Sample records for computer immune system

  1. A cognitive computational model inspired by the immune system response.

    PubMed

    Abdo Abd Al-Hady, Mohamed; Badr, Amr Ahmed; Mostafa, Mostafa Abd Al-Azim

    2014-01-01

    The immune system has a cognitive ability to differentiate between healthy and unhealthy cells. The immune system response (ISR) is stimulated by a disorder in the temporary fuzzy state that is oscillating between the healthy and unhealthy states. However, modeling the immune system is an enormous challenge; the paper introduces an extensive summary of how the immune system response functions, as an overview of a complex topic, to present the immune system as a cognitive intelligent agent. The homogeneity and perfection of the natural immune system have been always standing out as the sought-after model we attempted to imitate while building our proposed model of cognitive architecture. The paper divides the ISR into four logical phases: setting a computational architectural diagram for each phase, proceeding from functional perspectives (input, process, and output), and their consequences. The proposed architecture components are defined by matching biological operations with computational functions and hence with the framework of the paper. On the other hand, the architecture focuses on the interoperability of main theoretical immunological perspectives (classic, cognitive, and danger theory), as related to computer science terminologies. The paper presents a descriptive model of immune system, to figure out the nature of response, deemed to be intrinsic for building a hybrid computational model based on a cognitive intelligent agent perspective and inspired by the natural biology. To that end, this paper highlights the ISR phases as applied to a case study on hepatitis C virus, meanwhile illustrating our proposed architecture perspective.

  2. A Cognitive Computational Model Inspired by the Immune System Response

    PubMed Central

    Abdo Abd Al-Hady, Mohamed; Badr, Amr Ahmed; Mostafa, Mostafa Abd Al-Azim

    2014-01-01

    The immune system has a cognitive ability to differentiate between healthy and unhealthy cells. The immune system response (ISR) is stimulated by a disorder in the temporary fuzzy state that is oscillating between the healthy and unhealthy states. However, modeling the immune system is an enormous challenge; the paper introduces an extensive summary of how the immune system response functions, as an overview of a complex topic, to present the immune system as a cognitive intelligent agent. The homogeneity and perfection of the natural immune system have been always standing out as the sought-after model we attempted to imitate while building our proposed model of cognitive architecture. The paper divides the ISR into four logical phases: setting a computational architectural diagram for each phase, proceeding from functional perspectives (input, process, and output), and their consequences. The proposed architecture components are defined by matching biological operations with computational functions and hence with the framework of the paper. On the other hand, the architecture focuses on the interoperability of main theoretical immunological perspectives (classic, cognitive, and danger theory), as related to computer science terminologies. The paper presents a descriptive model of immune system, to figure out the nature of response, deemed to be intrinsic for building a hybrid computational model based on a cognitive intelligent agent perspective and inspired by the natural biology. To that end, this paper highlights the ISR phases as applied to a case study on hepatitis C virus, meanwhile illustrating our proposed architecture perspective. PMID:25003131

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somayaji, Anil B.; Amai, Wendy A.; Walther, Eleanor A.

    This reports describes the successful extension of artificial immune systems from the domain of computer security to the domain of real time control systems for robotic vehicles. A biologically-inspired computer immune system was added to the control system of two different mobile robots. As an additional layer in a multi-layered approach, the immune system is complementary to traditional error detection and error handling techniques. This can be thought of as biologically-inspired defense in depth. We demonstrated an immune system can be added with very little application developer effort, resulting in little to no performance impact. The methods described here aremore » extensible to any system that processes a sequence of data through a software interface.« less

  4. Architecture for an artificial immune system.

    PubMed

    Hofmeyr, S A; Forrest, S

    2000-01-01

    An artificial immune system (ARTIS) is described which incorporates many properties of natural immune systems, including diversity, distributed computation, error tolerance, dynamic learning and adaptation, and self-monitoring. ARTIS is a general framework for a distributed adaptive system and could, in principle, be applied to many domains. In this paper, ARTIS is applied to computer security in the form of a network intrusion detection system called LISYS. LISYS is described and shown to be effective at detecting intrusions, while maintaining low false positive rates. Finally, similarities and differences between ARTIS and Holland's classifier systems are discussed.

  5. Inverse targeting —An effective immunization strategy

    NASA Astrophysics Data System (ADS)

    Schneider, C. M.; Mihaljev, T.; Herrmann, H. J.

    2012-05-01

    We propose a new method to immunize populations or computer networks against epidemics which is more efficient than any continuous immunization method considered before. The novelty of our method resides in the way of determining the immunization targets. First we identify those individuals or computers that contribute the least to the disease spreading measured through their contribution to the size of the largest connected cluster in the social or a computer network. The immunization process follows the list of identified individuals or computers in inverse order, immunizing first those which are most relevant for the epidemic spreading. We have applied our immunization strategy to several model networks and two real networks, the Internet and the collaboration network of high-energy physicists. We find that our new immunization strategy is in the case of model networks up to 14%, and for real networks up to 33% more efficient than immunizing dynamically the most connected nodes in a network. Our strategy is also numerically efficient and can therefore be applied to large systems.

  6. Reconstruction of an Immune Dynamic Model to Simulate the Contrasting Role of Auxin and Cytokinin in Plant Immunity.

    PubMed

    Kaltdorf, Martin; Dandekar, Thomas; Naseem, Muhammad

    2017-01-01

    In order to increase our understanding of biological dependencies in plant immune signaling pathways, the known interactions involved in plant immune networks are modeled. This allows computational analysis to predict the functions of growth related hormones in plant-pathogen interaction. The SQUAD (Standardized Qualitative Dynamical Systems) algorithm first determines stable system states in the network and then use them to compute continuous dynamical system states. Our reconstructed Boolean model encompassing hormone immune networks of Arabidopsis thaliana (Arabidopsis) and pathogenicity factors injected by model pathogen Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) can be exploited to determine the impact of growth hormones in plant immunity. We describe a detailed working protocol how to use the modified SQUAD-package by exemplifying the contrasting effects of auxin and cytokinins in shaping plant-pathogen interaction.

  7. Dissecting innate immune responses with the tools of systems biology.

    PubMed

    Smith, Kelly D; Bolouri, Hamid

    2005-02-01

    Systems biology strives to derive accurate predictive descriptions of complex systems such as innate immunity. The innate immune system is essential for host defense, yet the resulting inflammatory response must be tightly regulated. Current understanding indicates that this system is controlled by complex regulatory networks, which maintain homoeostasis while accurately distinguishing pathogenic infections from harmless exposures. Recent studies have used high throughput technologies and computational techniques that presage predictive models and will be the foundation of a systems level understanding of innate immunity.

  8. Mathematical modeling based on ordinary differential equations: A promising approach to vaccinology

    PubMed Central

    Bonin, Carla Rezende Barbosa; Fernandes, Guilherme Cortes; dos Santos, Rodrigo Weber; Lobosco, Marcelo

    2017-01-01

    ABSTRACT New contributions that aim to accelerate the development or to improve the efficacy and safety of vaccines arise from many different areas of research and technology. One of these areas is computational science, which traditionally participates in the initial steps, such as the pre-screening of active substances that have the potential to become a vaccine antigen. In this work, we present another promising way to use computational science in vaccinology: mathematical and computational models of important cell and protein dynamics of the immune system. A system of Ordinary Differential Equations represents different immune system populations, such as B cells and T cells, antigen presenting cells and antibodies. In this way, it is possible to simulate, in silico, the immune response to vaccines under development or under study. Distinct scenarios can be simulated by varying parameters of the mathematical model. As a proof of concept, we developed a model of the immune response to vaccination against the yellow fever. Our simulations have shown consistent results when compared with experimental data available in the literature. The model is generic enough to represent the action of other diseases or vaccines in the human immune system, such as dengue and Zika virus. PMID:28027002

  9. Mathematical modeling based on ordinary differential equations: A promising approach to vaccinology.

    PubMed

    Bonin, Carla Rezende Barbosa; Fernandes, Guilherme Cortes; Dos Santos, Rodrigo Weber; Lobosco, Marcelo

    2017-02-01

    New contributions that aim to accelerate the development or to improve the efficacy and safety of vaccines arise from many different areas of research and technology. One of these areas is computational science, which traditionally participates in the initial steps, such as the pre-screening of active substances that have the potential to become a vaccine antigen. In this work, we present another promising way to use computational science in vaccinology: mathematical and computational models of important cell and protein dynamics of the immune system. A system of Ordinary Differential Equations represents different immune system populations, such as B cells and T cells, antigen presenting cells and antibodies. In this way, it is possible to simulate, in silico, the immune response to vaccines under development or under study. Distinct scenarios can be simulated by varying parameters of the mathematical model. As a proof of concept, we developed a model of the immune response to vaccination against the yellow fever. Our simulations have shown consistent results when compared with experimental data available in the literature. The model is generic enough to represent the action of other diseases or vaccines in the human immune system, such as dengue and Zika virus.

  10. Utilizing population variation, vaccination, and systems biology to study human immunology

    PubMed Central

    Tsang, John S.

    2016-01-01

    The move toward precision medicine has highlighted the importance of understanding biological variability within and across individuals in the human population. In particular, given the prevalent involvement of the immune system in diverse pathologies, an important question is how much and what information about the state of the immune system is required to enable accurate prediction of future health and response to medical interventions. Towards addressing this question, recent studies using vaccination as a model perturbation and systems-biology approaches are beginning to provide a glimpse of how natural population variation together with multiplexed, high-throughput measurement and computational analysis can be used to uncover predictors of immune response quality in humans. Here I discuss recent developments in this emerging field, with emphasis on baseline correlates of vaccination responses, sources of immune-state variability, as well as relevant features of study design, data generation, and computational analysis. PMID:26187853

  11. Artificial Immune System for Recognizing Patterns

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terrance

    2005-01-01

    A method of recognizing or classifying patterns is based on an artificial immune system (AIS), which includes an algorithm and a computational model of nonlinear dynamics inspired by the behavior of a biological immune system. The method has been proposed as the theoretical basis of the computational portion of a star-tracking system aboard a spacecraft. In that system, a newly acquired star image would be treated as an antigen that would be matched by an appropriate antibody (an entry in a star catalog). The method would enable rapid convergence, would afford robustness in the face of noise in the star sensors, would enable recognition of star images acquired in any sensor or spacecraft orientation, and would not make an excessive demand on the computational resources of a typical spacecraft. Going beyond the star-tracking application, the AIS-based pattern-recognition method is potentially applicable to pattern- recognition and -classification processes for diverse purposes -- for example, reconnaissance, detecting intruders, and mining data.

  12. Using computer algebra and SMT solvers in algebraic biology

    NASA Astrophysics Data System (ADS)

    Pineda Osorio, Mateo

    2014-05-01

    Biologic processes are represented as Boolean networks, in a discrete time. The dynamics within these networks are approached with the help of SMT Solvers and the use of computer algebra. Software such as Maple and Z3 was used in this case. The number of stationary states for each network was calculated. The network studied here corresponds to the immune system under the effects of drastic mood changes. Mood is considered as a Boolean variable that affects the entire dynamics of the immune system, changing the Boolean satisfiability and the number of stationary states of the immune network. Results obtained show Z3's great potential as a SMT Solver. Some of these results were verified in Maple, even though it showed not to be as suitable for the problem approach. The solving code was constructed using Z3-Python and Z3-SMT-LiB. Results obtained are important in biology systems and are expected to help in the design of immune therapies. As a future line of research, more complex Boolean network representations of the immune system as well as the whole psychological apparatus are suggested.

  13. Portable Immune-Assessment System

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Stowe, Raymond P.; Mishra, Saroj K.

    1995-01-01

    Portable immune-assessment system developed for use in rapidly identifying infections or contaminated environment. System combines few specific fluorescent reagents for identifying immune-cell dysfunction, toxic substances, buildup of microbial antigens or microbial growth, and potential identification of pathogenic microorganisms using fluorescent microplate reader linked to laptop computer. By using few specific dyes for cell metabolism, DNA/RNA conjugation, specific enzyme activity, or cell constituents, one makes immediate, onsite determination of person's health or of contamination of environment.

  14. Mathematical and Computational Modeling for Tumor Virotherapy with Mediated Immunity.

    PubMed

    Timalsina, Asim; Tian, Jianjun Paul; Wang, Jin

    2017-08-01

    We propose a new mathematical modeling framework based on partial differential equations to study tumor virotherapy with mediated immunity. The model incorporates both innate and adaptive immune responses and represents the complex interaction among tumor cells, oncolytic viruses, and immune systems on a domain with a moving boundary. Using carefully designed computational methods, we conduct extensive numerical simulation to the model. The results allow us to examine tumor development under a wide range of settings and provide insight into several important aspects of the virotherapy, including the dependence of the efficacy on a few key parameters and the delay in the adaptive immunity. Our findings also suggest possible ways to improve the virotherapy for tumor treatment.

  15. Utilizing population variation, vaccination, and systems biology to study human immunology.

    PubMed

    Tsang, John S

    2015-08-01

    The move toward precision medicine has highlighted the importance of understanding biological variability within and across individuals in the human population. In particular, given the prevalent involvement of the immune system in diverse pathologies, an important question is how much and what information about the state of the immune system is required to enable accurate prediction of future health and response to medical interventions. Towards addressing this question, recent studies using vaccination as a model perturbation and systems-biology approaches are beginning to provide a glimpse of how natural population variation together with multiplexed, high-throughput measurement and computational analysis can be used to uncover predictors of immune response quality in humans. Here I discuss recent developments in this emerging field, with emphasis on baseline correlates of vaccination responses, sources of immune-state variability, as well as relevant features of study design, data generation, and computational analysis. Copyright © 2015 The Author. Published by Elsevier Ltd.. All rights reserved.

  16. Simulating the decentralized processes of the human immune system in a virtual anatomy model.

    PubMed

    Sarpe, Vladimir; Jacob, Christian

    2013-01-01

    Many physiological processes within the human body can be perceived and modeled as large systems of interacting particles or swarming agents. The complex processes of the human immune system prove to be challenging to capture and illustrate without proper reference to the spatial distribution of immune-related organs and systems. Our work focuses on physical aspects of immune system processes, which we implement through swarms of agents. This is our first prototype for integrating different immune processes into one comprehensive virtual physiology simulation. Using agent-based methodology and a 3-dimensional modeling and visualization environment (LINDSAY Composer), we present an agent-based simulation of the decentralized processes in the human immune system. The agents in our model - such as immune cells, viruses and cytokines - interact through simulated physics in two different, compartmentalized and decentralized 3-dimensional environments namely, (1) within the tissue and (2) inside a lymph node. While the two environments are separated and perform their computations asynchronously, an abstract form of communication is allowed in order to replicate the exchange, transportation and interaction of immune system agents between these sites. The distribution of simulated processes, that can communicate across multiple, local CPUs or through a network of machines, provides a starting point to build decentralized systems that replicate larger-scale processes within the human body, thus creating integrated simulations with other physiological systems, such as the circulatory, endocrine, or nervous system. Ultimately, this system integration across scales is our goal for the LINDSAY Virtual Human project. Our current immune system simulations extend our previous work on agent-based simulations by introducing advanced visualizations within the context of a virtual human anatomy model. We also demonstrate how to distribute a collection of connected simulations over a network of computers. As a future endeavour, we plan to use parameter tuning techniques on our model to further enhance its biological credibility. We consider these in silico experiments and their associated modeling and optimization techniques as essential components in further enhancing our capabilities of simulating a whole-body, decentralized immune system, to be used both for medical education and research as well as for virtual studies in immunoinformatics.

  17. Use of Multiple GPUs to Speedup the Execution of a Three-Dimensional Computational Model of the Innate Immune System

    NASA Astrophysics Data System (ADS)

    Xavier, M. P.; do Nascimento, T. M.; dos Santos, R. W.; Lobosco, M.

    2014-03-01

    The development of computational systems that mimics the physiological response of organs or even the entire body is a complex task. One of the issues that makes this task extremely complex is the huge computational resources needed to execute the simulations. For this reason, the use of parallel computing is mandatory. In this work, we focus on the simulation of temporal and spatial behaviour of some human innate immune system cells and molecules in a small three-dimensional section of a tissue. To perform this simulation, we use multiple Graphics Processing Units (GPUs) in a shared-memory environment. Despite of high initialization and communication costs imposed by the use of GPUs, the techniques used to implement the HIS simulator have shown to be very effective to achieve this purpose.

  18. Network representations of immune system complexity

    PubMed Central

    Subramanian, Naeha; Torabi-Parizi, Parizad; Gottschalk, Rachel A.; Germain, Ronald N.; Dutta, Bhaskar

    2015-01-01

    The mammalian immune system is a dynamic multi-scale system composed of a hierarchically organized set of molecular, cellular and organismal networks that act in concert to promote effective host defense. These networks range from those involving gene regulatory and protein-protein interactions underlying intracellular signaling pathways and single cell responses to increasingly complex networks of in vivo cellular interaction, positioning and migration that determine the overall immune response of an organism. Immunity is thus not the product of simple signaling events but rather non-linear behaviors arising from dynamic, feedback-regulated interactions among many components. One of the major goals of systems immunology is to quantitatively measure these complex multi-scale spatial and temporal interactions, permitting development of computational models that can be used to predict responses to perturbation. Recent technological advances permit collection of comprehensive datasets at multiple molecular and cellular levels while advances in network biology support representation of the relationships of components at each level as physical or functional interaction networks. The latter facilitate effective visualization of patterns and recognition of emergent properties arising from the many interactions of genes, molecules, and cells of the immune system. We illustrate the power of integrating ‘omics’ and network modeling approaches for unbiased reconstruction of signaling and transcriptional networks with a focus on applications involving the innate immune system. We further discuss future possibilities for reconstruction of increasingly complex cellular and organism-level networks and development of sophisticated computational tools for prediction of emergent immune behavior arising from the concerted action of these networks. PMID:25625853

  19. Multiscale modeling of mucosal immune responses

    PubMed Central

    2015-01-01

    Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T cell differentiation and tissue level cell-cell interactions was developed to illustrate the capabilities, power and scope of ENISI MSM. Background Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Implementation Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. Conclusion We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut inflammation. Our modeling predictions dissect the mechanisms by which effector CD4+ T cell responses contribute to tissue damage in the gut mucosa following immune dysregulation. PMID:26329787

  20. Multiscale modeling of mucosal immune responses.

    PubMed

    Mei, Yongguo; Abedi, Vida; Carbo, Adria; Zhang, Xiaoying; Lu, Pinyi; Philipson, Casandra; Hontecillas, Raquel; Hoops, Stefan; Liles, Nathan; Bassaganya-Riera, Josep

    2015-01-01

    Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut inflammation. Our modeling predictions dissect the mechanisms by which effector CD4+ T cell responses contribute to tissue damage in the gut mucosa following immune dysregulation.Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T cell differentiation and tissue level cell-cell interactions was developed to illustrate the capabilities, power and scope of ENISI MSM.

  1. Sensitivity Analysis of an ENteric Immunity SImulator (ENISI)-Based Model of Immune Responses to Helicobacter pylori Infection

    PubMed Central

    Alam, Maksudul; Deng, Xinwei; Philipson, Casandra; Bassaganya-Riera, Josep; Bisset, Keith; Carbo, Adria; Eubank, Stephen; Hontecillas, Raquel; Hoops, Stefan; Mei, Yongguo; Abedi, Vida; Marathe, Madhav

    2015-01-01

    Agent-based models (ABM) are widely used to study immune systems, providing a procedural and interactive view of the underlying system. The interaction of components and the behavior of individual objects is described procedurally as a function of the internal states and the local interactions, which are often stochastic in nature. Such models typically have complex structures and consist of a large number of modeling parameters. Determining the key modeling parameters which govern the outcomes of the system is very challenging. Sensitivity analysis plays a vital role in quantifying the impact of modeling parameters in massively interacting systems, including large complex ABM. The high computational cost of executing simulations impedes running experiments with exhaustive parameter settings. Existing techniques of analyzing such a complex system typically focus on local sensitivity analysis, i.e. one parameter at a time, or a close “neighborhood” of particular parameter settings. However, such methods are not adequate to measure the uncertainty and sensitivity of parameters accurately because they overlook the global impacts of parameters on the system. In this article, we develop novel experimental design and analysis techniques to perform both global and local sensitivity analysis of large-scale ABMs. The proposed method can efficiently identify the most significant parameters and quantify their contributions to outcomes of the system. We demonstrate the proposed methodology for ENteric Immune SImulator (ENISI), a large-scale ABM environment, using a computational model of immune responses to Helicobacter pylori colonization of the gastric mucosa. PMID:26327290

  2. Sensitivity Analysis of an ENteric Immunity SImulator (ENISI)-Based Model of Immune Responses to Helicobacter pylori Infection.

    PubMed

    Alam, Maksudul; Deng, Xinwei; Philipson, Casandra; Bassaganya-Riera, Josep; Bisset, Keith; Carbo, Adria; Eubank, Stephen; Hontecillas, Raquel; Hoops, Stefan; Mei, Yongguo; Abedi, Vida; Marathe, Madhav

    2015-01-01

    Agent-based models (ABM) are widely used to study immune systems, providing a procedural and interactive view of the underlying system. The interaction of components and the behavior of individual objects is described procedurally as a function of the internal states and the local interactions, which are often stochastic in nature. Such models typically have complex structures and consist of a large number of modeling parameters. Determining the key modeling parameters which govern the outcomes of the system is very challenging. Sensitivity analysis plays a vital role in quantifying the impact of modeling parameters in massively interacting systems, including large complex ABM. The high computational cost of executing simulations impedes running experiments with exhaustive parameter settings. Existing techniques of analyzing such a complex system typically focus on local sensitivity analysis, i.e. one parameter at a time, or a close "neighborhood" of particular parameter settings. However, such methods are not adequate to measure the uncertainty and sensitivity of parameters accurately because they overlook the global impacts of parameters on the system. In this article, we develop novel experimental design and analysis techniques to perform both global and local sensitivity analysis of large-scale ABMs. The proposed method can efficiently identify the most significant parameters and quantify their contributions to outcomes of the system. We demonstrate the proposed methodology for ENteric Immune SImulator (ENISI), a large-scale ABM environment, using a computational model of immune responses to Helicobacter pylori colonization of the gastric mucosa.

  3. Distributed intrusion detection system based on grid security model

    NASA Astrophysics Data System (ADS)

    Su, Jie; Liu, Yahui

    2008-03-01

    Grid computing has developed rapidly with the development of network technology and it can solve the problem of large-scale complex computing by sharing large-scale computing resource. In grid environment, we can realize a distributed and load balance intrusion detection system. This paper first discusses the security mechanism in grid computing and the function of PKI/CA in the grid security system, then gives the application of grid computing character in the distributed intrusion detection system (IDS) based on Artificial Immune System. Finally, it gives a distributed intrusion detection system based on grid security system that can reduce the processing delay and assure the detection rates.

  4. Approaching mathematical model of the immune network based DNA Strand Displacement system.

    PubMed

    Mardian, Rizki; Sekiyama, Kosuke; Fukuda, Toshio

    2013-12-01

    One biggest obstacle in molecular programming is that there is still no direct method to compile any existed mathematical model into biochemical reaction in order to solve a computational problem. In this paper, the implementation of DNA Strand Displacement system based on nature-inspired computation is observed. By using the Immune Network Theory and Chemical Reaction Network, the compilation of DNA-based operation is defined and the formulation of its mathematical model is derived. Furthermore, the implementation on this system is compared with the conventional implementation by using silicon-based programming. From the obtained results, we can see a positive correlation between both. One possible application from this DNA-based model is for a decision making scheme of intelligent computer or molecular robot. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Systems Biology in Immunology – A Computational Modeling Perspective

    PubMed Central

    Germain, Ronald N.; Meier-Schellersheim, Martin; Nita-Lazar, Aleksandra; Fraser, Iain D. C.

    2011-01-01

    Systems biology is an emerging discipline that combines high-content, multiplexed measurements with informatic and computational modeling methods to better understand biological function at various scales. Here we present a detailed review of the methods used to create computational models and conduct simulations of immune function, We provide descriptions of the key data gathering techniques employed to generate the quantitative and qualitative data required for such modeling and simulation and summarize the progress to date in applying these tools and techniques to questions of immunological interest, including infectious disease. We include comments on what insights modeling can provide that complement information obtained from the more familiar experimental discovery methods used by most investigators and why quantitative methods are needed to eventually produce a better understanding of immune system operation in health and disease. PMID:21219182

  6. An Artificial Immune System-Inspired Multiobjective Evolutionary Algorithm with Application to the Detection of Distributed Computer Network Intrusions

    DTIC Science & Technology

    2007-03-01

    Intelligence AIS Artificial Immune System ANN Artificial Neural Networks API Application Programming Interface BFS Breadth-First Search BIS Biological...problem domain is too large for only one algorithm’s application . It ranges from network - based sniffer systems, responsible for Enterprise-wide coverage...options to network administrators in choosing detectors to employ in future ID applications . Objectives Our hypothesis validity is based on a set

  7. Evolution, learning, and cognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Y.C.

    1988-01-01

    The book comprises more than fifteen articles in the areas of neural networks and connectionist systems, classifier systems, adaptive network systems, genetic algorithm, cellular automata, artificial immune systems, evolutionary genetics, cognitive science, optical computing, combinatorial optimization, and cybernetics.

  8. A tale of three bio-inspired computational approaches

    NASA Astrophysics Data System (ADS)

    Schaffer, J. David

    2014-05-01

    I will provide a high level walk-through for three computational approaches derived from Nature. First, evolutionary computation implements what we may call the "mother of all adaptive processes." Some variants on the basic algorithms will be sketched and some lessons I have gleaned from three decades of working with EC will be covered. Then neural networks, computational approaches that have long been studied as possible ways to make "thinking machines", an old dream of man's, and based upon the only known existing example of intelligence. Then, a little overview of attempts to combine these two approaches that some hope will allow us to evolve machines we could never hand-craft. Finally, I will touch on artificial immune systems, Nature's highly sophisticated defense mechanism, that has emerged in two major stages, the innate and the adaptive immune systems. This technology is finding applications in the cyber security world.

  9. Predicting the impact of combined therapies on myeloma cell growth using a hybrid multi-scale agent-based model.

    PubMed

    Ji, Zhiwei; Su, Jing; Wu, Dan; Peng, Huiming; Zhao, Weiling; Nlong Zhao, Brian; Zhou, Xiaobo

    2017-01-31

    Multiple myeloma is a malignant still incurable plasma cell disorder. This is due to refractory disease relapse, immune impairment, and development of multi-drug resistance. The growth of malignant plasma cells is dependent on the bone marrow (BM) microenvironment and evasion of the host's anti-tumor immune response. Hence, we hypothesized that targeting tumor-stromal cell interaction and endogenous immune system in BM will potentially improve the response of multiple myeloma (MM). Therefore, we proposed a computational simulation of the myeloma development in the complicated microenvironment which includes immune cell components and bone marrow stromal cells and predicted the effects of combined treatment with multi-drugs on myeloma cell growth. We constructed a hybrid multi-scale agent-based model (HABM) that combines an ODE system and Agent-based model (ABM). The ODEs was used for modeling the dynamic changes of intracellular signal transductions and ABM for modeling the cell-cell interactions between stromal cells, tumor, and immune components in the BM. This model simulated myeloma growth in the bone marrow microenvironment and revealed the important role of immune system in this process. The predicted outcomes were consistent with the experimental observations from previous studies. Moreover, we applied this model to predict the treatment effects of three key therapeutic drugs used for MM, and found that the combination of these three drugs potentially suppress the growth of myeloma cells and reactivate the immune response. In summary, the proposed model may serve as a novel computational platform for simulating the formation of MM and evaluating the treatment response of MM to multiple drugs.

  10. Single cell transcriptomics to explore the immune system in health and disease†

    PubMed Central

    Regev, Aviv; Teichmann, Sarah A.

    2017-01-01

    The immune system varies in cell types, states, and locations. The complex networks, interactions and responses of immune cells produce diverse cellular ecosystems composed of multiple cell types, accompanied by genetic diversity in antigen receptors. Within this ecosystem, innate and adaptive immune cells maintain and protect tissue function, integrity and homeostasis upon changes in functional demands and diverse insults. Characterizing this inherent complexity requires studies at single-cell resolution. Recent advances such as, massively-parallel single cell RNA-Seq and sophisticated computational methods are catalysing a revolution in our understanding of immunology. Here, we provide an overview of the state of single cell genomics methods and an outlook on the use of single-cell techniques to decipher the adaptive and innate components of immunity. PMID:28983043

  11. A Perspective on the Role of Computational Models in Immunology.

    PubMed

    Chakraborty, Arup K

    2017-04-26

    This is an exciting time for immunology because the future promises to be replete with exciting new discoveries that can be translated to improve health and treat disease in novel ways. Immunologists are attempting to answer increasingly complex questions concerning phenomena that range from the genetic, molecular, and cellular scales to that of organs, whole animals or humans, and populations of humans and pathogens. An important goal is to understand how the many different components involved interact with each other within and across these scales for immune responses to emerge, and how aberrant regulation of these processes causes disease. To aid this quest, large amounts of data can be collected using high-throughput instrumentation. The nonlinear, cooperative, and stochastic character of the interactions between components of the immune system as well as the overwhelming amounts of data can make it difficult to intuit patterns in the data or a mechanistic understanding of the phenomena being studied. Computational models are increasingly important in confronting and overcoming these challenges. I first describe an iterative paradigm of research that integrates laboratory experiments, clinical data, computational inference, and mechanistic computational models. I then illustrate this paradigm with a few examples from the recent literature that make vivid the power of bringing together diverse types of computational models with experimental and clinical studies to fruitfully interrogate the immune system.

  12. Computer-guided design of optimal microbial consortia for immune system modulation

    PubMed Central

    Szabady, Rose L; Bhattarai, Shakti K; Olle, Bernat; Norman, Jason M; Suda, Wataru; Oshima, Kenshiro; Hattori, Masahira; Gerber, Georg K; Sander, Chris; Honda, Kenya

    2018-01-01

    Manipulation of the gut microbiota holds great promise for the treatment of diseases. However, a major challenge is the identification of therapeutically potent microbial consortia that colonize the host effectively while maximizing immunologic outcome. Here, we propose a novel workflow to select optimal immune-inducing consortia from microbiome compositicon and immune effectors measurements. Using published and newly generated microbial and regulatory T-cell (Treg) data from germ-free mice, we estimate the contributions of twelve Clostridia strains with known immune-modulating effect to Treg induction. Combining this with a longitudinal data-constrained ecological model, we predict the ability of every attainable and ecologically stable subconsortium in promoting Treg activation and rank them by the Treg Induction Score (TrIS). Experimental validation of selected consortia indicates a strong and statistically significant correlation between predicted TrIS and measured Treg. We argue that computational indexes, such as the TrIS, are valuable tools for the systematic selection of immune-modulating bacteriotherapeutics. PMID:29664397

  13. Computer-guided design of optimal microbial consortia for immune system modulation.

    PubMed

    Stein, Richard R; Tanoue, Takeshi; Szabady, Rose L; Bhattarai, Shakti K; Olle, Bernat; Norman, Jason M; Suda, Wataru; Oshima, Kenshiro; Hattori, Masahira; Gerber, Georg K; Sander, Chris; Honda, Kenya; Bucci, Vanni

    2018-04-17

    Manipulation of the gut microbiota holds great promise for the treatment of diseases. However, a major challenge is the identification of therapeutically potent microbial consortia that colonize the host effectively while maximizing immunologic outcome. Here, we propose a novel workflow to select optimal immune-inducing consortia from microbiome compositicon and immune effectors measurements. Using published and newly generated microbial and regulatory T-cell (T reg ) data from germ-free mice, we estimate the contributions of twelve Clostridia strains with known immune-modulating effect to T reg induction. Combining this with a longitudinal data-constrained ecological model, we predict the ability of every attainable and ecologically stable subconsortium in promoting T reg activation and rank them by the T reg Induction Score (TrIS). Experimental validation of selected consortia indicates a strong and statistically significant correlation between predicted TrIS and measured T reg . We argue that computational indexes, such as the TrIS, are valuable tools for the systematic selection of immune-modulating bacteriotherapeutics. © 2018, Stein et al.

  14. A survey of artificial immune system based intrusion detection.

    PubMed

    Yang, Hua; Li, Tao; Hu, Xinlei; Wang, Feng; Zou, Yang

    2014-01-01

    In the area of computer security, Intrusion Detection (ID) is a mechanism that attempts to discover abnormal access to computers by analyzing various interactions. There is a lot of literature about ID, but this study only surveys the approaches based on Artificial Immune System (AIS). The use of AIS in ID is an appealing concept in current techniques. This paper summarizes AIS based ID methods from a new view point; moreover, a framework is proposed for the design of AIS based ID Systems (IDSs). This framework is analyzed and discussed based on three core aspects: antibody/antigen encoding, generation algorithm, and evolution mode. Then we collate the commonly used algorithms, their implementation characteristics, and the development of IDSs into this framework. Finally, some of the future challenges in this area are also highlighted.

  15. Systems Biology-Based Platforms to Accelerate Research of Emerging Infectious Diseases.

    PubMed

    Oh, Soo Jin; Choi, Young Ki; Shin, Ok Sarah

    2018-03-01

    Emerging infectious diseases (EIDs) pose a major threat to public health and security. Given the dynamic nature and significant impact of EIDs, the most effective way to prevent and protect against them is to develop vaccines in advance. Systems biology approaches provide an integrative way to understand the complex immune response to pathogens. They can lead to a greater understanding of EID pathogenesis and facilitate the evaluation of newly developed vaccine-induced immunity in a timely manner. In recent years, advances in high throughput technologies have enabled researchers to successfully apply systems biology methods to analyze immune responses to a variety of pathogens and vaccines. Despite recent advances, computational and biological challenges impede wider application of systems biology approaches. This review highlights recent advances in the fields of systems immunology and vaccinology, and presents ways that systems biology-based platforms can be applied to accelerate a deeper understanding of the molecular mechanisms of immunity against EIDs. © Copyright: Yonsei University College of Medicine 2018.

  16. Systems Biology-Based Platforms to Accelerate Research of Emerging Infectious Diseases

    PubMed Central

    2018-01-01

    Emerging infectious diseases (EIDs) pose a major threat to public health and security. Given the dynamic nature and significant impact of EIDs, the most effective way to prevent and protect against them is to develop vaccines in advance. Systems biology approaches provide an integrative way to understand the complex immune response to pathogens. They can lead to a greater understanding of EID pathogenesis and facilitate the evaluation of newly developed vaccine-induced immunity in a timely manner. In recent years, advances in high throughput technologies have enabled researchers to successfully apply systems biology methods to analyze immune responses to a variety of pathogens and vaccines. Despite recent advances, computational and biological challenges impede wider application of systems biology approaches. This review highlights recent advances in the fields of systems immunology and vaccinology, and presents ways that systems biology-based platforms can be applied to accelerate a deeper understanding of the molecular mechanisms of immunity against EIDs. PMID:29436184

  17. Real-time immune-inspired optimum state-of-charge trajectory estimation using upcoming route information preview and neural networks for plug-in hybrid electric vehicles fuel economy

    NASA Astrophysics Data System (ADS)

    Mozaffari, Ahmad; Vajedi, Mahyar; Azad, Nasser L.

    2015-06-01

    The main proposition of the current investigation is to develop a computational intelligence-based framework which can be used for the real-time estimation of optimum battery state-of-charge (SOC) trajectory in plug-in hybrid electric vehicles (PHEVs). The estimated SOC trajectory can be then employed for an intelligent power management to significantly improve the fuel economy of the vehicle. The devised intelligent SOC trajectory builder takes advantage of the upcoming route information preview to achieve the lowest possible total cost of electricity and fossil fuel. To reduce the complexity of real-time optimization, the authors propose an immune system-based clustering approach which allows categorizing the route information into a predefined number of segments. The intelligent real-time optimizer is also inspired on the basis of interactions in biological immune systems, and is called artificial immune algorithm (AIA). The objective function of the optimizer is derived from a computationally efficient artificial neural network (ANN) which is trained by a database obtained from a high-fidelity model of the vehicle built in the Autonomie software. The simulation results demonstrate that the integration of immune inspired clustering tool, AIA and ANN, will result in a powerful framework which can generate a near global optimum SOC trajectory for the baseline vehicle, that is, the Toyota Prius PHEV. The outcomes of the current investigation prove that by taking advantage of intelligent approaches, it is possible to design a computationally efficient and powerful SOC trajectory builder for the intelligent power management of PHEVs.

  18. Immune systems are not just for making you feel better: they are for controlling autonomous robots

    NASA Astrophysics Data System (ADS)

    Rosenblum, Mark

    2005-05-01

    The typical algorithm for robot autonomous navigation in off-road complex environments involves building a 3D map of the robot's surrounding environment using a 3D sensing modality such as stereo vision or active laser scanning, and generating an instantaneous plan to navigate around hazards. Although there has been steady progress using these methods, these systems suffer from several limitations that cannot be overcome with 3D sensing and planning alone. Geometric sensing alone has no ability to distinguish between compressible and non-compressible materials. As a result, these systems have difficulty in heavily vegetated environments and require sensitivity adjustments across different terrain types. On the planning side, these systems have no ability to learn from their mistakes and avoid problematic environmental situations on subsequent encounters. We have implemented an adaptive terrain classification system based on the Artificial Immune System (AIS) computational model, which is loosely based on the biological immune system, that combines various forms of imaging sensor inputs to produce a "feature labeled" image of the scene categorizing areas as benign or detrimental for autonomous robot navigation. Because of the qualities of the AIS computation model, the resulting system will be able to learn and adapt on its own through interaction with the environment by modifying its interpretation of the sensor data. The feature labeled results from the AIS analysis are inserted into a map and can then be used by a planner to generate a safe route to a goal point. The coupling of diverse visual cues with the malleable AIS computational model will lead to autonomous robotic ground vehicles that require less human intervention for deployment in novel environments and more robust operation as a result of the system's ability to improve its performance through interaction with the environment.

  19. COMPUTATION OF ℛ IN AGE-STRUCTURED EPIDEMIOLOGICAL MODELS WITH MATERNAL AND TEMPORARY IMMUNITY.

    PubMed

    Feng, Zhilan; Han, Qing; Qiu, Zhipeng; Hill, Andrew N; Glasser, John W

    2016-03-01

    For infectious diseases such as pertussis, susceptibility is determined by immunity, which is chronological age-dependent. We consider an age-structured epidemiological model that accounts for both passively acquired maternal antibodies that decay and active immunity that wanes, permitting reinfection. The model is a 6-dimensional system of partial differential equations (PDE). By assuming constant rates within each age-group, the PDE system can be reduced to an ordinary differential equation (ODE) system with aging from one age-group to the next. We derive formulae for the effective reproduction number ℛ and provide their biological interpretation in some special cases. We show that the disease-free equilibrium is stable when ℛ < 1 and unstable if ℛ > 1.

  20. A Survey of Artificial Immune System Based Intrusion Detection

    PubMed Central

    Li, Tao; Hu, Xinlei; Wang, Feng; Zou, Yang

    2014-01-01

    In the area of computer security, Intrusion Detection (ID) is a mechanism that attempts to discover abnormal access to computers by analyzing various interactions. There is a lot of literature about ID, but this study only surveys the approaches based on Artificial Immune System (AIS). The use of AIS in ID is an appealing concept in current techniques. This paper summarizes AIS based ID methods from a new view point; moreover, a framework is proposed for the design of AIS based ID Systems (IDSs). This framework is analyzed and discussed based on three core aspects: antibody/antigen encoding, generation algorithm, and evolution mode. Then we collate the commonly used algorithms, their implementation characteristics, and the development of IDSs into this framework. Finally, some of the future challenges in this area are also highlighted. PMID:24790549

  1. The immune system as a biomonitor: explorations in innate and adaptive immunity

    PubMed Central

    Thomas, Niclas; Heather, James; Pollara, Gabriel; Simpson, Nandi; Matjeka, Theres; Shawe-Taylor, John; Noursadeghi, Mahdad; Chain, Benjamin

    2013-01-01

    The human immune system has a highly complex, multi-layered structure which has evolved to detect and respond to changes in the internal microenvironment of the body. Recognition occurs at the molecular or submolecular scale, via classical reversible receptor–ligand interactions, and can lead to a response with great sensitivity and speed. Remarkably, recognition is coupled to memory, such that responses are modulated by events which occurred years or even decades before. Although the immune system in general responds differently and more vigorously to stimuli entering the body from the outside (e.g. infections), this is an emergent property of the system: many of the recognition molecules themselves have no inherent bias towards external stimuli (non-self) but also bind targets found within the body (self). It is quite clear that the immune response registers pathophysiological changes in general. Cancer, wounding and chronic tissue injury are some obvious examples. Against this background, the immune system ‘state’ tracks the internal processes of the body, and is likely to encode information regarding both current and past disease processes. Moreover, the distributed nature of most immune responses (e.g. typically involving lymphoid tissue, non-lymphoid tissue, bone marrow, blood, extracellular interstitial spaces, etc.) means that many of the changes associated with immune responses are manifested systemically, and specifically can be detected in blood. This provides a very convenient route to sampling immune cells. We consider two different and complementary ways of querying the human immune ‘state’ using high-dimensional genomic screening methodologies, and discuss the potentials of these approaches and some of the technological and computational challenges to be overcome. PMID:24427535

  2. An Immunized Aircraft Maneuver Selection System

    NASA Technical Reports Server (NTRS)

    Karr, Charles L.

    2003-01-01

    The objective of this project, as stated in the original proposal, was to develop an immunized aircraft maneuver selection (IAMS) system. The IAMS system was to be composed of computational and informational building blocks that resemble structures in natural immune systems. The ultimate goal of the project was to develop a software package that could be flight tested on aircraft models. This report describes the work performed in the first year of what was to have been a two year project. This report also describes efforts that would have been made in the final year to have completed the project, had it been continued for the final year. After introductory material is provided in Section 2, the end-of-year-one status of the effort is discussed in Section 3. The remainder of the report provides an accounting of first year efforts. Section 4 provides background information on natural immune systems while Section 5 describes a generic ar&itecture developed for use in the IAMS. Section 6 describes the application of the architecture to a system identification problem. Finally, Section 7 describes steps necessary for completing the project.

  3. Third-Kind Encounters in Biomedicine: Immunology Meets Mathematics and Informatics to Become Quantitative and Predictive.

    PubMed

    Eberhardt, Martin; Lai, Xin; Tomar, Namrata; Gupta, Shailendra; Schmeck, Bernd; Steinkasserer, Alexander; Schuler, Gerold; Vera, Julio

    2016-01-01

    The understanding of the immune response is right now at the center of biomedical research. There are growing expectations that immune-based interventions will in the midterm provide new, personalized, and targeted therapeutic options for many severe and highly prevalent diseases, from aggressive cancers to infectious and autoimmune diseases. To this end, immunology should surpass its current descriptive and phenomenological nature, and become quantitative, and thereby predictive.Immunology is an ideal field for deploying the tools, methodologies, and philosophy of systems biology, an approach that combines quantitative experimental data, computational biology, and mathematical modeling. This is because, from an organism-wide perspective, the immunity is a biological system of systems, a paradigmatic instance of a multi-scale system. At the molecular scale, the critical phenotypic responses of immune cells are governed by large biochemical networks, enriched in nested regulatory motifs such as feedback and feedforward loops. This network complexity confers them the ability of highly nonlinear behavior, including remarkable examples of homeostasis, ultra-sensitivity, hysteresis, and bistability. Moving from the cellular level, different immune cell populations communicate with each other by direct physical contact or receiving and secreting signaling molecules such as cytokines. Moreover, the interaction of the immune system with its potential targets (e.g., pathogens or tumor cells) is far from simple, as it involves a number of attack and counterattack mechanisms that ultimately constitute a tightly regulated multi-feedback loop system. From a more practical perspective, this leads to the consequence that today's immunologists are facing an ever-increasing challenge of integrating massive quantities from multi-platforms.In this chapter, we support the idea that the analysis of the immune system demands the use of systems-level approaches to ensure the success in the search for more effective and personalized immune-based therapies.

  4. Embracing Complexity beyond Systems Medicine: A New Approach to Chronic Immune Disorders

    PubMed Central

    te Velde, Anje A.; Bezema, Tjitske; van Kampen, Antoine H. C.; Kraneveld, Aletta D.; 't Hart, Bert A.; van Middendorp, Henriët; Hack, Erik C.; van Montfrans, Joris M.; Belzer, Clara; Jans-Beken, Lilian; Pieters, Raymond H.; Knipping, Karen; Huber, Machteld; Boots, Annemieke M. H.; Garssen, Johan; Radstake, Tim R.; Evers, Andrea W. M.; Prakken, Berent J.; Joosten, Irma

    2016-01-01

    In order to combat chronic immune disorders (CIDs), it is an absolute necessity to understand the bigger picture, one that goes beyond insights at a one-disease, molecular, cellular, and static level. To unravel this bigger picture we advocate an integral, cross-disciplinary approach capable of embracing the complexity of the field. This paper discusses the current knowledge on common pathways in CIDs including general psychosocial and lifestyle factors associated with immune functioning. We demonstrate the lack of more in-depth psychosocial and lifestyle factors in current research cohorts and most importantly the need for an all-encompassing analysis of these factors. The second part of the paper discusses the challenges of understanding immune system dynamics and effectively integrating all key perspectives on immune functioning, including the patient’s perspective itself. This paper suggests the use of techniques from complex systems science in describing and simulating healthy or deviating behavior of the immune system in its biopsychosocial surroundings. The patient’s perspective data are suggested to be generated by using specific narrative techniques. We conclude that to gain more insight into the behavior of the whole system and to acquire new ways of combatting CIDs, we need to construct and apply new techniques in the field of computational and complexity science, to an even wider variety of dynamic data than used in today’s systems medicine. PMID:28018353

  5. A switching control law approach for cancer immunotherapy of an evolutionary tumor growth model.

    PubMed

    Doban, Alina I; Lazar, Mircea

    2017-02-01

    We propose a new approach for tumor immunotherapy which is based on a switching control strategy defined on domains of attraction of equilibria of interest. For this, we consider a recently derived model which captures the effects of the tumor cells on the immune system and viceversa, through predator-prey competition terms. Additionally, it incorporates the immune system's mechanism for producing hunting immune cells, which makes the model suitable for immunotherapy strategies analysis and design. For computing domains of attraction for the tumor nonlinear dynamics, and thus, for deriving immunotherapeutic strategies we employ rational Lyapunov functions. Finally, we apply the switching control strategy to destabilize an invasive tumor equilibrium and steer the system trajectories to tumor dormancy. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Glassy Dynamics in the Adaptive Immune Response Prevents Autoimmune Disease

    NASA Astrophysics Data System (ADS)

    Sun, Jun; Deem, Michael

    2006-03-01

    The immune system normally protects the human host against death by infection. However, when an immune response is mistakenly directed at self antigens, autoimmune disease can occur. We describe a model of protein evolution to simulate the dynamics of the adaptive immune response to antigens. Computer simulations of the dynamics of antibody evolution show that different evolutionary mechanisms, namely gene segment swapping and point mutation, lead to different evolved antibody binding affinities. Although a combination of gene segment swapping and point mutation can yield a greater affinity to a specific antigen than point mutation alone, the antibodies so evolved are highly cross-reactive and would cause autoimmune disease, and this is not the chosen dynamics of the immune system. We suggest that in the immune system a balance has evolved between binding affinity and specificity in the mechanism for searching the amino acid sequence space of antibodies. Our model predicts that chronic infection may lead to autoimmune disease as well due to cross-reactivity and suggests a broad distribution for the time of onset of autoimmune disease due to chronic exposure. The slow search of antibody sequence space by point mutation leads to the broad of distribution times.

