamed plastic bones during various computer-assisted fluoroscopybased surgical procedures including total hip arthroplasty and long bone fracture reduction and osteosynthesis are shown.

  1. Gender Recognition from Human-Body Images Using Visible-Light and Thermal Camera Videos Based on a Convolutional Neural Network for Image Feature Extraction

    PubMed Central

    Nguyen, Dat Tien; Kim, Ki Wan; Hong, Hyung Gil; Koo, Ja Hyung; Kim, Min Cheol; Park, Kang Ryoung

    2017-01-01

    Extracting powerful image features plays an important role in computer vision systems. Many methods have previously been proposed to extract image features for various computer vision applications, such as the scale-invariant feature transform (SIFT), speed-up robust feature (SURF), local binary patterns (LBP), histogram of oriented gradients (HOG), and weighted HOG. Recently, the convolutional neural network (CNN) method for image feature extraction and classification in computer vision has been used in various applications. In this research, we propose a new gender recognition method for recognizing males and females in observation scenes of surveillance systems based on feature extraction from visible-light and thermal camera videos through CNN. Experimental results confirm the superiority of our proposed method over state-of-the-art recognition methods for the gender recognition problem using human body images. PMID:28335510

  2. Gender Recognition from Human-Body Images Using Visible-Light and Thermal Camera Videos Based on a Convolutional Neural Network for Image Feature Extraction.

    PubMed

    Nguyen, Dat Tien; Kim, Ki Wan; Hong, Hyung Gil; Koo, Ja Hyung; Kim, Min Cheol; Park, Kang Ryoung

    2017-03-20

    Extracting powerful image features plays an important role in computer vision systems. Many methods have previously been proposed to extract image features for various computer vision applications, such as the scale-invariant feature transform (SIFT), speed-up robust feature (SURF), local binary patterns (LBP), histogram of oriented gradients (HOG), and weighted HOG. Recently, the convolutional neural network (CNN) method for image feature extraction and classification in computer vision has been used in various applications. In this research, we propose a new gender recognition method for recognizing males and females in observation scenes of surveillance systems based on feature extraction from visible-light and thermal camera videos through CNN. Experimental results confirm the superiority of our proposed method over state-of-the-art recognition methods for the gender recognition problem using human body images.

  3. Bedside imaging of intracranial hemorrhage in the neonate using light: comparison with ultrasound, computed tomography, and magnetic resonance imaging.

    PubMed

    Hintz, S R; Cheong, W F; van Houten, J P; Stevenson, D K; Benaron, D A

    1999-01-01

    Medical optical imaging (MOI) uses light emitted into opaque tissues to determine the interior structure. Previous reports detailed a portable time-of-flight and absorbance system emitting pulses of near infrared light into tissues and measuring the emerging light. Using this system, optical images of phantoms, whole rats, and pathologic neonatal brain specimens have been tomographically reconstructed. We have now modified the existing instrumentation into a clinically relevant headband-based system to be used for optical imaging of structure in the neonatal brain at the bedside. Eight medical optical imaging studies in the neonatal intensive care unit were performed in a blinded clinical comparison of optical images with ultrasound, computed tomography, and magnetic resonance imaging. Optical images were interpreted as correct in six of eight cases, with one error attributed to the age of the clot, and one small clot not seen. In addition, one disagreement with ultrasound, not reported as an error, was found to be the result of a mislabeled ultrasound report rather than because of an inaccurate optical scan. Optical scan correlated well with computed tomography and magnetic resonance imaging findings in one patient. We conclude that light-based imaging using a portable time-of-flight system is feasible and represents an important new noninvasive diagnostic technique, with potential for continuous monitoring of critically ill neonates at risk for intraventricular hemorrhage or stroke. Further studies are now underway to further investigate the functional imaging capabilities of this new diagnostic tool.

  4. Computational Ghost Imaging for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Erkmen, Baris I.

    2012-01-01

    This work relates to the generic problem of remote active imaging; that is, a source illuminates a target of interest and a receiver collects the scattered light off the target to obtain an image. Conventional imaging systems consist of an imaging lens and a high-resolution detector array [e.g., a CCD (charge coupled device) array] to register the image. However, conventional imaging systems for remote sensing require high-quality optics and need to support large detector arrays and associated electronics. This results in suboptimal size, weight, and power consumption. Computational ghost imaging (CGI) is a computational alternative to this traditional imaging concept that has a very simple receiver structure. In CGI, the transmitter illuminates the target with a modulated light source. A single-pixel (bucket) detector collects the scattered light. Then, via computation (i.e., postprocessing), the receiver can reconstruct the image using the knowledge of the modulation that was projected onto the target by the transmitter. This way, one can construct a very simple receiver that, in principle, requires no lens to image a target. Ghost imaging is a transverse imaging modality that has been receiving much attention owing to a rich interconnection of novel physical characteristics and novel signal processing algorithms suitable for active computational imaging. The original ghost imaging experiments consisted of two correlated optical beams traversing distinct paths and impinging on two spatially-separated photodetectors: one beam interacts with the target and then illuminates on a single-pixel (bucket) detector that provides no spatial resolution, whereas the other beam traverses an independent path and impinges on a high-resolution camera without any interaction with the target. The term ghost imaging was coined soon after the initial experiments were reported, to emphasize the fact that by cross-correlating two photocurrents, one generates an image of the target. In CGI, the measurement obtained from the reference arm (with the high-resolution detector) is replaced by a computational derivation of the measurement-plane intensity profile of the reference-arm beam. The algorithms applied to computational ghost imaging have diversified beyond simple correlation measurements, and now include modern reconstruction algorithms based on compressive sensing.

  5. Variety and evolution of American endoscopic image management and recording systems.

    PubMed

    Korman, L Y

    1996-03-01

    The rapid evolution of computing technology has and will continue to alter the practice of gastroenterology and gastrointestinal endoscopy. Development of communication standards for text, images, and security systems will be necessary for medicine to take advantage of high-speed computing and communications. Professional societies can have an important role in guiding the development process.

  6. Real-time computational photon-counting LiDAR

    NASA Astrophysics Data System (ADS)

    Edgar, Matthew; Johnson, Steven; Phillips, David; Padgett, Miles

    2018-03-01

    The availability of compact, low-cost, and high-speed MEMS-based spatial light modulators has generated widespread interest in alternative sampling strategies for imaging systems utilizing single-pixel detectors. The development of compressed sensing schemes for real-time computational imaging may have promising commercial applications for high-performance detectors, where the availability of focal plane arrays is expensive or otherwise limited. We discuss the research and development of a prototype light detection and ranging (LiDAR) system via direct time of flight, which utilizes a single high-sensitivity photon-counting detector and fast-timing electronics to recover millimeter accuracy three-dimensional images in real time. The development of low-cost real time computational LiDAR systems could have importance for applications in security, defense, and autonomous vehicles.

  7. Enhancements in medicine by integrating content based image retrieval in computer-aided diagnosis

    NASA Astrophysics Data System (ADS)

    Aggarwal, Preeti; Sardana, H. K.

    2010-02-01

    Computer-aided diagnosis (CAD) has become one of the major research subjects in medical imaging and diagnostic radiology. With cad, radiologists use the computer output as a "second opinion" and make the final decisions. Retrieving images is a useful tool to help radiologist to check medical image and diagnosis. The impact of contentbased access to medical images is frequently reported but existing systems are designed for only a particular context of diagnosis. The challenge in medical informatics is to develop tools for analyzing the content of medical images and to represent them in a way that can be efficiently searched and compared by the physicians. CAD is a concept established by taking into account equally the roles of physicians and computers. To build a successful computer aided diagnostic system, all the relevant technologies, especially retrieval need to be integrated in such a manner that should provide effective and efficient pre-diagnosed cases with proven pathology for the current case at the right time. In this paper, it is suggested that integration of content-based image retrieval (CBIR) in cad can bring enormous results in medicine especially in diagnosis. This approach is also compared with other approaches by highlighting its advantages over those approaches.

  8. Multiple-Flat-Panel System Displays Multidimensional Data

    NASA Technical Reports Server (NTRS)

    Gundo, Daniel; Levit, Creon; Henze, Christopher; Sandstrom, Timothy; Ellsworth, David; Green, Bryan; Joly, Arthur

    2006-01-01

    The NASA Ames hyperwall is a display system designed to facilitate the visualization of sets of multivariate and multidimensional data like those generated in complex engineering and scientific computations. The hyperwall includes a 77 matrix of computer-driven flat-panel video display units, each presenting an image of 1,280 1,024 pixels. The term hyperwall reflects the fact that this system is a more capable successor to prior computer-driven multiple-flat-panel display systems known by names that include the generic term powerwall and the trade names PowerWall and Powerwall. Each of the 49 flat-panel displays is driven by a rack-mounted, dual-central-processing- unit, workstation-class personal computer equipped with a hig-hperformance graphical-display circuit card and with a hard-disk drive having a storage capacity of 100 GB. Each such computer is a slave node in a master/ slave computing/data-communication system (see Figure 1). The computer that acts as the master node is similar to the slave-node computers, except that it runs the master portion of the system software and is equipped with a keyboard and mouse for control by a human operator. The system utilizes commercially available master/slave software along with custom software that enables the human controller to interact simultaneously with any number of selected slave nodes. In a powerwall, a single rendering task is spread across multiple processors and then the multiple outputs are tiled into one seamless super-display. It must be noted that the hyperwall concept subsumes the powerwall concept in that a single scene could be rendered as a mosaic image on the hyperwall. However, the hyperwall offers a wider set of capabilities to serve a different purpose: The hyperwall concept is one of (1) simultaneously displaying multiple different but related images, and (2) providing means for composing and controlling such sets of images. In place of elaborate software or hardware crossbar switches, the hyperwall concept substitutes reliance on the human visual system for integration, synthesis, and discrimination of patterns in complex and high-dimensional data spaces represented by the multiple displayed images. The variety of multidimensional data sets that can be displayed on the hyperwall is practically unlimited. For example, Figure 2 shows a hyperwall display of surface pressures and streamlines from a computational simulation of airflow about an aerospacecraft at various Mach numbers and angles of attack. In this display, Mach numbers increase from left to right and angles of attack increase from bottom to top. That is, all images in the same column represent simulations at the same Mach number, while all images in the same row represent simulations at the same angle of attack. The same viewing transformations and the same mapping from surface pressure to colors were used in generating all the images.

  9. Picture archiving and communication system--Part one: Filmless radiology and distance radiology.

    PubMed

    De Backer, A I; Mortelé, K J; De Keulenaer, B L

    2004-01-01

    Picture archiving and communication system (PACS) is a collection of technologies used to carry out digital medical imaging. PACS is used to digitally acquire medical images from the various modalities, such as computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, and digital projection radiography. The image data and pertinent information are transmitted to other and possibly remote locations over networks, where they may be displayed on computer workstations for soft copy viewing in multiple locations, thus permitting simultaneous consultations and almost instant reporting from radiologists at a distance. Data are secured and archived on digital media such as optical disks or tape, and may be automatically retrieved as necessary. Close integration with the hospital information system (HIS)--radiology information system (RIS) is critical for system functionality. Medical image management systems are maturing, providing access outside of the radiology department to images throughout the hospital via the Ethernet, at different hospitals, or from a home workstation if teleradiology has been implemented.

  10. Vanderbilt University Institute of Imaging Science Center for Computational Imaging XNAT: A multimodal data archive and processing environment.

    PubMed

    Harrigan, Robert L; Yvernault, Benjamin C; Boyd, Brian D; Damon, Stephen M; Gibney, Kyla David; Conrad, Benjamin N; Phillips, Nicholas S; Rogers, Baxter P; Gao, Yurui; Landman, Bennett A

    2016-01-01

    The Vanderbilt University Institute for Imaging Science (VUIIS) Center for Computational Imaging (CCI) has developed a database built on XNAT housing over a quarter of a million scans. The database provides framework for (1) rapid prototyping, (2) large scale batch processing of images and (3) scalable project management. The system uses the web-based interfaces of XNAT and REDCap to allow for graphical interaction. A python middleware layer, the Distributed Automation for XNAT (DAX) package, distributes computation across the Vanderbilt Advanced Computing Center for Research and Education high performance computing center. All software are made available in open source for use in combining portable batch scripting (PBS) grids and XNAT servers. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Terahertz Computed Tomography of NASA Thermal Protection System Materials

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Reyes-Rodriguez, S.; Zimdars, D. A.; Rauser, R. W.; Ussery, W. W.

    2011-01-01

    A terahertz axial computed tomography system has been developed that uses time domain measurements in order to form cross-sectional image slices and three-dimensional volume renderings of terahertz-transparent materials. The system can inspect samples as large as 0.0283 cubic meters (1 cubic foot) with no safety concerns as for x-ray computed tomography. In this study, the system is evaluated for its ability to detect and characterize flat bottom holes, drilled holes, and embedded voids in foam materials utilized as thermal protection on the external fuel tanks for the Space Shuttle. X-ray micro-computed tomography was also performed on the samples to compare against the terahertz computed tomography results and better define embedded voids. Limits of detectability based on depth and size for the samples used in this study are loosely defined. Image sharpness and morphology characterization ability for terahertz computed tomography are qualitatively described.

  12. A self-synchronized high speed computational ghost imaging system: A leap towards dynamic capturing

    NASA Astrophysics Data System (ADS)

    Suo, Jinli; Bian, Liheng; Xiao, Yudong; Wang, Yongjin; Zhang, Lei; Dai, Qionghai

    2015-11-01

    High quality computational ghost imaging needs to acquire a large number of correlated measurements between the to-be-imaged scene and different reference patterns, thus ultra-high speed data acquisition is of crucial importance in real applications. To raise the acquisition efficiency, this paper reports a high speed computational ghost imaging system using a 20 kHz spatial light modulator together with a 2 MHz photodiode. Technically, the synchronization between such high frequency illumination and bucket detector needs nanosecond trigger precision, so the development of synchronization module is quite challenging. To handle this problem, we propose a simple and effective computational self-synchronization scheme by building a general mathematical model and introducing a high precision synchronization technique. The resulted efficiency is around 14 times faster than state-of-the-arts, and takes an important step towards ghost imaging of dynamic scenes. Besides, the proposed scheme is a general approach with high flexibility for readily incorporating other illuminators and detectors.

  13. Mobile computing device configured to compute irradiance, glint, and glare of the sun

    DOEpatents

    Gupta, Vipin P; Ho, Clifford K; Khalsa, Siri Sahib

    2014-03-11

    Described herein are technologies pertaining to computing the solar irradiance distribution on a surface of a receiver in a concentrating solar power system or glint/glare emitted from a reflective entity. A mobile computing device includes at least one camera that captures images of the Sun and the entity of interest, wherein the images have pluralities of pixels having respective pluralities of intensity values. Based upon the intensity values of the pixels in the respective images, the solar irradiance distribution on the surface of the entity or glint/glare corresponding to the entity is computed by the mobile computing device.

  14. Imaging anatomy of the vestibular and visual systems.

    PubMed

    Gunny, Roxana; Yousry, Tarek A

    2007-02-01

    This review will outline the imaging anatomy of the vestibular and visual pathways, using computed tomography and magnetic resonance imaging, with emphasis on the more recent developments in neuroimaging. Technical advances in computed tomography and magnetic resonance imaging, such as the advent of multislice computed tomography and newer magnetic resonance imaging techniques such as T2-weighted magnetic resonance cisternography, have improved the imaging of the vestibular and visual pathways, allowing better visualization of the end organs and peripheral nerves. Higher field strength magnetic resonance imaging is a promising tool, which has been used to evaluate and resolve fine anatomic detail in vitro, as in the labyrinth. Advanced magnetic resonance imaging techniques such as functional magnetic resonance imaging and diffusion tractography have been used to identify cortical areas of activation and associated white matter pathways, and show potential for the future identification of complex neuronal relays involved in integrating these pathways. The assessment of the various components of the vestibular and the visual systems has improved with more detailed research on the imaging anatomy of these systems, the advent of high field magnetic resonance scanners and multislice computerized tomography, and the wider use of specific techniques such as tractography which displays white matter tracts not directly accessible until now.

  15. OpenID Connect as a security service in cloud-based medical imaging systems

    PubMed Central

    Ma, Weina; Sartipi, Kamran; Sharghigoorabi, Hassan; Koff, David; Bak, Peter

    2016-01-01

    Abstract. The evolution of cloud computing is driving the next generation of medical imaging systems. However, privacy and security concerns have been consistently regarded as the major obstacles for adoption of cloud computing by healthcare domains. OpenID Connect, combining OpenID and OAuth together, is an emerging representational state transfer-based federated identity solution. It is one of the most adopted open standards to potentially become the de facto standard for securing cloud computing and mobile applications, which is also regarded as “Kerberos of cloud.” We introduce OpenID Connect as an authentication and authorization service in cloud-based diagnostic imaging (DI) systems, and propose enhancements that allow for incorporating this technology within distributed enterprise environments. The objective of this study is to offer solutions for secure sharing of medical images among diagnostic imaging repository (DI-r) and heterogeneous picture archiving and communication systems (PACS) as well as Web-based and mobile clients in the cloud ecosystem. The main objective is to use OpenID Connect open-source single sign-on and authorization service and in a user-centric manner, while deploying DI-r and PACS to private or community clouds should provide equivalent security levels to traditional computing model. PMID:27340682

  16. Computerized tomography using video recorded fluoroscopic images

    NASA Technical Reports Server (NTRS)

    Kak, A. C.; Jakowatz, C. V., Jr.; Baily, N. A.; Keller, R. A.

    1975-01-01

    A computerized tomographic imaging system is examined which employs video-recorded fluoroscopic images as input data. By hooking the video recorder to a digital computer through a suitable interface, such a system permits very rapid construction of tomograms.

  17. Optical Signal Processing: Poisson Image Restoration and Shearing Interferometry

    NASA Technical Reports Server (NTRS)

    Hong, Yie-Ming

    1973-01-01

    Optical signal processing can be performed in either digital or analog systems. Digital computers and coherent optical systems are discussed as they are used in optical signal processing. Topics include: image restoration; phase-object visualization; image contrast reversal; optical computation; image multiplexing; and fabrication of spatial filters. Digital optical data processing deals with restoration of images degraded by signal-dependent noise. When the input data of an image restoration system are the numbers of photoelectrons received from various areas of a photosensitive surface, the data are Poisson distributed with mean values proportional to the illuminance of the incoherently radiating object and background light. Optical signal processing using coherent optical systems is also discussed. Following a brief review of the pertinent details of Ronchi's diffraction grating interferometer, moire effect, carrier-frequency photography, and achromatic holography, two new shearing interferometers based on them are presented. Both interferometers can produce variable shear.

  18. JANUS: A Compilation System for Balancing Parallelism and Performance in OpenVX

    NASA Astrophysics Data System (ADS)

    Omidian, Hossein; Lemieux, Guy G. F.

    2018-04-01

    Embedded systems typically do not have enough on-chip memory for entire an image buffer. Programming systems like OpenCV operate on entire image frames at each step, making them use excessive memory bandwidth and power. In contrast, the paradigm used by OpenVX is much more efficient; it uses image tiling, and the compilation system is allowed to analyze and optimize the operation sequence, specified as a compute graph, before doing any pixel processing. In this work, we are building a compilation system for OpenVX that can analyze and optimize the compute graph to take advantage of parallel resources in many-core systems or FPGAs. Using a database of prewritten OpenVX kernels, it automatically adjusts the image tile size as well as using kernel duplication and coalescing to meet a defined area (resource) target, or to meet a specified throughput target. This allows a single compute graph to target implementations with a wide range of performance needs or capabilities, e.g. from handheld to datacenter, that use minimal resources and power to reach the performance target.

  19. 1995 Joseph E. Whitley, MD, Award. A World Wide Web gateway to the radiologic learning file.

    PubMed

    Channin, D S

    1995-12-01

    Computer networks in general, and the Internet specifically, are changing the way information is manipulated in the world at large and in radiology. The goal of this project was to develop a computer system in which images from the Radiologic Learning File, available previously only via a single-user laser disc, are made available over a generic, high-availability computer network to many potential users simultaneously. Using a networked workstation in our laboratory and freely available distributed hypertext software, we established a World Wide Web (WWW) information server for radiology. Images from the Radiologic Learning File are requested through the WWW client software, digitized from a single laser disc containing the entire teaching file and then transmitted over the network to the client. The text accompanying each image is incorporated into the transmitted document. The Radiologic Learning File is now on-line, and requests to view the cases result in the delivery of the text and images. Image digitization via a frame grabber takes 1/30th of a second. Conversion of the image to a standard computer graphic format takes 45-60 sec. Text and image transmission speed on a local area network varies between 200 and 400 kilobytes (KB) per second depending on the network load. We have made images from a laser disc of the Radiologic Learning File available through an Internet-based hypertext server. The images previously available through a single-user system located in a remote section of our department are now ubiquitously available throughout our department via the department's computer network. We have thus converted a single-user, limited functionality system into a multiuser, widely available resource.

  20. Quantitative Enzymatic and Immunologic Histophotometry of Diseased Human Kid-Ney Tissues Using Tv-Camera and Computer Assisted Image Processing Systems.

    NASA Astrophysics Data System (ADS)

    Heinert, G.; Mondorf, W.

    1982-11-01

    High speed image processing was used to analyse morphologic and metabolic characteristics of clinically relevant kidney tissue alterations.Qualitative computer-assisted histophotometry was performed to measure alterations in levels of the enzymes alkaline phosphatase (Ap),alanine aminopeptidase (AAP),g-glutamyltranspepti-dase (GGTP) and A-glucuronidase (B-G1) and AAP and GGTP immunologically determined in prepared renal and cancer tissue sections. A "Mioro-Videomat 2" image analysis system with a "Tessovar" macroscope,a computer-assisted "Axiomat" photomicroscope and an "Interactive Image Analysis System (IBAS)" were employed for analysing changes in enzyme activities determined by changes in absorbance or transmission.Diseased kidney as well as renal neoplastic tissues could be distinguished by significantly (wilcoxon test,p<0,05) decreased enzyme concentrations as compared to those found in normal human kidney tissues.This image analysis techniques might be of potential use in diagnostic and prognostic evaluation of renal cancer and diseased kidney tissues.

  1. Anniversary Paper: History and status of CAD and quantitative image analysis: The role of Medical Physics and AAPM

    PubMed Central

    Giger, Maryellen L.; Chan, Heang-Ping; Boone, John

    2008-01-01

    The roles of physicists in medical imaging have expanded over the years, from the study of imaging systems (sources and detectors) and dose to the assessment of image quality and perception, the development of image processing techniques, and the development of image analysis methods to assist in detection and diagnosis. The latter is a natural extension of medical physicists’ goals in developing imaging techniques to help physicians acquire diagnostic information and improve clinical decisions. Studies indicate that radiologists do not detect all abnormalities on images that are visible on retrospective review, and they do not always correctly characterize abnormalities that are found. Since the 1950s, the potential use of computers had been considered for analysis of radiographic abnormalities. In the mid-1980s, however, medical physicists and radiologists began major research efforts for computer-aided detection or computer-aided diagnosis (CAD), that is, using the computer output as an aid to radiologists—as opposed to a completely automatic computer interpretation—focusing initially on methods for the detection of lesions on chest radiographs and mammograms. Since then, extensive investigations of computerized image analysis for detection or diagnosis of abnormalities in a variety of 2D and 3D medical images have been conducted. The growth of CAD over the past 20 years has been tremendous—from the early days of time-consuming film digitization and CPU-intensive computations on a limited number of cases to its current status in which developed CAD approaches are evaluated rigorously on large clinically relevant databases. CAD research by medical physicists includes many aspects—collecting relevant normal and pathological cases; developing computer algorithms appropriate for the medical interpretation task including those for segmentation, feature extraction, and classifier design; developing methodology for assessing CAD performance; validating the algorithms using appropriate cases to measure performance and robustness; conducting observer studies with which to evaluate radiologists in the diagnostic task without and with the use of the computer aid; and ultimately assessing performance with a clinical trial. Medical physicists also have an important role in quantitative imaging, by validating the quantitative integrity of scanners and developing imaging techniques, and image analysis tools that extract quantitative data in a more accurate and automated fashion. As imaging systems become more complex and the need for better quantitative information from images grows, the future includes the combined research efforts from physicists working in CAD with those working on quantitative imaging systems to readily yield information on morphology, function, molecular structure, and more—from animal imaging research to clinical patient care. A historical review of CAD and a discussion of challenges for the future are presented here, along with the extension to quantitative image analysis. PMID:19175137

  2. Anniversary Paper: History and status of CAD and quantitative image analysis: The role of Medical Physics and AAPM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giger, Maryellen L.; Chan, Heang-Ping; Boone, John

    2008-12-15

    The roles of physicists in medical imaging have expanded over the years, from the study of imaging systems (sources and detectors) and dose to the assessment of image quality and perception, the development of image processing techniques, and the development of image analysis methods to assist in detection and diagnosis. The latter is a natural extension of medical physicists' goals in developing imaging techniques to help physicians acquire diagnostic information and improve clinical decisions. Studies indicate that radiologists do not detect all abnormalities on images that are visible on retrospective review, and they do not always correctly characterize abnormalities thatmore » are found. Since the 1950s, the potential use of computers had been considered for analysis of radiographic abnormalities. In the mid-1980s, however, medical physicists and radiologists began major research efforts for computer-aided detection or computer-aided diagnosis (CAD), that is, using the computer output as an aid to radiologists--as opposed to a completely automatic computer interpretation--focusing initially on methods for the detection of lesions on chest radiographs and mammograms. Since then, extensive investigations of computerized image analysis for detection or diagnosis of abnormalities in a variety of 2D and 3D medical images have been conducted. The growth of CAD over the past 20 years has been tremendous--from the early days of time-consuming film digitization and CPU-intensive computations on a limited number of cases to its current status in which developed CAD approaches are evaluated rigorously on large clinically relevant databases. CAD research by medical physicists includes many aspects--collecting relevant normal and pathological cases; developing computer algorithms appropriate for the medical interpretation task including those for segmentation, feature extraction, and classifier design; developing methodology for assessing CAD performance; validating the algorithms using appropriate cases to measure performance and robustness; conducting observer studies with which to evaluate radiologists in the diagnostic task without and with the use of the computer aid; and ultimately assessing performance with a clinical trial. Medical physicists also have an important role in quantitative imaging, by validating the quantitative integrity of scanners and developing imaging techniques, and image analysis tools that extract quantitative data in a more accurate and automated fashion. As imaging systems become more complex and the need for better quantitative information from images grows, the future includes the combined research efforts from physicists working in CAD with those working on quantitative imaging systems to readily yield information on morphology, function, molecular structure, and more--from animal imaging research to clinical patient care. A historical review of CAD and a discussion of challenges for the future are presented here, along with the extension to quantitative image analysis.« less

  3. Computer-aided design/computer-aided manufacturing skull base drill.

    PubMed

    Couldwell, William T; MacDonald, Joel D; Thomas, Charles L; Hansen, Bradley C; Lapalikar, Aniruddha; Thakkar, Bharat; Balaji, Alagar K

    2017-05-01

    The authors have developed a simple device for computer-aided design/computer-aided manufacturing (CAD-CAM) that uses an image-guided system to define a cutting tool path that is shared with a surgical machining system for drilling bone. Information from 2D images (obtained via CT and MRI) is transmitted to a processor that produces a 3D image. The processor generates code defining an optimized cutting tool path, which is sent to a surgical machining system that can drill the desired portion of bone. This tool has applications for bone removal in both cranial and spine neurosurgical approaches. Such applications have the potential to reduce surgical time and associated complications such as infection or blood loss. The device enables rapid removal of bone within 1 mm of vital structures. The validity of such a machining tool is exemplified in the rapid (< 3 minutes machining time) and accurate removal of bone for transtemporal (for example, translabyrinthine) approaches.

  4. Planetary investigation utilizing an imaging spectrometer system based upon charge injection technology

    NASA Technical Reports Server (NTRS)

    Wattson, R. B.; Harvey, P.; Swift, R.

    1975-01-01

    An intrinsic silicon charge injection device (CID) television sensor array has been used in conjunction with a CaMoO4 colinear tunable acousto optic filter, a 61 inch reflector, a sophisticated computer system, and a digital color TV scan converter/computer to produce near IR images of Saturn and Jupiter with 10A spectral resolution and approximately 3 inch spatial resolution. The CID camera has successfully obtained digitized 100 x 100 array images with 5 minutes of exposure time, and slow-scanned readout to a computer. Details of the equipment setup, innovations, problems, experience, data and final equipment performance limits are given.

  5. Phantom feet on digital radionuclide images and other scary computer tales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freitas, J.E.; Dworkin, H.J.; Dees, S.M.

    1989-09-01

    Malfunction of a computer-assisted digital gamma camera is reported. Despite what appeared to be adequate acceptance testing, an error in the system gave rise to switching of images and identification text. A suggestion is made for using a hot marker, which would avoid the potential error of misinterpretation of patient images.

  6. Image Processor Electronics (IPE): The High-Performance Computing System for NASA SWIFT Mission

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang H.; Settles, Beverly A.

    2003-01-01

    Gamma Ray Bursts (GRBs) are believed to be the most powerful explosions that have occurred in the Universe since the Big Bang and are a mystery to the scientific community. Swift, a NASA mission that includes international participation, was designed and built in preparation for a 2003 launch to help to determine the origin of Gamma Ray Bursts. Locating the position in the sky where a burst originates requires intensive computing, because the duration of a GRB can range between a few milliseconds up to approximately a minute. The instrument data system must constantly accept multiple images representing large regions of the sky that are generated by sixteen gamma ray detectors operating in parallel. It then must process the received images very quickly in order to determine the existence of possible gamma ray bursts and their locations. The high-performance instrument data computing system that accomplishes this is called the Image Processor Electronics (IPE). The IPE was designed, built and tested by NASA Goddard Space Flight Center (GSFC) in order to meet these challenging requirements. The IPE is a small size, low power and high performing computing system for space applications. This paper addresses the system implementation and the system hardware architecture of the IPE. The paper concludes with the IPE system performance that was measured during end-to-end system testing.

  7. Construction of image database for newspapaer articles using CTS

    NASA Astrophysics Data System (ADS)

    Kamio, Tatsuo

    Nihon Keizai Shimbun, Inc. developed a system of making articles' image database automatically by use of CTS (Computer Typesetting System). Besides the articles and the headlines inputted in CTS, it reproduces the image of elements of such as photography and graphs by article in accordance with information of position on the paper. So to speak, computer itself clips the articles out of the newspaper. Image database is accumulated in magnetic file and optical file and is output to the facsimile of users. With diffusion of CTS, newspaper companies which start to have structure of articles database are increased rapidly, the said system is the first attempt to make database automatically. This paper describes the device of CTS which supports this system and outline.

  8. A method to incorporate the effect of beam quality on image noise in a digitally reconstructed radiograph (DRR) based computer simulation for optimisation of digital radiography

    NASA Astrophysics Data System (ADS)

    Moore, Craig S.; Wood, Tim J.; Saunderson, John R.; Beavis, Andrew W.

    2017-09-01

    The use of computer simulated digital x-radiographs for optimisation purposes has become widespread in recent years. To make these optimisation investigations effective, it is vital simulated radiographs contain accurate anatomical and system noise. Computer algorithms that simulate radiographs based solely on the incident detector x-ray intensity (‘dose’) have been reported extensively in the literature. However, while it has been established for digital mammography that x-ray beam quality is an important factor when modelling noise in simulated images there are no such studies for diagnostic imaging of the chest, abdomen and pelvis. This study investigates the influence of beam quality on image noise in a digital radiography (DR) imaging system, and incorporates these effects into a digitally reconstructed radiograph (DRR) computer simulator. Image noise was measured on a real DR imaging system as a function of dose (absorbed energy) over a range of clinically relevant beam qualities. Simulated ‘absorbed energy’ and ‘beam quality’ DRRs were then created for each patient and tube voltage under investigation. Simulated noise images, corrected for dose and beam quality, were subsequently produced from the absorbed energy and beam quality DRRs, using the measured noise, absorbed energy and beam quality relationships. The noise images were superimposed onto the noiseless absorbed energy DRRs to create the final images. Signal-to-noise measurements in simulated chest, abdomen and spine images were within 10% of the corresponding measurements in real images. This compares favourably to our previous algorithm where images corrected for dose only were all within 20%.

  9. Infinite possibilities: Computational structures technology

    NASA Astrophysics Data System (ADS)

    Beam, Sherilee F.

    1994-12-01

    Computational Fluid Dynamics (or CFD) methods are very familiar to the research community. Even the general public has had some exposure to CFD images, primarily through the news media. However, very little attention has been paid to CST--Computational Structures Technology. Yet, no important design can be completed without it. During the first half of this century, researchers only dreamed of designing and building structures on a computer. Today their dreams have become practical realities as computational methods are used in all phases of design, fabrication and testing of engineering systems. Increasingly complex structures can now be built in even shorter periods of time. Over the past four decades, computer technology has been developing, and early finite element methods have grown from small in-house programs to numerous commercial software programs. When coupled with advanced computing systems, they help engineers make dramatic leaps in designing and testing concepts. The goals of CST include: predicting how a structure will behave under actual operating conditions; designing and complementing other experiments conducted on a structure; investigating microstructural damage or chaotic, unpredictable behavior; helping material developers in improving material systems; and being a useful tool in design systems optimization and sensitivity techniques. Applying CST to a structure problem requires five steps: (1) observe the specific problem; (2) develop a computational model for numerical simulation; (3) develop and assemble software and hardware for running the codes; (4) post-process and interpret the results; and (5) use the model to analyze and design the actual structure. Researchers in both industry and academia continue to make significant contributions to advance this technology with improvements in software, collaborative computing environments and supercomputing systems. As these environments and systems evolve, computational structures technology will evolve. By using CST in the design and operation of future structures systems, engineers will have a better understanding of how a system responds and lasts, more cost-effective methods of designing and testing models, and improved productivity. For informational and educational purposes, a videotape is being produced using both static and dynamic images from research institutions, software and hardware companies, private individuals, and historical photographs and drawings. The extensive number of CST resources indicates its widespread use. Applications run the gamut from simpler university-simulated problems to those requiring solutions on supercomputers. In some cases, an image or an animation will be mapped onto the actual structure to show the relevance of the computer model to the structure.

  10. Infinite possibilities: Computational structures technology

    NASA Technical Reports Server (NTRS)

    Beam, Sherilee F.

    1994-01-01

    Computational Fluid Dynamics (or CFD) methods are very familiar to the research community. Even the general public has had some exposure to CFD images, primarily through the news media. However, very little attention has been paid to CST--Computational Structures Technology. Yet, no important design can be completed without it. During the first half of this century, researchers only dreamed of designing and building structures on a computer. Today their dreams have become practical realities as computational methods are used in all phases of design, fabrication and testing of engineering systems. Increasingly complex structures can now be built in even shorter periods of time. Over the past four decades, computer technology has been developing, and early finite element methods have grown from small in-house programs to numerous commercial software programs. When coupled with advanced computing systems, they help engineers make dramatic leaps in designing and testing concepts. The goals of CST include: predicting how a structure will behave under actual operating conditions; designing and complementing other experiments conducted on a structure; investigating microstructural damage or chaotic, unpredictable behavior; helping material developers in improving material systems; and being a useful tool in design systems optimization and sensitivity techniques. Applying CST to a structure problem requires five steps: (1) observe the specific problem; (2) develop a computational model for numerical simulation; (3) develop and assemble software and hardware for running the codes; (4) post-process and interpret the results; and (5) use the model to analyze and design the actual structure. Researchers in both industry and academia continue to make significant contributions to advance this technology with improvements in software, collaborative computing environments and supercomputing systems. As these environments and systems evolve, computational structures technology will evolve. By using CST in the design and operation of future structures systems, engineers will have a better understanding of how a system responds and lasts, more cost-effective methods of designing and testing models, and improved productivity. For informational and educational purposes, a videotape is being produced using both static and dynamic images from research institutions, software and hardware companies, private individuals, and historical photographs and drawings. The extensive number of CST resources indicates its widespread use. Applications run the gamut from simpler university-simulated problems to those requiring solutions on supercomputers. In some cases, an image or an animation will be mapped onto the actual structure to show the relevance of the computer model to the structure. Transferring the digital files to videotape presents a number of problems related to maintaining the quality of the original image, while still producing a broadcast quality videotape. Since researchers normally do not create a computer image using traditional composition theories or video production requirements, often the image loses some of its original digital quality and impact when transferred to videotape. Although many CST images are currently available, those that are edited into the final project must meet two important criteria: they must complement the narration, and they must be broadcast quality when recorded on videotape.

  11. Computer-aided diagnosis workstation and teleradiology network system for chest diagnosis using the web medical image conference system with a new information security solution

    NASA Astrophysics Data System (ADS)

    Satoh, Hitoshi; Niki, Noboru; Eguchi, Kenji; Ohmatsu, Hironobu; Kaneko, Masahiro; Kakinuma, Ryutaro; Moriyama, Noriyuki

    2010-03-01

    Diagnostic MDCT imaging requires a considerable number of images to be read. Moreover, the doctor who diagnoses a medical image is insufficient in Japan. Because of such a background, we have provided diagnostic assistance methods to medical screening specialists by developing a lung cancer screening algorithm that automatically detects suspected lung cancers in helical CT images, a coronary artery calcification screening algorithm that automatically detects suspected coronary artery calcification and a vertebra body analysis algorithm for quantitative evaluation of osteoporosis. We also have developed the teleradiology network system by using web medical image conference system. In the teleradiology network system, the security of information network is very important subjects. Our teleradiology network system can perform Web medical image conference in the medical institutions of a remote place using the web medical image conference system. We completed the basic proof experiment of the web medical image conference system with information security solution. We can share the screen of web medical image conference system from two or more web conference terminals at the same time. An opinion can be exchanged mutually by using a camera and a microphone that are connected with the workstation that builds in some diagnostic assistance methods. Biometric face authentication used on site of teleradiology makes "Encryption of file" and "Success in login" effective. Our Privacy and information security technology of information security solution ensures compliance with Japanese regulations. As a result, patients' private information is protected. Based on these diagnostic assistance methods, we have developed a new computer-aided workstation and a new teleradiology network that can display suspected lesions three-dimensionally in a short time. The results of this study indicate that our radiological information system without film by using computer-aided diagnosis workstation and our teleradiology network system can increase diagnostic speed, diagnostic accuracy and security improvement of medical information.

  12. Computational Virtual Reality (VR) as a human-computer interface in the operation of telerobotic systems

    NASA Technical Reports Server (NTRS)

    Bejczy, Antal K.

    1995-01-01

    This presentation focuses on the application of computer graphics or 'virtual reality' (VR) techniques as a human-computer interface tool in the operation of telerobotic systems. VR techniques offer very valuable task realization aids for planning, previewing and predicting robotic actions, operator training, and for visual perception of non-visible events like contact forces in robotic tasks. The utility of computer graphics in telerobotic operation can be significantly enhanced by high-fidelity calibration of virtual reality images to actual TV camera images. This calibration will even permit the creation of artificial (synthetic) views of task scenes for which no TV camera views are available.

  13. Advances in medical image computing.

    PubMed

    Tolxdorff, T; Deserno, T M; Handels, H; Meinzer, H-P

    2009-01-01

    Medical image computing has become a key technology in high-tech applications in medicine and an ubiquitous part of modern imaging systems and the related processes of clinical diagnosis and intervention. Over the past years significant progress has been made in the field, both on methodological and on application level. Despite this progress there are still big challenges to meet in order to establish image processing routinely in health care. In this issue, selected contributions of the German Conference on Medical Image Processing (BVM) are assembled to present latest advances in the field of medical image computing. The winners of scientific awards of the German Conference on Medical Image Processing (BVM) 2008 were invited to submit a manuscript on their latest developments and results for possible publication in Methods of Information in Medicine. Finally, seven excellent papers were selected to describe important aspects of recent advances in the field of medical image processing. The selected papers give an impression of the breadth and heterogeneity of new developments. New methods for improved image segmentation, non-linear image registration and modeling of organs are presented together with applications of image analysis methods in different medical disciplines. Furthermore, state-of-the-art tools and techniques to support the development and evaluation of medical image processing systems in practice are described. The selected articles describe different aspects of the intense development in medical image computing. The image processing methods presented enable new insights into the patient's image data and have the future potential to improve medical diagnostics and patient treatment.

  14. Automatic Reconstruction of Spacecraft 3D Shape from Imagery

    NASA Astrophysics Data System (ADS)

    Poelman, C.; Radtke, R.; Voorhees, H.

    We describe a system that computes the three-dimensional (3D) shape of a spacecraft from a sequence of uncalibrated, two-dimensional images. While the mathematics of multi-view geometry is well understood, building a system that accurately recovers 3D shape from real imagery remains an art. A novel aspect of our approach is the combination of algorithms from computer vision, photogrammetry, and computer graphics. We demonstrate our system by computing spacecraft models from imagery taken by the Air Force Research Laboratory's XSS-10 satellite and DARPA's Orbital Express satellite. Using feature tie points (each identified in two or more images), we compute the relative motion of each frame and the 3D location of each feature using iterative linear factorization followed by non-linear bundle adjustment. The "point cloud" that results from this traditional shape-from-motion approach is typically too sparse to generate a detailed 3D model. Therefore, we use the computed motion solution as input to a volumetric silhouette-carving algorithm, which constructs a solid 3D model based on viewpoint consistency with the image frames. The resulting voxel model is then converted to a facet-based surface representation and is texture-mapped, yielding realistic images from arbitrary viewpoints. We also illustrate other applications of the algorithm, including 3D mensuration and stereoscopic 3D movie generation.

  15. TRIIG - Time-lapse reproduction of images through interactive graphics. [digital processing of quality hard copy

    NASA Technical Reports Server (NTRS)

    Buckner, J. D.; Council, H. W.; Edwards, T. R.

    1974-01-01

    Description of the hardware and software implementing the system of time-lapse reproduction of images through interactive graphics (TRIIG). The system produces a quality hard copy of processed images in a fast and inexpensive manner. This capability allows for optimal development of processing software through the rapid viewing of many image frames in an interactive mode. Three critical optical devices are used to reproduce an image: an Optronics photo reader/writer, the Adage Graphics Terminal, and Polaroid Type 57 high speed film. Typical sources of digitized images are observation satellites, such as ERTS or Mariner, computer coupled electron microscopes for high-magnification studies, or computer coupled X-ray devices for medical research.

  16. The viability of ADVANTG deterministic method for synthetic radiography generation

    NASA Astrophysics Data System (ADS)

    Bingham, Andrew; Lee, Hyoung K.

    2018-07-01

    Fast simulation techniques to generate synthetic radiographic images of high resolution are helpful when new radiation imaging systems are designed. However, the standard stochastic approach requires lengthy run time with poorer statistics at higher resolution. The investigation of the viability of a deterministic approach to synthetic radiography image generation was explored. The aim was to analyze a computational time decrease over the stochastic method. ADVANTG was compared to MCNP in multiple scenarios including a small radiography system prototype, to simulate high resolution radiography images. By using ADVANTG deterministic code to simulate radiography images the computational time was found to decrease 10 to 13 times compared to the MCNP stochastic approach while retaining image quality.

  17. The microcomputer workstation - An alternate hardware architecture for remotely sensed image analysis

    NASA Technical Reports Server (NTRS)

    Erickson, W. K.; Hofman, L. B.; Donovan, W. E.

    1984-01-01

    Difficulties regarding the digital image analysis of remotely sensed imagery can arise in connection with the extensive calculations required. In the past, an expensive large to medium mainframe computer system was needed for performing these calculations. For image-processing applications smaller minicomputer-based systems are now used by many organizations. The costs for such systems are still in the range from $100K to $300K. Recently, as a result of new developments, the use of low-cost microcomputers for image processing and display systems appeared to have become feasible. These developments are related to the advent of the 16-bit microprocessor and the concept of the microcomputer workstation. Earlier 8-bit microcomputer-based image processing systems are briefly examined, and a computer workstation architecture is discussed. Attention is given to a microcomputer workstation developed by Stanford University, and the design and implementation of a workstation network.

  18. Pattern recognition for passive polarimetric data using nonparametric classifiers

    NASA Astrophysics Data System (ADS)

    Thilak, Vimal; Saini, Jatinder; Voelz, David G.; Creusere, Charles D.

    2005-08-01

    Passive polarization based imaging is a useful tool in computer vision and pattern recognition. A passive polarization imaging system forms a polarimetric image from the reflection of ambient light that contains useful information for computer vision tasks such as object detection (classification) and recognition. Applications of polarization based pattern recognition include material classification and automatic shape recognition. In this paper, we present two target detection algorithms for images captured by a passive polarimetric imaging system. The proposed detection algorithms are based on Bayesian decision theory. In these approaches, an object can belong to one of any given number classes and classification involves making decisions that minimize the average probability of making incorrect decisions. This minimum is achieved by assigning an object to the class that maximizes the a posteriori probability. Computing a posteriori probabilities requires estimates of class conditional probability density functions (likelihoods) and prior probabilities. A Probabilistic neural network (PNN), which is a nonparametric method that can compute Bayes optimal boundaries, and a -nearest neighbor (KNN) classifier, is used for density estimation and classification. The proposed algorithms are applied to polarimetric image data gathered in the laboratory with a liquid crystal-based system. The experimental results validate the effectiveness of the above algorithms for target detection from polarimetric data.