  7. Toward Scalable Trustworthy Computing Using the Human-Physiology-Immunity Metaphor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hively, Lee M; Sheldon, Frederick T

    The cybersecurity landscape consists of an ad hoc patchwork of solutions. Optimal cybersecurity is difficult for various reasons: complexity, immense data and processing requirements, resource-agnostic cloud computing, practical time-space-energy constraints, inherent flaws in 'Maginot Line' defenses, and the growing number and sophistication of cyberattacks. This article defines the high-priority problems and examines the potential solution space. In that space, achieving scalable trustworthy computing and communications is possible through real-time knowledge-based decisions about cyber trust. This vision is based on the human-physiology-immunity metaphor and the human brain's ability to extract knowledge from data and information. The article outlines future steps towardmore » scalable trustworthy systems requiring a long-term commitment to solve the well-known challenges.« less

  8. Evolution of immune systems from self/not self to danger to artificial immune systems (AIS).

    PubMed

    Cooper, Edwin L

    2010-03-01

    This review will examine the evolution of immune mechanisms by emphasizing information from animal groups exclusive of all vertebrates. There will be a focus on concepts that propelled the immune system into prominent discourse in the life sciences. The self/not self hypothesis was crucial and so was the concern for immunologic memory or anamnesia, development of cancer, autoimmunity, and clonal selection. Now we may be able to deconstruct clonal selection since it is not applicable in the sense that it is not applicable to invertebrate mechanisms. Clonal selection seems to be purely as all evidence indicates a vertebrate strategy and therefore irrelevant to invertebrates. Some views may insist that anthropocentric mammalian immunologists utilized a tool to propel: the universal innate immune system of ubiquitous and plentiful invertebrates as an essential system for vertebrates. This was advantageous for all immunology; moreover innate immunity acquired an extended raison d'être. Innate immunity should help if there would be a failure of the adaptive immune system. Still to be answered are questions concerning immunologic surveillance that includes clonal selection. We can then ask does immunologic surveillance play a role in the survival of invertebrates that most universally seem to not develop cancer of vertebrates especially mammals; invertebrates only develop benign tumor. A recent proposal concerns an alternative explanation that is all embracing. Danger hypothesis operates in striking contrast to the self/not self hypothesis. This view holds that the immune system is adapted to intervene not because self is threatened but because of the system's sense of danger. This perception occurs by means of signals other than recognition of microbial pattern recognition molecules characteristic of invertebrates. Response to danger may be another way of analyzing innate immunity that does not trigger the production of clones and therefore does not rely entirely on the self/not self model. The review will end with certain perspectives on artificial immune systems new on the scene and the product of computational immunologists. The tentative view is to question if the immune systems of invertebrates might be amenable to such an analysis? This would offer more credence to the innate system, often pushed aside thus favoring the adaptive responses.

  9. Evolution of immune systems from self/not self to danger to artificial immune systems (AIS)

    NASA Astrophysics Data System (ADS)

    Cooper, Edwin L.

    2010-03-01

    This review will examine the evolution of immune mechanisms by emphasizing information from animal groups exclusive of all vertebrates. There will be a focus on concepts that propelled the immune system into prominent discourse in the life sciences. The self/not self hypothesis was crucial and so was the concern for immunologic memory or anamnesia, development of cancer, autoimmunity, and clonal selection. Now we may be able to deconstruct clonal selection since it is not applicable in the sense that it is not applicable to invertebrate mechanisms. Clonal selection seems to be purely as all evidence indicates a vertebrate strategy and therefore irrelevant to invertebrates. Some views may insist that anthropocentric mammalian immunologists utilized a tool to propel: the universal innate immune system of ubiquitous and plentiful invertebrates as an essential system for vertebrates. This was advantageous for all immunology; moreover innate immunity acquired an extended raison d'être. Innate immunity should help if there would be a failure of the adaptive immune system. Still to be answered are questions concerning immunologic surveillance that includes clonal selection. We can then ask does immunologic surveillance play a role in the survival of invertebrates that most universally seem to not develop cancer of vertebrates especially mammals; invertebrates only develop benign tumor. A recent proposal concerns an alternative explanation that is all embracing. Danger hypothesis operates in striking contrast to the self/not self hypothesis. This view holds that the immune system is adapted to intervene not because self is threatened but because of the system's sense of danger. This perception occurs by means of signals other than recognition of microbial pattern recognition molecules characteristic of invertebrates. Response to danger may be another way of analyzing innate immunity that does not trigger the production of clones and therefore does not rely entirely on the self/not self model. The review will end with certain perspectives on artificial immune systems new on the scene and the product of computational immunologists. The tentative view is to question if the immune systems of invertebrates might be amenable to such an analysis? This would offer more credence to the innate system, often pushed aside thus favoring the adaptive responses.

  10. The immunization data quality audit: verifying the quality and consistency of immunization monitoring systems.

    PubMed Central

    Ronveaux, O.; Rickert, D.; Hadler, S.; Groom, H.; Lloyd, J.; Bchir, A.; Birmingham, M.

    2005-01-01

    OBJECTIVE: To evaluate the consistency and quality of immunization monitoring systems in 27 countries during 2002-03 using standardized data quality audits (DQAs) that had been launched within the framework of the Global Alliance for Vaccines and Immunization. METHODS: The consistency of reporting systems was estimated by determining the proportion of third doses of diphtheria-tetanuspertussis (DTP-3) vaccine reported as being administered that could be verified by written documentation at health facilities and districts. The quality of monitoring systems was measured using quality indices for different components of the monitoring systems. These indices were applied to each level of the health service (health unit, district and national). FINDINGS: The proportion of verified DTP-3 doses was lower than 85% in 16 countries. Difficulties in verifying the doses administered often arose at the peripheral level of the health service, usually as the result of discrepancies in information between health units and their corresponding districts or because completed recording forms were not available from health units. All countries had weaknesses in their monitoring systems; these included the inconsistent use of monitoring charts; inadequate monitoring of vaccine stocks, injection supplies and adverse events; unsafe computer practices; and poor monitoring of completeness and timeliness of reporting. CONCLUSION: Inconsistencies in immunization data occur in many countries, hampering their ability to manage their immunization programmes. Countries should use these findings to strengthen monitoring systems so that data can reliably guide programme activities. The DQA is an innovative tool that provides a way to independently assess the quality of immunization monitoring systems at all levels of a health service and serves as a point of entry to make improvements. It provides a useful example for other global health initiatives. PMID:16175824

  11. Nonadiabatic holonomic quantum computation using Rydberg blockade

    NASA Astrophysics Data System (ADS)

    Kang, Yi-Hao; Chen, Ye-Hong; Shi, Zhi-Cheng; Huang, Bi-Hua; Song, Jie; Xia, Yan

    2018-04-01

    In this paper, we propose a scheme for realizing nonadiabatic holonomic computation assisted by two atoms and the shortcuts to adiabaticity (STA). The blockade effect induced by strong Rydberg-mediated interaction between two Rydberg atoms provides us the possibility to simplify the dynamics of the system, and the STA helps us design pulses for implementing the holonomic computation with high fidelity. Numerical simulations show the scheme is noise immune and decoherence resistant. Therefore, the current scheme may provide some useful perspectives for realizing nonadiabatic holonomic computation.

  12. Computational modeling of heterogeneity and function of CD4+ T cells

    PubMed Central

    Carbo, Adria; Hontecillas, Raquel; Andrew, Tricity; Eden, Kristin; Mei, Yongguo; Hoops, Stefan; Bassaganya-Riera, Josep

    2014-01-01

    The immune system is composed of many different cell types and hundreds of intersecting molecular pathways and signals. This large biological complexity requires coordination between distinct pro-inflammatory and regulatory cell subsets to respond to infection while maintaining tissue homeostasis. CD4+ T cells play a central role in orchestrating immune responses and in maintaining a balance between pro- and anti- inflammatory responses. This tight balance between regulatory and effector reactions depends on the ability of CD4+ T cells to modulate distinct pathways within large molecular networks, since dysregulated CD4+ T cell responses may result in chronic inflammatory and autoimmune diseases. The CD4+ T cell differentiation process comprises an intricate interplay between cytokines, their receptors, adaptor molecules, signaling cascades and transcription factors that help delineate cell fate and function. Computational modeling can help to describe, simulate, analyze, and predict some of the behaviors in this complicated differentiation network. This review provides a comprehensive overview of existing computational immunology methods as well as novel strategies used to model immune responses with a particular focus on CD4+ T cell differentiation. PMID:25364738

  13. An attempt at the computer-aided management of HIV infection

    NASA Astrophysics Data System (ADS)

    Ida, A.; Oharu, Y.; Sankey, O.

    2007-07-01

    The immune system is a complex and diverse system in the human body and HIV virus disrupts and destroys it through extremely complicated but surprisingly logical process. The purpose of this paper is to make an attempt to present a method for the computer-aided management of HIV infection process by means of a mathematical model describing the dynamics of the host pathogen interaction with HIV-1. Treatments for the AIDS disease must be changed to more efficient ones in accordance with the disease progression and the status of the immune system. The level of progression and the status are represented by parameters which are governed by our mathematical model. It is then exhibited that our model is numerically stable and uniquely solvable. With this knowledge, our mathematical model for HIV disease progression is formulated and physiological interpretations are provided. The results of our numerical simulations are visualized, and it is seen that our results agree with medical aspects from the point of view of antiretroviral therapy. It is then expected that our approach will take to address practical clinical issues and will be applied to the computer-aided management of antiretroviral therapies.

  14. A qualitatively validated mathematical-computational model of the immune response to the yellow fever vaccine.

    PubMed

    Bonin, Carla R B; Fernandes, Guilherme C; Dos Santos, Rodrigo W; Lobosco, Marcelo

    2018-05-25

    Although a safe and effective yellow fever vaccine was developed more than 80 years ago, several issues regarding its use remain unclear. For example, what is the minimum dose that can provide immunity against the disease? A useful tool that can help researchers answer this and other related questions is a computational simulator that implements a mathematical model describing the human immune response to vaccination against yellow fever. This work uses a system of ten ordinary differential equations to represent a few important populations in the response process generated by the body after vaccination. The main populations include viruses, APCs, CD8+ T cells, short-lived and long-lived plasma cells, B cells and antibodies. In order to qualitatively validate our model, four experiments were carried out, and their computational results were compared to experimental data obtained from the literature. The four experiments were: a) simulation of a scenario in which an individual was vaccinated against yellow fever for the first time; b) simulation of a booster dose ten years after the first dose; c) simulation of the immune response to the yellow fever vaccine in individuals with different levels of naïve CD8+ T cells; and d) simulation of the immune response to distinct doses of the yellow fever vaccine. This work shows that the simulator was able to qualitatively reproduce some of the experimental results reported in the literature, such as the amount of antibodies and viremia throughout time, as well as to reproduce other behaviors of the immune response reported in the literature, such as those that occur after a booster dose of the vaccine.

  15. The Organization and Evaluation of a Computer-Assisted, Centralized Immunization Registry.

    ERIC Educational Resources Information Center

    Loeser, Helen; And Others

    1983-01-01

    Evaluation of a computer-assisted, centralized immunization registry after one year shows that 93 percent of eligible health practitioners initially agreed to provide data and that 73 percent continue to do so. Immunization rates in audited groups have improved significantly. (GC)

  16. Antiviral Innate Immunity through the lens of Systems Biology

    PubMed Central

    Tripathi, Shashank; García-Sastre, Adolfo

    2015-01-01

    Cellular innate immunity poses the first hurdle against invading viruses in their attempt to establish infection. This antiviral response is manifested with the detection of viral components by the host cell, followed by transduction of antiviral signals, transcription and translation of antiviral effectors and leads to the establishment of an antiviral state. These events occur in a rather branched and interconnected sequence than a linear path. Traditionally, these processes were studied in the context of a single virus and a host component. However, with the advent of rapid and affordable OMICS technologies it has become feasible to address such questions on a global scale. In the discipline of Systems Biology’, extensive omics datasets are assimilated using computational tools and mathematical models to acquire deeper understanding of complex biological processes. In this review we have catalogued and discussed the application of Systems Biology approaches in dissecting the antiviral innate immune responses. PMID:26657882

  17. Reviews.

    ERIC Educational Resources Information Center

    Repak, Arthur J.; And Others

    1988-01-01

    Computer software, audiovisuals, and books are reviewed. Includes topics on interfacing, ionic equilibrium, space, the classification system, Acquired Immune Disease Syndrome, evolution, human body processes, energy, pesticides, teaching school, cells, and geological aspects. Availability, price, and a description of each are provided. (RT)

  18. New broadband square-law detector

    NASA Technical Reports Server (NTRS)

    Reid, M. S.; Gardner, R. A.; Stelzried, C. T.

    1975-01-01

    Compact device has wide dynamic range, accurate square-law response, good thermal stability, high-level dc output with immunity to ground-loop problems, ability to insert known time constants for radiometric applications, and fast response times compatible with computer systems.

  19. Computational immune profiling in lung adenocarcinoma reveals reproducible prognostic associations with implications for immunotherapy

    PubMed Central

    Varn, Frederick S.; Tafe, Laura J.; Amos, Christopher I.; Cheng, Chao

    2018-01-01

    ABSTRACT Non-small cell lung cancer is one of the leading causes of cancer-related death in the world. Lung adenocarcinoma, the most common type of non-small cell lung cancer, has been well characterized as having a dense lymphocytic infiltrate, suggesting that the immune system plays an active role in shaping this cancer's growth and development. Despite these findings, our understanding of how this infiltrate affects patient prognosis and its association with lung adenocarcinoma-specific clinical factors remains limited. To address these questions, we inferred the infiltration level of six distinct immune cell types from a series of four lung adenocarcinoma gene expression datasets. We found that naive B cell, CD8+ T cell, and myeloid cell-derived expression signals of immune infiltration were significantly predictive of patient survival in multiple independent datasets, with B cell and CD8+ T cell infiltration associated with prolonged prognosis and myeloid cell infiltration associated with shorter survival. These associations remained significant even after accounting for additional clinical variables. Patients stratified by smoking status exhibited decreased CD8+ T cell infiltration and altered prognostic associations, suggesting potential immunosuppressive mechanisms in smokers. Survival analyses accounting for immune checkpoint gene expression and cellular immune infiltrate indicated checkpoint protein-specific modulatory effects on CD8+ T cell and B cell function that may be associated with patient sensitivity to immunotherapy. Together, these analyses identified reproducible associations that can be used to better characterize the role of immune infiltration in lung adenocarcinoma and demonstrate the utility in using computational approaches to systematically characterize tissue-specific tumor-immune interactions. PMID:29872556

  20. Using process algebra to develop predator-prey models of within-host parasite dynamics.

    PubMed

    McCaig, Chris; Fenton, Andy; Graham, Andrea; Shankland, Carron; Norman, Rachel

    2013-07-21

    As a first approximation of immune-mediated within-host parasite dynamics we can consider the immune response as a predator, with the parasite as its prey. In the ecological literature of predator-prey interactions there are a number of different functional responses used to describe how a predator reproduces in response to consuming prey. Until recently most of the models of the immune system that have taken a predator-prey approach have used simple mass action dynamics to capture the interaction between the immune response and the parasite. More recently Fenton and Perkins (2010) employed three of the most commonly used prey-dependent functional response terms from the ecological literature. In this paper we make use of a technique from computing science, process algebra, to develop mathematical models. The novelty of the process algebra approach is to allow stochastic models of the population (parasite and immune cells) to be developed from rules of individual cell behaviour. By using this approach in which individual cellular behaviour is captured we have derived a ratio-dependent response similar to that seen in the previous models of immune-mediated parasite dynamics, confirming that, whilst this type of term is controversial in ecological predator-prey models, it is appropriate for models of the immune system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. A multi-scale approach to designing therapeutics for tuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linderman, Jennifer J.; Cilfone, Nicholas A.; Pienaar, Elsje

    Approximately one third of the world’s population is infected with Mycobacterium tuberculosis. Limited information about how the immune system fights M. tuberculosis and what constitutes protection from the bacteria impact our ability to develop effective therapies for tuberculosis. We present an in vivo systems biology approach that integrates data from multiple model systems and over multiple length and time scales into a comprehensive multi-scale and multi-compartment view of the in vivo immune response to M. tuberculosis. Lastly, we describe computational models that can be used to study (a) immunomodulation with the cytokines tumor necrosis factor and interleukin 10, (b) oralmore » and inhaled antibiotics, and (c) the effect of vaccination.« less

  2. A multi-scale approach to designing therapeutics for tuberculosis

    DOE PAGES

    Linderman, Jennifer J.; Cilfone, Nicholas A.; Pienaar, Elsje; ...

    2015-04-20

    Approximately one third of the world’s population is infected with Mycobacterium tuberculosis. Limited information about how the immune system fights M. tuberculosis and what constitutes protection from the bacteria impact our ability to develop effective therapies for tuberculosis. We present an in vivo systems biology approach that integrates data from multiple model systems and over multiple length and time scales into a comprehensive multi-scale and multi-compartment view of the in vivo immune response to M. tuberculosis. Lastly, we describe computational models that can be used to study (a) immunomodulation with the cytokines tumor necrosis factor and interleukin 10, (b) oralmore » and inhaled antibiotics, and (c) the effect of vaccination.« less

  3. Flight experience with a fail-operational digital fly-by-wire control system

    NASA Technical Reports Server (NTRS)

    Brown, S. R.; Szalai, K. J.

    1977-01-01

    The NASA Dryden Flight Research Center is flight testing a triply redundant digital fly-by-wire (DFBW) control system installed in an F-8 aircraft. The full-time, full-authority system performs three-axis flight control computations, including stability and command augmentation, autopilot functions, failure detection and isolation, and self-test functions. Advanced control law experiments include an active flap mode for ride smoothing and maneuver drag reduction. This paper discusses research being conducted on computer synchronization, fault detection, fault isolation, and recovery from transient faults. The F-8 DFBW system has demonstrated immunity from nuisance fault declarations while quickly identifying truly faulty components.

  4. The immune self: a selectionist theory of recognition, learning, and remembering within the immune system.

    PubMed

    Kradin, R L

    1995-01-01

    In this paper, I have briefly explored metaphors shared by the immune and nervous systems and shown that this exercise can lead to the elucidation of common principles of organization, as well as to predictions concerning how the immune system functions. Metaphor itself undoubtedly reflects the way in which we categorize and retrieve information 44], so it is not surprising that the deep processes of language tend to sample information from related data categories. Although the nervous and immune systems are obviously not the same and metaphors are indeed just that, my primary goal has been to suggest that by virtue of their having evolved in parallel over millions of years, the nervous and immune systems currently use the same archetypal principles and strategies to address related challenges in information processing and retrieval. Ultimately, nature is conservative. One need only look at a tree, a river, the airways, or the vascular bed in order to see how a fractal pattern of repetitive dichotomous branching has been used by each, in order to optimize the transport of fluids over large distances [45]. While each system has had to adopt different materials in order to solve the problem, the shape of their solutions is remarkably alike. In the immune and nervous systems, the elements used to produce optimal functional responses are also quite different, but again the solutions have been achieved by comparable strategies. I am certain that these two great systems of information processing, each responding with vastly different kinetics, will prove to be far more integrally interdependent than has been previously recognized. For example, should a swift response by the immune system be required in an overwhelming invasion by microbial pathogens, the immune system may be able to cooperate with the rapidly reacting nervous system to rid the host of the invaders. In this regard, we have shown that the beta-adrenergic hormone epinephrine rapidly increases the traffic of memory T-cells to mucosal sites, presumably representing an immune component of the fight-or-flight response [46]. Neural evolution appears to have as its goal the development of more efficient information processing systems that lead to higher levels of consciousness. However, in modern times, technologic advances in information processing have rapidly outstripped the slower adaptations that can be made by evolution. In order to satisfy his compulsive quest for information, man has recently developed and recruited the aid of computers.(ABSTRACT TRUNCATED AT 400 WORDS)

  5. Using a Scripted Data Entry Process to Transfer Legacy Immunization Data While Transitioning Between Electronic Medical Record Systems

    PubMed Central

    Michel, J.; Hsiao, A.; Fenick, A.

    2014-01-01

    Summary Background Transitioning between Electronic Medical Records (EMR) can result in patient data being stranded in legacy systems with subsequent failure to provide appropriate patient care. Manual chart abstraction is labor intensive, error-prone, and difficult to institute for immunizations on a systems level in a timely fashion. Objectives We sought to transfer immunization data from two of our health system’s soon to be replaced EMRs to the future EMR using a single process instead of separate interfaces for each facility. Methods We used scripted data entry, a process where a computer automates manual data entry, to insert data into the future EMR. Using the Center for Disease Control’s CVX immunization codes we developed a bridge between immunization identifiers within our system’s EMRs. We performed a two-step process evaluation of the data transfer using automated data comparison and manual chart review. Results We completed the data migration from two facilities in 16.8 hours with no data loss or corruption. We successfully populated the future EMR with 99.16% of our legacy immunization data – 500,906 records – just prior to our EMR transition date. A subset of immunizations, first recognized during clinical care, had not originally been extracted from the legacy systems. Once identified, this data – 1,695 records – was migrated using the same process with minimal additional effort. Conclusions Scripted data entry for immunizations is more accurate than published estimates for manual data entry and we completed our data transfer in 1.2% of the total time we predicted for manual data entry. Performing this process before EMR conversion helped identify obstacles to data migration. Drawing upon this work, we will reuse this process for other healthcare facilities in our health system as they transition to the future EMR. PMID:24734139

  6. Characterizing emergent properties of immunological systems with multi-cellular rule-based computational modeling.

    PubMed

    Chavali, Arvind K; Gianchandani, Erwin P; Tung, Kenneth S; Lawrence, Michael B; Peirce, Shayn M; Papin, Jason A

    2008-12-01

    The immune system is comprised of numerous components that interact with one another to give rise to phenotypic behaviors that are sometimes unexpected. Agent-based modeling (ABM) and cellular automata (CA) belong to a class of discrete mathematical approaches in which autonomous entities detect local information and act over time according to logical rules. The power of this approach lies in the emergence of behavior that arises from interactions between agents, which would otherwise be impossible to know a priori. Recent work exploring the immune system with ABM and CA has revealed novel insights into immunological processes. Here, we summarize these applications to immunology and, particularly, how ABM can help formulate hypotheses that might drive further experimental investigations of disease mechanisms.

  7. Immunology-directed methods for distributed robotics: a novel immunity-based architecture for robust control and coordination

    NASA Astrophysics Data System (ADS)

    Singh, Surya P. N.; Thayer, Scott M.

    2002-02-01

    This paper presents a novel algorithmic architecture for the coordination and control of large scale distributed robot teams derived from the constructs found within the human immune system. Using this as a guide, the Immunology-derived Distributed Autonomous Robotics Architecture (IDARA) distributes tasks so that broad, all-purpose actions are refined and followed by specific and mediated responses based on each unit's utility and capability to timely address the system's perceived need(s). This method improves on initial developments in this area by including often overlooked interactions of the innate immune system resulting in a stronger first-order, general response mechanism. This allows for rapid reactions in dynamic environments, especially those lacking significant a priori information. As characterized via computer simulation of a of a self-healing mobile minefield having up to 7,500 mines and 2,750 robots, IDARA provides an efficient, communications light, and scalable architecture that yields significant operation and performance improvements for large-scale multi-robot coordination and control.

  8. Novel Ruggedized Packaging Technology for VCSELs

    DTIC Science & Technology

    2017-03-01

    Novel Ruggedized Packaging Technology for VCSELs Charlie Kuznia ckuznia@ultracomm-inc.com Ultra Communications, Inc. Vista, CA, USA, 92081...n ac hieve l ow-power, E MI-immune links within hi gh-performance m ilitary computing an d sensor systems. Figure 1. Chip-scale-packaging of

  9. Antimicrobial peptide-like genes in Nasonia vitripennis: a genomic perspective

    PubMed Central

    2010-01-01

    Background Antimicrobial peptides (AMPs) are an essential component of innate immunity which can rapidly respond to diverse microbial pathogens. Insects, as a rich source of AMPs, attract great attention of scientists in both understanding of the basic biology of the immune system and searching molecular templates for anti-infective drug design. Despite a large number of AMPs have been identified from different insect species, little information in terms of these peptides is available from parasitic insects. Results By using integrated computational approaches to systemically mining the Hymenopteran parasitic wasp Nasonia vitripennis genome, we establish the first AMP repertoire whose members exhibit extensive sequence and structural diversity and can be distinguished into multiple molecular types, including insect and fungal defensin-like peptides (DLPs) with the cysteine-stabilized α-helical and β-sheet (CSαβ) fold; Pro- or Gly-rich abaecins and hymenoptaecins; horseshoe crab tachystatin-type AMPs with the inhibitor cystine knot (ICK) fold; and a linear α-helical peptide. Inducible expression pattern of seven N. vitripennis AMP genes were verified, and two representative peptides were synthesized and functionally identified to be antibacterial. In comparison with Apis mellifera (Hymenoptera) and several non-Hymenopteran model insects, N. vitripennis has evolved a complex antimicrobial immune system with more genes and larger protein precursors. Three classical strategies that are likely responsible for the complexity increase have been recognized: 1) Gene duplication; 2) Exon duplication; and 3) Exon-shuffling. Conclusion The present study established the N. vitripennis peptidome associated with antimicrobial immunity by using a combined computational and experimental strategy. As the first AMP repertoire of a parasitic wasp, our results offer a basic platform for further studying the immunological and evolutionary significances of these newly discovered AMP-like genes in this class of insects. PMID:20302637

  10. Understanding ZHENG in traditional Chinese medicine in the context of neuro-endocrine-immune network.

    PubMed

    Li, S; Zhang, Z Q; Wu, L J; Zhang, X G; Li, Y D; Wang, Y Y

    2007-01-01

    Traditional Chinese medicine uses ZHENG as the key pathological principle to understand the human homeostasis and guide the applications of Chinese herbs. Here, a systems biology approach with the combination of computational analysis and animal experiment is used to investigate this complex issue, ZHENG, in the context of the neuro-endocrine-immune (NEI) system. By using the methods of literature mining, network analysis and topological comparison, it is found that hormones are predominant in the Cold ZHENG network, immune factors are predominant in the Hot ZHENG network, and these two networks are connected by neuro-transmitters. In addition, genes related to Hot ZHENG-related diseases are mainly present in the cytokine-cytokine receptor interaction pathway, whereas genes related to both the Cold-related and Hot-related diseases are linked to the neuroactive ligand-receptor interaction pathway. These computational findings were subsequently verified by experiments on a rat model of collagen-induced arthritis, which indicate that the Cold ZHENG-oriented herbs tend to affect the hub nodes in the Cold ZHENG network, and the Hot ZHENG-oriented herbs tend to affect the hub nodes in the Hot ZHENG network. These investigations demonstrate that the thousand-year-old concept of ZHENG may have a molecular basis with NEI as background.

  11. Computer viruses

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.

    1988-01-01

    The worm, Trojan horse, bacterium, and virus are destructive programs that attack information stored in a computer's memory. Virus programs, which propagate by incorporating copies of themselves into other programs, are a growing menace in the late-1980s world of unprotected, networked workstations and personal computers. Limited immunity is offered by memory protection hardware, digitally authenticated object programs,and antibody programs that kill specific viruses. Additional immunity can be gained from the practice of digital hygiene, primarily the refusal to use software from untrusted sources. Full immunity requires attention in a social dimension, the accountability of programmers.

  12. Embracing the gut microbiota: the new frontier for inflammatory and infectious diseases

    PubMed Central

    van den Elsen, Lieke WJ; Poyntz, Hazel C; Weyrich, Laura S; Young, Wayne; Forbes-Blom, Elizabeth E

    2017-01-01

    The gut microbiota provides essential signals for the development and appropriate function of the immune system. Through this critical contribution to immune fitness, the gut microbiota has a key role in health and disease. Recent advances in the technological applications to study microbial communities and their functions have contributed to a rapid increase in host–microbiota research. Although it still remains difficult to define a so-called ‘normal' or ‘healthy' microbial composition, alterations in the gut microbiota have been shown to influence the susceptibility of the host to different diseases. Current translational research combined with recent technological and computational advances have enabled in-depth study of the link between microbial composition and immune function, addressing the interplay between the gut microbiota and immune responses. As such, beneficial modulation of the gut microbiota is a promising clinical target for many prevalent diseases including inflammatory bowel disease, metabolic abnormalities such as obesity, reduced insulin sensitivity and low-grade inflammation, allergy and protective immunity against infections. PMID:28197336

  13. Discovering a vaccine against neosporosis using computers: is it feasible?

    PubMed

    Goodswen, Stephen J; Kennedy, Paul J; Ellis, John T

    2014-08-01

    A vaccine is urgently needed to prevent cattle neosporosis. This infectious disease is caused by the parasite Neospora caninum, a complex biological system with multifaceted life cycles. An in silico vaccine discovery approach attempts to transform digital abstractions of this system into adequate knowledge to predict candidates. Researchers need current information to implement such an approach, such as understanding evasion mechanisms of the immune system, type of immune response to elicit, availability of data and prediction programs, and statistical models to analyze predictions. Taken together, an in silico approach involves assembly of an intricate jigsaw of interdisciplinary and interdependent knowledge. In this review, we focus on the approach influencing vaccine development against Neospora caninum, which can be generalized to other pathogenic apicomplexans. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Persistence and Adaptation in Immunity: T Cells Balance the Extent and Thoroughness of Search

    PubMed Central

    Fricke, G. Matthew; Letendre, Kenneth A.; Moses, Melanie E.; Cannon, Judy L.

    2016-01-01

    Effective search strategies have evolved in many biological systems, including the immune system. T cells are key effectors of the immune response, required for clearance of pathogenic infection. T cell activation requires that T cells encounter antigen-bearing dendritic cells within lymph nodes, thus, T cell search patterns within lymph nodes may be a crucial determinant of how quickly a T cell immune response can be initiated. Previous work suggests that T cell motion in the lymph node is similar to a Brownian random walk, however, no detailed analysis has definitively shown whether T cell movement is consistent with Brownian motion. Here, we provide a precise description of T cell motility in lymph nodes and a computational model that demonstrates how motility impacts T cell search efficiency. We find that both Brownian and Lévy walks fail to capture the complexity of T cell motion. Instead, T cell movement is better described as a correlated random walk with a heavy-tailed distribution of step lengths. Using computer simulations, we identify three distinct factors that contribute to increasing T cell search efficiency: 1) a lognormal distribution of step lengths, 2) motion that is directionally persistent over short time scales, and 3) heterogeneity in movement patterns. Furthermore, we show that T cells move differently in specific frequently visited locations that we call “hotspots” within lymph nodes, suggesting that T cells change their movement in response to the lymph node environment. Our results show that like foraging animals, T cells adapt to environmental cues, suggesting that adaption is a fundamental feature of biological search. PMID:26990103

  15. Immunity-Based Optimal Estimation Approach for a New Real Time Group Elevator Dynamic Control Application for Energy and Time Saving

    PubMed Central

    Baygin, Mehmet; Karakose, Mehmet

    2013-01-01

    Nowadays, the increasing use of group elevator control systems owing to increasing building heights makes the development of high-performance algorithms necessary in terms of time and energy saving. Although there are many studies in the literature about this topic, they are still not effective enough because they are not able to evaluate all features of system. In this paper, a new approach of immune system-based optimal estimate is studied for dynamic control of group elevator systems. The method is mainly based on estimation of optimal way by optimizing all calls with genetic, immune system and DNA computing algorithms, and it is evaluated with a fuzzy system. The system has a dynamic feature in terms of the situation of calls and the option of the most appropriate algorithm, and it also adaptively works in terms of parameters such as the number of floors and cabins. This new approach which provides both time and energy saving was carried out in real time. The experimental results comparatively demonstrate the effects of method. With dynamic and adaptive control approach in this study carried out, a significant progress on group elevator control systems has been achieved in terms of time and energy efficiency according to traditional methods. PMID:23935433

  16. Public Health Surveillance and Meaningful Use Regulations: A Crisis of Opportunity

    PubMed Central

    Sundwall, David N.

    2012-01-01

    The Health Information Technology for Economic and Clinical Health Act is intended to enhance reimbursement of health care providers for meaningful use of electronic health records systems. This presents both opportunities and challenges for public health departments. To earn incentive payments, clinical providers must exchange specified types of data with the public health system, such as immunization and syndromic surveillance data and notifiable disease reporting. However, a crisis looms because public health’s information technology systems largely lack the capabilities to accept the types of data proposed for exchange. Cloud computing may be a solution for public health information systems. Through shared computing resources, public health departments could reap the benefits of electronic reporting within federal funding constraints. PMID:22390523

  17. Public health surveillance and meaningful use regulations: a crisis of opportunity.

    PubMed

    Lenert, Leslie; Sundwall, David N

    2012-03-01

    The Health Information Technology for Economic and Clinical Health Act is intended to enhance reimbursement of health care providers for meaningful use of electronic health records systems. This presents both opportunities and challenges for public health departments. To earn incentive payments, clinical providers must exchange specified types of data with the public health system, such as immunization and syndromic surveillance data and notifiable disease reporting. However, a crisis looms because public health's information technology systems largely lack the capabilities to accept the types of data proposed for exchange. Cloud computing may be a solution for public health information systems. Through shared computing resources, public health departments could reap the benefits of electronic reporting within federal funding constraints.

  18. Geo-spatial reporting for monitoring of household immunization coverage through mobile phones: Findings from a feasibility study.

    PubMed

    Kazi, A M; Ali, M; K, Ayub; Kalimuddin, H; Zubair, K; Kazi, A N; A, Artani; Ali, S A

    2017-11-01

    The addition of Global Positioning System (GPS) to a mobile phone makes it a very powerful tool for surveillance and monitoring coverage of health programs. This technology enables transfer of data directly into computer applications and cross-references to Geographic Information Systems (GIS) maps, which enhances assessment of coverage and trends. Utilization of these systems in low and middle income countries is currently limited, particularly for immunization coverage assessments and polio vaccination campaigns. We piloted the use of this system and discussed its potential to improve the efficiency of field-based health providers and health managers for monitoring of the immunization program. Using "30×7" WHO sampling technique, a survey of children less than five years of age was conducted in random clusters of Karachi, Pakistan in three high risk towns where a polio case was detected in 2011. Center point of the cluster was calculated by the application on the mobile. Data and location coordinates were collected through a mobile phone. This data was linked with an automated mHealth based monitoring system for monitoring of Supplementary Immunization Activities (SIAs) in Karachi. After each SIA, a visual report was generated according to the coordinates collected from the survey. A total of 3535 participants consented to answer to a baseline survey. We found that the mobile phones incorporated with GIS maps can improve efficiency of health providers through real-time reporting and replacing paper based questionnaire for collection of data at household level. Visual maps generated from the data and geospatial analysis can also give a better assessment of the immunization coverage and polio vaccination campaigns. The study supports a model system in resource constrained settings that allows routine capture of individual level data through GPS enabled mobile phone providing actionable information and geospatial maps to local public health managers, policy makers and study staff monitoring immunization coverage. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Minimum Variance Distortionless Response Beamformer with Enhanced Nulling Level Control via Dynamic Mutated Artificial Immune System

    PubMed Central

    Kiong, Tiong Sieh; Salem, S. Balasem; Paw, Johnny Koh Siaw; Sankar, K. Prajindra

    2014-01-01

    In smart antenna applications, the adaptive beamforming technique is used to cancel interfering signals (placing nulls) and produce or steer a strong beam toward the target signal according to the calculated weight vectors. Minimum variance distortionless response (MVDR) beamforming is capable of determining the weight vectors for beam steering; however, its nulling level on the interference sources remains unsatisfactory. Beamforming can be considered as an optimization problem, such that optimal weight vector should be obtained through computation. Hence, in this paper, a new dynamic mutated artificial immune system (DM-AIS) is proposed to enhance MVDR beamforming for controlling the null steering of interference and increase the signal to interference noise ratio (SINR) for wanted signals. PMID:25003136

  20. Minimum variance distortionless response beamformer with enhanced nulling level control via dynamic mutated artificial immune system.

    PubMed

    Kiong, Tiong Sieh; Salem, S Balasem; Paw, Johnny Koh Siaw; Sankar, K Prajindra; Darzi, Soodabeh

    2014-01-01

    In smart antenna applications, the adaptive beamforming technique is used to cancel interfering signals (placing nulls) and produce or steer a strong beam toward the target signal according to the calculated weight vectors. Minimum variance distortionless response (MVDR) beamforming is capable of determining the weight vectors for beam steering; however, its nulling level on the interference sources remains unsatisfactory. Beamforming can be considered as an optimization problem, such that optimal weight vector should be obtained through computation. Hence, in this paper, a new dynamic mutated artificial immune system (DM-AIS) is proposed to enhance MVDR beamforming for controlling the null steering of interference and increase the signal to interference noise ratio (SINR) for wanted signals.

  1. Artificial immune algorithm for multi-depot vehicle scheduling problems

    NASA Astrophysics Data System (ADS)

    Wu, Zhongyi; Wang, Donggen; Xia, Linyuan; Chen, Xiaoling

    2008-10-01

    In the fast-developing logistics and supply chain management fields, one of the key problems in the decision support system is that how to arrange, for a lot of customers and suppliers, the supplier-to-customer assignment and produce a detailed supply schedule under a set of constraints. Solutions to the multi-depot vehicle scheduling problems (MDVRP) help in solving this problem in case of transportation applications. The objective of the MDVSP is to minimize the total distance covered by all vehicles, which can be considered as delivery costs or time consumption. The MDVSP is one of nondeterministic polynomial-time hard (NP-hard) problem which cannot be solved to optimality within polynomial bounded computational time. Many different approaches have been developed to tackle MDVSP, such as exact algorithm (EA), one-stage approach (OSA), two-phase heuristic method (TPHM), tabu search algorithm (TSA), genetic algorithm (GA) and hierarchical multiplex structure (HIMS). Most of the methods mentioned above are time consuming and have high risk to result in local optimum. In this paper, a new search algorithm is proposed to solve MDVSP based on Artificial Immune Systems (AIS), which are inspirited by vertebrate immune systems. The proposed AIS algorithm is tested with 30 customers and 6 vehicles located in 3 depots. Experimental results show that the artificial immune system algorithm is an effective and efficient method for solving MDVSP problems.

  2. Host-pathogen interactions between the human innate immune system and Candida albicans—understanding and modeling defense and evasion strategies

    PubMed Central

    Dühring, Sybille; Germerodt, Sebastian; Skerka, Christine; Zipfel, Peter F.; Dandekar, Thomas; Schuster, Stefan

    2015-01-01

    The diploid, polymorphic yeast Candida albicans is one of the most important human pathogenic fungi. C. albicans can grow, proliferate and coexist as a commensal on or within the human host for a long time. However, alterations in the host environment can render C. albicans virulent. In this review, we describe the immunological cross-talk between C. albicans and the human innate immune system. We give an overview in form of pairs of human defense strategies including immunological mechanisms as well as general stressors such as nutrient limitation, pH, fever etc. and the corresponding fungal response and evasion mechanisms. Furthermore, Computational Systems Biology approaches to model and investigate these complex interactions are highlighted with a special focus on game-theoretical methods and agent-based models. An outlook on interesting questions to be tackled by Systems Biology regarding entangled defense and evasion mechanisms is given. PMID:26175718

  3. Comparison of Artificial Immune System and Particle Swarm Optimization Techniques for Error Optimization of Machine Vision Based Tool Movements

    NASA Astrophysics Data System (ADS)

    Mahapatra, Prasant Kumar; Sethi, Spardha; Kumar, Amod

    2015-10-01

    In conventional tool positioning technique, sensors embedded in the motion stages provide the accurate tool position information. In this paper, a machine vision based system and image processing technique for motion measurement of lathe tool from two-dimensional sequential images captured using charge coupled device camera having a resolution of 250 microns has been described. An algorithm was developed to calculate the observed distance travelled by the tool from the captured images. As expected, error was observed in the value of the distance traversed by the tool calculated from these images. Optimization of errors due to machine vision system, calibration, environmental factors, etc. in lathe tool movement was carried out using two soft computing techniques, namely, artificial immune system (AIS) and particle swarm optimization (PSO). The results show better capability of AIS over PSO.

  4. Multi-Strain Deterministic Chaos in Dengue Epidemiology, A Challenge for Computational Mathematics

    NASA Astrophysics Data System (ADS)

    Aguiar, Maíra; Kooi, Bob W.; Stollenwerk, Nico

    2009-09-01

    Recently, we have analysed epidemiological models of competing strains of pathogens and hence differences in transmission for first versus secondary infection due to interaction of the strains with previously aquired immunities, as has been described for dengue fever, known as antibody dependent enhancement (ADE). These models show a rich variety of dynamics through bifurcations up to deterministic chaos. Including temporary cross-immunity even enlarges the parameter range of such chaotic attractors, and also gives rise to various coexisting attractors, which are difficult to identify by standard numerical bifurcation programs using continuation methods. A combination of techniques, including classical bifurcation plots and Lyapunov exponent spectra has to be applied in comparison to get further insight into such dynamical structures. Especially, Lyapunov spectra, which quantify the predictability horizon in the epidemiological system, are computationally very demanding. We show ways to speed up computations of such Lyapunov spectra by a factor of more than ten by parallelizing previously used sequential C programs. Such fast computations of Lyapunov spectra will be especially of use in future investigations of seasonally forced versions of the present models, as they are needed for data analysis.

  5. Identification of transcriptional regulators in the mouse immune system

    PubMed Central

    Jojic, Vladimir; Shay, Tal; Sylvia, Katelyn; Zuk, Or; Sun, Xin; Kang, Joonsoo; Regev, Aviv; Koller, Daphne

    2013-01-01

    The differentiation of hematopoietic stem cells into immune cells has been extensively studied in mammals, but the transcriptional circuitry controlling it is still only partially understood. Here, the Immunological Genome Project gene expression profiles across mouse immune lineages allowed us to systematically analyze these circuits. Using a computational algorithm called Ontogenet, we uncovered differentiation-stage specific regulators of mouse hematopoiesis, identifying many known hematopoietic regulators, and 175 new candidate regulators, their target genes, and the cell types in which they act. Among the novel regulators, we highlight the role of ETV5 in γδT cells differntiation. Since the transcriptional program of human and mouse cells is highly conserved1, it is likely that many lessons learned from the mouse model apply to humans. PMID:23624555

  6. Structural Biology of Tumor Necrosis Factor Demonstrated for Undergraduates Instruction by Computer Simulation

    ERIC Educational Resources Information Center

    Roy, Urmi

    2016-01-01

    This work presents a three-dimensional (3D) modeling exercise for undergraduate students in chemistry and health sciences disciplines, focusing on a protein-group linked to immune system regulation. Specifically, the exercise involves molecular modeling and structural analysis of tumor necrosis factor (TNF) proteins, both wild type and mutant. The…

  7. Developing a Novel Parameter Estimation Method for Agent-Based Model in Immune System Simulation under the Framework of History Matching: A Case Study on Influenza A Virus Infection

    PubMed Central

    Li, Tingting; Cheng, Zhengguo; Zhang, Le

    2017-01-01

    Since they can provide a natural and flexible description of nonlinear dynamic behavior of complex system, Agent-based models (ABM) have been commonly used for immune system simulation. However, it is crucial for ABM to obtain an appropriate estimation for the key parameters of the model by incorporating experimental data. In this paper, a systematic procedure for immune system simulation by integrating the ABM and regression method under the framework of history matching is developed. A novel parameter estimation method by incorporating the experiment data for the simulator ABM during the procedure is proposed. First, we employ ABM as simulator to simulate the immune system. Then, the dimension-reduced type generalized additive model (GAM) is employed to train a statistical regression model by using the input and output data of ABM and play a role as an emulator during history matching. Next, we reduce the input space of parameters by introducing an implausible measure to discard the implausible input values. At last, the estimation of model parameters is obtained using the particle swarm optimization algorithm (PSO) by fitting the experiment data among the non-implausible input values. The real Influeza A Virus (IAV) data set is employed to demonstrate the performance of our proposed method, and the results show that the proposed method not only has good fitting and predicting accuracy, but it also owns favorable computational efficiency. PMID:29194393

  8. Developing a Novel Parameter Estimation Method for Agent-Based Model in Immune System Simulation under the Framework of History Matching: A Case Study on Influenza A Virus Infection.

    PubMed

    Li, Tingting; Cheng, Zhengguo; Zhang, Le

    2017-12-01

    Since they can provide a natural and flexible description of nonlinear dynamic behavior of complex system, Agent-based models (ABM) have been commonly used for immune system simulation. However, it is crucial for ABM to obtain an appropriate estimation for the key parameters of the model by incorporating experimental data. In this paper, a systematic procedure for immune system simulation by integrating the ABM and regression method under the framework of history matching is developed. A novel parameter estimation method by incorporating the experiment data for the simulator ABM during the procedure is proposed. First, we employ ABM as simulator to simulate the immune system. Then, the dimension-reduced type generalized additive model (GAM) is employed to train a statistical regression model by using the input and output data of ABM and play a role as an emulator during history matching. Next, we reduce the input space of parameters by introducing an implausible measure to discard the implausible input values. At last, the estimation of model parameters is obtained using the particle swarm optimization algorithm (PSO) by fitting the experiment data among the non-implausible input values. The real Influeza A Virus (IAV) data set is employed to demonstrate the performance of our proposed method, and the results show that the proposed method not only has good fitting and predicting accuracy, but it also owns favorable computational efficiency.

  9. Dynamic MRI-based computer aided diagnostic systems for early detection of kidney transplant rejection: A survey

    NASA Astrophysics Data System (ADS)

    Mostapha, Mahmoud; Khalifa, Fahmi; Alansary, Amir; Soliman, Ahmed; Gimel'farb, Georgy; El-Baz, Ayman

    2013-10-01

    Early detection of renal transplant rejection is important to implement appropriate medical and immune therapy in patients with transplanted kidneys. In literature, a large number of computer-aided diagnostic (CAD) systems using different image modalities, such as ultrasound (US), magnetic resonance imaging (MRI), computed tomography (CT), and radionuclide imaging, have been proposed for early detection of kidney diseases. A typical CAD system for kidney diagnosis consists of a set of processing steps including: motion correction, segmentation of the kidney and/or its internal structures (e.g., cortex, medulla), construction of agent kinetic curves, functional parameter estimation, diagnosis, and assessment of the kidney status. In this paper, we survey the current state-of-the-art CAD systems that have been developed for kidney disease diagnosis using dynamic MRI. In addition, the paper addresses several challenges that researchers face in developing efficient, fast and reliable CAD systems for the early detection of kidney diseases.

  10. Computational Model of Population Dynamics Based on the Cell Cycle and Local Interactions

    NASA Astrophysics Data System (ADS)

    Oprisan, Sorinel Adrian; Oprisan, Ana

    2005-03-01

    Our study bridges cellular (mesoscopic) level interactions and global population (macroscopic) dynamics of carcinoma. The morphological differences and transitions between well and smooth defined benign tumors and tentacular malignat tumors suggest a theoretical analysis of tumor invasion based on the development of mathematical models exhibiting bifurcations of spatial patterns in the density of tumor cells. Our computational model views the most representative and clinically relevant features of oncogenesis as a fight between two distinct sub-systems: the immune system of the host and the neoplastic system. We implemented the neoplastic sub-system using a three-stage cell cycle: active, dormant, and necrosis. The second considered sub-system consists of cytotoxic active (effector) cells — EC, with a very broad phenotype ranging from NK cells to CTL cells, macrophages, etc. Based on extensive numerical simulations, we correlated the fractal dimensions for carcinoma, which could be obtained from tumor imaging, with the malignat stage. Our computational model was able to also simulate the effects of surgical, chemotherapeutical, and radiotherapeutical treatments.

  11. Temporal-logic analysis of microglial phenotypic conversion with exposure to amyloid-β.

    PubMed

    Anastasio, Thomas J

    2015-02-01

    Alzheimer Disease (AD) remains a leading killer with no adequate treatment. Ongoing research increasingly implicates the brain's immune system as a critical contributor to AD pathogenesis, but the complexity of the immune contribution poses a barrier to understanding. Here I use temporal logic to analyze a computational specification of the immune component of AD. Temporal logic is an extension of logic to propositions expressed in terms of time. It has traditionally been used to analyze computational specifications of complex engineered systems but applications to complex biological systems are now appearing. The inflammatory component of AD involves the responses of microglia to the peptide amyloid-β (Aβ), which is an inflammatory stimulus and a likely causative AD agent. Temporal-logic analysis of the model provides explanations for the puzzling findings that Aβ induces an anti-inflammatory and well as a pro-inflammatory response, and that Aβ is phagocytized by microglia in young but not in old animals. To potentially explain the first puzzle, the model suggests that interferon-γ acts as an "autocrine bridge" over which an Aβ-induced increase in pro-inflammatory cytokines leads to an increase in anti-inflammatory mediators also. To potentially explain the second puzzle, the model identifies a potential instability in signaling via insulin-like growth factor 1 that could explain the failure of old microglia to phagocytize Aβ. The model predicts that augmentation of insulin-like growth factor 1 signaling, and activation of protein kinase C in particular, could move old microglia from a neurotoxic back toward a more neuroprotective and phagocytic phenotype.

  12. Optimal immunization cocktails can promote induction of broadly neutralizing Abs against highly mutable pathogens.

    PubMed

    Shaffer, J Scott; Moore, Penny L; Kardar, Mehran; Chakraborty, Arup K

    2016-10-24

    Strategies to elicit Abs that can neutralize diverse strains of a highly mutable pathogen are likely to result in a potent vaccine. Broadly neutralizing Abs (bnAbs) against HIV have been isolated from patients, proving that the human immune system can evolve them. Using computer simulations and theory, we study immunization with diverse mixtures of variant antigens (Ags). Our results show that particular choices for the number of variant Ags and the mutational distances separating them maximize the probability of inducing bnAbs. The variant Ags represent potentially conflicting selection forces that can frustrate the Darwinian evolutionary process of affinity maturation. An intermediate level of frustration maximizes the chance of evolving bnAbs. A simple model makes vivid the origin of this principle of optimal frustration. Our results, combined with past studies, suggest that an appropriately chosen permutation of immunization with an optimally designed mixture (using the principles that we describe) and sequential immunization with variant Ags that are separated by relatively large mutational distances may best promote the evolution of bnAbs.

  13. Optimal immunization cocktails can promote induction of broadly neutralizing Abs against highly mutable pathogens

    PubMed Central

    Shaffer, J. Scott; Moore, Penny L.; Kardar, Mehran; Chakraborty, Arup K.

    2016-01-01

    Strategies to elicit Abs that can neutralize diverse strains of a highly mutable pathogen are likely to result in a potent vaccine. Broadly neutralizing Abs (bnAbs) against HIV have been isolated from patients, proving that the human immune system can evolve them. Using computer simulations and theory, we study immunization with diverse mixtures of variant antigens (Ags). Our results show that particular choices for the number of variant Ags and the mutational distances separating them maximize the probability of inducing bnAbs. The variant Ags represent potentially conflicting selection forces that can frustrate the Darwinian evolutionary process of affinity maturation. An intermediate level of frustration maximizes the chance of evolving bnAbs. A simple model makes vivid the origin of this principle of optimal frustration. Our results, combined with past studies, suggest that an appropriately chosen permutation of immunization with an optimally designed mixture (using the principles that we describe) and sequential immunization with variant Ags that are separated by relatively large mutational distances may best promote the evolution of bnAbs. PMID:27791170

  14. The Attitude of Teacher Trainees towards the Teaching of Computer Education at B.ED Level

    ERIC Educational Resources Information Center

    Sarsani, Mahender Reddy

    2007-01-01

    Tremendous changes are taking place in the world which certainly influence the system of education, and teacher education too cannot remain immune to these global changes. Information Technology (IT] is affecting teachers, individuals and society. Digital learning has opened the doors of classrooms and made knowledge accessible even for those…

  15. Trusted computation through biologically inspired processes

    NASA Astrophysics Data System (ADS)

    Anderson, Gustave W.

    2013-05-01

    Due to supply chain threats it is no longer a reasonable assumption that traditional protections alone will provide sufficient security for enterprise systems. The proposed cognitive trust model architecture extends the state-of-the-art in enterprise anti-exploitation technologies by providing collective immunity through backup and cross-checking, proactive health monitoring and adaptive/autonomic threat response, and network resource diversity.

  16. A methodological approach for using high-level Petri Nets to model the immune system response.

    PubMed

    Pennisi, Marzio; Cavalieri, Salvatore; Motta, Santo; Pappalardo, Francesco

    2016-12-22

    Mathematical and computational models showed to be a very important support tool for the comprehension of the immune system response against pathogens. Models and simulations allowed to study the immune system behavior, to test biological hypotheses about diseases and infection dynamics, and to improve and optimize novel and existing drugs and vaccines. Continuous models, mainly based on differential equations, usually allow to qualitatively study the system but lack in description; conversely discrete models, such as agent based models and cellular automata, permit to describe in detail entities properties at the cost of losing most qualitative analyses. Petri Nets (PN) are a graphical modeling tool developed to model concurrency and synchronization in distributed systems. Their use has become increasingly marked also thanks to the introduction in the years of many features and extensions which lead to the born of "high level" PN. We propose a novel methodological approach that is based on high level PN, and in particular on Colored Petri Nets (CPN), that can be used to model the immune system response at the cellular scale. To demonstrate the potentiality of the approach we provide a simple model of the humoral immune system response that is able of reproducing some of the most complex well-known features of the adaptive response like memory and specificity features. The methodology we present has advantages of both the two classical approaches based on continuous and discrete models, since it allows to gain good level of granularity in the description of cells behavior without losing the possibility of having a qualitative analysis. Furthermore, the presented methodology based on CPN allows the adoption of the same graphical modeling technique well known to life scientists that use PN for the modeling of signaling pathways. Finally, such an approach may open the floodgates to the realization of multi scale models that integrate both signaling pathways (intra cellular) models and cellular (population) models built upon the same technique and software.

  17. Systems-wide analyses of mucosal immune responses to Helicobacter pylori at the interface between pathogenicity and symbiosis

    PubMed Central

    Kronsteiner, Barbara; Bassaganya-Riera, Josep; Philipson, Casandra; Viladomiu, Monica; Carbo, Adria; Abedi, Vida; Hontecillas, Raquel

    2016-01-01

    Abstract Helicobacter pylori is the dominant member of the gastric microbiota in over half of the human population of which 5–15% develop gastritis or gastric malignancies. Immune responses to H. pylori are characterized by mixed T helper cell, cytotoxic T cell and NK cell responses. The presence of Tregs is essential for the control of gastritis and together with regulatory CX3CR1+ mononuclear phagocytes and immune-evasion strategies they enable life-long persistence of H. pylori. This H. pylori-induced regulatory environment might contribute to its cross-protective effect in inflammatory bowel disease and obesity. Here we review host-microbe interactions, the development of pro- and anti-inflammatory immune responses and how the latter contribute to H. pylori's role as beneficial member of the gut microbiota. Furthermore, we present the integration of existing and new data into a computational/mathematical model and its use for the investigation of immunological mechanisms underlying initiation, progression and outcomes of H. pylori infection. PMID:26939848

  18. Comparison of mathematical models of fibrosis. Comment on "Towards a unified approach in the modeling of fibrosis: A review with research perspectives" by M. Ben Amar and C. Bianca

    NASA Astrophysics Data System (ADS)

    Kachapova, Farida

    2016-07-01

    Mathematical and computational models in biology and medicine help to improve diagnostics and medical treatments. Modeling of pathological fibrosis is reviewed by M. Ben Amar and C. Bianca in [4]. Pathological fibrosis is the process when excessive fibrous tissue is deposited on an organ or tissue during a wound healing and can obliterate their normal function. In [4] the phenomena of fibrosis are briefly explained including the causes, mechanism and management; research models of pathological fibrosis are described, compared and critically analyzed. Different models are suitable at different levels: molecular, cellular and tissue. The main goal of mathematical modeling of fibrosis is to predict long term behavior of the system depending on bifurcation parameters; there are two main trends: inhibition of fibrosis due to an active immune system and swelling of fibrosis because of a weak immune system.

  19. The Innate Immune Database (IIDB)

    PubMed Central

    Korb, Martin; Rust, Aistair G; Thorsson, Vesteinn; Battail, Christophe; Li, Bin; Hwang, Daehee; Kennedy, Kathleen A; Roach, Jared C; Rosenberger, Carrie M; Gilchrist, Mark; Zak, Daniel; Johnson, Carrie; Marzolf, Bruz; Aderem, Alan; Shmulevich, Ilya; Bolouri, Hamid

    2008-01-01

    Background As part of a National Institute of Allergy and Infectious Diseases funded collaborative project, we have performed over 150 microarray experiments measuring the response of C57/BL6 mouse bone marrow macrophages to toll-like receptor stimuli. These microarray expression profiles are available freely from our project web site . Here, we report the development of a database of computationally predicted transcription factor binding sites and related genomic features for a set of over 2000 murine immune genes of interest. Our database, which includes microarray co-expression clusters and a host of web-based query, analysis and visualization facilities, is available freely via the internet. It provides a broad resource to the research community, and a stepping stone towards the delineation of the network of transcriptional regulatory interactions underlying the integrated response of macrophages to pathogens. Description We constructed a database indexed on genes and annotations of the immediate surrounding genomic regions. To facilitate both gene-specific and systems biology oriented research, our database provides the means to analyze individual genes or an entire genomic locus. Although our focus to-date has been on mammalian toll-like receptor signaling pathways, our database structure is not limited to this subject, and is intended to be broadly applicable to immunology. By focusing on selected immune-active genes, we were able to perform computationally intensive expression and sequence analyses that would currently be prohibitive if applied to the entire genome. Using six complementary computational algorithms and methodologies, we identified transcription factor binding sites based on the Position Weight Matrices available in TRANSFAC. For one example transcription factor (ATF3) for which experimental data is available, over 50% of our predicted binding sites coincide with genome-wide chromatin immnuopreciptation (ChIP-chip) results. Our database can be interrogated via a web interface. Genomic annotations and binding site predictions can be automatically viewed with a customized version of the Argo genome browser. Conclusion We present the Innate Immune Database (IIDB) as a community resource for immunologists interested in gene regulatory systems underlying innate responses to pathogens. The database website can be freely accessed at . PMID:18321385

  20. Deblurring for spatial and temporal varying motion with optical computing

    NASA Astrophysics Data System (ADS)

    Xiao, Xiao; Xue, Dongfeng; Hui, Zhao

    2016-05-01

    A way to estimate and remove spatially and temporally varying motion blur is proposed, which is based on an optical computing system. The translation and rotation motion can be independently estimated from the joint transform correlator (JTC) system without iterative optimization. The inspiration comes from the fact that the JTC system is immune to rotation motion in a Cartesian coordinate system. The work scheme of the JTC system is designed to keep switching between the Cartesian coordinate system and polar coordinate system in different time intervals with the ping-pang handover. In the ping interval, the JTC system works in the Cartesian coordinate system to obtain a translation motion vector with optical computing speed. In the pang interval, the JTC system works in the polar coordinate system. The rotation motion is transformed to the translation motion through coordinate transformation. Then the rotation motion vector can also be obtained from JTC instantaneously. To deal with continuous spatially variant motion blur, submotion vectors based on the projective motion path blur model are proposed. The submotion vectors model is more effective and accurate at modeling spatially variant motion blur than conventional methods. The simulation and real experiment results demonstrate its overall effectiveness.

  1. Immunological network signatures of cancer progression and survival

    PubMed Central

    2011-01-01

    Background The immune contribution to cancer progression is complex and difficult to characterize. For example in tumors, immune gene expression is detected from the combination of normal, tumor and immune cells in the tumor microenvironment. Profiling the immune component of tumors may facilitate the characterization of the poorly understood roles immunity plays in cancer progression. However, the current approaches to analyze the immune component of a tumor rely on incomplete identification of immune factors. Methods To facilitate a more comprehensive approach, we created a ranked immunological relevance score for all human genes, developed using a novel strategy that combines text mining and information theory. We used this score to assign an immunological grade to gene expression profiles, and thereby quantify the immunological component of tumors. This immunological relevance score was benchmarked against existing manually curated immune resources as well as high-throughput studies. To further characterize immunological relevance for genes, the relevance score was charted against both the human interactome and cancer information, forming an expanded interactome landscape of tumor immunity. We applied this approach to expression profiles in melanomas, thus identifying and grading their immunological components, followed by identification of their associated protein interactions. Results The power of this strategy was demonstrated by the observation of early activation of the adaptive immune response and the diversity of the immune component during melanoma progression. Furthermore, the genome-wide immunological relevance score classified melanoma patient groups, whose immunological grade correlated with clinical features, such as immune phenotypes and survival. Conclusions The assignment of a ranked immunological relevance score to all human genes extends the content of existing immune gene resources and enriches our understanding of immune involvement in complex biological networks. The application of this approach to tumor immunity represents an automated systems strategy that quantifies the immunological component in complex disease. In so doing, it stratifies patients according to their immune profiles, which may lead to effective computational prognostic and clinical guides. PMID:21453479

  2. Oxygen Modulates the Effectiveness of Granuloma Mediated Host Response to Mycobacterium tuberculosis: A Multiscale Computational Biology Approach

    PubMed Central

    Sershen, Cheryl L.; Plimpton, Steven J.; May, Elebeoba E.

    2016-01-01

    Mycobacterium tuberculosis associated granuloma formation can be viewed as a structural immune response that can contain and halt the spread of the pathogen. In several mammalian hosts, including non-human primates, Mtb granulomas are often hypoxic, although this has not been observed in wild type murine infection models. While a presumed consequence, the structural contribution of the granuloma to oxygen limitation and the concomitant impact on Mtb metabolic viability and persistence remains to be fully explored. We develop a multiscale computational model to test to what extent in vivo Mtb granulomas become hypoxic, and investigate the effects of hypoxia on host immune response efficacy and mycobacterial persistence. Our study integrates a physiological model of oxygen dynamics in the extracellular space of alveolar tissue, an agent-based model of cellular immune response, and a systems biology-based model of Mtb metabolic dynamics. Our theoretical studies suggest that the dynamics of granuloma organization mediates oxygen availability and illustrates the immunological contribution of this structural host response to infection outcome. Furthermore, our integrated model demonstrates the link between structural immune response and mechanistic drivers influencing Mtbs adaptation to its changing microenvironment and the qualitative infection outcome scenarios of clearance, containment, dissemination, and a newly observed theoretical outcome of transient containment. We observed hypoxic regions in the containment granuloma similar in size to granulomas found in mammalian in vivo models of Mtb infection. In the case of the containment outcome, our model uniquely demonstrates that immune response mediated hypoxic conditions help foster the shift down of bacteria through two stages of adaptation similar to thein vitro non-replicating persistence (NRP) observed in the Wayne model of Mtb dormancy. The adaptation in part contributes to the ability of Mtb to remain dormant for years after initial infection. PMID:26913242

  3. Oxygen Modulates the Effectiveness of Granuloma Mediated Host Response to Mycobacterium tuberculosis: A Multiscale Computational Biology Approach.

    PubMed

    Sershen, Cheryl L; Plimpton, Steven J; May, Elebeoba E

    2016-01-01

    Mycobacterium tuberculosis associated granuloma formation can be viewed as a structural immune response that can contain and halt the spread of the pathogen. In several mammalian hosts, including non-human primates, Mtb granulomas are often hypoxic, although this has not been observed in wild type murine infection models. While a presumed consequence, the structural contribution of the granuloma to oxygen limitation and the concomitant impact on Mtb metabolic viability and persistence remains to be fully explored. We develop a multiscale computational model to test to what extent in vivo Mtb granulomas become hypoxic, and investigate the effects of hypoxia on host immune response efficacy and mycobacterial persistence. Our study integrates a physiological model of oxygen dynamics in the extracellular space of alveolar tissue, an agent-based model of cellular immune response, and a systems biology-based model of Mtb metabolic dynamics. Our theoretical studies suggest that the dynamics of granuloma organization mediates oxygen availability and illustrates the immunological contribution of this structural host response to infection outcome. Furthermore, our integrated model demonstrates the link between structural immune response and mechanistic drivers influencing Mtbs adaptation to its changing microenvironment and the qualitative infection outcome scenarios of clearance, containment, dissemination, and a newly observed theoretical outcome of transient containment. We observed hypoxic regions in the containment granuloma similar in size to granulomas found in mammalian in vivo models of Mtb infection. In the case of the containment outcome, our model uniquely demonstrates that immune response mediated hypoxic conditions help foster the shift down of bacteria through two stages of adaptation similar to the in vitro non-replicating persistence (NRP) observed in the Wayne model of Mtb dormancy. The adaptation in part contributes to the ability of Mtb to remain dormant for years after initial infection.

  4. A micro-epidemic model for primary dengue infection

    NASA Astrophysics Data System (ADS)

    Mishra, Arti; Gakkhar, Sunita

    2017-06-01

    In this paper, a micro-epidemic non-linear dynamical model has been proposed and analyzed for primary dengue infection. The model incorporates the effects of T cells immune response as well as humoral response during pathogenesis of dengue infection. The time delay has been accounted for production of antibodies from B cells. The basic reproduction number (R0) has been computed. Three equilibrium states are obtained. The existence and stability conditions for infection-free and ineffective cellular immune response state have been discussed. The conditions for existence of endemic state have been obtained. Further, the parametric region is obtained where system exhibits complex behavior. The threshold value of time delay has been computed which is critical for change in stability of endemic state. A threshold level for antibodies production rate has been obtained over which the infection will die out even though R0 > 1. The model is in line with the clinical observation that viral load decreases within 7-14 days from the onset of primary infection.

  5. Bioinspired principles for large-scale networked sensor systems: an overview.

    PubMed

    Jacobsen, Rune Hylsberg; Zhang, Qi; Toftegaard, Thomas Skjødeberg

    2011-01-01

    Biology has often been used as a source of inspiration in computer science and engineering. Bioinspired principles have found their way into network node design and research due to the appealing analogies between biological systems and large networks of small sensors. This paper provides an overview of bioinspired principles and methods such as swarm intelligence, natural time synchronization, artificial immune system and intercellular information exchange applicable for sensor network design. Bioinspired principles and methods are discussed in the context of routing, clustering, time synchronization, optimal node deployment, localization and security and privacy.

  6. Evaluation of a DLA-79 allele associated with multiple immune-mediated diseases in dogs.

    PubMed

    Friedenberg, Steven G; Buhrman, Greg; Chdid, Lhoucine; Olby, Natasha J; Olivry, Thierry; Guillaumin, Julien; O'Toole, Theresa; Goggs, Robert; Kennedy, Lorna J; Rose, Robert B; Meurs, Kathryn M

    2016-03-01

    Immune-mediated diseases are common and life-threatening disorders in dogs. Many canine immune-mediated diseases have strong breed predispositions and are believed to be inherited. However, the genetic mutations that cause these diseases are mostly unknown. As many immune-mediated diseases in humans share polymorphisms among a common set of genes, we conducted a candidate gene study of 15 of these genes across four immune-mediated diseases (immune-mediated hemolytic anemia, immune-mediated thrombocytopenia, immune-mediated polyarthritis (IMPA), and atopic dermatitis) in 195 affected and 206 unaffected dogs to assess whether causative or predictive polymorphisms might exist in similar genes in dogs. We demonstrate a strong association (Fisher's exact p = 0.0004 for allelic association, p = 0.0035 for genotypic association) between two polymorphic positions (10 bp apart) in exon 2 of one allele in DLA-79, DLA-79*001:02, and multiple immune-mediated diseases. The frequency of this allele was significantly higher in dogs with immune-mediated disease than in control dogs (0.21 vs. 0.12) and ranged from 0.28 in dogs with IMPA to 0.15 in dogs with atopic dermatitis. This allele has two non-synonymous substitutions (compared with the reference allele, DLA-79*001:01), resulting in F33L and N37D amino acid changes. These mutations occur in the peptide-binding pocket of the protein, and based upon our computational modeling studies, are likely to affect critical interactions with the peptide N-terminus. Further studies are warranted to confirm these findings more broadly and to determine the specific mechanism by which the identified variants alter canine immune system function.

  7. Assessing the impact of the Lebanese National Polio Immunization Campaign using a population-based computational model.

    PubMed

    Alawieh, Ali; Sabra, Zahraa; Langley, E Farris; Bizri, Abdul Rahman; Hamadeh, Randa; Zaraket, Fadi A

    2017-11-25

    After the re-introduction of poliovirus to Syria in 2013, Lebanon was considered at high transmission risk due to its proximity to Syria and the high number of Syrian refugees. However, after a large-scale national immunization initiative, Lebanon was able to prevent a potential outbreak of polio among nationals and refugees. In this work, we used a computational individual-simulation model to assess the risk of poliovirus threat to Lebanon prior and after the immunization campaign and to quantitatively assess the healthcare impact of the campaign and the required standards that need to be maintained nationally to prevent a future outbreak. Acute poliomyelitis surveillance in Lebanon was along with the design and coverage rate of the recent national polio immunization campaign were reviewed from the records of the Lebanese Ministry of Public Health. Lebanese population demographics including Syrian and Palestinian refugees were reviewed to design individual-based models that predicts the consequences of polio spread to Lebanon and evaluate the outcome of immunization campaigns. The model takes into account geographic, demographic and health-related features. Our simulations confirmed the high risk of polio outbreaks in Lebanon within 10 days of case introduction prior to the immunization campaign, and showed that the current immunization campaign significantly reduced the speed of the infection in the event poliomyelitis cases enter the country. A minimum of 90% national immunization coverage was found to be required to prevent exponential propagation of potential transmission. Both surveillance and immunization efforts should be maintained at high standards in Lebanon and other countries in the area to detect and limit any potential outbreak. The use of computational population simulation models can provide a quantitative approach to assess the impact of immunization campaigns and the burden of infectious diseases even in the context of population migration.

  8. Immunoinformatics: an integrated scenario

    PubMed Central

    Tomar, Namrata; De, Rajat K

    2010-01-01

    Genome sequencing of humans and other organisms has led to the accumulation of huge amounts of data, which include immunologically relevant data. A large volume of clinical data has been deposited in several immunological databases and as a result immunoinformatics has emerged as an important field which acts as an intersection between experimental immunology and computational approaches. It not only helps in dealing with the huge amount of data but also plays a role in defining new hypotheses related to immune responses. This article reviews classical immunology, different databases and prediction tools. It also describes applications of immunoinformatics in designing in silico vaccination and immune system modelling. All these efforts save time and reduce cost. PMID:20722763

  9. Collective synchronization of self/non-self discrimination in T cell activation, across multiple spatio-temporal scales

    NASA Astrophysics Data System (ADS)

    Altan-Bonnet, Gregoire

    The immune system is a collection of cells whose function is to eradicate pathogenic infections and malignant tumors while protecting healthy tissues. Recent work has delineated key molecular and cellular mechanisms associated with the ability to discriminate self from non-self agents. For example, structural studies have quantified the biophysical characteristics of antigenic molecules (those prone to trigger lymphocyte activation and a subsequent immune response). However, such molecular mechanisms were found to be highly unreliable at the individual cellular level. We will present recent efforts to build experimentally validated computational models of the immune responses at the collective cell level. Such models have become critical to delineate how higher-level integration through nonlinear amplification in signal transduction, dynamic feedback in lymphocyte differentiation and cell-to-cell communication allows the immune system to enforce reliable self/non-self discrimination at the organism level. In particular, we will present recent results demonstrating how T cells tune their antigen discrimination according to cytokine cues, and how competition for cytokine within polyclonal populations of cells shape the repertoire of responding clones. Additionally, we will present recent theoretical and experimental results demonstrating how competition between diffusion and consumption of cytokines determine the range of cell-cell communications within lymphoid organs. Finally, we will discuss how biochemically explicit models, combined with quantitative experimental validation, unravel the relevance of new feedbacks for immune regulations across multiple spatial and temporal scales.

  10. 26 CFR 301.7507-5 - Earnings.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... correctly compute the tax liability, even though in the opinion of the taxpayer it is immune from tax... of the $6,400 immune from collection from 1954 earnings may be collected thereafter from unsegregated... for 1955, is not available for collection of the tax for prior years, which became immune as described...

  11. 26 CFR 301.7507-5 - Earnings.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... correctly compute the tax liability, even though in the opinion of the taxpayer it is immune from tax... of the $6,400 immune from collection from 1954 earnings may be collected thereafter from unsegregated... for 1955, is not available for collection of the tax for prior years, which became immune as described...

  12. 26 CFR 301.7507-5 - Earnings.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... correctly compute the tax liability, even though in the opinion of the taxpayer it is immune from tax... of the $6,400 immune from collection from 1954 earnings may be collected thereafter from unsegregated... for 1955, is not available for collection of the tax for prior years, which became immune as described...

  13. 26 CFR 301.7507-5 - Earnings.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... correctly compute the tax liability, even though in the opinion of the taxpayer it is immune from tax... of the $6,400 immune from collection from 1954 earnings may be collected thereafter from unsegregated... for 1955, is not available for collection of the tax for prior years, which became immune as described...

  14. 26 CFR 301.7507-5 - Earnings.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... correctly compute the tax liability, even though in the opinion of the taxpayer it is immune from tax... of the $6,400 immune from collection from 1954 earnings may be collected thereafter from unsegregated... for 1955, is not available for collection of the tax for prior years, which became immune as described...

  15. Computational approaches for discovery of common immunomodulators in fungal infections: towards broad-spectrum immunotherapeutic interventions.

    PubMed

    Kidane, Yared H; Lawrence, Christopher; Murali, T M

    2013-10-07

    Fungi are the second most abundant type of human pathogens. Invasive fungal pathogens are leading causes of life-threatening infections in clinical settings. Toxicity to the host and drug-resistance are two major deleterious issues associated with existing antifungal agents. Increasing a host's tolerance and/or immunity to fungal pathogens has potential to alleviate these problems. A host's tolerance may be improved by modulating the immune system such that it responds more rapidly and robustly in all facets, ranging from the recognition of pathogens to their clearance from the host. An understanding of biological processes and genes that are perturbed during attempted fungal exposure, colonization, and/or invasion will help guide the identification of endogenous immunomodulators and/or small molecules that activate host-immune responses such as specialized adjuvants. In this study, we present computational techniques and approaches using publicly available transcriptional data sets, to predict immunomodulators that may act against multiple fungal pathogens. Our study analyzed data sets derived from host cells exposed to five fungal pathogens, namely, Alternaria alternata, Aspergillus fumigatus, Candida albicans, Pneumocystis jirovecii, and Stachybotrys chartarum. We observed statistically significant associations between host responses to A. fumigatus and C. albicans. Our analysis identified biological processes that were consistently perturbed by these two pathogens. These processes contained both immune response-inducing genes such as MALT1, SERPINE1, ICAM1, and IL8, and immune response-repressing genes such as DUSP8, DUSP6, and SPRED2. We hypothesize that these genes belong to a pool of common immunomodulators that can potentially be activated or suppressed (agonized or antagonized) in order to render the host more tolerant to infections caused by A. fumigatus and C. albicans. Our computational approaches and methodologies described here can now be applied to newly generated or expanded data sets for further elucidation of additional drug targets. Moreover, identified immunomodulators may be used to generate experimentally testable hypotheses that could help in the discovery of broad-spectrum immunotherapeutic interventions. All of our results are available at the following supplementary website: http://bioinformatics.cs.vt.edu/~murali/supplements/2013-kidane-bmc.

  16. Computational approaches for discovery of common immunomodulators in fungal infections: towards broad-spectrum immunotherapeutic interventions

    PubMed Central

    2013-01-01

    Background Fungi are the second most abundant type of human pathogens. Invasive fungal pathogens are leading causes of life-threatening infections in clinical settings. Toxicity to the host and drug-resistance are two major deleterious issues associated with existing antifungal agents. Increasing a host’s tolerance and/or immunity to fungal pathogens has potential to alleviate these problems. A host’s tolerance may be improved by modulating the immune system such that it responds more rapidly and robustly in all facets, ranging from the recognition of pathogens to their clearance from the host. An understanding of biological processes and genes that are perturbed during attempted fungal exposure, colonization, and/or invasion will help guide the identification of endogenous immunomodulators and/or small molecules that activate host-immune responses such as specialized adjuvants. Results In this study, we present computational techniques and approaches using publicly available transcriptional data sets, to predict immunomodulators that may act against multiple fungal pathogens. Our study analyzed data sets derived from host cells exposed to five fungal pathogens, namely, Alternaria alternata, Aspergillus fumigatus, Candida albicans, Pneumocystis jirovecii, and Stachybotrys chartarum. We observed statistically significant associations between host responses to A. fumigatus and C. albicans. Our analysis identified biological processes that were consistently perturbed by these two pathogens. These processes contained both immune response-inducing genes such as MALT1, SERPINE1, ICAM1, and IL8, and immune response-repressing genes such as DUSP8, DUSP6, and SPRED2. We hypothesize that these genes belong to a pool of common immunomodulators that can potentially be activated or suppressed (agonized or antagonized) in order to render the host more tolerant to infections caused by A. fumigatus and C. albicans. Conclusions Our computational approaches and methodologies described here can now be applied to newly generated or expanded data sets for further elucidation of additional drug targets. Moreover, identified immunomodulators may be used to generate experimentally testable hypotheses that could help in the discovery of broad-spectrum immunotherapeutic interventions. All of our results are available at the following supplementary website: http://bioinformatics.cs.vt.edu/~murali/supplements/2013-kidane-bmc PMID:24099000

  17. Using Computer-Extracted Data from Electronic Health Records to Measure the Quality of Adolescent Well-Care

    PubMed Central

    Gardner, William; Morton, Suzanne; Byron, Sepheen C; Tinoco, Aldo; Canan, Benjamin D; Leonhart, Karen; Kong, Vivian; Scholle, Sarah Hudson

    2014-01-01

    Objective To determine whether quality measures based on computer-extracted EHR data can reproduce findings based on data manually extracted by reviewers. Data Sources We studied 12 measures of care indicated for adolescent well-care visits for 597 patients in three pediatric health systems. Study Design Observational study. Data Collection/Extraction Methods Manual reviewers collected quality data from the EHR. Site personnel programmed their EHR systems to extract the same data from structured fields in the EHR according to national health IT standards. Principal Findings Overall performance measured via computer-extracted data was 21.9 percent, compared with 53.2 percent for manual data. Agreement measures were high for immunizations. Otherwise, agreement between computer extraction and manual review was modest (Kappa = 0.36) because computer-extracted data frequently missed care events (sensitivity = 39.5 percent). Measure validity varied by health care domain and setting. A limitation of our findings is that we studied only three domains and three sites. Conclusions The accuracy of computer-extracted EHR quality reporting depends on the use of structured data fields, with the highest agreement found for measures and in the setting that had the greatest concentration of structured fields. We need to improve documentation of care, data extraction, and adaptation of EHR systems to practice workflow. PMID:24471935

  18. The Immune System as a Model for Pattern Recognition and Classification

    PubMed Central

    Carter, Jerome H.

    2000-01-01

    Objective: To design a pattern recognition engine based on concepts derived from mammalian immune systems. Design: A supervised learning system (Immunos-81) was created using software abstractions of T cells, B cells, antibodies, and their interactions. Artificial T cells control the creation of B-cell populations (clones), which compete for recognition of “unknowns.” The B-cell clone with the “simple highest avidity” (SHA) or “relative highest avidity” (RHA) is considered to have successfully classified the unknown. Measurement: Two standard machine learning data sets, consisting of eight nominal and six continuous variables, were used to test the recognition capabilities of Immunos-81. The first set (Cleveland), consisting of 303 cases of patients with suspected coronary artery disease, was used to perform a ten-way cross-validation. After completing the validation runs, the Cleveland data set was used as a training set prior to presentation of the second data set, consisting of 200 unknown cases. Results: For cross-validation runs, correct recognition using SHA ranged from a high of 96 percent to a low of 63.2 percent. The average correct classification for all runs was 83.2 percent. Using the RHA metric, 11.2 percent were labeled “too close to determine” and no further attempt was made to classify them. Of the remaining cases, 85.5 percent were correctly classified. When the second data set was presented, correct classification occurred in 73.5 percent of cases when SHA was used and in 80.3 percent of cases when RHA was used. Conclusions: The immune system offers a viable paradigm for the design of pattern recognition systems. Additional research is required to fully exploit the nuances of immune computation. PMID:10641961

  19. Network Topologies and Dynamics Leading to Endotoxin Tolerance and Priming in Innate Immune Cells

    NASA Astrophysics Data System (ADS)

    Fu, Yan; Glaros, Trevor; Zhu, Meng; Wang, Ping; Wu, Zhanghan; Tyson, John; Li, Liwu; Xing, Jianhua

    2012-01-01

    The innate immune system, acting as the first line of host defense, senses and adapts to foreign challenges through complex intracellular and intercellular signaling networks. Endotoxin tolerance and priming elicited by macrophages are classic examples of the complex adaptation of innate immune cells. Upon repetitive exposures to different doses of bacterial endotoxin (lipopolysaccharide) or other stimulants, macrophages show either suppressed or augmented inflammatory responses compared to a single exposure to the stimulant. Endotoxin tolerance and priming are critically involved in both immune homeostasis and the pathogenesis of diverse inflammatory diseases. However, the underlying molecular mechanisms are not well understood. By means of a computational search through the parameter space of a coarse-grained three-node network with a two-stage Metropolis sampling approach, we enumerated all the network topologies that can generate priming or tolerance. We discovered three major mechanisms for priming (pathway synergy, suppressor deactivation, activator induction) and one for tolerance (inhibitor persistence). These results not only explain existing experimental observations, but also reveal intriguing test scenarios for future experimental studies to clarify mechanisms of endotoxin priming and tolerance.

  20. A Model of an Integrated Immune System Pathway in Homo sapiens and Its Interaction with Superantigen Producing Expression Regulatory Pathway in Staphylococcus aureus: Comparing Behavior of Pathogen Perturbed and Unperturbed Pathway

    PubMed Central

    Tomar, Namrata; De, Rajat K.

    2013-01-01

    Response of an immune system to a pathogen attack depends on the balance between the host immune defense and the virulence of the pathogen. Investigation of molecular interactions between the proteins of a host and a pathogen helps in identifying the pathogenic proteins. It is necessary to understand the dynamics of a normally behaved host system to evaluate the capacity of its immune system upon pathogen attack. In this study, we have compared the behavior of an unperturbed and pathogen perturbed host system. Moreover, we have developed a formalism under Flux Balance Analysis (FBA) for the optimization of conflicting objective functions. We have constructed an integrated pathway system, which includes Staphylococcal Superantigen (SAg) expression regulatory pathway and TCR signaling pathway of Homo sapiens. We have implemented the method on this pathway system and observed the behavior of host signaling molecules upon pathogen attack. The entire study has been divided into six different cases, based on the perturbed/unperturbed conditions. In other words, we have investigated unperturbed and pathogen perturbed human TCR signaling pathway, with different combinations of optimization of concentrations of regulatory and signaling molecules. One of these cases has aimed at finding out whether minimization of the toxin production in a pathogen leads to the change in the concentration levels of the proteins coded by TCR signaling pathway genes in the infected host. Based on the computed results, we have hypothesized that the balance between TCR signaling inhibitory and stimulatory molecules can keep TCR signaling system into resting/stimulating state, depending upon the perturbation. The proposed integrated host-pathogen interaction pathway model has accurately reflected the experimental evidences, which we have used for validation purpose. The significance of this kind of investigation lies in revealing the susceptible interaction points that can take back the Staphylococcal Enterotoxin (SE)-challenged system within the range of normal behavior. PMID:24324645

  1. Understanding Lymphatic Valve Function via Computational Modeling

    NASA Astrophysics Data System (ADS)

    Wolf, Ki; Nepiyushchikh, Zhanna; Razavi, Mohammad; Dixon, Brandon; Alexeev, Alexander

    2017-11-01

    The lymphatic system is a crucial part to the circulatory system with many important functions, such as transport of interstitial fluid, fatty acid, and immune cells. Lymphatic vessels' contractile walls and valves allow lymph flow against adverse pressure gradients and prevent back flow. Yet, the effect of lymphatic valves' geometric and mechanical properties to pumping performance and lymphatic dysfunctions like lymphedema is not well understood. Our coupled fluid-solid computational model based on lattice Boltzmann model and lattice spring model investigates the dynamics and effectiveness of lymphatic valves in resistance minimization, backflow prevention, and viscoelastic response under different geometric and mechanical properties, suggesting the range of lymphatic valve parameters with effective pumping performance. Our model also provides more physiologically relevant relations of the valve response under varied conditions to a lumped parameter model of the lymphatic system giving an integrative insight into lymphatic system performance, including its failure due to diseases. NSF CMMI-1635133.

  2. Use of computational fluid dynamics in optimization of natural smoke ventilation from a historical shopping mall - Case study

    NASA Astrophysics Data System (ADS)

    Krajewski, Grzegorz; Wegrzyński, Wojciech

    2018-01-01

    In this paper, the Authors present results of a complex case study, in which a natural smoke ventilation system was introduced into a historical mall Koszyki Market Hall located in the centre of Warsaw. As historical authorities protected the building, the only solution possible was to use a natural system - known for deficient performance in façade applications. To maximise the performance of the smoke control system, a Computational Wind Engineering exercise was performed. The goal was to find the most difficult wind attack angles, and optimise the performance at these conditions. Once the wind influence was known, a transient analysis was performed that included the growth of the fire within the building, as well as a numerical evacuation study. The resulting system was immune to the wind effects, and provided safe evacuation to users of the building, even in difficult wind conditions.

  3. Predictive Computational Modeling of the Mucosal Immune Responses during Helicobacter pylori Infection

    PubMed Central

    Carbo, Adria; Bassaganya-Riera, Josep; Pedragosa, Mireia; Viladomiu, Monica; Marathe, Madhav; Eubank, Stephen; Wendelsdorf, Katherine; Bisset, Keith; Hoops, Stefan; Deng, Xinwei; Alam, Maksudul; Kronsteiner, Barbara; Mei, Yongguo; Hontecillas, Raquel

    2013-01-01

    T helper (Th) cells play a major role in the immune response and pathology at the gastric mucosa during Helicobacter pylori infection. There is a limited mechanistic understanding regarding the contributions of CD4+ T cell subsets to gastritis development during H. pylori colonization. We used two computational approaches: ordinary differential equation (ODE)-based and agent-based modeling (ABM) to study the mechanisms underlying cellular immune responses to H. pylori and how CD4+ T cell subsets influenced initiation, progression and outcome of disease. To calibrate the model, in vivo experimentation was performed by infecting C57BL/6 mice intragastrically with H. pylori and assaying immune cell subsets in the stomach and gastric lymph nodes (GLN) on days 0, 7, 14, 30 and 60 post-infection. Our computational model reproduced the dynamics of effector and regulatory pathways in the gastric lamina propria (LP) in silico. Simulation results show the induction of a Th17 response and a dominant Th1 response, together with a regulatory response characterized by high levels of mucosal Treg) cells. We also investigated the potential role of peroxisome proliferator-activated receptor γ (PPARγ) activation on the modulation of host responses to H. pylori by using loss-of-function approaches. Specifically, in silico results showed a predominance of Th1 and Th17 cells in the stomach of the cell-specific PPARγ knockout system when compared to the wild-type simulation. Spatio-temporal, object-oriented ABM approaches suggested similar dynamics in induction of host responses showing analogous T cell distributions to ODE modeling and facilitated tracking lesion formation. In addition, sensitivity analysis predicted a crucial contribution of Th1 and Th17 effector responses as mediators of histopathological changes in the gastric mucosa during chronic stages of infection, which were experimentally validated in mice. These integrated immunoinformatics approaches characterized the induction of mucosal effector and regulatory pathways controlled by PPARγ during H. pylori infection affecting disease outcomes. PMID:24039925

  4. Optimization of immunoglobulin substitution therapy by a stochastic immune response model.

    PubMed

    Figge, Marc Thilo

    2009-05-28

    The immune system is a complex adaptive system of cells and molecules that are interwoven in a highly organized communication network. Primary immune deficiencies are disorders in which essential parts of the immune system are absent or do not function according to plan. X-linked agammaglobulinemia is a B-lymphocyte maturation disorder in which the production of immunoglobulin is prohibited by a genetic defect. Patients have to be put on life-long immunoglobulin substitution therapy in order to prevent recurrent and persistent opportunistic infections. We formulate an immune response model in terms of stochastic differential equations and perform a systematic analysis of empirical therapy protocols that differ in the treatment frequency. The model accounts for the immunoglobulin reduction by natural degradation and by antigenic consumption, as well as for the periodic immunoglobulin replenishment that gives rise to an inhomogeneous distribution of immunoglobulin specificities in the shape space. Results are obtained from computer simulations and from analytical calculations within the framework of the Fokker-Planck formalism, which enables us to derive closed expressions for undetermined model parameters such as the infection clearance rate. We find that the critical value of the clearance rate, below which a chronic infection develops, is strongly dependent on the strength of fluctuations in the administered immunoglobulin dose per treatment and is an increasing function of the treatment frequency. The comparative analysis of therapy protocols with regard to the treatment frequency yields quantitative predictions of therapeutic relevance, where the choice of the optimal treatment frequency reveals a conflict of competing interests: In order to diminish immunomodulatory effects and to make good economic sense, therapeutic immunoglobulin levels should be kept close to physiological levels, implying high treatment frequencies. However, clearing infections without additional medication is more reliably achieved by substitution therapies with low treatment frequencies. Our immune response model predicts that the compromise solution of immunoglobulin substitution therapy has a treatment frequency in the range from one infusion per week to one infusion per two weeks.

  5. T-cell epitope prediction and immune complex simulation using molecular dynamics: state of the art and persisting challenges

    PubMed Central

    2010-01-01

    Atomistic Molecular Dynamics provides powerful and flexible tools for the prediction and analysis of molecular and macromolecular systems. Specifically, it provides a means by which we can measure theoretically that which cannot be measured experimentally: the dynamic time-evolution of complex systems comprising atoms and molecules. It is particularly suitable for the simulation and analysis of the otherwise inaccessible details of MHC-peptide interaction and, on a larger scale, the simulation of the immune synapse. Progress has been relatively tentative yet the emergence of truly high-performance computing and the development of coarse-grained simulation now offers us the hope of accurately predicting thermodynamic parameters and of simulating not merely a handful of proteins but larger, longer simulations comprising thousands of protein molecules and the cellular scale structures they form. We exemplify this within the context of immunoinformatics. PMID:21067546

  6. Cutaneous immunology: basics and new concepts.

    PubMed

    Yazdi, Amir S; Röcken, Martin; Ghoreschi, Kamran

    2016-01-01

    As one of the largest organs, the skin forms a mechanical and immunological barrier to the environment. The skin immune system harbors cells of the innate immune system and cells of the adaptive immune system. Signals of the innate immune system typically initiate skin immune responses, while cells and cytokines of the adaptive immune system perpetuate the inflammation. Skin immune responses ensure effective host defense against pathogens but can also cause inflammatory skin diseases. An extensive crosstalk between the different cell types of the immune system, tissue cells, and pathogens is responsible for the complexity of skin immune reactions. Here we summarize the major cellular and molecular components of the innate and adaptive skin immune system.

  7. A gene profiling deconvolution approach to estimating immune cell composition from complex tissues.

    PubMed

    Chen, Shu-Hwa; Kuo, Wen-Yu; Su, Sheng-Yao; Chung, Wei-Chun; Ho, Jen-Ming; Lu, Henry Horng-Shing; Lin, Chung-Yen

    2018-05-08

    A new emerged cancer treatment utilizes intrinsic immune surveillance mechanism that is silenced by those malicious cells. Hence, studies of tumor infiltrating lymphocyte populations (TILs) are key to the success of advanced treatments. In addition to laboratory methods such as immunohistochemistry and flow cytometry, in silico gene expression deconvolution methods are available for analyses of relative proportions of immune cell types. Herein, we used microarray data from the public domain to profile gene expression pattern of twenty-two immune cell types. Initially, outliers were detected based on the consistency of gene profiling clustering results and the original cell phenotype notation. Subsequently, we filtered out genes that are expressed in non-hematopoietic normal tissues and cancer cells. For every pair of immune cell types, we ran t-tests for each gene, and defined differentially expressed genes (DEGs) from this comparison. Equal numbers of DEGs were then collected as candidate lists and numbers of conditions and minimal values for building signature matrixes were calculated. Finally, we used v -Support Vector Regression to construct a deconvolution model. The performance of our system was finally evaluated using blood biopsies from 20 adults, in which 9 immune cell types were identified using flow cytometry. The present computations performed better than current state-of-the-art deconvolution methods. Finally, we implemented the proposed method into R and tested extensibility and usability on Windows, MacOS, and Linux operating systems. The method, MySort, is wrapped as the Galaxy platform pluggable tool and usage details are available at https://testtoolshed.g2.bx.psu.edu/view/moneycat/mysort/e3afe097e80a .