  19. Computer vision applications for coronagraphic optical alignment and image processing.

    PubMed

    Savransky, Dmitry; Thomas, Sandrine J; Poyneer, Lisa A; Macintosh, Bruce A

    2013-05-10

    Modern coronagraphic systems require very precise alignment between optical components and can benefit greatly from automated image processing. We discuss three techniques commonly employed in the fields of computer vision and image analysis as applied to the Gemini Planet Imager, a new facility instrument for the Gemini South Observatory. We describe how feature extraction and clustering methods can be used to aid in automated system alignment tasks, and also present a search algorithm for finding regular features in science images used for calibration and data processing. Along with discussions of each technique, we present our specific implementation and show results of each one in operation.

  20. Adaptive tight frame based medical image reconstruction: a proof-of-concept study for computed tomography

    NASA Astrophysics Data System (ADS)

    Zhou, Weifeng; Cai, Jian-Feng; Gao, Hao

    2013-12-01

    A popular approach for medical image reconstruction has been through the sparsity regularization, assuming the targeted image can be well approximated by sparse coefficients under some properly designed system. The wavelet tight frame is such a widely used system due to its capability for sparsely approximating piecewise-smooth functions, such as medical images. However, using a fixed system may not always be optimal for reconstructing a variety of diversified images. Recently, the method based on the adaptive over-complete dictionary that is specific to structures of the targeted images has demonstrated its superiority for image processing. This work is to develop the adaptive wavelet tight frame method image reconstruction. The proposed scheme first constructs the adaptive wavelet tight frame that is task specific, and then reconstructs the image of interest by solving an l1-regularized minimization problem using the constructed adaptive tight frame system. The proof-of-concept study is performed for computed tomography (CT), and the simulation results suggest that the adaptive tight frame method improves the reconstructed CT image quality from the traditional tight frame method.

  1. Accelerating image reconstruction in dual-head PET system by GPU and symmetry properties.

    PubMed

    Chou, Cheng-Ying; Dong, Yun; Hung, Yukai; Kao, Yu-Jiun; Wang, Weichung; Kao, Chien-Min; Chen, Chin-Tu

    2012-01-01

    Positron emission tomography (PET) is an important imaging modality in both clinical usage and research studies. We have developed a compact high-sensitivity PET system that consisted of two large-area panel PET detector heads, which produce more than 224 million lines of response and thus request dramatic computational demands. In this work, we employed a state-of-the-art graphics processing unit (GPU), NVIDIA Tesla C2070, to yield an efficient reconstruction process. Our approaches ingeniously integrate the distinguished features of the symmetry properties of the imaging system and GPU architectures, including block/warp/thread assignments and effective memory usage, to accelerate the computations for ordered subset expectation maximization (OSEM) image reconstruction. The OSEM reconstruction algorithms were implemented employing both CPU-based and GPU-based codes, and their computational performance was quantitatively analyzed and compared. The results showed that the GPU-accelerated scheme can drastically reduce the reconstruction time and thus can largely expand the applicability of the dual-head PET system.

  2. The Cyborg Astrobiologist: testing a novelty detection algorithm on two mobile exploration systems at Rivas Vaciamadrid in Spain and at the Mars Desert Research Station in Utah

    NASA Astrophysics Data System (ADS)

    McGuire, P. C.; Gross, C.; Wendt, L.; Bonnici, A.; Souza-Egipsy, V.; Ormö, J.; Díaz-Martínez, E.; Foing, B. H.; Bose, R.; Walter, S.; Oesker, M.; Ontrup, J.; Haschke, R.; Ritter, H.

    2010-01-01

    In previous work, a platform was developed for testing computer-vision algorithms for robotic planetary exploration. This platform consisted of a digital video camera connected to a wearable computer for real-time processing of images at geological and astrobiological field sites. The real-time processing included image segmentation and the generation of interest points based upon uncommonness in the segmentation maps. Also in previous work, this platform for testing computer-vision algorithms has been ported to a more ergonomic alternative platform, consisting of a phone camera connected via the Global System for Mobile Communications (GSM) network to a remote-server computer. The wearable-computer platform has been tested at geological and astrobiological field sites in Spain (Rivas Vaciamadrid and Riba de Santiuste), and the phone camera has been tested at a geological field site in Malta. In this work, we (i) apply a Hopfield neural-network algorithm for novelty detection based upon colour, (ii) integrate a field-capable digital microscope on the wearable computer platform, (iii) test this novelty detection with the digital microscope at Rivas Vaciamadrid, (iv) develop a Bluetooth communication mode for the phone-camera platform, in order to allow access to a mobile processing computer at the field sites, and (v) test the novelty detection on the Bluetooth-enabled phone camera connected to a netbook computer at the Mars Desert Research Station in Utah. This systems engineering and field testing have together allowed us to develop a real-time computer-vision system that is capable, for example, of identifying lichens as novel within a series of images acquired in semi-arid desert environments. We acquired sequences of images of geologic outcrops in Utah and Spain consisting of various rock types and colours to test this algorithm. The algorithm robustly recognized previously observed units by their colour, while requiring only a single image or a few images to learn colours as familiar, demonstrating its fast learning capability.

  3. Computer-aided diagnosis workstation and database system for chest diagnosis based on multi-helical CT images

    NASA Astrophysics Data System (ADS)

    Satoh, Hitoshi; Niki, Noboru; Mori, Kiyoshi; Eguchi, Kenji; Kaneko, Masahiro; Kakinuma, Ryutarou; Moriyama, Noriyuki; Ohmatsu, Hironobu; Masuda, Hideo; Machida, Suguru; Sasagawa, Michizou

    2006-03-01

    Multi-helical CT scanner advanced remarkably at the speed at which the chest CT images were acquired for mass screening. Mass screening based on multi-helical CT images requires a considerable number of images to be read. It is this time-consuming step that makes the use of helical CT for mass screening impractical at present. To overcome this problem, we have provided diagnostic assistance methods to medical screening specialists by developing a lung cancer screening algorithm that automatically detects suspected lung cancers in helical CT images and a coronary artery calcification screening algorithm that automatically detects suspected coronary artery calcification. We also have developed electronic medical recording system and prototype internet system for the community health in two or more regions by using the Virtual Private Network router and Biometric fingerprint authentication system and Biometric face authentication system for safety of medical information. Based on these diagnostic assistance methods, we have now developed a new computer-aided workstation and database that can display suspected lesions three-dimensionally in a short time. This paper describes basic studies that have been conducted to evaluate this new system. The results of this study indicate that our computer-aided diagnosis workstation and network system can increase diagnostic speed, diagnostic accuracy and safety of medical information.

  4. The Hico Image Processing System: A Web-Accessible Hyperspectral Remote Sensing Toolbox

    NASA Astrophysics Data System (ADS)

    Harris, A. T., III; Goodman, J.; Justice, B.

    2014-12-01

    As the quantity of Earth-observation data increases, the use-case for hosting analytical tools in geospatial data centers becomes increasingly attractive. To address this need, HySpeed Computing and Exelis VIS have developed the HICO Image Processing System, a prototype cloud computing system that provides online, on-demand, scalable remote sensing image processing capabilities. The system provides a mechanism for delivering sophisticated image processing analytics and data visualization tools into the hands of a global user community, who will only need a browser and internet connection to perform analysis. Functionality of the HICO Image Processing System is demonstrated using imagery from the Hyperspectral Imager for the Coastal Ocean (HICO), an imaging spectrometer located on the International Space Station (ISS) that is optimized for acquisition of aquatic targets. Example applications include a collection of coastal remote sensing algorithms that are directed at deriving critical information on water and habitat characteristics of our vulnerable coastal environment. The project leverages the ENVI Services Engine as the framework for all image processing tasks, and can readily accommodate the rapid integration of new algorithms, datasets and processing tools.

  5. Reducing image noise in computed tomography (CT) colonography: effect of an integrated circuit CT detector.

    PubMed

    Liu, Yu; Leng, Shuai; Michalak, Gregory J; Vrieze, Thomas J; Duan, Xinhui; Qu, Mingliang; Shiung, Maria M; McCollough, Cynthia H; Fletcher, Joel G

    2014-01-01

    To investigate whether the integrated circuit (IC) detector results in reduced noise in computed tomography (CT) colonography (CTC). Three hundred sixty-six consecutive patients underwent clinically indicated CTC using the same CT scanner system, except for a difference in CT detectors (IC or conventional). Image noise, patient size, and scanner radiation output (volume CT dose index) were quantitatively compared between patient cohorts using each detector system, with separate comparisons for the abdomen and pelvis. For the abdomen and pelvis, despite significantly larger patient sizes in the IC detector cohort (both P < 0.001), image noise was significantly lower (both P < 0.001), whereas volume CT dose index was unchanged (both P > 0.18). Based on the observed image noise reduction, radiation dose could alternatively be reduced by approximately 20% to result in similar levels of image noise. Computed tomography colonography images acquired using the IC detector had significantly lower noise than images acquired using the conventional detector. This noise reduction can permit further radiation dose reduction in CTC.

  6. CD-based image archival and management on a hybrid radiology intranet.

    PubMed

    Cox, R D; Henri, C J; Bret, P M

    1997-08-01

    This article describes the design and implementation of a low-cost image archival and management solution on a radiology network consisting of UNIX, IBM personal computer-compatible (IBM, Purchase, NY) and Macintosh (Apple Computer, Cupertino, CA) workstations. The picture archiving and communications system (PACS) is modular, scaleable and conforms to the Digital Imaging and Communications in Medicine (DICOM) 3.0 standard for image transfer, storage and retrieval. Image data is made available on soft-copy reporting workstations by a work-flow management scheme and on desktop computers through a World Wide Web (WWW) interface. Data archival is based on recordable compact disc (CD) technology and is automated. The project has allowed the radiology department to eliminate the use of film in magnetic resonance (MR) imaging, computed tomography (CT) and ultrasonography.

  7. Classification of Magneto-Optic Images using Neural Networks

    NASA Technical Reports Server (NTRS)

    Nath, Shridhar; Wincheski, Buzz; Fulton, Jim; Namkung, Min

    1994-01-01

    A real time imaging system with a neural network classifier has been incorporated on a Macintosh computer in conjunction with an MOI system. This system images rivets on aircraft aluminium structures using eddy currents and magnetic imaging. Moment invariant functions from the image of a rivet is used to train a multilayer perceptron neural network to classify the rivets as good or bad (rivets with cracks).

  8. High-Speed Noninvasive Eye-Tracking System

    NASA Technical Reports Server (NTRS)

    Talukder, Ashit; LaBaw, Clayton; Michael-Morookian, John; Monacos, Steve; Serviss, Orin

    2007-01-01

    The figure schematically depicts a system of electronic hardware and software that noninvasively tracks the direction of a person s gaze in real time. Like prior commercial noninvasive eye-tracking systems, this system is based on (1) illumination of an eye by a low-power infrared light-emitting diode (LED); (2) acquisition of video images of the pupil, iris, and cornea in the reflected infrared light; (3) digitization of the images; and (4) processing the digital image data to determine the direction of gaze from the centroids of the pupil and cornea in the images. Relative to the prior commercial systems, the present system operates at much higher speed and thereby offers enhanced capability for applications that involve human-computer interactions, including typing and computer command and control by handicapped individuals,and eye-based diagnosis of physiological disorders that affect gaze responses.

  9. TBIdoc: 3D content-based CT image retrieval system for traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Li, Shimiao; Gong, Tianxia; Wang, Jie; Liu, Ruizhe; Tan, Chew Lim; Leong, Tze Yun; Pang, Boon Chuan; Lim, C. C. Tchoyoson; Lee, Cheng Kiang; Tian, Qi; Zhang, Zhuo

    2010-03-01

    Traumatic brain injury (TBI) is a major cause of death and disability. Computed Tomography (CT) scan is widely used in the diagnosis of TBI. Nowadays, large amount of TBI CT data is stacked in the hospital radiology department. Such data and the associated patient information contain valuable information for clinical diagnosis and outcome prediction. However, current hospital database system does not provide an efficient and intuitive tool for doctors to search out cases relevant to the current study case. In this paper, we present the TBIdoc system: a content-based image retrieval (CBIR) system which works on the TBI CT images. In this web-based system, user can query by uploading CT image slices from one study, retrieval result is a list of TBI cases ranked according to their 3D visual similarity to the query case. Specifically, cases of TBI CT images often present diffuse or focal lesions. In TBIdoc system, these pathological image features are represented as bin-based binary feature vectors. We use the Jaccard-Needham measure as the similarity measurement. Based on these, we propose a 3D similarity measure for computing the similarity score between two series of CT slices. nDCG is used to evaluate the system performance, which shows the system produces satisfactory retrieval results. The system is expected to improve the current hospital data management in TBI and to give better support for the clinical decision-making process. It may also contribute to the computer-aided education in TBI.

  10. Computer Assisted Thermography And Its Application In Ovulation Detection

    NASA Astrophysics Data System (ADS)

    Rao, K. H.; Shah, A. V.

    1984-08-01

    Hardware and software of a computer-assisted image analyzing system used for infrared images in medical applications are discussed. The application of computer-assisted thermography (CAT) as a complementary diagnostic tool in centralized diagnostic management is proposed. The authors adopted 'Computer Assisted Thermography' to study physiological changes in the breasts related to the hormones characterizing the menstrual cycle of a woman. Based on clinical experi-ments followed by thermal image analysis, they suggest that 'differential skin temperature (DST)1 be measured to detect the fertility interval in the menstrual cycle of a woman.

  11. Histological Image Feature Mining Reveals Emergent Diagnostic Properties for Renal Cancer

    PubMed Central

    Kothari, Sonal; Phan, John H.; Young, Andrew N.; Wang, May D.

    2016-01-01

    Computer-aided histological image classification systems are important for making objective and timely cancer diagnostic decisions. These systems use combinations of image features that quantify a variety of image properties. Because researchers tend to validate their diagnostic systems on specific cancer endpoints, it is difficult to predict which image features will perform well given a new cancer endpoint. In this paper, we define a comprehensive set of common image features (consisting of 12 distinct feature subsets) that quantify a variety of image properties. We use a data-mining approach to determine which feature subsets and image properties emerge as part of an “optimal” diagnostic model when applied to specific cancer endpoints. Our goal is to assess the performance of such comprehensive image feature sets for application to a wide variety of diagnostic problems. We perform this study on 12 endpoints including 6 renal tumor subtype endpoints and 6 renal cancer grade endpoints. Keywords-histology, image mining, computer-aided diagnosis PMID:28163980

  12. Fast and Robust Registration of Multimodal Remote Sensing Images via Dense Orientated Gradient Feature

    NASA Astrophysics Data System (ADS)

    Ye, Y.

    2017-09-01

    This paper presents a fast and robust method for the registration of multimodal remote sensing data (e.g., optical, LiDAR, SAR and map). The proposed method is based on the hypothesis that structural similarity between images is preserved across different modalities. In the definition of the proposed method, we first develop a pixel-wise feature descriptor named Dense Orientated Gradient Histogram (DOGH), which can be computed effectively at every pixel and is robust to non-linear intensity differences between images. Then a fast similarity metric based on DOGH is built in frequency domain using the Fast Fourier Transform (FFT) technique. Finally, a template matching scheme is applied to detect tie points between images. Experimental results on different types of multimodal remote sensing images show that the proposed similarity metric has the superior matching performance and computational efficiency than the state-of-the-art methods. Moreover, based on the proposed similarity metric, we also design a fast and robust automatic registration system for multimodal images. This system has been evaluated using a pair of very large SAR and optical images (more than 20000 × 20000 pixels). Experimental results show that our system outperforms the two popular commercial software systems (i.e. ENVI and ERDAS) in both registration accuracy and computational efficiency.

  13. The remote sensing image segmentation mean shift algorithm parallel processing based on MapReduce

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Zhou, Liqing

    2015-12-01

    With the development of satellite remote sensing technology and the remote sensing image data, traditional remote sensing image segmentation technology cannot meet the massive remote sensing image processing and storage requirements. This article put cloud computing and parallel computing technology in remote sensing image segmentation process, and build a cheap and efficient computer cluster system that uses parallel processing to achieve MeanShift algorithm of remote sensing image segmentation based on the MapReduce model, not only to ensure the quality of remote sensing image segmentation, improved split speed, and better meet the real-time requirements. The remote sensing image segmentation MeanShift algorithm parallel processing algorithm based on MapReduce shows certain significance and a realization of value.

  14. Computer-Aided Remote Driving

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian H.

    1994-01-01

    System for remote control of robotic land vehicle requires only small radio-communication bandwidth. Twin video cameras on vehicle create stereoscopic images. Operator views cross-polarized images on two cathode-ray tubes through correspondingly polarized spectacles. By use of cursor on frozen image, remote operator designates path. Vehicle proceeds to follow path, by use of limited degree of autonomous control to cope with unexpected conditions. System concept, called "computer-aided remote driving" (CARD), potentially useful in exploration of other planets, military surveillance, firefighting, and clean-up of hazardous materials.

  15. Remote sensor digital image data analysis using the General Electric Image 100 analysis system (a study of analysis speed, cost, and performance)

    NASA Technical Reports Server (NTRS)

    Mcmurtry, G. J.; Petersen, G. W. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. It was found that the high speed man machine interaction capability is a distinct advantage of the image 100; however, the small size of the digital computer in the system is a definite limitation. The system can be highly useful in an analysis mode in which it complements a large general purpose computer. The image 100 was found to be extremely valuable in the analysis of aircraft MSS data where the spatial resolution begins to approach photographic quality and the analyst can exercise interpretation judgements and readily interact with the machine.

  16. Computer-Aided Diagnostic System For Mass Survey Chest Images

    NASA Astrophysics Data System (ADS)

    Yasuda, Yoshizumi; Kinoshita, Yasuhiro; Emori, Yasufumi; Yoshimura, Hitoshi

    1988-06-01

    In order to support screening of chest radiographs on mass survey, a computer-aided diagnostic system that automatically detects abnormality of candidate images using a digital image analysis technique has been developed. Extracting boundary lines of lung fields and examining their shapes allowed various kind of abnormalities to be detected. Correction and expansion were facilitated by describing the system control, image analysis control and judgement of abnormality in the rule type programing language. In the experiments using typical samples of student's radiograms, good results were obtained for the detection of abnormal shape of lung field, cardiac hypertrophy and scoliosis. As for the detection of diaphragmatic abnormality, relatively good results were obtained but further improvements will be necessary.

  17. PDSS/IMC CIS user's guide

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The Spacelab Payload Development Support System PDSS Image Motion Compensator (IMC) computer interface simulation (CIS) user's manual is given. The software provides a real time interface simulation for the following IMC subsystems: the Dry Rotor Reference Unit, the Advanced Star/Target Reference Optical sensor, the Ultra Violet imaging telescope, the Wisconson Ultraviolet Photopolarimetry Experiment, the Cruciform Power distributor, and the Spacelab Experiment Computer Operating System.

  18. Image Guided Biodistribution and Pharmacokinetic Studies of Theranostics

    PubMed Central

    Ding, Hong; Wu, Fang

    2012-01-01

    Image guided technique is playing an increasingly important role in the investigation of the biodistribution and pharmacokinetics of drugs or drug delivery systems in various diseases, especially cancers. Besides anatomical imaging modalities such as computed tomography (CT), magnetic resonance imaging (MRI), molecular imaging strategy including optical imaging, positron emission tomography (PET) and single-photon emission computed tomography (SPECT) will facilitate the localization and quantization of radioisotope or optical probe labeled nanoparticle delivery systems in the category of theranostics. The quantitative measurement of the bio-distribution and pharmacokinetics of theranostics in the fields of new drug/probe development, diagnosis and treatment process monitoring as well as tracking the brain-blood-barrier (BBB) breaking through by high sensitive imaging method, and the applications of the representative imaging modalities are summarized in this review. PMID:23227121

  19. Real-time photoacoustic and ultrasound dual-modality imaging system facilitated with graphics processing unit and code parallel optimization.

    PubMed

    Yuan, Jie; Xu, Guan; Yu, Yao; Zhou, Yu; Carson, Paul L; Wang, Xueding; Liu, Xiaojun

    2013-08-01

    Photoacoustic tomography (PAT) offers structural and functional imaging of living biological tissue with highly sensitive optical absorption contrast and excellent spatial resolution comparable to medical ultrasound (US) imaging. We report the development of a fully integrated PAT and US dual-modality imaging system, which performs signal scanning, image reconstruction, and display for both photoacoustic (PA) and US imaging all in a truly real-time manner. The back-projection (BP) algorithm for PA image reconstruction is optimized to reduce the computational cost and facilitate parallel computation on a state of the art graphics processing unit (GPU) card. For the first time, PAT and US imaging of the same object can be conducted simultaneously and continuously, at a real-time frame rate, presently limited by the laser repetition rate of 10 Hz. Noninvasive PAT and US imaging of human peripheral joints in vivo were achieved, demonstrating the satisfactory image quality realized with this system. Another experiment, simultaneous PAT and US imaging of contrast agent flowing through an artificial vessel, was conducted to verify the performance of this system for imaging fast biological events. The GPU-based image reconstruction software code for this dual-modality system is open source and available for download from http://sourceforge.net/projects/patrealtime.

  20. Web Image Retrieval Using Self-Organizing Feature Map.

    ERIC Educational Resources Information Center

    Wu, Qishi; Iyengar, S. Sitharama; Zhu, Mengxia

    2001-01-01

    Provides an overview of current image retrieval systems. Describes the architecture of the SOFM (Self Organizing Feature Maps) based image retrieval system, discussing the system architecture and features. Introduces the Kohonen model, and describes the implementation details of SOFM computation and its learning algorithm. Presents a test example…

  1. Study of optical techniques for the Ames unitary wind tunnel: Digital image processing, part 6

    NASA Technical Reports Server (NTRS)

    Lee, George

    1993-01-01

    A survey of digital image processing techniques and processing systems for aerodynamic images has been conducted. These images covered many types of flows and were generated by many types of flow diagnostics. These include laser vapor screens, infrared cameras, laser holographic interferometry, Schlieren, and luminescent paints. Some general digital image processing systems, imaging networks, optical sensors, and image computing chips were briefly reviewed. Possible digital imaging network systems for the Ames Unitary Wind Tunnel were explored.

  2. Research of the effectiveness of parallel multithreaded realizations of interpolation methods for scaling raster images

    NASA Astrophysics Data System (ADS)

    Vnukov, A. A.; Shershnev, M. B.

    2018-01-01

    The aim of this work is the software implementation of three image scaling algorithms using parallel computations, as well as the development of an application with a graphical user interface for the Windows operating system to demonstrate the operation of algorithms and to study the relationship between system performance, algorithm execution time and the degree of parallelization of computations. Three methods of interpolation were studied, formalized and adapted to scale images. The result of the work is a program for scaling images by different methods. Comparison of the quality of scaling by different methods is given.

  3. Evaluation of computer-aided detection and diagnosis systems.

    PubMed

    Petrick, Nicholas; Sahiner, Berkman; Armato, Samuel G; Bert, Alberto; Correale, Loredana; Delsanto, Silvia; Freedman, Matthew T; Fryd, David; Gur, David; Hadjiiski, Lubomir; Huo, Zhimin; Jiang, Yulei; Morra, Lia; Paquerault, Sophie; Raykar, Vikas; Samuelson, Frank; Summers, Ronald M; Tourassi, Georgia; Yoshida, Hiroyuki; Zheng, Bin; Zhou, Chuan; Chan, Heang-Ping

    2013-08-01

    Computer-aided detection and diagnosis (CAD) systems are increasingly being used as an aid by clinicians for detection and interpretation of diseases. Computer-aided detection systems mark regions of an image that may reveal specific abnormalities and are used to alert clinicians to these regions during image interpretation. Computer-aided diagnosis systems provide an assessment of a disease using image-based information alone or in combination with other relevant diagnostic data and are used by clinicians as a decision support in developing their diagnoses. While CAD systems are commercially available, standardized approaches for evaluating and reporting their performance have not yet been fully formalized in the literature or in a standardization effort. This deficiency has led to difficulty in the comparison of CAD devices and in understanding how the reported performance might translate into clinical practice. To address these important issues, the American Association of Physicists in Medicine (AAPM) formed the Computer Aided Detection in Diagnostic Imaging Subcommittee (CADSC), in part, to develop recommendations on approaches for assessing CAD system performance. The purpose of this paper is to convey the opinions of the AAPM CADSC members and to stimulate the development of consensus approaches and "best practices" for evaluating CAD systems. Both the assessment of a standalone CAD system and the evaluation of the impact of CAD on end-users are discussed. It is hoped that awareness of these important evaluation elements and the CADSC recommendations will lead to further development of structured guidelines for CAD performance assessment. Proper assessment of CAD system performance is expected to increase the understanding of a CAD system's effectiveness and limitations, which is expected to stimulate further research and development efforts on CAD technologies, reduce problems due to improper use, and eventually improve the utility and efficacy of CAD in clinical practice.

  4. Feasibility studies on explosive detection and homeland security applications using a neutron and x-ray combined computed tomography system

    NASA Astrophysics Data System (ADS)

    Sinha, V.; Srivastava, A.; Lee, H. K.; Liu, X.

    2013-05-01

    The successful creation and operation of a neutron and X-ray combined computed tomography (NXCT) system has been demonstrated by researchers at the Missouri University of Science and Technology. The NXCT system has numerous applications in the field of material characterization and object identification in materials with a mixture of atomic numbers represented. Presently, the feasibility studies have been performed for explosive detection and homeland security applications, particularly in concealed material detection and determination of the light atomic number materials. These materials cannot be detected using traditional X-ray imaging. The new system has the capability to provide complete structural and compositional information due to the complementary nature of X-ray and neutron interactions with materials. The design of the NXCT system facilitates simultaneous and instantaneous imaging operation, promising enhanced detection capabilities of explosive materials, low atomic number materials and illicit materials for homeland security applications. In addition, a sample positioning system allowing the user to remotely and automatically manipulate the sample makes the system viable for commercial applications. Several explosives and weapon simulants have been imaged and the results are provided. The fusion algorithms which combine the data from the neutron and X-ray imaging produce superior images. This paper is a compete overview of the NXCT system for feasibility studies of explosive detection and homeland security applications. The design of the system, operation, algorithm development, and detection schemes are provided. This is the first combined neutron and X-ray computed tomography system in operation. Furthermore, the method of fusing neutron and X-ray images together is a new approach which provides high contrast images of the desired object. The system could serve as a standardized tool in nondestructive testing of many applications, especially in explosives detection and homeland security research.

  5. Autonomous facial recognition system inspired by human visual system based logarithmical image visualization technique

    NASA Astrophysics Data System (ADS)

    Wan, Qianwen; Panetta, Karen; Agaian, Sos

    2017-05-01

    Autonomous facial recognition system is widely used in real-life applications, such as homeland border security, law enforcement identification and authentication, and video-based surveillance analysis. Issues like low image quality, non-uniform illumination as well as variations in poses and facial expressions can impair the performance of recognition systems. To address the non-uniform illumination challenge, we present a novel robust autonomous facial recognition system inspired by the human visual system based, so called, logarithmical image visualization technique. In this paper, the proposed method, for the first time, utilizes the logarithmical image visualization technique coupled with the local binary pattern to perform discriminative feature extraction for facial recognition system. The Yale database, the Yale-B database and the ATT database are used for computer simulation accuracy and efficiency testing. The extensive computer simulation demonstrates the method's efficiency, accuracy, and robustness of illumination invariance for facial recognition.

  6. Planning/scheduling techniques for VQ-based image compression

    NASA Technical Reports Server (NTRS)

    Short, Nicholas M., Jr.; Manohar, Mareboyana; Tilton, James C.

    1994-01-01

    The enormous size of the data holding and the complexity of the information system resulting from the EOS system pose several challenges to computer scientists, one of which is data archival and dissemination. More than ninety percent of the data holdings of NASA is in the form of images which will be accessed by users across the computer networks. Accessing the image data in its full resolution creates data traffic problems. Image browsing using a lossy compression reduces this data traffic, as well as storage by factor of 30-40. Of the several image compression techniques, VQ is most appropriate for this application since the decompression of the VQ compressed images is a table lookup process which makes minimal additional demands on the user's computational resources. Lossy compression of image data needs expert level knowledge in general and is not straightforward to use. This is especially true in the case of VQ. It involves the selection of appropriate codebooks for a given data set and vector dimensions for each compression ratio, etc. A planning and scheduling system is described for using the VQ compression technique in the data access and ingest of raw satellite data.

  7. BioImg.org: A Catalog of Virtual Machine Images for the Life Sciences

    PubMed Central

    Dahlö, Martin; Haziza, Frédéric; Kallio, Aleksi; Korpelainen, Eija; Bongcam-Rudloff, Erik; Spjuth, Ola

    2015-01-01

    Virtualization is becoming increasingly important in bioscience, enabling assembly and provisioning of complete computer setups, including operating system, data, software, and services packaged as virtual machine images (VMIs). We present an open catalog of VMIs for the life sciences, where scientists can share information about images and optionally upload them to a server equipped with a large file system and fast Internet connection. Other scientists can then search for and download images that can be run on the local computer or in a cloud computing environment, providing easy access to bioinformatics environments. We also describe applications where VMIs aid life science research, including distributing tools and data, supporting reproducible analysis, and facilitating education. BioImg.org is freely available at: https://bioimg.org. PMID:26401099

  8. BioImg.org: A Catalog of Virtual Machine Images for the Life Sciences.

    PubMed

    Dahlö, Martin; Haziza, Frédéric; Kallio, Aleksi; Korpelainen, Eija; Bongcam-Rudloff, Erik; Spjuth, Ola

    2015-01-01

    Virtualization is becoming increasingly important in bioscience, enabling assembly and provisioning of complete computer setups, including operating system, data, software, and services packaged as virtual machine images (VMIs). We present an open catalog of VMIs for the life sciences, where scientists can share information about images and optionally upload them to a server equipped with a large file system and fast Internet connection. Other scientists can then search for and download images that can be run on the local computer or in a cloud computing environment, providing easy access to bioinformatics environments. We also describe applications where VMIs aid life science research, including distributing tools and data, supporting reproducible analysis, and facilitating education. BioImg.org is freely available at: https://bioimg.org.

  9. Case for a field-programmable gate array multicore hybrid machine for an image-processing application

    NASA Astrophysics Data System (ADS)

    Rakvic, Ryan N.; Ives, Robert W.; Lira, Javier; Molina, Carlos

    2011-01-01

    General purpose computer designers have recently begun adding cores to their processors in order to increase performance. For example, Intel has adopted a homogeneous quad-core processor as a base for general purpose computing. PlayStation3 (PS3) game consoles contain a multicore heterogeneous processor known as the Cell, which is designed to perform complex image processing algorithms at a high level. Can modern image-processing algorithms utilize these additional cores? On the other hand, modern advancements in configurable hardware, most notably field-programmable gate arrays (FPGAs) have created an interesting question for general purpose computer designers. Is there a reason to combine FPGAs with multicore processors to create an FPGA multicore hybrid general purpose computer? Iris matching, a repeatedly executed portion of a modern iris-recognition algorithm, is parallelized on an Intel-based homogeneous multicore Xeon system, a heterogeneous multicore Cell system, and an FPGA multicore hybrid system. Surprisingly, the cheaper PS3 slightly outperforms the Intel-based multicore on a core-for-core basis. However, both multicore systems are beaten by the FPGA multicore hybrid system by >50%.

  10. Scalable, High-performance 3D Imaging Software Platform: System Architecture and Application to Virtual Colonoscopy

    PubMed Central

    Yoshida, Hiroyuki; Wu, Yin; Cai, Wenli; Brett, Bevin

    2013-01-01

    One of the key challenges in three-dimensional (3D) medical imaging is to enable the fast turn-around time, which is often required for interactive or real-time response. This inevitably requires not only high computational power but also high memory bandwidth due to the massive amount of data that need to be processed. In this work, we have developed a software platform that is designed to support high-performance 3D medical image processing for a wide range of applications using increasingly available and affordable commodity computing systems: multi-core, clusters, and cloud computing systems. To achieve scalable, high-performance computing, our platform (1) employs size-adaptive, distributable block volumes as a core data structure for efficient parallelization of a wide range of 3D image processing algorithms; (2) supports task scheduling for efficient load distribution and balancing; and (3) consists of a layered parallel software libraries that allow a wide range of medical applications to share the same functionalities. We evaluated the performance of our platform by applying it to an electronic cleansing system in virtual colonoscopy, with initial experimental results showing a 10 times performance improvement on an 8-core workstation over the original sequential implementation of the system. PMID:23366803

  11. Compensation for Transport Delays Produced by Computer Image Generation Systems. Cooperative Training Series.

    ERIC Educational Resources Information Center

    Ricard, G. L.; And Others

    The cooperative Navy/Air Force project described is aimed at the problem of image-flutter encountered when visual displays that present computer generated images are used for the simulation of certain flying situations. Two experiments are described which extend laboratory work on delay compensation schemes to the simulation of formation flight in…

  12. A distributed computing system for magnetic resonance imaging: Java-based processing and binding of XML.

    PubMed

    de Beer, R; Graveron-Demilly, D; Nastase, S; van Ormondt, D

    2004-03-01

    Recently we have developed a Java-based heterogeneous distributed computing system for the field of magnetic resonance imaging (MRI). It is a software system for embedding the various image reconstruction algorithms that we have created for handling MRI data sets with sparse sampling distributions. Since these data sets may result from multi-dimensional MRI measurements our system has to control the storage and manipulation of large amounts of data. In this paper we describe how we have employed the extensible markup language (XML) to realize this data handling in a highly structured way. To that end we have used Java packages, recently released by Sun Microsystems, to process XML documents and to compile pieces of XML code into Java classes. We have effectuated a flexible storage and manipulation approach for all kinds of data within the MRI system, such as data describing and containing multi-dimensional MRI measurements, data configuring image reconstruction methods and data representing and visualizing the various services of the system. We have found that the object-oriented approach, possible with the Java programming environment, combined with the XML technology is a convenient way of describing and handling various data streams in heterogeneous distributed computing systems.

  13. Image analysis and modeling in medical image computing. Recent developments and advances.

    PubMed

    Handels, H; Deserno, T M; Meinzer, H-P; Tolxdorff, T

    2012-01-01

    Medical image computing is of growing importance in medical diagnostics and image-guided therapy. Nowadays, image analysis systems integrating advanced image computing methods are used in practice e.g. to extract quantitative image parameters or to support the surgeon during a navigated intervention. However, the grade of automation, accuracy, reproducibility and robustness of medical image computing methods has to be increased to meet the requirements in clinical routine. In the focus theme, recent developments and advances in the field of modeling and model-based image analysis are described. The introduction of models in the image analysis process enables improvements of image analysis algorithms in terms of automation, accuracy, reproducibility and robustness. Furthermore, model-based image computing techniques open up new perspectives for prediction of organ changes and risk analysis of patients. Selected contributions are assembled to present latest advances in the field. The authors were invited to present their recent work and results based on their outstanding contributions to the Conference on Medical Image Computing BVM 2011 held at the University of Lübeck, Germany. All manuscripts had to pass a comprehensive peer review. Modeling approaches and model-based image analysis methods showing new trends and perspectives in model-based medical image computing are described. Complex models are used in different medical applications and medical images like radiographic images, dual-energy CT images, MR images, diffusion tensor images as well as microscopic images are analyzed. The applications emphasize the high potential and the wide application range of these methods. The use of model-based image analysis methods can improve segmentation quality as well as the accuracy and reproducibility of quantitative image analysis. Furthermore, image-based models enable new insights and can lead to a deeper understanding of complex dynamic mechanisms in the human body. Hence, model-based image computing methods are important tools to improve medical diagnostics and patient treatment in future.

  14. Imaging and applied optics: introduction to the feature issue.

    PubMed

    Zalevsky, Zeev; Arnison, Matthew R; Javidi, Bahram; Testorf, Markus

    2018-03-01

    This special issue of Applied Optics contains selected papers from OSA's Imaging Congress with particular emphasis on work from mathematics in imaging, computational optical sensing and imaging, imaging systems and applications, and 3D image acquisition and display.

  15. Image-guided laser projection for port placement in minimally invasive surgery.

    PubMed

    Marmurek, Jonathan; Wedlake, Chris; Pardasani, Utsav; Eagleson, Roy; Peters, Terry

    2006-01-01

    We present an application of an augmented reality laser projection system in which procedure-specific optimal incision sites, computed from pre-operative image acquisition, are superimposed on a patient to guide port placement in minimally invasive surgery. Tests were conducted to evaluate the fidelity of computed and measured port configurations, and to validate the accuracy with which a surgical tool-tip can be placed at an identified virtual target. A high resolution volumetric image of a thorax phantom was acquired using helical computed tomography imaging. Oriented within the thorax, a phantom organ with marked targets was visualized in a virtual environment. A graphical interface enabled marking the locations of target anatomy, and calculation of a grid of potential port locations along the intercostal rib lines. Optimal configurations of port positions and tool orientations were determined by an objective measure reflecting image-based indices of surgical dexterity, hand-eye alignment, and collision detection. Intra-operative registration of the computed virtual model and the phantom anatomy was performed using an optical tracking system. Initial trials demonstrated that computed and projected port placement provided direct access to target anatomy with an accuracy of 2 mm.

  16. Modeling resident error-making patterns in detection of mammographic masses using computer-extracted image features: preliminary experiments

    NASA Astrophysics Data System (ADS)

    Mazurowski, Maciej A.; Zhang, Jing; Lo, Joseph Y.; Kuzmiak, Cherie M.; Ghate, Sujata V.; Yoon, Sora

    2014-03-01

    Providing high quality mammography education to radiology trainees is essential, as good interpretation skills potentially ensure the highest benefit of screening mammography for patients. We have previously proposed a computer-aided education system that utilizes trainee models, which relate human-assessed image characteristics to interpretation error. We proposed that these models be used to identify the most difficult and therefore the most educationally useful cases for each trainee. In this study, as a next step in our research, we propose to build trainee models that utilize features that are automatically extracted from images using computer vision algorithms. To predict error, we used a logistic regression which accepts imaging features as input and returns error as output. Reader data from 3 experts and 3 trainees were used. Receiver operating characteristic analysis was applied to evaluate the proposed trainee models. Our experiments showed that, for three trainees, our models were able to predict error better than chance. This is an important step in the development of adaptive computer-aided education systems since computer-extracted features will allow for faster and more extensive search of imaging databases in order to identify the most educationally beneficial cases.

  17. Evaluation of computer-aided detection and diagnosis systemsa)

    PubMed Central

    Petrick, Nicholas; Sahiner, Berkman; Armato, Samuel G.; Bert, Alberto; Correale, Loredana; Delsanto, Silvia; Freedman, Matthew T.; Fryd, David; Gur, David; Hadjiiski, Lubomir; Huo, Zhimin; Jiang, Yulei; Morra, Lia; Paquerault, Sophie; Raykar, Vikas; Samuelson, Frank; Summers, Ronald M.; Tourassi, Georgia; Yoshida, Hiroyuki; Zheng, Bin; Zhou, Chuan; Chan, Heang-Ping

    2013-01-01

    Computer-aided detection and diagnosis (CAD) systems are increasingly being used as an aid by clinicians for detection and interpretation of diseases. Computer-aided detection systems mark regions of an image that may reveal specific abnormalities and are used to alert clinicians to these regions during image interpretation. Computer-aided diagnosis systems provide an assessment of a disease using image-based information alone or in combination with other relevant diagnostic data and are used by clinicians as a decision support in developing their diagnoses. While CAD systems are commercially available, standardized approaches for evaluating and reporting their performance have not yet been fully formalized in the literature or in a standardization effort. This deficiency has led to difficulty in the comparison of CAD devices and in understanding how the reported performance might translate into clinical practice. To address these important issues, the American Association of Physicists in Medicine (AAPM) formed the Computer Aided Detection in Diagnostic Imaging Subcommittee (CADSC), in part, to develop recommendations on approaches for assessing CAD system performance. The purpose of this paper is to convey the opinions of the AAPM CADSC members and to stimulate the development of consensus approaches and “best practices” for evaluating CAD systems. Both the assessment of a standalone CAD system and the evaluation of the impact of CAD on end-users are discussed. It is hoped that awareness of these important evaluation elements and the CADSC recommendations will lead to further development of structured guidelines for CAD performance assessment. Proper assessment of CAD system performance is expected to increase the understanding of a CAD system's effectiveness and limitations, which is expected to stimulate further research and development efforts on CAD technologies, reduce problems due to improper use, and eventually improve the utility and efficacy of CAD in clinical practice. PMID:23927365

  18. Precision Relative Positioning for Automated Aerial Refueling from a Stereo Imaging System

    DTIC Science & Technology

    2015-03-01

    PRECISION RELATIVE POSITIONING FOR AUTOMATED AERIAL REFUELING FROM A STEREO IMAGING SYSTEM THESIS Kyle P. Werner, 2Lt, USAF AFIT-ENG-MS-15-M-048...REFUELING FROM A STEREO IMAGING SYSTEM THESIS Presented to the Faculty Department of Electrical and Computer Engineering Graduate School of...RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENG-MS-15-M-048 PRECISION RELATIVE POSITIONING FOR AUTOMATED AERIAL REFUELING FROM A STEREO IMAGING SYSTEM THESIS

  19. Accelerating Large Scale Image Analyses on Parallel, CPU-GPU Equipped Systems

    PubMed Central

    Teodoro, George; Kurc, Tahsin M.; Pan, Tony; Cooper, Lee A.D.; Kong, Jun; Widener, Patrick; Saltz, Joel H.

    2014-01-01

    The past decade has witnessed a major paradigm shift in high performance computing with the introduction of accelerators as general purpose processors. These computing devices make available very high parallel computing power at low cost and power consumption, transforming current high performance platforms into heterogeneous CPU-GPU equipped systems. Although the theoretical performance achieved by these hybrid systems is impressive, taking practical advantage of this computing power remains a very challenging problem. Most applications are still deployed to either GPU or CPU, leaving the other resource under- or un-utilized. In this paper, we propose, implement, and evaluate a performance aware scheduling technique along with optimizations to make efficient collaborative use of CPUs and GPUs on a parallel system. In the context of feature computations in large scale image analysis applications, our evaluations show that intelligently co-scheduling CPUs and GPUs can significantly improve performance over GPU-only or multi-core CPU-only approaches. PMID:25419545

  20. Efficient volumetric estimation from plenoptic data

    NASA Astrophysics Data System (ADS)

    Anglin, Paul; Reeves, Stanley J.; Thurow, Brian S.

    2013-03-01

    The commercial release of the Lytro camera, and greater availability of plenoptic imaging systems in general, have given the image processing community cost-effective tools for light-field imaging. While this data is most commonly used to generate planar images at arbitrary focal depths, reconstruction of volumetric fields is also possible. Similarly, deconvolution is a technique that is conventionally used in planar image reconstruction, or deblurring, algorithms. However, when leveraged with the ability of a light-field camera to quickly reproduce multiple focal planes within an imaged volume, deconvolution offers a computationally efficient method of volumetric reconstruction. Related research has shown than light-field imaging systems in conjunction with tomographic reconstruction techniques are also capable of estimating the imaged volume and have been successfully applied to particle image velocimetry (PIV). However, while tomographic volumetric estimation through algorithms such as multiplicative algebraic reconstruction techniques (MART) have proven to be highly accurate, they are computationally intensive. In this paper, the reconstruction problem is shown to be solvable by deconvolution. Deconvolution offers significant improvement in computational efficiency through the use of fast Fourier transforms (FFTs) when compared to other tomographic methods. This work describes a deconvolution algorithm designed to reconstruct a 3-D particle field from simulated plenoptic data. A 3-D extension of existing 2-D FFT-based refocusing techniques is presented to further improve efficiency when computing object focal stacks and system point spread functions (PSF). Reconstruction artifacts are identified; their underlying source and methods of mitigation are explored where possible, and reconstructions of simulated particle fields are provided.

  1. Analysis of severe storm data

    NASA Technical Reports Server (NTRS)

    Hickey, J. S.

    1983-01-01

    The Mesoscale Analysis and Space Sensor (MASS) Data Management and Analysis System developed by Atsuko Computing International (ACI) on the MASS HP-1000 Computer System within the Systems Dynamics Laboratory of the Marshall Space Flight Center is described. The MASS Data Management and Analysis System was successfully implemented and utilized daily by atmospheric scientists to graphically display and analyze large volumes of conventional and satellite derived meteorological data. The scientists can process interactively various atmospheric data (Sounding, Single Level, Gird, and Image) by utilizing the MASS (AVE80) share common data and user inputs, thereby reducing overhead, optimizing execution time, and thus enhancing user flexibility, useability, and understandability of the total system/software capabilities. In addition ACI installed eight APPLE III graphics/imaging computer terminals in individual scientist offices and integrated them into the MASS HP-1000 Computer System thus providing significant enhancement to the overall research environment.