  8. The Immunological Genome Project: networks of gene expression in immune cells.

    PubMed

    Heng, Tracy S P; Painter, Michio W

    2008-10-01

    The Immunological Genome Project combines immunology and computational biology laboratories in an effort to establish a complete 'road map' of gene-expression and regulatory networks in all immune cells.

  9. (Neuro)transmitter systems in circulating immune cells: a target of immunopharmacological interventions?

    PubMed

    Tayebati, Seyed Khosrow; Amenta, Francesco

    2008-01-01

    Increasing evidence indicates the existence of an association between nervous and immune systems. The two systems communicate with each-other to maintain immune homeostasis. Activated immune cells secrete cytokines that influence central nervous system activity. Nervous system, through its peripheral and/or autonomic divisions activates output regulating levels of immune cell activity and the subsequent magnitude of an immune response. On the other hand, neurotransmitters, which represent the main substances involved in nerve cell communications, can influence immune function. Immune organs and circulating immune cells express several (neuro)transmitter systems that can be involved in regulating their activity. The expression of neurotransmitter systems by different subsets of circulating immune cells was reviewed. The regulatory role of different families of (neuro)transmitters (catecholamines, 5-hydroxytryptamine, acetylcholine, histamine and neuropeptides) in modulating levels of immune mediators or specific immune responses is discussed.

  10. The Immune System: Basis of so much Health and Disease: 2. Innate Immunity.

    PubMed

    Scully, Crispian; Georgakopoulou, Eleni A; Hassona, Yazan

    2017-03-01

    The immune system is the body’s primary defence mechanism against infections, and disturbances in the system can cause disease if the system fails in defence functions (in immunocompromised people), or if the activity is detrimental to the host (as in auto-immune and auto-inflammatory states). A healthy immune system is also essential to normal health of dental and oral tissues. This series presents the basics for the understanding of the immune system, this article covering innate immunity. Clinical relevance: Modern dental clinicians need a basic understanding of the immune system as it underlies health and disease.

  11. The Immune System: Basis of so much Health and Disease: 3. Adaptive Immunity.

    PubMed

    Scully, Crispian; Georgakopoulou, Eleni A; Hassona, Yazan

    2017-04-01

    The immune system is the body’s primary defence mechanism against infections, and disturbances in the system can cause disease if the system fails in defence functions (in immunocompromised people), or if the activity is detrimental to the host (as in auto-immune and auto-inflammatory states). A healthy immune system is also essential to normal health of dental and oral tissues. This series presents the basics for the understanding of the immune system; this article covers adaptive immunity. Clinical relevance: Dental clinicians need a basic understanding of the immune system as it underlies health and disease.

  12. Pan-Canadian assessment of pandemic immunization data collection: study methodology

    PubMed Central

    2010-01-01

    Background The collection of individual-level pandemic (H1N1) 2009 influenza immunization data was considered important to facilitate optimal vaccine delivery and accurate assessment of vaccine coverage. These data are also critical for research aimed at evaluating the new vaccine's safety and effectiveness. Systems used to collect immunization data include manual approaches in which data are collected and retained on paper, electronic systems in which data are captured on computer at the point of vaccination and hybrid systems which are comprised of both computerized and manual data collection components. This study's objective was to compare the efficiencies and perceptions of data collection methods employed during Canada's pandemic (H1N1) 2009 influenza vaccination campaign. Methods/Design A pan-Canadian observational study was conducted in a convenience sample of public health clinics and healthcare institutions during the H1N1 vaccination campaign in the fall of 2009. The study design consisted of three stages: Stage 1 involved passive observation of the site's layout, processes and client flow; Stage 2 entailed timing site staff on 20 clients through five core immunization tasks: i) client registration, ii) medical history collection, iii) medical history review, iv) vaccine administration record keeping and v) preparation of proof of vaccine administration for the client; in Stage 3, site staff completed a questionnaire regarding perceived usability of the site's data collection approach. Before the national study began, a pilot study was conducted in three seasonal influenza vaccination sites in Ontario, to both test that the proposed methodology was logistically feasible and to determine inter-rater reliability in the measurements of the research staff. Comparative analyses will be conducted across the range of data collection methods with respect to time required to collect immunization data, number and type of individual-level data elements collected, and clinic staff perceptions of the usability of the method employed at their site, using analysis of variance (ANOVA). Discussion Various data collection methods were employed at immunization sites across Canada during the pandemic (H1N1) 2009 influenza vaccination campaign. Our comparison of methods can facilitate planning an efficient, coordinated approach for collecting immunization data in future influenza seasons. PMID:20624270

  13. Pan-Canadian assessment of pandemic immunization data collection: study methodology.

    PubMed

    Pereira, Jennifer A; Quach, Susan; Heidebrecht, Christine; Foisy, Julie; Quan, Sherman; Finkelstein, Michael; Sikora, Christopher A; Bettinger, Julie A; Buckeridge, David L; McCarthy, Anne; Deeks, Shelley; Kwong, Jeffrey C

    2010-06-08

    The collection of individual-level pandemic (H1N1) 2009 influenza immunization data was considered important to facilitate optimal vaccine delivery and accurate assessment of vaccine coverage. These data are also critical for research aimed at evaluating the new vaccine's safety and effectiveness. Systems used to collect immunization data include manual approaches in which data are collected and retained on paper, electronic systems in which data are captured on computer at the point of vaccination and hybrid systems which are comprised of both computerized and manual data collection components. This study's objective was to compare the efficiencies and perceptions of data collection methods employed during Canada's pandemic (H1N1) 2009 influenza vaccination campaign. A pan-Canadian observational study was conducted in a convenience sample of public health clinics and healthcare institutions during the H1N1 vaccination campaign in the fall of 2009. The study design consisted of three stages: Stage 1 involved passive observation of the site's layout, processes and client flow; Stage 2 entailed timing site staff on 20 clients through five core immunization tasks: i) client registration, ii) medical history collection, iii) medical history review, iv) vaccine administration record keeping and v) preparation of proof of vaccine administration for the client; in Stage 3, site staff completed a questionnaire regarding perceived usability of the site's data collection approach. Before the national study began, a pilot study was conducted in three seasonal influenza vaccination sites in Ontario, to both test that the proposed methodology was logistically feasible and to determine inter-rater reliability in the measurements of the research staff. Comparative analyses will be conducted across the range of data collection methods with respect to time required to collect immunization data, number and type of individual-level data elements collected, and clinic staff perceptions of the usability of the method employed at their site, using analysis of variance (ANOVA). Various data collection methods were employed at immunization sites across Canada during the pandemic (H1N1) 2009 influenza vaccination campaign. Our comparison of methods can facilitate planning an efficient, coordinated approach for collecting immunization data in future influenza seasons.

  14. A machine-learned analysis of human gene polymorphisms modulating persisting pain points at major roles of neuroimmune processes.

    PubMed

    Kringel, Dario; Lippmann, Catharina; Parnham, Michael J; Kalso, Eija; Ultsch, Alfred; Lötsch, Jörn

    2018-06-19

    Human genetic research has implicated functional variants of more than one hundred genes in the modulation of persisting pain. Artificial intelligence and machine learning techniques may combine this knowledge with results of genetic research gathered in any context, which permits the identification of the key biological processes involved in chronic sensitization to pain. Based on published evidence, a set of 110 genes carrying variants reported to be associated with modulation of the clinical phenotype of persisting pain in eight different clinical settings was submitted to unsupervised machine-learning aimed at functional clustering. Subsequently, a mathematically supported subset of genes, comprising those most consistently involved in persisting pain, was analyzed by means of computational functional genomics in the Gene Ontology knowledgebase. Clustering of genes with evidence for a modulation of persisting pain elucidated a functionally heterogeneous set. The situation cleared when the focus was narrowed to a genetic modulation consistently observed throughout several clinical settings. On this basis, two groups of biological processes, the immune system and nitric oxide signaling, emerged as major players in sensitization to persisting pain, which is biologically highly plausible and in agreement with other lines of pain research. The present computational functional genomics-based approach provided a computational systems-biology perspective on chronic sensitization to pain. Human genetic control of persisting pain points to the immune system as a source of potential future targets for drugs directed against persisting pain. Contemporary machine-learned methods provide innovative approaches to knowledge discovery from previous evidence. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Bioinspired Principles for Large-Scale Networked Sensor Systems: An Overview

    PubMed Central

    Jacobsen, Rune Hylsberg; Zhang, Qi; Toftegaard, Thomas Skjødeberg

    2011-01-01

    Biology has often been used as a source of inspiration in computer science and engineering. Bioinspired principles have found their way into network node design and research due to the appealing analogies between biological systems and large networks of small sensors. This paper provides an overview of bioinspired principles and methods such as swarm intelligence, natural time synchronization, artificial immune system and intercellular information exchange applicable for sensor network design. Bioinspired principles and methods are discussed in the context of routing, clustering, time synchronization, optimal node deployment, localization and security and privacy. PMID:22163841

  16. How do plants achieve immunity? Defence without specialized immune cells.

    PubMed

    Spoel, Steven H; Dong, Xinnian

    2012-01-25

    Vertebrates have evolved a sophisticated adaptive immune system that relies on an almost infinite diversity of antigen receptors that are clonally expressed by specialized immune cells that roam the circulatory system. These immune cells provide vertebrates with extraordinary antigen-specific immune capacity and memory, while minimizing self-reactivity. Plants, however, lack specialized mobile immune cells. Instead, every plant cell is thought to be capable of launching an effective immune response. So how do plants achieve specific, self-tolerant immunity and establish immune memory? Recent developments point towards a multilayered plant innate immune system comprised of self-surveillance, systemic signalling and chromosomal changes that together establish effective immunity.

  17. Immune cell populations within the duodenal mucosa of dogs with enteropathies.

    PubMed

    German, A J; Hall, E J; Day, M J

    2001-01-01

    The mucosal immune system may play a critical role in the pathogenesis of small intestinal enteropathies. The aim of the current study was to assess mucosal immune cell populations in dogs with inflammatory bowel disease (IBD), idiopathic antibiotic-responsive diarrhea (ARD), and adverse reactions to food (FR). Endoscopic biopsies were performed of the duodenum of dogs with these conditions and from a group of dogs without enteric disease. Additional control samples were collected after death from other dogs that did not have evidence of enteric disease. Immunohistochemistry and computer-aided morphometry were used to assess the distribution of immune cell subsets in both lamina propria and intestinal epithelium. Compared with controls, dogs with ARD had increased numbers of lamina propria immunoglobulin (Ig) A- plasma cells and CD4+ cells. More marked alterations were noted in dogs with IBD, with significant increases in lamina propria IgG+ plasma cells, T cells (CD3+), CD4+ cells, macrophages, and neutrophils, but with reduced mast cell numbers. Increased intraepithelial CD3+ T cells were also present in the dogs with IBD, compared with controls. However, lamina propria and epithelial populations were unaltered in dogs with FR when compared with controls. The altered mucosal immune cell populations observed in dogs with ARD or IBD may reflect an underlying immunologic pathogenesis in these disorders.

  18. The application of artificial intelligence in the optimal design of mechanical systems

    NASA Astrophysics Data System (ADS)

    Poteralski, A.; Szczepanik, M.

    2016-11-01

    The paper is devoted to new computational techniques in mechanical optimization where one tries to study, model, analyze and optimize very complex phenomena, for which more precise scientific tools of the past were incapable of giving low cost and complete solution. Soft computing methods differ from conventional (hard) computing in that, unlike hard computing, they are tolerant of imprecision, uncertainty, partial truth and approximation. The paper deals with an application of the bio-inspired methods, like the evolutionary algorithms (EA), the artificial immune systems (AIS) and the particle swarm optimizers (PSO) to optimization problems. Structures considered in this work are analyzed by the finite element method (FEM), the boundary element method (BEM) and by the method of fundamental solutions (MFS). The bio-inspired methods are applied to optimize shape, topology and material properties of 2D, 3D and coupled 2D/3D structures, to optimize the termomechanical structures, to optimize parameters of composites structures modeled by the FEM, to optimize the elastic vibrating systems to identify the material constants for piezoelectric materials modeled by the BEM and to identify parameters in acoustics problem modeled by the MFS.

  19. Reverse engineering biological networks :applications in immune responses to bio-toxins.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, Anthony A.; Sinclair, Michael B.; Davidson, George S.

    Our aim is to determine the network of events, or the regulatory network, that defines an immune response to a bio-toxin. As a model system, we are studying T cell regulatory network triggered through tyrosine kinase receptor activation using a combination of pathway stimulation and time-series microarray experiments. Our approach is composed of five steps (1) microarray experiments and data error analysis, (2) data clustering, (3) data smoothing and discretization, (4) network reverse engineering, and (5) network dynamics analysis and fingerprint identification. The technological outcome of this study is a suite of experimental protocols and computational tools that reverse engineermore » regulatory networks provided gene expression data. The practical biological outcome of this work is an immune response fingerprint in terms of gene expression levels. Inferring regulatory networks from microarray data is a new field of investigation that is no more than five years old. To the best of our knowledge, this work is the first attempt that integrates experiments, error analyses, data clustering, inference, and network analysis to solve a practical problem. Our systematic approach of counting, enumeration, and sampling networks matching experimental data is new to the field of network reverse engineering. The resulting mathematical analyses and computational tools lead to new results on their own and should be useful to others who analyze and infer networks.« less

  20. Advanced systems requirements for ocean observations via microwave radiometers

    NASA Technical Reports Server (NTRS)

    Blume, H.-J. C.; Swift, C. T.; Kendall, B. M.

    1978-01-01

    A future microwave spectroradiometer operating in several frequency bands will have the capability to step or sweep frequencies on an adaptable or programmable basis. The on-board adaptable frequency shifting can make the systems immune from radio interference. Programmable frequency sweeping with on-board data inversion by high speed computers would provide for instantaneous synoptic measurements or sea surface temperature and salinity, water surface and volume pollution, ice thickness, ocean surface winds, snow depth, and soil moisture. Large structure satellites will allow an order of magnitude improvement in the present radiometric measurement spacial resolution.

  1. seq-ImmuCC: Cell-Centric View of Tissue Transcriptome Measuring Cellular Compositions of Immune Microenvironment From Mouse RNA-Seq Data.

    PubMed

    Chen, Ziyi; Quan, Lijun; Huang, Anfei; Zhao, Qiang; Yuan, Yao; Yuan, Xuye; Shen, Qin; Shang, Jingzhe; Ben, Yinyin; Qin, F Xiao-Feng; Wu, Aiping

    2018-01-01

    The RNA sequencing approach has been broadly used to provide gene-, pathway-, and network-centric analyses for various cell and tissue samples. However, thus far, rich cellular information carried in tissue samples has not been thoroughly characterized from RNA-Seq data. Therefore, it would expand our horizons to better understand the biological processes of the body by incorporating a cell-centric view of tissue transcriptome. Here, a computational model named seq-ImmuCC was developed to infer the relative proportions of 10 major immune cells in mouse tissues from RNA-Seq data. The performance of seq-ImmuCC was evaluated among multiple computational algorithms, transcriptional platforms, and simulated and experimental datasets. The test results showed its stable performance and superb consistency with experimental observations under different conditions. With seq-ImmuCC, we generated the comprehensive landscape of immune cell compositions in 27 normal mouse tissues and extracted the distinct signatures of immune cell proportion among various tissue types. Furthermore, we quantitatively characterized and compared 18 different types of mouse tumor tissues of distinct cell origins with their immune cell compositions, which provided a comprehensive and informative measurement for the immune microenvironment inside tumor tissues. The online server of seq-ImmuCC are freely available at http://wap-lab.org:3200/immune/.

  2. The twilight of immunity: emerging concepts in aging of the immune system.

    PubMed

    Nikolich-Žugich, Janko

    2018-01-01

    Immunosenescence is a series of age-related changes that affect the immune system and, with time, lead to increased vulnerability to infectious diseases. This Review addresses recent developments in the understanding of age-related changes that affect key components of immunity, including the effect of aging on cells of the (mostly adaptive) immune system, on soluble molecules that guide the maintenance and function of the immune system and on lymphoid organs that coordinate both the maintenance of lymphocytes and the initiation of immune responses. I further address the effect of the metagenome and exposome as key modifiers of immune-system aging and discuss a conceptual framework in which age-related changes in immunity might also affect the basic rules by which the immune system operates.

  3. Catch and Release of Cytokines Mediated by Tumor Phosphatidylserine Converts Transient Exposure into Long-Lived Inflammation.

    PubMed

    Oyler-Yaniv, Jennifer; Oyler-Yaniv, Alon; Shakiba, Mojdeh; Min, Nina K; Chen, Ying-Han; Cheng, Sheue-Yann; Krichevsky, Oleg; Altan-Bonnet, Nihal; Altan-Bonnet, Grégoire

    2017-06-01

    Immune cells constantly survey the host for pathogens or tumors and secrete cytokines to alert surrounding cells of these threats. In vivo, activated immune cells secrete cytokines for several hours, yet an acute immune reaction occurs over days. Given these divergent timescales, we addressed how cytokine-responsive cells translate brief cytokine exposure into phenotypic changes that persist over long timescales. We studied melanoma cell responses to transient exposure to the cytokine interferon γ (IFNγ) by combining a systems-scale analysis of gene expression dynamics with computational modeling and experiments. We discovered that IFNγ is captured by phosphatidylserine (PS) on the surface of viable cells both in vitro and in vivo then slowly released to drive long-term transcription of cytokine-response genes. This mechanism introduces an additional function for PS in dynamically regulating inflammation across diverse cancer and primary cell types and has potential to usher in new immunotherapies targeting PS and inflammatory pathways. Published by Elsevier Inc.

  4. A Service Oriented Architecture Approach to Achieve Interoperability between Immunization Information Systems in Iran

    PubMed Central

    Hosseini, Masoud; Ahmadi, Maryam; Dixon, Brian E.

    2014-01-01

    Clinical decision support (CDS) systems can support vaccine forecasting and immunization reminders; however, immunization decision-making requires data from fragmented, independent systems. Interoperability and accurate data exchange between immunization information systems (IIS) is an essential factor to utilize Immunization CDS systems. Service oriented architecture (SOA) and Health Level 7 (HL7) are dominant standards for web-based exchange of clinical information. We implemented a system based on SOA and HL7 v3 to support immunization CDS in Iran. We evaluated system performance by exchanging 1500 immunization records for roughly 400 infants between two IISs. System turnaround time is less than a minute for synchronous operation calls and the retrieved immunization history of infants were always identical in different systems. CDS generated reports were accordant to immunization guidelines and the calculations for next visit times were accurate. Interoperability is rare or nonexistent between IIS. Since inter-state data exchange is rare in United States, this approach could be a good prototype to achieve interoperability of immunization information. PMID:25954452

  5. A Service Oriented Architecture Approach to Achieve Interoperability between Immunization Information Systems in Iran.

    PubMed

    Hosseini, Masoud; Ahmadi, Maryam; Dixon, Brian E

    2014-01-01

    Clinical decision support (CDS) systems can support vaccine forecasting and immunization reminders; however, immunization decision-making requires data from fragmented, independent systems. Interoperability and accurate data exchange between immunization information systems (IIS) is an essential factor to utilize Immunization CDS systems. Service oriented architecture (SOA) and Health Level 7 (HL7) are dominant standards for web-based exchange of clinical information. We implemented a system based on SOA and HL7 v3 to support immunization CDS in Iran. We evaluated system performance by exchanging 1500 immunization records for roughly 400 infants between two IISs. System turnaround time is less than a minute for synchronous operation calls and the retrieved immunization history of infants were always identical in different systems. CDS generated reports were accordant to immunization guidelines and the calculations for next visit times were accurate. Interoperability is rare or nonexistent between IIS. Since inter-state data exchange is rare in United States, this approach could be a good prototype to achieve interoperability of immunization information.

  6. Chronic infection and the origin of adaptive immune system.

    PubMed

    Usharauli, David

    2010-08-01

    It has been speculated that the rise of the adaptive immune system in jawed vertebrates some 400 million years ago gave them a superior protection to detect and defend against pathogens that became more elusive and/or virulent to the host that had only innate immune system. First, this line of thought implies that adaptive immune system was a new, more sophisticated layer of host defense that operated independently of the innate immune system. Second, the natural consequence of this scenario would be that pathogens would have exercised so strong an evolutionary pressure that eventually no host could have afforded not to have an adaptive immune system. Neither of these arguments is supported by the facts. First, new experimental evidence has firmly established that operation of adaptive immune system is critically dependent on the ability of the innate immune system to detect invader-pathogens and second, the absolute majority of animal kingdom survives just fine with only an innate immune system. Thus, these data raise the dilemma: If innate immune system was sufficient to detect and protect against pathogens, why then did adaptive immune system develop in the first place? In contrast to the innate immune system, the adaptive immune system has one important advantage, precision. By precision I mean the ability of the defense system to detect and remove the target, for example, infected cells, without causing unwanted bystander damage of surrounding tissue. While the target precision per se is not important for short-term immune response, it becomes a critical factor when the immune response is long-lasting, as during chronic infection. In this paper I would like to propose new, "toxic index" hypothesis where I argue that the need to reduce the collateral damage to the tissue during chronic infection(s) was the evolutionary pressure that led to the development of the adaptive immune system. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Will Systems Biology Deliver Its Promise and Contribute to the Development of New or Improved Vaccines? What Really Constitutes the Study of "Systems Biology" and How Might Such an Approach Facilitate Vaccine Design.

    PubMed

    Germain, Ronald N

    2017-10-16

    A dichotomy exists in the field of vaccinology about the promise versus the hype associated with application of "systems biology" approaches to rational vaccine design. Some feel it is the only way to efficiently uncover currently unknown parameters controlling desired immune responses or discover what elements actually mediate these responses. Others feel that traditional experimental, often reductionist, methods for incrementally unraveling complex biology provide a more solid way forward, and that "systems" approaches are costly ways to collect data without gaining true insight. Here I argue that both views are inaccurate. This is largely because of confusion about what can be gained from classical experimentation versus statistical analysis of large data sets (bioinformatics) versus methods that quantitatively explain emergent properties of complex assemblies of biological components, with the latter reflecting what was previously called "physiology." Reductionist studies will remain essential for generating detailed insight into the functional attributes of specific elements of biological systems, but such analyses lack the power to provide a quantitative and predictive understanding of global system behavior. But by employing (1) large-scale screening methods for discovery of unknown components and connections in the immune system ( omics ), (2) statistical analysis of large data sets ( bioinformatics ), and (3) the capacity of quantitative computational methods to translate these individual components and connections into models of emergent behavior ( systems biology ), we will be able to better understand how the overall immune system functions and to determine with greater precision how to manipulate it to produce desired protective responses. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  8. EpiSweep: Computationally Driven Reengineering of Therapeutic Proteins to Reduce Immunogenicity While Maintaining Function.

    PubMed

    Choi, Yoonjoo; Verma, Deeptak; Griswold, Karl E; Bailey-Kellogg, Chris

    2017-01-01

    Therapeutic proteins are yielding ever more advanced and efficacious new drugs, but the biological origins of these highly effective therapeutics render them subject to immune surveillance within the patient's body. When recognized by the immune system as a foreign agent, protein drugs elicit a coordinated response that can manifest a range of clinical complications including rapid drug clearance, loss of functionality and efficacy, delayed infusion-like allergic reactions, more serious anaphylactic shock, and even induced auto-immunity. It is thus often necessary to deimmunize an exogenous protein in order to enable its clinical application; critically, the deimmunization process must also maintain the desired therapeutic activity.To meet the growing need for effective, efficient, and broadly applicable protein deimmunization technologies, we have developed the EpiSweep suite of protein design algorithms. EpiSweep seamlessly integrates computational prediction of immunogenic T cell epitopes with sequence- or structure-based assessment of the impacts of mutations on protein stability and function, in order to select combinations of mutations that make Pareto optimal trade-offs between the competing goals of low immunogenicity and high-level function. The methods are applicable both to the design of individual functionally deimmunized variants as well as the design of combinatorial libraries enriched in functionally deimmunized variants. After validating EpiSweep in a series of retrospective case studies providing comparisons to conventional approaches to T cell epitope deletion, we have experimentally demonstrated it to be highly effective in prospective application to deimmunization of a number of different therapeutic candidates. We conclude that our broadly applicable computational protein design algorithms guide the engineer towards the most promising deimmunized therapeutic candidates, and thereby have the potential to accelerate development of new protein drugs by shortening time frames and improving hit rates.

  9. EpiSweep: Computationally-driven Reengineering of Therapeutic Proteins to Reduce immunogenicity while Maintaining Function

    PubMed Central

    Choi, Yoonjoo; Verma, Deeptak; Griswold, Karl E.; Bailey-Kellogg, Chris

    2016-01-01

    Therapeutic proteins are yielding ever more advanced and efficacious new drugs, but the biological origins of these highly effective therapeutics renders them subject to immune surveillance within the patient’s body. When recognized by the immune system as a foreign agent, protein drugs elicit a coordinated response that can manifest a range of clinical complications including rapid drug clearance, loss of functionality and efficacy, delayed infusion-like allergic reactions, more serious anaphylactic shock, and even induced auto-immunity. It is thus often necessary to deimmunize an exogenous protein in order to enable its clinical application; critically, the deimmunization process must also maintain the desired therapeutic activity. To meet the growing need for effective, efficient, and broadly applicable protein deimmunization technologies, we have developed the EpiSweep suite of protein design algorithms. EpiSweep seamlessly integrates computational prediction of immunogenic T cell epitopes with sequence- or structure- based assessment of the impacts of mutations on protein stability and function, in order to select combinations of mutations that make Pareto optimal trade-offs between the competing goals of low immunogenicity and high-level function. The methods are applicable both to the design of individual functionally deimmunized variants as well as the design of combinatorial libraries enriched in functionally deimmunized variants. After validating EpiSweep in a series of retrospective case studies providing comparisons to conventional approaches to T cell epitope deletion, we have experimentally demonstrated it to be highly effective in prospective application to deimmunization of a number of different therapeutic candidates. We conclude that our broadly applicable computational protein design algorithms guide the engineer towards the most promising deimmunized therapeutic candidates, and thereby have the potential to accelerate development of new protein drugs by shortening time frames and improving hit rates. PMID:27914063

  10. The Immune System: Basis of so much Health and Disease: 4. Immunocytes.

    PubMed

    Scully, Crispian; Georgakopoulou, Eleni A; Hassona, Yazan

    2017-05-01

    The immune system is the body’s primary defence mechanism against infections, and disturbances in the system can cause disease if the system fails in defence functions (in immunocompromised people), or if the activity is detrimental to the host (as in auto-immune and auto-inflammatory states). A healthy immune system is also essential to normal health of dental and oral tissues. This series presents the basics for the understanding of the immune system, this article covers cells of the immune system (immunocytes). Clinical relevance: Modern dental clinicians need a basic understanding of the immune system as it underlies health and disease.

  11. Approaches Mediating Oxytocin Regulation of the Immune System.

    PubMed

    Li, Tong; Wang, Ping; Wang, Stephani C; Wang, Yu-Feng

    2016-01-01

    The hypothalamic neuroendocrine system is mainly composed of the neural structures regulating hormone secretion from the pituitary gland and has been considered as the higher regulatory center of the immune system. Recently, the hypothalamo-neurohypophysial system (HNS) emerged as an important component of neuroendocrine-immune network, wherein the oxytocin (OT)-secreting system (OSS) plays an essential role. The OSS, consisting of OT neurons in the supraoptic nucleus, paraventricular nucleus, their several accessory nuclei and associated structures, can integrate neural, endocrine, metabolic, and immune information and plays a pivotal role in the development and functions of the immune system. The OSS can promote the development of thymus and bone marrow, perform immune surveillance, strengthen immune defense, and maintain immune homeostasis. Correspondingly, OT can inhibit inflammation, exert antibiotic-like effect, promote wound healing and regeneration, and suppress stress-associated immune disorders. In this process, the OSS can release OT to act on immune system directly by activating OT receptors or through modulating activities of other hypothalamic-pituitary-immune axes and autonomic nervous system indirectly. However, our understandings of the role of the OSS in neuroendocrine regulation of immune system are largely incomplete, particularly its relationship with other hypothalamic-pituitary-immune axes and the vasopressin-secreting system that coexists with the OSS in the HNS. In addition, it remains unclear about the relationship between the OSS and peripherally produced OT in immune regulation, particularly intrathymic OT that is known to elicit central immunological self-tolerance of T-cells to hypophysial hormones. In this work, we provide a brief review of current knowledge of the features of OSS regulation of the immune system and of potential approaches that mediate OSS coordination of the activities of entire neuroendocrine-immune network.

  12. Neuroimmune Interactions: From the Brain to the Immune System and Vice Versa.

    PubMed

    Dantzer, Robert

    2018-01-01

    Because of the compartmentalization of disciplines that shaped the academic landscape of biology and biomedical sciences in the past, physiological systems have long been studied in isolation from each other. This has particularly been the case for the immune system. As a consequence of its ties with pathology and microbiology, immunology as a discipline has largely grown independently of physiology. Accordingly, it has taken a long time for immunologists to accept the concept that the immune system is not self-regulated but functions in close association with the nervous system. These associations are present at different levels of organization. At the local level, there is clear evidence for the production and use of immune factors by the central nervous system and for the production and use of neuroendocrine mediators by the immune system. Short-range interactions between immune cells and peripheral nerve endings innervating immune organs allow the immune system to recruit local neuronal elements for fine tuning of the immune response. Reciprocally, immune cells and mediators play a regulatory role in the nervous system and participate in the elimination and plasticity of synapses during development as well as in synaptic plasticity at adulthood. At the whole organism level, long-range interactions between immune cells and the central nervous system allow the immune system to engage the rest of the body in the fight against infection from pathogenic microorganisms and permit the nervous system to regulate immune functioning. Alterations in communication pathways between the immune system and the nervous system can account for many pathological conditions that were initially attributed to strict organ dysfunction. This applies in particular to psychiatric disorders and several immune-mediated diseases. This review will show how our understanding of this balance between long-range and short-range interactions between the immune system and the central nervous system has evolved over time, since the first demonstrations of immune influences on brain functions. The necessary complementarity of these two modes of communication will then be discussed. Finally, a few examples will illustrate how dysfunction in these communication pathways results in what was formerly considered in psychiatry and immunology to be strict organ pathologies.

  13. Oxygen Modulates the Effectiveness of Granuloma Mediated Host Response to Mycobacterium tuberculosis: A Multiscale Computational Biology Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sershen, Cheryl L.; Plimpton, Steven J.; May, Elebeoba E.

    Mycobacterium tuberculosis associated granuloma formation can be viewed as a structural immune response that can contain and halt the spread of the pathogen. In several mammalian hosts, including non-human primates, Mtb granulomas are often hypoxic, although this has not been observed in wild type murine infection models. While a presumed consequence, the structural contribution of the granuloma to oxygen limitation and the concomitant impact on Mtb metabolic viability and persistence remains to be fully explored. We develop a multiscale computational model to test to what extent in vivo Mtb granulomas become hypoxic, and investigate the effects of hypoxia on hostmore » immune response efficacy and mycobacterial persistence. Our study integrates a physiological model of oxygen dynamics in the extracellular space of alveolar tissue, an agent-based model of cellular immune response, and a systems biology-based model of Mtb metabolic dynamics. Our theoretical studies suggest that the dynamics of granuloma organization mediates oxygen availability and illustrates the immunological contribution of this structural host response to infection outcome. Furthermore, our integrated model demonstrates the link between structural immune response and mechanistic drivers influencing Mtbs adaptation to its changing microenvironment and the qualitative infection outcome scenarios of clearance, containment, dissemination, and a newly observed theoretical outcome of transient containment. We observed hypoxic regions in the containment granuloma similar in size to granulomas found in mammalian in vivo models of Mtb infection. In the case of the containment outcome, our model uniquely demonstrates that immune response mediated hypoxic conditions help foster the shift down of bacteria through two stages of adaptation similar to thein vitro non-replicating persistence (NRP) observed in the Wayne model of Mtb dormancy. Lastly, the adaptation in part contributes to the ability of Mtb to remain dormant for years after initial infection.« less

  14. Oxygen Modulates the Effectiveness of Granuloma Mediated Host Response to Mycobacterium tuberculosis: A Multiscale Computational Biology Approach

    DOE PAGES

    Sershen, Cheryl L.; Plimpton, Steven J.; May, Elebeoba E.

    2016-02-15

    Mycobacterium tuberculosis associated granuloma formation can be viewed as a structural immune response that can contain and halt the spread of the pathogen. In several mammalian hosts, including non-human primates, Mtb granulomas are often hypoxic, although this has not been observed in wild type murine infection models. While a presumed consequence, the structural contribution of the granuloma to oxygen limitation and the concomitant impact on Mtb metabolic viability and persistence remains to be fully explored. We develop a multiscale computational model to test to what extent in vivo Mtb granulomas become hypoxic, and investigate the effects of hypoxia on hostmore » immune response efficacy and mycobacterial persistence. Our study integrates a physiological model of oxygen dynamics in the extracellular space of alveolar tissue, an agent-based model of cellular immune response, and a systems biology-based model of Mtb metabolic dynamics. Our theoretical studies suggest that the dynamics of granuloma organization mediates oxygen availability and illustrates the immunological contribution of this structural host response to infection outcome. Furthermore, our integrated model demonstrates the link between structural immune response and mechanistic drivers influencing Mtbs adaptation to its changing microenvironment and the qualitative infection outcome scenarios of clearance, containment, dissemination, and a newly observed theoretical outcome of transient containment. We observed hypoxic regions in the containment granuloma similar in size to granulomas found in mammalian in vivo models of Mtb infection. In the case of the containment outcome, our model uniquely demonstrates that immune response mediated hypoxic conditions help foster the shift down of bacteria through two stages of adaptation similar to thein vitro non-replicating persistence (NRP) observed in the Wayne model of Mtb dormancy. Lastly, the adaptation in part contributes to the ability of Mtb to remain dormant for years after initial infection.« less

  15. Modeling of biological intelligence for SCM system optimization.

    PubMed

    Chen, Shengyong; Zheng, Yujun; Cattani, Carlo; Wang, Wanliang

    2012-01-01

    This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms.

  16. Modeling of Biological Intelligence for SCM System Optimization

    PubMed Central

    Chen, Shengyong; Zheng, Yujun; Cattani, Carlo; Wang, Wanliang

    2012-01-01

    This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms. PMID:22162724

  17. Evaluation of Mucosal and Systemic Immune Responses Elicited by GPI-0100- Adjuvanted Influenza Vaccine Delivered by Different Immunization Strategies

    PubMed Central

    Liu, Heng; Patil, Harshad P.; de Vries-Idema, Jacqueline; Wilschut, Jan; Huckriede, Anke

    2013-01-01

    Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery often results in poor systemic immunity. In order to find an immunization strategy which satisfies the need for induction of both mucosal and systemic immunity, we compared local and systemic immune responses elicited by two mucosal immunizations, given either by the intranasal (IN) or the intrapulmonary (IPL) route, with responses elicited by a mucosal prime followed by a systemic boost immunization. The study was conducted in BALB/c mice and the vaccine formulation was an influenza subunit vaccine supplemented with GPI-0100, a saponin-derived adjuvant. While optimal mucosal antibody titers were obtained after two intrapulmonary vaccinations, optimal systemic antibody responses were achieved by intranasal prime followed by intramuscular boost. The latter strategy also resulted in the best T cell response, yet, it was ineffective in inducing nose or lung IgA. Successful induction of secretory IgA, IgG and T cell responses was only achieved with prime-boost strategies involving intrapulmonary immunization and was optimal when both immunizations were given via the intrapulmonary route. Our results underline that immunization via the lungs is particularly effective for priming as well as boosting of local and systemic immune responses. PMID:23936066

  18. Systems vaccinology: Probing humanity’s diverse immune systems with vaccines

    PubMed Central

    Pulendran, Bali

    2014-01-01

    Homo sapiens are genetically diverse, but dramatic demographic and socioeconomic changes during the past century have created further diversification with respect to age, nutritional status, and the incidence of associated chronic inflammatory disorders and chronic infections. These shifting demographics pose new challenges for vaccination, as emerging evidence suggests that age, the metabolic state, and chronic infections can exert major influences on the immune system. Thus, a key public health challenge is learning how to reprogram suboptimal immune systems to induce effective vaccine immunity. Recent advances have applied systems biological analysis to define molecular signatures induced early after vaccination that correlate with and predict the later adaptive immune responses in humans. Such “systems vaccinology” approaches offer an integrated picture of the molecular networks driving vaccine immunity, and are beginning to yield novel insights about the immune system. Here we discuss the promise of systems vaccinology in probing humanity’s diverse immune systems, and in delineating the impact of genes, the environment, and the microbiome on protective immunity induced by vaccination. Such insights will be critical in reengineering suboptimal immune systems in immunocompromised populations. PMID:25136102

  19. Systems vaccinology: probing humanity's diverse immune systems with vaccines.

    PubMed

    Pulendran, Bali

    2014-08-26

    Homo sapiens are genetically diverse, but dramatic demographic and socioeconomic changes during the past century have created further diversification with respect to age, nutritional status, and the incidence of associated chronic inflammatory disorders and chronic infections. These shifting demographics pose new challenges for vaccination, as emerging evidence suggests that age, the metabolic state, and chronic infections can exert major influences on the immune system. Thus, a key public health challenge is learning how to reprogram suboptimal immune systems to induce effective vaccine immunity. Recent advances have applied systems biological analysis to define molecular signatures induced early after vaccination that correlate with and predict the later adaptive immune responses in humans. Such "systems vaccinology" approaches offer an integrated picture of the molecular networks driving vaccine immunity, and are beginning to yield novel insights about the immune system. Here we discuss the promise of systems vaccinology in probing humanity's diverse immune systems, and in delineating the impact of genes, the environment, and the microbiome on protective immunity induced by vaccination. Such insights will be critical in reengineering suboptimal immune systems in immunocompromised populations.

  20. A comprehensive overview of the applications of artificial life.

    PubMed

    Kim, Kyung-Joong; Cho, Sung-Bae

    2006-01-01

    We review the applications of artificial life (ALife), the creation of synthetic life on computers to study, simulate, and understand living systems. The definition and features of ALife are shown by application studies. ALife application fields treated include robot control, robot manufacturing, practical robots, computer graphics, natural phenomenon modeling, entertainment, games, music, economics, Internet, information processing, industrial design, simulation software, electronics, security, data mining, and telecommunications. In order to show the status of ALife application research, this review primarily features a survey of about 180 ALife application articles rather than a selected representation of a few articles. Evolutionary computation is the most popular method for designing such applications, but recently swarm intelligence, artificial immune network, and agent-based modeling have also produced results. Applications were initially restricted to the robotics and computer graphics, but presently, many different applications in engineering areas are of interest.

  1. Mucosal Vaccination Overcomes the Barrier to Recombinant Vaccinia Immunization Caused by Preexisting Poxvirus Immunity

    NASA Astrophysics Data System (ADS)

    Belyakov, Igor M.; Moss, Bernard; Strober, Warren; Berzofsky, Jay A.

    1999-04-01

    Overcoming preexisting immunity to vaccinia virus in the adult population is a key requirement for development of otherwise potent recombinant vaccinia vaccines. Based on our observation that s.c. immunization with vaccinia induces cellular and antibody immunity to vaccinia only in systemic lymphoid tissue and not in mucosal sites, we hypothesized that the mucosal immune system remains naive to vaccinia and therefore amenable to immunization with recombinant vaccinia vectors despite earlier vaccinia exposure. We show that mucosal immunization of vaccinia-immune BALB/c mice with recombinant vaccinia expressing HIV gp160 induced specific serum antibody and strong HIV-specific cytotoxic T lymphocyte responses. These responses occurred not only in mucosal but also in systemic lymphoid tissue, whereas systemic immunization was ineffective under these circumstances. In this context, intrarectal immunization was more effective than intranasal immunization. Boosting with a second dose of recombinant vaccinia was also more effective via the mucosal route. The systemic HIV-specific cytotoxic T lymphocyte response was enhanced by coadministration of IL-12 at the mucosal site. These results also demonstrate the independent compartmentalization of the mucosal versus systemic immune systems and the asymmetric trafficking of lymphocytes between them. This approach to circumvent previous vaccinia immunity may be useful for induction of protective immunity against infectious diseases and cancer in the sizable populations with preexisting immunity to vaccinia from smallpox vaccination.

  2. Systems Biology of the Immune Response to Live and Inactivated Dengue Virus Vaccines

    DTIC Science & Technology

    2017-09-01

    Financial support;  In-kind support (e.g., partner makes software, computers , equipment, etc., available to project staff);  Facilities (e.g...reprints of manuscripts and abstracts, a curriculum vitae, patent applications, study questionnaires, and surveys , etc. Organization name: Walter...memory B-cells and the isotype usage of the antibody response. 9. A project-specific SQL database has been set up on a server based at URI. Major

  3. International Conference on Artificial Immune Systems (1st) ICARIS 2002, held on 9, 10, and 11 September 2002

    DTIC Science & Technology

    2002-03-07

    Michalewicz, Eds., Evolutionary Computation 1: Basic Algorithms and Operators, Institute of Physics, Bristol (UK), 2000. [3] David A. Van Veldhuizen ...2000. [4] Carlos A. Coello Coello, David A. Van Veldhuizen , and Gary B. Lamont, Evolutionary Algorithms for Solving Multi-Objective Problems, Kluwer...Academic Publishers, 233 Spring St., New York, NY 10013, 2002. [5] David A. Van Veldhuizen , Multiobjective Evolution- ary Algorithms: Classifications

  4. The Role of the Immune System Beyond the Fight Against Infection.

    PubMed

    Sattler, Susanne

    2017-01-01

    The immune system was identified as a protective factor during infectious diseases over a century ago. Current definitions and textbook information are still largely influenced by these early observations, and the immune system is commonly presented as a defence machinery. However, host defence is only one manifestation of the immune system's overall function in the maintenance of tissue homeostasis and system integrity. In fact, the immune system is integral part of fundamental physiological processes such as development, reproduction and wound healing, and a close crosstalk between the immune system and other body systems such as metabolism, the central nervous system and the cardiovascular system is evident. Research and medical professionals in an expanding range of areas start to recognise the implications of the immune system in their respective fields.This chapter provides a brief historical perspective on how our understanding of the immune system has evolved from a defence system to an overarching surveillance machinery to maintain tissue integrity. Current perspectives on the non-defence functions of classical immune cells and factors will also be discussed.

  5. Is Your Gut Conscious? Is an Extraterrestrial?

    NASA Astrophysics Data System (ADS)

    Vos Post, Jonathan

    2011-10-01

    This paper speculates on questions intending to be taken scientifically rather than metaphysically: "Can the human gut (enteric nervous system) be conscious?"; "Can your immune system think?"; "Could consciousness be coded in DNA?"; "What do we mean when asserting that an Extraterrestrial is Thinking, or is Conscious? We explore through reference to theory, experiment, and computational models by Christof Koch (Caltech), Barbara Wold (Caltech), and Stuart Kauffman (University of Calgary, Tampere University of Technology, Santa Fe Institute). We use a tentative new definition of thinking, designed to be applicable for humans, cetecea, corvids, artificial intelligences, and extraterrestrial intelligences of any substrate (i.e. Life as We Do Not Know It): "Thinking is the occurrence, transformation, and storage in a mind or brain (or simulation thereof) of information-bearing structures (representations) of one kind or another, such as thoughts, concept, percepts, ideas, impressions, notions, rules, schemas, images, phantasms, or subpersonal representations." We use the framework for Consciousness developed by Francis Crick and Christof Koch. We try to describe scientific goals, but discuss Philosophy sufficient to avoid naïve philosophical category errors (thus are careful not to conflate thought, consciousness, and language) Penrose, Hameroff, and Kauffman speculate (differently) that CNS consciousness is a macroscopic quantum phenomenon. Might intestinal, immune system, or genetic regulatory network dynamics exhibit emergent cooperative quantum effects? The speculations are in the context of Evolution by Natural Selection, presumed to operate throughout the Cosmos, and recent work in the foundations of Computational Biology and Quantum Mechanics.

  6. Review of the systems biology of the immune system using agent-based models.

    PubMed

    Shinde, Snehal B; Kurhekar, Manish P

    2018-06-01

    The immune system is an inherent protection system in vertebrate animals including human beings that exhibit properties such as self-organisation, self-adaptation, learning, and recognition. It interacts with the other allied systems such as the gut and lymph nodes. There is a need for immune system modelling to know about its complex internal mechanism, to understand how it maintains the homoeostasis, and how it interacts with the other systems. There are two types of modelling techniques used for the simulation of features of the immune system: equation-based modelling (EBM) and agent-based modelling. Owing to certain shortcomings of the EBM, agent-based modelling techniques are being widely used. This technique provides various predictions for disease causes and treatments; it also helps in hypothesis verification. This study presents a review of agent-based modelling of the immune system and its interactions with the gut and lymph nodes. The authors also review the modelling of immune system interactions during tuberculosis and cancer. In addition, they also outline the future research directions for the immune system simulation through agent-based techniques such as the effects of stress on the immune system, evolution of the immune system, and identification of the parameters for a healthy immune system.

  7. Immune System Quiz

    MedlinePlus

    ... Videos for Educators Search English Español Quiz: Immune System KidsHealth / For Kids / Quiz: Immune System Print How much do you know about your immune system? Find out by taking this quiz! About Us ...

  8. Immune System Dysfunction in the Elderly.

    PubMed

    Fuentes, Eduardo; Fuentes, Manuel; Alarcón, Marcelo; Palomo, Iván

    2017-01-01

    Human aging is characterized by both physical and physiological frailty that profoundly affects the immune system. In this context aging is associated with declines in adaptive and innate immunity established as immunosenescence. Immunosenescence is a new concept that reflects the age-associated restructuring changes of innate and adaptive immune functions. Thus elderly individuals usually present chronic low-level inflammation, higher infection rates and chronic diseases. A study of alterations in the immune system during aging could provide a potentially useful biomarker for the evaluation of immune senescence treatment. The immune system is the result of the interplay between innate and adaptive immunity, yet the impact of aging on this function is unclear. In this article the function of the immune system during aging is explored.

  9. Comparative immunogenomics of molluscs.

    PubMed

    Schultz, Jonathan H; Adema, Coen M

    2017-10-01

    Comparative immunology, studying both vertebrates and invertebrates, provided the earliest descriptions of phagocytosis as a general immune mechanism. However, the large scale of animal diversity challenges all-inclusive investigations and the field of immunology has developed by mostly emphasizing study of a few vertebrate species. In addressing the lack of comprehensive understanding of animal immunity, especially that of invertebrates, comparative immunology helps toward management of invertebrates that are food sources, agricultural pests, pathogens, or transmit diseases, and helps interpret the evolution of animal immunity. Initial studies showed that the Mollusca (second largest animal phylum), and invertebrates in general, possess innate defenses but lack the lymphocytic immune system that characterizes vertebrate immunology. Recognizing the reality of both common and taxon-specific immune features, and applying up-to-date cell and molecular research capabilities, in-depth studies of a select number of bivalve and gastropod species continue to reveal novel aspects of molluscan immunity. The genomics era heralded a new stage of comparative immunology; large-scale efforts yielded an initial set of full molluscan genome sequences that is available for analyses of full complements of immune genes and regulatory sequences. Next-generation sequencing (NGS), due to lower cost and effort required, allows individual researchers to generate large sequence datasets for growing numbers of molluscs. RNAseq provides expression profiles that enable discovery of immune genes and genome sequences reveal distribution and diversity of immune factors across molluscan phylogeny. Although computational de novo sequence assembly will benefit from continued development and automated annotation may require some experimental validation, NGS is a powerful tool for comparative immunology, especially increasing coverage of the extensive molluscan diversity. To date, immunogenomics revealed new levels of complexity of molluscan defense by indicating sequence heterogeneity in individual snails and bivalves, and members of expanded immune gene families are expressed differentially to generate pathogen-specific defense responses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Innate immune memory in plants.

    PubMed

    Reimer-Michalski, Eva-Maria; Conrath, Uwe

    2016-08-01

    The plant innate immune system comprises local and systemic immune responses. Systemic plant immunity develops after foliar infection by microbial pathogens, upon root colonization by certain microbes, or in response to physical injury. The systemic plant immune response to localized foliar infection is associated with elevated levels of pattern-recognition receptors, accumulation of dormant signaling enzymes, and alterations in chromatin state. Together, these systemic responses provide a memory to the initial infection by priming the remote leaves for enhanced defense and immunity to reinfection. The plant innate immune system thus builds immunological memory by utilizing mechanisms and components that are similar to those employed in the trained innate immune response of jawed vertebrates. Therefore, there seems to be conservation, or convergence, in the evolution of innate immune memory in plants and vertebrates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. [Immune system and tumors].

    PubMed

    Terme, Magali; Tanchot, Corinne

    2017-02-01

    Despite having been much debated, it is now well established that the immune system plays an essential role in the fight against cancer. In this article, we will highlight the implication of the immune system in the control of tumor growth and describe the major components of the immune system involved in the antitumoral immune response. The immune system, while exerting pressure on tumor cells, also will play a pro-tumoral role by sculpting the immunogenicity of tumors cells as they develop. Finally, we will illustrate the numerous mechanisms of immune suppression that take place within the tumoral microenvironment which allow tumor cells to escape control from the immune system. The increasingly precise knowledge of the brakes to an effective antitumor immune response allows the development of immunotherapy strategies more and more innovating and promising of hope. Copyright © 2016. Published by Elsevier Masson SAS.

  12. Integration of lyoplate based flow cytometry and computational analysis for standardized immunological biomarker discovery.

    PubMed

    Villanova, Federica; Di Meglio, Paola; Inokuma, Margaret; Aghaeepour, Nima; Perucha, Esperanza; Mollon, Jennifer; Nomura, Laurel; Hernandez-Fuentes, Maria; Cope, Andrew; Prevost, A Toby; Heck, Susanne; Maino, Vernon; Lord, Graham; Brinkman, Ryan R; Nestle, Frank O

    2013-01-01

    Discovery of novel immune biomarkers for monitoring of disease prognosis and response to therapy in immune-mediated inflammatory diseases is an important unmet clinical need. Here, we establish a novel framework for immunological biomarker discovery, comparing a conventional (liquid) flow cytometry platform (CFP) and a unique lyoplate-based flow cytometry platform (LFP) in combination with advanced computational data analysis. We demonstrate that LFP had higher sensitivity compared to CFP, with increased detection of cytokines (IFN-γ and IL-10) and activation markers (Foxp3 and CD25). Fluorescent intensity of cells stained with lyophilized antibodies was increased compared to cells stained with liquid antibodies. LFP, using a plate loader, allowed medium-throughput processing of samples with comparable intra- and inter-assay variability between platforms. Automated computational analysis identified novel immunophenotypes that were not detected with manual analysis. Our results establish a new flow cytometry platform for standardized and rapid immunological biomarker discovery with wide application to immune-mediated diseases.

  13. Integration of Lyoplate Based Flow Cytometry and Computational Analysis for Standardized Immunological Biomarker Discovery

    PubMed Central

    Villanova, Federica; Di Meglio, Paola; Inokuma, Margaret; Aghaeepour, Nima; Perucha, Esperanza; Mollon, Jennifer; Nomura, Laurel; Hernandez-Fuentes, Maria; Cope, Andrew; Prevost, A. Toby; Heck, Susanne; Maino, Vernon; Lord, Graham; Brinkman, Ryan R.; Nestle, Frank O.

    2013-01-01

    Discovery of novel immune biomarkers for monitoring of disease prognosis and response to therapy in immune-mediated inflammatory diseases is an important unmet clinical need. Here, we establish a novel framework for immunological biomarker discovery, comparing a conventional (liquid) flow cytometry platform (CFP) and a unique lyoplate-based flow cytometry platform (LFP) in combination with advanced computational data analysis. We demonstrate that LFP had higher sensitivity compared to CFP, with increased detection of cytokines (IFN-γ and IL-10) and activation markers (Foxp3 and CD25). Fluorescent intensity of cells stained with lyophilized antibodies was increased compared to cells stained with liquid antibodies. LFP, using a plate loader, allowed medium-throughput processing of samples with comparable intra- and inter-assay variability between platforms. Automated computational analysis identified novel immunophenotypes that were not detected with manual analysis. Our results establish a new flow cytometry platform for standardized and rapid immunological biomarker discovery with wide application to immune-mediated diseases. PMID:23843942

  14. Exploration of protein-protein interaction effects on α-2-macroglobulin in an inhibition of serine protease through gene expression and molecular simulations studies.

    PubMed

    Sivakamavalli, Jeyachandran; Selvaraj, Chandrabose; Singh, Sanjeev Kumar; Vaseeharan, Baskaralingam

    2014-01-01

    In Prophenoloxidase (ProPO) cascade, two targets namely serine protease and α-2-macroglobulin are key regulators involved in the defense system of crustaceans. In biological systems, routine role of cell systems requires the understanding in protein-protein interactions through experimental and theoretical concepts, which might yield useful insights into the cellular responses. Response of cells to regulating the immune system is governed by the interactions-involved biomolecular simulations. Unfortunately, studies on the inhibitors (SP and α-2M) that negatively regulate the proPO system or melanization in penaeid shrimp are not yet available. In order to understand how these interactions change the proPO mechanism in Indian white shrimp Fenneropenaeus indicus was determined. In F. indicus, innate immune system is in a sensitive balance of intricate interactions; elucidating these interactions by the integration of in silico and in vitro has great potential. We have determined the expression of both the SP and α-2M enzymes in regulatory mechanism, which are analyzed through qRT-PCR, protein-protein docking, and simulation studies. From this work, we propose a novel approach for studying an organism at the systems level by integrating genome-wide computational analysis and the gene expression data.

  15. sNebula, a network-based algorithm to predict binding between human leukocyte antigens and peptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Heng; Ye, Hao; Ng, Hui Wen

    Understanding the binding between human leukocyte antigens (HLAs) and peptides is important to understand the functioning of the immune system. Since it is time-consuming and costly to measure the binding between large numbers of HLAs and peptides, computational methods including machine learning models and network approaches have been developed to predict HLA-peptide binding. However, there are several limitations for the existing methods. We developed a network-based algorithm called sNebula to address these limitations. We curated qualitative Class I HLA-peptide binding data and demonstrated the prediction performance of sNebula on this dataset using leave-one-out cross-validation and five-fold cross-validations. Furthermore, this algorithmmore » can predict not only peptides of different lengths and different types of HLAs, but also the peptides or HLAs that have no existing binding data. We believe sNebula is an effective method to predict HLA-peptide binding and thus improve our understanding of the immune system.« less

  16. sNebula, a network-based algorithm to predict binding between human leukocyte antigens and peptides

    PubMed Central

    Luo, Heng; Ye, Hao; Ng, Hui Wen; Sakkiah, Sugunadevi; Mendrick, Donna L.; Hong, Huixiao

    2016-01-01

    Understanding the binding between human leukocyte antigens (HLAs) and peptides is important to understand the functioning of the immune system. Since it is time-consuming and costly to measure the binding between large numbers of HLAs and peptides, computational methods including machine learning models and network approaches have been developed to predict HLA-peptide binding. However, there are several limitations for the existing methods. We developed a network-based algorithm called sNebula to address these limitations. We curated qualitative Class I HLA-peptide binding data and demonstrated the prediction performance of sNebula on this dataset using leave-one-out cross-validation and five-fold cross-validations. This algorithm can predict not only peptides of different lengths and different types of HLAs, but also the peptides or HLAs that have no existing binding data. We believe sNebula is an effective method to predict HLA-peptide binding and thus improve our understanding of the immune system. PMID:27558848

  17. Computer simulation of a cellular automata model for the immune response in a retrovirus system

    NASA Astrophysics Data System (ADS)

    Pandey, R. B.

    1989-02-01

    Immune response in a retrovirus system is modeled by a network of three binary cell elements to take into account some of the main functional features of T4 cells, T8 cells, and viruses. Two different intercell interactions are introduced, one of which leads to three fixed points while the other yields bistable fixed points oscillating between a healthy state and a sick state in a mean field treatment. Evolution of these cells is studied for quenched and annealed random interactions on a simple cubic lattice with a nearest neighbor interaction using inhomogenous cellular automata. Populations of T4 cells and viral cells oscillate together with damping (with constant amplitude) for annealed (quenched) interaction on increasing the value of mixing probability B from zero to a characteristic value B ca ( B cq). For higher B, the average number of T4 cells increases while that of the viral infected cells decreases monotonically on increasing B, suggesting a phase transition at B ca ( B cq).

  18. sNebula, a network-based algorithm to predict binding between human leukocyte antigens and peptides

    DOE PAGES

    Luo, Heng; Ye, Hao; Ng, Hui Wen; ...

    2016-08-25

    Understanding the binding between human leukocyte antigens (HLAs) and peptides is important to understand the functioning of the immune system. Since it is time-consuming and costly to measure the binding between large numbers of HLAs and peptides, computational methods including machine learning models and network approaches have been developed to predict HLA-peptide binding. However, there are several limitations for the existing methods. We developed a network-based algorithm called sNebula to address these limitations. We curated qualitative Class I HLA-peptide binding data and demonstrated the prediction performance of sNebula on this dataset using leave-one-out cross-validation and five-fold cross-validations. Furthermore, this algorithmmore » can predict not only peptides of different lengths and different types of HLAs, but also the peptides or HLAs that have no existing binding data. We believe sNebula is an effective method to predict HLA-peptide binding and thus improve our understanding of the immune system.« less

  19. Exploring the Homeostatic and Sensory Roles of the Immune System.

    PubMed

    Marques, Rafael Elias; Marques, Pedro Elias; Guabiraba, Rodrigo; Teixeira, Mauro Martins

    2016-01-01

    Immunology developed under the notion of the immune system exists to fight pathogens. Recently, the discovery of interactions with commensal microbiota that are essential to human health initiated a change in this old paradigm. Here, we argue that the immune system has major physiological roles extending far beyond defending the host. Immune and inflammatory responses share the core property of sensing, defining the immune system also as a sensory system. The inference with the immune system collects, interprets, and stores information, while creating an identity of self, places it in close relationship to the nervous system, which suggests that these systems may have a profound evolutionary connection.

  20. Immunization Information System and Informatics to Promote Immunizations: Perspective From Minnesota Immunization Information Connection.

    PubMed

    Muscoplat, Miriam Halstead; Rajamani, Sripriya

    2017-01-01

    The vision for management of immunization information is availability of real-time consolidated data and services for all ages, to clinical, public health, and other stakeholders. This is being executed through Immunization Information Systems (IISs), which are population-based and confidential computerized systems present in most US states and territories. Immunization Information Systems offer many functionalities, such as immunization assessment reports, client follow-up, reminder/recall feature, vaccine management tools, state-supplied vaccine ordering, comprehensive immunization history, clinical decision support/vaccine forecasting and recommendations, data processing, and data exchange. This perspective article will present various informatics tools in an IIS, in the context of the Minnesota Immunization Information Connection.

  1. In immune defense: redefining the role of the immune system in chronic disease.

    PubMed

    Rubinow, Katya B; Rubinow, David R

    2017-03-01

    The recognition of altered immune system function in many chronic disease states has proven to be a pivotal advance in biomedical research over the past decade. For many metabolic and mood disorders, this altered immune activity has been characterized as inflammation, with the attendant assumption that the immune response is aberrant. However, accumulating evidence challenges this assumption and suggests that the immune system may be mounting adaptive responses to chronic stressors. Further, the inordinate complexity of immune function renders a simplistic, binary model incapable of capturing critical mechanistic insights. In this perspective article, we propose alternative paradigms for understanding the role of the immune system in chronic disease. By invoking allostasis or systems biology rather than inflammation, we can ascribe greater functional significance to immune mediators, gain newfound appreciation of the adaptive facets of altered immune activity, and better avoid the potentially disastrous effects of translating erroneous assumptions into novel therapeutic strategies.

  2. Roles of microRNA in the immature immune system of neonates.

    PubMed

    Yu, Hong-Ren; Huang, Lien-Hung; Li, Sung-Chou

    2018-06-13

    Neonates have an immature immune system; therefore, their immune activities are different from the activities of adult immune systems. Such differences between neonates and adults are reflected by cell population constitutions, immune responses, cytokine production, and the expression of cellular/humoral molecules, which contribute to the specific neonatal microbial susceptibility and atopic properties. MicroRNAs (miRNAs) have been discovered to modulate many aspects of immune responses. Herein, we summarize the distinct manifestations of the neonatal immune system, including cellular and non-cellular components. We also review the current findings on the modulatory effects of miRNAs on the neonatal immune system. These findings suggest that miRNAs have the potential to be useful therapeutic targets for certain infection or inflammatory conditions by modulating the neonatal immune system. In the future, we need a more comprehensive understanding in regard to miRNAs and how they modulate specific immune cells in neonates. Copyright © 2018. Published by Elsevier B.V.

  3. Strengthening health system to improve immunization for migrants in China.

    PubMed

    Fang, Hai; Yang, Li; Zhang, Huyang; Li, Chenyang; Wen, Liankui; Sun, Li; Hanson, Kara; Meng, Qingyue

    2017-07-01

    Immunization is the most cost-effective method to prevent and control vaccine-preventable diseases. Migrant population in China has been rising rapidly, and their immunization status is poor. China has tried various strategies to strengthen its health system, which has significantly improved immunization for migrants. This study applied a qualitative retrospective review method aiming to collect, analyze and synthesize health system strengthening experiences and practices about improving immunizations for migrants in China. A conceptual framework of Theory of Change was used to extract the searched literatures. 11 searched literatures and 4 national laws and policies related to immunizations for migrant children were carefully studied. China mainly employed 3 health system strengthening strategies to significantly improve immunization for migrant population: stop charging immunization fees or immunization insurance, manage immunization certificates well, and pay extra attentions on immunization for special children including migrant children. These health system strengthening strategies were very effective, and searched literatures show that up-to-date and age-appropriate immunization rates were significantly improved for migrant children. Economic development led to higher migrant population in China, but immunization for migrants, particularly migrant children, were poor. Fortunately various health system strengthening strategies were employed to improve immunization for migrants in China and they were rather successful. The experiences and lessons of immunization for migrant population in China might be helpful for other developing countries with a large number of migrant population.

  4. Testing the Model: A Phase 1/11 Randomized Double Blind Placebo Control Trial of Targeted Therapeutics: Liposomal Glutathione and Curcumin

    DTIC Science & Technology

    2016-10-01

    Can non- specific cellular immunity protect HIV-infected persons with very low CD4 counts? Presented at Conference on Integrating Psychology and...Under Review. 50. Nierenberg B, Cooper S, Feuer SJ, Broderick G. Applying Network Medicine to Chronic Illness: A Model for Integrating Psychology ...function in these subjects as compared to GW era sedentary healthy controls. We applied an integrative systems- based approach rooted in computational

  5. Cerebellar syndrome with hydrocephalus due to Mycoplasma pneumoniae infection.

    PubMed Central

    Coleman, R. J.; Brown, J. S.; Butler, P.; Swash, M.

    1990-01-01

    A 27 year old woman developed a cerebellar syndrome with serological evidence of recent Mycoplasma pneumoniae infection. The cranial computed tomographic scan showed effacement of the fourth ventricle, enhancement of the basal meninges and hydrocephalus affecting the lateral and third ventricles. Clinical and radiological recovery occurred over 5 weeks. We propose that this was a manifestation of immune-mediated encephalomyelitis induced by the infection rather than direct invasion of the central nervous system. Images Figure 1 PMID:2217014

  6. Null steering of adaptive beamforming using linear constraint minimum variance assisted by particle swarm optimization, dynamic mutated artificial immune system, and gravitational search algorithm.

    PubMed

    Darzi, Soodabeh; Kiong, Tiong Sieh; Islam, Mohammad Tariqul; Ismail, Mahamod; Kibria, Salehin; Salem, Balasem

    2014-01-01

    Linear constraint minimum variance (LCMV) is one of the adaptive beamforming techniques that is commonly applied to cancel interfering signals and steer or produce a strong beam to the desired signal through its computed weight vectors. However, weights computed by LCMV usually are not able to form the radiation beam towards the target user precisely and not good enough to reduce the interference by placing null at the interference sources. It is difficult to improve and optimize the LCMV beamforming technique through conventional empirical approach. To provide a solution to this problem, artificial intelligence (AI) technique is explored in order to enhance the LCMV beamforming ability. In this paper, particle swarm optimization (PSO), dynamic mutated artificial immune system (DM-AIS), and gravitational search algorithm (GSA) are incorporated into the existing LCMV technique in order to improve the weights of LCMV. The simulation result demonstrates that received signal to interference and noise ratio (SINR) of target user can be significantly improved by the integration of PSO, DM-AIS, and GSA in LCMV through the suppression of interference in undesired direction. Furthermore, the proposed GSA can be applied as a more effective technique in LCMV beamforming optimization as compared to the PSO technique. The algorithms were implemented using Matlab program.

  7. Null Steering of Adaptive Beamforming Using Linear Constraint Minimum Variance Assisted by Particle Swarm Optimization, Dynamic Mutated Artificial Immune System, and Gravitational Search Algorithm

    PubMed Central

    Sieh Kiong, Tiong; Tariqul Islam, Mohammad; Ismail, Mahamod; Salem, Balasem

    2014-01-01

    Linear constraint minimum variance (LCMV) is one of the adaptive beamforming techniques that is commonly applied to cancel interfering signals and steer or produce a strong beam to the desired signal through its computed weight vectors. However, weights computed by LCMV usually are not able to form the radiation beam towards the target user precisely and not good enough to reduce the interference by placing null at the interference sources. It is difficult to improve and optimize the LCMV beamforming technique through conventional empirical approach. To provide a solution to this problem, artificial intelligence (AI) technique is explored in order to enhance the LCMV beamforming ability. In this paper, particle swarm optimization (PSO), dynamic mutated artificial immune system (DM-AIS), and gravitational search algorithm (GSA) are incorporated into the existing LCMV technique in order to improve the weights of LCMV. The simulation result demonstrates that received signal to interference and noise ratio (SINR) of target user can be significantly improved by the integration of PSO, DM-AIS, and GSA in LCMV through the suppression of interference in undesired direction. Furthermore, the proposed GSA can be applied as a more effective technique in LCMV beamforming optimization as compared to the PSO technique. The algorithms were implemented using Matlab program. PMID:25147859

  8. Dynamics of an HIV-1 infection model with cell mediated immunity

    NASA Astrophysics Data System (ADS)

    Yu, Pei; Huang, Jianing; Jiang, Jiao

    2014-10-01

    In this paper, we study the dynamics of an improved mathematical model on HIV-1 virus with cell mediated immunity. This new 5-dimensional model is based on the combination of a basic 3-dimensional HIV-1 model and a 4-dimensional immunity response model, which more realistically describes dynamics between the uninfected cells, infected cells, virus, the CTL response cells and CTL effector cells. Our 5-dimensional model may be reduced to the 4-dimensional model by applying a quasi-steady state assumption on the variable of virus. However, it is shown in this paper that virus is necessary to be involved in the modeling, and that a quasi-steady state assumption should be applied carefully, which may miss some important dynamical behavior of the system. Detailed bifurcation analysis is given to show that the system has three equilibrium solutions, namely the infection-free equilibrium, the infectious equilibrium without CTL, and the infectious equilibrium with CTL, and a series of bifurcations including two transcritical bifurcations and one or two possible Hopf bifurcations occur from these three equilibria as the basic reproduction number is varied. The mathematical methods applied in this paper include characteristic equations, Routh-Hurwitz condition, fluctuation lemma, Lyapunov function and computation of normal forms. Numerical simulation is also presented to demonstrate the applicability of the theoretical predictions.

  9. High-performance biocomputing for simulating the spread of contagion over large contact networks

    PubMed Central

    2012-01-01

    Background Many important biological problems can be modeled as contagion diffusion processes over interaction networks. This article shows how the EpiSimdemics interaction-based simulation system can be applied to the general contagion diffusion problem. Two specific problems, computational epidemiology and human immune system modeling, are given as examples. We then show how the graphics processing unit (GPU) within each compute node of a cluster can effectively be used to speed-up the execution of these types of problems. Results We show that a single GPU can accelerate the EpiSimdemics computation kernel by a factor of 6 and the entire application by a factor of 3.3, compared to the execution time on a single core. When 8 CPU cores and 2 GPU devices are utilized, the speed-up of the computational kernel increases to 9.5. When combined with effective techniques for inter-node communication, excellent scalability can be achieved without significant loss of accuracy in the results. Conclusions We show that interaction-based simulation systems can be used to model disparate and highly relevant problems in biology. We also show that offloading some of the work to GPUs in distributed interaction-based simulations can be an effective way to achieve increased intra-node efficiency. PMID:22537298

  10. Exploratory Study on Plasma Immunomodulator and Antibody Profiles in Tuberculosis Patients

    PubMed Central

    Ravindran, Resmi; Krishnan, Viswanathan V.; Khanum, Azra; Luciw, Paul A.

    2013-01-01

    Host immune responses to Mycobacterium tuberculosis are generally able to contain infection and maintain a delicate balance between protection and immunopathology. A shift in this balance appears to underlie active disease observed in about 10% of infected individuals. Effects of local inflammation, combined with anti-M. tuberculosis systemic immune responses, are directly detectable in peripheral circulation, without ex vivo stimulation of blood cells or biopsy of the affected organs. We studied plasma immunomodulator and antibody biomarkers in patients with active pulmonary tuberculosis (TB) by a combination of multiplex microbead immunoassays and computational tools for data analysis. Plasma profiles of 10 immunomodulators and antibodies against eight M. tuberculosis antigens (previously reported by us) were examined in active pulmonary TB patients in a country where TB is endemic, Pakistan. Multiplex analyses were performed on samples from apparently healthy individuals without active TB from the same community as the TB patients to establish the assay baselines for all analytes. Over 3,000 data points were collected from patients (n = 135) and controls (n = 37). The data were analyzed by multivariate and computer-assisted cluster analyses to reveal patterns of plasma immunomodulators and antibodies. This study shows plasma profiles that in most patients represented either strong antibody or strong immunomodulator biomarkers. Profiling of a combination of both immunomodulators and antibodies described here may be valuable for the analysis of host immune responses in active TB in countries where the disease is endemic. PMID:23761664

  11. Immune System Toxicity and Immunotoxicity Hazard Identification

    EPA Science Inventory

    Exposure to chemicals may alter immune system health, increasing the risk of infections, allergy and autoimmune diseases. The chapter provides a concise overview of the immune system, host factors that affect immune system heal, and the effects that xenobiotic exposure may have ...

  12. Conceptual Spaces of the Immune System.

    PubMed

    Fierz, Walter

    2016-01-01

    The immune system can be looked at as a cognitive system. This is often done in analogy to the neuro-psychological system. Here, it is demonstrated that the cognitive functions of the immune system can be properly described within a new theory of cognitive science. Gärdenfors' geometrical framework of conceptual spaces is applied to immune cognition. Basic notions, like quality dimensions, natural properties and concepts, similarities, prototypes, saliences, etc., are related to cognitive phenomena of the immune system. Constraints derived from treating the immune system within a cognitive theory, like Gärdenfors' conceptual spaces, might well prove to be instrumental for the design of vaccines, immunological diagnostic tests, and immunotherapy.

  13. Modeling the intracellular pathogen-immune interaction with cure rate

    NASA Astrophysics Data System (ADS)

    Dubey, Balram; Dubey, Preeti; Dubey, Uma S.

    2016-09-01

    Many common and emergent infectious diseases like Influenza, SARS, Hepatitis, Ebola etc. are caused by viral pathogens. These infections can be controlled or prevented by understanding the dynamics of pathogen-immune interaction in vivo. In this paper, interaction of pathogens with uninfected and infected cells in presence or absence of immune response are considered in four different cases. In the first case, the model considers the saturated nonlinear infection rate and linear cure rate without absorption of pathogens into uninfected cells and without immune response. The next model considers the effect of absorption of pathogens into uninfected cells while all other terms are same as in the first case. The third model incorporates innate immune response, humoral immune response and Cytotoxic T lymphocytes (CTL) mediated immune response with cure rate and without absorption of pathogens into uninfected cells. The last model is an extension of the third model in which the effect of absorption of pathogens into uninfected cells has been considered. Positivity and boundedness of solutions are established to ensure the well-posedness of the problem. It has been found that all the four models have two equilibria, namely, pathogen-free equilibrium point and pathogen-present equilibrium point. In each case, stability analysis of each equilibrium point is investigated. Pathogen-free equilibrium is globally asymptotically stable when basic reproduction number is less or equal to unity. This implies that control or prevention of infection is independent of initial concentration of uninfected cells, infected cells, pathogens and immune responses in the body. The proposed models show that introduction of immune response and cure rate strongly affects the stability behavior of the system. Further, on computing basic reproduction number, it has been found to be minimum for the fourth model vis-a-vis other models. The analytical findings of each model have been exemplified by numerical simulations.

  14. C60 fullerene localization and membrane interactions in RAW 264.7 immortalized mouse macrophages

    NASA Astrophysics Data System (ADS)

    Russ, K. A.; Elvati, P.; Parsonage, T. L.; Dews, A.; Jarvis, J. A.; Ray, M.; Schneider, B.; Smith, P. J. S.; Williamson, P. T. F.; Violi, A.; Philbert, M. A.

    2016-02-01

    There continues to be a significant increase in the number and complexity of hydrophobic nanomaterials that are engineered for a variety of commercial purposes making human exposure a significant health concern. This study uses a combination of biophysical, biochemical and computational methods to probe potential mechanisms for uptake of C60 nanoparticles into various compartments of living immune cells. Cultures of RAW 264.7 immortalized murine macrophage were used as a canonical model of immune-competent cells that are likely to provide the first line of defense following inhalation. Modes of entry studied were endocytosis/pinocytosis and passive permeation of cellular membranes. The evidence suggests marginal uptake of C60 clusters is achieved through endocytosis/pinocytosis, and that passive diffusion into membranes provides a significant source of biologically-available nanomaterial. Computational modeling of both a single molecule and a small cluster of fullerenes predicts that low concentrations of fullerenes enter the membrane individually and produce limited perturbation; however, at higher concentrations the clusters in the membrane causes deformation of the membrane. These findings are bolstered by nuclear magnetic resonance (NMR) of model membranes that reveal deformation of the cell membrane upon exposure to high concentrations of fullerenes. The atomistic and NMR models fail to explain escape of the particle out of biological membranes, but are limited to idealized systems that do not completely recapitulate the complexity of cell membranes. The surprising contribution of passive modes of cellular entry provides new avenues for toxicological research that go beyond the pharmacological inhibition of bulk transport systems such as pinocytosis.There continues to be a significant increase in the number and complexity of hydrophobic nanomaterials that are engineered for a variety of commercial purposes making human exposure a significant health concern. This study uses a combination of biophysical, biochemical and computational methods to probe potential mechanisms for uptake of C60 nanoparticles into various compartments of living immune cells. Cultures of RAW 264.7 immortalized murine macrophage were used as a canonical model of immune-competent cells that are likely to provide the first line of defense following inhalation. Modes of entry studied were endocytosis/pinocytosis and passive permeation of cellular membranes. The evidence suggests marginal uptake of C60 clusters is achieved through endocytosis/pinocytosis, and that passive diffusion into membranes provides a significant source of biologically-available nanomaterial. Computational modeling of both a single molecule and a small cluster of fullerenes predicts that low concentrations of fullerenes enter the membrane individually and produce limited perturbation; however, at higher concentrations the clusters in the membrane causes deformation of the membrane. These findings are bolstered by nuclear magnetic resonance (NMR) of model membranes that reveal deformation of the cell membrane upon exposure to high concentrations of fullerenes. The atomistic and NMR models fail to explain escape of the particle out of biological membranes, but are limited to idealized systems that do not completely recapitulate the complexity of cell membranes. The surprising contribution of passive modes of cellular entry provides new avenues for toxicological research that go beyond the pharmacological inhibition of bulk transport systems such as pinocytosis. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07003a

  15. Novel Nipah virus immune-antagonism strategy revealed by experimental and computational study.

    PubMed

    Seto, Jeremy; Qiao, Liang; Guenzel, Carolin A; Xiao, Sa; Shaw, Megan L; Hayot, Fernand; Sealfon, Stuart C

    2010-11-01

    Nipah virus is an emerging pathogen that causes severe disease in humans. It expresses several antagonist proteins that subvert the immune response and that may contribute to its pathogenicity. Studies of its biology are difficult due to its high pathogenicity and requirement for biosafety level 4 containment. We integrated experimental and computational methods to elucidate the effects of Nipah virus immune antagonists. Individual Nipah virus immune antagonists (phosphoprotein and V and W proteins) were expressed from recombinant Newcastle disease viruses, and the responses of infected human monocyte-derived dendritic cells were determined. We developed an ordinary differential equation model of the infectious process that that produced results with a high degree of correlation with these experimental results. In order to simulate the effects of wild-type virus, the model was extended to incorporate published experimental data on the time trajectories of immune-antagonist production. These data showed that the RNA-editing mechanism utilized by the wild-type Nipah virus to produce immune antagonists leads to a delay in the production of the most effective immune antagonists, V and W. Model simulations indicated that this delay caused a disconnection between attenuation of the antiviral response and suppression of inflammation. While the antiviral cytokines were efficiently suppressed at early time points, some early inflammatory cytokine production occurred, which would be expected to increase vascular permeability and promote virus spread and pathogenesis. These results suggest that Nipah virus has evolved a unique immune-antagonist strategy that benefits from controlled expression of multiple antagonist proteins with various potencies.

  16. Testicular defense systems: immune privilege and innate immunity

    PubMed Central

    Zhao, Shutao; Zhu, Weiwei; Xue, Shepu; Han, Daishu

    2014-01-01

    The mammalian testis possesses a special immunological environment because of its properties of remarkable immune privilege and effective local innate immunity. Testicular immune privilege protects immunogenic germ cells from systemic immune attack, and local innate immunity is important in preventing testicular microbial infections. The breakdown of local testicular immune homeostasis may lead to orchitis, an etiological factor of male infertility. The mechanisms underlying testicular immune privilege have been investigated for a long time. Increasing evidence shows that both a local immunosuppressive milieu and systemic immune tolerance are involved in maintaining testicular immune privilege status. The mechanisms underlying testicular innate immunity are emerging based on the investigation of the pattern recognition receptor-mediated innate immune response in testicular cells. This review summarizes our current understanding of testicular defense mechanisms and identifies topics that merit further investigation. PMID:24954222

  17. Natural evolution, disease, and localization in the immune system

    NASA Astrophysics Data System (ADS)

    Deem, Michael

    2004-03-01

    Adaptive vertebrate immune system is a wonder of modern evolution. Under most circumstances, the dynamics of the immune system is well-matched to the dynamics of pathogen growth during a typical infection. Some pathogens, however, have evolved escape mechanisms that interact in subtle ways with the immune system dynamics. In addition, negative interactions the immune system, which has evolved over 400 000 000 years, and vaccination,which has been practiced for only 200 years, are possible. For example,vaccination against the flu can actually increase susceptibility to the flu in the next year. As another example, vaccination against one of the four strains of dengue fever typically increases susceptibility against the other three strains. Immunodominance also arises in the immune system control of nascent tumors--the immune system recognizes only a small subset of the tumor specific antigens, and the rest are free to grow and cause tumor growth. In this talk, I present a physical theory of original antigenic sin and immunodominance. How localization in the immune system leads to the observed phenomena is discussed. 1) M. W. Deem and H. Y. Lee, ``Sequence Space Localization in the Immune System Response to Vaccination and Disease,'' Phys. Rev. Lett. 91 (2003) 068101

  18. Role of the immune system in regeneration and its dynamic interplay with adult stem cells.

    PubMed

    Abnave, Prasad; Ghigo, Eric

    2018-04-09

    The immune system plays an indispensable role in the process of tissue regeneration following damage as well as during homeostasis. Inflammation and immune cell recruitment are signs of early onset injury. At the wound site, immune cells not only help to clear debris but also secrete numerous signalling molecules that induce appropriate cell proliferation and differentiation programmes essential for successful regeneration. However, the immune system does not always perform a complementary role in regeneration and several reports have suggested that increased inflammation can inhibit the regeneration process. Successful regeneration requires a balanced immune cell response, with the recruitment of accurately polarised immune cells in an appropriate quantity. The regulatory interactions of the immune system with regeneration are not unidirectional. Stem cells, as key players in regeneration, can also modulate the immune system in several ways to facilitate regeneration. In this review, we will focus on recent research demonstrating the key role of immune system in the regeneration process as well as the immunomodulatory effects of stem cells. Finally, we propose that research investigating the interplay between the immune system and stem cells within highly regenerating animals can benefit the identification of the key interactions and molecules required for successful regeneration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Triggering the adaptive immune system with commensal gut bacteria protects against insulin resistance and dysglycemia.

    PubMed

    Pomié, Céline; Blasco-Baque, Vincent; Klopp, Pascale; Nicolas, Simon; Waget, Aurélie; Loubières, Pascale; Azalbert, Vincent; Puel, Anthony; Lopez, Frédéric; Dray, Cédric; Valet, Philippe; Lelouvier, Benjamin; Servant, Florence; Courtney, Michael; Amar, Jacques; Burcelin, Rémy; Garidou, Lucile

    2016-06-01

    To demonstrate that glycemia and insulin resistance are controlled by a mechanism involving the adaptive immune system and gut microbiota crosstalk. We triggered the immune system with microbial extracts specifically from the intestinal ileum contents of HFD-diabetic mice by the process of immunization. 35 days later, immunized mice were fed a HFD for up to two months in order to challenge the development of metabolic features. The immune responses were quantified. Eventually, adoptive transfer of immune cells from the microbiota-immunized mice to naïve mice was performed to demonstrate the causality of the microbiota-stimulated adaptive immune system on the development of metabolic disease. The gut microbiota of the immunized HFD-fed mice was characterized in order to demonstrate whether the manipulation of the microbiota to immune system interaction reverses the causal deleterious effect of gut microbiota dysbiosis on metabolic disease. Subcutaneous injection (immunization procedure) of ileum microbial extracts prevented hyperglycemia and insulin resistance in a dose-dependent manner in response to a HFD. The immunization enhanced the proliferation of CD4 and CD8 T cells in lymphoid organs, also increased cytokine production and antibody secretion. As a mechanism explaining the metabolic improvement, the immunization procedure reversed gut microbiota dysbiosis. Finally, adoptive transfer of immune cells from immunized mice improved metabolic features in response to HFD. Glycemia and insulin sensitivity can be regulated by triggering the adaptive immunity to microbiota interaction. This reduces the gut microbiota dysbiosis induced by a fat-enriched diet.

  20. From birth to ‘immuno-health’, allergies and enterocolitis

    PubMed Central

    Houghteling, Pearl D.; Walker, W. Allan

    2015-01-01

    Microbial signals stimulate development and maintenance of the neonatal immune system. The process begins in utero, with limited exposure to microbes in the intrauterine environment, as well as maternal immune signals priming the developing immune system. After birth and initial colonization, the immune system must be able to activate against pathogens, but also achieve oral tolerance of food and resident gut microbes. Through microbial signals and appropriate nutrition, the immune system is able to achieve homeostasis. Major challenges to successful colonization and immune system regulation include abnormal microbial inoculi (cesarean section, hygiene) and antibiotics. When normal colonization is interrupted, dysbiosis occurs. This imbalance of microbes and subsequently of the immune system can result in allergic diseases, asthma or necrotizing enterocolitis. Probiotics and probiotic-derived therapies represent an exciting avenue to replete the population of commensal microbes and to prevent the immune-mediated sequelae of dysbiosis. PMID:26447970

  1. Control of adaptive immunity by the innate immune system.

    PubMed

    Iwasaki, Akiko; Medzhitov, Ruslan

    2015-04-01

    Microbial infections are recognized by the innate immune system both to elicit immediate defense and to generate long-lasting adaptive immunity. To detect and respond to vastly different groups of pathogens, the innate immune system uses several recognition systems that rely on sensing common structural and functional features associated with different classes of microorganisms. These recognition systems determine microbial location, viability, replication and pathogenicity. Detection of these features by recognition pathways of the innate immune system is translated into different classes of effector responses though specialized populations of dendritic cells. Multiple mechanisms for the induction of immune responses are variations on a common design principle wherein the cells that sense infections produce one set of cytokines to induce lymphocytes to produce another set of cytokines, which in turn activate effector responses. Here we discuss these emerging principles of innate control of adaptive immunity.

  2. Microbiota regulate the development and function of the immune cells.

    PubMed

    Yu, Qing; Jia, Anna; Li, Yan; Bi, Yujing; Liu, Guangwei

    2018-03-04

    Microbiota is a group of microbes coexisting and co-evolving with the immune system in the host body for millions of years. There are mutual interaction between microbiota and the immune system. Immune cells can shape the populations of microbiota in the gut of animals and humans, and the presence of microbiota and the microbial products can regulate the development and function of the immune cells in the host. Although microbiota resides mainly at the mucosa, the effect of microbiota on the immune system can be both local at the mucosa and systemic through the whole body. At the mucosal sites, the presences of microbiota and microbial products have a direct effect on the immune cells. Microbiota induces production of effectors from immune cells, such as cytokines and inflammatory factors, influencing the further development and function of the immune cells. Experimental data have shown that microbial products can influence the activity of some key factors in signaling pathways. At the nonmucosal sites, such as the bone marrow, peripheral lymph nodes, and spleen, microbiota can also regulate the development and function of the immune cells via several mechanisms in mice, such as introduction of chromatin-level changes through histone acetylation and DNA methylation. Given the important effect of microbiota on the immune system, many immunotherapies that are mediated by immune system rely on gut microbiota. Thus, the study of how microbiota influences immune system bring a potential therapy prospect in preventing and treating diseases.

  3. The role of the immune system in Alzheimer disease: Etiology and treatment.

    PubMed

    Jevtic, Stefan; Sengar, Ameet S; Salter, Michael W; McLaurin, JoAnne

    2017-11-01

    The immune system is now considered a major factor in Alzheimer Disease (AD). This review seeks to demonstrate how various aspects of the immune system, both in the brain and peripherally, interact to contribute to AD. We highlight classical nervous system immune components, such as complement and microglia, as well as novel aspects of the peripheral immune system that can influence disease, such as monocytes and lymphocytes. By detailing the roles of various immune cells in AD, we summarize an emerging perspective for disease etiology and future therapeutic targets. Copyright © 2017. Published by Elsevier B.V.

  4. The Neuromodulation of the Intestinal Immune System and Its Relevance in Inflammatory Bowel Disease.

    PubMed

    Di Giovangiulio, Martina; Verheijden, Simon; Bosmans, Goele; Stakenborg, Nathalie; Boeckxstaens, Guy E; Matteoli, Gianluca

    2015-01-01

    One of the main tasks of the immune system is to discriminate and appropriately react to "danger" or "non-danger" signals. This is crucial in the gastrointestinal tract, where the immune system is confronted with a myriad of food antigens and symbiotic microflora that are in constant contact with the mucosa, in addition to any potential pathogens. This large number of antigens and commensal microflora, which are essential for providing vital nutrients, must be tolerated by the intestinal immune system to prevent aberrant inflammation. Hence, the balance between immune activation versus tolerance should be tightly regulated to maintain intestinal homeostasis and to prevent immune activation indiscriminately against all luminal antigens. Loss of this delicate equilibrium can lead to chronic activation of the intestinal immune response resulting in intestinal disorders, such as inflammatory bowel diseases (IBD). In order to maintain homeostasis, the immune system has evolved diverse regulatory strategies including additional non-immunological actors able to control the immune response. Accumulating evidence strongly indicates a bidirectional link between the two systems in which the brain modulates the immune response via the detection of circulating cytokines and via direct afferent input from sensory fibers and from enteric neurons. In the current review, we will highlight the most recent findings regarding the cross-talk between the nervous system and the mucosal immune system and will discuss the potential use of these neuronal circuits and neuromediators as novel therapeutic tools to reestablish immune tolerance and treat intestinal chronic inflammation.

  5. Oncolytic Viral Therapy and the Immune System: A Double-Edged Sword Against Cancer.

    PubMed

    Marelli, Giulia; Howells, Anwen; Lemoine, Nicholas R; Wang, Yaohe

    2018-01-01

    Oncolytic viral therapy is a new promising strategy against cancer. Oncolytic viruses (OVs) can replicate in cancer cells but not in normal cells, leading to lysis of the tumor mass. Beside this primary effect, OVs can also stimulate the immune system. Tumors are an immuno-suppressive environment in which the immune system is silenced in order to avoid the immune response against cancer cells. The delivery of OVs into the tumor wakes up the immune system so that it can facilitate a strong and durable response against the tumor itself. Both innate and adaptive immune responses contribute to this process, producing an immune response against tumor antigens and facilitating immunological memory. However, viruses are recognized by the immune system as pathogens and the consequent anti-viral response could represent a big hurdle for OVs. Finding a balance between anti-tumor and anti-viral immunity is, under this new light, a priority for researchers. In this review, we provide an overview of the various ways in which different components of the immune system can be allied with OVs. We have analyzed the different immune responses in order to highlight the new and promising perspectives leading to increased anti-tumor response and decreased immune reaction to the OVs.

  6. Diffuse endocrine system, neuroendocrine tumors and immunity: what's new?

    PubMed

    Ameri, Pietro; Ferone, Diego

    2012-01-01

    During the last two decades, research into the modulation of immunity by the neuroendocrine system has flourished, unravelling significant effects of several neuropeptides, including somatostatin (SRIH), and especially cortistatin (CST), on immune cells. Scientists have learnt that the diffuse neuroendocrine system can regulate the immune system at all its levels: innate immunity, adaptive immunity, and maintenance of immune tolerance. Compelling studies with animal models have demonstrated that some neuropeptides may be effective in treating inflammatory disorders, such as sepsis, and T helper 1-driven autoimmune diseases, like Crohn's disease and rheumatoid arthritis. Here, the latest findings concerning the neuroendocrine control of the immune system are discussed, with emphasis on SRIH and CST. The second part of the review deals with the immune response to neuroendocrine tumors (NETs). The anti-NET immune response has been described in the last years and it is still being characterized, similarly to what is happening for several other types of cancer. In parallel with investigations addressing the mechanisms by which the immune system contrasts NET growth and spreading, ground-breaking clinical trials of dendritic cell vaccination as immunotherapy for metastatic NETs have shown in principle that the immune reaction to NETs can be exploited for treatment. Copyright © 2012 S. Karger AG, Basel.

  7. The immunological capacity in the larvae of Pacific oyster Crassostrea gigas.

    PubMed

    Song, Xiaorui; Wang, Hao; Xin, Lusheng; Xu, Jiachao; Jia, Zhihao; Wang, Lingling; Song, Linsheng

    2016-02-01

    As the immune system has not fully developed during early developmental stages, bivalve larvae are more susceptible for pathogens, which frequently leads to the significant mortality in hatcheries. In the present study, the development of immune system and its response against bacteria challenge were investigated in order to characterize the repertoire of immunological capacity of Pacific oyster Crassostrea gigas during the ontogenesis. The phagocytosis was firstly observed in the early D-veliger larvae (17 hpf), especially in their velum site, which indicated the appearance of functional hemocytes during early D-veliger larvae stage. The whole-mount immunofluorescence assay of three pattern recognition receptors (integrin β-1, caspase-3 and C-type lectin 3) and one immune effector gene (IL17-5) was performed in blastula, early D-veliger and umbo larvae, suggested that velum and digestive gland were the potential sites of immune system in the larvae. The lowest activities of antioxidant enzymes (superoxide dismutase and catalase) and hydrolytic enzyme (lysozyme), as well as descended expression levels of 12 immune genes at the transition between embryogenesis and planktonic, indicated that the larvae at hatching (9 hpf) were in hypo-immunity. While the ascending activities of enzymes and expression levels of seven immune genes during the trochophore stage (15 hpf) suggested the initiation of immune system. The steadily increasing trend of all the 12 candidate genes at the early umbo larvae (120 h) hinted that the immune system was well developed at this stage. After bacterial challenge, some immune recognition (TLR4) and immune effector (IL17-5 and defh2) genes were activated in blastula stage (4 hpf), and other immune genes were up regulated in D-veliger larvae, indicating that the zygotic immune system could respond earlier against the bacterial challenge during its development. These results indicated that the cellular and humoral immune components appeared at trochophore stage, and the cellular immune system was activated with its occurrence, while the humoral immune system executed until the early umbo larval stage. The immune system emerged earlier to aid larvae in defending bacterial challenge during the early stages of oyster development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Identification of Substituted Pyrimido[5,4-b]indoles as Selective Toll-Like Receptor 4 Ligands

    PubMed Central

    2013-01-01

    A cell-based high-throughput screen to identify small molecular weight stimulators of the innate immune system revealed substituted pyrimido[5,4-b]indoles as potent NFκB activators. The most potent hit compound selectively stimulated Toll-like receptor 4 (TLR4) in human and mouse cells. Synthetic modifications of the pyrimido[5,4-b]indole scaffold at the carboxamide, N-3, and N-5 positions revealed differential TLR4 dependent production of NFκB and type I interferon associated cytokines, IL-6 and interferon γ-induced protein 10 (IP-10) respectively. Specifically, a subset of compounds bearing phenyl and substituted phenyl carboxamides induced lower IL-6 release while maintaining higher IP-10 production, skewing toward the type I interferon pathway. Substitution at N-5 with short alkyl substituents reduced the cytotoxicity of the leading hit compound. Computational studies supported that active compounds appeared to bind primarily to MD-2 in the TLR4/MD-2 complex. These small molecules, which stimulate innate immune cells with minimal toxicity, could potentially be used as adjuvants or immune modulators. PMID:23656327

  9. Petri Net computational modelling of Langerhans cell Interferon Regulatory Factor Network predicts their role in T cell activation.