  2. Towards Portable Large-Scale Image Processing with High-Performance Computing.

    PubMed

    Huo, Yuankai; Blaber, Justin; Damon, Stephen M; Boyd, Brian D; Bao, Shunxing; Parvathaneni, Prasanna; Noguera, Camilo Bermudez; Chaganti, Shikha; Nath, Vishwesh; Greer, Jasmine M; Lyu, Ilwoo; French, William R; Newton, Allen T; Rogers, Baxter P; Landman, Bennett A

    2018-05-03

    High-throughput, large-scale medical image computing demands tight integration of high-performance computing (HPC) infrastructure for data storage, job distribution, and image processing. The Vanderbilt University Institute for Imaging Science (VUIIS) Center for Computational Imaging (CCI) has constructed a large-scale image storage and processing infrastructure that is composed of (1) a large-scale image database using the eXtensible Neuroimaging Archive Toolkit (XNAT), (2) a content-aware job scheduling platform using the Distributed Automation for XNAT pipeline automation tool (DAX), and (3) a wide variety of encapsulated image processing pipelines called "spiders." The VUIIS CCI medical image data storage and processing infrastructure have housed and processed nearly half-million medical image volumes with Vanderbilt Advanced Computing Center for Research and Education (ACCRE), which is the HPC facility at the Vanderbilt University. The initial deployment was natively deployed (i.e., direct installations on a bare-metal server) within the ACCRE hardware and software environments, which lead to issues of portability and sustainability. First, it could be laborious to deploy the entire VUIIS CCI medical image data storage and processing infrastructure to another HPC center with varying hardware infrastructure, library availability, and software permission policies. Second, the spiders were not developed in an isolated manner, which has led to software dependency issues during system upgrades or remote software installation. To address such issues, herein, we describe recent innovations using containerization techniques with XNAT/DAX which are used to isolate the VUIIS CCI medical image data storage and processing infrastructure from the underlying hardware and software environments. The newly presented XNAT/DAX solution has the following new features: (1) multi-level portability from system level to the application level, (2) flexible and dynamic software development and expansion, and (3) scalable spider deployment compatible with HPC clusters and local workstations.

  3. A modular and programmable development platform for capsule endoscopy system.

    PubMed

    Khan, Tareq Hasan; Shrestha, Ravi; Wahid, Khan A

    2014-06-01

    The state-of-the-art capsule endoscopy (CE) technology offers painless examination for the patients and the ability to examine the interior of the gastrointestinal tract by a noninvasive procedure for the gastroenterologists. In this work, a modular and flexible CE development system platform consisting of a miniature field programmable gate array (FPGA) based electronic capsule, a microcontroller based portable data recorder unit and computer software is designed and developed. Due to the flexible and reprogrammable nature of the system, various image processing and compression algorithms can be tested in the design without requiring any hardware change. The designed capsule prototype supports various imaging modes including white light imaging (WLI) and narrow band imaging (NBI), and communicates with the data recorder in full duplex fashion, which enables configuring the image size and imaging mode in real time during examination. A low complexity image compressor based on a novel color-space is implemented inside the capsule to reduce the amount of RF transmission data. The data recorder contains graphical LCD for real time image viewing and SD cards for storing image data. Data can be uploaded to a computer or Smartphone by SD card, USB interface or by wireless Bluetooth link. Computer software is developed that decompresses and reconstructs images. The fabricated capsule PCBs have a diameter of 16 mm. An ex-vivo animal testing has also been conducted to validate the results.

  4. Use of MCIDAS as an earth science information systems tool

    NASA Technical Reports Server (NTRS)

    Goodman, H. Michael; Karitani, Shogo; Parker, Karen G.; Stooksbury, Laura M.; Wilson, Gregory S.

    1988-01-01

    The application of the man computer interactive data access system (MCIDAS) to information processing is examined. The computer systems that interface with the MCIDAS are discussed. Consideration is given to the computer networking of MCIDAS, data base archival, and the collection and distribution of real-time special sensor microwave/imager data.

  5. Low Cost Embedded Stereo System for Underwater Surveys

    NASA Astrophysics Data System (ADS)

    Nawaf, M. M.; Boï, J.-M.; Merad, D.; Royer, J.-P.; Drap, P.

    2017-11-01

    This paper provides details of both hardware and software conception and realization of a hand-held stereo embedded system for underwater imaging. The designed system can run most image processing techniques smoothly in real-time. The developed functions provide direct visual feedback on the quality of the taken images which helps taking appropriate actions accordingly in terms of movement speed and lighting conditions. The proposed functionalities can be easily customized or upgraded whereas new functions can be easily added thanks to the available supported libraries. Furthermore, by connecting the designed system to a more powerful computer, a real-time visual odometry can run on the captured images to have live navigation and site coverage map. We use a visual odometry method adapted to low computational resources systems and long autonomy. The system is tested in a real context and showed its robustness and promising further perspectives.

  6. High performance optical encryption based on computational ghost imaging with QR code and compressive sensing technique

    NASA Astrophysics Data System (ADS)

    Zhao, Shengmei; Wang, Le; Liang, Wenqiang; Cheng, Weiwen; Gong, Longyan

    2015-10-01

    In this paper, we propose a high performance optical encryption (OE) scheme based on computational ghost imaging (GI) with QR code and compressive sensing (CS) technique, named QR-CGI-OE scheme. N random phase screens, generated by Alice, is a secret key and be shared with its authorized user, Bob. The information is first encoded by Alice with QR code, and the QR-coded image is then encrypted with the aid of computational ghost imaging optical system. Here, measurement results from the GI optical system's bucket detector are the encrypted information and be transmitted to Bob. With the key, Bob decrypts the encrypted information to obtain the QR-coded image with GI and CS techniques, and further recovers the information by QR decoding. The experimental and numerical simulated results show that the authorized users can recover completely the original image, whereas the eavesdroppers can not acquire any information about the image even the eavesdropping ratio (ER) is up to 60% at the given measurement times. For the proposed scheme, the number of bits sent from Alice to Bob are reduced considerably and the robustness is enhanced significantly. Meantime, the measurement times in GI system is reduced and the quality of the reconstructed QR-coded image is improved.

  7. Computer-assisted surgical planning and automation of laser delivery systems

    NASA Astrophysics Data System (ADS)

    Zamorano, Lucia J.; Dujovny, Manuel; Dong, Ada; Kadi, A. Majeed

    1991-05-01

    This paper describes a 'real time' surgical treatment planning interactive workstation, utilizing multimodality imaging (computer tomography, magnetic resonance imaging, digital angiography) that has been developed to provide the neurosurgeon with two-dimensional multiplanar and three-dimensional 'display' of a patient's lesion.

  8. Design and Verification of Remote Sensing Image Data Center Storage Architecture Based on Hadoop

    NASA Astrophysics Data System (ADS)

    Tang, D.; Zhou, X.; Jing, Y.; Cong, W.; Li, C.

    2018-04-01

    The data center is a new concept of data processing and application proposed in recent years. It is a new method of processing technologies based on data, parallel computing, and compatibility with different hardware clusters. While optimizing the data storage management structure, it fully utilizes cluster resource computing nodes and improves the efficiency of data parallel application. This paper used mature Hadoop technology to build a large-scale distributed image management architecture for remote sensing imagery. Using MapReduce parallel processing technology, it called many computing nodes to process image storage blocks and pyramids in the background to improve the efficiency of image reading and application and sovled the need for concurrent multi-user high-speed access to remotely sensed data. It verified the rationality, reliability and superiority of the system design by testing the storage efficiency of different image data and multi-users and analyzing the distributed storage architecture to improve the application efficiency of remote sensing images through building an actual Hadoop service system.

  9. A tetrahedron beam computed tomography benchtop system with a multiple pixel field emission x-ray tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xiaochao; Kim, Joshua; Laganis, Philip

    2011-10-15

    Purpose: To demonstrate the feasibility of Tetrahedron Beam Computed Tomography (TBCT) using a carbon nanotube (CNT) multiple pixel field emission x-ray (MPFEX) tube. Methods: A multiple pixel x-ray source facilitates the creation of novel x-ray imaging modalities. In a previous publication, the authors proposed a Tetrahedron Beam Computed Tomography (TBCT) imaging system which comprises a linear source array and a linear detector array that are orthogonal to each other. TBCT is expected to reduce scatter compared with Cone Beam Computed Tomography (CBCT) and to have better detector performance. Therefore, it may produce improved image quality for image guided radiotherapy. Inmore » this study, a TBCT benchtop system has been developed with an MPFEX tube. The tube has 75 CNT cold cathodes, which generate 75 x-ray focal spots on an elongated anode, and has 4 mm pixel spacing. An in-house-developed, 5-row CT detector array using silicon photodiodes and CdWO{sub 4} scintillators was employed in the system. Hardware and software were developed for tube control and detector data acquisition. The raw data were preprocessed for beam hardening and detector response linearity and were reconstructed with an FDK-based image reconstruction algorithm. Results: The focal spots were measured at about 1 x 2 mm{sup 2} using a star phantom. Each cathode generates around 3 mA cathode current with 2190 V gate voltage. The benchtop system is able to perform TBCT scans with a prolonged scanning time. Images of a commercial CT phantom were successfully acquired. Conclusions: A prototype system was developed, and preliminary phantom images were successfully acquired. MPFEX is a promising x-ray source for TBCT. Further improvement of tube output is needed in order for it to be used in clinical TBCT systems.« less

  10. Towards the use of computationally inserted lesions for mammographic CAD assessment

    NASA Astrophysics Data System (ADS)

    Ghanian, Zahra; Pezeshk, Aria; Petrick, Nicholas; Sahiner, Berkman

    2018-03-01

    Computer-aided detection (CADe) devices used for breast cancer detection on mammograms are typically first developed and assessed for a specific "original" acquisition system, e.g., a specific image detector. When CADe developers are ready to apply their CADe device to a new mammographic acquisition system, they typically assess the CADe device with images acquired using the new system. Collecting large repositories of clinical images containing verified cancer locations and acquired by the new image acquisition system is costly and time consuming. Our goal is to develop a methodology to reduce the clinical data burden in the assessment of a CADe device for use with a different image acquisition system. We are developing an image blending technique that allows users to seamlessly insert lesions imaged using an original acquisition system into normal images or regions acquired with a new system. In this study, we investigated the insertion of microcalcification clusters imaged using an original acquisition system into normal images acquired with that same system utilizing our previously-developed image blending technique. We first performed a reader study to assess whether experienced observers could distinguish between computationally inserted and native clusters. For this purpose, we applied our insertion technique to clinical cases taken from the University of South Florida Digital Database for Screening Mammography (DDSM) and the Breast Cancer Digital Repository (BCDR). Regions of interest containing microcalcification clusters from one breast of a patient were inserted into the contralateral breast of the same patient. The reader study included 55 native clusters and their 55 inserted counterparts. Analysis of the reader ratings using receiver operating characteristic (ROC) methodology indicated that inserted clusters cannot be reliably distinguished from native clusters (area under the ROC curve, AUC=0.58±0.04). Furthermore, CADe sensitivity was evaluated on mammograms with native and inserted microcalcification clusters using a commercial CADe system. For this purpose, we used full field digital mammograms (FFDMs) from 68 clinical cases, acquired at the University of Michigan Health System. The average sensitivities for native and inserted clusters were equal, 85.3% (58/68). These results demonstrate the feasibility of using the inserted microcalcification clusters for assessing mammographic CAD devices.

  11. A computer system to be used with laser-based endoscopy for quantitative diagnosis of early gastric cancer.

    PubMed

    Miyaki, Rie; Yoshida, Shigeto; Tanaka, Shinji; Kominami, Yoko; Sanomura, Yoji; Matsuo, Taiji; Oka, Shiro; Raytchev, Bisser; Tamaki, Toru; Koide, Tetsushi; Kaneda, Kazufumi; Yoshihara, Masaharu; Chayama, Kazuaki

    2015-02-01

    To evaluate the usefulness of a newly devised computer system for use with laser-based endoscopy in differentiating between early gastric cancer, reddened lesions, and surrounding tissue. Narrow-band imaging based on laser light illumination has come into recent use. We devised a support vector machine (SVM)-based analysis system to be used with the newly devised endoscopy system to quantitatively identify gastric cancer on images obtained by magnifying endoscopy with blue-laser imaging (BLI). We evaluated the usefulness of the computer system in combination with the new endoscopy system. We evaluated the system as applied to 100 consecutive early gastric cancers in 95 patients examined by BLI magnification at Hiroshima University Hospital. We produced a set of images from the 100 early gastric cancers; 40 flat or slightly depressed, small, reddened lesions; and surrounding tissues, and we attempted to identify gastric cancer, reddened lesions, and surrounding tissue quantitatively. The average SVM output value was 0.846 ± 0.220 for cancerous lesions, 0.381 ± 0.349 for reddened lesions, and 0.219 ± 0.277 for surrounding tissue, with the SVM output value for cancerous lesions being significantly greater than that for reddened lesions or surrounding tissue. The average SVM output value for differentiated-type cancer was 0.840 ± 0.207 and for undifferentiated-type cancer was 0.865 ± 0.259. Although further development is needed, we conclude that our computer-based analysis system used with BLI will identify gastric cancers quantitatively.

  12. Advanced flight computers for planetary exploration

    NASA Technical Reports Server (NTRS)

    Stephenson, R. Rhoads

    1988-01-01

    Research concerning flight computers for use on interplanetary probes is reviewed. The history of these computers from the Viking mission to the present is outlined. The differences between ground commercial computers and computers for planetary exploration are listed. The development of a computer for the Mariner Mark II comet rendezvous asteroid flyby mission is described. Various aspects of recently developed computer systems are examined, including the Max real time, embedded computer, a hypercube distributed supercomputer, a SAR data processor, a processor for the High Resolution IR Imaging Spectrometer, and a robotic vision multiresolution pyramid machine for processsing images obtained by a Mars Rover.

  13. Portable real-time color night vision

    NASA Astrophysics Data System (ADS)

    Toet, Alexander; Hogervorst, Maarten A.

    2008-03-01

    We developed a simple and fast lookup-table based method to derive and apply natural daylight colors to multi-band night-time images. The method deploys an optimal color transformation derived from a set of samples taken from a daytime color reference image. The colors in the resulting colorized multiband night-time images closely resemble the colors in the daytime color reference image. Also, object colors remain invariant under panning operations and are independent of the scene content. Here we describe the implementation of this method in two prototype portable dual band realtime night vision systems. One system provides co-aligned visual and near-infrared bands of two image intensifiers, the other provides co-aligned images from a digital image intensifier and an uncooled longwave infrared microbolometer. The co-aligned images from both systems are further processed by a notebook computer. The color mapping is implemented as a realtime lookup table transform. The resulting colorised video streams can be displayed in realtime on head mounted displays and stored on the hard disk of the notebook computer. Preliminary field trials demonstrate the potential of these systems for applications like surveillance, navigation and target detection.

  14. High-Resolution Large-Field-of-View Three-Dimensional Hologram Display System and Method Thereof

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin (Inventor); Mintz, Frederick W. (Inventor); Tsou, Peter (Inventor); Bryant, Nevin A. (Inventor)

    2001-01-01

    A real-time, dynamic, free space-virtual reality, 3-D image display system is enabled by using a unique form of Aerogel as the primary display media. A preferred embodiment of this system comprises a 3-D mosaic topographic map which is displayed by fusing four projected hologram images. In this embodiment, four holographic images are projected from four separate holograms. Each holographic image subtends a quadrant of the 4(pi) solid angle. By fusing these four holographic images, a static 3-D image such as a featured terrain map would be visible for 360 deg in the horizontal plane and 180 deg in the vertical plane. An input, either acquired by 3-D image sensor or generated by computer animation, is first converted into a 2-D computer generated hologram (CGH). This CGH is then downloaded into large liquid crystal (LC) panel. A laser projector illuminates the CGH-filled LC panel and generates and displays a real 3-D image in the Aerogel matrix.

  15. Wireless local area networking for linking a PC reporting system and PACS: clinical feasibility in emergency reporting.

    PubMed

    Yoshihiro, Akiko; Nakata, Norio; Harada, Junta; Tada, Shimpei

    2002-01-01

    Although local area networks (LANs) are commonplace in hospital-based radiology departments today, wireless LANs are still relatively unknown and untried. A linked wireless reporting system was developed to improve work throughput and efficiency. It allows radiologists, physicians, and technologists to review current radiology reports and images and instantly compare them with reports and images from previous examinations. This reporting system also facilitates creation of teaching files quickly, easily, and accurately. It consists of a Digital Imaging and Communications in Medicine 3.0-based picture archiving and communication system (PACS), a diagnostic report server, and portable laptop computers. The PACS interfaces with magnetic resonance imagers, computed tomographic scanners, and computed radiography equipment. The same kind of functionality is achievable with a wireless LAN as with a wired LAN, with comparable bandwidth but with less cabling infrastructure required. This wireless system is presently incorporated into the operations of the emergency and radiology departments, with future plans calling for applications in operating rooms, outpatient departments, all hospital wards, and intensive care units. No major problems have been encountered with the system, which is in constant use and appears to be quite successful. Copyright RSNA, 2002

  16. Low-level processing for real-time image analysis

    NASA Technical Reports Server (NTRS)

    Eskenazi, R.; Wilf, J. M.

    1979-01-01

    A system that detects object outlines in television images in real time is described. A high-speed pipeline processor transforms the raw image into an edge map and a microprocessor, which is integrated into the system, clusters the edges, and represents them as chain codes. Image statistics, useful for higher level tasks such as pattern recognition, are computed by the microprocessor. Peak intensity and peak gradient values are extracted within a programmable window and are used for iris and focus control. The algorithms implemented in hardware and the pipeline processor architecture are described. The strategy for partitioning functions in the pipeline was chosen to make the implementation modular. The microprocessor interface allows flexible and adaptive control of the feature extraction process. The software algorithms for clustering edge segments, creating chain codes, and computing image statistics are also discussed. A strategy for real time image analysis that uses this system is given.

  17. HVS: an image-based approach for constructing virtual environments

    NASA Astrophysics Data System (ADS)

    Zhang, Maojun; Zhong, Li; Sun, Lifeng; Li, Yunhao

    1998-09-01

    Virtual Reality Systems can construct virtual environment which provide an interactive walkthrough experience. Traditionally, walkthrough is performed by modeling and rendering 3D computer graphics in real-time. Despite the rapid advance of computer graphics technique, the rendering engine usually places a limit on scene complexity and rendering quality. This paper presents a approach which uses the real-world image or synthesized image to comprise a virtual environment. The real-world image or synthesized image can be recorded by camera, or synthesized by off-line multispectral image processing for Landsat TM (Thematic Mapper) Imagery and SPOT HRV imagery. They are digitally warped on-the-fly to simulate walking forward/backward, to left/right and 360-degree watching around. We have developed a system HVS (Hyper Video System) based on these principles. HVS improves upon QuickTime VR and Surround Video in the walking forward/backward.

  18. Performance dependence of hybrid x-ray computed tomography/fluorescence molecular tomography on the optical forward problem.

    PubMed

    Hyde, Damon; Schulz, Ralf; Brooks, Dana; Miller, Eric; Ntziachristos, Vasilis

    2009-04-01

    Hybrid imaging systems combining x-ray computed tomography (CT) and fluorescence tomography can improve fluorescence imaging performance by incorporating anatomical x-ray CT information into the optical inversion problem. While the use of image priors has been investigated in the past, little is known about the optimal use of forward photon propagation models in hybrid optical systems. In this paper, we explore the impact on reconstruction accuracy of the use of propagation models of varying complexity, specifically in the context of these hybrid imaging systems where significant structural information is known a priori. Our results demonstrate that the use of generically known parameters provides near optimal performance, even when parameter mismatch remains.

  19. Computer-based System for the Virtual-Endoscopic Guidance of Bronchoscopy.

    PubMed

    Helferty, J P; Sherbondy, A J; Kiraly, A P; Higgins, W E

    2007-11-01

    The standard procedure for diagnosing lung cancer involves two stages: three-dimensional (3D) computed-tomography (CT) image assessment, followed by interventional bronchoscopy. In general, the physician has no link between the 3D CT image assessment results and the follow-on bronchoscopy. Thus, the physician essentially performs bronchoscopic biopsy of suspect cancer sites blindly. We have devised a computer-based system that greatly augments the physician's vision during bronchoscopy. The system uses techniques from computer graphics and computer vision to enable detailed 3D CT procedure planning and follow-on image-guided bronchoscopy. The procedure plan is directly linked to the bronchoscope procedure, through a live registration and fusion of the 3D CT data and bronchoscopic video. During a procedure, the system provides many visual tools, fused CT-video data, and quantitative distance measures; this gives the physician considerable visual feedback on how to maneuver the bronchoscope and where to insert the biopsy needle. Central to the system is a CT-video registration technique, based on normalized mutual information. Several sets of results verify the efficacy of the registration technique. In addition, we present a series of test results for the complete system for phantoms, animals, and human lung-cancer patients. The results indicate that not only is the variation in skill level between different physicians greatly reduced by the system over the standard procedure, but that biopsy effectiveness increases.

  20. Analyses of requirements for computer control and data processing experiment subsystems: Image data processing system (IDAPS) software description (7094 version), volume 2

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A description of each of the software modules of the Image Data Processing System (IDAPS) is presented. The changes in the software modules are the result of additions to the application software of the system and an upgrade of the IBM 7094 Mod(1) computer to a 1301 disk storage configuration. Necessary information about IDAPS sofware is supplied to the computer programmer who desires to make changes in the software system or who desires to use portions of the software outside of the IDAPS system. Each software module is documented with: module name, purpose, usage, common block(s) description, method (algorithm of subroutine) flow diagram (if needed), subroutines called, and storage requirements.

  1. Comparison of image features calculated in different dimensions for computer-aided diagnosis of lung nodules

    NASA Astrophysics Data System (ADS)

    Xu, Ye; Lee, Michael C.; Boroczky, Lilla; Cann, Aaron D.; Borczuk, Alain C.; Kawut, Steven M.; Powell, Charles A.

    2009-02-01

    Features calculated from different dimensions of images capture quantitative information of the lung nodules through one or multiple image slices. Previously published computer-aided diagnosis (CADx) systems have used either twodimensional (2D) or three-dimensional (3D) features, though there has been little systematic analysis of the relevance of the different dimensions and of the impact of combining different dimensions. The aim of this study is to determine the importance of combining features calculated in different dimensions. We have performed CADx experiments on 125 pulmonary nodules imaged using multi-detector row CT (MDCT). The CADx system computed 192 2D, 2.5D, and 3D image features of the lesions. Leave-one-out experiments were performed using five different combinations of features from different dimensions: 2D, 3D, 2.5D, 2D+3D, and 2D+3D+2.5D. The experiments were performed ten times for each group. Accuracy, sensitivity and specificity were used to evaluate the performance. Wilcoxon signed-rank tests were applied to compare the classification results from these five different combinations of features. Our results showed that 3D image features generate the best result compared with other combinations of features. This suggests one approach to potentially reducing the dimensionality of the CADx data space and the computational complexity of the system while maintaining diagnostic accuracy.

  2. Strategic Use of Microscrews for Enhancing the Accuracy of Computer-Guided Implant Surgery in Fully Edentulous Arches: A Case History Report.

    PubMed

    Lee, Du-Hyeong

    Implant guide systems can be classified by their supporting structure as tooth-, mucosa-, or bone-supported. Mucosa-supported guides for fully edentulous arches show lower accuracy in implant placement because of errors in image registration and guide positioning. This article introduces the application of a novel microscrew system for computer-aided implant surgery. This technique can markedly improve the accuracy of computer-guided implant surgery in fully edentulous arches by eliminating errors from image fusion and guide positioning.

  3. Early melanoma diagnosis with mobile imaging.

    PubMed

    Do, Thanh-Toan; Zhou, Yiren; Zheng, Haitian; Cheung, Ngai-Man; Koh, Dawn

    2014-01-01

    We research a mobile imaging system for early diagnosis of melanoma. Different from previous work, we focus on smartphone-captured images, and propose a detection system that runs entirely on the smartphone. Smartphone-captured images taken under loosely-controlled conditions introduce new challenges for melanoma detection, while processing performed on the smartphone is subject to computation and memory constraints. To address these challenges, we propose to localize the skin lesion by combining fast skin detection and fusion of two fast segmentation results. We propose new features to capture color variation and border irregularity which are useful for smartphone-captured images. We also propose a new feature selection criterion to select a small set of good features used in the final lightweight system. Our evaluation confirms the effectiveness of proposed algorithms and features. In addition, we present our system prototype which computes selected visual features from a user-captured skin lesion image, and analyzes them to estimate the likelihood of malignance, all on an off-the-shelf smartphone.

  4. Multimedia Database at National Museum of Ethnology

    NASA Astrophysics Data System (ADS)

    Sugita, Shigeharu

    This paper describes the information management system at National Museum of Ethnology, Osaka, Japan. This museum is a kind of research center for cultural anthropology, and has many computer systems such as IBM 3090, VAX11/780, Fujitu M340R, etc. With these computers, distributed multimedia databases are constructed in which not only bibliographic data but also artifact image, slide image, book page image, etc. are stored. The number of data is now about 1.3 million items. These data can be retrieved and displayed on the multimedia workstation which has several displays.

  5. Mars Rover imaging systems and directional filtering

    NASA Technical Reports Server (NTRS)

    Wang, Paul P.

    1989-01-01

    Computer literature searches were carried out at Duke University and NASA Langley Research Center. The purpose is to enhance personal knowledge based on the technical problems of pattern recognition and image understanding which must be solved for the Mars Rover and Sample Return Mission. Intensive study effort of a large collection of relevant literature resulted in a compilation of all important documents in one place. Furthermore, the documents are being classified into: Mars Rover; computer vision (theory); imaging systems; pattern recognition methodologies; and other smart techniques (AI, neural networks, fuzzy logic, etc).

  6. Procurement specification color graphic camera system

    NASA Technical Reports Server (NTRS)

    Prow, G. E.

    1980-01-01

    The performance and design requirements for a Color Graphic Camera System are presented. The system is a functional part of the Earth Observation Department Laboratory System (EODLS) and will be interfaced with Image Analysis Stations. It will convert the output of a raster scan computer color terminal into permanent, high resolution photographic prints and transparencies. Images usually displayed will be remotely sensed LANDSAT imager scenes.

  7. Computed tomography image using sub-terahertz waves generated from a high-T{sub c} superconducting intrinsic Josephson junction oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashiwagi, T., E-mail: kashiwagi@ims.tsukuba.ac.jp; Minami, H.; Kadowaki, K.

    2014-02-24

    A computed tomography (CT) imaging system using monochromatic sub-terahertz coherent electromagnetic waves generated from a device constructed from the intrinsic Josephson junctions in a single crystalline mesa structure of the high-T{sub c} superconductor Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ} was developed and tested on three samples: Standing metallic rods supported by styrofoam, a dried plant (heart pea) containing seeds, and a plastic doll inside an egg shell. The images obtained strongly suggest that this CT imaging system may be useful for a variety of practical applications.

  8. Viking image processing. [digital stereo imagery and computer mosaicking

    NASA Technical Reports Server (NTRS)

    Green, W. B.

    1977-01-01

    The paper discusses the camera systems capable of recording black and white and color imagery developed for the Viking Lander imaging experiment. Each Viking Lander image consisted of a matrix of numbers with 512 rows and an arbitrary number of columns up to a maximum of about 9,000. Various techniques were used in the processing of the Viking Lander images, including: (1) digital geometric transformation, (2) the processing of stereo imagery to produce three-dimensional terrain maps, and (3) computer mosaicking of distinct processed images. A series of Viking Lander images is included.

  9. Flight simulator with spaced visuals

    NASA Technical Reports Server (NTRS)

    Gilson, Richard D. (Inventor); Thurston, Marlin O. (Inventor); Olson, Karl W. (Inventor); Ventola, Ronald W. (Inventor)

    1980-01-01

    A flight simulator arrangement wherein a conventional, movable base flight trainer is combined with a visual cue display surface spaced a predetermined distance from an eye position within the trainer. Thus, three degrees of motive freedom (roll, pitch and crab) are provided for a visual proprioceptive, and vestibular cue system by the trainer while the remaining geometric visual cue image alterations are developed by a video system. A geometric approach to computing runway image eliminates a need to electronically compute trigonometric functions, while utilization of a line generator and designated vanishing point at the video system raster permits facile development of the images of the longitudinal edges of the runway.

  10. Computer-aided decision support systems for endoscopy in the gastrointestinal tract: a review.

    PubMed

    Liedlgruber, Michael; Uhl, Andreas

    2011-01-01

    Today, medical endoscopy is a widely used procedure to inspect the inner cavities of the human body. The advent of endoscopic imaging techniques-allowing the acquisition of images or videos-created the possibility for the development of the whole new branch of computer-aided decision support systems. Such systems aim at helping physicians to identify possibly malignant abnormalities more accurately. At the beginning of this paper, we give a brief introduction to the history of endoscopy, followed by introducing the main types of endoscopes which emerged so far (flexible endoscope, wireless capsule endoscope, and confocal laser endomicroscope). We then give a brief introduction to computer-aided decision support systems specifically targeted at endoscopy in the gastrointestinal tract. Then we present general facts and figures concerning computer-aided decision support systems and summarize work specifically targeted at computer-aided decision support in the gastrointestinal tract. This summary is followed by a discussion of some common issues concerning the approaches reviewed and suggestions of possible ways to resolve them.

  11. A Web-based home welfare and care services support system using a pen type image sensor.

    PubMed

    Ogawa, Hidekuni; Yonezawa, Yoshiharu; Maki, Hiromichi; Sato, Haruhiko; Hahn, Allen W; Caldwell, W Morton

    2003-01-01

    A long-term care insurance law for elderly persons was put in force two years ago in Japan. The Home Helpers, who are employed by hospitals, care companies or the welfare office, provide home welfare and care services for the elderly, such as cooking, bathing, washing, cleaning, shopping, etc. We developed a web-based home welfare and care services support system using wireless Internet mobile phones and Internet client computers, which employs a pen type image sensor. The pen type image sensor is used by the elderly people as the entry device for their care requests. The client computer sends the requests to the server computer in the Home Helper central office, and then the server computer automatically transfers them to the Home Helper's mobile phone. This newly-developed home welfare and care services support system is easily operated by elderly persons and enables Homes Helpers to save a significant amount of time and extra travel.

  12. Vivaldi: A Domain-Specific Language for Volume Processing and Visualization on Distributed Heterogeneous Systems.

    PubMed

    Choi, Hyungsuk; Choi, Woohyuk; Quan, Tran Minh; Hildebrand, David G C; Pfister, Hanspeter; Jeong, Won-Ki

    2014-12-01

    As the size of image data from microscopes and telescopes increases, the need for high-throughput processing and visualization of large volumetric data has become more pressing. At the same time, many-core processors and GPU accelerators are commonplace, making high-performance distributed heterogeneous computing systems affordable. However, effectively utilizing GPU clusters is difficult for novice programmers, and even experienced programmers often fail to fully leverage the computing power of new parallel architectures due to their steep learning curve and programming complexity. In this paper, we propose Vivaldi, a new domain-specific language for volume processing and visualization on distributed heterogeneous computing systems. Vivaldi's Python-like grammar and parallel processing abstractions provide flexible programming tools for non-experts to easily write high-performance parallel computing code. Vivaldi provides commonly used functions and numerical operators for customized visualization and high-throughput image processing applications. We demonstrate the performance and usability of Vivaldi on several examples ranging from volume rendering to image segmentation.

  13. Portable telepathology: methods and tools.

    PubMed

    Alfaro, Luis; Roca, Ma José

    2008-07-15

    Telepathology is becoming easier to implement in most pathology departments. In fact e-mail image transmit can be done from almost any pathologist as a simplistic telepathology system. We tried to develop a way to improve capabilities of communication among pathologists with the idea that the system should be affordable for everybody. We took the premise that any pathology department would have microscopes and computers with Internet connection, and selected a few elements to convert them into a telepathology station. Needs were reduced to a camera to collect images, a universal microscope adapter for the camera, a device to connect the camera to the computer, and a software for the remote image transmit. We found out a microscope adapter (MaxView Plus) that allowed us connect almost any domestic digital camera to any microscope. The video out signal from the camera was sent to the computer through an Aver Media USB connector. At last, we selected a group of portable applications that were assembled into a USB memory device. Portable applications are computer programs that can be carried generally on USB flash drives, but also in any other portable device, and used on any (Windows) computer without installation. Besides, when unplugging the device, none of personal data is left behind. We selected open-source applications, and based the pathology image transmission to VLC Media Player due to its functionality as streaming server, portability and ease of use and configuration. Audio transmission was usually done through normal phone lines. We also employed alternative videoconferencing software, SightSpeed for bi-directional image transmission from microscopes, and conventional cameras allowing visual communication and also image transmit from gross pathology specimens. All these elements allowed us to install and use a telepathology system in a few minutes, fully prepared for real time image broadcast.

  14. Portable telepathology: methods and tools

    PubMed Central

    Alfaro, Luis; Roca, Ma José

    2008-01-01

    Telepathology is becoming easier to implement in most pathology departments. In fact e-mail image transmit can be done from almost any pathologist as a simplistic telepathology system. We tried to develop a way to improve capabilities of communication among pathologists with the idea that the system should be affordable for everybody. We took the premise that any pathology department would have microscopes and computers with Internet connection, and selected a few elements to convert them into a telepathology station. Needs were reduced to a camera to collect images, a universal microscope adapter for the camera, a device to connect the camera to the computer, and a software for the remote image transmit. We found out a microscope adapter (MaxView Plus) that allowed us connect almost any domestic digital camera to any microscope. The video out signal from the camera was sent to the computer through an Aver Media USB connector. At last, we selected a group of portable applications that were assembled into a USB memory device. Portable applications are computer programs that can be carried generally on USB flash drives, but also in any other portable device, and used on any (Windows) computer without installation. Besides when unplugging the device, none of personal data is left behind. We selected open-source applications, and based the pathology image transmission to VLC Media Player due to its functionality as streaming server, portability and ease of use and configuration. Audio transmission was usually done through normal phone lines. We also employed alternative videoconferencing software, SightSpeed for bi-directional image transmission from microscopes, and conventional cameras allowing visual communication and also image transmit from gross pathology specimens. All these elements allowed us to install and use a telepathology system in a few minutes, fully prepared for real time image broadcast. PMID:18673507

  15. Quantitative evaluation of 3D images produced from computer-generated holograms

    NASA Astrophysics Data System (ADS)

    Sheerin, David T.; Mason, Ian R.; Cameron, Colin D.; Payne, Douglas A.; Slinger, Christopher W.

    1999-08-01

    Advances in computing and optical modulation techniques now make it possible to anticipate the generation of near real- time, reconfigurable, high quality, three-dimensional images using holographic methods. Computer generated holography (CGH) is the only technique which holds promise of producing synthetic images having the full range of visual depth cues. These realistic images will be viewable by several users simultaneously, without the need for headtracking or special glasses. Such a data visualization tool will be key to speeding up the manufacture of new commercial and military equipment by negating the need for the production of physical 3D models in the design phase. DERA Malvern has been involved in designing and testing fixed CGH in order to understand the connection between the complexity of the CGH, the algorithms used to design them, the processes employed in their implementation and the quality of the images produced. This poster describes results from CGH containing up to 108 pixels. The methods used to evaluate the reconstructed images are discussed and quantitative measures of image fidelity made. An understanding of the effect of the various system parameters upon final image quality enables a study of the possible system trade-offs to be carried out. Such an understanding of CGH production and resulting image quality is key to effective implementation of a reconfigurable CGH system currently under development at DERA.

  16. Cloud Computing for radiologists.

    PubMed

    Kharat, Amit T; Safvi, Amjad; Thind, Ss; Singh, Amarjit

    2012-07-01

    Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future.

  17. Cloud Computing for radiologists

    PubMed Central

    Kharat, Amit T; Safvi, Amjad; Thind, SS; Singh, Amarjit

    2012-01-01

    Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future. PMID:23599560

  18. Computer-assisted neurosurgical navigational system for transsphenoidal surgery--technical note.

    PubMed

    Onizuka, M; Tokunaga, Y; Shibayama, A; Miyazaki, H

    2001-11-01

    Transsphenoidal surgery carries the risk of carotid artery injury even for very experienced neurosurgeons. The computer-assisted neurosurgical (CANS) navigational system was used to obtain more precise guidance, based on the axial and coronal images during the transsphenoidal approach for nine pituitary adenomas. The CANS navigator consists of a three-dimensional digitizer, a computer, and a graphic unit, which utilizes electromagnetic coupling technology to detect the spatial position of a suction tube attached to a magnetic sensor. Preoperatively, the magnetic resonance images are transferred and stored in the computer and the tip of the suction tube is shown on a real-time basis superimposed on the preoperative images. The CANS navigation system correctly displayed the surgical orientation and provided localization in all nine patients. No intraoperative complications were associated with the use of this system. However, outflow of cerebrospinal fluid during tumor removal may affect the accuracy, so the position of the probe when the tumor is removed must be accurately determined. The CANS navigator enables precise localization of the suction tube during the transsphenoidal approach and allows safer and less-invasive surgery.

  19. Classification of large-scale fundus image data sets: a cloud-computing framework.

    PubMed

    Roychowdhury, Sohini

    2016-08-01

    Large medical image data sets with high dimensionality require substantial amount of computation time for data creation and data processing. This paper presents a novel generalized method that finds optimal image-based feature sets that reduce computational time complexity while maximizing overall classification accuracy for detection of diabetic retinopathy (DR). First, region-based and pixel-based features are extracted from fundus images for classification of DR lesions and vessel-like structures. Next, feature ranking strategies are used to distinguish the optimal classification feature sets. DR lesion and vessel classification accuracies are computed using the boosted decision tree and decision forest classifiers in the Microsoft Azure Machine Learning Studio platform, respectively. For images from the DIARETDB1 data set, 40 of its highest-ranked features are used to classify four DR lesion types with an average classification accuracy of 90.1% in 792 seconds. Also, for classification of red lesion regions and hemorrhages from microaneurysms, accuracies of 85% and 72% are observed, respectively. For images from STARE data set, 40 high-ranked features can classify minor blood vessels with an accuracy of 83.5% in 326 seconds. Such cloud-based fundus image analysis systems can significantly enhance the borderline classification performances in automated screening systems.

  20. Time of flight imaging through scattering environments (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Le, Toan H.; Breitbach, Eric C.; Jackson, Jonathan A.; Velten, Andreas

    2017-02-01

    Light scattering is a primary obstacle to imaging in many environments. On small scales in biomedical microscopy and diffuse tomography scenarios scattering is caused by tissue. On larger scales scattering from dust and fog provide challenges to vision systems for self driving cars and naval remote imaging systems. We are developing scale models for scattering environments and investigation methods for improved imaging particularly using time of flight transient information. With the emergence of Single Photon Avalanche Diode detectors and fast semiconductor lasers, illumination and capture on picosecond timescales are becoming possible in inexpensive, compact, and robust devices. This opens up opportunities for new computational imaging techniques that make use of photon time of flight. Time of flight or range information is used in remote imaging scenarios in gated viewing and in biomedical imaging in time resolved diffuse tomography. In addition spatial filtering is popular in biomedical scenarios with structured illumination and confocal microscopy. We are presenting a combination analytical, computational, and experimental models that allow us develop and test imaging methods across scattering scenarios and scales. This framework will be used for proof of concept experiments to evaluate new computational imaging methods.

  1. Texture classification of lung computed tomography images

    NASA Astrophysics Data System (ADS)

    Pheng, Hang See; Shamsuddin, Siti M.

    2013-03-01

    Current development of algorithms in computer-aided diagnosis (CAD) scheme is growing rapidly to assist the radiologist in medical image interpretation. Texture analysis of computed tomography (CT) scans is one of important preliminary stage in the computerized detection system and classification for lung cancer. Among different types of images features analysis, Haralick texture with variety of statistical measures has been used widely in image texture description. The extraction of texture feature values is essential to be used by a CAD especially in classification of the normal and abnormal tissue on the cross sectional CT images. This paper aims to compare experimental results using texture extraction and different machine leaning methods in the classification normal and abnormal tissues through lung CT images. The machine learning methods involve in this assessment are Artificial Immune Recognition System (AIRS), Naive Bayes, Decision Tree (J48) and Backpropagation Neural Network. AIRS is found to provide high accuracy (99.2%) and sensitivity (98.0%) in the assessment. For experiments and testing purpose, publicly available datasets in the Reference Image Database to Evaluate Therapy Response (RIDER) are used as study cases.

  2. Mutual information-based template matching scheme for detection of breast masses: from mammography to digital breast tomosynthesis

    PubMed Central

    Mazurowski, Maciej A; Lo, Joseph Y; Harrawood, Brian P; Tourassi, Georgia D

    2011-01-01

    Development of a computational decision aid for a new medical imaging modality typically is a long and complicated process. It consists of collecting data in the form of images and annotations, development of image processing and pattern recognition algorithms for analysis of the new images and finally testing of the resulting system. Since new imaging modalities are developed more rapidly than ever before, any effort for decreasing the time and cost of this development process could result in maximizing the benefit of the new imaging modality to patients by making the computer aids quickly available to radiologists that interpret the images. In this paper, we make a step in this direction and investigate the possibility of translating the knowledge about the detection problem from one imaging modality to another. Specifically, we present a computer-aided detection (CAD) system for mammographic masses that uses a mutual information-based template matching scheme with intelligently selected templates. We presented principles of template matching with mutual information for mammography before. In this paper, we present an implementation of those principles in a complete computer-aided detection system. The proposed system, through an automatic optimization process, chooses the most useful templates (mammographic regions of interest) using a large database of previously collected and annotated mammograms. Through this process, the knowledge about the task of detecting masses in mammograms is incorporated in the system. Then we evaluate whether our system developed for screen-film mammograms can be successfully applied not only to other mammograms but also to digital breast tomosynthesis (DBT) reconstructed slices without adding any DBT cases for training. Our rationale is that since mutual information is known to be a robust intermodality image similarity measure, it has high potential of transferring knowledge between modalities in the context of the mass detection task. Experimental evaluation of the system on mammograms showed competitive performance compared to other mammography CAD systems recently published in the literature. When the system was applied “as-is” to DBT, its performance was notably worse than that for mammograms. However, with a simple additional preprocessing step, the performance of the system reached levels similar to that obtained for mammograms. In conclusion, the presented CAD system not only performed competitively on screen-film mammograms but it also performed robustly on DBT showing that direct transfer of knowledge across breast imaging modalities for mass detection is in fact possible. PMID:21554985

  3. A configurable distributed high-performance computing framework for satellite's TDI-CCD imaging simulation

    NASA Astrophysics Data System (ADS)

    Xue, Bo; Mao, Bingjing; Chen, Xiaomei; Ni, Guoqiang

    2010-11-01

    This paper renders a configurable distributed high performance computing(HPC) framework for TDI-CCD imaging simulation. It uses strategy pattern to adapt multi-algorithms. Thus, this framework help to decrease the simulation time with low expense. Imaging simulation for TDI-CCD mounted on satellite contains four processes: 1) atmosphere leads degradation, 2) optical system leads degradation, 3) electronic system of TDI-CCD leads degradation and re-sampling process, 4) data integration. Process 1) to 3) utilize diversity data-intensity algorithms such as FFT, convolution and LaGrange Interpol etc., which requires powerful CPU. Even uses Intel Xeon X5550 processor, regular series process method takes more than 30 hours for a simulation whose result image size is 1500 * 1462. With literature study, there isn't any mature distributing HPC framework in this field. Here we developed a distribute computing framework for TDI-CCD imaging simulation, which is based on WCF[1], uses Client/Server (C/S) layer and invokes the free CPU resources in LAN. The server pushes the process 1) to 3) tasks to those free computing capacity. Ultimately we rendered the HPC in low cost. In the computing experiment with 4 symmetric nodes and 1 server , this framework reduced about 74% simulation time. Adding more asymmetric nodes to the computing network, the time decreased namely. In conclusion, this framework could provide unlimited computation capacity in condition that the network and task management server are affordable. And this is the brand new HPC solution for TDI-CCD imaging simulation and similar applications.

  4. Cost Savings Associated with the Adoption of a Cloud Computing Data Transfer System for Trauma Patients.

    PubMed

    Feeney, James M; Montgomery, Stephanie C; Wolf, Laura; Jayaraman, Vijay; Twohig, Michael

    2016-09-01

    Among transferred trauma patients, challenges with the transfer of radiographic studies include problems loading or viewing the studies at the receiving hospitals, and problems manipulating, reconstructing, or evalu- ating the transferred images. Cloud-based image transfer systems may address some ofthese problems. We reviewed the charts of patients trans- ferred during one year surrounding the adoption of a cloud computing data transfer system. We compared the rates of repeat imaging before (precloud) and af- ter (postcloud) the adoption of the cloud-based data transfer system. During the precloud period, 28 out of 100 patients required 90 repeat studies. With the cloud computing transfer system in place, three out of 134 patients required seven repeat films. There was a statistically significant decrease in the proportion of patients requiring repeat films (28% to 2.2%, P < .0001). Based on an annualized volume of 200 trauma patient transfers, the cost savings estimated using three methods of cost analysis, is between $30,272 and $192,453.

  5. Dynamic MRI-based computer aided diagnostic systems for early detection of kidney transplant rejection: A survey

    NASA Astrophysics Data System (ADS)

    Mostapha, Mahmoud; Khalifa, Fahmi; Alansary, Amir; Soliman, Ahmed; Gimel'farb, Georgy; El-Baz, Ayman

    2013-10-01

    Early detection of renal transplant rejection is important to implement appropriate medical and immune therapy in patients with transplanted kidneys. In literature, a large number of computer-aided diagnostic (CAD) systems using different image modalities, such as ultrasound (US), magnetic resonance imaging (MRI), computed tomography (CT), and radionuclide imaging, have been proposed for early detection of kidney diseases. A typical CAD system for kidney diagnosis consists of a set of processing steps including: motion correction, segmentation of the kidney and/or its internal structures (e.g., cortex, medulla), construction of agent kinetic curves, functional parameter estimation, diagnosis, and assessment of the kidney status. In this paper, we survey the current state-of-the-art CAD systems that have been developed for kidney disease diagnosis using dynamic MRI. In addition, the paper addresses several challenges that researchers face in developing efficient, fast and reliable CAD systems for the early detection of kidney diseases.

  6. A Set of Image Processing Algorithms for Computer-Aided Diagnosis in Nuclear Medicine Whole Body Bone Scan Images

    NASA Astrophysics Data System (ADS)

    Huang, Jia-Yann; Kao, Pan-Fu; Chen, Yung-Sheng

    2007-06-01

    Adjustment of brightness and contrast in nuclear medicine whole body bone scan images may confuse nuclear medicine physicians when identifying small bone lesions as well as making the identification of subtle bone lesion changes in sequential studies difficult. In this study, we developed a computer-aided diagnosis system, based on the fuzzy sets histogram thresholding method and anatomical knowledge-based image segmentation method that was able to analyze and quantify raw image data and identify the possible location of a lesion. To locate anatomical reference points, the fuzzy sets histogram thresholding method was adopted as a first processing stage to suppress the soft tissue in the bone images. Anatomical knowledge-based image segmentation method was then applied to segment the skeletal frame into different regions of homogeneous bones. For the different segmented bone regions, the lesion thresholds were set at different cut-offs. To obtain lesion thresholds in different segmented regions, the ranges and standard deviations of the image's gray-level distribution were obtained from 100 normal patients' whole body bone images and then, another 62 patients' images were used for testing. The two groups of images were independent. The sensitivity and the mean number of false lesions detected were used as performance indices to evaluate the proposed system. The overall sensitivity of the system is 92.1% (222 of 241) and 7.58 false detections per patient scan image. With a high sensitivity and an acceptable false lesions detection rate, this computer-aided automatic lesion detection system is demonstrated as useful and will probably in the future be able to help nuclear medicine physicians to identify possible bone lesions.

  7. Dual source and dual detector arrays tetrahedron beam computed tomography for image guided radiotherapy.

    PubMed

    Kim, Joshua; Lu, Weiguo; Zhang, Tiezhi

    2014-02-07

    Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source-dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10-15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source-dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented.

  8. Dual source and dual detector arrays tetrahedron beam computed tomography for image guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Kim, Joshua; Lu, Weiguo; Zhang, Tiezhi

    2014-02-01

    Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source-dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10-15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source-dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented.

  9. Analyses of requirements for computer control and data processing experiment subsystems. Volume 1: ATM experiment S-056 image data processing system techniques development

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The solar imaging X-ray telescope experiment (designated the S-056 experiment) is described. It will photograph the sun in the far ultraviolet or soft X-ray region. Because of the imaging characteristics of this telescope and the necessity of using special techniques for capturing images on film at these wave lengths, methods were developed for computer processing of the photographs. The problems of image restoration were addressed to develop and test digital computer techniques for applying a deconvolution process to restore overall S-056 image quality. Additional techniques for reducing or eliminating the effects of noise and nonlinearity in S-056 photographs were developed.

  10. Modeling of processes of formation of the images in optical-electronic systems

    NASA Astrophysics Data System (ADS)

    Grudin, B. N.; Plotnikov, V. S.; Fischenko, V. K.

    2001-08-01

    The digital model of the multicomponent coherent optical system with arbitrary layout of optical elements (lasers, lenses, phototransparencies with recording of the function of transmission of a specimens or filters, photoregistrars), constructed with usage of fast algorithms is considered. The model is realized as the program for personal computers in operational systems Windows 95, 98 and Windows NT. At simulation, for example, coherent system consisting of twenty elementary optical cascades a relative error in the output image as a rule does not exceed 0.25% when N >= 256 (N x N - the number of discrete samples on the image), and time of calculation of the output image on a computer (Pentium-2, 300 MHz) for N = 512 does not exceed one minute. The program of simulation of coherent optical systems will be utilized in scientific researches and at tutoring the students of Far East State University.

  11. Computer-implemented system and method for automated and highly accurate plaque analysis, reporting, and visualization

    NASA Technical Reports Server (NTRS)

    Kemp, James Herbert (Inventor); Talukder, Ashit (Inventor); Lambert, James (Inventor); Lam, Raymond (Inventor)

    2008-01-01

    A computer-implemented system and method of intra-oral analysis for measuring plaque removal is disclosed. The system includes hardware for real-time image acquisition and software to store the acquired images on a patient-by-patient basis. The system implements algorithms to segment teeth of interest from surrounding gum, and uses a real-time image-based morphing procedure to automatically overlay a grid onto each segmented tooth. Pattern recognition methods are used to classify plaque from surrounding gum and enamel, while ignoring glare effects due to the reflection of camera light and ambient light from enamel regions. The system integrates these components into a single software suite with an easy-to-use graphical user interface (GUI) that allows users to do an end-to-end run of a patient record, including tooth segmentation of all teeth, grid morphing of each segmented tooth, and plaque classification of each tooth image.

  12. Bridging the integration gap between imaging and information systems: a uniform data concept for content-based image retrieval in computer-aided diagnosis.

    PubMed

    Welter, Petra; Riesmeier, Jörg; Fischer, Benedikt; Grouls, Christoph; Kuhl, Christiane; Deserno, Thomas M

    2011-01-01

    It is widely accepted that content-based image retrieval (CBIR) can be extremely useful for computer-aided diagnosis (CAD). However, CBIR has not been established in clinical practice yet. As a widely unattended gap of integration, a unified data concept for CBIR-based CAD results and reporting is lacking. Picture archiving and communication systems and the workflow of radiologists must be considered for successful data integration to be achieved. We suggest that CBIR systems applied to CAD should integrate their results in a picture archiving and communication systems environment such as Digital Imaging and Communications in Medicine (DICOM) structured reporting documents. A sample DICOM structured reporting template adaptable to CBIR and an appropriate integration scheme is presented. The proposed CBIR data concept may foster the promulgation of CBIR systems in clinical environments and, thereby, improve the diagnostic process.

  13. Bridging the integration gap between imaging and information systems: a uniform data concept for content-based image retrieval in computer-aided diagnosis

    PubMed Central

    Riesmeier, Jörg; Fischer, Benedikt; Grouls, Christoph; Kuhl, Christiane; Deserno (né Lehmann), Thomas M

    2011-01-01

    It is widely accepted that content-based image retrieval (CBIR) can be extremely useful for computer-aided diagnosis (CAD). However, CBIR has not been established in clinical practice yet. As a widely unattended gap of integration, a unified data concept for CBIR-based CAD results and reporting is lacking. Picture archiving and communication systems and the workflow of radiologists must be considered for successful data integration to be achieved. We suggest that CBIR systems applied to CAD should integrate their results in a picture archiving and communication systems environment such as Digital Imaging and Communications in Medicine (DICOM) structured reporting documents. A sample DICOM structured reporting template adaptable to CBIR and an appropriate integration scheme is presented. The proposed CBIR data concept may foster the promulgation of CBIR systems in clinical environments and, thereby, improve the diagnostic process. PMID:21672913

  14. A Knowledge-Based System for the Computer Assisted Diagnosis of Endoscopic Images

    NASA Astrophysics Data System (ADS)

    Kage, Andreas; Münzenmayer, Christian; Wittenberg, Thomas

    Due to the actual demographic development the use of Computer-Assisted Diagnosis (CAD) systems becomes a more important part of clinical workflows and clinical decision making. Because changes on the mucosa of the esophagus can indicate the first stage of cancerous developments, there is a large interest to detect and correctly diagnose any such lesion. We present a knowledge-based system which is able to support a physician with the interpretation and diagnosis of endoscopic images of the esophagus. Our system is designed to support the physician directly during the examination of the patient, thus prodving diagnostic assistence at the point of care (POC). Based on an interactively marked region in an endoscopic image of interest, the system provides a diagnostic suggestion, based on an annotated reference image database. Furthermore, using relevant feedback mechanisms, the results can be enhanced interactively.

  15. 3-D Signal Processing in a Computer Vision System

    Treesearch

    Dongping Zhu; Richard W. Conners; Philip A. Araman

    1991-01-01

    This paper discusses the problem of 3-dimensional image filtering in a computer vision system that would locate and identify internal structural failure. In particular, a 2-dimensional adaptive filter proposed by Unser has been extended to 3-dimension. In conjunction with segmentation and labeling, the new filter has been used in the computer vision system to...

  16. A micro-CL system and its applications

    NASA Astrophysics Data System (ADS)

    Wei, Zenghui; Yuan, Lulu; Liu, Baodong; Wei, Cunfeng; Sun, Cuili; Yin, Pengfei; Wei, Long

    2017-11-01

    The computed laminography (CL) method is preferable to computed tomography for the non-destructive testing of plate-like objects. A micro-CL system is developed for three-dimensional imaging of plate-like objects. The details of the micro-CL system are described, including the system architecture, scanning modes, and reconstruction algorithm. The experiment results of plate-like fossils, insulated gate bipolar translator module, ball grid array packaging, and printed circuit board are also presented to demonstrate micro-CL's ability for 3D imaging of flat specimens and universal applicability in various fields.

  17. A micro-CL system and its applications.

    PubMed

    Wei, Zenghui; Yuan, Lulu; Liu, Baodong; Wei, Cunfeng; Sun, Cuili; Yin, Pengfei; Wei, Long

    2017-11-01

    The computed laminography (CL) method is preferable to computed tomography for the non-destructive testing of plate-like objects. A micro-CL system is developed for three-dimensional imaging of plate-like objects. The details of the micro-CL system are described, including the system architecture, scanning modes, and reconstruction algorithm. The experiment results of plate-like fossils, insulated gate bipolar translator module, ball grid array packaging, and printed circuit board are also presented to demonstrate micro-CL's ability for 3D imaging of flat specimens and universal applicability in various fields.

  18. IMAGES: An interactive image processing system

    NASA Technical Reports Server (NTRS)

    Jensen, J. R.

    1981-01-01

    The IMAGES interactive image processing system was created specifically for undergraduate remote sensing education in geography. The system is interactive, relatively inexpensive to operate, almost hardware independent, and responsive to numerous users at one time in a time-sharing mode. Most important, it provides a medium whereby theoretical remote sensing principles discussed in lecture may be reinforced in laboratory as students perform computer-assisted image processing. In addition to its use in academic and short course environments, the system has also been used extensively to conduct basic image processing research. The flow of information through the system is discussed including an overview of the programs.

  19. Near real-time stereo vision system

    NASA Technical Reports Server (NTRS)

    Anderson, Charles H. (Inventor); Matthies, Larry H. (Inventor)

    1993-01-01

    The apparatus for a near real-time stereo vision system for use with a robotic vehicle is described. The system is comprised of two cameras mounted on three-axis rotation platforms, image-processing boards, a CPU, and specialized stereo vision algorithms. Bandpass-filtered image pyramids are computed, stereo matching is performed by least-squares correlation, and confidence ranges are estimated by means of Bayes' theorem. In particular, Laplacian image pyramids are built and disparity maps are produced from the 60 x 64 level of the pyramids at rates of up to 2 seconds per image pair. The first autonomous cross-country robotic traverses (of up to 100 meters) have been achieved using the stereo vision system of the present invention with all computing done onboard the vehicle. The overall approach disclosed herein provides a unifying paradigm for practical domain-independent stereo ranging.

  20. Imaging of pharmacokinetic rates of indocyanine green in mouse liver with a hybrid fluorescence molecular tomography/x-ray computed tomography system.

    PubMed

    Zhang, Guanglei; Liu, Fei; Zhang, Bin; He, Yun; Luo, Jianwen; Bai, Jing

    2013-04-01

    Pharmacokinetic rates have the potential to provide quantitative physiological and pathological information for biological studies and drug development. Fluorescence molecular tomography (FMT) is an attractive imaging tool for three-dimensionally resolving fluorophore distribution in small animals. In this letter, pharmacokinetic rates of indocyanine green (ICG) in mouse liver are imaged with a hybrid FMT and x-ray computed tomography (XCT) system. A recently developed FMT method using structural priors from an XCT system is adopted to improve the quality of FMT reconstruction. In the in vivo experiments, images of uptake and excretion rates of ICG in mouse liver are obtained, which can be used to quantitatively evaluate liver function. The accuracy of the results is validated by a fiber-based fluorescence measurement system.

  1. Design and Configuration of a Medical Imaging Systems Computer Laboratory Syllabus

    ERIC Educational Resources Information Center

    Selver, M. Alper

    2016-01-01

    Medical imaging systems (MIS) constitute an important emergent subdiscipline of engineering studies. In the context of electrical and electronics engineering (EEE) education, MIS courses cover physics, instrumentation, data acquisition, image formation, modeling, and quality assessment of various modalities. Many well-structured MIS courses are…

  2. GPUs benchmarking in subpixel image registration algorithm

    NASA Astrophysics Data System (ADS)

    Sanz-Sabater, Martin; Picazo-Bueno, Jose Angel; Micó, Vicente; Ferrerira, Carlos; Granero, Luis; Garcia, Javier

    2015-05-01

    Image registration techniques are used among different scientific fields, like medical imaging or optical metrology. The straightest way to calculate shifting between two images is using the cross correlation, taking the highest value of this correlation image. Shifting resolution is given in whole pixels which cannot be enough for certain applications. Better results can be achieved interpolating both images, as much as the desired resolution we want to get, and applying the same technique described before, but the memory needed by the system is significantly higher. To avoid memory consuming we are implementing a subpixel shifting method based on FFT. With the original images, subpixel shifting can be achieved multiplying its discrete Fourier transform by a linear phase with different slopes. This method is high time consuming method because checking a concrete shifting means new calculations. The algorithm, highly parallelizable, is very suitable for high performance computing systems. GPU (Graphics Processing Unit) accelerated computing became very popular more than ten years ago because they have hundreds of computational cores in a reasonable cheap card. In our case, we are going to register the shifting between two images, doing the first approach by FFT based correlation, and later doing the subpixel approach using the technique described before. We consider it as `brute force' method. So we will present a benchmark of the algorithm consisting on a first approach (pixel resolution) and then do subpixel resolution approaching, decreasing the shifting step in every loop achieving a high resolution in few steps. This program will be executed in three different computers. At the end, we will present the results of the computation, with different kind of CPUs and GPUs, checking the accuracy of the method, and the time consumed in each computer, discussing the advantages, disadvantages of the use of GPUs.

  3. Computed tomography vs. digital radiography assessment for detection of osteolysis in asymptomatic patients with uncemented cups: a proposal for a new classification system based on computer tomography.

    PubMed

    Sandgren, Buster; Crafoord, Joakim; Garellick, Göran; Carlsson, Lars; Weidenhielm, Lars; Olivecrona, Henrik

    2013-10-01

    Digital radiographic images in the anterior-posterior and lateral view have been gold standard for evaluation of peri-acetabular osteolysis for patients with an uncemented hip replacement. We compared digital radiographic images and computer tomography in detection of peri-acetabular osteolysis and devised a classification system based on computer tomography. Digital radiographs were compared with computer tomography on 206 hips, with a mean follow up 10 years after surgery. The patients had no clinical signs of osteolysis and none were planned for revision surgery. On digital radiographs, 192 cases had no osteolysis and only 14 cases had osteolysis. When using computer tomography there were 184 cases showing small or large osteolysis and only 22 patients had no osteolysis. A classification system for peri-acetabular osteolysis is proposed based on computer tomography that is easy to use on standard follow up evaluation. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. An Intelligent Pictorial Information System

    NASA Astrophysics Data System (ADS)

    Lee, Edward T.; Chang, B.

    1987-05-01

    In examining the history of computer application, we discover that early computer systems were developed primarily for applications related to scientific computation, as in weather prediction, aerospace applications, and nuclear physics applications. At this stage, the computer system served as a big calculator to perform, in the main, manipulation of numbers. Then it was found that computer systems could also be used for business applications, information storage and retrieval, word processing, and report generation. The history of computer application is summarized in Table I. The complexity of pictures makes picture processing much more difficult than number and alphanumerical processing. Therefore, new techniques, new algorithms, and above all, new pictorial knowledge, [1] are needed to overcome the limitatins of existing computer systems. New frontiers in designing computer systems are the ways to handle the representation,[2,3] classification, manipulation, processing, storage, and retrieval of pictures. Especially, the ways to deal with similarity measures and the meaning of the word "approximate" and the phrase "approximate reasoning" are an important and an indispensable part of an intelligent pictorial information system. [4,5] The main objective of this paper is to investigate the mathematical foundation for the effective organization and efficient retrieval of pictures in similarity-directed pictorial databases, [6] based on similarity retrieval techniques [7] and fuzzy languages [8]. The main advantage of this approach is that similar pictures are stored logically close to each other by using quantitative similarity measures. Thus, for answering queries, the amount of picture data needed to be searched can be reduced and the retrieval time can be improved. In addition, in a pictorial database, very often it is desired to find pictures (or feature vectors, histograms, etc.) that are most similar to or most dissimilar [9] to a test picture (or feature vector). Using similarity measures, one can not only store similar pictures logically or physically close to each other in order to improve retrieval or updating efficiency, one can also use such similarity measures to answer fuzzy queries involving nonexact retrieval conditions. In this paper, similarity directed pictorial databases involving geometric figures, chromosome images, [10] leukocyte images, cardiomyopathy images, and satellite images [11] are presented as illustrative examples.

  5. Effects of Image Compression on Automatic Count of Immunohistochemically Stained Nuclei in Digital Images

    PubMed Central

    López, Carlos; Lejeune, Marylène; Escrivà, Patricia; Bosch, Ramón; Salvadó, Maria Teresa; Pons, Lluis E.; Baucells, Jordi; Cugat, Xavier; Álvaro, Tomás; Jaén, Joaquín

    2008-01-01

    This study investigates the effects of digital image compression on automatic quantification of immunohistochemical nuclear markers. We examined 188 images with a previously validated computer-assisted analysis system. A first group was composed of 47 images captured in TIFF format, and other three contained the same images converted from TIFF to JPEG format with 3×, 23× and 46× compression. Counts of TIFF format images were compared with the other three groups. Overall, differences in the count of the images increased with the percentage of compression. Low-complexity images (≤100 cells/field, without clusters or with small-area clusters) had small differences (<5 cells/field in 95–100% of cases) and high-complexity images showed substantial differences (<35–50 cells/field in 95–100% of cases). Compression does not compromise the accuracy of immunohistochemical nuclear marker counts obtained by computer-assisted analysis systems for digital images with low complexity and could be an efficient method for storing these images. PMID:18755997

  6. System Integration of FastSPECT III, a Dedicated SPECT Rodent-Brain Imager Based on BazookaSPECT Detector Technology

    PubMed Central

    Miller, Brian W.; Furenlid, Lars R.; Moore, Stephen K.; Barber, H. Bradford; Nagarkar, Vivek V.; Barrett, Harrison H.

    2010-01-01

    FastSPECT III is a stationary, single-photon emission computed tomography (SPECT) imager designed specifically for imaging and studying neurological pathologies in rodent brain, including Alzheimer’s and Parkinsons’s disease. Twenty independent BazookaSPECT [1] gamma-ray detectors acquire projections of a spherical field of view with pinholes selected for desired resolution and sensitivity. Each BazookaSPECT detector comprises a columnar CsI(Tl) scintillator, image-intensifier, optical lens, and fast-frame-rate CCD camera. Data stream back to processing computers via firewire interfaces, and heavy use of graphics processing units (GPUs) ensures that each frame of data is processed in real time to extract the images of individual gamma-ray events. Details of the system design, imaging aperture fabrication methods, and preliminary projection images are presented. PMID:21218137

  7. Stereoscopic medical imaging collaboration system

    NASA Astrophysics Data System (ADS)

    Okuyama, Fumio; Hirano, Takenori; Nakabayasi, Yuusuke; Minoura, Hirohito; Tsuruoka, Shinji

    2007-02-01

    The computerization of the clinical record and the realization of the multimedia have brought improvement of the medical service in medical facilities. It is very important for the patients to obtain comprehensible informed consent. Therefore, the doctor should plainly explain the purpose and the content of the diagnoses and treatments for the patient. We propose and design a Telemedicine Imaging Collaboration System which presents a three dimensional medical image as X-ray CT, MRI with stereoscopic image by using virtual common information space and operating the image from a remote location. This system is composed of two personal computers, two 15 inches stereoscopic parallax barrier type LCD display (LL-151D, Sharp), one 1Gbps router and 1000base LAN cables. The software is composed of a DICOM format data transfer program, an operation program of the images, the communication program between two personal computers and a real time rendering program. Two identical images of 512×768 pixcels are displayed on two stereoscopic LCD display, and both images show an expansion, reduction by mouse operation. This system can offer a comprehensible three-dimensional image of the diseased part. Therefore, the doctor and the patient can easily understand it, depending on their needs.

  8. PCI bus content-addressable-memory (CAM) implementation on FPGA for pattern recognition/image retrieval in a distributed environment

    NASA Astrophysics Data System (ADS)

    Megherbi, Dalila B.; Yan, Yin; Tanmay, Parikh; Khoury, Jed; Woods, C. L.

    2004-11-01

    Recently surveillance and Automatic Target Recognition (ATR) applications are increasing as the cost of computing power needed to process the massive amount of information continues to fall. This computing power has been made possible partly by the latest advances in FPGAs and SOPCs. In particular, to design and implement state-of-the-Art electro-optical imaging systems to provide advanced surveillance capabilities, there is a need to integrate several technologies (e.g. telescope, precise optics, cameras, image/compute vision algorithms, which can be geographically distributed or sharing distributed resources) into a programmable system and DSP systems. Additionally, pattern recognition techniques and fast information retrieval, are often important components of intelligent systems. The aim of this work is using embedded FPGA as a fast, configurable and synthesizable search engine in fast image pattern recognition/retrieval in a distributed hardware/software co-design environment. In particular, we propose and show a low cost Content Addressable Memory (CAM)-based distributed embedded FPGA hardware architecture solution with real time recognition capabilities and computing for pattern look-up, pattern recognition, and image retrieval. We show how the distributed CAM-based architecture offers a performance advantage of an order-of-magnitude over RAM-based architecture (Random Access Memory) search for implementing high speed pattern recognition for image retrieval. The methods of designing, implementing, and analyzing the proposed CAM based embedded architecture are described here. Other SOPC solutions/design issues are covered. Finally, experimental results, hardware verification, and performance evaluations using both the Xilinx Virtex-II and the Altera Apex20k are provided to show the potential and power of the proposed method for low cost reconfigurable fast image pattern recognition/retrieval at the hardware/software co-design level.

  9. System Description and First Application of an FPGA-Based Simultaneous Multi-Frequency Electrical Impedance Tomography

    PubMed Central

    Aguiar Santos, Susana; Robens, Anne; Boehm, Anna; Leonhardt, Steffen; Teichmann, Daniel

    2016-01-01

    A new prototype of a multi-frequency electrical impedance tomography system is presented. The system uses a field-programmable gate array as a main controller and is configured to measure at different frequencies simultaneously through a composite waveform. Both real and imaginary components of the data are computed for each frequency and sent to the personal computer over an ethernet connection, where both time-difference imaging and frequency-difference imaging are reconstructed and visualized. The system has been tested for both time-difference and frequency-difference imaging for diverse sets of frequency pairs in a resistive/capacitive test unit and in self-experiments. To our knowledge, this is the first work that shows preliminary frequency-difference images of in-vivo experiments. Results of time-difference imaging were compared with simulation results and shown that the new prototype performs well at all frequencies in the tested range of 60 kHz–960 kHz. For frequency-difference images, further development of algorithms and an improved normalization process is required to correctly reconstruct and interpreted the resulting images. PMID:27463715

  10. Requirements for benchmarking personal image retrieval systems

    NASA Astrophysics Data System (ADS)

    Bouguet, Jean-Yves; Dulong, Carole; Kozintsev, Igor; Wu, Yi

    2006-01-01

    It is now common to have accumulated tens of thousands of personal ictures. Efficient access to that many pictures can only be done with a robust image retrieval system. This application is of high interest to Intel processor architects. It is highly compute intensive, and could motivate end users to upgrade their personal computers to the next generations of processors. A key question is how to assess the robustness of a personal image retrieval system. Personal image databases are very different from digital libraries that have been used by many Content Based Image Retrieval Systems.1 For example a personal image database has a lot of pictures of people, but a small set of different people typically family, relatives, and friends. Pictures are taken in a limited set of places like home, work, school, and vacation destination. The most frequent queries are searched for people, and for places. These attributes, and many others affect how a personal image retrieval system should be benchmarked, and benchmarks need to be different from existing ones based on art images, or medical images for examples. The attributes of the data set do not change the list of components needed for the benchmarking of such systems as specified in2: - data sets - query tasks - ground truth - evaluation measures - benchmarking events. This paper proposed a way to build these components to be representative of personal image databases, and of the corresponding usage models.

  11. Integrated command, control, communication and computation system design study. Summary of tasks performed

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A summary of tasks performed on an integrated command, control, communication, and computation system design study is given. The Tracking and Data Relay Satellite System command and control system study, an automated real-time operations study, and image processing work are discussed.

  12. In vivo rat deep brain imaging using photoacoustic computed tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lin, Li; Li, Lei; Zhu, Liren; Hu, Peng; Wang, Lihong V.

    2017-03-01

    The brain has been likened to a great stretch of unknown territory consisting of a number of unexplored continents. Small animal brain imaging plays an important role charting that territory. By using 1064 nm illumination from the side, we imaged the full coronal depth of rat brains in vivo. The experiment was performed using a real-time full-ring-array photoacoustic computed tomography (PACT) imaging system, which achieved an imaging depth of 11 mm and a 100 μm radial resolution. Because of the fast imaging speed of the full-ring-array PACT system, no animal motion artifact was induced. The frame rate of the system was limited by the laser repetition rate (50 Hz). In addition to anatomical imaging of the blood vessels in the brain, we continuously monitored correlations between the two brain hemispheres in one of the coronal planes. The resting states in the coronal plane were measured before and after stroke ligation surgery at a neck artery.

  13. A Computational Observer For Performing Contrast-Detail Analysis Of Ultrasound Images

    NASA Astrophysics Data System (ADS)

    Lopez, H.; Loew, M. H.

    1988-06-01

    Contrast-Detail (C/D) analysis allows the quantitative determination of an imaging system's ability to display a range of varying-size targets as a function of contrast. Using this technique, a contrast-detail plot is obtained which can, in theory, be used to compare image quality from one imaging system to another. The C/D plot, however, is usually obtained by using data from human observer readings. We have shown earlier(7) that the performance of human observers in the task of threshold detection of simulated lesions embedded in random ultrasound noise is highly inaccurate and non-reproducible for untrained observers. We present an objective, computational method for the determination of the C/D curve for ultrasound images. This method utilizes digital images of the C/D phantom developed at CDRH, and lesion-detection algorithms that simulate the Bayesian approach using the likelihood function for an ideal observer. We present the results of this method, and discuss the relationship to the human observer and to the comparability of image quality between systems.

  14. Parallel implementation and evaluation of motion estimation system algorithms on a distributed memory multiprocessor using knowledge based mappings

    NASA Technical Reports Server (NTRS)

    Choudhary, Alok Nidhi; Leung, Mun K.; Huang, Thomas S.; Patel, Janak H.

    1989-01-01

    Several techniques to perform static and dynamic load balancing techniques for vision systems are presented. These techniques are novel in the sense that they capture the computational requirements of a task by examining the data when it is produced. Furthermore, they can be applied to many vision systems because many algorithms in different systems are either the same, or have similar computational characteristics. These techniques are evaluated by applying them on a parallel implementation of the algorithms in a motion estimation system on a hypercube multiprocessor system. The motion estimation system consists of the following steps: (1) extraction of features; (2) stereo match of images in one time instant; (3) time match of images from different time instants; (4) stereo match to compute final unambiguous points; and (5) computation of motion parameters. It is shown that the performance gains when these data decomposition and load balancing techniques are used are significant and the overhead of using these techniques is minimal.

  15. User's manual for SEDCALC, a computer program for computation of suspended-sediment discharge

    USGS Publications Warehouse

    Koltun, G.F.; Gray, John R.; McElhone, T.J.

    1994-01-01

    Sediment-Record Calculations (SEDCALC), a menu-driven set of interactive computer programs, was developed to facilitate computation of suspended-sediment records. The programs comprising SEDCALC were developed independently in several District offices of the U.S. Geological Survey (USGS) to minimize the intensive labor associated with various aspects of sediment-record computations. SEDCALC operates on suspended-sediment-concentration data stored in American Standard Code for Information Interchange (ASCII) files in a predefined card-image format. Program options within SEDCALC can be used to assist in creating and editing the card-image files, as well as to reformat card-image files to and from formats used by the USGS Water-Quality System. SEDCALC provides options for creating card-image files containing time series of equal-interval suspended-sediment concentrations from 1. digitized suspended-sediment-concentration traces, 2. linear interpolation between log-transformed instantaneous suspended-sediment-concentration data stored at unequal time intervals, and 3. nonlinear interpolation between log-transformed instantaneous suspended-sediment-concentration data stored at unequal time intervals. Suspended-sediment discharge can be computed from the streamflow and suspended-sediment-concentration data or by application of transport relations derived by regressing log-transformed instantaneous streamflows on log-transformed instantaneous suspended-sediment concentrations or discharges. The computed suspended-sediment discharge data are stored in card-image files that can be either directly imported to the USGS Automated Data Processing System or used to generate plots by means of other SEDCALC options.

  16. Lytro camera technology: theory, algorithms, performance analysis

    NASA Astrophysics Data System (ADS)

    Georgiev, Todor; Yu, Zhan; Lumsdaine, Andrew; Goma, Sergio

    2013-03-01

    The Lytro camera is the first implementation of a plenoptic camera for the consumer market. We consider it a successful example of the miniaturization aided by the increase in computational power characterizing mobile computational photography. The plenoptic camera approach to radiance capture uses a microlens array as an imaging system focused on the focal plane of the main camera lens. This paper analyzes the performance of Lytro camera from a system level perspective, considering the Lytro camera as a black box, and uses our interpretation of Lytro image data saved by the camera. We present our findings based on our interpretation of Lytro camera file structure, image calibration and image rendering; in this context, artifacts and final image resolution are discussed.

  17. Optimization of an interactive distributive computer network

    NASA Technical Reports Server (NTRS)

    Frederick, V.

    1985-01-01

    The activities under a cooperative agreement for the development of a computer network are briefly summarized. Research activities covered are: computer operating systems optimization and integration; software development and implementation of the IRIS (Infrared Imaging of Shuttle) Experiment; and software design, development, and implementation of the APS (Aerosol Particle System) Experiment.

  18. Implementation of Multispectral Image Classification on a Remote Adaptive Computer

    NASA Technical Reports Server (NTRS)

    Figueiredo, Marco A.; Gloster, Clay S.; Stephens, Mark; Graves, Corey A.; Nakkar, Mouna

    1999-01-01

    As the demand for higher performance computers for the processing of remote sensing science algorithms increases, the need to investigate new computing paradigms its justified. Field Programmable Gate Arrays enable the implementation of algorithms at the hardware gate level, leading to orders of m a,gnitude performance increase over microprocessor based systems. The automatic classification of spaceborne multispectral images is an example of a computation intensive application, that, can benefit from implementation on an FPGA - based custom computing machine (adaptive or reconfigurable computer). A probabilistic neural network is used here to classify pixels of of a multispectral LANDSAT-2 image. The implementation described utilizes Java client/server application programs to access the adaptive computer from a remote site. Results verify that a remote hardware version of the algorithm (implemented on an adaptive computer) is significantly faster than a local software version of the same algorithm implemented on a typical general - purpose computer).

  19. A web-based system for neural network based classification in temporomandibular joint osteoarthritis.

    PubMed

    de Dumast, Priscille; Mirabel, Clément; Cevidanes, Lucia; Ruellas, Antonio; Yatabe, Marilia; Ioshida, Marcos; Ribera, Nina Tubau; Michoud, Loic; Gomes, Liliane; Huang, Chao; Zhu, Hongtu; Muniz, Luciana; Shoukri, Brandon; Paniagua, Beatriz; Styner, Martin; Pieper, Steve; Budin, Francois; Vimort, Jean-Baptiste; Pascal, Laura; Prieto, Juan Carlos

    2018-07-01

    The purpose of this study is to describe the methodological innovations of a web-based system for storage, integration and computation of biomedical data, using a training imaging dataset to remotely compute a deep neural network classifier of temporomandibular joint osteoarthritis (TMJOA). This study imaging dataset consisted of three-dimensional (3D) surface meshes of mandibular condyles constructed from cone beam computed tomography (CBCT) scans. The training dataset consisted of 259 condyles, 105 from control subjects and 154 from patients with diagnosis of TMJ OA. For the image analysis classification, 34 right and left condyles from 17 patients (39.9 ± 11.7 years), who experienced signs and symptoms of the disease for less than 5 years, were included as the testing dataset. For the integrative statistical model of clinical, biological and imaging markers, the sample consisted of the same 17 test OA subjects and 17 age and sex matched control subjects (39.4 ± 15.4 years), who did not show any sign or symptom of OA. For these 34 subjects, a standardized clinical questionnaire, blood and saliva samples were also collected. The technological methodologies in this study include a deep neural network classifier of 3D condylar morphology (ShapeVariationAnalyzer, SVA), and a flexible web-based system for data storage, computation and integration (DSCI) of high dimensional imaging, clinical, and biological data. The DSCI system trained and tested the neural network, indicating 5 stages of structural degenerative changes in condylar morphology in the TMJ with 91% close agreement between the clinician consensus and the SVA classifier. The DSCI remotely ran with a novel application of a statistical analysis, the Multivariate Functional Shape Data Analysis, that computed high dimensional correlations between shape 3D coordinates, clinical pain levels and levels of biological markers, and then graphically displayed the computation results. The findings of this study demonstrate a comprehensive phenotypic characterization of TMJ health and disease at clinical, imaging and biological levels, using novel flexible and versatile open-source tools for a web-based system that provides advanced shape statistical analysis and a neural network based classification of temporomandibular joint osteoarthritis. Published by Elsevier Ltd.

  20. Comparison of existing digital image analysis systems for the analysis of Thematic Mapper data

    NASA Technical Reports Server (NTRS)

    Likens, W. C.; Wrigley, R. C.

    1984-01-01

    Most existing image analysis systems were designed with the Landsat Multi-Spectral Scanner in mind, leaving open the question of whether or not these systems could adequately process Thematic Mapper data. In this report, both hardware and software systems have been evaluated for compatibility with TM data. Lack of spectral analysis capability was not found to be a problem, though techniques for spatial filtering and texture varied. Computer processing speed and data storage of currently existing mini-computer based systems may be less than adequate. Upgrading to more powerful hardware may be required for many TM applications.

  1. Facial expression system on video using widrow hoff

    NASA Astrophysics Data System (ADS)

    Jannah, M.; Zarlis, M.; Mawengkang, H.

    2018-03-01

    Facial expressions recognition is one of interesting research. This research contains human feeling to computer application Such as the interaction between human and computer, data compression, facial animation and facial detection from the video. The purpose of this research is to create facial expression system that captures image from the video camera. The system in this research uses Widrow-Hoff learning method in training and testing image with Adaptive Linear Neuron (ADALINE) approach. The system performance is evaluated by two parameters, detection rate and false positive rate. The system accuracy depends on good technique and face position that trained and tested.

  2. Document Indexing for Image-Based Optical Information Systems.

    ERIC Educational Resources Information Center

    Thiel, Thomas J.; And Others

    1991-01-01

    Discussion of image-based information retrieval systems focuses on indexing. Highlights include computerized information retrieval; multimedia optical systems; optical mass storage and personal computers; and a case study that describes an optical disk system which was developed to preserve, access, and disseminate military documents. (19…

  3. The Feasibility of Classifying Breast Masses Using a Computer-Assisted Diagnosis (CAD) System Based on Ultrasound Elastography and BI-RADS Lexicon.

    PubMed

    Fleury, Eduardo F C; Gianini, Ana Claudia; Marcomini, Karem; Oliveira, Vilmar

    2018-01-01

    To determine the applicability of a computer-aided diagnostic system strain elastography system for the classification of breast masses diagnosed by ultrasound and scored using the criteria proposed by the breast imaging and reporting data system ultrasound lexicon and to determine the diagnostic accuracy and interobserver variability. This prospective study was conducted between March 1, 2016, and May 30, 2016. A total of 83 breast masses subjected to percutaneous biopsy were included. Ultrasound elastography images before biopsy were interpreted by 3 radiologists with and without the aid of computer-aided diagnostic system for strain elastography. The parameters evaluated by each radiologist results were sensitivity, specificity, and diagnostic accuracy, with and without computer-aided diagnostic system for strain elastography. Interobserver variability was assessed using a weighted κ test and an intraclass correlation coefficient. The areas under the receiver operating characteristic curves were also calculated. The areas under the receiver operating characteristic curve were 0.835, 0.801, and 0.765 for readers 1, 2, and 3, respectively, without computer-aided diagnostic system for strain elastography, and 0.900, 0.926, and 0.868, respectively, with computer-aided diagnostic system for strain elastography. The intraclass correlation coefficient between the 3 readers was 0.6713 without computer-aided diagnostic system for strain elastography and 0.811 with computer-aided diagnostic system for strain elastography. The proposed computer-aided diagnostic system for strain elastography system has the potential to improve the diagnostic performance of radiologists in breast examination using ultrasound associated with elastography.

  4. Image detection and compression for memory efficient system analysis

    NASA Astrophysics Data System (ADS)

    Bayraktar, Mustafa

    2015-02-01

    The advances in digital signal processing have been progressing towards efficient use of memory and processing. Both of these factors can be utilized efficiently by using feasible techniques of image storage by computing the minimum information of image which will enhance computation in later processes. Scale Invariant Feature Transform (SIFT) can be utilized to estimate and retrieve of an image. In computer vision, SIFT can be implemented to recognize the image by comparing its key features from SIFT saved key point descriptors. The main advantage of SIFT is that it doesn't only remove the redundant information from an image but also reduces the key points by matching their orientation and adding them together in different windows of image [1]. Another key property of this approach is that it works on highly contrasted images more efficiently because it`s design is based on collecting key points from the contrast shades of image.

  5. Montage Version 3.0

    NASA Technical Reports Server (NTRS)

    Jacob, Joseph; Katz, Daniel; Prince, Thomas; Berriman, Graham; Good, John; Laity, Anastasia

    2006-01-01

    The final version (3.0) of the Montage software has been released. To recapitulate from previous NASA Tech Briefs articles about Montage: This software generates custom, science-grade mosaics of astronomical images on demand from input files that comply with the Flexible Image Transport System (FITS) standard and contain image data registered on projections that comply with the World Coordinate System (WCS) standards. This software can be executed on single-processor computers, multi-processor computers, and such networks of geographically dispersed computers as the National Science Foundation s TeraGrid or NASA s Information Power Grid. The primary advantage of running Montage in a grid environment is that computations can be done on a remote supercomputer for efficiency. Multiple computers at different sites can be used for different parts of a computation a significant advantage in cases of computations for large mosaics that demand more processor time than is available at any one site. Version 3.0 incorporates several improvements over prior versions. The most significant improvement is that this version is accessible to scientists located anywhere, through operational Web services that provide access to data from several large astronomical surveys and construct mosaics on either local workstations or remote computational grids as needed.

  6. Expert diagnosis of plus disease in retinopathy of prematurity from computer-based image analysis

    PubMed Central

    Campbell, J. Peter; Ataer-Cansizoglu, Esra; Bolon-Canedo, Veronica; Bozkurt, Alican; Erdogmus, Deniz; Kalpathy-Cramer, Jayashree; Patel, Samir N.; Reynolds, James D.; Horowitz, Jason; Hutcheson, Kelly; Shapiro, Michael; Repka, Michael X.; Ferrone, Phillip; Drenser, Kimberly; Martinez-Castellanos, Maria Ana; Ostmo, Susan; Jonas, Karyn; Chan, R.V. Paul; Chiang, Michael F.

    2016-01-01

    Importance Published definitions of “plus disease” in retinopathy of prematurity (ROP) reference arterial tortuosity and venous dilation within the posterior pole based on a standard published photograph. One possible explanation for limited inter-expert reliability for plus disease diagnosis is that experts deviate from the published definitions. Objective To identify vascular features used by experts for diagnosis of plus disease through quantitative image analysis. Design We developed a computer-based image analysis system (Imaging and Informatics in ROP, i-ROP), and trained the system to classify images compared to a reference standard diagnosis (RSD). System performance was analyzed as a function of the field of view (circular crops 1–6 disc diameters [DD] radius) and vessel subtype (arteries only, veins only, or all vessels). The RSD was compared to the majority diagnosis of experts. Setting Routine ROP screening in neonatal intensive care units at 8 academic institutions. Participants A set of 77 digital fundus images was used to develop the i-ROP system. A subset of 73 images was independently classified by 11 ROP experts for validation. Main Outcome Measures The primary outcome measure was the percentage accuracy of i-ROP system classification of plus disease with the RSD as a function of field-of-view and vessel type. Secondary outcome measures included the accuracy of the 11 experts compared to the RSD. Results Accuracy of plus disease diagnosis by the i-ROP computer based system was highest (95%, confidence interval [CI] 94 – 95%) when it incorporated vascular tortuosity from both arteries and veins, and with the widest field of view (6 disc diameter radius). Accuracy was ≤90% when using only arterial tortuosity (P<0.001), and ≤85% using a 2–3 disc diameter view similar to the standard published photograph (p<0.001). Diagnostic accuracy of the i-ROP system (95%) was comparable to that of 11 expert clinicians (79–99%). Conclusions and Relevance ROP experts appear to consider findings from beyond the posterior retina when diagnosing plus disease, and consider tortuosity of both arteries and veins, in contrast to published definitions. It is feasible for a computer-based image analysis system to perform comparably to ROP experts, using manually segmented images. PMID:27077667

  7. A dual-channel fusion system of visual and infrared images based on color transfer

    NASA Astrophysics Data System (ADS)

    Pei, Chuang; Jiang, Xiao-yu; Zhang, Peng-wei; Liang, Hao-cong

    2013-09-01

    A dual-channel fusion system of visual and infrared images based on color transfer The increasing availability and deployment of imaging sensors operating in multiple spectrums has led to a large research effort in image fusion, resulting in a plethora of pixel-level image fusion algorithms. However, most of these algorithms have gray or false color fusion results which are not adapt to human vision. Transfer color from a day-time reference image to get natural color fusion result is an effective way to solve this problem, but the computation cost of color transfer is expensive and can't meet the request of real-time image processing. We developed a dual-channel infrared and visual images fusion system based on TMS320DM642 digital signal processing chip. The system is divided into image acquisition and registration unit, image fusion processing unit, system control unit and image fusion result out-put unit. The image registration of dual-channel images is realized by combining hardware and software methods in the system. False color image fusion algorithm in RGB color space is used to get R-G fused image, then the system chooses a reference image to transfer color to the fusion result. A color lookup table based on statistical properties of images is proposed to solve the complexity computation problem in color transfer. The mapping calculation between the standard lookup table and the improved color lookup table is simple and only once for a fixed scene. The real-time fusion and natural colorization of infrared and visual images are realized by this system. The experimental result shows that the color-transferred images have a natural color perception to human eyes, and can highlight the targets effectively with clear background details. Human observers with this system will be able to interpret the image better and faster, thereby improving situational awareness and reducing target detection time.

  8. Facilitating medical information search using Google Glass connected to a content-based medical image retrieval system.

    PubMed

    Widmer, Antoine; Schaer, Roger; Markonis, Dimitrios; Muller, Henning

    2014-01-01

    Wearable computing devices are starting to change the way users interact with computers and the Internet. Among them, Google Glass includes a small screen located in front of the right eye, a camera filming in front of the user and a small computing unit. Google Glass has the advantage to provide online services while allowing the user to perform tasks with his/her hands. These augmented glasses uncover many useful applications, also in the medical domain. For example, Google Glass can easily provide video conference between medical doctors to discuss a live case. Using these glasses can also facilitate medical information search by allowing the access of a large amount of annotated medical cases during a consultation in a non-disruptive fashion for medical staff. In this paper, we developed a Google Glass application able to take a photo and send it to a medical image retrieval system along with keywords in order to retrieve similar cases. As a preliminary assessment of the usability of the application, we tested the application under three conditions (images of the skin; printed CT scans and MRI images; and CT and MRI images acquired directly from an LCD screen) to explore whether using Google Glass affects the accuracy of the results returned by the medical image retrieval system. The preliminary results show that despite minor problems due to the relative stability of the Google Glass, images can be sent to and processed by the medical image retrieval system and similar images are returned to the user, potentially helping in the decision making process.