    PubMed

    Polak, Marta E; Ung, Chuin Ying; Masapust, Joanna; Freeman, Tom C; Ardern-Jones, Michael R

    2017-04-06

    Langerhans cells (LCs) are able to orchestrate adaptive immune responses in the skin by interpreting the microenvironmental context in which they encounter foreign substances, but the regulatory basis for this has not been established. Utilising systems immunology approaches combining in silico modelling of a reconstructed gene regulatory network (GRN) with in vitro validation of the predictions, we sought to determine the mechanisms of regulation of immune responses in human primary LCs. The key role of Interferon regulatory factors (IRFs) as controllers of the human Langerhans cell response to epidermal cytokines was revealed by whole transcriptome analysis. Applying Boolean logic we assembled a Petri net-based model of the IRF-GRN which provides molecular pathway predictions for the induction of different transcriptional programmes in LCs. In silico simulations performed after model parameterisation with transcription factor expression values predicted that human LC activation of antigen-specific CD8 T cells would be differentially regulated by epidermal cytokine induction of specific IRF-controlled pathways. This was confirmed by in vitro measurement of IFN-γ production by activated T cells. As a proof of concept, this approach shows that stochastic modelling of a specific immune networks renders transcriptome data valuable for the prediction of functional outcomes of immune responses.

  10. Distributive, Non-destructive Real-time System and Method for Snowpack Monitoring

    NASA Technical Reports Server (NTRS)

    Frolik, Jeff (Inventor); Skalka, Christian (Inventor)

    2013-01-01

    A ground-based system that provides quasi real-time measurement and collection of snow-water equivalent (SWE) data in remote settings is provided. The disclosed invention is significantly less expensive and easier to deploy than current methods and less susceptible to terrain and snow bridging effects. Embodiments of the invention include remote data recovery solutions. Compared to current infrastructure using existing SWE technology, the disclosed invention allows more SWE sites to be installed for similar cost and effort, in a greater variety of terrain; thus, enabling data collection at improved spatial resolutions. The invention integrates a novel computational architecture with new sensor technologies. The invention's computational architecture is based on wireless sensor networks, comprised of programmable, low-cost, low-powered nodes capable of sophisticated sensor control and remote data communication. The invention also includes measuring attenuation of electromagnetic radiation, an approach that is immune to snow bridging and significantly reduces sensor footprints.

  11. Innate immune system and tissue regeneration in planarians: an area ripe for exploration.

    PubMed

    Peiris, T Harshani; Hoyer, Katrina K; Oviedo, Néstor J

    2014-08-01

    The immune system has been implicated as an important modulator of tissue regeneration. However, the mechanisms driving injury-induced immune response and tissue repair remain poorly understood. For over 200 years, planarians have been a classical model for studies on tissue regeneration, but the planarian immune system and its potential role in repair is largely unknown. We found through comparative genomic analysis and data mining that planarians contain many potential homologs of the innate immune system that are activated during injury and repair of adult tissues. These findings support the notion that the relationship between adult tissue repair and the immune system is an ancient feature of basal Bilateria. Further analysis of the planarian immune system during regeneration could potentially add to our understanding of how the innate immune system and inflammatory responses interplay with regenerative signals to induce scar-less tissue repair in the context of the adult organism. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Physical Realization of a Supervised Learning System Built with Organic Memristive Synapses

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Pu; Bennett, Christopher H.; Cabaret, Théo; Vodenicarevic, Damir; Chabi, Djaafar; Querlioz, Damien; Jousselme, Bruno; Derycke, Vincent; Klein, Jacques-Olivier

    2016-09-01

    Multiple modern applications of electronics call for inexpensive chips that can perform complex operations on natural data with limited energy. A vision for accomplishing this is implementing hardware neural networks, which fuse computation and memory, with low cost organic electronics. A challenge, however, is the implementation of synapses (analog memories) composed of such materials. In this work, we introduce robust, fastly programmable, nonvolatile organic memristive nanodevices based on electrografted redox complexes that implement synapses thanks to a wide range of accessible intermediate conductivity states. We demonstrate experimentally an elementary neural network, capable of learning functions, which combines four pairs of organic memristors as synapses and conventional electronics as neurons. Our architecture is highly resilient to issues caused by imperfect devices. It tolerates inter-device variability and an adaptable learning rule offers immunity against asymmetries in device switching. Highly compliant with conventional fabrication processes, the system can be extended to larger computing systems capable of complex cognitive tasks, as demonstrated in complementary simulations.

  13. Physical Realization of a Supervised Learning System Built with Organic Memristive Synapses.

    PubMed

    Lin, Yu-Pu; Bennett, Christopher H; Cabaret, Théo; Vodenicarevic, Damir; Chabi, Djaafar; Querlioz, Damien; Jousselme, Bruno; Derycke, Vincent; Klein, Jacques-Olivier

    2016-09-07

    Multiple modern applications of electronics call for inexpensive chips that can perform complex operations on natural data with limited energy. A vision for accomplishing this is implementing hardware neural networks, which fuse computation and memory, with low cost organic electronics. A challenge, however, is the implementation of synapses (analog memories) composed of such materials. In this work, we introduce robust, fastly programmable, nonvolatile organic memristive nanodevices based on electrografted redox complexes that implement synapses thanks to a wide range of accessible intermediate conductivity states. We demonstrate experimentally an elementary neural network, capable of learning functions, which combines four pairs of organic memristors as synapses and conventional electronics as neurons. Our architecture is highly resilient to issues caused by imperfect devices. It tolerates inter-device variability and an adaptable learning rule offers immunity against asymmetries in device switching. Highly compliant with conventional fabrication processes, the system can be extended to larger computing systems capable of complex cognitive tasks, as demonstrated in complementary simulations.

  14. Emulation of the Active Immune Response in a Computer Network

    DTIC Science & Technology

    2009-01-15

    the Code Red worm propagated faster than the Melissa virus in 1999 and much faster than Morris’ worm in 1988. In the case of the Code Red worm, only...report to AFRL on contract #30602-01-0509, Binghamton NY, 2002, 2. Skormin, V.A., Delgado-Frias, J.G., McGee, D.L., Giordano , J.V., Popyack, L.J...V., Delgado-Frias J., McGee D., Giordano J., Popyack L.. Tarakanov A., "BASIS: A Biological Approach to System Information Security," ^2

  15. [Cancer immunotherapy. Importance of overcoming immune suppression].

    PubMed

    Malvicini, Mariana; Puchulo, Guillermo; Matar, Pablo; Mazzolini, Guillermo

    2010-01-01

    Increasing evidence indicates that the immune system is involved in the control of tumor progression. Effective antitumor immune response depends on the interaction between several components of the immune system, including antigen-presenting cells and different T cell subsets. However, tumor cells develop a number of mechanisms to escape recognition and elimination by the immune system. In this review we discuss these mechanisms and address possible therapeutic approaches to overcome the immune suppression generated by tumors.

  16. HIV-1 and hijacking of the host immune system: the current scenario.

    PubMed

    Imran, Muhammad; Manzoor, Sobia; Saalim, Muhammad; Resham, Saleha; Ashraf, Javed; Javed, Aneela; Waqar, Ahmed Bilal

    2016-10-01

    Human immunodeficiency virus (HIV) infection is a major health burden across the world which leads to the development of acquired immune deficiency syndrome (AIDS). This review article discusses the prevalence of HIV, its major routes of transmission, natural immunity, and evasion from the host immune system. HIV is mostly prevalent in Sub-Saharan Africa and low income countries. It is mostly transmitted by sharing syringe needles, blood transfusion, and sexual routes. The host immune system is categorized into three main types; the innate, the adaptive, and the intrinsic immune system. Regarding the innate immune system against HIV, the key players are mucosal membrane, dendritic cells (DCs), complement system, interferon, and host Micro RNAs. The major components of the adaptive immune system exploited by HIV are T cells mainly CD4+ T cells and B cells. The intrinsic immune system confronted by HIV involves (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G) APOBEC3G, tripartite motif 5-α (TRIM5a), terherin, and (SAM-domain HD-domain containing protein) SAMHD1. HIV-1 efficiently interacts with the host immune system, exploits the host machinery, successfully replicates and transmits from one cell to another. Further research is required to explore evasion strategies of HIV to develop novel therapeutic approaches against HIV. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  17. Large animal models for vaccine development and testing.

    PubMed

    Gerdts, Volker; Wilson, Heather L; Meurens, Francois; van Drunen Littel-van den Hurk, Sylvia; Wilson, Don; Walker, Stewart; Wheler, Colette; Townsend, Hugh; Potter, Andrew A

    2015-01-01

    The development of human vaccines continues to rely on the use of animals for research. Regulatory authorities require novel vaccine candidates to undergo preclinical assessment in animal models before being permitted to enter the clinical phase in human subjects. Substantial progress has been made in recent years in reducing and replacing the number of animals used for preclinical vaccine research through the use of bioinformatics and computational biology to design new vaccine candidates. However, the ultimate goal of a new vaccine is to instruct the immune system to elicit an effective immune response against the pathogen of interest, and no alternatives to live animal use currently exist for evaluation of this response. Studies identifying the mechanisms of immune protection; determining the optimal route and formulation of vaccines; establishing the duration and onset of immunity, as well as the safety and efficacy of new vaccines, must be performed in a living system. Importantly, no single animal model provides all the information required for advancing a new vaccine through the preclinical stage, and research over the last two decades has highlighted that large animals more accurately predict vaccine outcome in humans than do other models. Here we review the advantages and disadvantages of large animal models for human vaccine development and demonstrate that much of the success in bringing a new vaccine to market depends on choosing the most appropriate animal model for preclinical testing. © The Author 2015. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Bacteria-Triggered Systemic Immunity in Barley Is Associated with WRKY and ETHYLENE RESPONSIVE FACTORs But Not with Salicylic Acid1[C][W

    PubMed Central

    Dey, Sanjukta; Wenig, Marion; Langen, Gregor; Sharma, Sapna; Kugler, Karl G.; Knappe, Claudia; Hause, Bettina; Bichlmeier, Marlies; Babaeizad, Valiollah; Imani, Jafargholi; Janzik, Ingar; Stempfl, Thomas; Hückelhoven, Ralph; Kogel, Karl-Heinz; Mayer, Klaus F.X.

    2014-01-01

    Leaf-to-leaf systemic immune signaling known as systemic acquired resistance is poorly understood in monocotyledonous plants. Here, we characterize systemic immunity in barley (Hordeum vulgare) triggered after primary leaf infection with either Pseudomonas syringae pathovar japonica (Psj) or Xanthomonas translucens pathovar cerealis (Xtc). Both pathogens induced resistance in systemic, uninfected leaves against a subsequent challenge infection with Xtc. In contrast to systemic acquired resistance in Arabidopsis (Arabidopsis thaliana), systemic immunity in barley was not associated with NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 or the local or systemic accumulation of salicylic acid. Instead, we documented a moderate local but not systemic induction of abscisic acid after infection of leaves with Psj. In contrast to salicylic acid or its functional analog benzothiadiazole, local applications of the jasmonic acid methyl ester or abscisic acid triggered systemic immunity to Xtc. RNA sequencing analysis of local and systemic transcript accumulation revealed unique gene expression changes in response to both Psj and Xtc and a clear separation of local from systemic responses. The systemic response appeared relatively modest, and quantitative reverse transcription-polymerase chain reaction associated systemic immunity with the local and systemic induction of two WRKY and two ETHYLENE RESPONSIVE FACTOR (ERF)-like transcription factors. Systemic immunity against Xtc was further associated with transcriptional changes after a secondary/systemic Xtc challenge infection; these changes were dependent on the primary treatment. Taken together, bacteria-induced systemic immunity in barley may be mediated in part by WRKY and ERF-like transcription factors, possibly facilitating transcriptional reprogramming to potentiate immunity. PMID:25332505

  19. The role of the immune system in kidney disease.

    PubMed

    Tecklenborg, J; Clayton, D; Siebert, S; Coley, S M

    2018-05-01

    The immune system and the kidneys are closely linked. In health the kidneys contribute to immune homeostasis, while components of the immune system mediate many acute forms of renal disease and play a central role in progression of chronic kidney disease. A dysregulated immune system can have either direct or indirect renal effects. Direct immune-mediated kidney diseases are usually a consequence of autoantibodies directed against a constituent renal antigen, such as collagen IV in anti-glomerular basement membrane disease. Indirect immune-mediated renal disease often follows systemic autoimmunity with immune complex formation, but can also be due to uncontrolled activation of the complement pathways. Although the range of mechanisms of immune dysregulation leading to renal disease is broad, the pathways leading to injury are similar. Loss of immune homeostasis in renal disease results in perpetual immune cell recruitment and worsening damage to the kidney. Uncoordinated attempts at tissue repair, after immune-mediated disease or non-immune mediated injury, result in fibrosis of structures important for renal function, leading eventually to kidney failure. As renal disease often manifests clinically only when substantial damage has already occurred, new diagnostic methods and indeed treatments must be identified to inhibit further progression and promote appropriate tissue repair. Studying cases in which immune homeostasis is re-established may reveal new treatment possibilities. © 2018 British Society for Immunology.

  20. Regulatory dendritic cells: there is more than just immune activation.

    PubMed

    Schmidt, Susanne V; Nino-Castro, Andrea C; Schultze, Joachim L

    2012-01-01

    The immune system exists in a delicate equilibrium between inflammatory responses and tolerance. This unique feature allows the immune system to recognize and respond to potential threats in a controlled but normally limited fashion thereby preventing a destructive overreaction against healthy tissues. While the adaptive immune system was the major research focus concerning activation vs. tolerance in the immune system more recent findings suggest that cells of the innate immune system are important players in the decision between effective immunity and induction of tolerance or immune inhibition. Among immune cells of the innate immune system dendritic cells (DCs) have a special function linking innate immune functions with the induction of adaptive immunity. DCs are the primary professional antigen presenting cells (APCs) initiating adaptive immune responses. They belong to the hematopoietic system and arise from CD34(+) stem cells in the bone marrow. Particularly in the murine system two major subgroups of DCs, namely myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) can be distinguished. DCs are important mediators of innate and adaptive immunity mostly due to their remarkable capacity to present processed antigens via major histocompatibility complexes (MHC) to T cells and B cells in secondary lymphoid organs. A large body of literature has been accumulated during the last two decades describing which role DCs play during activation of T cell responses but also during the establishment and maintenance of central tolerance (Steinman et al., 2003). While the concept of peripheral tolerance has been clearly established during the last years, the role of different sets of DCs and their particular molecular mechanisms of immune deviation has not yet fully been appreciated. In this review we summarize accumulating evidence about the role of regulatory DCs in situations where the balance between tolerance and immunogenicity has been altered leading to pathologic conditions such as chronic inflammation or malignancies.

  1. Regulatory dendritic cells: there is more than just immune activation

    PubMed Central

    Schmidt, Susanne V.; Nino-Castro, Andrea C.; Schultze, Joachim L.

    2012-01-01

    The immune system exists in a delicate equilibrium between inflammatory responses and tolerance. This unique feature allows the immune system to recognize and respond to potential threats in a controlled but normally limited fashion thereby preventing a destructive overreaction against healthy tissues. While the adaptive immune system was the major research focus concerning activation vs. tolerance in the immune system more recent findings suggest that cells of the innate immune system are important players in the decision between effective immunity and induction of tolerance or immune inhibition. Among immune cells of the innate immune system dendritic cells (DCs) have a special function linking innate immune functions with the induction of adaptive immunity. DCs are the primary professional antigen presenting cells (APCs) initiating adaptive immune responses. They belong to the hematopoietic system and arise from CD34+ stem cells in the bone marrow. Particularly in the murine system two major subgroups of DCs, namely myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) can be distinguished. DCs are important mediators of innate and adaptive immunity mostly due to their remarkable capacity to present processed antigens via major histocompatibility complexes (MHC) to T cells and B cells in secondary lymphoid organs. A large body of literature has been accumulated during the last two decades describing which role DCs play during activation of T cell responses but also during the establishment and maintenance of central tolerance (Steinman et al., 2003). While the concept of peripheral tolerance has been clearly established during the last years, the role of different sets of DCs and their particular molecular mechanisms of immune deviation has not yet fully been appreciated. In this review we summarize accumulating evidence about the role of regulatory DCs in situations where the balance between tolerance and immunogenicity has been altered leading to pathologic conditions such as chronic inflammation or malignancies. PMID:22969767

  2. Impact of aging immune system on neurodegeneration and potential immunotherapies.

    PubMed

    Liang, Zhanfeng; Zhao, Yang; Ruan, Linhui; Zhu, Linnan; Jin, Kunlin; Zhuge, Qichuan; Su, Dong-Ming; Zhao, Yong

    2017-10-01

    The interaction between the nervous and immune systems during aging is an area of avid interest, but many aspects remain unclear. This is due, not only to the complexity of the aging process, but also to a mutual dependency and reciprocal causation of alterations and diseases between both the nervous and immune systems. Aging of the brain drives whole body systemic aging, including aging-related changes of the immune system. In turn, the immune system aging, particularly immunosenescence and T cell aging initiated by thymic involution that are sources of chronic inflammation in the elderly (termed inflammaging), potentially induces brain aging and memory loss in a reciprocal manner. Therefore, immunotherapeutics including modulation of inflammation, vaccination, cellular immune therapies and "protective autoimmunity" provide promising approaches to rejuvenate neuroinflammatory disorders and repair brain injury. In this review, we summarize recent discoveries linking the aging immune system with the development of neurodegeneration. Additionally, we discuss potential rejuvenation strategies, focusing aimed at targeting the aging immune system in an effort to prevent acute brain injury and chronic neurodegeneration during aging. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Robustness trade-offs and host–microbial symbiosis in the immune system

    PubMed Central

    Kitano, Hiroaki; Oda, Kanae

    2006-01-01

    The immune system provides organisms with robustness against pathogen threats, yet it also often adversely affects the organism as in autoimmune diseases. Recently, the molecular interactions involved in the immune system have been uncovered. At the same time, the role of the bacterial flora and its interactions with the host immune system have been identified. In this article, we try to reconcile these findings to draw a consistent picture of the host defense system. Specifically, we first argue that the network of molecular interactions involved in immune functions has a bow-tie architecture that entails inherent trade-offs among robustness, fragility, resource limitation, and performance. Second, we discuss the possibility that commensal bacteria and the host immune system constitute an integrated defense system. This symbiotic association has evolved to optimize its robustness against pathogen attacks and nutrient perturbations by harboring a broad range of microorganisms. Owing to the inherent propensity of a host immune system toward hyperactivity, maintenance of bacterial flora homeostasis might be particularly important in the development of preventive strategies against immune disorders such as autoimmune diseases. PMID:16738567

  4. Invited essay: Cognitive influences on the psychological immune system.

    PubMed

    Rachman, S J

    2016-12-01

    The construct of the psychological immune system is described and analysed. The direct and indirect cognitive influences on the system are discussed, and the implications of adding a cognitive construal to the influential model of a behavioural immune system are considered. The psychological immune system has two main properties: defensive and healing. It encompasses a good amount of health-related phenomena that is outside the scope of the behavioural model or the biological immune system. Evidence pertaining to the psychological immune system includes meta-analyses of the associations between psychological variables such as positive affect/wellbeing and diseases and mortality, and associations between wellbeing and positive health. The results of long-term prospective studies are consistent with the conclusions drawn from the meta-analyses. Laboratory investigations of the effects of psychological variables on the biological immune system show that negative affect can slow wound-healing, and positive affect can enhance resistance to infections, for example in experiments involving the introduction of the rhinovirus and the influenza A virus. A number of problems concerning the assessment of the functioning of the psychological immune system are considered, and the need to develop techniques for determining when the system is active or not, is emphasized. This problem is particularly challenging when trying to assess the effects of the psychological immune system during a prolonged psychological intervention, such as a course of resilience training. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Local and systemic tumor immune dynamics

    NASA Astrophysics Data System (ADS)

    Enderling, Heiko

    Tumor-associated antigens, stress proteins, and danger-associated molecular patterns are endogenous immune adjuvants that can both initiate and continually stimulate an immune response against a tumor. In retaliation, tumors can hijack intrinsic immune regulatory programs that are intended to prevent autoimmune disease, thereby facilitating continued growth despite the activated antitumor immune response. In metastatic disease, this ongoing tumor-immune battle occurs at each site. Adding an additional layer of complexity, T cells activated at one tumor site can cycle through the blood circulation system and extravasate in a different anatomic location to surveil a distant metastasis. We propose a mathematical modeling framework that incorporates the trafficking of activated T cells between metastatic sites. We extend an ordinary differential equation model of tumor-immune system interactions to multiple metastatic sites. Immune cells are activated in response to tumor burden and tumor cell death, and are recruited from tumor sites elsewhere in the body. A model of T cell trafficking throughout the circulatory system can inform the tumor-immune interaction model about the systemic distribution and arrival of T cells at specific tumor sites. Model simulations suggest that metastases not only contribute to immune surveillance, but also that this contribution varies between metastatic sites. Such information may ultimately help harness the synergy of focal therapy with the immune system to control metastatic disease.

  6. Novel Target for Ameliorating Pain and Other Problems after SCI: Spontaneous Activity in Nociceptors

    DTIC Science & Technology

    2016-06-01

    BSCB will permit blood-borne mye- loid and lymphoid immune cells to enter the spinal cord parenchyma and exert direct inflammatory actions on central...primitive innate immune system is the first line of defense against pathogens and toxins; it is always present and it depends upon diverse cell types that...adaptive immune system, the innate immune system does not em- ploy antigen-specific humoral and cell -mediated immunity mecha- nisms. Two innate immune

  7. Crosstalk between bone niche and immune system: osteoimmunology signaling as a potential target for cancer treatment.

    PubMed

    Criscitiello, Carmen; Viale, Giulia; Gelao, Lucia; Esposito, Angela; De Laurentiis, Michele; De Placido, Sabino; Santangelo, Michele; Goldhirsch, Aron; Curigliano, Giuseppe

    2015-02-01

    There is a well recognized link between the bone and the immune system and in recent years there has been a major effort to elucidate the multiple functions of the molecules expressed in both bone and immune cells. Several molecules that were initially identified and studied in the immune system have been shown to have essential functions also in the bone. An interdisciplinary field embracing immune and bone biology has been brought together and called "osteoimmunology". The co-regulation of the skeletal and immune systems strikingly exemplifies the extreme complexity of such an interaction. Their interdependency must be considered in designing therapeutic approaches for either of the two systems. In other words, it is necessary to think of the osteoimmune system as a complex physiological unit. Denosumab was originally introduced to specifically target bone resorption, but it is now under evaluation for its effect on the long term immune response. Similarly, our current and still growing knowledge of the intimate link between the immune system and bone will be beneficial for the safety of drugs targeting either of these integrated systems. Given the large number of molecules exerting functions on both the skeletal and immune systems, osteoimmunological understanding is becoming increasingly important. Both bone and immune systems are frequently disrupted in cancer; and they may be crucial in regulating tumor growth and progression. Some therapies - such as bisphosphonates and receptor activator of NF-κB ligand (RANKL) targeted drugs - that aim at reducing pathologic osteolysis in cancer may interact with the immune system, thus providing potential favorable effects on survival. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Plant innate immunity: an updated insight into defense mechanism.

    PubMed

    Muthamilarasan, Mehanathan; Prasad, Manoj

    2013-06-01

    Plants are invaded by an array of pathogens of which only a few succeed in causing disease. The attack by others is countered by a sophisticated immune system possessed by the plants. The plant immune system is broadly divided into two, viz. microbial-associated molecular-patterns-triggered immunity (MTI) and effector-triggered immunity (ETI). MTI confers basal resistance, while ETI confers durable resistance, often resulting in hypersensitive response. Plants also possess systemic acquired resistance (SAR), which provides long-term defense against a broad-spectrum of pathogens. Salicylic-acid-mediated systemic acquired immunity provokes the defense response throughout the plant system during pathogen infection at a particular site. Trans-generational immune priming allows the plant to heritably shield their progeny towards pathogens previously encountered. Plants circumvent the viral infection through RNA interference phenomena by utilizing small RNAs. This review summarizes the molecular mechanisms of plant immune system, and the latest breakthroughs reported in plant defense. We discuss the plant–pathogen interactions and integrated defense responses in the context of presenting an integral understanding in plant molecular immunity.

  9. Effects of ionizing radiation on the immune system with special emphasis on the interaction of dendritic and T cells.

    PubMed

    Manda, Katrin; Glasow, Annegret; Paape, Daniel; Hildebrandt, Guido

    2012-01-01

    Dendritic cells (DCs), as professional antigen-presenting cells, are members of the innate immune system and function as key players during the induction phase of adaptive immune responses. Uptake, processing, and presentation of antigens direct the outcome toward either tolerance or immunity. The cells of the immune system are among the most highly radiosensitive cells in the body. For high doses of ionizing radiation (HD-IR) both immune-suppressive effects after whole body irradiation and possible immune activation during tumor therapy were observed. On the other hand, the effects of low doses of ionizing radiation (LD-IR) on the immune system are controversial and seem to show high variability among different individuals and species. There are reports revealing that protracted LD-IR can result in radioresistance. But immune-suppressive effects of chronic LD-IR are also reported, including the killing or sensitizing of certain cell types. This article shall review the current knowledge of radiation-induced effects on the immune system, paying special attention to the interaction of DCs and T cells.

  10. Measuring the immune system: a comprehensive approach for the analysis of immune functions in humans.

    PubMed

    Claus, Maren; Dychus, Nicole; Ebel, Melanie; Damaschke, Jürgen; Maydych, Viktoriya; Wolf, Oliver T; Kleinsorge, Thomas; Watzl, Carsten

    2016-10-01

    The immune system is essential to provide protection from infections and cancer. Disturbances in immune function can therefore directly affect the health of the affected individual. Many extrinsic and intrinsic factors such as exposure to chemicals, stress, nutrition and age have been reported to influence the immune system. These influences can affect various components of the immune system, and we are just beginning to understand the causalities of these changes. To investigate such disturbances, it is therefore essential to analyze the different components of the immune system in a comprehensive fashion. Here, we demonstrate such an approach which provides information about total number of leukocytes, detailed quantitative and qualitative changes in the composition of lymphocyte subsets, cytokine levels in serum and functional properties of T cells, NK cells and monocytes. Using samples from a cohort of 24 healthy volunteers, we demonstrate the feasibility of our approach to detect changes in immune functions.

  11. Natural Inspired Intelligent Visual Computing and Its Application to Viticulture.

    PubMed

    Ang, Li Minn; Seng, Kah Phooi; Ge, Feng Lu

    2017-05-23

    This paper presents an investigation of natural inspired intelligent computing and its corresponding application towards visual information processing systems for viticulture. The paper has three contributions: (1) a review of visual information processing applications for viticulture; (2) the development of natural inspired computing algorithms based on artificial immune system (AIS) techniques for grape berry detection; and (3) the application of the developed algorithms towards real-world grape berry images captured in natural conditions from vineyards in Australia. The AIS algorithms in (2) were developed based on a nature-inspired clonal selection algorithm (CSA) which is able to detect the arcs in the berry images with precision, based on a fitness model. The arcs detected are then extended to perform the multiple arcs and ring detectors information processing for the berry detection application. The performance of the developed algorithms were compared with traditional image processing algorithms like the circular Hough transform (CHT) and other well-known circle detection methods. The proposed AIS approach gave a Fscore of 0.71 compared with Fscores of 0.28 and 0.30 for the CHT and a parameter-free circle detection technique (RPCD) respectively.

  12. Texture classification of lung computed tomography images

    NASA Astrophysics Data System (ADS)

    Pheng, Hang See; Shamsuddin, Siti M.

    2013-03-01

    Current development of algorithms in computer-aided diagnosis (CAD) scheme is growing rapidly to assist the radiologist in medical image interpretation. Texture analysis of computed tomography (CT) scans is one of important preliminary stage in the computerized detection system and classification for lung cancer. Among different types of images features analysis, Haralick texture with variety of statistical measures has been used widely in image texture description. The extraction of texture feature values is essential to be used by a CAD especially in classification of the normal and abnormal tissue on the cross sectional CT images. This paper aims to compare experimental results using texture extraction and different machine leaning methods in the classification normal and abnormal tissues through lung CT images. The machine learning methods involve in this assessment are Artificial Immune Recognition System (AIRS), Naive Bayes, Decision Tree (J48) and Backpropagation Neural Network. AIRS is found to provide high accuracy (99.2%) and sensitivity (98.0%) in the assessment. For experiments and testing purpose, publicly available datasets in the Reference Image Database to Evaluate Therapy Response (RIDER) are used as study cases.

  13. Use of DHCP to provide essential information for care and management of HIV patients.

    PubMed

    Pfeil, C N; Ivey, J L; Hoffman, J D; Kuhn, I M

    1991-01-01

    The Department of Veterans' Affairs (VA) has reported over 10,000 Acquired Immune Deficiency Syndrome (AIDS) cases since the beginning of the epidemic. These cases were distributed throughout 152 of the VA's network of 172 medical centers and outpatient clinics. This network of health care facilities presents a unique opportunity to provide computer based information systems for clinical care and resource monitoring for these patients. The VA further facilitates such a venture through its commitment to the Decentralized Hospital Computer Program (DHCP). This paper describes a new application within DHCP known as the VA's HIV Registry. This project addresses the need to support clinical information as well as the added need to manage the resources necessary to care for HIV patients.

  14. Behavioural conditioning of immune functions: how the central nervous system controls peripheral immune responses by evoking associative learning processes.

    PubMed

    Riether, Carsten; Doenlen, Raphaël; Pacheco-López, Gustavo; Niemi, Maj-Britt; Engler, Andrea; Engler, Harald; Schedlowski, Manfred

    2008-01-01

    During the last 30 years of psychoneuroimmunology research the intense bi-directional communication between the central nervous system (CNS) and the immune system has been demonstrated in studies on the interaction between the nervous-endocrine-immune systems. One of the most intriguing examples of such interaction is the capability of the CNS to associate an immune status with specific environmental stimuli. In this review, we systematically summarize experimental evidence demonstrating the behavioural conditioning of peripheral immune functions. In particular, we focus on the mechanisms underlying the behavioural conditioning process and provide a theoretical framework that indicates the potential feasibility of behaviourally conditioned immune changes in clinical situations.

  15. The HIV hide and seek game: an immunogenomic analysis of the HIV epitope repertoire.

    PubMed

    Vider-Shalit, Tal; Almani, Michal; Sarid, Ronit; Louzoun, Yoram

    2009-07-17

    Viruses employ various means to evade immune detection. One common evasion strategy is the removal of CD8 cytotoxic T-lymphocyte (CTL) epitopes. Here, we use bioinformatic tools to compute the HIV CTL epitope repertoire presented by over 8000 HIV sequences in multiple Human Leukocyte Antigen alleles. We define the 'Size of Immune Repertoire' (SIR) score, which represents the ratio between the number of the predicted epitopes within a protein and their expected number within a scrambled version of the same protein. We show that HIV proteins present less epitopes than expected and that the number of epitopes gradually decreases from SIV to recent HIV sequences. The decrease of the SIR score of HIV is accompanied by a high frequency of replacement mutations within epitopes. The SIR score of the different HIV proteins is not uniform. The regulatory proteins, Tat and Rev, expressed early during cellular infection have a low SIR score, whereas virion-associated genes that are expressed later, such as Env, Pol and Gag, have a higher SIR score. Actually, the SIR score of Gag keeps increasing over time. We hypothesize that our results reflect an HIV immune evasion strategy. This involves the targeting of the CTL immune response to viral structural and enzyme proteins, allowing the virus a time interval to propagate before its host cells are destroyed by CTLs. An efficient anti-HIV CTL response against HIV should thus also target the regulatory genes that HIV seeks to hide from the immune system.

  16. Recombinant Mip-PilE-FlaA dominant epitopes vaccine candidate against Legionella pneumophila.

    PubMed

    He, Jinlei; Huang, Fan; Chen, Han; Chen, Qiwei; Zhang, Junrong; Li, Jiao; Chen, Dali; Chen, Jianping

    2017-06-01

    Legionella pneumophila is the main causative agent of Legionnaires' disease, which is a severe multi-system disease with pneumonia as the primary manifestation. We designed a recombinant Mip-PilE-FlaA dominant epitopes vaccine against Legionella pneumophila to prevent the disease and evaluated its immunogenicity and protective immunity. The protein structures of Mip, PilE and FlaA were analyzed using a computer, and the gene sequences of the dominant epitopes of the three proteins were selected to construct and optimize the vaccine. The optimized mip, pilE, flaA and recombinant mip-pilE-flaA gene sequences were cloned, expressed and purified. The purified proteins were used as dominant epitopes vaccines to immunize BALB/c mice and determine the protective immunity and immunogenicity of these purified proteins. The identification confirmed that the recombinant mip-pilE-flaA was successfully cloned and expressed. ELISA revealed that the Mip-PilE-FlaA group produced the highest IgG response, and this protein may considerably improve the production of some cytokines in BALB/c mice. Histopathology analyses of lungs from mice immunized with Mip-PilE-FlaA revealed a certain protective effect. Our work demonstrated that the recombinant dominant epitopes of Mip-PilE-FlaA exhibited strong immunogenicity and immune protection, and this protein may be an efficient epitopes vaccine candidate against Legionella pneumophila. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  17. The stress response and immune system share, borrow, and reconfigure their physiological network elements: Evidence from the insects.

    PubMed

    Adamo, Shelley A

    2017-02-01

    The classic biomedical view is that stress hormone effects on the immune system are largely pathological, especially if the stress is chronic. However, more recent interpretations have focused on the potential adaptive function of these effects. This paper examines stress response-immune system interactions from a physiological network perspective, using insects because of their simpler physiology. For example, stress hormones can reduce disease resistance, yet activating an immune response results in the release of stress hormones in both vertebrates and invertebrates. From a network perspective, this phenomenon is consistent with the 'sharing' of the energy-releasing ability of stress hormones by both the stress response and the immune system. Stress-induced immunosuppression is consistent with the stress response 'borrowing' molecular components from the immune system to increase the capacity of stress-relevant physiological processes (i.e. a trade off). The insect stress hormones octopamine and adipokinetic hormone can also 'reconfigure' the immune system to help compensate for the loss of some of the immune system's molecular resources (e.g. apolipophorin III). This view helps explain seemingly maladaptive interactions between the stress response and immune system. The adaptiveness of stress hormone effects on individual immune components may be apparent only from the perspective of the whole organism. These broad principles will apply to both vertebrates and invertebrates. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Vitamin E, immunity, and infection

    USDA-ARS?s Scientific Manuscript database

    A normally functioning immune system is critical for the body to fight and eliminate invading pathogens from the environment. On the other hand, the immune system also protects the body from internal risks such as neoplasia growing within and autoimmune responses that attack self. The immune system ...

  19. Chapter 2: Innate Immunity

    PubMed Central

    Turvey, Stuart E.; Broide, David H.

    2009-01-01

    Recent years have witnessed an explosion of interest in the innate immune system. Questions about how the innate immune system senses infection and empowers a protective immune response are being answered at the molecular level. These basic science discoveries are being translated into a more complete understanding of the central role innate immunity plays in the pathogenesis of many human infectious and inflammatory diseases. It is particularly exciting that we are already seeing a return on these scientific investments with the emergence of novel therapies to harness the power of the innate immune system. In this review we explore the defining characteristics of the innate immune system, and through more detailed examples, we highlight recent breakthroughs that have advanced our understanding of the role of innate immunity in human health and disease. PMID:19932920

  20. Foetal immune programming: hormones, cytokines, microbes and regulatory T cells.

    PubMed

    Hsu, Peter; Nanan, Ralph

    2014-10-01

    In addition to genetic factors, environmental cues play important roles in shaping the immune system. The first environment that the developing foetal immune system encounters is the uterus. Although physically the mother and the foetus are separated by the placental membranes, various factors such as hormones and cytokines may provide "environmental cues" to the foetal immune system. Additionally, increasing evidence suggests that prenatal maternal environmental factors, particularly microbial exposure, might significantly influence the foetal immune system, affecting long-term outcomes, a concept termed foetal immune programming. Here we discuss the potential mediators of foetal immune programming, focusing on the role of pregnancy-related hormones, cytokines and regulatory T cells, which play a critical role in immune tolerance. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Physical Theory of the Competition that Allows HIV to Escape from the Immune System

    NASA Astrophysics Data System (ADS)

    Wang, Guanyu; Deem, Michael W.

    2006-11-01

    Competition within the immune system may degrade immune control of viral infections. We formalize the evolution that occurs in both HIV-1 and the immune system quasispecies. Inclusion of competition in the immune system leads to a novel balance between the immune response and HIV-1, in which the eventual outcome is HIV-1 escape rather than control. The analytical model reproduces the three stages of HIV-1 infection. We propose a vaccine regimen that may be able to reduce competition between T cells, potentially eliminating the third stage of HIV-1.

  2. Evasion and Interactions of the Humoral Innate Immune Response in Pathogen Invasion, Autoimmune Disease, and Cancer

    PubMed Central

    Rettig, Trisha A.; Harbin, Julie N.; Harrington, Adelaide; Dohmen, Leonie; Fleming, Sherry D.

    2015-01-01

    The humoral innate immune system is composed of three major branches, complement, coagulation, and natural antibodies. To persist in the host, pathogens, such as bacteria, viruses, and cancers must evade parts of the innate humoral immune system. Disruptions in the humoral innate immune system also play a role in the development of autoimmune diseases. This review will examine how gram positive bacteria, viruses, cancer, and the autoimmune conditions Systemic Lupus Erythematosus and Anti-phospholipid syndrome, interact with these immune system components. Through examining evasion techniques it becomes clear that interplay between these three systems exists. By exploring the interplay and the evasion/disruption of the humoral innate immune system, we can develop a better understanding of pathogenic infections, cancer, and autoimmune disease development. PMID:26145788

  3. Psychoneuroimmunology - psyche and autoimmunity.

    PubMed

    Ziemssen, Tjalf

    2012-01-01

    Psychoneuroimmunology is a relatively young field of research that investigates interactions between central nervous and immune system. The brain modulates the immune system by the endocrine and autonomic nervous system. Vice versa, the immune system modulates brain activity including sleep and body temperature. Based on a close functional and anatomical link, the immune and nervous systems act in a highly reciprocal manner. From fever to stress, the influence of one system on the other has evolved in an intricate manner to help sense danger and to mount an appropriate adaptive response. Over recent decades, reasonable evidence has emerged that these brain-to-immune interactions are highly modulated by psychological factors which influence immunity and autoimmune disease. For several diseases, the relevance of psychoneuroimmunological findings has already been demonstrated.

  4. The discontinuity theory of immunity

    PubMed Central

    Pradeu, Thomas; Vivier, Eric

    2017-01-01

    Some biological systems detect the rate of change in a stimulus rather than the stimulus itself only. We suggest that the immune system works in this way. According to the discontinuity theory of immunity, the immune system responds to sudden changes in antigenic stimulation and is rendered tolerant by slow or continuous stimulation. This basic principle, which is supported by recent data on immune checkpoints in viral infections, cancers, and allergies, can be seen as a unifying framework for diverse immune responses. PMID:28239677

  5. Reciprocal Interactions of the Intestinal Microbiota and Immune System

    PubMed Central

    Maynard, Craig L.; Elson, Charles O.; Hatton, Robin D.; Weaver, Casey T.

    2013-01-01

    Preface Emergence of the adaptive immune system in vertebrates set the stage for evolution of an advanced symbiotic relationship with the intestinal microbiota. The defining features of specificity and memory that characterize adaptive immunity have afforded vertebrates mechanisms for efficiently tailoring immune responses to diverse types of microbes, whether to promote mutualism or host defense. These same attributes carry risk for immune-mediated diseases that are increasingly linked to the intestinal microbiota. Understanding how the adaptive immune system copes with the remarkable number and diversity of microbes that colonize the digestive tract, and how it integrates with more primitive innate immune mechanisms to maintain immune homeostasis, holds considerable promise for new approaches to modulate immune networks in order to treat and prevent disease. PMID:22972296

  6. Psychological Stress and the Cutaneous Immune Response: Roles of the HPA Axis and the Sympathetic Nervous System in Atopic Dermatitis and Psoriasis

    PubMed Central

    Hall, Jessica M. F.; Cruser, desAnges; Podawiltz, Alan; Mummert, Diana I.; Jones, Harlan; Mummert, Mark E.

    2012-01-01

    Psychological stress, an evolutionary adaptation to the fight-or-flight response, triggers a number of physiological responses that can be deleterious under some circumstances. Stress signals activate the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system. Elements derived from those systems (e.g., cortisol, catecholamines and neuropeptides) can impact the immune system and possible disease states. Skin provides a first line of defense against many environmental insults. A number of investigations have indicated that the skin is especially sensitive to psychological stress, and experimental evidence shows that the cutaneous innate and adaptive immune systems are affected by stressors. For example, psychological stress has been shown to reduce recovery time of the stratum corneum barrier after its removal (innate immunity) and alters antigen presentation by epidermal Langerhans cells (adaptive immunity). Moreover, psychological stress may trigger or exacerbate immune mediated dermatological disorders. Understanding how the activity of the psyche-nervous -immune system axis impinges on skin diseases may facilitate coordinated treatment strategies between dermatologists and psychiatrists. Herein, we will review the roles of the HPA axis and the sympathetic nervous system on the cutaneous immune response. We will selectively highlight how the interplay between psychological stress and the immune system affects atopic dermatitis and psoriasis. PMID:22969795

  7. Direct and Electronic Health Record Access to the Clinical Decision Support for Immunizations in the Minnesota Immunization Information System.

    PubMed

    Rajamani, Sripriya; Bieringer, Aaron; Wallerius, Stephanie; Jensen, Daniel; Winden, Tamara; Muscoplat, Miriam Halstead

    2016-01-01

    Immunization information systems (IIS) are population-based and confidential computerized systems maintained by public health agencies containing individual data on immunizations from participating health care providers. IIS hold comprehensive vaccination histories given across providers and over time. An important aspect to IIS is the clinical decision support for immunizations (CDSi), consisting of vaccine forecasting algorithms to determine needed immunizations. The study objective was to analyze the CDSi presentation by IIS in Minnesota (Minnesota Immunization Information Connection [MIIC]) through direct access by IIS interface and by access through electronic health records (EHRs) to outline similarities and differences. The immunization data presented were similar across the three systems examined, but with varying ability to integrate data across MIIC and EHR, which impacts immunization data reconciliation. Study findings will lead to better understanding of immunization data display, clinical decision support, and user functionalities with the ultimate goal of promoting IIS CDSi to improve vaccination rates.

  8. Bacteria-triggered systemic immunity in barley is associated with WRKY and ETHYLENE RESPONSIVE FACTORs but not with salicylic acid.

    PubMed

    Dey, Sanjukta; Wenig, Marion; Langen, Gregor; Sharma, Sapna; Kugler, Karl G; Knappe, Claudia; Hause, Bettina; Bichlmeier, Marlies; Babaeizad, Valiollah; Imani, Jafargholi; Janzik, Ingar; Stempfl, Thomas; Hückelhoven, Ralph; Kogel, Karl-Heinz; Mayer, Klaus F X; Vlot, A Corina

    2014-12-01

    Leaf-to-leaf systemic immune signaling known as systemic acquired resistance is poorly understood in monocotyledonous plants. Here, we characterize systemic immunity in barley (Hordeum vulgare) triggered after primary leaf infection with either Pseudomonas syringae pathovar japonica (Psj) or Xanthomonas translucens pathovar cerealis (Xtc). Both pathogens induced resistance in systemic, uninfected leaves against a subsequent challenge infection with Xtc. In contrast to systemic acquired resistance in Arabidopsis (Arabidopsis thaliana), systemic immunity in barley was not associated with NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 or the local or systemic accumulation of salicylic acid. Instead, we documented a moderate local but not systemic induction of abscisic acid after infection of leaves with Psj. In contrast to salicylic acid or its functional analog benzothiadiazole, local applications of the jasmonic acid methyl ester or abscisic acid triggered systemic immunity to Xtc. RNA sequencing analysis of local and systemic transcript accumulation revealed unique gene expression changes in response to both Psj and Xtc and a clear separation of local from systemic responses. The systemic response appeared relatively modest, and quantitative reverse transcription-polymerase chain reaction associated systemic immunity with the local and systemic induction of two WRKY and two ETHYLENE RESPONSIVE FACTOR (ERF)-like transcription factors. Systemic immunity against Xtc was further associated with transcriptional changes after a secondary/systemic Xtc challenge infection; these changes were dependent on the primary treatment. Taken together, bacteria-induced systemic immunity in barley may be mediated in part by WRKY and ERF-like transcription factors, possibly facilitating transcriptional reprogramming to potentiate immunity. © 2014 American Society of Plant Biologists. All Rights Reserved.

  9. Limbic encephalitis associated with systemic lupus erythematosus.

    PubMed

    Kano, O; Arasaki, K; Ikeda, K; Aoyagi, J; Shiraishi, H; Motomura, M; Iwasaki, Y

    2009-12-01

    A 34-year-old woman with systemic lupus erythematosus (SLE) presented with general fatigue, seizures and memory loss. Magnetic resonance imaging of the brain showed a high signal area in the mesial temporal lobe bilaterally. Computed tomography scan of the chest and abdomen and ultrasound of pelvis detected no malignancy and tumour marker, antibodies to antineuronal antibodies (anti-Hu, anti-Ta and anti-Ma) and antibodies to voltage-gated potassium channels were all negative. The present case is limbic encephalitis (LE) associated with SLE and the pathogenesis may include autoimmunity shared. Our experience indicates that the immunologic spectrum of LE will expand to include additional immune mechanisms.

  10. Immunotherapy: How the Immune System Fights Cancer

    Cancer.gov

    Immunotherapy uses the body’s immune system to fight cancer. This animation explains three types of immunotherapy used to treat cancer: nonspecific immune stimulation, T-cell transfer therapy, and immune checkpoint inhibitors.

  11. Immunity in Drosophila melanogaster--from microbial recognition to whole-organism physiology.

    PubMed

    Buchon, Nicolas; Silverman, Neal; Cherry, Sara

    2014-12-01

    Since the discovery of antimicrobial peptide responses 40 years ago, the fruit fly Drosophila melanogaster has proven to be a powerful model for the study of innate immunity. Early work focused on innate immune mechanisms of microbial recognition and subsequent nuclear factor-κB signal transduction. More recently, D. melanogaster has been used to understand how the immune response is regulated and coordinated at the level of the whole organism. For example, researchers have used this model in studies investigating interactions between the microbiota and the immune system at barrier epithelial surfaces that ensure proper nutritional and immune homeostasis both locally and systemically. In addition, studies in D. melanogaster have been pivotal in uncovering how the immune response is regulated by both endocrine and metabolic signalling systems, and how the immune response modifies these systems as part of a homeostatic circuit. In this Review, we briefly summarize microbial recognition and antiviral immunity in D. melanogaster, and we highlight recent studies that have explored the effects of organism-wide regulation of the immune response and, conversely, the effects of the immune response on organism physiology.