  9. An Intelligent Systems Approach to Automated Object Recognition: A Preliminary Study

    USGS Publications Warehouse

    Maddox, Brian G.; Swadley, Casey L.

    2002-01-01

    Attempts at fully automated object recognition systems have met with varying levels of success over the years. However, none of the systems have achieved high enough accuracy rates to be run unattended. One of the reasons for this may be that they are designed from the computer's point of view and rely mainly on image-processing methods. A better solution to this problem may be to make use of modern advances in computational intelligence and distributed processing to try to mimic how the human brain is thought to recognize objects. As humans combine cognitive processes with detection techniques, such a system would combine traditional image-processing techniques with computer-based intelligence to determine the identity of various objects in a scene.

  10. Segmenting root systems in xray computed tomography images using level sets

    USDA-ARS?s Scientific Manuscript database

    The segmentation of plant roots from soil and other growing mediums in xray computed tomography images is needed to effectively study the shapes of roots without excavation. However, segmentation is a challenging problem in this context because the root and non-root regions share similar features. ...

  11. Edge detection based on computational ghost imaging with structured illuminations

    NASA Astrophysics Data System (ADS)

    Yuan, Sheng; Xiang, Dong; Liu, Xuemei; Zhou, Xin; Bing, Pibin

    2018-03-01

    Edge detection is one of the most important tools to recognize the features of an object. In this paper, we propose an optical edge detection method based on computational ghost imaging (CGI) with structured illuminations which are generated by an interference system. The structured intensity patterns are designed to make the edge of an object be directly imaged from detected data in CGI. This edge detection method can extract the boundaries for both binary and grayscale objects in any direction at one time. We also numerically test the influence of distance deviations in the interference system on edge extraction, i.e., the tolerance of the optical edge detection system to distance deviation. Hopefully, it may provide a guideline for scholars to build an experimental system.

  12. Computation of glint, glare, and solar irradiance distribution

    DOEpatents

    Ho, Clifford Kuofei; Khalsa, Siri Sahib Singh

    2017-08-01

    Described herein are technologies pertaining to computing the solar irradiance distribution on a surface of a receiver in a concentrating solar power system or glint/glare emitted from a reflective entity. At least one camera captures images of the Sun and the entity of interest, wherein the images have pluralities of pixels having respective pluralities of intensity values. Based upon the intensity values of the pixels in the respective images, the solar irradiance distribution on the surface of the entity or glint/glare corresponding to the entity is computed.

  13. Computation of glint, glare, and solar irradiance distribution

    DOEpatents

    Ho, Clifford Kuofei; Khalsa, Siri Sahib Singh

    2015-08-11

    Described herein are technologies pertaining to computing the solar irradiance distribution on a surface of a receiver in a concentrating solar power system or glint/glare emitted from a reflective entity. At least one camera captures images of the Sun and the entity of interest, wherein the images have pluralities of pixels having respective pluralities of intensity values. Based upon the intensity values of the pixels in the respective images, the solar irradiance distribution on the surface of the entity or glint/glare corresponding to the entity is computed.

  14. Task-based data-acquisition optimization for sparse image reconstruction systems

    NASA Astrophysics Data System (ADS)

    Chen, Yujia; Lou, Yang; Kupinski, Matthew A.; Anastasio, Mark A.

    2017-03-01

    Conventional wisdom dictates that imaging hardware should be optimized by use of an ideal observer (IO) that exploits full statistical knowledge of the class of objects to be imaged, without consideration of the reconstruction method to be employed. However, accurate and tractable models of the complete object statistics are often difficult to determine in practice. Moreover, in imaging systems that employ compressive sensing concepts, imaging hardware and (sparse) image reconstruction are innately coupled technologies. We have previously proposed a sparsity-driven ideal observer (SDIO) that can be employed to optimize hardware by use of a stochastic object model that describes object sparsity. The SDIO and sparse reconstruction method can therefore be "matched" in the sense that they both utilize the same statistical information regarding the class of objects to be imaged. To efficiently compute SDIO performance, the posterior distribution is estimated by use of computational tools developed recently for variational Bayesian inference. Subsequently, the SDIO test statistic can be computed semi-analytically. The advantages of employing the SDIO instead of a Hotelling observer are systematically demonstrated in case studies in which magnetic resonance imaging (MRI) data acquisition schemes are optimized for signal detection tasks.

  15. Learning-based stochastic object models for use in optimizing imaging systems

    NASA Astrophysics Data System (ADS)

    Dolly, Steven R.; Anastasio, Mark A.; Yu, Lifeng; Li, Hua

    2017-03-01

    It is widely known that the optimization of imaging systems based on objective, or task-based, measures of image quality via computer-simulation requires use of a stochastic object model (SOM). However, the development of computationally tractable SOMs that can accurately model the statistical variations in anatomy within a specified ensemble of patients remains a challenging task. Because they are established by use of image data corresponding a single patient, previously reported numerical anatomical models lack of the ability to accurately model inter- patient variations in anatomy. In certain applications, however, databases of high-quality volumetric images are available that can facilitate this task. In this work, a novel and tractable methodology for learning a SOM from a set of volumetric training images is developed. The proposed method is based upon geometric attribute distribution (GAD) models, which characterize the inter-structural centroid variations and the intra-structural shape variations of each individual anatomical structure. The GAD models are scalable and deformable, and constrained by their respective principal attribute variations learned from training data. By use of the GAD models, random organ shapes and positions can be generated and integrated to form an anatomical phantom. The randomness in organ shape and position will reflect the variability of anatomy present in the training data. To demonstrate the methodology, a SOM corresponding to the pelvis of an adult male was computed and a corresponding ensemble of phantoms was created. Additionally, computer-simulated X-ray projection images corresponding to the phantoms were computed, from which tomographic images were reconstructed.

  16. A low-cost vector processor boosting compute-intensive image processing operations

    NASA Technical Reports Server (NTRS)

    Adorf, Hans-Martin

    1992-01-01

    Low-cost vector processing (VP) is within reach of everyone seriously engaged in scientific computing. The advent of affordable add-on VP-boards for standard workstations complemented by mathematical/statistical libraries is beginning to impact compute-intensive tasks such as image processing. A case in point in the restoration of distorted images from the Hubble Space Telescope. A low-cost implementation is presented of the standard Tarasko-Richardson-Lucy restoration algorithm on an Intel i860-based VP-board which is seamlessly interfaced to a commercial, interactive image processing system. First experience is reported (including some benchmarks for standalone FFT's) and some conclusions are drawn.

  17. RenderMan design principles

    NASA Technical Reports Server (NTRS)

    Apodaca, Tony; Porter, Tom

    1989-01-01

    The two worlds of interactive graphics and realistic graphics have remained separate. Fast graphics hardware runs simple algorithms and generates simple looking images. Photorealistic image synthesis software runs slowly on large expensive computers. The time has come for these two branches of computer graphics to merge. The speed and expense of graphics hardware is no longer the barrier to the wide acceptance of photorealism. There is every reason to believe that high quality image synthesis will become a standard capability of every graphics machine, from superworkstation to personal computer. The significant barrier has been the lack of a common language, an agreed-upon set of terms and conditions, for 3-D modeling systems to talk to 3-D rendering systems for computing an accurate rendition of that scene. Pixar has introduced RenderMan to serve as that common language. RenderMan, specifically the extensibility it offers in shading calculations, is discussed.

  18. Digital retrospective motion-mode display and processing of electron beam cine-computed tomography and other cross-sectional cardiac imaging techniques

    NASA Astrophysics Data System (ADS)

    Reed, Judd E.; Rumberger, John A.; Buithieu, Jean; Behrenbeck, Thomas; Breen, Jerome F.; Sheedy, Patrick F., II

    1995-05-01

    Electron beam computed tomography is unparalleled in its ability to consistently produce high quality dynamic images of the human heart. Its use in quantification of left ventricular dynamics is well established in both clinical and research applications. However, the image analysis tools supplied with the scanners offer a limited number of analysis options. They are based on embedded computer systems which have not been significantly upgraded since the scanner was introduced over a decade ago in spite of the explosive improvements in available computer power which have occured during this period. To address these shortcomings, a workstation-based ventricular analysis system has been developed at our institution. This system, which has been in use for over five years, is based on current workstation technology and therefore has benefited from the periodic upgrades in processor performance available to these systems. The dynamic image segmentation component of this system is an interactively supervised, semi-automatic surface identification and tracking system. It characterizes the endocardial and epicardial surfaces of the left ventricle as two concentric 4D hyper-space polyhedrons. Each of these polyhedrons have nearly ten thousand vertices which are deposited into a relational database. The right ventricle is also processed in a similar manner. This database is queried by other custom components which extract ventricular function parameters such as regional ejection fraction and wall stress. The interactive tool which supervises dynamic image segmentation has been enhanced with a temporal domain display. The operator interactively chooses the spatial location of the endpoints of a line segment while the corresponding space/time image is displayed. These images, with content resembling M-Mode echocardiography, benefit form electron beam computed tomography's high spatial and contrast resolution. The segmented surfaces are displayed along with the imagery. These displays give the operator valuable feedback pertaining to the contiguity of the extracted surfaces. As with M-Mode echocardiography, the velocity of moving structures can be easily visualized and measured. However, many views inaccessible to standard transthoracic echocardiography are easily generated. These features have augmented the interpretability of cine electron beam computed tomography and have prompted the recent cloning of this system into an 'omni-directional M-Mode display' system for use in digital post-processing of echocardiographic parasternal short axis tomograms. This enhances the functional assessment in orthogonal views of the left ventricle, accounting for shape changes particularly in the asymmetric post-infarction ventricle. Conclusions: A new tool has been developed for analysis and visualization of cine electron beam computed tomography. It has been found to be very useful in verifying the consistency of myocardial surface definition with a semi-automated segmentation tool. By drawing on M-Mode echocardiography experience, electron beam tomography's interpretability has been enhanced. Use of this feature, in conjunction with the existing image processing tools, will enhance the presentations of data on regional systolic and diastolic functions to clinicians in a format that is familiar to most cardiologists. Additionally, this tool reinforces the advantages of electron beam tomography as a single imaging modality for the assessment of left and right ventricular size, shape, and regional functions.

  19. What can we learn from in-soil imaging of a live plant: X-ray Computed Tomography and 3D numerical simulation of root-soil system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaofan; Varga, Tamas; Liu, Chongxuan

    Plant roots play a critical role in plant-soil-microbe interactions that occur in the rhizosphere. X-ray Computed Tomography (XCT) has been proven to be an effective tool for non-invasive root imaging and analysis. A combination of XCT, open-source software, and in-house developed code was used to non-invasively image a prairie dropseed (Sporobolus heterolepis) specimen, segment the root data to obtain a 3D image of the root structure, and extract quantitative information from the 3D data, respectively. Based on the explicitly-resolved root structure, pore-scale computational fluid dynamics (CFD) simulations were applied to numerically investigate the root-soil-groundwater system. The plant root conductivity, soilmore » hydraulic conductivity and transpiration rate were shown to control the groundwater distribution. Furthermore, the coupled imaging-modeling approach demonstrates a realistic platform to investigate rhizosphere flow processes and would be feasible to provide useful information linked to upscaled models.« less

  20. What can we learn from in-soil imaging of a live plant: X-ray Computed Tomography and 3D numerical simulation of root-soil system

    DOE PAGES

    Yang, Xiaofan; Varga, Tamas; Liu, Chongxuan; ...

    2017-05-04

    Plant roots play a critical role in plant-soil-microbe interactions that occur in the rhizosphere. X-ray Computed Tomography (XCT) has been proven to be an effective tool for non-invasive root imaging and analysis. A combination of XCT, open-source software, and in-house developed code was used to non-invasively image a prairie dropseed (Sporobolus heterolepis) specimen, segment the root data to obtain a 3D image of the root structure, and extract quantitative information from the 3D data, respectively. Based on the explicitly-resolved root structure, pore-scale computational fluid dynamics (CFD) simulations were applied to numerically investigate the root-soil-groundwater system. The plant root conductivity, soilmore » hydraulic conductivity and transpiration rate were shown to control the groundwater distribution. Furthermore, the coupled imaging-modeling approach demonstrates a realistic platform to investigate rhizosphere flow processes and would be feasible to provide useful information linked to upscaled models.« less

  1. Real time imaging and infrared background scene analysis using the Naval Postgraduate School infrared search and target designation (NPS-IRSTD) system

    NASA Astrophysics Data System (ADS)

    Bernier, Jean D.

    1991-09-01

    The imaging in real time of infrared background scenes with the Naval Postgraduate School Infrared Search and Target Designation (NPS-IRSTD) System was achieved through extensive software developments in protected mode assembly language on an Intel 80386 33 MHz computer. The new software processes the 512 by 480 pixel images directly in the extended memory area of the computer where the DT-2861 frame grabber memory buffers are mapped. Direct interfacing, through a JDR-PR10 prototype card, between the frame grabber and the host computer AT bus enables each load of the frame grabber memory buffers to be effected under software control. The protected mode assembly language program can refresh the display of a six degree pseudo-color sector in the scanner rotation within the two second period of the scanner. A study of the imaging properties of the NPS-IRSTD is presented with preliminary work on image analysis and contrast enhancement of infrared background scenes.

  2. Body-Based Gender Recognition Using Images from Visible and Thermal Cameras

    PubMed Central

    Nguyen, Dat Tien; Park, Kang Ryoung

    2016-01-01

    Gender information has many useful applications in computer vision systems, such as surveillance systems, counting the number of males and females in a shopping mall, accessing control systems in restricted areas, or any human-computer interaction system. In most previous studies, researchers attempted to recognize gender by using visible light images of the human face or body. However, shadow, illumination, and time of day greatly affect the performance of these methods. To overcome this problem, we propose a new gender recognition method based on the combination of visible light and thermal camera images of the human body. Experimental results, through various kinds of feature extraction and fusion methods, show that our approach is efficient for gender recognition through a comparison of recognition rates with conventional systems. PMID:26828487

  3. Body-Based Gender Recognition Using Images from Visible and Thermal Cameras.

    PubMed

    Nguyen, Dat Tien; Park, Kang Ryoung

    2016-01-27

    Gender information has many useful applications in computer vision systems, such as surveillance systems, counting the number of males and females in a shopping mall, accessing control systems in restricted areas, or any human-computer interaction system. In most previous studies, researchers attempted to recognize gender by using visible light images of the human face or body. However, shadow, illumination, and time of day greatly affect the performance of these methods. To overcome this problem, we propose a new gender recognition method based on the combination of visible light and thermal camera images of the human body. Experimental results, through various kinds of feature extraction and fusion methods, show that our approach is efficient for gender recognition through a comparison of recognition rates with conventional systems.

  4. Spatial Modulation Improves Performance in CTIS

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory H.; Wilson, Daniel W.; Johnson, William R.

    2009-01-01

    Suitably formulated spatial modulation of a scene imaged by a computed-tomography imaging spectrometer (CTIS) has been found to be useful as a means of improving the imaging performance of the CTIS. As used here, "spatial modulation" signifies the imposition of additional, artificial structure on a scene from within the CTIS optics. The basic principles of a CTIS were described in "Improvements in Computed- Tomography Imaging Spectrometry" (NPO-20561) NASA Tech Briefs, Vol. 24, No. 12 (December 2000), page 38 and "All-Reflective Computed-Tomography Imaging Spectrometers" (NPO-20836), NASA Tech Briefs, Vol. 26, No. 11 (November 2002), page 7a. To recapitulate: A CTIS offers capabilities for imaging a scene with spatial, spectral, and temporal resolution. The spectral disperser in a CTIS is a two-dimensional diffraction grating. It is positioned between two relay lenses (or on one of two relay mirrors) in a video imaging system. If the disperser were removed, the system would produce ordinary images of the scene in its field of view. In the presence of the grating, the image on the focal plane of the system contains both spectral and spatial information because the multiple diffraction orders of the grating give rise to multiple, spectrally dispersed images of the scene. By use of algorithms adapted from computed tomography, the image on the focal plane can be processed into an image cube a three-dimensional collection of data on the image intensity as a function of the two spatial dimensions (x and y) in the scene and of wavelength (lambda). Thus, both spectrally and spatially resolved information on the scene at a given instant of time can be obtained, without scanning, from a single snapshot; this is what makes the CTIS such a potentially powerful tool for spatially, spectrally, and temporally resolved imaging. A CTIS performs poorly in imaging some types of scenes in particular, scenes that contain little spatial or spectral variation. The computed spectra of such scenes tend to approximate correct values to within acceptably small errors near the edges of the field of view but to be poor approximations away from the edges. The additional structure imposed on a scene according to the present method enables the CTIS algorithms to reconstruct acceptable approximations of the spectral data throughout the scene.

  5. Accuracy and Precision of Radioactivity Quantification in Nuclear Medicine Images

    PubMed Central

    Frey, Eric C.; Humm, John L.; Ljungberg, Michael

    2012-01-01

    The ability to reliably quantify activity in nuclear medicine has a number of increasingly important applications. Dosimetry for targeted therapy treatment planning or for approval of new imaging agents requires accurate estimation of the activity in organs, tumors, or voxels at several imaging time points. Another important application is the use of quantitative metrics derived from images, such as the standard uptake value commonly used in positron emission tomography (PET), to diagnose and follow treatment of tumors. These measures require quantification of organ or tumor activities in nuclear medicine images. However, there are a number of physical, patient, and technical factors that limit the quantitative reliability of nuclear medicine images. There have been a large number of improvements in instrumentation, including the development of hybrid single-photon emission computed tomography/computed tomography and PET/computed tomography systems, and reconstruction methods, including the use of statistical iterative reconstruction methods, which have substantially improved the ability to obtain reliable quantitative information from planar, single-photon emission computed tomography, and PET images. PMID:22475429

  6. The multi-modal Australian ScienceS Imaging and Visualization Environment (MASSIVE) high performance computing infrastructure: applications in neuroscience and neuroinformatics research

    PubMed Central

    Goscinski, Wojtek J.; McIntosh, Paul; Felzmann, Ulrich; Maksimenko, Anton; Hall, Christopher J.; Gureyev, Timur; Thompson, Darren; Janke, Andrew; Galloway, Graham; Killeen, Neil E. B.; Raniga, Parnesh; Kaluza, Owen; Ng, Amanda; Poudel, Govinda; Barnes, David G.; Nguyen, Toan; Bonnington, Paul; Egan, Gary F.

    2014-01-01

    The Multi-modal Australian ScienceS Imaging and Visualization Environment (MASSIVE) is a national imaging and visualization facility established by Monash University, the Australian Synchrotron, the Commonwealth Scientific Industrial Research Organization (CSIRO), and the Victorian Partnership for Advanced Computing (VPAC), with funding from the National Computational Infrastructure and the Victorian Government. The MASSIVE facility provides hardware, software, and expertise to drive research in the biomedical sciences, particularly advanced brain imaging research using synchrotron x-ray and infrared imaging, functional and structural magnetic resonance imaging (MRI), x-ray computer tomography (CT), electron microscopy and optical microscopy. The development of MASSIVE has been based on best practice in system integration methodologies, frameworks, and architectures. The facility has: (i) integrated multiple different neuroimaging analysis software components, (ii) enabled cross-platform and cross-modality integration of neuroinformatics tools, and (iii) brought together neuroimaging databases and analysis workflows. MASSIVE is now operational as a nationally distributed and integrated facility for neuroinfomatics and brain imaging research. PMID:24734019

  7. Multimodal system for the planning and guidance of bronchoscopy

    NASA Astrophysics Data System (ADS)

    Higgins, William E.; Cheirsilp, Ronnarit; Zang, Xiaonan; Byrnes, Patrick

    2015-03-01

    Many technical innovations in multimodal radiologic imaging and bronchoscopy have emerged recently in the effort against lung cancer. Modern X-ray computed-tomography (CT) scanners provide three-dimensional (3D) high-resolution chest images, positron emission tomography (PET) scanners give complementary molecular imaging data, and new integrated PET/CT scanners combine the strengths of both modalities. State-of-the-art bronchoscopes permit minimally invasive tissue sampling, with vivid endobronchial video enabling navigation deep into the airway-tree periphery, while complementary endobronchial ultrasound (EBUS) reveals local views of anatomical structures outside the airways. In addition, image-guided intervention (IGI) systems have proven their utility for CT-based planning and guidance of bronchoscopy. Unfortunately, no IGI system exists that integrates all sources effectively through the complete lung-cancer staging work flow. This paper presents a prototype of a computer-based multimodal IGI system that strives to fill this need. The system combines a wide range of automatic and semi-automatic image-processing tools for multimodal data fusion and procedure planning. It also provides a flexible graphical user interface for follow-on guidance of bronchoscopy/EBUS. Human-study results demonstrate the system's potential.

  8. Computer graphics testbed to simulate and test vision systems for space applications

    NASA Technical Reports Server (NTRS)

    Cheatham, John B.; Wu, Chris K.; Lin, Y. H.

    1991-01-01

    A system was developed for displaying computer graphics images of space objects and the use of the system was demonstrated as a testbed for evaluating vision systems for space applications. In order to evaluate vision systems, it is desirable to be able to control all factors involved in creating the images used for processing by the vision system. Considerable time and expense is involved in building accurate physical models of space objects. Also, precise location of the model relative to the viewer and accurate location of the light source require additional effort. As part of this project, graphics models of space objects such as the Solarmax satellite are created that the user can control the light direction and the relative position of the object and the viewer. The work is also aimed at providing control of hue, shading, noise and shadows for use in demonstrating and testing imaging processing techniques. The simulated camera data can provide XYZ coordinates, pitch, yaw, and roll for the models. A physical model is also being used to provide comparison of camera images with the graphics images.

  9. Easily Transported CCD Systems for Use in Astronomy Labs

    NASA Astrophysics Data System (ADS)

    Meisel, D.

    1992-12-01

    Relatively inexpensive CCD cameras and portable computers are now easily obtained as commercially available products. I will describe a prototype system that can be used by introductory astronomy students, even urban enviroments, to obtain useful observations of the night sky. It is based on the ST-4 CCDs made by Santa Barbara Instruments Group and Macintosh Powerbook145 computers. Students take outdoor images directly from the college campus, bring the exposures back into the lab and download the images into our networked server. These stored images can then be processed (at a later time) using a variety of image processing programs including a new astronomical version of the popular "freeware" NIH Image package that is currently under development at Geneseo. The prototype of this system will be demonstrated and available for hands-on use during the meeting. This work is supported by NSF ILI Demonstration Grant USE9250493 and Grants from SUNY-GENESEO.

  10. Image 100 procedures manual development: Applications system library definition and Image 100 software definition

    NASA Technical Reports Server (NTRS)

    Guseman, L. F., Jr.; Decell, H. P., Jr.

    1975-01-01

    An outline for an Image 100 procedures manual for Earth Resources Program image analysis was developed which sets forth guidelines that provide a basis for the preparation and updating of an Image 100 Procedures Manual. The scope of the outline was limited to definition of general features of a procedures manual together with special features of an interactive system. Computer programs were identified which should be implemented as part of an applications oriented library for the system.

  11. Unified Ultrasonic/Eddy-Current Data Acquisition

    NASA Technical Reports Server (NTRS)

    Chern, E. James; Butler, David W.

    1993-01-01

    Imaging station for detecting cracks and flaws in solid materials developed combining both ultrasonic C-scan and eddy-current imaging. Incorporation of both techniques into one system eliminates duplication of computers and of mechanical scanners; unifies acquisition, processing, and storage of data; reduces setup time for repetitious ultrasonic and eddy-current scans; and increases efficiency of system. Same mechanical scanner used to maneuver either ultrasonic or eddy-current probe over specimen and acquire point-by-point data. For ultrasonic scanning, probe linked to ultrasonic pulser/receiver circuit card, while, for eddy-current imaging, probe linked to impedance-analyzer circuit card. Both ultrasonic and eddy-current imaging subsystems share same desktop-computer controller, containing dedicated plug-in circuit boards for each.

  12. A proposed computer diagnostic system for malignant melanoma (CDSMM).

    PubMed

    Shao, S; Grams, R R

    1994-04-01

    This paper describes a computer diagnostic system for malignant melanoma. The diagnostic system is a rule base system based on image analyses and works under the PC windows environment. It consists of seven modules: I/O module, Patient/Clinic database, image processing module, classification module, rule base module and system control module. In the system, the image analyses are automatically carried out, and database management is efficient and fast. Both final clinic results and immediate results from various modules such as measured features, feature pictures and history records of the disease lesion can be presented on screen or printed out from each corresponding module or from the I/O module. The system can also work as a doctor's office-based tool to aid dermatologists with details not perceivable by the human eye. Since the system operates on a general purpose PC, it can be made portable if the I/O module is disconnected.

  13. [Development of a system for ultrasonic three-dimensional reconstruction of fetus].

    PubMed

    Baba, K

    1989-04-01

    We have developed a system for ultrasonic three-dimensional (3-D) fetus reconstruction using computers. Either a real-time linear array probe or a convex array probe of an ultrasonic scanner was mounted on a position sensor arm of a manual compound scanner in order to detect the position of the probe. A microcomputer was used to convert the position information to what could be recorded on a video tape as an image. This image was superimposed on the ultrasonic tomographic image simultaneously with a superimposer and recorded on a video tape. Fetuses in utero were scanned in seven cases. More than forty ultrasonic section image on the video tape were fed into a minicomputer. The shape of the fetus was displayed three-dimensionally by means of computer graphics. The computer-generated display produced a 3-D image of the fetus and showed the usefulness and accuracy of this system. Since it took only a few seconds for data collection by ultrasonic inspection, fetal movement did not adversely affect the results. Data input took about ten minutes for 40 slices, and 3-D reconstruction and display took about two minutes. The system made it possible to observe and record the 3-D image of the fetus in utero non-invasively and therefore is expected to make it much easier to obtain a 3-D picture of the fetus in utero.

  14. Foundation of a Knowledge Representation System for Image Understanding.

    DTIC Science & Technology

    1980-10-01

    This is useful for holding the system together, for computing similarity between objects, for quickly retrieving desired information in as detailed a...mined by how much precision is needed to carry through the current computation . In Section 2, we discuss the OVS system itself, its structure and how...2.0 OVS SYSTEM Our goal here is to present the computational constraints involved in the design of a knowledge representation system which is

  15. Image reproduction with interactive graphics

    NASA Technical Reports Server (NTRS)

    Buckner, J. D.; Council, H. W.; Edwards, T. R.

    1974-01-01

    Software application or development in optical image digital data processing requires a fast, good quality, yet inexpensive hard copy of processed images. To achieve this, a Cambo camera with an f 2.8/150-mm Xenotar lens in a Copal shutter having a Graflok back for 4 x 5 Polaroid type 57 pack-film has been interfaced to an existing Adage, AGT-30/Electro-Mechanical Research, EMR 6050 graphic computer system. Time-lapse photography in conjunction with a log to linear voltage transformation has resulted in an interactive system capable of producing a hard copy in 54 sec. The interactive aspect of the system lies in a Tektronix 4002 graphic computer terminal and its associated hard copy unit.

  16. Computer system for scanning tunneling microscope automation

    NASA Astrophysics Data System (ADS)

    Aguilar, M.; García, A.; Pascual, P. J.; Presa, J.; Santisteban, A.

    1987-03-01

    A computerized system for the automation of a scanning tunneling microscope is presented. It is based on an IBM personal computer (PC) either an XT or an AT, which performs the control, data acquisition and storage operations, displays the STM "images" in real time, and provides image processing tools for the restoration and analysis of data. It supports different data acquisition and control cards and image display cards. The software has been designed in a modular way to allow the replacement of these cards and other equipment improvements as well as the inclusion of user routines for data analysis.

  17. An adhered-particle analysis system based on concave points

    NASA Astrophysics Data System (ADS)

    Wang, Wencheng; Guan, Fengnian; Feng, Lin

    2018-04-01

    Particles adhered together will influence the image analysis in computer vision system. In this paper, a method based on concave point is designed. First, corner detection algorithm is adopted to obtain a rough estimation of potential concave points after image segmentation. Then, it computes the area ratio of the candidates to accurately localize the final separation points. Finally, it uses the separation points of each particle and the neighboring pixels to estimate the original particles before adhesion and provides estimated profile images. The experimental results have shown that this approach can provide good results that match the human visual cognitive mechanism.

  18. Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems.

    PubMed

    Downie, J D; Goodman, J W

    1989-10-15

    A ground-based adaptive optics imaging telescope system attempts to improve image quality by measuring and correcting for atmospherically induced wavefront aberrations. The necessary control computations during each cycle will take a finite amount of time, which adds to the residual error variance since the atmosphere continues to change during that time. Thus an optical processor may be well-suited for this task. This paper investigates this possibility by studying the accuracy requirements in a general optical processor that will make it competitive with, or superior to, a conventional digital computer for adaptive optics use.

  19. Application of a computed tomography based cystic fibrosis scoring system to chest tomosynthesis

    NASA Astrophysics Data System (ADS)

    Söderman, Christina; Johnsson, Åse; Vikgren, Jenny; Rystedt, Hans; Ivarsson, Jonas; Rossi Norrlund, Rauni; Nyberg Andersson, Lena; Bâth, Magnus

    2013-03-01

    In the monitoring of progression of lung disease in patients with cystic fibrosis (CF), recurrent computed tomography (CT) examinations are often used. The relatively new imaging technique chest tomosynthesis (CTS) may be an interesting alternative in the follow-up of these patients due to its visualization of the chest in slices at radiation doses and costs significantly lower than is the case with CT. A first step towards introducing CTS imaging in the diagnostics of CF patients is to establish a scoring system appropriate for evaluating the severity of CF pulmonary disease based on findings in CTS images. Previously, several such CF scoring systems based on CT imaging have been published. The purpose of the present study was to develop a CF scoring system for CTS, by starting from an existing scoring system dedicated for CT images and making modifications regarded necessary to make it appropriate for use with CTS images. In order to determine any necessary changes, three thoracic radiologists independently used a scoring system dedicated for CT on both CT and CTS images from CF patients. The results of the scoring were jointly evaluated by all the observers, which lead to suggestions for changes to the scoring system. Suggested modifications include excluding the scoring of air trapping and doing the scoring of the findings in quadrants of the image instead of in each lung lobe.

  20. Real-time capture and reconstruction system with multiple GPUs for a 3D live scene by a generation from 4K IP images to 8K holograms.

    PubMed

    Ichihashi, Yasuyuki; Oi, Ryutaro; Senoh, Takanori; Yamamoto, Kenji; Kurita, Taiichiro

    2012-09-10

    We developed a real-time capture and reconstruction system for three-dimensional (3D) live scenes. In previous research, we used integral photography (IP) to capture 3D images and then generated holograms from the IP images to implement a real-time reconstruction system. In this paper, we use a 4K (3,840 × 2,160) camera to capture IP images and 8K (7,680 × 4,320) liquid crystal display (LCD) panels for the reconstruction of holograms. We investigate two methods for enlarging the 4K images that were captured by integral photography to 8K images. One of the methods increases the number of pixels of each elemental image. The other increases the number of elemental images. In addition, we developed a personal computer (PC) cluster system with graphics processing units (GPUs) for the enlargement of IP images and the generation of holograms from the IP images using fast Fourier transform (FFT). We used the Compute Unified Device Architecture (CUDA) as the development environment for the GPUs. The Fast Fourier transform is performed using the CUFFT (CUDA FFT) library. As a result, we developed an integrated system for performing all processing from the capture to the reconstruction of 3D images by using these components and successfully used this system to reconstruct a 3D live scene at 12 frames per second.

  1. Multimodal computational microscopy based on transport of intensity equation

    NASA Astrophysics Data System (ADS)

    Li, Jiaji; Chen, Qian; Sun, Jiasong; Zhang, Jialin; Zuo, Chao

    2016-12-01

    Transport of intensity equation (TIE) is a powerful tool for phase retrieval and quantitative phase imaging, which requires intensity measurements only at axially closely spaced planes without a separate reference beam. It does not require coherent illumination and works well on conventional bright-field microscopes. The quantitative phase reconstructed by TIE gives valuable information that has been encoded in the complex wave field by passage through a sample of interest. Such information may provide tremendous flexibility to emulate various microscopy modalities computationally without requiring specialized hardware components. We develop a requisite theory to describe such a hybrid computational multimodal imaging system, which yields quantitative phase, Zernike phase contrast, differential interference contrast, and light field moment imaging, simultaneously. It makes the various observations for biomedical samples easy. Then we give the experimental demonstration of these ideas by time-lapse imaging of live HeLa cell mitosis. Experimental results verify that a tunable lens-based TIE system, combined with the appropriate postprocessing algorithm, can achieve a variety of promising imaging modalities in parallel with the quantitative phase images for the dynamic study of cellular processes.

  2. Bio-Inspired Sensing and Imaging of Polarization Information in Nature

    DTIC Science & Technology

    2008-05-04

    polarization imaging,” Appl. Opt. 36, 150–155 (1997). 5. L. B. Wolff, “Polarization camera for computer vision with a beam splitter ,” J. Opt. Soc. Am. A...vision with a beam splitter ,” J. Opt. Soc. Am. A 11, 2935–2945 (1994). 2. L. B. Wolff and A. G. Andreou, “Polarization camera sensors,” Image Vis. Comput...group we have been developing various man-made, non -invasive imaging methodologies, sensing schemes, camera systems, and visualization and display

  3. The feasibility study on 3-dimensional fluorescent x-ray computed tomography using the pinhole effect for biomedical applications.

    PubMed

    Sunaguchi, Naoki; Yuasa, Tetsuya; Hyodo, Kazuyuki; Zeniya, Tsutomu

    2013-01-01

    We propose a 3-dimensional fluorescent x-ray computed tomography (CT) pinhole collimator, aimed at providing molecular imaging with quantifiable measures and sub-millimeter spatial resolution. In this study, we demonstrate the feasibility of this concept and investigate imaging properties such as spatial resolution, contrast resolution and quantifiable measures, by imaging physical phantoms using a preliminary imaging system developed with monochromatic synchrotron x rays constructed at the BLNE-7A experimental line at KEK, Japan.

  4. Computer-based route-definition system for peripheral bronchoscopy.

    PubMed

    Graham, Michael W; Gibbs, Jason D; Higgins, William E

    2012-04-01

    Multi-detector computed tomography (MDCT) scanners produce high-resolution images of the chest. Given a patient's MDCT scan, a physician can use an image-guided intervention system to first plan and later perform bronchoscopy to diagnostic sites situated deep in the lung periphery. An accurate definition of complete routes through the airway tree leading to the diagnostic sites, however, is vital for avoiding navigation errors during image-guided bronchoscopy. We present a system for the robust definition of complete airway routes suitable for image-guided bronchoscopy. The system incorporates both automatic and semiautomatic MDCT analysis methods for this purpose. Using an intuitive graphical user interface, the user invokes automatic analysis on a patient's MDCT scan to produce a series of preliminary routes. Next, the user visually inspects each route and quickly corrects the observed route defects using the built-in semiautomatic methods. Application of the system to a human study for the planning and guidance of peripheral bronchoscopy demonstrates the efficacy of the system.

  5. BIM-Sim: Interactive Simulation of Broadband Imaging Using Mie Theory

    NASA Astrophysics Data System (ADS)

    Berisha, Sebastian; van Dijk, Thomas; Bhargava, Rohit; Carney, P. Scott; Mayerich, David

    2017-02-01

    Understanding the structure of a scattered electromagnetic (EM) field is critical to improving the imaging process. Mechanisms such as diffraction, scattering, and interference affect an image, limiting the resolution and potentially introducing artifacts. Simulation and visualization of scattered fields thus plays an important role in imaging science. However, the calculation of scattered fields is extremely time-consuming on desktop systems and computationally challenging on task-parallel systems such as supercomputers and cluster systems. In addition, EM fields are high-dimensional, making them difficult to visualize. In this paper, we present a framework for interactively computing and visualizing EM fields scattered by micro and nano-particles. Our software uses graphics hardware for evaluating the field both inside and outside of these particles. We then use Monte-Carlo sampling to reconstruct and visualize the three-dimensional structure of the field, spectral profiles at individual points, the structure of the field at the surface of the particle, and the resulting image produced by an optical system.

  6. Anatomical and metabolic small-animal whole-body imaging using ring-shaped confocal photoacoustic computed tomography

    NASA Astrophysics Data System (ADS)

    Xia, Jun; Chatni, Muhammad; Maslov, Konstantin; Wang, Lihong V.

    2013-03-01

    Due to the wide use of animals for human disease studies, small animal whole-body imaging plays an increasingly important role in biomedical research. Currently, none of the existing imaging modalities can provide both anatomical and glucose metabolic information, leading to higher costs of building dual-modality systems. Even with image coregistration, the spatial resolution of the metabolic imaging modality is not improved. We present a ring-shaped confocal photoacoustic computed tomography (RC-PACT) system that can provide both assessments in a single modality. Utilizing the novel design of confocal full-ring light delivery and ultrasound transducer array detection, RC-PACT provides full-view cross-sectional imaging with high spatial resolution. Scanning along the orthogonal direction provides three-dimensional imaging. While the mouse anatomy was imaged with endogenous hemoglobin contrast, the glucose metabolism was imaged with a near-infrared dye-labeled 2-deoxyglucose. Through mouse tumor models, we demonstrate that RC-PACT may be a paradigm shifting imaging method for preclinical research.

  7. Color Image Processing and Object Tracking System

    NASA Technical Reports Server (NTRS)

    Klimek, Robert B.; Wright, Ted W.; Sielken, Robert S.

    1996-01-01

    This report describes a personal computer based system for automatic and semiautomatic tracking of objects on film or video tape, developed to meet the needs of the Microgravity Combustion and Fluids Science Research Programs at the NASA Lewis Research Center. The system consists of individual hardware components working under computer control to achieve a high degree of automation. The most important hardware components include 16-mm and 35-mm film transports, a high resolution digital camera mounted on a x-y-z micro-positioning stage, an S-VHS tapedeck, an Hi8 tapedeck, video laserdisk, and a framegrabber. All of the image input devices are remotely controlled by a computer. Software was developed to integrate the overall operation of the system including device frame incrementation, grabbing of image frames, image processing of the object's neighborhood, locating the position of the object being tracked, and storing the coordinates in a file. This process is performed repeatedly until the last frame is reached. Several different tracking methods are supported. To illustrate the process, two representative applications of the system are described. These applications represent typical uses of the system and include tracking the propagation of a flame front and tracking the movement of a liquid-gas interface with extremely poor visibility.

  8. A PC-based multispectral scanner data evaluation workstation: Application to Daedalus scanners

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; James, Mark W.; Smith, Matthew R.; Atkinson, Robert J.

    1991-01-01

    In late 1989, a personal computer (PC)-based data evaluation workstation was developed to support post flight processing of Multispectral Atmospheric Mapping Sensor (MAMS) data. The MAMS Quick View System (QVS) is an image analysis and display system designed to provide the capability to evaluate Daedalus scanner data immediately after an aircraft flight. Even in its original form, the QVS offered the portability of a personal computer with the advanced analysis and display features of a mainframe image analysis system. It was recognized, however, that the original QVS had its limitations, both in speed and processing of MAMS data. Recent efforts are presented that focus on overcoming earlier limitations and adapting the system to a new data tape structure. In doing so, the enhanced Quick View System (QVS2) will accommodate data from any of the four spectrometers used with the Daedalus scanner on the NASA ER2 platform. The QVS2 is designed around the AST 486/33 MHz CPU personal computer and comes with 10 EISA expansion slots, keyboard, and 4.0 mbytes of memory. Specialized PC-McIDAS software provides the main image analysis and display capability for the system. Image analysis and display of the digital scanner data is accomplished with PC-McIDAS software.

  9. Feasibility Study of a Vision-Based Landing System for Unmanned Fixed-Wing Aircraft

    DTIC Science & Technology

    2017-06-01

    International Journal of Computer Science and Network Security 7 no. 3: 112–117. Accessed April 7, 2017. http://www.sciencedirect.com/science/ article /pii...the feasibility of applying computer vision techniques and visual feedback in the control loop for an autonomous system. This thesis examines the...integration into an autonomous aircraft control system. 14. SUBJECT TERMS autonomous systems, auto-land, computer vision, image processing

  10. PACS-Based Computer-Aided Detection and Diagnosis

    NASA Astrophysics Data System (ADS)

    Huang, H. K. (Bernie); Liu, Brent J.; Le, Anh HongTu; Documet, Jorge

    The ultimate goal of Picture Archiving and Communication System (PACS)-based Computer-Aided Detection and Diagnosis (CAD) is to integrate CAD results into daily clinical practice so that it becomes a second reader to aid the radiologist's diagnosis. Integration of CAD and Hospital Information System (HIS), Radiology Information System (RIS) or PACS requires certain basic ingredients from Health Level 7 (HL7) standard for textual data, Digital Imaging and Communications in Medicine (DICOM) standard for images, and Integrating the Healthcare Enterprise (IHE) workflow profiles in order to comply with the Health Insurance Portability and Accountability Act (HIPAA) requirements to be a healthcare information system. Among the DICOM standards and IHE workflow profiles, DICOM Structured Reporting (DICOM-SR); and IHE Key Image Note (KIN), Simple Image and Numeric Report (SINR) and Post-processing Work Flow (PWF) are utilized in CAD-HIS/RIS/PACS integration. These topics with examples are presented in this chapter.

  11. Preliminary results in large bone segmentation from 3D freehand ultrasound

    NASA Astrophysics Data System (ADS)

    Fanti, Zian; Torres, Fabian; Arámbula Cosío, Fernando

    2013-11-01

    Computer Assisted Orthopedic Surgery (CAOS) requires a correct registration between the patient in the operating room and the virtual models representing the patient in the computer. In order to increase the precision and accuracy of the registration a set of new techniques that eliminated the need to use fiducial markers have been developed. The majority of these newly developed registration systems are based on costly intraoperative imaging systems like Computed Tomography (CT scan) or Magnetic resonance imaging (MRI). An alternative to these methods is the use of an Ultrasound (US) imaging system for the implementation of a more cost efficient intraoperative registration solution. In order to develop the registration solution with the US imaging system, the bone surface is segmented in both preoperative and intraoperative images, and the registration is done using the acquire surface. In this paper, we present the a preliminary results of a new approach to segment bone surface from ultrasound volumes acquired by means 3D freehand ultrasound. The method is based on the enhancement of the voxels that belongs to surface and its posterior segmentation. The enhancement process is based on the information provided by eigenanalisis of the multiscale 3D Hessian matrix. The preliminary results shows that from the enhance volume the final bone surfaces can be extracted using a singular value thresholding.

  12. The application of digital techniques to the analysis of metallurgical experiments

    NASA Technical Reports Server (NTRS)

    Rathz, T. J.

    1977-01-01

    The application of a specific digital computer system (known as the Image Data Processing System) to the analysis of three NASA-sponsored metallurgical experiments is discussed in some detail. The basic hardware and software components of the Image Data Processing System are presented. Many figures are presented in the discussion of each experimental analysis in an attempt to show the accuracy and speed that the Image Data Processing System affords in analyzing photographic images dealing with metallurgy, and in particular with material processing.

  13. Progressive data transmission for anatomical landmark detection in a cloud.

    PubMed

    Sofka, M; Ralovich, K; Zhang, J; Zhou, S K; Comaniciu, D

    2012-01-01

    In the concept of cloud-computing-based systems, various authorized users have secure access to patient records from a number of care delivery organizations from any location. This creates a growing need for remote visualization, advanced image processing, state-of-the-art image analysis, and computer aided diagnosis. This paper proposes a system of algorithms for automatic detection of anatomical landmarks in 3D volumes in the cloud computing environment. The system addresses the inherent problem of limited bandwidth between a (thin) client, data center, and data analysis server. The problem of limited bandwidth is solved by a hierarchical sequential detection algorithm that obtains data by progressively transmitting only image regions required for processing. The client sends a request to detect a set of landmarks for region visualization or further analysis. The algorithm running on the data analysis server obtains a coarse level image from the data center and generates landmark location candidates. The candidates are then used to obtain image neighborhood regions at a finer resolution level for further detection. This way, the landmark locations are hierarchically and sequentially detected and refined. Only image regions surrounding landmark location candidates need to be trans- mitted during detection. Furthermore, the image regions are lossy compressed with JPEG 2000. Together, these properties amount to at least 30 times bandwidth reduction while achieving similar accuracy when compared to an algorithm using the original data. The hierarchical sequential algorithm with progressive data transmission considerably reduces bandwidth requirements in cloud-based detection systems.

  14. Unconventional methods of imaging: computational microscopy and compact implementations

    NASA Astrophysics Data System (ADS)

    McLeod, Euan; Ozcan, Aydogan

    2016-07-01

    In the past two decades or so, there has been a renaissance of optical microscopy research and development. Much work has been done in an effort to improve the resolution and sensitivity of microscopes, while at the same time to introduce new imaging modalities, and make existing imaging systems more efficient and more accessible. In this review, we look at two particular aspects of this renaissance: computational imaging techniques and compact imaging platforms. In many cases, these aspects go hand-in-hand because the use of computational techniques can simplify the demands placed on optical hardware in obtaining a desired imaging performance. In the first main section, we cover lens-based computational imaging, in particular, light-field microscopy, structured illumination, synthetic aperture, Fourier ptychography, and compressive imaging. In the second main section, we review lensfree holographic on-chip imaging, including how images are reconstructed, phase recovery techniques, and integration with smart substrates for more advanced imaging tasks. In the third main section we describe how these and other microscopy modalities have been implemented in compact and field-portable devices, often based around smartphones. Finally, we conclude with some comments about opportunities and demand for better results, and where we believe the field is heading.

  15. Staring 2-D hadamard transform spectral imager

    DOEpatents

    Gentry, Stephen M [Albuquerque, NM; Wehlburg, Christine M [Albuquerque, NM; Wehlburg, Joseph C [Albuquerque, NM; Smith, Mark W [Albuquerque, NM; Smith, Jody L [Albuquerque, NM

    2006-02-07

    A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

  16. Expert Diagnosis of Plus Disease in Retinopathy of Prematurity From Computer-Based Image Analysis.

    PubMed

    Campbell, J Peter; Ataer-Cansizoglu, Esra; Bolon-Canedo, Veronica; Bozkurt, Alican; Erdogmus, Deniz; Kalpathy-Cramer, Jayashree; Patel, Samir N; Reynolds, James D; Horowitz, Jason; Hutcheson, Kelly; Shapiro, Michael; Repka, Michael X; Ferrone, Phillip; Drenser, Kimberly; Martinez-Castellanos, Maria Ana; Ostmo, Susan; Jonas, Karyn; Chan, R V Paul; Chiang, Michael F

    2016-06-01

    Published definitions of plus disease in retinopathy of prematurity (ROP) reference arterial tortuosity and venous dilation within the posterior pole based on a standard published photograph. One possible explanation for limited interexpert reliability for a diagnosis of plus disease is that experts deviate from the published definitions. To identify vascular features used by experts for diagnosis of plus disease through quantitative image analysis. A computer-based image analysis system (Imaging and Informatics in ROP [i-ROP]) was developed using a set of 77 digital fundus images, and the system was designed to classify images compared with a reference standard diagnosis (RSD). System performance was analyzed as a function of the field of view (circular crops with a radius of 1-6 disc diameters) and vessel subtype (arteries only, veins only, or all vessels). Routine ROP screening was conducted from June 29, 2011, to October 14, 2014, in neonatal intensive care units at 8 academic institutions, with a subset of 73 images independently classified by 11 ROP experts for validation. The RSD was compared with the majority diagnosis of experts. The primary outcome measure was the percentage of accuracy of the i-ROP system classification of plus disease, with the RSD as a function of the field of view and vessel type. Secondary outcome measures included the accuracy of the 11 experts compared with the RSD. Accuracy of plus disease diagnosis by the i-ROP computer-based system was highest (95%; 95% CI, 94%-95%) when it incorporated vascular tortuosity from both arteries and veins and with the widest field of view (6-disc diameter radius). Accuracy was 90% or less when using only arterial tortuosity and 85% or less using a 2- to 3-disc diameter view similar to the standard published photograph. Diagnostic accuracy of the i-ROP system (95%) was comparable to that of 11 expert physicians (mean 87%, range 79%-99%). Experts in ROP appear to consider findings from beyond the posterior retina when diagnosing plus disease and consider tortuosity of both arteries and veins, in contrast with published definitions. It is feasible for a computer-based image analysis system to perform comparably with ROP experts, using manually segmented images.

  17. Machine Learning in Ultrasound Computer-Aided Diagnostic Systems: A Survey

    PubMed Central

    Zhang, Fan; Li, Xuelong

    2018-01-01

    The ultrasound imaging is one of the most common schemes to detect diseases in the clinical practice. There are many advantages of ultrasound imaging such as safety, convenience, and low cost. However, reading ultrasound imaging is not easy. To support the diagnosis of clinicians and reduce the load of doctors, many ultrasound computer-aided diagnosis (CAD) systems are proposed. In recent years, the success of deep learning in the image classification and segmentation led to more and more scholars realizing the potential of performance improvement brought by utilizing the deep learning in the ultrasound CAD system. This paper summarized the research which focuses on the ultrasound CAD system utilizing machine learning technology in recent years. This study divided the ultrasound CAD system into two categories. One is the traditional ultrasound CAD system which employed the manmade feature and the other is the deep learning ultrasound CAD system. The major feature and the classifier employed by the traditional ultrasound CAD system are introduced. As for the deep learning ultrasound CAD, newest applications are summarized. This paper will be useful for researchers who focus on the ultrasound CAD system. PMID:29687000

  18. Machine Learning in Ultrasound Computer-Aided Diagnostic Systems: A Survey.

    PubMed

    Huang, Qinghua; Zhang, Fan; Li, Xuelong

    2018-01-01

    The ultrasound imaging is one of the most common schemes to detect diseases in the clinical practice. There are many advantages of ultrasound imaging such as safety, convenience, and low cost. However, reading ultrasound imaging is not easy. To support the diagnosis of clinicians and reduce the load of doctors, many ultrasound computer-aided diagnosis (CAD) systems are proposed. In recent years, the success of deep learning in the image classification and segmentation led to more and more scholars realizing the potential of performance improvement brought by utilizing the deep learning in the ultrasound CAD system. This paper summarized the research which focuses on the ultrasound CAD system utilizing machine learning technology in recent years. This study divided the ultrasound CAD system into two categories. One is the traditional ultrasound CAD system which employed the manmade feature and the other is the deep learning ultrasound CAD system. The major feature and the classifier employed by the traditional ultrasound CAD system are introduced. As for the deep learning ultrasound CAD, newest applications are summarized. This paper will be useful for researchers who focus on the ultrasound CAD system.

  19. Toward real-time virtual biopsy of oral lesions using confocal laser endomicroscopy interfaced with embedded computing.

    PubMed

    Thong, Patricia S P; Tandjung, Stephanus S; Movania, Muhammad Mobeen; Chiew, Wei-Ming; Olivo, Malini; Bhuvaneswari, Ramaswamy; Seah, Hock-Soon; Lin, Feng; Qian, Kemao; Soo, Khee-Chee

    2012-05-01

    Oral lesions are conventionally diagnosed using white light endoscopy and histopathology. This can pose a challenge because the lesions may be difficult to visualise under white light illumination. Confocal laser endomicroscopy can be used for confocal fluorescence imaging of surface and subsurface cellular and tissue structures. To move toward real-time "virtual" biopsy of oral lesions, we interfaced an embedded computing system to a confocal laser endomicroscope to achieve a prototype three-dimensional (3-D) fluorescence imaging system. A field-programmable gated array computing platform was programmed to enable synchronization of cross-sectional image grabbing and Z-depth scanning, automate the acquisition of confocal image stacks and perform volume rendering. Fluorescence imaging of the human and murine oral cavities was carried out using the fluorescent dyes fluorescein sodium and hypericin. Volume rendering of cellular and tissue structures from the oral cavity demonstrate the potential of the system for 3-D fluorescence visualization of the oral cavity in real-time. We aim toward achieving a real-time virtual biopsy technique that can complement current diagnostic techniques and aid in targeted biopsy for better clinical outcomes.

  20. Computer-based image analysis of one-dimensional electrophoretic gels used for the separation of DNA restriction fragments.

    PubMed Central

    Gray, A J; Beecher, D E; Olson, M V

    1984-01-01

    A stand-alone, interactive computer system has been developed that automates the analysis of ethidium bromide-stained agarose and acrylamide gels on which DNA restriction fragments have been separated by size. High-resolution digital images of the gels are obtained using a camera that contains a one-dimensional, 2048-pixel photodiode array that is mechanically translated through 2048 discrete steps in a direction perpendicular to the gel lanes. An automatic band-detection algorithm is used to establish the positions of the gel bands. A color-video graphics system, on which both the gel image and a variety of operator-controlled overlays are displayed, allows the operator to visualize and interact with critical stages of the analysis. The principal interactive steps involve defining the regions of the image that are to be analyzed and editing the results of the band-detection process. The system produces a machine-readable output file that contains the positions, intensities, and descriptive classifications of all the bands, as well as documentary information about the experiment. This file is normally further processed on a larger computer to obtain fragment-size assignments. Images PMID:6320097

  1. Potential clinical impact of advanced imaging and computer-aided diagnosis in chest radiology: importance of radiologist's role and successful observer study.

    PubMed

    Li, Feng

    2015-07-01

    This review paper is based on our research experience in the past 30 years. The importance of radiologists' role is discussed in the development or evaluation of new medical images and of computer-aided detection (CAD) schemes in chest radiology. The four main topics include (1) introducing what diseases can be included in a research database for different imaging techniques or CAD systems and what imaging database can be built by radiologists, (2) understanding how radiologists' subjective judgment can be combined with technical objective features to improve CAD performance, (3) sharing our experience in the design of successful observer performance studies, and (4) finally, discussing whether the new images and CAD systems can improve radiologists' diagnostic ability in chest radiology. In conclusion, advanced imaging techniques and detection/classification of CAD systems have a potential clinical impact on improvement of radiologists' diagnostic ability, for both the detection and the differential diagnosis of various lung diseases, in chest radiology.

  2. Contour Detector and Data Acquisition System for the Left Ventricular Outline

    NASA Technical Reports Server (NTRS)

    Reiber, J. H. C. (Inventor)

    1978-01-01

    A real-time contour detector and data acquisition system is described for an angiographic apparatus having a video scanner for converting an X-ray image of a structure characterized by a change in brightness level compared with its surrounding into video format and displaying the X-ray image in recurring video fields. The real-time contour detector and data acqusition system includes track and hold circuits; a reference level analog computer circuit; an analog compartor; a digital processor; a field memory; and a computer interface.

  3. A novel device for head gesture measurement system in combination with eye-controlled human machine interface

    NASA Astrophysics Data System (ADS)

    Lin, Chern-Sheng; Ho, Chien-Wa; Chang, Kai-Chieh; Hung, San-Shan; Shei, Hung-Jung; Yeh, Mau-Shiun

    2006-06-01

    This study describes the design and combination of an eye-controlled and a head-controlled human-machine interface system. This system is a highly effective human-machine interface, detecting head movement by changing positions and numbers of light sources on the head. When the users utilize the head-mounted display to browse a computer screen, the system will catch the images of the user's eyes with CCD cameras, which can also measure the angle and position of the light sources. In the eye-tracking system, the program in the computer will locate each center point of the pupils in the images, and record the information on moving traces and pupil diameters. In the head gesture measurement system, the user wears a double-source eyeglass frame, so the system catches images of the user's head by using a CCD camera in front of the user. The computer program will locate the center point of the head, transferring it to the screen coordinates, and then the user can control the cursor by head motions. We combine the eye-controlled and head-controlled human-machine interface system for the virtual reality applications.

  4. TDat: An Efficient Platform for Processing Petabyte-Scale Whole-Brain Volumetric Images.

    PubMed

    Li, Yuxin; Gong, Hui; Yang, Xiaoquan; Yuan, Jing; Jiang, Tao; Li, Xiangning; Sun, Qingtao; Zhu, Dan; Wang, Zhenyu; Luo, Qingming; Li, Anan

    2017-01-01

    Three-dimensional imaging of whole mammalian brains at single-neuron resolution has generated terabyte (TB)- and even petabyte (PB)-sized datasets. Due to their size, processing these massive image datasets can be hindered by the computer hardware and software typically found in biological laboratories. To fill this gap, we have developed an efficient platform named TDat, which adopts a novel data reformatting strategy by reading cuboid data and employing parallel computing. In data reformatting, TDat is more efficient than any other software. In data accessing, we adopted parallelization to fully explore the capability for data transmission in computers. We applied TDat in large-volume data rigid registration and neuron tracing in whole-brain data with single-neuron resolution, which has never been demonstrated in other studies. We also showed its compatibility with various computing platforms, image processing software and imaging systems.

  5. Computer graphics testbed to simulate and test vision systems for space applications

    NASA Technical Reports Server (NTRS)

    Cheatham, John B.

    1991-01-01

    Research activity has shifted from computer graphics and vision systems to the broader scope of applying concepts of artificial intelligence to robotics. Specifically, the research is directed toward developing Artificial Neural Networks, Expert Systems, and Laser Imaging Techniques for Autonomous Space Robots.

  6. Image/video understanding systems based on network-symbolic models

    NASA Astrophysics Data System (ADS)

    Kuvich, Gary

    2004-03-01

    Vision is a part of a larger information system that converts visual information into knowledge structures. These structures drive vision process, resolve ambiguity and uncertainty via feedback projections, and provide image understanding that is an interpretation of visual information in terms of such knowledge models. Computer simulation models are built on the basis of graphs/networks. The ability of human brain to emulate similar graph/network models is found. Symbols, predicates and grammars naturally emerge in such networks, and logic is simply a way of restructuring such models. Brain analyzes an image as a graph-type relational structure created via multilevel hierarchical compression of visual information. Primary areas provide active fusion of image features on a spatial grid-like structure, where nodes are cortical columns. Spatial logic and topology naturally present in such structures. Mid-level vision processes like perceptual grouping, separation of figure from ground, are special kinds of network transformations. They convert primary image structure into the set of more abstract ones, which represent objects and visual scene, making them easy for analysis by higher-level knowledge structures. Higher-level vision phenomena are results of such analysis. Composition of network-symbolic models combines learning, classification, and analogy together with higher-level model-based reasoning into a single framework, and it works similar to frames and agents. Computational intelligence methods transform images into model-based knowledge representation. Based on such principles, an Image/Video Understanding system can convert images into the knowledge models, and resolve uncertainty and ambiguity. This allows creating intelligent computer vision systems for design and manufacturing.

  7. Custom Sky-Image Mosaics from NASA's Information Power Grid

    NASA Technical Reports Server (NTRS)

    Jacob, Joseph; Collier, James; Craymer, Loring; Curkendall, David

    2005-01-01

    yourSkyG is the second generation of the software described in yourSky: Custom Sky-Image Mosaics via the Internet (NPO-30556), NASA Tech Briefs, Vol. 27, No. 6 (June 2003), page 45. Like its predecessor, yourSkyG supplies custom astronomical image mosaics of sky regions specified by requesters using client computers connected to the Internet. Whereas yourSky constructs mosaics on a local multiprocessor system, yourSkyG performs the computations on NASA s Information Power Grid (IPG), which is capable of performing much larger mosaicking tasks. (The IPG is high-performance computation and data grid that integrates geographically distributed 18 NASA Tech Briefs, September 2005 computers, databases, and instruments.) A user of yourSkyG can specify parameters describing a mosaic to be constructed. yourSkyG then constructs the mosaic on the IPG and makes it available for downloading by the user. The complexities of determining which input images are required to construct a mosaic, retrieving the required input images from remote sky-survey archives, uploading the images to the computers on the IPG, performing the computations remotely on the Grid, and downloading the resulting mosaic from the Grid are all transparent to the user

  8. A human visual based binarization technique for histological images

    NASA Astrophysics Data System (ADS)

    Shreyas, Kamath K. M.; Rajendran, Rahul; Panetta, Karen; Agaian, Sos

    2017-05-01

    In the field of vision-based systems for object detection and classification, thresholding is a key pre-processing step. Thresholding is a well-known technique for image segmentation. Segmentation of medical images, such as Computed Axial Tomography (CAT), Magnetic Resonance Imaging (MRI), X-Ray, Phase Contrast Microscopy, and Histological images, present problems like high variability in terms of the human anatomy and variation in modalities. Recent advances made in computer-aided diagnosis of histological images help facilitate detection and classification of diseases. Since most pathology diagnosis depends on the expertise and ability of the pathologist, there is clearly a need for an automated assessment system. Histological images are stained to a specific color to differentiate each component in the tissue. Segmentation and analysis of such images is problematic, as they present high variability in terms of color and cell clusters. This paper presents an adaptive thresholding technique that aims at segmenting cell structures from Haematoxylin and Eosin stained images. The thresholded result can further be used by pathologists to perform effective diagnosis. The effectiveness of the proposed method is analyzed by visually comparing the results to the state of art thresholding methods such as Otsu, Niblack, Sauvola, Bernsen, and Wolf. Computer simulations demonstrate the efficiency of the proposed method in segmenting critical information.

  9. Computed Tomography of the Musculoskeletal System.

    PubMed

    Ballegeer, Elizabeth A

    2016-05-01

    Computed tomography (CT) has specific uses in veterinary species' appendicular musculoskeletal system. Parameters for acquisition of images, interpretation limitations, as well as published information regarding its use in small animals is reviewed. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Architectures for Device Aware Network

    DTIC Science & Technology

    2005-03-01

    68 b. PDA in DAN Mode ............................................................. 69 c. Cell Phone in DAN Mode...68 Figure 15. PDA in DAN Mode - Reduced Resolution Image ..................................... 69 Figure 16. Cell Phone in DAN Mode -No Image...computer, notebook computer, cell phone and a host of networked embedded systems) may have extremely differing capabilities and resources to retrieve and

  11. Soil structure characterized using computed tomographic images

    Treesearch

    Zhanqi Cheng; Stephen H. Anderson; Clark J. Gantzer; J. W. Van Sambeek

    2003-01-01

    Fractal analysis of soil structure is a relatively new method for quantifying the effects of management systems on soil properties and quality. The objective of this work was to explore several methods of studying images to describe and quantify structure of soils under forest management. This research uses computed tomography and a topological method called Multiple...

  12. Single instruction computer architecture and its application in image processing

    NASA Astrophysics Data System (ADS)

    Laplante, Phillip A.

    1992-03-01

    A single processing computer system using only half-adder circuits is described. In addition, it is shown that only a single hard-wired instruction is needed in the control unit to obtain a complete instruction set for this general purpose computer. Such a system has several advantages. First it is intrinsically a RISC machine--in fact the 'ultimate RISC' machine. Second, because only a single type of logic element is employed the entire computer system can be easily realized on a single, highly integrated chip. Finally, due to the homogeneous nature of the computer's logic elements, the computer has possible implementations as an optical or chemical machine. This in turn suggests possible paradigms for neural computing and artificial intelligence. After showing how we can implement a full-adder, min, max and other operations using the half-adder, we use an array of such full-adders to implement the dilation operation for two black and white images. Next we implement the erosion operation of two black and white images using a relative complement function and the properties of erosion and dilation. This approach was inspired by papers by van der Poel in which a single instruction is used to furnish a complete set of general purpose instructions and by Bohm- Jacopini where it is shown that any problem can be solved using a Turing machine with one entry and one exit.

  13. Planetary Data Workshop, Part 2

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Technical aspects of the Planetary Data System (PDS) are addressed. Methods and tools for maintaining and accessing large, complex sets of data are discussed. The specific software and applications needed for processing imaging and non-imaging science data are reviewed. The need for specific software that provides users with information on the location and geometry of scientific observations is discussed. Computer networks and user interface to the PDS are covered along with Computer hardware available to this data system.

  14. 25 CFR 542.13 - What are the minimum internal control standards for gaming machines?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... (j) Player tracking system. (1) The following standards apply if a player tracking system is utilized... image on the computer screen; (B) Comparing the customer to image on customer's picture ID; or (C...

  15. 25 CFR 542.13 - What are the minimum internal control standards for gaming machines?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... (j) Player tracking system. (1) The following standards apply if a player tracking system is utilized... image on the computer screen; (B) Comparing the customer to image on customer's picture ID; or (C...

  16. 25 CFR 542.13 - What are the minimum internal control standards for gaming machines?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... (j) Player tracking system. (1) The following standards apply if a player tracking system is utilized... image on the computer screen; (B) Comparing the customer to image on customer's picture ID; or (C...

  17. 25 CFR 542.13 - What are the minimum internal control standards for gaming machines?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... (j) Player tracking system. (1) The following standards apply if a player tracking system is utilized... image on the computer screen; (B) Comparing the customer to image on customer's picture ID; or (C...

  18. 25 CFR 542.13 - What are the minimum internal control standards for gaming machines?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... (j) Player tracking system. (1) The following standards apply if a player tracking system is utilized... image on the computer screen; (B) Comparing the customer to image on customer's picture ID; or (C...

  19. E-Learning System Using Segmentation-Based MR Technique for Learning Circuit Construction

    ERIC Educational Resources Information Center

    Takemura, Atsushi

    2016-01-01

    This paper proposes a novel e-Learning system using the mixed reality (MR) technique for technical experiments involving the construction of electronic circuits. The proposed system comprises experimenters' mobile computers and a remote analysis system. When constructing circuits, each learner uses a mobile computer to transmit image data from the…

  20. A computational imaging target specific detectivity metric

    NASA Astrophysics Data System (ADS)

    Preece, Bradley L.; Nehmetallah, George

    2017-05-01

    Due to the large quantity of low-cost, high-speed computational processing available today, computational imaging (CI) systems are expected to have a major role for next generation multifunctional cameras. The purpose of this work is to quantify the performance of theses CI systems in a standardized manner. Due to the diversity of CI system designs that are available today or proposed in the near future, significant challenges in modeling and calculating a standardized detection signal-to-noise ratio (SNR) to measure the performance of these systems. In this paper, we developed a path forward for a standardized detectivity metric for CI systems. The detectivity metric is designed to evaluate the performance of a CI system searching for a specific known target or signal of interest, and is defined as the optimal linear matched filter SNR, similar to the Hotelling SNR, calculated in computational space with special considerations for standardization. Therefore, the detectivity metric is designed to be flexible, in order to handle various types of CI systems and specific targets, while keeping the complexity and assumptions of the systems to a minimum.

  1. Singular value decomposition for photon-processing nuclear imaging systems and applications for reconstruction and computing null functions.

    PubMed

    Jha, Abhinav K; Barrett, Harrison H; Frey, Eric C; Clarkson, Eric; Caucci, Luca; Kupinski, Matthew A

    2015-09-21

    Recent advances in technology are enabling a new class of nuclear imaging systems consisting of detectors that use real-time maximum-likelihood (ML) methods to estimate the interaction position, deposited energy, and other attributes of each photon-interaction event and store these attributes in a list format. This class of systems, which we refer to as photon-processing (PP) nuclear imaging systems, can be described by a fundamentally different mathematical imaging operator that allows processing of the continuous-valued photon attributes on a per-photon basis. Unlike conventional photon-counting (PC) systems that bin the data into images, PP systems do not have any binning-related information loss. Mathematically, while PC systems have an infinite-dimensional null space due to dimensionality considerations, PP systems do not necessarily suffer from this issue. Therefore, PP systems have the potential to provide improved performance in comparison to PC systems. To study these advantages, we propose a framework to perform the singular-value decomposition (SVD) of the PP imaging operator. We use this framework to perform the SVD of operators that describe a general two-dimensional (2D) planar linear shift-invariant (LSIV) PP system and a hypothetical continuously rotating 2D single-photon emission computed tomography (SPECT) PP system. We then discuss two applications of the SVD framework. The first application is to decompose the object being imaged by the PP imaging system into measurement and null components. We compare these components to the measurement and null components obtained with PC systems. In the process, we also present a procedure to compute the null functions for a PC system. The second application is designing analytical reconstruction algorithms for PP systems. The proposed analytical approach exploits the fact that PP systems acquire data in a continuous domain to estimate a continuous object function. The approach is parallelizable and implemented for graphics processing units (GPUs). Further, this approach leverages another important advantage of PP systems, namely the possibility to perform photon-by-photon real-time reconstruction. We demonstrate the application of the approach to perform reconstruction in a simulated 2D SPECT system. The results help to validate and demonstrate the utility of the proposed method and show that PP systems can help overcome the aliasing artifacts that are otherwise intrinsically present in PC systems.

  2. Singular value decomposition for photon-processing nuclear imaging systems and applications for reconstruction and computing null functions

    NASA Astrophysics Data System (ADS)

    Jha, Abhinav K.; Barrett, Harrison H.; Frey, Eric C.; Clarkson, Eric; Caucci, Luca; Kupinski, Matthew A.

    2015-09-01

    Recent advances in technology are enabling a new class of nuclear imaging systems consisting of detectors that use real-time maximum-likelihood (ML) methods to estimate the interaction position, deposited energy, and other attributes of each photon-interaction event and store these attributes in a list format. This class of systems, which we refer to as photon-processing (PP) nuclear imaging systems, can be described by a fundamentally different mathematical imaging operator that allows processing of the continuous-valued photon attributes on a per-photon basis. Unlike conventional photon-counting (PC) systems that bin the data into images, PP systems do not have any binning-related information loss. Mathematically, while PC systems have an infinite-dimensional null space due to dimensionality considerations, PP systems do not necessarily suffer from this issue. Therefore, PP systems have the potential to provide improved performance in comparison to PC systems. To study these advantages, we propose a framework to perform the singular-value decomposition (SVD) of the PP imaging operator. We use this framework to perform the SVD of operators that describe a general two-dimensional (2D) planar linear shift-invariant (LSIV) PP system and a hypothetical continuously rotating 2D single-photon emission computed tomography (SPECT) PP system. We then discuss two applications of the SVD framework. The first application is to decompose the object being imaged by the PP imaging system into measurement and null components. We compare these components to the measurement and null components obtained with PC systems. In the process, we also present a procedure to compute the null functions for a PC system. The second application is designing analytical reconstruction algorithms for PP systems. The proposed analytical approach exploits the fact that PP systems acquire data in a continuous domain to estimate a continuous object function. The approach is parallelizable and implemented for graphics processing units (GPUs). Further, this approach leverages another important advantage of PP systems, namely the possibility to perform photon-by-photon real-time reconstruction. We demonstrate the application of the approach to perform reconstruction in a simulated 2D SPECT system. The results help to validate and demonstrate the utility of the proposed method and show that PP systems can help overcome the aliasing artifacts that are otherwise intrinsically present in PC systems.

  3. PathoSpotter-K: A computational tool for the automatic identification of glomerular lesions in histological images of kidneys

    NASA Astrophysics Data System (ADS)

    Barros, George O.; Navarro, Brenda; Duarte, Angelo; Dos-Santos, Washington L. C.

    2017-04-01

    PathoSpotter is a computational system designed to assist pathologists in teaching about and researching kidney diseases. PathoSpotter-K is the version that was developed to detect nephrological lesions in digital images of kidneys. Here, we present the results obtained using the first version of PathoSpotter-K, which uses classical image processing and pattern recognition methods to detect proliferative glomerular lesions with an accuracy of 88.3 ± 3.6%. Such performance is only achieved by similar systems if they use images of cell in contexts that are much less complex than the glomerular structure. The results indicate that the approach can be applied to the development of systems designed to train pathology students and to assist pathologists in determining large-scale clinicopathological correlations in morphological research.

  4. Computer-generated holographic near-eye display system based on LCoS phase only modulator

    NASA Astrophysics Data System (ADS)

    Sun, Peng; Chang, Shengqian; Zhang, Siman; Xie, Ting; Li, Huaye; Liu, Siqi; Wang, Chang; Tao, Xiao; Zheng, Zhenrong

    2017-09-01

    Augmented reality (AR) technology has been applied in various areas, such as large-scale manufacturing, national defense, healthcare, movie and mass media and so on. An important way to realize AR display is using computer-generated hologram (CGH), which is accompanied by low image quality and heavy computing defects. Meanwhile, the diffraction of Liquid Crystal on Silicon (LCoS) has a negative effect on image quality. In this paper, a modified algorithm based on traditional Gerchberg-Saxton (GS) algorithm was proposed to improve the image quality, and new method to establish experimental system was used to broaden field of view (FOV). In the experiment, undesired zero-order diffracted light was eliminated and high definition 2D image was acquired with FOV broadened to 36.1 degree. We have also done some pilot research in 3D reconstruction with tomography algorithm based on Fresnel diffraction. With the same experimental system, experimental results demonstrate the feasibility of 3D reconstruction. These modifications are effective and efficient, and may provide a better solution in AR realization.

  5. A Robust and Fast Computation Touchless Palm Print Recognition System Using LHEAT and the IFkNCN Classifier

    PubMed Central

    Jaafar, Haryati; Ibrahim, Salwani; Ramli, Dzati Athiar

    2015-01-01

    Mobile implementation is a current trend in biometric design. This paper proposes a new approach to palm print recognition, in which smart phones are used to capture palm print images at a distance. A touchless system was developed because of public demand for privacy and sanitation. Robust hand tracking, image enhancement, and fast computation processing algorithms are required for effective touchless and mobile-based recognition. In this project, hand tracking and the region of interest (ROI) extraction method were discussed. A sliding neighborhood operation with local histogram equalization, followed by a local adaptive thresholding or LHEAT approach, was proposed in the image enhancement stage to manage low-quality palm print images. To accelerate the recognition process, a new classifier, improved fuzzy-based k nearest centroid neighbor (IFkNCN), was implemented. By removing outliers and reducing the amount of training data, this classifier exhibited faster computation. Our experimental results demonstrate that a touchless palm print system using LHEAT and IFkNCN achieves a promising recognition rate of 98.64%. PMID:26113861

  6. Inspecting rapidly moving surfaces for small defects using CNN cameras

    NASA Astrophysics Data System (ADS)

    Blug, Andreas; Carl, Daniel; Höfler, Heinrich

    2013-04-01

    A continuous increase in production speed and manufacturing precision raises a demand for the automated detection of small image features on rapidly moving surfaces. An example are wire drawing processes where kilometers of cylindrical metal surfaces moving with 10 m/s have to be inspected for defects such as scratches, dents, grooves, or chatter marks with a lateral size of 100 μm in real time. Up to now, complex eddy current systems are used for quality control instead of line cameras, because the ratio between lateral feature size and surface speed is limited by the data transport between camera and computer. This bottleneck is avoided by "cellular neural network" (CNN) cameras which enable image processing directly on the camera chip. This article reports results achieved with a demonstrator based on this novel analogue camera - computer system. The results show that computational speed and accuracy of the analogue computer system are sufficient to detect and discriminate the different types of defects. Area images with 176 x 144 pixels are acquired and evaluated in real time with frame rates of 4 to 10 kHz - depending on the number of defects to be detected. These frame rates correspond to equivalent line rates on line cameras between 360 and 880 kHz, a number far beyond the available features. Using the relation between lateral feature size and surface speed as a figure of merit, the CNN based system outperforms conventional image processing systems by an order of magnitude.

  7. NRL Fact Book 2010

    DTIC Science & Technology

    2010-01-01

    service) High assurance software Distributed network-based battle management High performance computing supporting uniform and nonuniform memory...VNIR, MWIR, and LWIR high-resolution systems Wideband SAR systems RF and laser data links High-speed, high-power photodetector characteriza- tion...Antimonide (InSb) imaging system Long-wave infrared ( LWIR ) quantum well IR photodetector (QWIP) imaging system Research and Development Services

  8. A new method to acquire 3-D images of a dental cast

    NASA Astrophysics Data System (ADS)

    Li, Zhongke; Yi, Yaxing; Zhu, Zhen; Li, Hua; Qin, Yongyuan

    2006-01-01

    This paper introduced our newly developed method to acquire three-dimensional images of a dental cast. A rotatable table, a laser-knife, a mirror, a CCD camera and a personal computer made up of a three-dimensional data acquiring system. A dental cast is placed on the table; the mirror is installed beside the table; a linear laser is projected to the dental cast; the CCD camera is put up above the dental cast, it can take picture of the dental cast and the shadow in the mirror; while the table rotating, the camera records the shape of the laser streak projected on the dental cast, and transmit the data to the computer. After the table rotated one circuit, the computer processes the data, calculates the three-dimensional coordinates of the dental cast's surface. In data processing procedure, artificial neural networks are enrolled to calibrate the lens distortion, map coordinates form screen coordinate system to world coordinate system. According to the three-dimensional coordinates, the computer reconstructs the stereo image of the dental cast. It is essential for computer-aided diagnosis and treatment planning in orthodontics. In comparison with other systems in service, for example, laser beam three-dimensional scanning system, the characteristic of this three-dimensional data acquiring system: a. celerity, it casts only 1 minute to scan a dental cast; b. compact, the machinery is simple and compact; c. no blind zone, a mirror is introduced ably to reduce blind zone.

  9. 21 CFR 876.1300 - Ingestible telemetric gastrointestinal capsule imaging system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... images of the small bowel with a wireless camera contained in a capsule. This device includes an... receiving/recording unit, a data storage device, computer software to process the images, and accessories...

  10. 21 CFR 876.1300 - Ingestible telemetric gastrointestinal capsule imaging system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... images of the small bowel with a wireless camera contained in a capsule. This device includes an... receiving/recording unit, a data storage device, computer software to process the images, and accessories...

  11. 21 CFR 876.1300 - Ingestible telemetric gastrointestinal capsule imaging system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... images of the small bowel with a wireless camera contained in a capsule. This device includes an... receiving/recording unit, a data storage device, computer software to process the images, and accessories...

  12. 21 CFR 876.1300 - Ingestible telemetric gastrointestinal capsule imaging system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... images of the small bowel with a wireless camera contained in a capsule. This device includes an... receiving/recording unit, a data storage device, computer software to process the images, and accessories...

  13. SU-E-J-129: A Strategy to Consolidate the Image Database of a VERO Unit Into a Radiotherapy Management System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Y; Medin, P; Yordy, J

    2014-06-01

    Purpose: To present a strategy to integrate the imaging database of a VERO unit with a treatment management system (TMS) to improve clinical workflow and consolidate image data to facilitate clinical quality control and documentation. Methods: A VERO unit is equipped with both kV and MV imaging capabilities for IGRT treatments. It has its own imaging database behind a firewall. It has been a challenge to transfer images on this unit to a TMS in a radiation therapy clinic so that registered images can be reviewed remotely with an approval or rejection record. In this study, a software system, iPump-VERO,more » was developed to connect VERO and a TMS in our clinic. The patient database folder on the VERO unit was mapped to a read-only folder on a file server outside VERO firewall. The application runs on a regular computer with the read access to the patient database folder. It finds the latest registered images and fuses them in one of six predefined patterns before sends them via DICOM connection to the TMS. The residual image registration errors will be overlaid on the fused image to facilitate image review. Results: The fused images of either registered kV planar images or CBCT images are fully DICOM compatible. A sentinel module is built to sense new registered images with negligible computing resources from the VERO ExacTrac imaging computer. It takes a few seconds to fuse registered images and send them to the TMS. The whole process is automated without any human intervention. Conclusion: Transferring images in DICOM connection is the easiest way to consolidate images of various sources in your TMS. Technically the attending does not have to go to the VERO treatment console to review image registration prior delivery. It is a useful tool for a busy clinic with a VERO unit.« less

  14. Binocular Multispectral Adaptive Imaging System (BMAIS)

    DTIC Science & Technology

    2010-07-26

    system for pilots that adaptively integrates shortwave infrared (SWIR), visible, near ‐IR (NIR), off‐head thermal, and computer symbology/imagery into...respective areas. BMAIS is a binocular helmet mounted imaging system that features dual shortwave infrared (SWIR) cameras, embedded image processors and...algorithms and fusion of other sensor sites such as forward looking infrared (FLIR) and other aircraft subsystems. BMAIS is attached to the helmet

  15. Quantification of video-taped images in microcirculation research using inexpensive imaging software (Adobe Photoshop).

    PubMed

    Brunner, J; Krummenauer, F; Lehr, H A

    2000-04-01

    Study end-points in microcirculation research are usually video-taped images rather than numeric computer print-outs. Analysis of these video-taped images for the quantification of microcirculatory parameters usually requires computer-based image analysis systems. Most software programs for image analysis are custom-made, expensive, and limited in their applicability to selected parameters and study end-points. We demonstrate herein that an inexpensive, commercially available computer software (Adobe Photoshop), run on a Macintosh G3 computer with inbuilt graphic capture board provides versatile, easy to use tools for the quantification of digitized video images. Using images obtained by intravital fluorescence microscopy from the pre- and postischemic muscle microcirculation in the skinfold chamber model in hamsters, Photoshop allows simple and rapid quantification (i) of microvessel diameters, (ii) of the functional capillary density and (iii) of postischemic leakage of FITC-labeled high molecular weight dextran from postcapillary venules. We present evidence of the technical accuracy of the software tools and of a high degree of interobserver reliability. Inexpensive commercially available imaging programs (i.e., Adobe Photoshop) provide versatile tools for image analysis with a wide range of potential applications in microcirculation research.

  16. yourSky: Custom Sky-Image Mosaics via the Internet

    NASA Technical Reports Server (NTRS)

    Jacob, Joseph

    2003-01-01

    yourSky (http://yourSky.jpl.nasa.gov) is a computer program that supplies custom astronomical image mosaics of sky regions specified by requesters using client computers connected to the Internet. [yourSky is an upgraded version of the software reported in Software for Generating Mosaics of Astronomical Images (NPO-21121), NASA Tech Briefs, Vol. 25, No. 4 (April 2001), page 16a.] A requester no longer has to engage in the tedious process of determining what subset of images is needed, nor even to know how the images are indexed in image archives. Instead, in response to a requester s specification of the size and location of the sky area, (and optionally of the desired set and type of data, resolution, coordinate system, projection, and image format), yourSky automatically retrieves the component image data from archives totaling tens of terabytes stored on computer tape and disk drives at multiple sites and assembles the component images into a mosaic image by use of a high-performance parallel code. yourSky runs on the server computer where the mosaics are assembled. Because yourSky includes a Web-interface component, no special client software is needed: ordinary Web browser software is sufficient.

  17. Coincident Extraction of Line Objects from Stereo Image Pairs.

    DTIC Science & Technology

    1983-09-01

    4.4.3 Reconstruction of intersections 4.5 Final result processing 5. Presentation of the results 5.1 FIM image processing system 5.2 Extraction results in...image. To achieve this goal, the existing software system had to be modified and extended considerably. The following sections of this report will give...8000 pixels of each image without explicit loading of subimages could not yet be performed due to computer system software problems. m m n m -4- The

  18. Construction, implementation and testing of an image identification system using computer vision methods for fruit flies with economic importance (Diptera: Tephritidae).

    PubMed

    Wang, Jiang-Ning; Chen, Xiao-Lin; Hou, Xin-Wen; Zhou, Li-Bing; Zhu, Chao-Dong; Ji, Li-Qiang

    2017-07-01

    Many species of Tephritidae are damaging to fruit, which might negatively impact international fruit trade. Automatic or semi-automatic identification of fruit flies are greatly needed for diagnosing causes of damage and quarantine protocols for economically relevant insects. A fruit fly image identification system named AFIS1.0 has been developed using 74 species belonging to six genera, which include the majority of pests in the Tephritidae. The system combines automated image identification and manual verification, balancing operability and accuracy. AFIS1.0 integrates image analysis and expert system into a content-based image retrieval framework. In the the automatic identification module, AFIS1.0 gives candidate identification results. Afterwards users can do manual selection based on comparing unidentified images with a subset of images corresponding to the automatic identification result. The system uses Gabor surface features in automated identification and yielded an overall classification success rate of 87% to the species level by Independent Multi-part Image Automatic Identification Test. The system is useful for users with or without specific expertise on Tephritidae in the task of rapid and effective identification of fruit flies. It makes the application of computer vision technology to fruit fly recognition much closer to production level. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. The applicability of holography in forensic identification: a fusion of the traditional optical technique and digital technique.

    PubMed

    Biwasaka, Hitoshi; Saigusa, Kiyoshi; Aoki, Yasuhiro

    2005-03-01

    In this study, the applicability of holography in the 3-dimensional recording of forensic objects such as skulls and mandibulae, and the accuracy of the reconstructed 3-D images, were examined. The virtual holographic image, which records the 3-dimensional data of the original object, is visually observed on the other side of the holographic plate, and reproduces the 3-dimensional shape of the object well. Another type of holographic image, the real image, is focused on a frosted glass screen, and cross-sectional images of the object can be observed. When measuring the distances between anatomical reference points using an image-processing software, the average deviations in the holographic images as compared to the actual objects were less than 0.1 mm. Therefore, holography could be useful as a 3-dimensional recording method of forensic objects. Two superimposition systems using holographic images were examined. In the 2D-3D system, the transparent virtual holographic image of an object is directly superimposed onto the digitized photograph of the same object on the LCD monitor. On the other hand, in the video system, the holographic image captured by the CCD camera is superimposed onto the digitized photographic image using a personal computer. We found that the discrepancy between the outlines of the superimposed holographic and photographic dental images using the video system was smaller than that using the 2D-3D system. Holography seemed to perform comparably to the computer graphic system; however, a fusion with the digital technique would expand the utility of holography in superimposition.

  20. Naval Research Laboratory Fact Book 2012

    DTIC Science & Technology

    2012-11-01

    Distributed network-based battle management High performance computing supporting uniform and nonuniform memory access with single and multithreaded...hyperspectral systems VNIR, MWIR, and LWIR high-resolution systems Wideband SAR systems RF and laser data links High-speed, high-power...hyperspectral imaging system Long-wave infrared ( LWIR ) quantum well IR photodetector (QWIP) imaging system Research and Development Services Divi- sion

  1. Thermal Infrared Imaging-Based Computational Psychophysiology for Psychometrics.

    PubMed

    Cardone, Daniela; Pinti, Paola; Merla, Arcangelo

    2015-01-01

    Thermal infrared imaging has been proposed as a potential system for the computational assessment of human autonomic nervous activity and psychophysiological states in a contactless and noninvasive way. Through bioheat modeling of facial thermal imagery, several vital signs can be extracted, including localized blood perfusion, cardiac pulse, breath rate, and sudomotor response, since all these parameters impact the cutaneous temperature. The obtained physiological information could then be used to draw inferences about a variety of psychophysiological or affective states, as proved by the increasing number of psychophysiological studies using thermal infrared imaging. This paper presents therefore a review of the principal achievements of thermal infrared imaging in computational physiology with regard to its capability of monitoring psychophysiological activity.

  2. Real time display Fourier-domain OCT using multi-thread parallel computing with data vectorization

    NASA Astrophysics Data System (ADS)

    Eom, Tae Joong; Kim, Hoon Seop; Kim, Chul Min; Lee, Yeung Lak; Choi, Eun-Seo

    2011-03-01

    We demonstrate a real-time display of processed OCT images using multi-thread parallel computing with a quad-core CPU of a personal computer. The data of each A-line are treated as one vector to maximize the data translation rate between the cores of the CPU and RAM stored image data. A display rate of 29.9 frames/sec for processed OCT data (4096 FFT-size x 500 A-scans) is achieved in our system using a wavelength swept source with 52-kHz swept frequency. The data processing times of the OCT image and a Doppler OCT image with a 4-time average are 23.8 msec and 91.4 msec.

  3. Quantitative 3-D Imaging, Segmentation and Feature Extraction of the Respiratory System in Small Mammals for Computational Biophysics Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trease, Lynn L.; Trease, Harold E.; Fowler, John

    2007-03-15

    One of the critical steps toward performing computational biology simulations, using mesh based integration methods, is in using topologically faithful geometry derived from experimental digital image data as the basis for generating the computational meshes. Digital image data representations contain both the topology of the geometric features and experimental field data distributions. The geometric features that need to be captured from the digital image data are three-dimensional, therefore the process and tools we have developed work with volumetric image data represented as data-cubes. This allows us to take advantage of 2D curvature information during the segmentation and feature extraction process.more » The process is basically: 1) segmenting to isolate and enhance the contrast of the features that we wish to extract and reconstruct, 2) extracting the geometry of the features in an isosurfacing technique, and 3) building the computational mesh using the extracted feature geometry. “Quantitative” image reconstruction and feature extraction is done for the purpose of generating computational meshes, not just for producing graphics "screen" quality images. For example, the surface geometry that we extract must represent a closed water-tight surface.« less

  4. A novel image encryption algorithm based on the chaotic system and DNA computing

    NASA Astrophysics Data System (ADS)

    Chai, Xiuli; Gan, Zhihua; Lu, Yang; Chen, Yiran; Han, Daojun

    A novel image encryption algorithm using the chaotic system and deoxyribonucleic acid (DNA) computing is presented. Different from the traditional encryption methods, the permutation and diffusion of our method are manipulated on the 3D DNA matrix. Firstly, a 3D DNA matrix is obtained through bit plane splitting, bit plane recombination, DNA encoding of the plain image. Secondly, 3D DNA level permutation based on position sequence group (3DDNALPBPSG) is introduced, and chaotic sequences generated from the chaotic system are employed to permutate the positions of the elements of the 3D DNA matrix. Thirdly, 3D DNA level diffusion (3DDNALD) is given, the confused 3D DNA matrix is split into sub-blocks, and XOR operation by block is manipulated to the sub-DNA matrix and the key DNA matrix from the chaotic system. At last, by decoding the diffused DNA matrix, we get the cipher image. SHA 256 hash of the plain image is employed to calculate the initial values of the chaotic system to avoid chosen plaintext attack. Experimental results and security analyses show that our scheme is secure against several known attacks, and it can effectively protect the security of the images.

  5. Use of Cone Beam Computed Tomography in Endodontics

    PubMed Central

    Scarfe, William C.; Levin, Martin D.; Gane, David; Farman, Allan G.