  12. Genetic association of impulsivity in young adults: a multivariate study

    PubMed Central

    Khadka, S; Narayanan, B; Meda, S A; Gelernter, J; Han, S; Sawyer, B; Aslanzadeh, F; Stevens, M C; Hawkins, K A; Anticevic, A; Potenza, M N; Pearlson, G D

    2014-01-01

    Impulsivity is a heritable, multifaceted construct with clinically relevant links to multiple psychopathologies. We assessed impulsivity in young adult (N~2100) participants in a longitudinal study, using self-report questionnaires and computer-based behavioral tasks. Analysis was restricted to the subset (N=426) who underwent genotyping. Multivariate association between impulsivity measures and single-nucleotide polymorphism data was implemented using parallel independent component analysis (Para-ICA). Pathways associated with multiple genes in components that correlated significantly with impulsivity phenotypes were then identified using a pathway enrichment analysis. Para-ICA revealed two significantly correlated genotype–phenotype component pairs. One impulsivity component included the reward responsiveness subscale and behavioral inhibition scale of the Behavioral-Inhibition System/Behavioral-Activation System scale, and the second impulsivity component included the non-planning subscale of the Barratt Impulsiveness Scale and the Experiential Discounting Task. Pathway analysis identified processes related to neurogenesis, nervous system signal generation/amplification, neurotransmission and immune response. We identified various genes and gene regulatory pathways associated with empirically derived impulsivity components. Our study suggests that gene networks implicated previously in brain development, neurotransmission and immune response are related to impulsive tendencies and behaviors. PMID:25268255

  13. Synthetic immunology: modulating the human immune system.

    PubMed

    Geering, Barbara; Fussenegger, Martin

    2015-02-01

    Humans have manipulated the immune system to dampen or boost the immune response for thousands of years. As our understanding of fundamental immunology and biotechnological methodology accumulates, we can capitalize on this combined knowledge to engineer biological devices with the aim of rationally manipulating the immune response. We address therapeutic approaches based on the principles of synthetic immunology that either ameliorate disorders of the immune system by interfering with the immune response, or improve diverse pathogenic conditions by exploiting immune cell effector functions. We specifically highlight synthetic proteins investigated in preclinical and clinical trials, summarize studies that have used engineered immune cells, and finish with a discussion of possible future therapeutic concepts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. The deconvolution of complex spectra by artificial immune system

    NASA Astrophysics Data System (ADS)

    Galiakhmetova, D. I.; Sibgatullin, M. E.; Galimullin, D. Z.; Kamalova, D. I.

    2017-11-01

    An application of the artificial immune system method for decomposition of complex spectra is presented. The results of decomposition of the model contour consisting of three components, Gaussian contours, are demonstrated. The method of artificial immune system is an optimization method, which is based on the behaviour of the immune system and refers to modern methods of search for the engine optimization.

  15. Immune System Activation and Depression: Roles of Serotonin in the Central Nervous System and Periphery.

    PubMed

    Robson, Matthew J; Quinlan, Meagan A; Blakely, Randy D

    2017-05-17

    Serotonin (5-hydroxytryptamine, 5-HT) has long been recognized as a key contributor to the regulation of mood and anxiety and is strongly associated with the etiology of major depressive disorder (MDD). Although more known for its roles within the central nervous system (CNS), 5-HT is recognized to modulate several key aspects of immune system function that may contribute to the development of MDD. Copious amounts of research have outlined a connection between alterations in immune system function, inflammation status, and MDD. Supporting this connection, peripheral immune activation results in changes in the function and/or expression of many components of 5-HT signaling that are associated with depressive-like phenotypes. How 5-HT is utilized by the immune system to effect CNS function and ultimately behaviors related to depression is still not well understood. This Review summarizes the evidence that immune system alterations related to depression affect CNS 5-HT signaling that can alter MDD-relevant behaviors and that 5-HT regulates immune system signaling within the CNS and periphery. We suggest that targeting the interrelationships between immune and 5-HT signaling may provide more effective treatments for subsets of those suffering from inflammation-associated MDD.

  16. Role of the immune system in cardiac tissue damage and repair following myocardial infarction.

    PubMed

    Saparov, Arman; Ogay, Vyacheslav; Nurgozhin, Talgat; Chen, William C W; Mansurov, Nurlan; Issabekova, Assel; Zhakupova, Jamilya

    2017-09-01

    The immune system plays a crucial role in the initiation, development, and resolution of inflammation following myocardial infarction (MI). The lack of oxygen and nutrients causes the death of cardiomyocytes and leads to the exposure of danger-associated molecular patterns that are recognized by the immune system to initiate inflammation. At the initial stage of post-MI inflammation, the immune system further damages cardiac tissue to clear cell debris. The excessive production of reactive oxygen species (ROS) by immune cells and the inability of the anti-oxidant system to neutralize ROS cause oxidative stress that further aggravates inflammation. On the other hand, the cells of both innate and adaptive immune system and their secreted factors are critically instrumental in the very dynamic and complex processes of regulating inflammation and mediating cardiac repair. It is important to decipher the balance between detrimental and beneficial effects of the immune system in MI. This enables us to identify better therapeutic targets for reducing the infarct size, sustaining the cardiac function, and minimizing the likelihood of heart failure. This review discusses the role of both innate and adaptive immune systems in cardiac tissue damage and repair in experimental models of MI.

  17. Evolution of complement as an effector system in innate and adaptive immunity.

    PubMed

    Sunyer, J Oriol; Boshra, Hani; Lorenzo, Gema; Parra, David; Freedman, Bruce; Bosch, Nina

    2003-01-01

    For a long time, the complement system in mammals has been regarded as a biological system that plays an essential role in innate immunity. More recently, it has been recognized that the complement system contributes heavily to the generation and development of an acquired immune response. In fact, this ancient mechanism of defense has evolved from a primitive mechanism of innate immune recognition in invertebrate species to that of an effector system that bridges the innate with the adaptive immune response in vertebrate species. When and how did complement evolve into a shared effector system between innate and adaptive immunity? To answer this question, our group is interested in understanding the role of complement in innate and adaptive immune responses in an evolutionary relevant species: the teleost fish. The attractiveness of this species as an animal model is based on two important facts. First, teleost fish are one of the oldest animal species to have developed an adaptive immune response. Second, the complement system of teleost fish offers a unique feature, which is the structural and functional diversity of its main effector protein, C3, the third component of the complement system.

  18. Anti-Immune Strategies of Pathogenic Fungi

    PubMed Central

    Marcos, Caroline M.; de Oliveira, Haroldo C.; de Melo, Wanessa de Cássia M. Antunes; da Silva, Julhiany de Fátima; Assato, Patrícia A.; Scorzoni, Liliana; Rossi, Suélen A.; de Paula e Silva, Ana C. A.; Mendes-Giannini, Maria J. S.; Fusco-Almeida, Ana M.

    2016-01-01

    Pathogenic fungi have developed many strategies to evade the host immune system. Multiple escape mechanisms appear to function together to inhibit attack by the various stages of both the adaptive and the innate immune response. Thus, after entering the host, such pathogens fight to overcome the immune system to allow their survival, colonization and spread to different sites of infection. Consequently, the establishment of a successful infectious process is closely related to the ability of the pathogen to modulate attack by the immune system. Most strategies employed to subvert or exploit the immune system are shared among different species of fungi. In this review, we summarize the main strategies employed for immune evasion by some of the major pathogenic fungi. PMID:27896220

  19. Effects of engineered nanoparticles on the innate immune system.

    PubMed

    Liu, Yuanchang; Hardie, Joseph; Zhang, Xianzhi; Rotello, Vincent M

    2017-12-01

    Engineered nanoparticles (NPs) have broad applications in industry and nanomedicine. When NPs enter the body, interactions with the immune system are unavoidable. The innate immune system, a non-specific first line of defense against potential threats to the host, immediately interacts with introduced NPs and generates complicated immune responses. Depending on their physicochemical properties, NPs can interact with cells and proteins to stimulate or suppress the innate immune response, and similarly activate or avoid the complement system. NPs size, shape, hydrophobicity and surface modification are the main factors that influence the interactions between NPs and the innate immune system. In this review, we will focus on recent reports about the relationship between the physicochemical properties of NPs and their innate immune response, and their applications in immunotherapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. NASA Tech Briefs, August 2005

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Topics include: Hidden Identification on Parts: Magnetic Machine-Readable Matrix Symbols; System for Processing Coded OFDM Under Doppler and Fading; Multipurpose Hyperspectral Imaging System; Magnetic-Flux-Compensated Voltage Divider; High-Performance Satellite/Terrestrial-Network Gateway; Internet-Based System for Voice Communication With the ISS; Stripline/Microstrip Transition in Multilayer Circuit Board; Dual-Band Feed for a Microwave Reflector Antenna; Quadratic Programming for Allocating Control Effort; Range Process Simulation Tool; Simulator of Space Communication Networks; Computing Q-D Relationships for Storage of Rocket Fuels; Contour Error Map Algorithm; Portfolio Analysis Tool; Glass Frit Filters for Collecting Metal Oxide Nanoparticles; Anhydrous Proton-Conducting Membranes for Fuel Cells; Portable Electron-Beam Free-Form Fabrication System; Miniature Laboratory for Detecting Sparse Biomolecules; Multicompartment Liquid-Cooling/Warming Protective Garments; Laser Metrology for an Optical-Path-Length Modulator; PCM Passive Cooling System Containing Active Subsystems; Automated Electrostatics Environmental Chamber; Estimating Aeroheating of a 3D Body Using a 2D Flow Solver; Artificial Immune System for Recognizing Patterns; Computing the Thermodynamic State of a Cryogenic Fluid; Safety and Mission Assurance Performance Metric; Magnetic Control of Concentration Gradient in Microgravity; Avionics for a Small Robotic Inspection Spacecraft; and Simulation of Dynamics of a Flexible Miniature Airplane.

  1. Mind-body hypnotic imagery in the treatment of auto-immune disorders.

    PubMed

    Torem, Moshe S

    2007-10-01

    For many years Western Medicine has considered the immune system to be separate and independent from the central nervous system. However, significant scientific advances and research discoveries that occurred during the past 50 years have presented additional facts that the immune system does interact with the central nervous system with mutual influence. This article provides a systematic review of the literature on the connection between the brain and the immune system and its clinical implications. It then provides a rational foundation for the role of using hypnosis and imagery to therapeutically influence the immune system. Five case examples are provided with illustrated instructions for clinicians on how hypnosis and imagery may be utilized in the treatment of patients with auto-immune disorders. Suggestions for future research in this field are included.

  2. At the crossroads between tolerance and aggression: Revisiting the "layered immune system" hypothesis.

    PubMed

    Mold, Jeff E; McCune, Joseph M

    2011-04-01

    "We do not grow absolutely, chronologically. We grow sometimes in one dimension, and not in another; unevenly. We grow partially. We are relative. We are mature in one realm, childish in another. The past, present and future mingle and pull us backward, forward, or fix us in the present. We are made up of layers, cells, constellations."-Anaïs NinIt has long been recognized that the developing immune system exhibits certain peculiarities when compared to the adult immune system. Nonetheless, many still regard the fetal immune system as simply being an immature version of the adult immune system. Here we discuss historical evidence as well as recent findings, which suggest that the human immune system may develop in distinct layers with specific functions at different stages of development.

  3. A human tissue-based functional assay platform to evaluate the immune function impact of small molecule inhibitors that target the immune system.

    PubMed

    St Pierre, Cristina; Guo, Jane; Shin, John D; Engstrom, Laura W; Lee, Hyun-Hee; Herbert, Alan; Surdi, Laura; Baker, James; Salmon, Michael; Shah, Sanjiv; Ellis, J Michael; Houshyar, Hani; Crackower, Michael A; Kleinschek, Melanie A; Jones, Dallas C; Hicks, Alexandra; Zaller, Dennis M; Alves, Stephen E; Ramadas, Ravisankar A

    2017-01-01

    While the immune system is essential for the maintenance of the homeostasis, health and survival of humans, aberrant immune responses can lead to chronic inflammatory and autoimmune disorders. Pharmacological modulation of drug targets in the immune system to ameliorate disease also carry a risk of immunosuppression that could lead to adverse outcomes. Therefore, it is important to understand the 'immune fingerprint' of novel therapeutics as they relate to current and, clinically used immunological therapies to better understand their potential therapeutic benefit as well as immunosuppressive ability that might lead to adverse events such as infection risks and cancer. Since the mechanistic investigation of pharmacological modulators in a drug discovery setting is largely compound- and mechanism-centric but not comprehensive in terms of immune system impact, we developed a human tissue based functional assay platform to evaluate the impact of pharmacological modulators on a range of innate and adaptive immune functions. Here, we demonstrate that it is possible to generate a qualitative and quantitative immune system impact of pharmacological modulators, which might help better understand and predict the benefit-risk profiles of these compounds in the treatment of immune disorders.

  4. Spatial computation of intratumoral T cells correlates with survival of patients with pancreatic cancer.

    PubMed

    Carstens, Julienne L; Correa de Sampaio, Pedro; Yang, Dalu; Barua, Souptik; Wang, Huamin; Rao, Arvind; Allison, James P; LeBleu, Valerie S; Kalluri, Raghu

    2017-04-27

    The exact nature and dynamics of pancreatic ductal adenocarcinoma (PDAC) immune composition remains largely unknown. Desmoplasia is suggested to polarize PDAC immunity. Therefore, a comprehensive evaluation of the composition and distribution of desmoplastic elements and T-cell infiltration is necessary to delineate their roles. Here we develop a novel computational imaging technology for the simultaneous evaluation of eight distinct markers, allowing for spatial analysis of distinct populations within the same section. We report a heterogeneous population of infiltrating T lymphocytes. Spatial distribution of cytotoxic T cells in proximity to cancer cells correlates with increased overall patient survival. Collagen-I and αSMA + fibroblasts do not correlate with paucity in T-cell accumulation, suggesting that PDAC desmoplasia may not be a simple physical barrier. Further exploration of this technology may improve our understanding of how specific stromal composition could impact T-cell activity, with potential impact on the optimization of immune-modulatory therapies.

  5. HIV-1 Strategies of Immune Evasion

    NASA Astrophysics Data System (ADS)

    Castiglione, F.; Bernaschi, M.

    We simulate the progression of the HIV-1 infection in untreated host organisms. The phenotype features of the virus are represented by the replication rate, the probability of activating the transcription, the mutation rate and the capacity to stimulate an immune response (the so-called immunogenicity). It is very difficult to study in-vivo or in-vitro how these characteristics of the virus influence the evolution of the disease. Therefore we resorted to simulations based on a computer model validated in previous studies. We observe, by means of computer experiments, that the virus continuously evolves under the selective pressure of an immune response whose effectiveness downgrades along with the disease progression. The results of the simulations show that immunogenicity is the most important factor in determining the rate of disease progression but, by itself, it is not sufficient to drive the disease to a conclusion in all cases.

  6. Gap junction-mediated intercellular communication in the immune system.

    PubMed

    Neijssen, Joost; Pang, Baoxu; Neefjes, Jacques

    2007-01-01

    Immune cells are usually considered non-attached blood cells, which would exclude the formation of gap junctions. This is a misconception since many immune cells express connexin 43 (Cx43) and other connexins and are often residing in tissue. The role of gap junctions is largely ignored by immunologists as is the immune system in the field of gap junction research. Here, the current knowledge of the distribution of connexins and the function of gap junctions in the immune system is discussed. Gap junctions appear to play many roles in antibody productions and specific immune responses and may be important in sensing danger in tissue by the immune system. Gap junctions not only transfer electrical and metabolical but also immunological information in the form of peptides for a process called cross-presentation. This is essential for proper immune responses to viruses and possibly tumours. Until now only 40 research papers on gap junctions in the immune system appeared and this will almost certainly expand with the increased mutual interest between the fields of immunology and gap junction research.

  7. The effects of early life adversity on the immune system.

    PubMed

    Elwenspoek, Martha M C; Kuehn, Annette; Muller, Claude P; Turner, Jonathan D

    2017-08-01

    Early life adversity (ELA) is associated with a higher risk for diseases in adulthood. Although the pathophysiological effects of ELA are varied, there may be a unifying role for the immune system in all of the long-term pathologies such as chronic inflammatory disorders (autoimmune diseases, allergy, and asthma). Recently, significant efforts have been made to elucidate the long-term effects ELA has on immune function, as well as the mechanisms underlying these immune changes. In this review, we focus on data from human studies investigating immune parameters in relation to post-natal adverse experiences. We describe the current understanding of the 'ELA immune phenotype', characterized by inflammation, impairment of the cellular immune system, and immunosenescence. However, at present, data addressing specific immune functions are limited and there is a need for high-quality, well powered, longitudinal studies to unravel cause from effect. Besides the immune system, also the stress system and health behaviors are altered in ELA. We discuss probable underlying mechanisms based on epigenetic programming that could explain the ELA immune phenotype and whether this is a direct effect of immune programming or an indirect consequence of changes in behavior or stress reactivity. Understanding the underlying mechanisms will help define effective strategies to prevent or counteract negative ELA-associated outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Automated processing of label-free Raman microscope images of macrophage cells with standardized regression for high-throughput analysis.

    PubMed

    Milewski, Robert J; Kumagai, Yutaro; Fujita, Katsumasa; Standley, Daron M; Smith, Nicholas I

    2010-11-19

    Macrophages represent the front lines of our immune system; they recognize and engulf pathogens or foreign particles thus initiating the immune response. Imaging macrophages presents unique challenges, as most optical techniques require labeling or staining of the cellular compartments in order to resolve organelles, and such stains or labels have the potential to perturb the cell, particularly in cases where incomplete information exists regarding the precise cellular reaction under observation. Label-free imaging techniques such as Raman microscopy are thus valuable tools for studying the transformations that occur in immune cells upon activation, both on the molecular and organelle levels. Due to extremely low signal levels, however, Raman microscopy requires sophisticated image processing techniques for noise reduction and signal extraction. To date, efficient, automated algorithms for resolving sub-cellular features in noisy, multi-dimensional image sets have not been explored extensively. We show that hybrid z-score normalization and standard regression (Z-LSR) can highlight the spectral differences within the cell and provide image contrast dependent on spectral content. In contrast to typical Raman imaging processing methods using multivariate analysis, such as single value decomposition (SVD), our implementation of the Z-LSR method can operate nearly in real-time. In spite of its computational simplicity, Z-LSR can automatically remove background and bias in the signal, improve the resolution of spatially distributed spectral differences and enable sub-cellular features to be resolved in Raman microscopy images of mouse macrophage cells. Significantly, the Z-LSR processed images automatically exhibited subcellular architectures whereas SVD, in general, requires human assistance in selecting the components of interest. The computational efficiency of Z-LSR enables automated resolution of sub-cellular features in large Raman microscopy data sets without compromise in image quality or information loss in associated spectra. These results motivate further use of label free microscopy techniques in real-time imaging of live immune cells.

  9. Optimum survival strategies against zombie infestations - a population dynamics approach

    NASA Astrophysics Data System (ADS)

    Mota, Bruno

    2014-03-01

    We model a zombie infestation by three coupled ODEs that jointly describe the time evolution of three populations: regular humans, zombies, and survivors (humans that have survived at least one zombie encounter). This can be generalized to take into account more levels of expertise and/or skill degradation. We compute the fixed points, and stability thereof, that correspond to one of three possible outcomes: human extinction, zombie extermination or, if one allows for a human non-zero birth-rate, co-habitation. We obtain analytically the optimum strategy for humans in terms of the model's parameters (essentially, whether to flee and hide, or fight). Zombies notwithstanding, this can also be seen as a toy model for infections of immune system cells, such as CD4+ T cells in AIDS, and macrophages in tuberculosis, whereby cells are both the target of infection, and mediate the acquired immunity response against the same infection. I thank FAPERJ for financial support.

  10. Stability of Lentiviral Vector-Mediated Transgene Expression in the Brain in the Presence of Systemic Antivector Immune Responses

    PubMed Central

    ABORDO-ADESIDA, EVELYN; FOLLENZI, ANTONIA; BARCIA, CARLOS; SCIASCIA, SANDRA; CASTRO, MARIA G.; NALDINI, LUIGI; LOWENSTEIN, PEDRO R.

    2009-01-01

    Lentiviral vectors are promising tools for gene therapy in the CNS. It is therefore important to characterize their interactions with the immune system in the CNS. This work characterizes transgene expression and brain inflammation in the presence or absence of immune responses generated after systemic immunization with lentiviral vectors. We characterized transduction with SIN-LV vectors in the CNS. A dose—response curve using SIN-LV-GFP demonstrated detectable transgene expression in the striatum at a dose of 102, and maximum expression at 106, transducing units of lentiviral vector, with minimal increase in inflammatory markers between the lowest and highest dose of vector injected. Our studies demonstrate that injection of a lentiviral vector into the CNS did not cause a measurable inflammatory response. Systemic immunization after CNS injection, with the lentiviral vector expressing the same transgene as a vector injected into the CNS, caused a decrease in transgene expression in the CNS, concomitantly with an infiltration of inflammatory cells into the CNS parenchyma at the injection site. However, peripheral immunization with a lentiviral vector carrying a different transgene did not diminish transgene expression, or cause CNS inflammation. Systemic immunization preceding injection of lentiviral vectors into the CNS determined that preexisting antilentiviral immunity, regardless of the transgene, did not affect transgene expression. Furthermore, we showed that the transgene, but not the virion or vector components, is responsible for providing antigenic epitopes to the activated immune system, on systemic immunization with lentivirus. Low immunogenicity and prolonged transgene expression in the presence of preexisting lentiviral immunity are encouraging data for the future use of lentiviral vectors in CNS gene therapy. In summary, the lentiviral vectors tested induced undetectable activation of innate immune responses, and stimulation of adaptive immune responses against lentiviral vectors was effective in causing a decrease in transgene expression only if the immune response was directed against the transgene. A systemic immune response against vector components alone did not cause brain inflammation, possibly because vector-derived epitopes were not being presented in the CNS. PMID:15960605

  11. Interplay Between Innate Immunity and the Plant Microbiota.

    PubMed

    Hacquard, Stéphane; Spaepen, Stijn; Garrido-Oter, Ruben; Schulze-Lefert, Paul

    2017-08-04

    The innate immune system of plants recognizes microbial pathogens and terminates their growth. However, recent findings suggest that at least one layer of this system is also engaged in cooperative plant-microbe interactions and influences host colonization by beneficial microbial communities. This immune layer involves sensing of microbe-associated molecular patterns (MAMPs) by pattern recognition receptors (PRRs) that initiate quantitative immune responses to control host-microbial load, whereas diversification of MAMPs and PRRs emerges as a mechanism that locally sculpts microbial assemblages in plant populations. This suggests a more complex microbial management role of the innate immune system for controlled accommodation of beneficial microbes and in pathogen elimination. The finding that similar molecular strategies are deployed by symbionts and pathogens to dampen immune responses is consistent with this hypothesis but implies different selective pressures on the immune system due to contrasting outcomes on plant fitness. The reciprocal interplay between microbiota and the immune system likely plays a critical role in shaping beneficial plant-microbiota combinations and maintaining microbial homeostasis.

  12. The innate immune system in chronic cardiomyopathy: a European Society of Cardiology (ESC) scientific statement from the Working Group on Myocardial Function of the ESC

    PubMed Central

    Falcao‐Pires, Ines; Balligand, Jean‐Luc; Bauersachs, Johann; Brutsaert, Dirk; Ciccarelli, Michele; Dawson, Dana; de Windt, Leon J.; Giacca, Mauro; Hamdani, Nazha; Hilfiker‐Kleiner, Denise; Hirsch, Emilio; Leite‐Moreira, Adelino; Mayr, Manuel; Thum, Thomas; Tocchetti, Carlo G.; van der Velden, Jolanda; Varricchi, Gilda; Heymans, Stephane

    2018-01-01

    Activation of the immune system in heart failure (HF) has been recognized for over 20 years. Initially, experimental studies demonstrated a maladaptive role of the immune system. However, several phase III trials failed to show beneficial effects in HF with therapies directed against an immune activation. Preclinical studies today describe positive and negative effects of immune activation in HF. These different effects depend on timing and aetiology of HF. Therefore, herein we give a detailed review on immune mechanisms and their importance for the development of HF with a special focus on commonalities and differences between different forms of cardiomyopathies. The role of the immune system in ischaemic, hypertensive, diabetic, toxic, viral, genetic, peripartum, and autoimmune cardiomyopathy is discussed in depth. Overall, initial damage to the heart leads to disease specific activation of the immune system whereas in the chronic phase of HF overlapping mechanisms occur in different aetiologies. PMID:29333691

  13. OSTEOCLAST-INDUCED FOXP3+ CD8 T-CELLS LIMIT BONE LOSS IN MICE

    PubMed Central

    Buchwald, Zachary S.; Kiesel, Jennifer R.; Yang, Chang; DiPaolo, Richard; Novack, Deborah V.; Aurora, Rajeev

    2014-01-01

    Osteoimmunology is the crosstalk between the skeletal and immune system. We have previously shown in vitro that osteoclasts (OC) crosspresent antigens to induce FoxP3 in CD8 T-cells (OCiTcREG), which then suppress osteoclast activity. Here we assessed the ability of OC-iTcREG to limit bone resorption in vivo. Mice lacking CD8 T-cells lose more bone in response to RANKL (Tnfsf11) administration. Using adoptive transfer experiments we demonstrate that FoxP3+ CD8 T-cells limit bone loss by RANKL administration. In ovariectomized mice, a murine model of postmenopausal osteoporosis, OC-iTcREG limited bone loss and increased bone density as assessed by serum markers, micro computed tomography (μCT) and histomorphometry. Indeed, OC-iTcREG—treated ovariectomized mice had decreased levels of effector T-cells in the bone marrow compared to untreated mice, and increased bone formation rates relative to bisphosphonate-treated mice. Our results provide the first in vivo evidence that OC-iTcREG have anti-resorptive activity and repress the immune system, thus extending the purview of osteoimmunology. PMID:23756229

  14. Computer simulation of a cellular automata model for the immune response in a retrovirus system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, R.B.

    1989-02-01

    Immune response in a retrovirus system is modeled by a network of three binary cell elements to take into account some of the main functional features of T4 cells, T8 cells, and viruses. Two different intercell interactions are introduced, one of which leads to three fixed points while the other yields bistable fixed points oscillating between a healthy state and a sick state in a mean field treatment. Evolution of these cells is studied for quenched and annealed random interactions on a simple cubic lattice with a nearest neighbor interaction using inhomogenous cellular automata. Populations of T4 cells and viralmore » cells oscillate together with damping (with constant amplitude) for annealed (quenched) interaction on increasing the value of mixing probability B from zero to a characteristic value B/sub ca/ (B/sub cq/). For higher B, the average number of T4 cells increases while that of the viral infected cells decreases monotonically on increasing B, suggesting a phase transition at B/sub ca/ (B/sub cq/).« less

  15. Recent Advances in Aptamers Targeting Immune System.

    PubMed

    Hu, Piao-Ping

    2017-02-01

    The immune system plays important role in protecting the organism by recognizing non-self molecules from pathogen such as bacteria, parasitic worms, and viruses. When the balance of the host defense system is disturbed, immunodeficiency, autoimmunity, and inflammation occur. Nucleic acid aptamers are short single-stranded DNA (ssDNA) or RNA ligands that interact with complementary molecules with high specificity and affinity. Aptamers that target the molecules involved in immune system to modulate their function have great potential to be explored as new diagnostic and therapeutic agents for immune disorders. This review summarizes recent advances in the development of aptamers targeting immune system. The selection of aptamers with superior chemical and biological characteristics will facilitate their application in the diagnosis and treatment of immune disorders.

  16. How Psychological States Affect the Immune System: Implications for Interventions in the Context of HIV.

    ERIC Educational Resources Information Center

    Littrell, Jill

    1996-01-01

    Discusses the psychological states associated with enhanced immune system functioning and those associated with suppressed immune functioning. Reviews studies of psychological and behavioral interventions to boost the immune systems of people who are HIV positive. Suggests that group interventions can enhance psychological states associated with…

  17. Ageing and the immune system: focus on macrophages.

    PubMed

    Linehan, E; Fitzgerald, D C

    2015-03-01

    A fully functioning immune system is essential in order to maintain good health. However, the immune system deteriorates with advancing age, and this contributes to increased susceptibility to infection, autoimmunity, and cancer in the older population. Progress has been made in identifying age-related defects in the adaptive immune system. In contrast, relatively little research has been carried out on the impact of ageing on the innate immune response. This area requires further research as the innate immune system plays a crucial role in protection against infection and represents a first line of defence. Macrophages are central effector cells of the innate immune system and have many diverse functions. As a result, age-related impairments in macrophage function are likely to have important consequences for the health of the older population. It has been reported that ageing in macrophages impacts on many processes including toll-like receptor signalling, polarisation, phagocytosis, and wound repair. A detailed understanding of the impact of ageing on macrophages is required in order to develop therapeutics that will boost immune responses in the older population.

  18. Neuro-immune interactions in inflammation and host defense: Implications for transplantation.

    PubMed

    Chavan, Sangeeta S; Ma, Pingchuan; Chiu, Isaac M

    2018-03-01

    Sensory and autonomic neurons of the peripheral nervous system (PNS) play a critical role in regulating the immune system during tissue inflammation and host defense. Recent studies have identified the molecular mechanisms underlying the bidirectional communication between the nervous system and the immune system. Here, we highlight the studies that demonstrate the importance of the neuro-immune interactions in health and disease. Nociceptor sensory neurons detect immune mediators to produce pain, and release neuropeptides that act on the immune system to regulate inflammation. In parallel, neural reflex circuits including the vagus nerve-based inflammatory reflex are physiological regulators of inflammatory responses and cytokine production. In transplantation, neuro-immune communication could significantly impact the processes of host-pathogen defense, organ rejection, and wound healing. Emerging approaches to target the PNS such as bioelectronics could be useful in improving the outcome of transplantation. Therefore, understanding how the nervous system shapes the immune response could have important therapeutic ramifications for transplantation medicine. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  19. Immune System and Kidney Transplantation.

    PubMed

    Shrestha, Badri Man

    2017-01-01

    The immune system recognises a transplanted kidney as foreign body and mounts immune response through cellular and humoral mechanisms leading to acute or chronic rejection, which ultimately results in graft loss. Over the last five decades, there have been significant advances in the understanding of the immune responses to transplanted organs in both experimental and clinical transplant settings. Modulation of the immune response by using immunosuppressive agents has led to successful outcomes after kidney transplantation. The paper provides an overview of the general organisation and function of human immune system, immune response to kidney transplantation, and the current practice of immunosuppressive therapy in kidney transplantation in the United Kingdom.

  20. Immune system and melanoma biology: a balance between immunosurveillance and immune escape.

    PubMed

    Passarelli, Anna; Mannavola, Francesco; Stucci, Luigia Stefania; Tucci, Marco; Silvestris, Francesco

    2017-12-01

    Melanoma is one of the most immunogenic tumors and its relationship with host immune system is currently under investigation. Many immunomodulatory mechanisms, favoring melanomagenesis and progression, have been described to interfere with the disablement of melanoma recognition and attack by immune cells resulting in immune resistance and immunosuppression. This knowledge produced therapeutic advantages, such as immunotherapy, aiming to overcome the immune evasion. Here, we review the current advances in cancer immunoediting and focus on melanoma immunology, which involves a dynamic interplay between melanoma and immune system, as well as on effects of "targeted therapies" on tumor microenvironment for combination strategies.

  1. Integrated Omics and Computational Glycobiology Reveal Structural Basis for Influenza A Virus Glycan Microheterogeneity and Host Interactions.

    PubMed

    Khatri, Kshitij; Klein, Joshua A; White, Mitchell R; Grant, Oliver C; Leymarie, Nancy; Woods, Robert J; Hartshorn, Kevan L; Zaia, Joseph

    2016-06-01

    Despite sustained biomedical research effort, influenza A virus remains an imminent threat to the world population and a major healthcare burden. The challenge in developing vaccines against influenza is the ability of the virus to mutate rapidly in response to selective immune pressure. Hemagglutinin is the predominant surface glycoprotein and the primary determinant of antigenicity, virulence and zoonotic potential. Mutations leading to changes in the number of HA glycosylation sites are often reported. Such genetic sequencing studies predict at best the disruption or creation of sequons for N-linked glycosylation; they do not reflect actual phenotypic changes in HA structure. Therefore, combined analysis of glycan micro and macro-heterogeneity and bioassays will better define the relationships among glycosylation, viral bioactivity and evolution. We present a study that integrates proteomics, glycomics and glycoproteomics of HA before and after adaptation to innate immune system pressure. We combined this information with glycan array and immune lectin binding data to correlate the phenotypic changes with biological activity. Underprocessed glycoforms predominated at the glycosylation sites found to be involved in viral evolution in response to selection pressures and interactions with innate immune-lectins. To understand the structural basis for site-specific glycan microheterogeneity at these sites, we performed structural modeling and molecular dynamics simulations. We observed that the presence of immature, high-mannose type glycans at a particular site correlated with reduced accessibility to glycan remodeling enzymes. Further, the high mannose glycans at sites implicated in immune lectin recognition were predicted to be capable of forming trimeric interactions with the immune-lectin surfactant protein-D. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Multiplicity of Mathematical Modeling Strategies to Search for Molecular and Cellular Insights into Bacteria Lung Infection

    PubMed Central

    Cantone, Martina; Santos, Guido; Wentker, Pia; Lai, Xin; Vera, Julio

    2017-01-01

    Even today two bacterial lung infections, namely pneumonia and tuberculosis, are among the 10 most frequent causes of death worldwide. These infections still lack effective treatments in many developing countries and in immunocompromised populations like infants, elderly people and transplanted patients. The interaction between bacteria and the host is a complex system of interlinked intercellular and the intracellular processes, enriched in regulatory structures like positive and negative feedback loops. Severe pathological condition can emerge when the immune system of the host fails to neutralize the infection. This failure can result in systemic spreading of pathogens or overwhelming immune response followed by a systemic inflammatory response. Mathematical modeling is a promising tool to dissect the complexity underlying pathogenesis of bacterial lung infection at the molecular, cellular and tissue levels, and also at the interfaces among levels. In this article, we introduce mathematical and computational modeling frameworks that can be used for investigating molecular and cellular mechanisms underlying bacterial lung infection. Then, we compile and discuss published results on the modeling of regulatory pathways and cell populations relevant for lung infection and inflammation. Finally, we discuss how to make use of this multiplicity of modeling approaches to open new avenues in the search of the molecular and cellular mechanisms underlying bacterial infection in the lung. PMID:28912729

  3. Multiplicity of Mathematical Modeling Strategies to Search for Molecular and Cellular Insights into Bacteria Lung Infection.

    PubMed

    Cantone, Martina; Santos, Guido; Wentker, Pia; Lai, Xin; Vera, Julio

    2017-01-01

    Even today two bacterial lung infections, namely pneumonia and tuberculosis, are among the 10 most frequent causes of death worldwide. These infections still lack effective treatments in many developing countries and in immunocompromised populations like infants, elderly people and transplanted patients. The interaction between bacteria and the host is a complex system of interlinked intercellular and the intracellular processes, enriched in regulatory structures like positive and negative feedback loops. Severe pathological condition can emerge when the immune system of the host fails to neutralize the infection. This failure can result in systemic spreading of pathogens or overwhelming immune response followed by a systemic inflammatory response. Mathematical modeling is a promising tool to dissect the complexity underlying pathogenesis of bacterial lung infection at the molecular, cellular and tissue levels, and also at the interfaces among levels. In this article, we introduce mathematical and computational modeling frameworks that can be used for investigating molecular and cellular mechanisms underlying bacterial lung infection. Then, we compile and discuss published results on the modeling of regulatory pathways and cell populations relevant for lung infection and inflammation. Finally, we discuss how to make use of this multiplicity of modeling approaches to open new avenues in the search of the molecular and cellular mechanisms underlying bacterial infection in the lung.

  4. Cryptosporidium: Infection - Immunocompromised Persons

    MedlinePlus

    ... might be immunocompromised or have a weakened immune system? Examples of persons with weakened immune systems include ... How does cryptosporidiosis affect you if your immune system is severely weakened? In persons with AIDS and ...

  5. Protein phylogenies provide evidence of a radical discontinuity between arthropod and vertebrate immune systems.

    PubMed

    Hughes, A L

    1998-03-01

    Protein phylogenies were used to test the hypothesis that aspects of the innate immune system of vertebrates have been conserved since the last common ancestor of vertebrates and arthropods. The phylogeny of lysozymes showed evidence of conservation of function, but phylogenies of seven other protein families did not. Natural resistance-associated macrophage protein, nitric oxide synthetase, and serine protease families all showed a pattern of gene duplication within vertebrates after their divergence from arthropods, giving rise to immune system-expressed genes in vertebrates. Insect hemolin, a member of the immunoglobulin superfamily, was found not to be closely related to members of that family having an immune system role in vertebrates; rather, it appeared most closely related to both arthropod and vertebrate molecules expressed in the nervous system. Thus, hemolin seems to have evolved its role independently in insects, probably through duplication of a neuroglian-like ancestor. Furthermore, vertebrate immune system-expressed serpins, chitinases, and pentraxins were found to lack orthologous relationships with arthropod members of the same families also functioning in immunity. Therefore members of these families have evolved immune system functions independently in the two phyla. It is now widely recognized that the specific immune system of vertebrates has no counterpart in invertebrates; these phylogenetic analyses suggest that there is a similar evolutionary discontinuity with respect to innate immunity as well.

  6. What vaccination studies tell us about immunological memory within the innate immune system of cultured shrimp and crayfish.

    PubMed

    Chang, Yu-Hsuan; Kumar, Ramya; Ng, Tze Hann; Wang, Han-Ching

    2018-03-01

    The possibility of immunological memory in invertebrates is a topic that has recently attracted a lot of attention. Today, even vertebrates are known to exhibit innate immune responses that show memory-like properties, and since these responses are triggered by cells that are involved in the innate immune system, it seems that immune specificity and immune memory do not necessarily require the presence of B cells and T cells after all. This kind of immune response has been called "immune priming" or "trained immunity". In this report, we review recent observations and our current understanding of immunological memory within the innate immune system in cultured shrimp and crayfish after vaccination with live vaccine, killed vaccine and subunit vaccines. We also discuss the possible mechanisms involved in this immune response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Neuroimmunologic aspects of sleep and sleep loss

    NASA Technical Reports Server (NTRS)

    Rogers, N. L.; Szuba, M. P.; Staab, J. P.; Evans, D. L.; Dinges, D. F.

    2001-01-01

    The complex and intimate interactions between the sleep and immune systems have been the focus of study for several years. Immune factors, particularly the interleukins, regulate sleep and in turn are altered by sleep and sleep deprivation. The sleep-wake cycle likewise regulates normal functioning of the immune system. Although a large number of studies have focused on the relationship between the immune system and sleep, relatively few studies have examined the effects of sleep deprivation on immune parameters. Studies of sleep deprivation's effects are important for several reasons. First, in the 21st century, various societal pressures require humans to work longer and sleep less. Sleep deprivation is becoming an occupational hazard in many industries. Second, to garner a greater understanding of the regulatory effects of sleep on the immune system, one must understand the consequences of sleep deprivation on the immune system. Significant detrimental effects on immune functioning can be seen after a few days of total sleep deprivation or even several days of partial sleep deprivation. Interestingly, not all of the changes in immune physiology that occur as a result of sleep deprivation appear to be negative. Numerous medical disorders involving the immune system are associated with changes in the sleep-wake physiology--either being caused by sleep dysfunction or being exacerbated by sleep disruption. These disorders include infectious diseases, fibromyalgia, cancers, and major depressive disorder. In this article, we will describe the relationships between sleep physiology and the immune system, in states of health and disease. Interspersed will be proposals for future research that may illuminate the clinical relevance of the relationships between sleeping, sleep loss and immune function in humans. Copyright 2001 by W.B. Saunders Company.

  8. Network intrusion detection by the coevolutionary immune algorithm of artificial immune systems with clonal selection

    NASA Astrophysics Data System (ADS)

    Salamatova, T.; Zhukov, V.

    2017-02-01

    The paper presents the application of the artificial immune systems apparatus as a heuristic method of network intrusion detection for algorithmic provision of intrusion detection systems. The coevolutionary immune algorithm of artificial immune systems with clonal selection was elaborated. In testing different datasets the empirical results of evaluation of the algorithm effectiveness were achieved. To identify the degree of efficiency the algorithm was compared with analogs. The fundamental rules based of solutions generated by this algorithm are described in the article.

  9. Who Gets Fungal Infections?

    MedlinePlus

    ... can also happen in people without weak immune systems Fungal infections that are not life-threatening, such ... to cause an infection. People with weak immune systems Infections that happen because a person’s immune system ...

  10. The Immune System and Developmental Programming of Brain and Behavior

    PubMed Central

    Bilbo, Staci D.; Schwarz, Jaclyn M.

    2012-01-01

    The brain, endocrine, and immune systems are inextricably linked. Immune molecules have a powerful impact on neuroendocrine function, including hormone-behavior interactions, during health as well as sickness. Similarly, alterations in hormones, such as during stress, can powerfully impact immune function or reactivity. These functional shifts are evolved, adaptive responses that organize changes in behavior and mobilize immune resources, but can also lead to pathology or exacerbate disease if prolonged or exaggerated. The developing brain in particular is exquisitely sensitive to both endogenous and exogenous signals, and increasing evidence suggests the immune system has a critical role in brain development and associated behavioral outcomes for the life of the individual. Indeed, there are associations between many neuropsychiatric disorders and immune dysfunction, with a distinct etiology in neurodevelopment. The goal of this review is to describe the important role of the immune system during brain development, and to discuss some of the many ways in which immune activation during early brain development can affect the later-life outcomes of neural function, immune function, mood and cognition. PMID:22982535

  11. Memory and Specificity in the Insect Immune System: Current Perspectives and Future Challenges.

    PubMed

    Cooper, Dustin; Eleftherianos, Ioannis

    2017-01-01

    The immune response of a host to a pathogen is typically described as either innate or adaptive. The innate form of the immune response is conserved across all organisms, including insects. Previous and recent research has focused on the nature of the insect immune system and the results imply that the innate immune response of insects is more robust and specific than previously thought. Priming of the insect innate immune system involves the exposure of insects to dead or a sublethal dose of microbes in order to elicit an initial response. Comparing subsequent infections in primed insects to non-primed individuals indicates that the insect innate immune response may possess some of the qualities of an adaptive immune system. Although some studies demonstrate that the protective effects of priming are due to a "loitering" innate immune response, others have presented more convincing elements of adaptivity. While an immune mechanism capable of producing the same degree of recognition specificity as seen in vertebrates has yet to be discovered in insects, a few interesting cases have been identified and discussed.

  12. CloudNeo: a cloud pipeline for identifying patient-specific tumor neoantigens.

    PubMed

    Bais, Preeti; Namburi, Sandeep; Gatti, Daniel M; Zhang, Xinyu; Chuang, Jeffrey H

    2017-10-01

    We present CloudNeo, a cloud-based computational workflow for identifying patient-specific tumor neoantigens from next generation sequencing data. Tumor-specific mutant peptides can be detected by the immune system through their interactions with the human leukocyte antigen complex, and neoantigen presence has recently been shown to correlate with anti T-cell immunity and efficacy of checkpoint inhibitor therapy. However computing capabilities to identify neoantigens from genomic sequencing data are a limiting factor for understanding their role. This challenge has grown as cancer datasets become increasingly abundant, making them cumbersome to store and analyze on local servers. Our cloud-based pipeline provides scalable computation capabilities for neoantigen identification while eliminating the need to invest in local infrastructure for data transfer, storage or compute. The pipeline is a Common Workflow Language (CWL) implementation of human leukocyte antigen (HLA) typing using Polysolver or HLAminer combined with custom scripts for mutant peptide identification and NetMHCpan for neoantigen prediction. We have demonstrated the efficacy of these pipelines on Amazon cloud instances through the Seven Bridges Genomics implementation of the NCI Cancer Genomics Cloud, which provides graphical interfaces for running and editing, infrastructure for workflow sharing and version tracking, and access to TCGA data. The CWL implementation is at: https://github.com/TheJacksonLaboratory/CloudNeo. For users who have obtained licenses for all internal software, integrated versions in CWL and on the Seven Bridges Cancer Genomics Cloud platform (https://cgc.sbgenomics.com/, recommended version) can be obtained by contacting the authors. jeff.chuang@jax.org. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  13. An immunity-based anomaly detection system with sensor agents.

    PubMed

    Okamoto, Takeshi; Ishida, Yoshiteru

    2009-01-01

    This paper proposes an immunity-based anomaly detection system with sensor agents based on the specificity and diversity of the immune system. Each agent is specialized to react to the behavior of a specific user. Multiple diverse agents decide whether the behavior is normal or abnormal. Conventional systems have used only a single sensor to detect anomalies, while the immunity-based system makes use of multiple sensors, which leads to improvements in detection accuracy. In addition, we propose an evaluation framework for the anomaly detection system, which is capable of evaluating the differences in detection accuracy between internal and external anomalies. This paper focuses on anomaly detection in user's command sequences on UNIX-like systems. In experiments, the immunity-based system outperformed some of the best conventional systems.

  14. Weakened Immune System and Adult Vaccination

    MedlinePlus

    ... Adult Vaccination Resources for Healthcare Professionals Weakened Immune System and Adult Vaccination Recommend on Facebook Tweet Share ... with health conditions such as a weakened immune system. If you have cancer or other immunocompromising conditions, ...

  15. [The role of immune system in the control of cancer development and growth].

    PubMed

    Sütő, Gábor

    2016-06-01

    The role of immune system is the maintenace of the integritiy of the living organism. The elements of the immune system are connected by several ways forming a complex biological network. This network senses the changes of the inner and outer environment and works out the most effective response against infections and tumors. Dysfunction of the immune system leads to the development of cancer development and chronic inflammatory diseases. Modulation of the checkpoints of the immune system opened new perspecitves in the treatment of rheumatological and oncological diseases as well. Beside the potent antiinflammatory activity, new therapies are able to stimulate anticancer activity of the immune system. The result of these recent developments is a better outcome of malignant diseases, which had an unfavorable outcome in the past. Orv. Hetil., 2016, 157(Suppl. 2), 3-8.