    2009-01-01

    Cone Beam Computed Tomography (CBCT) is a diagnostic imaging modality that provides high-quality, accurate three-dimensional (3D) representations of the osseous elements of the maxillofacial skeleton. CBCT systems are available that provide small field of view images at low dose with sufficient spatial resolution for applications in endodontic diagnosis, treatment guidance, and posttreatment evaluation. This article provides a literature review and pictorial demonstration of CBCT as an imaging adjunct for endodontics. PMID:20379362

  6. An investigation of automatic exposure control calibration for chest imaging with a computed radiography system.

    PubMed

    Moore, C S; Wood, T J; Avery, G; Balcam, S; Needler, L; Beavis, A W; Saunderson, J R

    2014-05-07

    The purpose of this study was to examine the use of three physical image quality metrics in the calibration of an automatic exposure control (AEC) device for chest radiography with a computed radiography (CR) imaging system. The metrics assessed were signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and mean effective noise equivalent quanta (eNEQm), all measured using a uniform chest phantom. Subsequent calibration curves were derived to ensure each metric was held constant across the tube voltage range. Each curve was assessed for its clinical appropriateness by generating computer simulated chest images with correct detector air kermas for each tube voltage, and grading these against reference images which were reconstructed at detector air kermas correct for the constant detector dose indicator (DDI) curve currently programmed into the AEC device. All simulated chest images contained clinically realistic projected anatomy and anatomical noise and were scored by experienced image evaluators. Constant DDI and CNR curves do not appear to provide optimized performance across the diagnostic energy range. Conversely, constant eNEQm and SNR do appear to provide optimized performance, with the latter being the preferred calibration metric given as it is easier to measure in practice. Medical physicists may use the SNR image quality metric described here when setting up and optimizing AEC devices for chest radiography CR systems with a degree of confidence that resulting clinical image quality will be adequate for the required clinical task. However, this must be done with close cooperation of expert image evaluators, to ensure appropriate levels of detector air kerma.

  7. An investigation of automatic exposure control calibration for chest imaging with a computed radiography system

    NASA Astrophysics Data System (ADS)

    Moore, C. S.; Wood, T. J.; Avery, G.; Balcam, S.; Needler, L.; Beavis, A. W.; Saunderson, J. R.

    2014-05-01

    The purpose of this study was to examine the use of three physical image quality metrics in the calibration of an automatic exposure control (AEC) device for chest radiography with a computed radiography (CR) imaging system. The metrics assessed were signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and mean effective noise equivalent quanta (eNEQm), all measured using a uniform chest phantom. Subsequent calibration curves were derived to ensure each metric was held constant across the tube voltage range. Each curve was assessed for its clinical appropriateness by generating computer simulated chest images with correct detector air kermas for each tube voltage, and grading these against reference images which were reconstructed at detector air kermas correct for the constant detector dose indicator (DDI) curve currently programmed into the AEC device. All simulated chest images contained clinically realistic projected anatomy and anatomical noise and were scored by experienced image evaluators. Constant DDI and CNR curves do not appear to provide optimized performance across the diagnostic energy range. Conversely, constant eNEQm and SNR do appear to provide optimized performance, with the latter being the preferred calibration metric given as it is easier to measure in practice. Medical physicists may use the SNR image quality metric described here when setting up and optimizing AEC devices for chest radiography CR systems with a degree of confidence that resulting clinical image quality will be adequate for the required clinical task. However, this must be done with close cooperation of expert image evaluators, to ensure appropriate levels of detector air kerma.

  8. KAMEDIN: a telemedicine system for computer supported cooperative work and remote image analysis in radiology.

    PubMed

    Handels, H; Busch, C; Encarnação, J; Hahn, C; Kühn, V; Miehe, J; Pöppl, S I; Rinast, E; Rossmanith, C; Seibert, F; Will, A

    1997-03-01

    The software system KAMEDIN (Kooperatives Arbeiten und MEdizinische Diagnostik auf Innovativen Netzen) is a multimedia telemedicine system for exchange, cooperative diagnostics, and remote analysis of digital medical image data. It provides components for visualisation, processing, and synchronised audio-visual discussion of medical images. Techniques of computer supported cooperative work (CSCW) synchronise user interactions during a teleconference. Visibility of both local and remote cursor on the conference workstations facilitates telepointing and reinforces the conference partner's telepresence. Audio communication during teleconferences is supported by an integrated audio component. Furthermore, brain tissue segmentation with artificial neural networks can be performed on an external supercomputer as a remote image analysis procedure. KAMEDIN is designed as a low cost CSCW tool for ISDN based telecommunication. However it can be used on any TCP/IP supporting network. In a field test, KAMEDIN was installed in 15 clinics and medical departments to validate the systems' usability. The telemedicine system KAMEDIN has been developed, tested, and evaluated within a research project sponsored by German Telekom.

  9. Computational and design methods for advanced imaging

    NASA Astrophysics Data System (ADS)

    Birch, Gabriel C.

    This dissertation merges the optical design and computational aspects of imaging systems to create novel devices that solve engineering problems in optical science and attempts to expand the solution space available to the optical designer. This dissertation is divided into two parts: the first discusses a new active illumination depth sensing modality, while the second part discusses a passive illumination system called plenoptic, or lightfield, imaging. The new depth sensing modality introduced in part one is called depth through controlled aberration. This technique illuminates a target with a known, aberrated projected pattern and takes an image using a traditional, unmodified imaging system. Knowing how the added aberration in the projected pattern changes as a function of depth, we are able to quantitatively determine depth of a series of points from the camera. A major advantage this method permits is the ability for illumination and imaging axes to be coincident. Plenoptic cameras capture both spatial and angular data simultaneously. This dissertation present a new set of parameters that permit the design and comparison of plenoptic devices outside the traditionally published plenoptic 1.0 and plenoptic 2.0 configurations. Additionally, a series of engineering advancements are presented, including full system raytraces of raw plenoptic images, Zernike compression techniques of raw image files, and non-uniform lenslet arrays to compensate for plenoptic system aberrations. Finally, a new snapshot imaging spectrometer is proposed based off the plenoptic configuration.

  10. Microarthroscopy System With Image Processing Technology Developed for Minimally Invasive Surgery

    NASA Technical Reports Server (NTRS)

    Steele, Gynelle C.

    2001-01-01

    In a joint effort, NASA, Micro Medical Devices, and the Cleveland Clinic have developed a microarthroscopy system with digital image processing. This system consists of a disposable endoscope the size of a needle that is aimed at expanding the use of minimally invasive surgery on the knee, ankle, and other small joints. This device not only allows surgeons to make smaller incisions (by improving the clarity and brightness of images), but it gives them a better view of the injured area to make more accurate diagnoses. Because of its small size, the endoscope helps reduce physical trauma and speeds patient recovery. The faster recovery rate also makes the system cost effective for patients. The digital image processing software used with the device was originally developed by the NASA Glenn Research Center to conduct computer simulations of satellite positioning in space. It was later modified to reflect lessons learned in enhancing photographic images in support of the Center's microgravity program. Glenn's Photovoltaic Branch and Graphics and Visualization Lab (G-VIS) computer programmers and software developers enhanced and speed up graphic imaging for this application. Mary Vickerman at Glenn developed algorithms that enabled Micro Medical Devices to eliminate interference and improve the images.

  11. A novel method to acquire 3D data from serial 2D images of a dental cast

    NASA Astrophysics Data System (ADS)

    Yi, Yaxing; Li, Zhongke; Chen, Qi; Shao, Jun; Li, Xinshe; Liu, Zhiqin

    2007-05-01

    This paper introduced a newly developed method to acquire three-dimensional data from serial two-dimensional images of a dental cast. The system consists of a computer and a set of data acquiring device. The data acquiring device is used to take serial pictures of the a dental cast; an artificial neural network works to translate two-dimensional pictures to three-dimensional data; then three-dimensional image can reconstruct by the computer. The three-dimensional data acquiring of dental casts is the foundation of computer-aided diagnosis and treatment planning in orthodontics.

  12. Digital hand atlas and computer-aided bone age assessment via the Web

    NASA Astrophysics Data System (ADS)

    Cao, Fei; Huang, H. K.; Pietka, Ewa; Gilsanz, Vicente

    1999-07-01

    A frequently used assessment method of bone age is atlas matching by a radiological examination of a hand image against a reference set of atlas patterns of normal standards. We are in a process of developing a digital hand atlas with a large standard set of normal hand and wrist images that reflect the skeletal maturity, race and sex difference, and current child development. The digital hand atlas will be used for a computer-aided bone age assessment via Web. We have designed and partially implemented a computer-aided diagnostic (CAD) system for Web-based bone age assessment. The system consists of a digital hand atlas, a relational image database and a Web-based user interface. The digital atlas is based on a large standard set of normal hand an wrist images with extracted bone objects and quantitative features. The image database uses a content- based indexing to organize the hand images and their attributes and present to users in a structured way. The Web-based user interface allows users to interact with the hand image database from browsers. Users can use a Web browser to push a clinical hand image to the CAD server for a bone age assessment. Quantitative features on the examined image, which reflect the skeletal maturity, will be extracted and compared with patterns from the atlas database to assess the bone age. The relevant reference imags and the final assessment report will be sent back to the user's browser via Web. The digital atlas will remove the disadvantages of the currently out-of-date one and allow the bone age assessment to be computerized and done conveniently via Web. In this paper, we present the system design and Web-based client-server model for computer-assisted bone age assessment and our initial implementation of the digital atlas database.

  13. Image processing of aerodynamic data

    NASA Technical Reports Server (NTRS)

    Faulcon, N. D.

    1985-01-01

    The use of digital image processing techniques in analyzing and evaluating aerodynamic data is discussed. An image processing system that converts images derived from digital data or from transparent film into black and white, full color, or false color pictures is described. Applications to black and white images of a model wing with a NACA 64-210 section in simulated rain and to computed low properties for transonic flow past a NACA 0012 airfoil are presented. Image processing techniques are used to visualize the variations of water film thicknesses on the wing model and to illustrate the contours of computed Mach numbers for the flow past the NACA 0012 airfoil. Since the computed data for the NACA 0012 airfoil are available only at discrete spatial locations, an interpolation method is used to provide values of the Mach number over the entire field.

  14. CHARGE Image Generator: Theory of Operation and Author Language Support. Technical Report 75-3.

    ERIC Educational Resources Information Center

    Gunwaldsen, Roger L.

    The image generator function and author language software support for the CHARGE (Color Halftone Area Graphics Environment) Interactive Graphics System are described. Designed initially for use in computer-assisted instruction (CAI) systems, the CHARGE Interactive Graphics System can provide graphic displays for various applications including…

  15. Performance enhancement of a web-based picture archiving and communication system using commercial off-the-shelf server clusters.

    PubMed

    Liu, Yan-Lin; Shih, Cheng-Ting; Chang, Yuan-Jen; Chang, Shu-Jun; Wu, Jay

    2014-01-01

    The rapid development of picture archiving and communication systems (PACSs) thoroughly changes the way of medical informatics communication and management. However, as the scale of a hospital's operations increases, the large amount of digital images transferred in the network inevitably decreases system efficiency. In this study, a server cluster consisting of two server nodes was constructed. Network load balancing (NLB), distributed file system (DFS), and structured query language (SQL) duplication services were installed. A total of 1 to 16 workstations were used to transfer computed radiography (CR), computed tomography (CT), and magnetic resonance (MR) images simultaneously to simulate the clinical situation. The average transmission rate (ATR) was analyzed between the cluster and noncluster servers. In the download scenario, the ATRs of CR, CT, and MR images increased by 44.3%, 56.6%, and 100.9%, respectively, when using the server cluster, whereas the ATRs increased by 23.0%, 39.2%, and 24.9% in the upload scenario. In the mix scenario, the transmission performance increased by 45.2% when using eight computer units. The fault tolerance mechanisms of the server cluster maintained the system availability and image integrity. The server cluster can improve the transmission efficiency while maintaining high reliability and continuous availability in a healthcare environment.

  16. Parallel image reconstruction for 3D positron emission tomography from incomplete 2D projection data

    NASA Astrophysics Data System (ADS)

    Guerrero, Thomas M.; Ricci, Anthony R.; Dahlbom, Magnus; Cherry, Simon R.; Hoffman, Edward T.

    1993-07-01

    The problem of excessive computational time in 3D Positron Emission Tomography (3D PET) reconstruction is defined, and we present an approach for solving this problem through the construction of an inexpensive parallel processing system and the adoption of the FAVOR algorithm. Currently, the 3D reconstruction of the 610 images of a total body procedure would require 80 hours and the 3D reconstruction of the 620 images of a dynamic study would require 110 hours. An inexpensive parallel processing system for 3D PET reconstruction is constructed from the integration of board level products from multiple vendors. The system achieves its computational performance through the use of 6U VME four i860 processor boards, the processor boards from five manufacturers are discussed from our perspective. The new 3D PET reconstruction algorithm FAVOR, FAst VOlume Reconstructor, that promises a substantial speed improvement is adopted. Preliminary results from parallelizing FAVOR are utilized in formulating architectural improvements for this problem. In summary, we are addressing the problem of excessive computational time in 3D PET image reconstruction, through the construction of an inexpensive parallel processing system and the parallelization of a 3D reconstruction algorithm that uses the incomplete data set that is produced by current PET systems.

  17. Performance Enhancement of a Web-Based Picture Archiving and Communication System Using Commercial Off-the-Shelf Server Clusters

    PubMed Central

    Chang, Shu-Jun; Wu, Jay

    2014-01-01

    The rapid development of picture archiving and communication systems (PACSs) thoroughly changes the way of medical informatics communication and management. However, as the scale of a hospital's operations increases, the large amount of digital images transferred in the network inevitably decreases system efficiency. In this study, a server cluster consisting of two server nodes was constructed. Network load balancing (NLB), distributed file system (DFS), and structured query language (SQL) duplication services were installed. A total of 1 to 16 workstations were used to transfer computed radiography (CR), computed tomography (CT), and magnetic resonance (MR) images simultaneously to simulate the clinical situation. The average transmission rate (ATR) was analyzed between the cluster and noncluster servers. In the download scenario, the ATRs of CR, CT, and MR images increased by 44.3%, 56.6%, and 100.9%, respectively, when using the server cluster, whereas the ATRs increased by 23.0%, 39.2%, and 24.9% in the upload scenario. In the mix scenario, the transmission performance increased by 45.2% when using eight computer units. The fault tolerance mechanisms of the server cluster maintained the system availability and image integrity. The server cluster can improve the transmission efficiency while maintaining high reliability and continuous availability in a healthcare environment. PMID:24701580

  18. Optimization of a Biometric System Based on Acoustic Images

    PubMed Central

    Izquierdo Fuente, Alberto; Del Val Puente, Lara; Villacorta Calvo, Juan J.; Raboso Mateos, Mariano

    2014-01-01

    On the basis of an acoustic biometric system that captures 16 acoustic images of a person for 4 frequencies and 4 positions, a study was carried out to improve the performance of the system. On a first stage, an analysis to determine which images provide more information to the system was carried out showing that a set of 12 images allows the system to obtain results that are equivalent to using all of the 16 images. Finally, optimization techniques were used to obtain the set of weights associated with each acoustic image that maximizes the performance of the biometric system. These results improve significantly the performance of the preliminary system, while reducing the time of acquisition and computational burden, since the number of acoustic images was reduced. PMID:24616643

  19. Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines.

    PubMed

    del Val, Lara; Izquierdo-Fuente, Alberto; Villacorta, Juan J; Raboso, Mariano

    2015-06-17

    Drawing on the results of an acoustic biometric system based on a MSE classifier, a new biometric system has been implemented. This new system preprocesses acoustic images, extracts several parameters and finally classifies them, based on Support Vector Machine (SVM). The preprocessing techniques used are spatial filtering, segmentation-based on a Gaussian Mixture Model (GMM) to separate the person from the background, masking-to reduce the dimensions of images-and binarization-to reduce the size of each image. An analysis of classification error and a study of the sensitivity of the error versus the computational burden of each implemented algorithm are presented. This allows the selection of the most relevant algorithms, according to the benefits required by the system. A significant improvement of the biometric system has been achieved by reducing the classification error, the computational burden and the storage requirements.

  20. Introduction to computer image processing

    NASA Technical Reports Server (NTRS)

    Moik, J. G.

    1973-01-01

    Theoretical backgrounds and digital techniques for a class of image processing problems are presented. Image formation in the context of linear system theory, image evaluation, noise characteristics, mathematical operations on image and their implementation are discussed. Various techniques for image restoration and image enhancement are presented. Methods for object extraction and the problem of pictorial pattern recognition and classification are discussed.

  1. Image understanding systems based on the unifying representation of perceptual and conceptual information and the solution of mid-level and high-level vision problems

    NASA Astrophysics Data System (ADS)

    Kuvychko, Igor

    2001-10-01

    Vision is a part of a larger information system that converts visual information into knowledge structures. These structures drive vision process, resolving ambiguity and uncertainty via feedback, and provide image understanding, that is an interpretation of visual information in terms of such knowledge models. A computer vision system based on such principles requires unifying representation of perceptual and conceptual information. Computer simulation models are built on the basis of graphs/networks. The ability of human brain to emulate similar graph/networks models is found. That means a very important shift of paradigm in our knowledge about brain from neural networks to the cortical software. Starting from the primary visual areas, brain analyzes an image as a graph-type spatial structure. Primary areas provide active fusion of image features on a spatial grid-like structure, where nodes are cortical columns. The spatial combination of different neighbor features cannot be described as a statistical/integral characteristic of the analyzed region, but uniquely characterizes such region itself. Spatial logic and topology naturally present in such structures. Mid-level vision processes like clustering, perceptual grouping, multilevel hierarchical compression, separation of figure from ground, etc. are special kinds of graph/network transformations. They convert low-level image structure into the set of more abstract ones, which represent objects and visual scene, making them easy for analysis by higher-level knowledge structures. Higher-level vision phenomena like shape from shading, occlusion, etc. are results of such analysis. Such approach gives opportunity not only to explain frequently unexplainable results of the cognitive science, but also to create intelligent computer vision systems that simulate perceptional processes in both what and where visual pathways. Such systems can open new horizons for robotic and computer vision industries.

  2. Informatics in radiology: Intuitive user interface for 3D image manipulation using augmented reality and a smartphone as a remote control.

    PubMed

    Nakata, Norio; Suzuki, Naoki; Hattori, Asaki; Hirai, Naoya; Miyamoto, Yukio; Fukuda, Kunihiko

    2012-01-01

    Although widely used as a pointing device on personal computers (PCs), the mouse was originally designed for control of two-dimensional (2D) cursor movement and is not suited to complex three-dimensional (3D) image manipulation. Augmented reality (AR) is a field of computer science that involves combining the physical world and an interactive 3D virtual world; it represents a new 3D user interface (UI) paradigm. A system for 3D and four-dimensional (4D) image manipulation has been developed that uses optical tracking AR integrated with a smartphone remote control. The smartphone is placed in a hard case (jacket) with a 2D printed fiducial marker for AR on the back. It is connected to a conventional PC with an embedded Web camera by means of WiFi. The touch screen UI of the smartphone is then used as a remote control for 3D and 4D image manipulation. Using this system, the radiologist can easily manipulate 3D and 4D images from computed tomography and magnetic resonance imaging in an AR environment with high-quality image resolution. Pilot assessment of this system suggests that radiologists will be able to manipulate 3D and 4D images in the reading room in the near future. Supplemental material available at http://radiographics.rsna.org/lookup/suppl/doi:10.1148/rg.324115086/-/DC1.

  3. Reconstruction for time-domain in vivo EPR 3D multigradient oximetric imaging--a parallel processing perspective.

    PubMed

    Dharmaraj, Christopher D; Thadikonda, Kishan; Fletcher, Anthony R; Doan, Phuc N; Devasahayam, Nallathamby; Matsumoto, Shingo; Johnson, Calvin A; Cook, John A; Mitchell, James B; Subramanian, Sankaran; Krishna, Murali C

    2009-01-01

    Three-dimensional Oximetric Electron Paramagnetic Resonance Imaging using the Single Point Imaging modality generates unpaired spin density and oxygen images that can readily distinguish between normal and tumor tissues in small animals. It is also possible with fast imaging to track the changes in tissue oxygenation in response to the oxygen content in the breathing air. However, this involves dealing with gigabytes of data for each 3D oximetric imaging experiment involving digital band pass filtering and background noise subtraction, followed by 3D Fourier reconstruction. This process is rather slow in a conventional uniprocessor system. This paper presents a parallelization framework using OpenMP runtime support and parallel MATLAB to execute such computationally intensive programs. The Intel compiler is used to develop a parallel C++ code based on OpenMP. The code is executed on four Dual-Core AMD Opteron shared memory processors, to reduce the computational burden of the filtration task significantly. The results show that the parallel code for filtration has achieved a speed up factor of 46.66 as against the equivalent serial MATLAB code. In addition, a parallel MATLAB code has been developed to perform 3D Fourier reconstruction. Speedup factors of 4.57 and 4.25 have been achieved during the reconstruction process and oximetry computation, for a data set with 23 x 23 x 23 gradient steps. The execution time has been computed for both the serial and parallel implementations using different dimensions of the data and presented for comparison. The reported system has been designed to be easily accessible even from low-cost personal computers through local internet (NIHnet). The experimental results demonstrate that the parallel computing provides a source of high computational power to obtain biophysical parameters from 3D EPR oximetric imaging, almost in real-time.

  4. An overview of computer vision

    NASA Technical Reports Server (NTRS)

    Gevarter, W. B.

    1982-01-01

    An overview of computer vision is provided. Image understanding and scene analysis are emphasized, and pertinent aspects of pattern recognition are treated. The basic approach to computer vision systems, the techniques utilized, applications, the current existing systems and state-of-the-art issues and research requirements, who is doing it and who is funding it, and future trends and expectations are reviewed.

  5. Dual-modality imaging of function and physiology

    NASA Astrophysics Data System (ADS)

    Hasegawa, Bruce H.; Iwata, Koji; Wong, Kenneth H.; Wu, Max C.; Da Silva, Angela; Tang, Hamilton R.; Barber, William C.; Hwang, Andrew B.; Sakdinawat, Anne E.

    2002-04-01

    Dual-modality imaging is a technique where computed tomography or magnetic resonance imaging is combined with positron emission tomography or single-photon computed tomography to acquire structural and functional images with an integrated system. The data are acquired during a single procedure with the patient on a table viewed by both detectors to facilitate correlation between the structural and function images. The resulting data can be useful for localization for more specific diagnosis of disease. In addition, the anatomical information can be used to compensate the correlated radionuclide data for physical perturbations such as photon attenuation, scatter radiation, and partial volume errors. Thus, dual-modality imaging provides a priori information that can be used to improve both the visual quality and the quantitative accuracy of the radionuclide images. Dual-modality imaging systems also are being developed for biological research that involves small animals. The small-animal dual-modality systems offer advantages for measurements that currently are performed invasively using autoradiography and tissue sampling. By acquiring the required data noninvasively, dual-modality imaging has the potential to allow serial studies in a single animal, to perform measurements with fewer animals, and to improve the statistical quality of the data.

  6. Cone-beam x-ray luminescence computed tomography based on x-ray absorption dosage

    NASA Astrophysics Data System (ADS)

    Liu, Tianshuai; Rong, Junyan; Gao, Peng; Zhang, Wenli; Liu, Wenlei; Zhang, Yuanke; Lu, Hongbing

    2018-02-01

    With the advances of x-ray excitable nanophosphors, x-ray luminescence computed tomography (XLCT) has become a promising hybrid imaging modality. In particular, a cone-beam XLCT (CB-XLCT) system has demonstrated its potential in in vivo imaging with the advantage of fast imaging speed over other XLCT systems. Currently, the imaging models of most XLCT systems assume that nanophosphors emit light based on the intensity distribution of x-ray within the object, not completely reflecting the nature of the x-ray excitation process. To improve the imaging quality of CB-XLCT, an imaging model that adopts an excitation model of nanophosphors based on x-ray absorption dosage is proposed in this study. To solve the ill-posed inverse problem, a reconstruction algorithm that combines the adaptive Tikhonov regularization method with the imaging model is implemented for CB-XLCT reconstruction. Numerical simulations and phantom experiments indicate that compared with the traditional forward model based on x-ray intensity, the proposed dose-based model could improve the image quality of CB-XLCT significantly in terms of target shape, localization accuracy, and image contrast. In addition, the proposed model behaves better in distinguishing closer targets, demonstrating its advantage in improving spatial resolution.

  7. Optimization of compressive 4D-spatio-spectral snapshot imaging

    NASA Astrophysics Data System (ADS)

    Zhao, Xia; Feng, Weiyi; Lin, Lihua; Su, Wu; Xu, Guoqing

    2017-10-01

    In this paper, a modified 3D computational reconstruction method in the compressive 4D-spectro-volumetric snapshot imaging system is proposed for better sensing spectral information of 3D objects. In the design of the imaging system, a microlens array (MLA) is used to obtain a set of multi-view elemental images (EIs) of the 3D scenes. Then, these elemental images with one dimensional spectral information and different perspectives are captured by the coded aperture snapshot spectral imager (CASSI) which can sense the spectral data cube onto a compressive 2D measurement image. Finally, the depth images of 3D objects at arbitrary depths, like a focal stack, are computed by inversely mapping the elemental images according to geometrical optics. With the spectral estimation algorithm, the spectral information of 3D objects is also reconstructed. Using a shifted translation matrix, the contrast of the reconstruction result is further enhanced. Numerical simulation results verify the performance of the proposed method. The system can obtain both 3D spatial information and spectral data on 3D objects using only one single snapshot, which is valuable in the agricultural harvesting robots and other 3D dynamic scenes.

  8. Handling Big Data in Medical Imaging: Iterative Reconstruction with Large-Scale Automated Parallel Computation

    PubMed Central

    Lee, Jae H.; Yao, Yushu; Shrestha, Uttam; Gullberg, Grant T.; Seo, Youngho

    2014-01-01

    The primary goal of this project is to implement the iterative statistical image reconstruction algorithm, in this case maximum likelihood expectation maximum (MLEM) used for dynamic cardiac single photon emission computed tomography, on Spark/GraphX. This involves porting the algorithm to run on large-scale parallel computing systems. Spark is an easy-to- program software platform that can handle large amounts of data in parallel. GraphX is a graph analytic system running on top of Spark to handle graph and sparse linear algebra operations in parallel. The main advantage of implementing MLEM algorithm in Spark/GraphX is that it allows users to parallelize such computation without any expertise in parallel computing or prior knowledge in computer science. In this paper we demonstrate a successful implementation of MLEM in Spark/GraphX and present the performance gains with the goal to eventually make it useable in clinical setting. PMID:27081299

  9. Handling Big Data in Medical Imaging: Iterative Reconstruction with Large-Scale Automated Parallel Computation.

    PubMed

    Lee, Jae H; Yao, Yushu; Shrestha, Uttam; Gullberg, Grant T; Seo, Youngho

    2014-11-01

    The primary goal of this project is to implement the iterative statistical image reconstruction algorithm, in this case maximum likelihood expectation maximum (MLEM) used for dynamic cardiac single photon emission computed tomography, on Spark/GraphX. This involves porting the algorithm to run on large-scale parallel computing systems. Spark is an easy-to- program software platform that can handle large amounts of data in parallel. GraphX is a graph analytic system running on top of Spark to handle graph and sparse linear algebra operations in parallel. The main advantage of implementing MLEM algorithm in Spark/GraphX is that it allows users to parallelize such computation without any expertise in parallel computing or prior knowledge in computer science. In this paper we demonstrate a successful implementation of MLEM in Spark/GraphX and present the performance gains with the goal to eventually make it useable in clinical setting.

  10. ERTS data user investigation to develop a multistage forest sampling inventory system

    NASA Technical Reports Server (NTRS)

    Langley, P. G.; Vanroessel, J. W. (Principal Investigator); Wert, S. L.

    1973-01-01

    The author has identified the following significant results. A system to provide precision annotation of predetermined forest inventory sampling units on the ERTS-1 MSS images was developed. In addition, an annotation system for high altitude U2 photographs was completed. MSS bulk image accuracy is good enough to allow the use of one square mile sampling units. IMANCO image analyzer interpretation work for small scale images demonstrated the need for much additional analyses. Continuing image interpretation work for the next reporting period is concentrated on manual image interpretation work as well as digital interpretation system development using the computer compatible tapes.

  11. A database system to support image algorithm evaluation

    NASA Technical Reports Server (NTRS)

    Lien, Y. E.

    1977-01-01

    The design is given of an interactive image database system IMDB, which allows the user to create, retrieve, store, display, and manipulate images through the facility of a high-level, interactive image query (IQ) language. The query language IQ permits the user to define false color functions, pixel value transformations, overlay functions, zoom functions, and windows. The user manipulates the images through generic functions. The user can direct images to display devices for visual and qualitative analysis. Image histograms and pixel value distributions can also be computed to obtain a quantitative analysis of images.

  12. High-resolution 3D imaging of polymerized photonic crystals by lab-based x-ray nanotomography with 50-nm resolution

    NASA Astrophysics Data System (ADS)

    Yin, Leilei; Chen, Ying-Chieh; Gelb, Jeff; Stevenson, Darren M.; Braun, Paul A.

    2010-09-01

    High resolution x-ray computed tomography is a powerful non-destructive 3-D imaging method. It can offer superior resolution on objects that are opaque or low contrast for optical microscopy. Synchrotron based x-ray computed tomography systems have been available for scientific research, but remain difficult to access for broader users. This work introduces a lab-based high-resolution x-ray nanotomography system with 50nm resolution in absorption and Zernike phase contrast modes. Using this system, we have demonstrated high quality 3-D images of polymerized photonic crystals which have been analyzed for band gap structures. The isotropic volumetric data shows excellent consistency with other characterization results.

  13. Image formation simulation for computer-aided inspection planning of machine vision systems

    NASA Astrophysics Data System (ADS)

    Irgenfried, Stephan; Bergmann, Stephan; Mohammadikaji, Mahsa; Beyerer, Jürgen; Dachsbacher, Carsten; Wörn, Heinz

    2017-06-01

    In this work, a simulation toolset for Computer Aided Inspection Planning (CAIP) of systems for automated optical inspection (AOI) is presented along with a versatile two-robot-setup for verification of simulation and system planning results. The toolset helps to narrow down the large design space of optical inspection systems in interaction with a system expert. The image formation taking place in optical inspection systems is simulated using GPU-based real time graphics and high quality off-line-rendering. The simulation pipeline allows a stepwise optimization of the system, from fast evaluation of surface patch visibility based on real time graphics up to evaluation of image processing results based on off-line global illumination calculation. A focus of this work is on the dependency of simulation quality on measuring, modeling and parameterizing the optical surface properties of the object to be inspected. The applicability to real world problems is demonstrated by taking the example of planning a 3D laser scanner application. Qualitative and quantitative comparison results of synthetic and real images are presented.

  14. Towards a computer-aided diagnosis system for vocal cord diseases.

    PubMed

    Verikas, A; Gelzinis, A; Bacauskiene, M; Uloza, V

    2006-01-01

    The objective of this work is to investigate a possibility of creating a computer-aided decision support system for an automated analysis of vocal cord images aiming to categorize diseases of vocal cords. The problem is treated as a pattern recognition task. To obtain a concise and informative representation of a vocal cord image, colour, texture, and geometrical features are used. The representation is further analyzed by a pattern classifier categorizing the image into healthy, diffuse, and nodular classes. The approach developed was tested on 785 vocal cord images collected at the Department of Otolaryngology, Kaunas University of Medicine, Lithuania. A correct classification rate of over 87% was obtained when categorizing a set of unseen images into the aforementioned three classes. Bearing in mind the high similarity of the decision classes, the results obtained are rather encouraging and the developed tools could be very helpful for assuring objective analysis of the images of laryngeal diseases.

  15. Machine vision for real time orbital operations

    NASA Technical Reports Server (NTRS)

    Vinz, Frank L.

    1988-01-01

    Machine vision for automation and robotic operation of Space Station era systems has the potential for increasing the efficiency of orbital servicing, repair, assembly and docking tasks. A machine vision research project is described in which a TV camera is used for inputing visual data to a computer so that image processing may be achieved for real time control of these orbital operations. A technique has resulted from this research which reduces computer memory requirements and greatly increases typical computational speed such that it has the potential for development into a real time orbital machine vision system. This technique is called AI BOSS (Analysis of Images by Box Scan and Syntax).

  16. Optical image hiding based on computational ghost imaging

    NASA Astrophysics Data System (ADS)

    Wang, Le; Zhao, Shengmei; Cheng, Weiwen; Gong, Longyan; Chen, Hanwu

    2016-05-01

    Imaging hiding schemes play important roles in now big data times. They provide copyright protections of digital images. In the paper, we propose a novel image hiding scheme based on computational ghost imaging to have strong robustness and high security. The watermark is encrypted with the configuration of a computational ghost imaging system, and the random speckle patterns compose a secret key. Least significant bit algorithm is adopted to embed the watermark and both the second-order correlation algorithm and the compressed sensing (CS) algorithm are used to extract the watermark. The experimental and simulation results show that the authorized users can get the watermark with the secret key. The watermark image could not be retrieved when the eavesdropping ratio is less than 45% with the second-order correlation algorithm, whereas it is less than 20% with the TVAL3 CS reconstructed algorithm. In addition, the proposed scheme is robust against the 'salt and pepper' noise and image cropping degradations.

  17. Three-dimensional monochromatic x-ray CT

    NASA Astrophysics Data System (ADS)

    Saito, Tsuneo; Kudo, Hiroyuki; Takeda, Tohoru; Itai, Yuji; Tokumori, Kenji; Toyofuku, Fukai; Hyodo, Kazuyuki; Ando, Masami; Nishimura, Ktsuyuki; Uyama, Chikao

    1995-08-01

    In this paper, we describe a 3D computed tomography (3D CT) using monochromatic x-rays generated by synchrotron radiation, which performs a direct reconstruction of 3D volume image of an object from its cone-beam projections. For the develpment of 3D CT, scanning orbit of x-ray source to obtain complete 3D information about an object and corresponding 3D image reconstruction algorithm are considered. Computer simulation studies demonstrate the validities of proposed scanning method and reconstruction algorithm. A prototype experimental system of 3D CT was constructed. Basic phantom examinations and specific material CT image by energy subtraction obtained in this experimental system are shown.

  18. The Applications of Cone-Beam Computed Tomography in Endodontics: A Review of Literature

    PubMed Central

    Kiarudi, Amir Hosein; Eghbal, Mohammad Jafar; Safi, Yaser; Aghdasi, Mohammad Mehdi; Fazlyab, Mahta

    2015-01-01

    By producing undistorted three-dimensional images of the area under examination, cone-beam computed tomography (CBCT) systems have met many of the limitations of conventional radiography. These systems produce images with small field of view at low radiation doses with adequate spatial resolution that are suitable for many applications in endodontics from diagnosis to treatment and follow-up. This review article comprehensively assembles all the data from literature regarding the potential applications of CBCT in endodontics. PMID:25598804

  19. Classification of Non-Time-Locked Rapid Serial Visual Presentation Events for Brain-Computer Interaction Using Deep Learning

    DTIC Science & Technology

    2014-07-08

    internction ( BCI ) system allows h uman subjects to communicate with or control an extemal device with their brain signals [1], or to use those brain...signals to interact with computers, environments, or even other humans [2]. One application of BCI is to use brnin signals to distinguish target...images within a large collection of non-target images [2]. Such BCI -based systems can drastically increase the speed of target identification in

  20. Computational cameras for moving iris recognition

    NASA Astrophysics Data System (ADS)

    McCloskey, Scott; Venkatesha, Sharath

    2015-05-01

    Iris-based biometric identification is increasingly used for facility access and other security applications. Like all methods that exploit visual information, however, iris systems are limited by the quality of captured images. Optical defocus due to a small depth of field (DOF) is one such challenge, as is the acquisition of sharply-focused iris images from subjects in motion. This manuscript describes the application of computational motion-deblurring cameras to the problem of moving iris capture, from the underlying theory to system considerations and performance data.

  1. Pervasive access to images and data--the use of computing grids and mobile/wireless devices across healthcare enterprises.

    PubMed

    Pohjonen, Hanna; Ross, Peeter; Blickman, Johan G; Kamman, Richard

    2007-01-01

    Emerging technologies are transforming the workflows in healthcare enterprises. Computing grids and handheld mobile/wireless devices are providing clinicians with enterprise-wide access to all patient data and analysis tools on a pervasive basis. In this paper, emerging technologies are presented that provide computing grids and streaming-based access to image and data management functions, and system architectures that enable pervasive computing on a cost-effective basis. Finally, the implications of such technologies are investigated regarding the positive impacts on clinical workflows.

  2. Spectral Prior Image Constrained Compressed Sensing (Spectral PICCS) for Photon-Counting Computed Tomography

    PubMed Central

    Yu, Zhicong; Leng, Shuai; Li, Zhoubo; McCollough, Cynthia H.

    2016-01-01

    Photon-counting computed tomography (PCCT) is an emerging imaging technique that enables multi-energy imaging with only a single scan acquisition. To enable multi-energy imaging, the detected photons corresponding to the full x-ray spectrum are divided into several subgroups of bin data that correspond to narrower energy windows. Consequently, noise in each energy bin increases compared to the full-spectrum data. This work proposes an iterative reconstruction algorithm for noise suppression in the narrower energy bins used in PCCT imaging. The algorithm is based on the framework of prior image constrained compressed sensing (PICCS) and is called spectral PICCS; it uses the full-spectrum image reconstructed using conventional filtered back-projection as the prior image. The spectral PICCS algorithm is implemented using a constrained optimization scheme with adaptive iterative step sizes such that only two tuning parameters are required in most cases. The algorithm was first evaluated using computer simulations, and then validated by both physical phantoms and in-vivo swine studies using a research PCCT system. Results from both computer-simulation and experimental studies showed substantial image noise reduction in narrow energy bins (43~73%) without sacrificing CT number accuracy or spatial resolution. PMID:27551878

  3. Spectral prior image constrained compressed sensing (spectral PICCS) for photon-counting computed tomography

    NASA Astrophysics Data System (ADS)

    Yu, Zhicong; Leng, Shuai; Li, Zhoubo; McCollough, Cynthia H.

    2016-09-01

    Photon-counting computed tomography (PCCT) is an emerging imaging technique that enables multi-energy imaging with only a single scan acquisition. To enable multi-energy imaging, the detected photons corresponding to the full x-ray spectrum are divided into several subgroups of bin data that correspond to narrower energy windows. Consequently, noise in each energy bin increases compared to the full-spectrum data. This work proposes an iterative reconstruction algorithm for noise suppression in the narrower energy bins used in PCCT imaging. The algorithm is based on the framework of prior image constrained compressed sensing (PICCS) and is called spectral PICCS; it uses the full-spectrum image reconstructed using conventional filtered back-projection as the prior image. The spectral PICCS algorithm is implemented using a constrained optimization scheme with adaptive iterative step sizes such that only two tuning parameters are required in most cases. The algorithm was first evaluated using computer simulations, and then validated by both physical phantoms and in vivo swine studies using a research PCCT system. Results from both computer-simulation and experimental studies showed substantial image noise reduction in narrow energy bins (43-73%) without sacrificing CT number accuracy or spatial resolution.

  4. Computer aided diagnosis based on medical image processing and artificial intelligence methods

    NASA Astrophysics Data System (ADS)

    Stoitsis, John; Valavanis, Ioannis; Mougiakakou, Stavroula G.; Golemati, Spyretta; Nikita, Alexandra; Nikita, Konstantina S.

    2006-12-01

    Advances in imaging technology and computer science have greatly enhanced interpretation of medical images, and contributed to early diagnosis. The typical architecture of a Computer Aided Diagnosis (CAD) system includes image pre-processing, definition of region(s) of interest, features extraction and selection, and classification. In this paper, the principles of CAD systems design and development are demonstrated by means of two examples. The first one focuses on the differentiation between symptomatic and asymptomatic carotid atheromatous plaques. For each plaque, a vector of texture and motion features was estimated, which was then reduced to the most robust ones by means of ANalysis of VAriance (ANOVA). Using fuzzy c-means, the features were then clustered into two classes. Clustering performances of 74%, 79%, and 84% were achieved for texture only, motion only, and combinations of texture and motion features, respectively. The second CAD system presented in this paper supports the diagnosis of focal liver lesions and is able to characterize liver tissue from Computed Tomography (CT) images as normal, hepatic cyst, hemangioma, and hepatocellular carcinoma. Five texture feature sets were extracted for each lesion, while a genetic algorithm based feature selection method was applied to identify the most robust features. The selected feature set was fed into an ensemble of neural network classifiers. The achieved classification performance was 100%, 93.75% and 90.63% in the training, validation and testing set, respectively. It is concluded that computerized analysis of medical images in combination with artificial intelligence can be used in clinical practice and may contribute to more efficient diagnosis.

  5. Automated detection of prostate cancer in digitized whole-slide images of H and E-stained biopsy specimens

    NASA Astrophysics Data System (ADS)

    Litjens, G.; Ehteshami Bejnordi, B.; Timofeeva, N.; Swadi, G.; Kovacs, I.; Hulsbergen-van de Kaa, C.; van der Laak, J.

    2015-03-01

    Automated detection of prostate cancer in digitized H and E whole-slide images is an important first step for computer-driven grading. Most automated grading algorithms work on preselected image patches as they are too computationally expensive to calculate on the multi-gigapixel whole-slide images. An automated multi-resolution cancer detection system could reduce the computational workload for subsequent grading and quantification in two ways: by excluding areas of definitely normal tissue within a single specimen or by excluding entire specimens which do not contain any cancer. In this work we present a multi-resolution cancer detection algorithm geared towards the latter. The algorithm methodology is as follows: at a coarse resolution the system uses superpixels, color histograms and local binary patterns in combination with a random forest classifier to assess the likelihood of cancer. The five most suspicious superpixels are identified and at a higher resolution more computationally expensive graph and gland features are added to refine classification for these superpixels. Our methods were evaluated in a data set of 204 digitized whole-slide H and E stained images of MR-guided biopsy specimens from 163 patients. A pathologist exhaustively annotated the specimens for areas containing cancer. The performance of our system was evaluated using ten-fold cross-validation, stratified according to patient. Image-based receiver operating characteristic (ROC) analysis was subsequently performed where a specimen containing cancer was considered positive and specimens without cancer negative. We obtained an area under the ROC curve of 0.96 and a 0.4 specificity at a 1.0 sensitivity.

  6. HOPIS: hybrid omnidirectional and perspective imaging system for mobile robots.

    PubMed

    Lin, Huei-Yung; Wang, Min-Liang

    2014-09-04

    In this paper, we present a framework for the hybrid omnidirectional and perspective robot vision system. Based on the hybrid imaging geometry, a generalized stereo approach is developed via the construction of virtual cameras. It is then used to rectify the hybrid image pair using the perspective projection model. The proposed method not only simplifies the computation of epipolar geometry for the hybrid imaging system, but also facilitates the stereo matching between the heterogeneous image formation. Experimental results for both the synthetic data and real scene images have demonstrated the feasibility of our approach.

  7. HOPIS: Hybrid Omnidirectional and Perspective Imaging System for Mobile Robots

    PubMed Central

    Lin, Huei-Yung.; Wang, Min-Liang.

    2014-01-01

    In this paper, we present a framework for the hybrid omnidirectional and perspective robot vision system. Based on the hybrid imaging geometry, a generalized stereo approach is developed via the construction of virtual cameras. It is then used to rectify the hybrid image pair using the perspective projection model. The proposed method not only simplifies the computation of epipolar geometry for the hybrid imaging system, but also facilitates the stereo matching between the heterogeneous image formation. Experimental results for both the synthetic data and real scene images have demonstrated the feasibility of our approach. PMID:25192317

  8. Artefacts found in computed radiography.

    PubMed

    Cesar, L J; Schueler, B A; Zink, F E; Daly, T R; Taubel, J P; Jorgenson, L L

    2001-02-01

    Artefacts on radiographic images are distracting and may compromise accurate diagnosis. Although most artefacts that occur in conventional radiography have become familiar, computed radiography (CR) systems produce artefacts that differ from those found in conventional radiography. We have encountered a variety of artefacts in CR images that were produced from four different models plate reader. These artefacts have been identified and traced to the imaging plate, plate reader, image processing software or laser printer or to operator error. Understanding the potential sources of CR artefacts will aid in identifying and resolving problems quickly and help prevent future occurrences.

  9. Computer generated maps from digital satellite data - A case study in Florida

    NASA Technical Reports Server (NTRS)

    Arvanitis, L. G.; Reich, R. M.; Newburne, R.

    1981-01-01

    Ground cover maps are important tools to a wide array of users. Over the past three decades, much progress has been made in supplementing planimetric and topographic maps with ground cover details obtained from aerial photographs. The present investigation evaluates the feasibility of using computer maps of ground cover from satellite input tapes. Attention is given to the selection of test sites, a satellite data processing system, a multispectral image analyzer, general purpose computer-generated maps, the preliminary evaluation of computer maps, a test for areal correspondence, the preparation of overlays and acreage estimation of land cover types on the Landsat computer maps. There is every indication to suggest that digital multispectral image processing systems based on Landsat input data will play an increasingly important role in pattern recognition and mapping land cover in the years to come.

  10. Correlation of the clinical and physical image quality in chest radiography for average adults with a computed radiography imaging system.

    PubMed

    Moore, C S; Wood, T J; Beavis, A W; Saunderson, J R

    2013-07-01

    The purpose of this study was to examine the correlation between the quality of visually graded patient (clinical) chest images and a quantitative assessment of chest phantom (physical) images acquired with a computed radiography (CR) imaging system. The results of a previously published study, in which four experienced image evaluators graded computer-simulated postero-anterior chest images using a visual grading analysis scoring (VGAS) scheme, were used for the clinical image quality measurement. Contrast-to-noise ratio (CNR) and effective dose efficiency (eDE) were used as physical image quality metrics measured in a uniform chest phantom. Although optimal values of these physical metrics for chest radiography were not derived in this work, their correlation with VGAS in images acquired without an antiscatter grid across the diagnostic range of X-ray tube voltages was determined using Pearson's correlation coefficient. Clinical and physical image quality metrics increased with decreasing tube voltage. Statistically significant correlations between VGAS and CNR (R=0.87, p<0.033) and eDE (R=0.77, p<0.008) were observed. Medical physics experts may use the physical image quality metrics described here in quality assurance programmes and optimisation studies with a degree of confidence that they reflect the clinical image quality in chest CR images acquired without an antiscatter grid. A statistically significant correlation has been found between the clinical and physical image quality in CR chest imaging. The results support the value of using CNR and eDE in the evaluation of quality in clinical thorax radiography.

  11. Comparison of Online 6 Degree-of-Freedom Image Registration of Varian TrueBeam Cone-Beam CT and BrainLab ExacTrac X-Ray for Intracranial Radiosurgery.

    PubMed

    Li, Jun; Shi, Wenyin; Andrews, David; Werner-Wasik, Maria; Lu, Bo; Yu, Yan; Dicker, Adam; Liu, Haisong

    2017-06-01

    The study was aimed to compare online 6 degree-of-freedom image registrations of TrueBeam cone-beam computed tomography and BrainLab ExacTrac X-ray imaging systems for intracranial radiosurgery. Phantom and patient studies were performed on a Varian TrueBeam STx linear accelerator (version 2.5), which is integrated with a BrainLab ExacTrac imaging system (version 6.1.1). The phantom study was based on a Rando head phantom and was designed to evaluate isocenter location dependence of the image registrations. Ten isocenters at various locations representing clinical treatment sites were selected in the phantom. Cone-beam computed tomography and ExacTrac X-ray images were taken when the phantom was located at each isocenter. The patient study included 34 patients. Cone-beam computed tomography and ExacTrac X-ray images were taken at each patient's treatment position. The 6 degree-of-freedom image registrations were performed on cone-beam computed tomography and ExacTrac, and residual errors calculated from cone-beam computed tomography and ExacTrac were compared. In the phantom study, the average residual error differences (absolute values) between cone-beam computed tomography and ExacTrac image registrations were 0.17 ± 0.11 mm, 0.36 ± 0.20 mm, and 0.25 ± 0.11 mm in the vertical, longitudinal, and lateral directions, respectively. The average residual error differences in the rotation, roll, and pitch were 0.34° ± 0.08°, 0.13° ± 0.09°, and 0.12° ± 0.10°, respectively. In the patient study, the average residual error differences in the vertical, longitudinal, and lateral directions were 0.20 ± 0.16 mm, 0.30 ± 0.18 mm, 0.21 ± 0.18 mm, respectively. The average residual error differences in the rotation, roll, and pitch were 0.40°± 0.16°, 0.17° ± 0.13°, and 0.20° ± 0.14°, respectively. Overall, the average residual error differences were <0.4 mm in the translational directions and <0.5° in the rotational directions. ExacTrac X-ray image registration is comparable to TrueBeam cone-beam computed tomography image registration in intracranial treatments.

  12. Computer-Based Technologies in Dentistry: Types and Applications

    PubMed Central

    Albuha Al-Mussawi, Raja’a M.; Farid, Farzaneh

    2016-01-01

    During dental education, dental students learn how to examine patients, make diagnosis, plan treatment and perform dental procedures perfectly and efficiently. However, progresses in computer-based technologies including virtual reality (VR) simulators, augmented reality (AR) and computer aided design/computer aided manufacturing (CAD/CAM) systems have resulted in new modalities for instruction and practice of dentistry. Virtual reality dental simulators enable repeated, objective and assessable practice in various controlled situations. Superimposition of three-dimensional (3D) virtual images on actual images in AR allows surgeons to simultaneously visualize the surgical site and superimpose informative 3D images of invisible regions on the surgical site to serve as a guide. The use of CAD/CAM systems for designing and manufacturing of dental appliances and prostheses has been well established. This article reviews computer-based technologies, their application in dentistry and their potentials and limitations in promoting dental education, training and practice. Practitioners will be able to choose from a broader spectrum of options in their field of practice by becoming familiar with new modalities of training and practice. PMID:28392819

  13. Computer-Based Technologies in Dentistry: Types and Applications.

    PubMed

    Albuha Al-Mussawi, Raja'a M; Farid, Farzaneh

    2016-06-01

    During dental education, dental students learn how to examine patients, make diagnosis, plan treatment and perform dental procedures perfectly and efficiently. However, progresses in computer-based technologies including virtual reality (VR) simulators, augmented reality (AR) and computer aided design/computer aided manufacturing (CAD/CAM) systems have resulted in new modalities for instruction and practice of dentistry. Virtual reality dental simulators enable repeated, objective and assessable practice in various controlled situations. Superimposition of three-dimensional (3D) virtual images on actual images in AR allows surgeons to simultaneously visualize the surgical site and superimpose informative 3D images of invisible regions on the surgical site to serve as a guide. The use of CAD/CAM systems for designing and manufacturing of dental appliances and prostheses has been well established. This article reviews computer-based technologies, their application in dentistry and their potentials and limitations in promoting dental education, training and practice. Practitioners will be able to choose from a broader spectrum of options in their field of practice by becoming familiar with new modalities of training and practice.

  14. IMDISP - INTERACTIVE IMAGE DISPLAY PROGRAM

    NASA Technical Reports Server (NTRS)

    Martin, M. D.

    1994-01-01

    The Interactive Image Display Program (IMDISP) is an interactive image display utility for the IBM Personal Computer (PC, XT and AT) and compatibles. Until recently, efforts to utilize small computer systems for display and analysis of scientific data have been hampered by the lack of sufficient data storage capacity to accomodate large image arrays. Most planetary images, for example, require nearly a megabyte of storage. The recent development of the "CDROM" (Compact Disk Read-Only Memory) storage technology makes possible the storage of up to 680 megabytes of data on a single 4.72-inch disk. IMDISP was developed for use with the CDROM storage system which is currently being evaluated by the Planetary Data System. The latest disks to be produced by the Planetary Data System are a set of three disks containing all of the images of Uranus acquired by the Voyager spacecraft. The images are in both compressed and uncompressed format. IMDISP can read the uncompressed images directly, but special software is provided to decompress the compressed images, which can not be processed directly. IMDISP can also display images stored on floppy or hard disks. A digital image is a picture converted to numerical form so that it can be stored and used in a computer. The image is divided into a matrix of small regions called picture elements, or pixels. The rows and columns of pixels are called "lines" and "samples", respectively. Each pixel has a numerical value, or DN (data number) value, quantifying the darkness or brightness of the image at that spot. In total, each pixel has an address (line number, sample number) and a DN value, which is all that the computer needs for processing. DISPLAY commands allow the IMDISP user to display all or part of an image at various positions on the display screen. The user may also zoom in and out from a point on the image defined by the cursor, and may pan around the image. To enable more or all of the original image to be displayed on the screen at once, the image can be "subsampled." For example, if the image were subsampled by a factor of 2, every other pixel from every other line would be displayed, starting from the upper left corner of the image. Any positive integer may be used for subsampling. The user may produce a histogram of an image file, which is a graph showing the number of pixels per DN value, or per range of DN values, for the entire image. IMDISP can also plot the DN value versus pixels along a line between two points on the image. The user can "stretch" or increase the contrast of an image by specifying low and high DN values; all pixels with values lower than the specified "low" will then become black, and all pixels higher than the specified "high" value will become white. Pixels between the low and high values will be evenly shaded between black and white. IMDISP is written in a modular form to make it easy to change it to work with different display devices or on other computers. The code can also be adapted for use in other application programs. There are device dependent image display modules, general image display subroutines, image I/O routines, and image label and command line parsing routines. The IMDISP system is written in C-language (94%) and Assembler (6%). It was implemented on an IBM PC with the MS DOS 3.21 operating system. IMDISP has a memory requirement of about 142k bytes. IMDISP was developed in 1989 and is a copyrighted work with all copyright vested in NASA. Additional planetary images can be obtained from the National Space Science Data Center at (301) 286-6695.

  15. Relationship between the Self-Rating Anxiety Scale score and the success rate of 64-slice computed tomography coronary angiography.

    PubMed

    Li, Hui; Jin, Dan; Qiao, Fang; Chen, Jianchang; Gong, Jianping

    Computed tomography coronary angiography, a key method for obtaining coronary artery images, is widely used to screen for coronary artery diseases due to its noninvasive nature. In China, 64-slice computed tomography systems are now the most common models. As factors that directly affect computed tomography performance, heart rate and rhythm control are regulated by the autonomic nervous system and are highly related to the emotional state of the patient. The aim of this prospective study is to use a pre-computed tomography scan Self-Rating Anxiety Scale assessment to analyze the effects of tension and anxiety on computed tomography coronary angiography success. Subjects aged 18-85 years who were planned to undergo computed tomography coronary angiography were enrolled; 1 to 2 h before the computed tomography scan, basic patient data (gender, age, heart rate at rest, and family history) and Self-Rating Anxiety Scale score were obtained. The same group of imaging department doctors, technicians, and nurses performed computed tomography coronary angiography for all the enrolled subjects and observed whether those subjects could finish the computed tomography coronary angiography scan and provide clear, diagnostically valuable images. Participants were divided into successful (obtained diagnostically useful coronary images) and unsuccessful groups. Basic data and Self-Rating Anxiety Scale scores were compared between the groups. The Self-Rating Anxiety Scale standard score of the successful group was lower than that of the unsuccessful group (P = 0.001). As the Self-Rating Anxiety Scale standard score rose, the success rate of computed tomography coronary angiography decreased. The Self-Rating Anxiety Scale score has a negative relationship with computed tomography coronary angiography success. Anxiety can be a disadvantage in computed tomography coronary angiography examination. The pre-computed tomography coronary angiography scan Self-Rating Anxiety Scale score may be a useful tool for assessing whether a computed tomography coronary angiography scan will be successful or not. © The Author(s) 2015.

  16. Retrospective respiration-gated whole-body photoacoustic computed tomography of mice

    NASA Astrophysics Data System (ADS)

    Xia, Jun; Chen, Wanyi; Maslov, Konstantin; Anastasio, Mark A.; Wang, Lihong V.

    2014-01-01

    Photoacoustic tomography (PAT) is an emerging technique that has a great potential for preclinical whole-body imaging. To date, most whole-body PAT systems require multiple laser shots to generate one cross-sectional image, yielding a frame rate of <1 Hz. Because a mouse breathes at up to 3 Hz, without proper gating mechanisms, acquired images are susceptible to motion artifacts. Here, we introduce, for the first time to our knowledge, retrospective respiratory gating for whole-body photoacoustic computed tomography. This new method involves simultaneous capturing of the animal's respiratory waveform during photoacoustic data acquisition. The recorded photoacoustic signals are sorted and clustered according to the respiratory phase, and an image of the animal at each respiratory phase is reconstructed subsequently from the corresponding cluster. The new method was tested in a ring-shaped confocal photoacoustic computed tomography system with a hardware-limited frame rate of 0.625 Hz. After respiratory gating, we observed sharper vascular and anatomical images at different positions of the animal body. The entire breathing cycle can also be visualized at 20 frames/cycle.

  17. Apple Image Processing Educator

    NASA Technical Reports Server (NTRS)

    Gunther, F. J.

    1981-01-01

    A software system design is proposed and demonstrated with pilot-project software. The system permits the Apple II microcomputer to be used for personalized computer-assisted instruction in the digital image processing of LANDSAT images. The programs provide data input, menu selection, graphic and hard-copy displays, and both general and detailed instructions. The pilot-project results are considered to be successful indicators of the capabilities and limits of microcomputers for digital image processing education.

  18. Toward Intraoperative Image-Guided Transoral Robotic Surgery

    PubMed Central

    Liu, Wen P.; Reaugamornrat, Sureerat; Deguet, Anton; Sorger, Jonathan M.; Siewerdsen, Jeffrey H.; Richmon, Jeremy; Taylor, Russell H.

    2014-01-01

    This paper presents the development and evaluation of video augmentation on the stereoscopic da Vinci S system with intraoperative image guidance for base of tongue tumor resection in transoral robotic surgery (TORS). Proposed workflow for image-guided TORS begins by identifying and segmenting critical oropharyngeal structures (e.g., the tumor and adjacent arteries and nerves) from preoperative computed tomography (CT) and/or magnetic resonance (MR) imaging. These preoperative planned data can be deformably registered to the intraoperative endoscopic view using mobile C-arm cone-beam computed tomography (CBCT) [1, 2]. Augmentation of TORS endoscopic video defining surgical targets and critical structures has the potential to improve navigation, spatial orientation, and confidence in tumor resection. Experiments in animal specimens achieved statistically significant improvement in target localization error when comparing the proposed image guidance system to simulated current practice. PMID:25525474

  19. PDSS/IMC requirements and functional specifications

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The system (software and hardware) requirements for the Payload Development Support System (PDSS)/Image Motion Compensator (IMC) are provided. The PDSS/IMC system provides the capability for performing Image Motion Compensator Electronics (IMCE) flight software test, checkout, and verification and provides the capability for monitoring the IMC flight computer system during qualification testing for fault detection and fault isolation.

  20. Experimental validation of A-mode ultrasound acquisition system for computer assisted orthopaedic surgery

    NASA Astrophysics Data System (ADS)

    De Lorenzo, Danilo; De Momi, Elena; Beretta, Elisa; Cerveri, Pietro; Perona, Franco; Ferrigno, Giancarlo

    2009-02-01

    Computer Assisted Orthopaedic Surgery (CAOS) systems improve the results and the standardization of surgical interventions. Anatomical landmarks and bone surface detection is straightforward to either register the surgical space with the pre-operative imaging space and to compute biomechanical parameters for prosthesis alignment. Surface points acquisition increases the intervention invasiveness and can be influenced by the soft tissue layer interposition (7-15mm localization errors). This study is aimed at evaluating the accuracy of a custom-made A-mode ultrasound (US) system for non invasive detection of anatomical landmarks and surfaces. A-mode solutions eliminate the necessity of US images segmentation, offers real-time signal processing and requires less invasive equipment. The system consists in a single transducer US probe optically tracked, a pulser/receiver and an FPGA-based board, which is responsible for logic control command generation and for real-time signal processing and three custom-made board (signal acquisition, blanking and synchronization). We propose a new calibration method of the US system. The experimental validation was then performed measuring the length of known-shape polymethylmethacrylate boxes filled with pure water and acquiring bone surface points on a bovine bone phantom covered with soft-tissue mimicking materials. Measurement errors were computed through MR and CT images acquisitions of the phantom. Points acquisition on bone surface with the US system demonstrated lower errors (1.2mm) than standard pointer acquisition (4.2mm).

  1. The Java Image Science Toolkit (JIST) for rapid prototyping and publishing of neuroimaging software.

    PubMed

    Lucas, Blake C; Bogovic, John A; Carass, Aaron; Bazin, Pierre-Louis; Prince, Jerry L; Pham, Dzung L; Landman, Bennett A

    2010-03-01

    Non-invasive neuroimaging techniques enable extraordinarily sensitive and specific in vivo study of the structure, functional response and connectivity of biological mechanisms. With these advanced methods comes a heavy reliance on computer-based processing, analysis and interpretation. While the neuroimaging community has produced many excellent academic and commercial tool packages, new tools are often required to interpret new modalities and paradigms. Developing custom tools and ensuring interoperability with existing tools is a significant hurdle. To address these limitations, we present a new framework for algorithm development that implicitly ensures tool interoperability, generates graphical user interfaces, provides advanced batch processing tools, and, most importantly, requires minimal additional programming or computational overhead. Java-based rapid prototyping with this system is an efficient and practical approach to evaluate new algorithms since the proposed system ensures that rapidly constructed prototypes are actually fully-functional processing modules with support for multiple GUI's, a broad range of file formats, and distributed computation. Herein, we demonstrate MRI image processing with the proposed system for cortical surface extraction in large cross-sectional cohorts, provide a system for fully automated diffusion tensor image analysis, and illustrate how the system can be used as a simulation framework for the development of a new image analysis method. The system is released as open source under the Lesser GNU Public License (LGPL) through the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC).

  2. The Java Image Science Toolkit (JIST) for Rapid Prototyping and Publishing of Neuroimaging Software

    PubMed Central

    Lucas, Blake C.; Bogovic, John A.; Carass, Aaron; Bazin, Pierre-Louis; Prince, Jerry L.; Pham, Dzung

    2010-01-01

    Non-invasive neuroimaging techniques enable extraordinarily sensitive and specific in vivo study of the structure, functional response and connectivity of biological mechanisms. With these advanced methods comes a heavy reliance on computer-based processing, analysis and interpretation. While the neuroimaging community has produced many excellent academic and commercial tool packages, new tools are often required to interpret new modalities and paradigms. Developing custom tools and ensuring interoperability with existing tools is a significant hurdle. To address these limitations, we present a new framework for algorithm development that implicitly ensures tool interoperability, generates graphical user interfaces, provides advanced batch processing tools, and, most importantly, requires minimal additional programming or computational overhead. Java-based rapid prototyping with this system is an efficient and practical approach to evaluate new algorithms since the proposed system ensures that rapidly constructed prototypes are actually fully-functional processing modules with support for multiple GUI's, a broad range of file formats, and distributed computation. Herein, we demonstrate MRI image processing with the proposed system for cortical surface extraction in large cross-sectional cohorts, provide a system for fully automated diffusion tensor image analysis, and illustrate how the system can be used as a simulation framework for the development of a new image analysis method. The system is released as open source under the Lesser GNU Public License (LGPL) through the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC). PMID:20077162

  3. A description of a system of programs for mathematically processing on unified series (YeS) computers photographic images of the Earth taken from spacecraft

    NASA Technical Reports Server (NTRS)

    Zolotukhin, V. G.; Kolosov, B. I.; Usikov, D. A.; Borisenko, V. I.; Mosin, S. T.; Gorokhov, V. N.

    1980-01-01

    A description of a batch of programs for the YeS-1040 computer combined into an automated system for processing photo (and video) images of the Earth's surface, taken from spacecraft, is presented. Individual programs with the detailed discussion of the algorithmic and programmatic facilities needed by the user are presented. The basic principles for assembling the system, and the control programs are included. The exchange format within whose framework the cataloging of any programs recommended for the system of processing will be activated in the future is displayed.

  4. THz computed tomography system with zero-order Bessel beam

    NASA Astrophysics Data System (ADS)

    Niu, Liting; Wu, Qiao; Wang, Kejia; Liu, Jinsong; Yang, Zhengang

    2018-01-01

    Terahertz (THz) waves can penetrate many optically opaque dielectric materials such as plastics, ceramics and colorants. It is effective to reveal the internal structures of these materials. We have built a THz Computed Tomography (CT) system with 0.3 THz zero-order Bessel beam to improve the depth of focus of this imaging system for the non-diffraction property of Bessel beam. The THz CT system has been used to detect a paper cup with a metal rod inside. Finally, the acquired projection data have been processed by the filtered back-projection algorithm and the reconstructed image of the sample has been obtained.

  5. A novel method for NDT applications using NXCT system at the Missouri University of Science & Technology

    NASA Astrophysics Data System (ADS)

    Sinha, Vaibhav; Srivastava, Anjali; Koo Lee, Hyoung

    2014-06-01

    A novel method for non-destructive analysis has been developed using a neutron/X-ray combined computed tomography (NXCT) system at the Missouri University of Science and Technology Reactor (MSTR). This imaging system takes advantage of the fact that neutrons and X-rays have characteristically different interactions with same materials. NXCT fuses the imaging capabilities of both systems at one location and allows instant evaluation for nondestructive testing (NDT) applications. This technique promises viable advances in the field of NDT. In this paper, the complete design criteria and procedures are provided. The described design criteria and procedures can effectively be utilized to design and develop advanced combined computed tomography system. The successful operation of the high resolution X-ray and neutron computed tomography has been demonstrated in this paper. The utility and importance of the NXCT system has been shown by nondestructive evaluation of various phantoms constituting different materials, geometrical, structural and compositional information. The concept of NXCT can be useful for concealed material detection, material characterization, investigation of complex geometries involving different atomic number materials and real time imaging for in-situ studies.

  6. Computer-assisted sperm analysis (CASA): capabilities and potential developments.

    PubMed

    Amann, Rupert P; Waberski, Dagmar

    2014-01-01

    Computer-assisted sperm analysis (CASA) systems have evolved over approximately 40 years, through advances in devices to capture the image from a microscope, huge increases in computational power concurrent with amazing reduction in size of computers, new computer languages, and updated/expanded software algorithms. Remarkably, basic concepts for identifying sperm and their motion patterns are little changed. Older and slower systems remain in use. Most major spermatology laboratories and semen processing facilities have a CASA system, but the extent of reliance thereon ranges widely. This review describes capabilities and limitations of present CASA technology used with boar, bull, and stallion sperm, followed by possible future developments. Each marketed system is different. Modern CASA systems can automatically view multiple fields in a shallow specimen chamber to capture strobe-like images of 500 to >2000 sperm, at 50 or 60 frames per second, in clear or complex extenders, and in <2 minutes, store information for ≥ 30 frames and provide summary data for each spermatozoon and the population. A few systems evaluate sperm morphology concurrent with motion. CASA cannot accurately predict 'fertility' that will be obtained with a semen sample or subject. However, when carefully validated, current CASA systems provide information important for quality assurance of semen planned for marketing, and for the understanding of the diversity of sperm responses to changes in the microenvironment in research. The four take-home messages from this review are: (1) animal species, extender or medium, specimen chamber, intensity of illumination, imaging hardware and software, instrument settings, technician, etc., all affect accuracy and precision of output values; (2) semen production facilities probably do not need a substantially different CASA system whereas biology laboratories would benefit from systems capable of imaging and tracking sperm in deep chambers for a flexible period of time; (3) software should enable grouping of individual sperm based on one or more attributes so outputs reflect subpopulations or clusters of similar sperm with unique properties; means or medians for the total population are insufficient; and (4) a field-use, portable CASA system for measuring one motion and two or three morphology attributes of individual sperm is needed for field theriogenologists or andrologists working with human sperm outside urban centers; appropriate hardware to capture images and process data apparently are available. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Effectiveness of a Novel Augmented Reality-Based Navigation System in Treatment of Orbital Hypertelorism.

    PubMed

    Zhu, Ming; Chai, Gang; Lin, Li; Xin, Yu; Tan, Andy; Bogari, Melia; Zhang, Yan; Li, Qingfeng

    2016-12-01

    Augmented reality (AR) technology can superimpose the virtual image generated by computer onto the real operating field to present an integral image to enhance surgical safety. The purpose of our study is to develop a novel AR-based navigation system for craniofacial surgery. We focus on orbital hypertelorism correction, because the surgery requires high preciseness and is considered tough even for senior craniofacial surgeon. Twelve patients with orbital hypertelorism were selected. The preoperative computed tomography data were imported into 3-dimensional platform for preoperational design. The position and orientation of virtual information and real world were adjusted by image registration process. The AR toolkits were used to realize the integral image. Afterward, computed tomography was also performed after operation for comparing the difference between preoperational plan and actual operational outcome. Our AR-based navigation system was successfully used in these patients, directly displaying 3-dimensional navigational information onto the surgical field. They all achieved a better appearance by the guidance of navigation image. The difference in interdacryon distance and the dacryon point of each side appear no significant (P > 0.05) between preoperational plan and actual surgical outcome. This study reports on an effective visualized approach for guiding orbital hypertelorism correction. Our AR-based navigation system may lay a foundation for craniofacial surgery navigation. The AR technology could be considered as a helpful tool for precise osteotomy in craniofacial surgery.

  8. Incoherent-scatter computed tomography with monochromatic synchrotron x ray: feasibility of multi-CT imaging system for simultaneous measurement-of fluorescent and incoherent scatter x rays

    NASA Astrophysics Data System (ADS)

    Yuasa, T.; Akiba, M.; Takeda, T.; Kazama, M.; Hoshino, A.; Watanabe, Y.; Hyodo, K.; Dilmanian, F. A.; Akatsuka, T.; Itai, Y.

    1997-10-01

    We describe a new system of incoherent scatter computed tomography (ISCT) using monochromatic synchrotron X rays, and we discuss its potential to be used in in vivo imaging for medical use. The system operates on the basis of computed tomography (CT) of the first generation. The reconstruction method for ISCT uses the least squares method with singular value decomposition. The research was carried out at the BLNE-5A bending magnet beam line of the Tristan Accumulation Ring in KEK, Japan. An acrylic cylindrical phantom of 20-mm diameter containing a cross-shaped channel was imaged. The channel was filled with a diluted iodine solution with a concentration of 200 /spl mu/gI/ml. Spectra obtained with the system's high purity germanium (HPGe) detector separated the incoherent X-ray line from the other notable peaks, i.e., the iK/sub /spl alpha// and K/sub /spl beta/1/ X-ray fluorescent lines and the coherent scattering peak. CT images were reconstructed from projections generated by integrating the counts In the energy window centering around the incoherent scattering peak and whose width was approximately 2 keV. The reconstruction routine employed an X-ray attenuation correction algorithm. The resulting image showed more homogeneity than one without the attenuation correction.

  9. A computer-aided system for automatic extraction of femur neck trabecular bone architecture using isotropic volume construction from clinical hip computed tomography images.

    PubMed

    Vivekanandhan, Sapthagirivasan; Subramaniam, Janarthanam; Mariamichael, Anburajan

    2016-10-01

    Hip fractures due to osteoporosis are increasing progressively across the globe. It is also difficult for those fractured patients to undergo dual-energy X-ray absorptiometry scans due to its complicated protocol and its associated cost. The utilisation of computed tomography for the fracture treatment has become common in the clinical practice. It would be helpful for orthopaedic clinicians, if they could get some additional information related to bone strength for better treatment planning. The aim of our study was to develop an automated system to segment the femoral neck region, extract the cortical and trabecular bone parameters, and assess the bone strength using an isotropic volume construction from clinical computed tomography images. The right hip computed tomography and right femur dual-energy X-ray absorptiometry measurements were taken from 50 south-Indian females aged 30-80 years. Each computed tomography image volume was re-constructed to form isotropic volumes. An automated system by incorporating active contour models was used to segment the neck region. A minimum distance boundary method was applied to isolate the cortical and trabecular bone components. The trabecular bone was enhanced and segmented using trabecular enrichment approach. The cortical and trabecular bone features were extracted and statistically compared with dual-energy X-ray absorptiometry measured femur neck bone mineral density. The extracted bone measures demonstrated a significant correlation with neck bone mineral density (r > 0.7, p < 0.001). The inclusion of cortical measures, along with the trabecular measures extracted after isotropic volume construction and trabecular enrichment approach procedures, resulted in better estimation of bone strength. The findings suggest that the proposed system using the clinical computed tomography images scanned with low dose could eventually be helpful in osteoporosis diagnosis and its treatment planning. © IMechE 2016.

  10. High-resolution computational ghost imaging and ghost diffraction through turbulence via a beam-shaping method

    NASA Astrophysics Data System (ADS)

    Luo, Chun-Ling; Zhuo, Ling-Qing

    2017-01-01

    Imaging through atmospheric turbulence is a topic with a long history and grand challenges still exist in the remote sensing and astro observation fields. In this letter, we try to propose a simple scheme to improve the resolution of imaging through turbulence based on the computational ghost imaging (CGI) and computational ghost diffraction (CGD) setup via the laser beam shaping techniques. A unified theory of CGI and CGD through turbulence with the multi-Gaussian shaped incoherent source is developed, and numerical examples are given to see clearly the effects of the system parameters to CGI and CGD. Our results show that the atmospheric effect to the CGI and CGD system is closely related to the propagation distance between the source and the object. In addition, by properly increasing the beam order of the multi-Gaussian source, we can improve the resolution of CGI and CGD through turbulence relative to the commonly used Gaussian source. Therefore our results may find applications in remote sensing and astro observation.

  11. Micro-CT images reconstruction and 3D visualization for small animal studying

    NASA Astrophysics Data System (ADS)

    Gong, Hui; Liu, Qian; Zhong, Aijun; Ju, Shan; Fang, Quan; Fang, Zheng

    2005-01-01

    A small-animal x-ray micro computed tomography (micro-CT) system has been constructed to screen laboratory small animals and organs. The micro-CT system consists of dual fiber-optic taper-coupled CCD detectors with a field-of-view of 25x50 mm2, a microfocus x-ray source, a rotational subject holder. For accurate localization of rotation center, coincidence between the axis of rotation and centre of image was studied by calibration with a polymethylmethacrylate cylinder. Feldkamp"s filtered back-projection cone-beam algorithm is adopted for three-dimensional reconstruction on account of the effective corn-beam angle is 5.67° of the micro-CT system. 200x1024x1024 matrix data of micro-CT is obtained with the magnification of 1.77 and pixel size of 31x31μm2. In our reconstruction software, output image size of micro-CT slices data, magnification factor and rotation sample degree can be modified in the condition of different computational efficiency and reconstruction region. The reconstructed image matrix data is processed and visualization by Visualization Toolkit (VTK). Data parallelism of VTK is performed in surface rendering of reconstructed data in order to improve computing speed. Computing time of processing a 512x512x512 matrix datasets is about 1/20 compared with serial program when 30 CPU is used. The voxel size is 54x54x108 μm3. The reconstruction and 3-D visualization images of laboratory rat ear are presented.

  12. Radiation dose and image quality of X-ray volume imaging systems: cone-beam computed tomography, digital subtraction angiography and digital fluoroscopy.

    PubMed

    Paul, Jijo; Jacobi, Volkmar; Farhang, Mohammad; Bazrafshan, Babak; Vogl, Thomas J; Mbalisike, Emmanuel C

    2013-06-01

    Radiation dose and image quality estimation of three X-ray volume imaging (XVI) systems. A total of 126 patients were examined using three XVI systems (groups 1-3) and their data were retrospectively analysed from 2007 to 2012. Each group consisted of 42 patients and each patient was examined using cone-beam computed tomography (CBCT), digital subtraction angiography (DSA) and digital fluoroscopy (DF). Dose parameters such as dose-area product (DAP), skin entry dose (SED) and image quality parameters such as Hounsfield unit (HU), noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were estimated and compared using appropriate statistical tests. Mean DAP and SED were lower in recent XVI than its previous counterparts in CBCT, DSA and DF. HU of all measured locations was non-significant between the groups except the hepatic artery. Noise showed significant difference among groups (P < 0.05). Regarding CNR and SNR, the recent XVI showed a higher and significant difference compared to its previous versions. Qualitatively, CBCT showed significance between versions unlike the DSA and DF which showed non-significance. A reduction of radiation dose was obtained for the recent-generation XVI system in CBCT, DSA and DF. Image noise was significantly lower; SNR and CNR were higher than in previous versions. The technological advancements and the reduction in the number of frames led to a significant dose reduction and improved image quality with the recent-generation XVI system. • X-ray volume imaging (XVI) systems are increasingly used for interventional radiological procedures. • More modern XVI systems use lower radiation doses compared with earlier counterparts. • Furthermore more modern XVI systems provide higher image quality. • Technological advances reduce radiation dose and improve image quality.

  13. Development and evaluation of a LOR-based image reconstruction with 3D system response modeling for a PET insert with dual-layer offset crystal design.

    PubMed

    Zhang, Xuezhu; Stortz, Greg; Sossi, Vesna; Thompson, Christopher J; Retière, Fabrice; Kozlowski, Piotr; Thiessen, Jonathan D; Goertzen, Andrew L

    2013-12-07

    In this study we present a method of 3D system response calculation for analytical computer simulation and statistical image reconstruction for a magnetic resonance imaging (MRI) compatible positron emission tomography (PET) insert system that uses a dual-layer offset (DLO) crystal design. The general analytical system response functions (SRFs) for detector geometric and inter-crystal penetration of coincident crystal pairs are derived first. We implemented a 3D ray-tracing algorithm with 4π sampling for calculating the SRFs of coincident pairs of individual DLO crystals. The determination of which detector blocks are intersected by a gamma ray is made by calculating the intersection of the ray with virtual cylinders with radii just inside the inner surface and just outside the outer-edge of each crystal layer of the detector ring. For efficient ray-tracing computation, the detector block and ray to be traced are then rotated so that the crystals are aligned along the X-axis, facilitating calculation of ray/crystal boundary intersection points. This algorithm can be applied to any system geometry using either single-layer (SL) or multi-layer array design with or without offset crystals. For effective data organization, a direct lines of response (LOR)-based indexed histogram-mode method is also presented in this work. SRF calculation is performed on-the-fly in both forward and back projection procedures during each iteration of image reconstruction, with acceleration through use of eight-fold geometric symmetry and multi-threaded parallel computation. To validate the proposed methods, we performed a series of analytical and Monte Carlo computer simulations for different system geometry and detector designs. The full-width-at-half-maximum of the numerical SRFs in both radial and tangential directions are calculated and compared for various system designs. By inspecting the sinograms obtained for different detector geometries, it can be seen that the DLO crystal design can provide better sampling density than SL or dual-layer no-offset system designs with the same total crystal length. The results of the image reconstruction with SRFs modeling for phantom studies exhibit promising image recovery capability for crystal widths of 1.27-1.43 mm and top/bottom layer lengths of 4/6 mm. In conclusion, we have developed efficient algorithms for system response modeling of our proposed PET insert with DLO crystal arrays. This provides an effective method for both 3D computer simulation and quantitative image reconstruction, and will aid in the optimization of our PET insert system with various crystal designs.

  14. High-performance floating-point image computing workstation for medical applications

    NASA Astrophysics Data System (ADS)

    Mills, Karl S.; Wong, Gilman K.; Kim, Yongmin

    1990-07-01

    The medical imaging field relies increasingly on imaging and graphics techniques in diverse applications with needs similar to (or more stringent than) those of the military, industrial and scientific communities. However, most image processing and graphics systems available for use in medical imaging today are either expensive, specialized, or in most cases both. High performance imaging and graphics workstations which can provide real-time results for a number of applications, while maintaining affordability and flexibility, can facilitate the application of digital image computing techniques in many different areas. This paper describes the hardware and software architecture of a medium-cost floating-point image processing and display subsystem for the NeXT computer, and its applications as a medical imaging workstation. Medical imaging applications of the workstation include use in a Picture Archiving and Communications System (PACS), in multimodal image processing and 3-D graphics workstation for a broad range of imaging modalities, and as an electronic alternator utilizing its multiple monitor display capability and large and fast frame buffer. The subsystem provides a 2048 x 2048 x 32-bit frame buffer (16 Mbytes of image storage) and supports both 8-bit gray scale and 32-bit true color images. When used to display 8-bit gray scale images, up to four different 256-color palettes may be used for each of four 2K x 2K x 8-bit image frames. Three of these image frames can be used simultaneously to provide pixel selectable region of interest display. A 1280 x 1024 pixel screen with 1: 1 aspect ratio can be windowed into the frame buffer for display of any portion of the processed image or images. In addition, the system provides hardware support for integer zoom and an 82-color cursor. This subsystem is implemented on an add-in board occupying a single slot in the NeXT computer. Up to three boards may be added to the NeXT for multiple display capability (e.g., three 1280 x 1024 monitors, each with a 16-Mbyte frame buffer). Each add-in board provides an expansion connector to which an optional image computing coprocessor board may be added. Each coprocessor board supports up to four processors for a peak performance of 160 MFLOPS. The coprocessors can execute programs from external high-speed microcode memory as well as built-in internal microcode routines. The internal microcode routines provide support for 2-D and 3-D graphics operations, matrix and vector arithmetic, and image processing in integer, IEEE single-precision floating point, or IEEE double-precision floating point. In addition to providing a library of C functions which links the NeXT computer to the add-in board and supports its various operational modes, algorithms and medical imaging application programs are being developed and implemented for image display and enhancement. As an extension to the built-in algorithms of the coprocessors, 2-D Fast Fourier Transform (FF1), 2-D Inverse FFF, convolution, warping and other algorithms (e.g., Discrete Cosine Transform) which exploit the parallel architecture of the coprocessor board are being implemented.

  15. Jenkins-CI, an Open-Source Continuous Integration System, as a Scientific Data and Image-Processing Platform.

    PubMed

    Moutsatsos, Ioannis K; Hossain, Imtiaz; Agarinis, Claudia; Harbinski, Fred; Abraham, Yann; Dobler, Luc; Zhang, Xian; Wilson, Christopher J; Jenkins, Jeremy L; Holway, Nicholas; Tallarico, John; Parker, Christian N

    2017-03-01

    High-throughput screening generates large volumes of heterogeneous data that require a diverse set of computational tools for management, processing, and analysis. Building integrated, scalable, and robust computational workflows for such applications is challenging but highly valuable. Scientific data integration and pipelining facilitate standardized data processing, collaboration, and reuse of best practices. We describe how Jenkins-CI, an "off-the-shelf," open-source, continuous integration system, is used to build pipelines for processing images and associated data from high-content screening (HCS). Jenkins-CI provides numerous plugins for standard compute tasks, and its design allows the quick integration of external scientific applications. Using Jenkins-CI, we integrated CellProfiler, an open-source image-processing platform, with various HCS utilities and a high-performance Linux cluster. The platform is web-accessible, facilitates access and sharing of high-performance compute resources, and automates previously cumbersome data and image-processing tasks. Imaging pipelines developed using the desktop CellProfiler client can be managed and shared through a centralized Jenkins-CI repository. Pipelines and managed data are annotated to facilitate collaboration and reuse. Limitations with Jenkins-CI (primarily around the user interface) were addressed through the selection of helper plugins from the Jenkins-CI community.

  16. Jenkins-CI, an Open-Source Continuous Integration System, as a Scientific Data and Image-Processing Platform

    PubMed Central

    Moutsatsos, Ioannis K.; Hossain, Imtiaz; Agarinis, Claudia; Harbinski, Fred; Abraham, Yann; Dobler, Luc; Zhang, Xian; Wilson, Christopher J.; Jenkins, Jeremy L.; Holway, Nicholas; Tallarico, John; Parker, Christian N.

    2016-01-01

    High-throughput screening generates large volumes of heterogeneous data that require a diverse set of computational tools for management, processing, and analysis. Building integrated, scalable, and robust computational workflows for such applications is challenging but highly valuable. Scientific data integration and pipelining facilitate standardized data processing, collaboration, and reuse of best practices. We describe how Jenkins-CI, an “off-the-shelf,” open-source, continuous integration system, is used to build pipelines for processing images and associated data from high-content screening (HCS). Jenkins-CI provides numerous plugins for standard compute tasks, and its design allows the quick integration of external scientific applications. Using Jenkins-CI, we integrated CellProfiler, an open-source image-processing platform, with various HCS utilities and a high-performance Linux cluster. The platform is web-accessible, facilitates access and sharing of high-performance compute resources, and automates previously cumbersome data and image-processing tasks. Imaging pipelines developed using the desktop CellProfiler client can be managed and shared through a centralized Jenkins-CI repository. Pipelines and managed data are annotated to facilitate collaboration and reuse. Limitations with Jenkins-CI (primarily around the user interface) were addressed through the selection of helper plugins from the Jenkins-CI community. PMID:27899692

  17. The Trans-Visible Navigator: A See-Through Neuronavigation System Using Augmented Reality.

    PubMed

    Watanabe, Eiju; Satoh, Makoto; Konno, Takehiko; Hirai, Masahiro; Yamaguchi, Takashi

    2016-03-01

    The neuronavigator has become indispensable for brain surgery and works in the manner of point-to-point navigation. Because the positional information is indicated on a personal computer (PC) monitor, surgeons are required to rotate the dimension of the magnetic resonance imaging/computed tomography scans to match the surgical field. In addition, they must frequently alternate their gaze between the surgical field and the PC monitor. To overcome these difficulties, we developed an augmented reality-based navigation system with whole-operation-room tracking. A tablet PC is used for visualization. The patient's head is captured by the back-face camera of the tablet. Three-dimensional images of intracranial structures are extracted from magnetic resonance imaging/computed tomography and are superimposed on the video image of the head. When viewed from various directions around the head, intracranial structures are displayed with corresponding angles as viewed from the camera direction, thus giving the surgeon the sensation of seeing through the head. Whole-operation-room tracking is realized using a VICON tracking system with 6 cameras. A phantom study showed a spatial resolution of about 1 mm. The present system was evaluated in 6 patients who underwent tumor resection surgery, and we showed that the system is useful for planning skin incisions as well as craniotomy and the localization of superficial tumors. The main advantage of the present system is that it achieves volumetric navigation in contrast to conventional point-to-point navigation. It extends augmented reality images directly onto real surgical images, thus helping the surgeon to integrate these 2 dimensions intuitively. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Optical image acquisition system for colony analysis

    NASA Astrophysics Data System (ADS)

    Wang, Weixing; Jin, Wenbiao

    2006-02-01

    For counting of both colonies and plaques, there is a large number of applications including food, dairy, beverages, hygiene, environmental monitoring, water, toxicology, sterility testing, AMES testing, pharmaceuticals, paints, sterile fluids and fungal contamination. Recently, many researchers and developers have made efforts for this kind of systems. By investigation, some existing systems have some problems since they belong to a new technology product. One of the main problems is image acquisition. In order to acquire colony images with good quality, an illumination box was constructed as: the box includes front lightning and back lightning, which can be selected by users based on properties of colony dishes. With the illumination box, lightning can be uniform; colony dish can be put in the same place every time, which make image processing easy. A digital camera in the top of the box connected to a PC computer with a USB cable, all the camera functions are controlled by the computer.

  19. GPU implementation of prior image constrained compressed sensing (PICCS)

    NASA Astrophysics Data System (ADS)

    Nett, Brian E.; Tang, Jie; Chen, Guang-Hong

    2010-04-01

    The Prior Image Constrained Compressed Sensing (PICCS) algorithm (Med. Phys. 35, pg. 660, 2008) has been applied to several computed tomography applications with both standard CT systems and flat-panel based systems designed for guiding interventional procedures and radiation therapy treatment delivery. The PICCS algorithm typically utilizes a prior image which is reconstructed via the standard Filtered Backprojection (FBP) reconstruction algorithm. The algorithm then iteratively solves for the image volume that matches the measured data, while simultaneously assuring the image is similar to the prior image. The PICCS algorithm has demonstrated utility in several applications including: improved temporal resolution reconstruction, 4D respiratory phase specific reconstructions for radiation therapy, and cardiac reconstruction from data acquired on an interventional C-arm. One disadvantage of the PICCS algorithm, just as other iterative algorithms, is the long computation times typically associated with reconstruction. In order for an algorithm to gain clinical acceptance reconstruction must be achievable in minutes rather than hours. In this work the PICCS algorithm has been implemented on the GPU in order to significantly reduce the reconstruction time of the PICCS algorithm. The Compute Unified Device Architecture (CUDA) was used in this implementation.

  20. MO-G-17A-02: Computer Simulation Studies for On-Board Functional and Molecular Imaging of the Prostate Using a Robotic Multi-Pinhole SPECT System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, L; Duke University Medical Center, Durham, NC; Fudan University Shanghai Cancer Center, Shanghai

    Purpose: To investigate prostate imaging onboard radiation therapy machines using a novel robotic, 49-pinhole Single Photon Emission Computed Tomography (SPECT) system. Methods: Computer-simulation studies were performed for region-of-interest (ROI) imaging using a 49-pinhole SPECT collimator and for broad cross-section imaging using a parallel-hole SPECT collimator. A male XCAT phantom was computersimulated in supine position with one 12mm-diameter tumor added in the prostate. A treatment couch was added to the phantom. Four-minute detector trajectories for imaging a 7cm-diameter-sphere ROI encompassing the tumor were investigated with different parameters, including pinhole focal length, pinhole diameter and trajectory starting angle. Pseudo-random Poisson noise wasmore » included in the simulated projection data, and SPECT images were reconstructed by OSEM with 4 subsets and up to 10 iterations. Images were evaluated by visual inspection, profiles, and Root-Mean- Square-Error (RMSE). Results: The tumor was well visualized above background by the 49-pinhole SPECT system with different pinhole parameters while it was not visible with parallel-hole SPECT imaging. Minimum RMSEs were 0.30 for 49-pinhole imaging and 0.41 for parallelhole imaging. For parallel-hole imaging, the detector trajectory from rightto- left yielded slightly lower RMSEs than that from posterior to anterior. For 49-pinhole imaging, near-minimum RMSEs were maintained over a broader range of OSEM iterations with a 5mm pinhole diameter and 21cm focal length versus a 2mm diameter pinhole and 18cm focal length. The detector with 21cm pinhole focal length had the shortest rotation radius averaged over the trajectory. Conclusion: On-board functional and molecular prostate imaging may be feasible in 4-minute scan times by robotic SPECT. A 49-pinhole SPECT system could improve such imaging as compared to broadcross-section parallel-hole collimated SPECT imaging. Multi-pinhole imaging can be improved by considering pinhole focal length, pinhole diameter, and trajectory starting angle. The project is supported by the NIH grant 5R21-CA156390.« less

Top