  16. Immunity by equilibrium.

    PubMed

    Eberl, Gérard

    2016-08-01

    The classical model of immunity posits that the immune system reacts to pathogens and injury and restores homeostasis. Indeed, a century of research has uncovered the means and mechanisms by which the immune system recognizes danger and regulates its own activity. However, this classical model does not fully explain complex phenomena, such as tolerance, allergy, the increased prevalence of inflammatory pathologies in industrialized nations and immunity to multiple infections. In this Essay, I propose a model of immunity that is based on equilibrium, in which the healthy immune system is always active and in a state of dynamic equilibrium between antagonistic types of response. This equilibrium is regulated both by the internal milieu and by the microbial environment. As a result, alteration of the internal milieu or microbial environment leads to immune disequilibrium, which determines tolerance, protective immunity and inflammatory pathology.

  17. Unique aspects of the perinatal immune system.

    PubMed

    Zhang, Xiaoming; Zhivaki, Dania; Lo-Man, Richard

    2017-08-01

    The early stages of life are associated with increased susceptibility to infection, which is in part due to an ineffective immune system. In the context of infection, the immune system must be stimulated to provide efficient protection while avoiding insufficient or excessive activation. Yet, in early life, age-dependent immune regulation at molecular and cellular levels contributes to a reduced immunological fitness in terms of pathogen clearance and response to vaccines. To enable microbial colonization to be tolerated at birth, epigenetic immune cell programming and early life-specific immune regulatory and effector mechanisms ensure that vital functions and organ development are supported and that tissue damage is avoided. Advancement in our understanding of age-related remodelling of immune networks and the consequent tuning of immune responsiveness will open up new possibilities for immune intervention and vaccine strategies that are designed specifically for early life.

  18. A Physical Theory of the Competition that Allows HIV to Escape from the Immune System

    NASA Astrophysics Data System (ADS)

    Deem, Michael

    2007-03-01

    Competition within the immune system may degrade immune control of viral infections. We formalize the evolution that occurs in both HIV-1 and the immune system quasispecies [1]. Inclusion of competition in the immune system leads to a novel balance between the immune response and HIV-1, in which the eventual outcome is HIV-1 escape rather than control. The analytical model reproduces the three stages of HIV-1 infection. We propose a vaccine regimen that may be able to reduce competition between T cells, potentially eliminating the third stage of HIV-1. 1) G. Wang and M. W. Deem, Phys. Rev. Lett. 97 (2006) 188106.

  19. The Immune System in Obesity: Developing Paradigms Amidst Inconvenient Truths.

    PubMed

    Agrawal, Madhur; Kern, Philip A; Nikolajczyk, Barbara S

    2017-08-15

    Adipose tissue (AT) houses both innate and adaptive immune systems that are crucial for preserving AT function and metabolic homeostasis. In this review, we summarize recent information regarding progression of obesity-associated AT inflammation and insulin resistance. We additionally consider alterations in AT distribution and the immune system in males vs. females and among different racial populations. Innate and adaptive immune cell-derived inflammation drives insulin resistance both locally and systemically. However, new evidence also suggests that the immune system is equally vital for adipocyte differentiation and protection from ectopic lipid deposition. Furthermore, roles of anti-inflammatory immune cells such as regulatory T cells, "M2-like" macrophages, eosinophils, and mast cells are being explored, primarily due to promise of immunotherapeutic applications. Both immune responses and AT distribution are strongly influenced by factors like sex and race, which have been largely underappreciated in the field of metabolically-associated inflammation, or meta-flammation. More studies are required to recognize factors that switch inflammation from controlled to uncontrolled in obesity-associated pathogenesis and to integrate the combined effects of meta-flammation and immunometabolism. It is critical to recognize that the AT-associated immune system can be alternately beneficial and destructive; therefore, simply blocking immune responses early in obesity may not be the best clinical approach. The dearth of information on gender and race-associated disparities in metabolism, AT distribution, and the immune system suggest that a greater understanding of such differences will be critical to develop personalized treatments for obesity and the associated metabolic dysfunction.

  20. The immune-neuro-endocrine interactions.

    PubMed

    Tomaszewska, D; Przekop, F

    1997-06-01

    This article reviews data concerning the interactions between immune, endocrine and neural systems in physiological, pathophysiological and stress conditions in animals and humans. Numerous studies have provided evidence that these systems interact with each other in maintaining homeostasis. This interaction may be classified as follows: immune, endocrine and neural cell products coexist in lymphoid, endocrine and neural tissue. Endocrine and neural mediators modulate immune system activity. Immune, endocrine and neural cells express receptors for cytokines, hormones, neuropeptides and transmitters.

  1. Study of efficient video compression algorithms for space shuttle applications

    NASA Technical Reports Server (NTRS)

    Poo, Z.

    1975-01-01

    Results are presented of a study on video data compression techniques applicable to space flight communication. This study is directed towards monochrome (black and white) picture communication with special emphasis on feasibility of hardware implementation. The primary factors for such a communication system in space flight application are: picture quality, system reliability, power comsumption, and hardware weight. In terms of hardware implementation, these are directly related to hardware complexity, effectiveness of the hardware algorithm, immunity of the source code to channel noise, and data transmission rate (or transmission bandwidth). A system is recommended, and its hardware requirement summarized. Simulations of the study were performed on the improved LIM video controller which is computer-controlled by the META-4 CPU.

  2. Validation of Procedures for Monitoring Crewmember Immune Function - Short Duration Biological Investigation

    NASA Technical Reports Server (NTRS)

    Sams, Clarence; Crucian, Brian; Stowe, Raymond; Pierson, Duane; Mehta, Satish; Morukov, Boris; Uchakin, Peter; Nehlsen-Cannarella, Sandra

    2008-01-01

    Validation of Procedures for Monitoring Crew Member Immune Function - Short Duration Biological Investigation (Integrated Immune-SDBI) will assess the clinical risks resulting from the adverse effects of space flight on the human immune system and will validate a flightcompatible immune monitoring strategy. Immune system changes will be monitored by collecting and analyzing blood, urine and saliva samples from crewmembers before, during and after space flight.

  3. Leveraging premalignant biology for immune-based cancer prevention.

    PubMed

    Spira, Avrum; Disis, Mary L; Schiller, John T; Vilar, Eduardo; Rebbeck, Timothy R; Bejar, Rafael; Ideker, Trey; Arts, Janine; Yurgelun, Matthew B; Mesirov, Jill P; Rao, Anjana; Garber, Judy; Jaffee, Elizabeth M; Lippman, Scott M

    2016-09-27

    Prevention is an essential component of cancer eradication. Next-generation sequencing of cancer genomes and epigenomes has defined large numbers of driver mutations and molecular subgroups, leading to therapeutic advances. By comparison, there is a relative paucity of such knowledge in premalignant neoplasia, which inherently limits the potential to develop precision prevention strategies. Studies on the interplay between germ-line and somatic events have elucidated genetic processes underlying premalignant progression and preventive targets. Emerging data hint at the immune system's ability to intercept premalignancy and prevent cancer. Genetically engineered mouse models have identified mechanisms by which genetic drivers and other somatic alterations recruit inflammatory cells and induce changes in normal cells to create and interact with the premalignant tumor microenvironment to promote oncogenesis and immune evasion. These studies are currently limited to only a few lesion types and patients. In this Perspective, we advocate a large-scale collaborative effort to systematically map the biology of premalignancy and the surrounding cellular response. By bringing together scientists from diverse disciplines (e.g., biochemistry, omics, and computational biology; microbiology, immunology, and medical genetics; engineering, imaging, and synthetic chemistry; and implementation science), we can drive a concerted effort focused on cancer vaccines to reprogram the immune response to prevent, detect, and reject premalignancy. Lynch syndrome, clonal hematopoiesis, and cervical intraepithelial neoplasia which also serve as models for inherited syndromes, blood, and viral premalignancies, are ideal scenarios in which to launch this initiative.

  4. Validation of Procedures for Monitoring Crewmember Immune Function SDBI-1900, SMO-015 - Integrated Immune

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Stowe, Raymond; Mehta, Satish; Uchakin, Peter; Nehlsen-Cannarella, Sandra; Morukov, Boris; Pierson, Duane; Sams, Clarence

    2007-01-01

    There is ample evidence to suggest that space flight leads to immune system dysregulation. This may be a result of microgravity, confinement, physiological stress, radiation, environment or other mission-associated factors. The clinical risk from prolonged immune dysregulation during space flight are not yet determined, but may include increased incidence of infection, allergy, hypersensitivity, hematological malignancy or altered wound healing. Each of the clinical events resulting from immune dysfunction has the potential to impact mission critical objectives during exploration-class missions. To date, precious little in-flight immune data has been generated to assess this phenomenon. The majority of recent flight immune studies have been post-flight assessments, which may not accurately reflect the in-flight condition. There are no procedures currently in place to monitor immune function or its effect on crew health. The objective of this Supplemental Medical Objective (SMO) is to develop and validate an immune monitoring strategy consistent with operational flight requirements and constraints. This SMO will assess the clinical risks resulting from the adverse effects of space flight on the human immune system and will validate a flight-compatible immune monitoring strategy. Characterization of the clinical risk and the development of a monitoring strategy are necessary prerequisite activities prior to validating countermeasures. This study will determine, to the best level allowed by current technology, the in-flight status of crewmembers immune system. Pre-flight, in-flight and post-flight assessments of immune status, immune function, viral reactivation and physiological stress will be performed. The in-flight samples will allow a distinction between legitimate in-flight alterations and the physiological stresses of landing and readaptation which are believed to alter landing day assessments. The overall status of the immune system during flight (activation, deficiency, dysregulation) and the response of the immune system to specific latent virus reactivation (known to occur during space flight) will be thoroughly assessed. Following completion of the SMO the data will be evaluated to determine the optimal set of assays for routine monitoring of crewmember immune system function, should the clinical risk warrant such monitoring.

  5. Visualization of Tumor-Immune Interaction - Target-Specific Imaging of S100A8/A9 Reveals Pre-Metastatic Niche Establishment.

    PubMed

    Eisenblaetter, Michel; Flores-Borja, Fabian; Lee, Jae Jin; Wefers, Christina; Smith, Hannah; Hueting, Rebekka; Cooper, Margaret S; Blower, Philip J; Patel, Dominic; Rodriguez-Justo, Manuel; Milewicz, Hanna; Vogl, Thomas; Roth, Johannes; Tutt, Andrew; Schaeffter, Tobias; Ng, Tony

    2017-01-01

    Background Systemic cancer spread is preceded by the establishment of a permissive microenvironment in the target tissue of metastasis - the premetastatic niche. As crucial players in establishment of the pre-metastatic niche, myeloid derived suppressor cells (MDSC) release S100A8/A9, an exosomal protein that contributes to metastasis, angiogenesis, and immune suppression. We report the application of antibody-based single-photon emission computed tomography (SPECT) for detection of S100A8/A9 in vivo as an imaging marker for pre-metastatic tissue priming. Methods A syngeneic model system for invasive breast cancer with (4T1.2) or without (67NR) the tendency to form lung metastasis was established in BALB/c mice. A SPECT-probe has been generated and tested for visualization of S100A9 release. Tumor-associated changes in numbers and fuction of immune cells in pre-metastatic tissue were evaluated by flow cytometry and confocal microscopy. Results S100A8/A9 imaging reflected MDSC abundance and the establishment of an immunosuppressive environment in pre-metastatic lung tissue (activity 4T1.2 vs. healthy control: 0.95 vs. 0.45 %ID; p<0.001). The S100A8/A9 imaging signal in the pre-metastatic lung correlated with the subsequent metastatic tumor burden in the same organ (r 2 =0.788; p<0.0001). CCL2 blockade and the consecutive inhibition of premetastatic niche establishment was clearly depicted by S100A9-SPECT (lung activity untreated vs. treated: 2 vs, 1.4 %ID). Conclusion We report S100A8/A9 as a potent imaging biomarker for tumor-mediated immune remodeling with potential applications in basic research and clinical oncology.

  6. Visualization of Tumor-Immune Interaction - Target-Specific Imaging of S100A8/A9 Reveals Pre-Metastatic Niche Establishment

    PubMed Central

    Eisenblaetter, Michel; Flores-Borja, Fabian; Lee, Jae Jin; Wefers, Christina; Smith, Hannah; Hueting, Rebekka; Cooper, Margaret S; Blower, Philip J; Patel, Dominic; Rodriguez-Justo, Manuel; Milewicz, Hanna; Vogl, Thomas; Roth, Johannes; Tutt, Andrew; Schaeffter, Tobias; Ng, Tony

    2017-01-01

    Background Systemic cancer spread is preceded by the establishment of a permissive microenvironment in the target tissue of metastasis - the premetastatic niche. As crucial players in establishment of the pre-metastatic niche, myeloid derived suppressor cells (MDSC) release S100A8/A9, an exosomal protein that contributes to metastasis, angiogenesis, and immune suppression. We report the application of antibody-based single-photon emission computed tomography (SPECT) for detection of S100A8/A9 in vivo as an imaging marker for pre-metastatic tissue priming. Methods A syngeneic model system for invasive breast cancer with (4T1.2) or without (67NR) the tendency to form lung metastasis was established in BALB/c mice. A SPECT-probe has been generated and tested for visualization of S100A9 release. Tumor-associated changes in numbers and fuction of immune cells in pre-metastatic tissue were evaluated by flow cytometry and confocal microscopy. Results S100A8/A9 imaging reflected MDSC abundance and the establishment of an immunosuppressive environment in pre-metastatic lung tissue (activity 4T1.2 vs. healthy control: 0.95 vs. 0.45 %ID; p<0.001). The S100A8/A9 imaging signal in the pre-metastatic lung correlated with the subsequent metastatic tumor burden in the same organ (r2=0.788; p<0.0001). CCL2 blockade and the consecutive inhibition of premetastatic niche establishment was clearly depicted by S100A9-SPECT (lung activity untreated vs. treated: 2 vs, 1.4 %ID). Conclusion We report S100A8/A9 as a potent imaging biomarker for tumor-mediated immune remodeling with potential applications in basic research and clinical oncology. PMID:28744322

  7. Immune System and Disorders

    MedlinePlus

    Your immune system is a complex network of cells, tissues, and organs that work together to defend against germs. It helps ... to find and destroy them. If your immune system cannot do its job, the results can be ...

  8. Neuroendocrine and immune network re-modeling in chronic fatigue syndrome: an exploratory analysis.

    PubMed

    Fuite, Jim; Vernon, Suzanne D; Broderick, Gordon

    2008-12-01

    This work investigates the significance of changes in association patterns linking indicators of neuroendocrine and immune activity in patients with chronic fatigue syndrome (CFS). Gene sets preferentially expressed in specific immune cell isolates were integrated with neuroendocrine data from a large population-based study. Co-expression patterns linking immune cell activity with hypothalamic-pituitary-adrenal (HPA), thyroidal (HPT) and gonadal (HPG) axis status were computed using mutual information criteria. Networks in control and CFS subjects were compared globally in terms of a weighted graph edit distance. Local re-modeling of node connectivity was quantified by node degree and eigenvector centrality measures. Results indicate statistically significant differences between CFS and control networks determined mainly by re-modeling around pituitary and thyroid nodes as well as an emergent immune sub-network. Findings align with known mechanisms of chronic inflammation and support possible immune-mediated loss of thyroid function in CFS exacerbated by blunted HPA axis responsiveness.

  9. Mice with Reconstituted Human Immune System Components as a Tool to Study Immune Cell Interactions in EBV Infection.

    PubMed

    Heuts, Frank; Nagy, Noemi

    2017-01-01

    Recent developments in mouse models that harbor part of a human immune system have proved extremely valuable to study the in vivo immune response to human specific pathogens such as Epstein-Barr virus. Over the last decades, advances in immunodeficient mouse strains that can be used as recipients for human immune cells have greatly enhanced the use of these models. Here, we describe the generation of mice with reconstituted human immune system (HIS mice) using immunocompromised mice transplanted with human CD34 + hematopoietic stem cells. We will also describe how such mice, in which human immune cells are generated de novo, can be used to study EBV infection.

  10. Neural-endocrine-immune complex in the central modulation of tumorigenesis: facts, assumptions, and hypotheses.

    PubMed

    Mravec, Boris; Gidron, Yori; Kukanova, Barbara; Bizik, Jozef; Kiss, Alexander; Hulin, Ivan

    2006-11-01

    For the precise coordination of systemic functions, the nervous system uses a variety of peripherally and centrally localized receptors, which transmit information from internal and external environments to the central nervous system. Tight interconnections between the immune, nervous, and endocrine systems provide a base for monitoring and consequent modulation of immune system functions by the brain and vice versa. The immune system plays an important role in tumorigenesis. On the basis of rich interconnections between the immune, nervous and endocrine systems, the possibility that the brain may be informed about tumorigenesis is discussed in this review article. Moreover, the eventual modulation of tumorigenesis by central nervous system is also considered. Prospective consequences of the interactions between tumor and brain for diagnosis and therapy of cancer are emphasized.

  11. Stability of Tumor Growth Under Immunotherapy: A Computational Study

    NASA Astrophysics Data System (ADS)

    Singh, Sandeep; Sharma, Prabha; Singh, Phool

    We present a mathematical model to study the growth of a solid tumor in the presence of regular doses of lymphocytes. We further extend it to take care of the periodic behavior of the lymphocytes, which are used for stimulating the immune system. Cell carrying capacity has been specified and a cell kill rate under immunotherapy is used to take care of how different metabolisms will react to the treatment. We analyze our model with respect to its stability and its sensitivity to the various parameters used.

  12. Mirror Measurement Device

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A Small Business Innovation Research (SBIR) contract led to a commercially available instrument used to measure the shape profile of mirror surfaces in scientific instruments. Bauer Associates, Inc.'s Bauer Model 200 Profilometer is based upon a different measurement concept. The local curvature of the mirror's surface is measured at many points, and the collection of data is computer processed to yield the desired shape profile. (Earlier profilometers are based on the principle of interferometry.) The system is accurate and immune to problems like vibration and turbulence. Two profilometers are currently marketed, and a third will soon be commercialized.

  13. AIDS: The Role of Imaging Modalities and Infection Control Policies

    PubMed Central

    Moore-Stovall, Joyce

    1988-01-01

    The availability of imaging modalities, such as the chest radiograph, gallium scan, double-contrast barium enema, computed tomography, and nuclear magnetic resonance, are very helpful in the diagnosis, treatment, and follow-up evaluation of patients with acquired immunodeficiency syndrome (AIDS). Because this syndrome causes irreversible destruction of the immune system, patients are susceptible to a multitude of opportunistic infections and malignancies. Health care professionals and the general public would be less fearful and apprehensive of AIDS victims if properly informed about the communicability of this syndrome. PMID:3047412

  14. Robustness of speckle imaging techniques applied to horizontal imaging scenarios

    NASA Astrophysics Data System (ADS)

    Bos, Jeremy P.

    Atmospheric turbulence near the ground severely limits the quality of imagery acquired over long horizontal paths. In defense, surveillance, and border security applications, there is interest in deploying man-portable, embedded systems incorporating image reconstruction to improve the quality of imagery available to operators. To be effective, these systems must operate over significant variations in turbulence conditions while also subject to other variations due to operation by novice users. Systems that meet these requirements and are otherwise designed to be immune to the factors that cause variation in performance are considered robust. In addition to robustness in design, the portable nature of these systems implies a preference for systems with a minimum level of computational complexity. Speckle imaging methods are one of a variety of methods recently been proposed for use in man-portable horizontal imagers. In this work, the robustness of speckle imaging methods is established by identifying a subset of design parameters that provide immunity to the expected variations in operating conditions while minimizing the computation time necessary for image recovery. This performance evaluation is made possible using a novel technique for simulating anisoplanatic image formation. I find that incorporate as few as 15 image frames and 4 estimates of the object phase per reconstructed frame provide an average reduction of 45% reduction in Mean Squared Error (MSE) and 68% reduction in deviation in MSE. In addition, the Knox-Thompson phase recovery method is demonstrated to produce images in half the time required by the bispectrum. Finally, it is shown that certain blind image quality metrics can be used in place of the MSE to evaluate reconstruction quality in field scenarios. Using blind metrics rather depending on user estimates allows for reconstruction quality that differs from the minimum MSE by as little as 1%, significantly reducing the deviation in performance due to user action.

  15. Toward an understanding of immune cell sociology: real-time monitoring of cytokine secretion at the single-cell level.

    PubMed

    Shirasaki, Yoshitaka; Yamagishi, Mai; Shimura, Nanako; Hijikata, Atsushi; Ohara, Osamu

    2013-01-01

    The immune system is a very complex and dynamic cellular system, and its intricacies are considered akin to those of human society. Disturbance of homeostasis of the immune system results in various types of diseases; therefore, the homeostatic mechanism of the immune system has long been a subject of great interest in biology, and a lot of information has been accumulated at the cellular and the molecular levels. However, the sociological aspects of the immune system remain too abstract to address because of its high complexity, which mainly originates from a large number and variety of cell-cell interactions. As long-range interactions mediated by cytokines play a key role in the homeostasis of the immune system, cytokine secretion analyses, ranging from analyses of the micro level of individual cells to the macro level of a bulk of cell ensembles, provide us with a solid basis of a sociological viewpoint of the immune system. In this review, as the first step toward a comprehensive understanding of immune cell sociology, cytokine secretion of immune cells is surveyed with a special emphasis on the single-cell level, which has been overlooked but should serve as a basis of immune cell sociology. Now that it has become evident that large cell-to-cell variations in cytokine secretion exist at the single-cell level, we face a tricky yet interesting question: How is homeostasis maintained when the system is composed of intrinsically noisy agents? In this context, we discuss how the heterogeneity of cytokine secretion at the single-cell level affects our view of immune cell sociology. While the apparent inconsistency between homeostasis and cell-to-cell heterogeneity is difficult to address by a conventional reductive approach, comparison and integration of single-cell data with macroscopic data will offer us a new direction for the comprehensive understanding of immune cell sociology. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  16. Evaluation of immunization data completeness within a large community health care system exchanging data with a state immunization information system.

    PubMed

    Hendrickson, Bryan K; Panchanathan, Sarada S; Petitti, Diana

    2015-01-01

    Information systems are used by most states to maintain registries of immunization data both for monitoring population-level adherence and for use in clinical practice and research. Direct data exchange between such systems and electronic health record systems presents an opportunity to improve the completeness and quality of information available. Our goals were to describe and compare the completeness of the Arizona State Immunization System, the electronic health record at a large community health provider in Arizona exchanging electronic data with the Arizona system, and personal immunization records in an effort to contribute to the discussion on the completeness of state-run immunization registries and data exchange with these registries. Immunization histories from these sources were collected and reviewed sequentially. Unique dates of vaccination administrations were counted for each patient and tagged on the basis of comparisons across sources. We quantified completeness by combining information from all 3 sources and comparing each source with the complete set. We determined that the state registry was 71.8% complete, the hospital electronic health record was 81.9% complete, and personal records were 87.8% complete. Of the 2017 unique vaccination administrations, 65% were present in all 3 sources, 24.6% in 2 of the 3 sources, and 10.4% in only 1 source. Only 11% of patients had records in complete agreement across the 3 sources. This study highlights issues related to data completeness, exchange, and reporting of immunization information to state registries and suggests that there is some degree of deficiency in completeness of immunization registries and other sources. This study indicates that there is a need to strengthen links between electronic data sources with immunization information and describes potential improvements in completeness that such efforts could provide, enabling providers to better rely on state immunization registries and to improve research utilization of immunization information systems.

  17. Understanding Internal Accountability in Nigeria’s Routine Immunization System: Perspectives From Government Officials at the National, State, and Local Levels

    PubMed Central

    Erchick, Daniel J.; George, Asha S.; Umeh, Chukwunonso; Wonodi, Chizoba

    2017-01-01

    Background: Routine immunization coverage in Nigeria has remained low, and studies have identified a lack of accountability as a barrier to high performance in the immunization system. Accountability lies at the heart of various health systems strengthening efforts recently launched in Nigeria, including those related to immunization. Our aim was to understand the views of health officials on the accountability challenges hindering immunization service delivery at various levels of government. Methods: A semi-structured questionnaire was used to interview immunization and primary healthcare (PHC) officials from national, state, local, and health facility levels in Niger State in north central Nigeria. Individuals were selected to represent a range of roles and responsibilities in the immunization system. The questionnaire explored concepts related to internal accountability using a framework that organizes accountability into three axes based upon how they drive change in the health system. Results: Respondents highlighted accountability challenges across multiple components of the immunization system, including vaccine availability, financing, logistics, human resources, and data management. A major focus was the lack of clear roles and responsibilities both within institutions and between levels of government. Delays in funding, especially at lower levels of government, disrupted service delivery. Supervision occurred less frequently than necessary, and the limited decision space of managers prevented problems from being resolved. Motivation was affected by the inability of officials to fulfill their responsibilities. Officials posited numerous suggestions to improve accountability, including clarifying roles and responsibilities, ensuring timely release of funding, and formalizing processes for supervision, problem solving, and data reporting. Conclusion: Weak accountability presents a significant barrier to performance of the routine immunization system and high immunization coverage in Nigeria. As one stakeholder in ensuring the performance of health systems, routine immunization officials reveal critical areas that need to be prioritized if emerging interventions to improve accountability in routine immunization are to have an effect. PMID:28812836

  18. Genetic selection of cattle for improved immunity and health.

    PubMed

    Mallard, Bonnie A; Emam, Mehdi; Paibomesai, Marlene; Thompson-Crispi, Kathleen; Wagter-Lesperance, Lauraine

    2015-02-01

    The immune system is a sensing structure composed of tissues and molecules that are well integrated with the neuroendocrine system. This integrate system ensures non-self from self-discrimination. In this capacity the immune system provides detection and protection from a wide range of pathogens. In mammals, the immune system is regulated by several thousand genes (8-9% of the genome) which indicate its high genetic priority as a critical fitness trait providing survival of the species. Identifying and selectively breeding livestock with the inherent ability to make superior immune responses can reduce disease occurrence, improve milk quality and increase farm profitability. Healthier animals also may be expected to demonstrate improvements in other traits, including reproductive fitness. Using the University of Guelph's patented High Immune Response technology it is possible to classify animals as high, average, or low responders based on their genetic estimated breeding value for immune responsiveness. High responders have the inherent ability to produce more balanced and robust immune responses compared with average or low responders. High responders dairy cattle essentially have about one-half the disease occurrence of low responders, and can pass their superior immune response genes on to future generations thereby accumulating health benefits within the dairy herd.

  19. Continuous Dual Resetting of the Immune Repertoire as a Basic Principle of the Immune System Function.

    PubMed

    Balzar, Silvana

    2017-01-01

    Idiopathic chronic inflammatory conditions (ICIC) such as allergy, asthma, chronic obstructive pulmonary disease, and various autoimmune conditions are a worldwide health problem. Understanding the pathogenesis of ICIC is essential for their successful therapy and prevention. However, efforts are hindered by the lack of comprehensive understanding of the human immune system function. In line with those efforts, described here is a concept of stochastic continuous dual resetting (CDR) of the immune repertoire as a basic principle that governs the function of immunity. The CDR functions as a consequence of system's thermodynamically determined intrinsic tendency to acquire new states of inner equilibrium and equilibrium against the environment. Consequently, immune repertoire undergoes continuous dual (two-way) resetting: against the physiologic continuous changes of self and against the continuously changing environment. The CDR-based dynamic concept of immunity describes mechanisms of self-regulation, tolerance, and immunosenescence, and emphasizes the significance of immune system's compartmentalization in the pathogenesis of ICIC. The CDR concept's relative simplicity and concomitantly documented congruency with empirical, clinical, and experimental data suggest it may represent a plausible theoretical framework to better understand the human immune system function.

  20. The immune system: a target for functional foods?

    PubMed

    Calder, Philip C; Kew, Samantha

    2002-11-01

    The immune system acts to protect the host from infectious agents that exist in the environment (bacteria, viruses, fungi, parasites) and from other noxious insults. The immune system is constantly active, acting to discriminate 'non-self' from 'self'. The immune system has two functional divisions: the innate and the acquired. Both components involve various blood-borne factors (complement, antibodies, cytokines) and cells. A number of methodologies exist to assess aspects of immune function; many of these rely upon studying cells in culture ex vivo. There are large inter-individual variations in many immune functions even among the healthy. Genetics, age, gender, smoking habits, habitual levels of exercise, alcohol consumption, diet, stage in the female menstrual cycle, stress, history of infections and vaccinations, and early life experiences are likely to be important contributors to the observed variation. While it is clear that individuals with immune responses significantly below 'normal' are more susceptible to infectious agents and exhibit increased infectious morbidity and mortality, it is not clear how the variation in immune function among healthy individuals relates to variation in susceptibility to infection. Nutrient status is an important factor contributing to immune competence: undernutrition impairs the immune system, suppressing immune functions that are fundamental to host protection. Undernutrition leading to impairment of immune function can be due to insufficient intake of energy and macronutrients and/or due to deficiencies in specific micronutrients. Often these occur in combination. Nutrients that have been demonstrated (in either animal or human studies) to be required for the immune system to function efficiently include essential amino acids, the essential fatty acid linoleic acid, vitamin A, folic acid, vitamin B6, vitamin B12, vitamin C, vitamin E, Zn, Cu, Fe and Se. Practically all forms of immunity may be affected by deficiencies in one or more of these nutrients. Animal and human studies have demonstrated that adding the deficient nutrient back to the diet can restore immune function and resistance to infection. Among the nutrients studied most in this regard are vitamin E and Zn. Increasing intakes of some nutrients above habitual and recommended levels can enhance some aspects of immune function. However, excess amounts of some nutrients also impair immune function. There is increasing evidence that probiotic bacteria improve host immune function. The effect of enhancing immune function on host resistance to infection in healthy individuals is not clear.

  1. Braids and phase gates through high-frequency virtual tunneling of Majorana zero modes

    NASA Astrophysics Data System (ADS)

    Gorantla, Pranay; Sensarma, Rajdeep

    2018-05-01

    Braiding of non-Abelian Majorana anyons is a first step towards using them in quantum computing. We propose a protocol for braiding Majorana zero modes formed at the edges of nanowires with strong spin-orbit coupling and proximity-induced superconductivity. Our protocol uses high-frequency virtual tunneling between the ends of the nanowires in a trijunction, which leads to an effective low-frequency coarse-grained dynamics for the system, to perform the braid. The braiding operation is immune to amplitude noise in the drives and depends only on relative phase between the drives, which can be controlled by the usual phase-locking techniques. We also show how a phase gate, which is necessary for universal quantum computation, can be implemented with our protocol.

  2. Use of DHCP to provide essential information for care and management of HIV patients.

    PubMed Central

    Pfeil, C. N.; Ivey, J. L.; Hoffman, J. D.; Kuhn, I. M.

    1991-01-01

    The Department of Veterans' Affairs (VA) has reported over 10,000 Acquired Immune Deficiency Syndrome (AIDS) cases since the beginning of the epidemic. These cases were distributed throughout 152 of the VA's network of 172 medical centers and outpatient clinics. This network of health care facilities presents a unique opportunity to provide computer based information systems for clinical care and resource monitoring for these patients. The VA further facilitates such a venture through its commitment to the Decentralized Hospital Computer Program (DHCP). This paper describes a new application within DHCP known as the VA's HIV Registry. This project addresses the need to support clinical information as well as the added need to manage the resources necessary to care for HIV patients. PMID:1807575

  3. Immunology for physicists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perelson, A.S.; Weisbuch, G.

    1997-10-01

    The immune system is a complex system of cells and molecules that can provide us with a basic defense against pathogenic organisms. Like the nervous system, the immune system performs pattern recognition tasks, learns, and retains a memory of the antigens that it has fought. The immune system contains more than 10{sup 7} different clones of cells that communicate via cell-cell contact and the secretion of molecules. Performing complex tasks such as learning and memory involves cooperation among large numbers of components of the immune system and hence there is interest in using methods and concepts from statistical physics. Furthermore,more » the immune response develops in time and the description of its time evolution is an interesting problem in dynamical systems. In this paper, the authors provide a brief introduction to the biology of the immune system and discuss a number of immunological problems in which the use of physical concepts and mathematical methods has increased our understanding. {copyright} {ital 1997} {ital The American Physical Society}« less

  4. Septic Arthritis

    MedlinePlus

    ... Weak immune system. People with a weak immune system are at greater risk of septic arthritis. This includes people with diabetes, kidney and liver problems, and those taking drugs that suppress their immune systems. Joint trauma. Animal bites, puncture woods or cuts ...

  5. [Regulatory role of the immune system in the organism].

    PubMed

    Alekseev, L P; Khaitov, R M

    2010-08-01

    The paper presents modern idea of regulatory role of the human immune system in performing a number of physiological functions including intercellular interactions, reproductive process, and forming of protection against external and internal aggression. Significance of the immune system is considered and substantiated, that of genes of the human immune response in particular in provision of human survival as a biological species.

  6. Integrated Immune

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Mehta, Satish; Stowe, Raymond; Uchakin, Peter; Quiriarte, Heather; Pierson, Duane; Sams, Clarnece

    2010-01-01

    This slide presentation reviews the program to replace several recent studies about astronaut immune systems with one comprehensive study that will include in-flight sampling. The study will address lack of in-flight data to determine the inflight status of immune systems, physiological stress, viral immunity, to determine the clinical risk related to immune dysregulation for exploration class spaceflight, and to determine the appropriate monitoring strategy for spaceflight-associated immune dysfunction, that could be used for the evaluation of countermeasures.

  7. Trained immunity in newborn infants of HBV-infected mothers

    PubMed Central

    Hong, Michelle; Sandalova, Elena; Low, Diana; Gehring, Adam J.; Fieni, Stefania; Amadei, Barbara; Urbani, Simonetta; Chong, Yap-Seng; Guccione, Ernesto; Bertoletti, Antonio

    2015-01-01

    The newborn immune system is characterized by an impaired Th1-associated immune response. Hepatitis B virus (HBV) transmitted from infected mothers to newborns is thought to exploit the newborns’ immune system immaturity by inducing a state of immune tolerance that facilitates HBV persistence. Contrary to this hypothesis, we demonstrate here that HBV exposure in utero triggers a state of trained immunity, characterized by innate immune cell maturation and Th1 development, which in turn enhances the ability of cord blood immune cells to respond to bacterial infection in vitro. These training effects are associated with an alteration of the cytokine environment characterized by low IL-10 and, in most cases, high IL-12p40 and IFN-α2. Our data uncover a potentially symbiotic relationship between HBV and its natural host, and highlight the plasticity of the fetal immune system following viral exposure in utero. PMID:25807344

  8. The innate immune system in chronic cardiomyopathy: a European Society of Cardiology (ESC) scientific statement from the Working Group on Myocardial Function of the ESC.

    PubMed

    Frantz, Stefan; Falcao-Pires, Ines; Balligand, Jean-Luc; Bauersachs, Johann; Brutsaert, Dirk; Ciccarelli, Michele; Dawson, Dana; de Windt, Leon J; Giacca, Mauro; Hamdani, Nazha; Hilfiker-Kleiner, Denise; Hirsch, Emilio; Leite-Moreira, Adelino; Mayr, Manuel; Thum, Thomas; Tocchetti, Carlo G; van der Velden, Jolanda; Varricchi, Gilda; Heymans, Stephane

    2018-03-01

    Activation of the immune system in heart failure (HF) has been recognized for over 20 years. Initially, experimental studies demonstrated a maladaptive role of the immune system. However, several phase III trials failed to show beneficial effects in HF with therapies directed against an immune activation. Preclinical studies today describe positive and negative effects of immune activation in HF. These different effects depend on timing and aetiology of HF. Therefore, herein we give a detailed review on immune mechanisms and their importance for the development of HF with a special focus on commonalities and differences between different forms of cardiomyopathies. The role of the immune system in ischaemic, hypertensive, diabetic, toxic, viral, genetic, peripartum, and autoimmune cardiomyopathy is discussed in depth. Overall, initial damage to the heart leads to disease specific activation of the immune system whereas in the chronic phase of HF overlapping mechanisms occur in different aetiologies. © 2018 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.

  9. The mucosal immune system: From dentistry to vaccine development

    PubMed Central

    KIYONO, Hiroshi; AZEGAMI, Tatsuhiko

    2015-01-01

    The oral cavity is the beginning of the aero-digestive tract, which is covered by mucosal epithelium continuously under the threat of invasion of pathogens, it is thus protected by the mucosal immune system. In the early phase of our scientific efforts for the demonstration of mucosal immune system, dental science was one of major driving forces due to their foreseeability to use oral immunity for the control of oral diseases. The mucosal immune system is divided functionally into, but interconnected inductive and effector sites. Intestinal Peyer’s patches (PPs) are an inductive site containing antigen-sampling M cells and immunocompetent cells required to initiate antigen-specific immune responses. At effector sites, PP-originated antigen-specific IgA B cells become plasma cells to produce polymeric IgA and form secretory IgA by binding to poly-Ig receptor expressed on epithelial cells for protective immunity. The development of new-generation mucosal vaccines, including the rice-based oral vaccine MucoRice, on the basis of the coordinated mucosal immune system is a promising strategy for the control of mucosal infectious diseases. PMID:26460320

  10. Activation of the immune system by bacterial CpG-DNA

    PubMed Central

    Häcker, Georg; Redecke, Vanessa; Häcker, Hans

    2002-01-01

    The past decade has seen a remarkable process of refocusing in immunology. Cells of the innate immune system, especially macrophages and dendritic cells, have been at the centre of this process. These cells had been regarded by some scientists as non-specific, sometimes perhaps even confined to the menial job of serving T cells by scavenging antigen and presenting it to the sophisticated adaptive immune system. Only over the last few years has it become unequivocally clear that cells of the innate immunity hold, by variation of context and mode of antigen presentation, the power of shaping an adaptive immune response. The innate immune response, in turn, is to a significant degree the result of stimulation by so-called pathogen-associated molecular patterns (PAMPs). One compound with high stimulatory potential for the innate immune system is bacterial DNA. Here we will review recent evidence that bacterial DNA should be ranked with other PAMPs such as lipopolysaccharide (LPS) and lipoteichoic acid. We will further review our present knowledge of DNA recognition and DNA-dependent signal transduction in cells of the immune system. PMID:11918685

  11. Genome complexity in the coelacanth is reflected in its adaptive immune system

    USGS Publications Warehouse

    Saha, Nil Ratan; Ota, Tatsuya; Litman, Gary W.; Hansen, John; Parra, Zuly; Hsu, Ellen; Buonocore, Francesco; Canapa, Adriana; Cheng, Jan-Fang; Amemiya, Chris T.

    2014-01-01

    We have analyzed the available genome and transcriptome resources from the coelacanth in order to characterize genes involved in adaptive immunity. Two highly distinctive IgW-encoding loci have been identified that exhibit a unique genomic organization, including a multiplicity of tandemly repeated constant region exons. The overall organization of the IgW loci precludes typical heavy chain class switching. A locus encoding IgM could not be identified either computationally or by using several different experimental strategies. Four distinct sets of genes encoding Ig light chains were identified. This includes a variant sigma-type Ig light chain previously identified only in cartilaginous fishes and which is now provisionally denoted sigma-2. Genes encoding α/β and γ/δ T-cell receptors, and CD3, CD4, and CD8 co-receptors also were characterized. Ig heavy chain variable region genes and TCR components are interspersed within the TCR α/δ locus; this organization previously was reported only in tetrapods and raises questions regarding evolution and functional cooption of genes encoding variable regions. The composition, organization and syntenic conservation of the major histocompatibility complex locus have been characterized. We also identified large numbers of genes encoding cytokines and their receptors, and other genes associated with adaptive immunity. In terms of sequence identity and organization, the adaptive immune genes of the coelacanth more closely resemble orthologous genes in tetrapods than those in teleost fishes, consistent with current phylogenomic interpretations. Overall, the work reported described herein highlights the complexity inherent in the coelacanth genome and provides a rich catalog of immune genes for future investigations.

  12. Promoting tissue regeneration by modulating the immune system.

    PubMed

    Julier, Ziad; Park, Anthony J; Briquez, Priscilla S; Martino, Mikaël M

    2017-04-15

    The immune system plays a central role in tissue repair and regeneration. Indeed, the immune response to tissue injury is crucial in determining the speed and the outcome of the healing process, including the extent of scarring and the restoration of organ function. Therefore, controlling immune components via biomaterials and drug delivery systems is becoming an attractive approach in regenerative medicine, since therapies based on stem cells and growth factors have not yet proven to be broadly effective in the clinic. To integrate the immune system into regenerative strategies, one of the first challenges is to understand the precise functions of the different immune components during the tissue healing process. While remarkable progress has been made, the immune mechanisms involved are still elusive, and there is indication for both negative and positive roles depending on the tissue type or organ and life stage. It is well recognized that the innate immune response comprising danger signals, neutrophils and macrophages modulates tissue healing. In addition, it is becoming evident that the adaptive immune response, in particular T cell subset activities, plays a critical role. In this review, we first present an overview of the basic immune mechanisms involved in tissue repair and regeneration. Then, we highlight various approaches based on biomaterials and drug delivery systems that aim at modulating these mechanisms to limit fibrosis and promote regeneration. We propose that the next generation of regenerative therapies may evolve from typical biomaterial-, stem cell-, or growth factor-centric approaches to an immune-centric approach. Most regenerative strategies have not yet proven to be safe or reasonably efficient in the clinic. In addition to stem cells and growth factors, the immune system plays a crucial role in the tissue healing process. Here, we propose that controlling the immune-mediated mechanisms of tissue repair and regeneration may support existing regenerative strategies or could be an alternative to using stem cells and growth factors. The first part of this review we highlight key immune mechanisms involved in the tissue healing process and marks them as potential target for designing regenerative strategies. In the second part, we discuss various approaches using biomaterials and drug delivery systems that aim at modulating the components of the immune system to promote tissue regeneration. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Learning and Memory... and the Immune System

    ERIC Educational Resources Information Center

    Marin, Ioana; Kipnis, Jonathan

    2013-01-01

    The nervous system and the immune system are two main regulators of homeostasis in the body. Communication between them ensures normal functioning of the organism. Immune cells and molecules are required for sculpting the circuitry and determining the activity of the nervous system. Within the parenchyma of the central nervous system (CNS),…

  14. Tissue homeostasis and immunity--more on models.

    PubMed

    Cunliffe, J

    2006-09-01

    This article continues the ongoing debate around models of the immune system. Earlier contributors have paid much attention to the various processes that lead to adaptive immune system aggression or tolerance. They have often based their discussions around facts that have been established by experimental investigation. However, both the observation and interpretation of these facts have been influenced by the function--or system goal--that is believed to have generated them. The perception of this function (of all or part of the immune system) is influenced by long established theories in immunology (e.g. horror autotoxicus, clonal deletion in utero, pathogen elimination, clonal selection, auto-immunity and so on) which, for many, have become enshrined as facts. One function that has had less consideration and has not been extensively investigated is the maintenance of tissue homeostasis. When the immune system is viewed from this perspective, the facts invite alternative interpretations. Whilst this perspective may not necessarily be the only valid one, let alone a correct one, viewing things this way--at least briefly--might help to expose hidden assumptions. It also emphasizes that the immune system is a system and, as such, it can by analysed through the principles of general systems theory.

  15. Prolonged protection against Intranasal challenge with influenza virus following systemic immunization or combinations of mucosal and systemic immunizations with a heat-labile toxin mutant.

    PubMed

    Zhou, Fengmin; Goodsell, Amanda; Uematsu, Yasushi; Vajdy, Michael

    2009-04-01

    Seasonal influenza virus infections cause considerable morbidity and mortality in the world, and there is a serious threat of a pandemic influenza with the potential to cause millions of deaths. Therefore, practical influenza vaccines and vaccination strategies that can confer protection against intranasal infection with influenza viruses are needed. In this study, we demonstrate that using LTK63, a nontoxic mutant of the heat-labile toxin from Escherichia coli, as an adjuvant for both mucosal and systemic immunizations, systemic (intramuscular) immunization or combinations of mucosal (intranasal) and intramuscular immunizations protected mice against intranasal challenge with a lethal dose of live influenza virus at 3.5 months after the second immunization.

  16. The S(c)ensory Immune System Theory.

    PubMed

    Veiga-Fernandes, Henrique; Freitas, António A

    2017-10-01

    Viewpoints on the immune system have evolved across different paradigms, including the clonal selection theory, the idiotypic network, and the danger and tolerance models. Herein, we propose that in multicellular organisms, where panoplies of cells from different germ layers interact and immune cells are constantly generated, the behavior of the immune system is defined by the rules governing cell survival, systems physiology and organismic homeostasis. Initially, these rules were imprinted at the single cell-protist level, but supervened modifications in the transition to multicellular organisms. This context determined the emergence of the 'sensory immune system', which operates in a s(c)ensor mode to ensure systems physiology, organismic homeostasis, and perpetuation of its replicating molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Novel vaccine development strategies for inducing mucosal immunity

    PubMed Central

    Fujkuyama, Yoshiko; Tokuhara, Daisuke; Kataoka, Kosuke; Gilbert, Rebekah S; McGhee, Jerry R; Yuki, Yoshikazu; Kiyono, Hiroshi; Fujihashi, Kohtaro

    2012-01-01

    To develop protective immune responses against mucosal pathogens, the delivery route and adjuvants for vaccination are important. The host, however, strives to maintain mucosal homeostasis by responding to mucosal antigens with tolerance, instead of immune activation. Thus, induction of mucosal immunity through vaccination is a rather difficult task, and potent mucosal adjuvants, vectors or other special delivery systems are often used, especially in the elderly. By taking advantage of the common mucosal immune system, the targeting of mucosal dendritic cells and microfold epithelial cells may facilitate the induction of effective mucosal immunity. Thus, novel routes of immunization and antigen delivery systems also show great potential for the development of effective and safe mucosal vaccines against various pathogens. The purpose of this review is to introduce several recent approaches to induce mucosal immunity to vaccines, with an emphasis on mucosal tissue targeting, new immunization routes and delivery systems. Defining the mechanisms of mucosal vaccines is as important as their efficacy and safety, and in this article, examples of recent approaches, which will likely accelerate progress in mucosal vaccine development, are discussed. PMID:22380827

  18. Structural and functional annotation of the porcine immunome

    PubMed Central

    2013-01-01

    Background The domestic pig is known as an excellent model for human immunology and the two species share many pathogens. Susceptibility to infectious disease is one of the major constraints on swine performance, yet the structure and function of genes comprising the pig immunome are not well-characterized. The completion of the pig genome provides the opportunity to annotate the pig immunome, and compare and contrast pig and human immune systems. Results The Immune Response Annotation Group (IRAG) used computational curation and manual annotation of the swine genome assembly 10.2 (Sscrofa10.2) to refine the currently available automated annotation of 1,369 immunity-related genes through sequence-based comparison to genes in other species. Within these genes, we annotated 3,472 transcripts. Annotation provided evidence for gene expansions in several immune response families, and identified artiodactyl-specific expansions in the cathelicidin and type 1 Interferon families. We found gene duplications for 18 genes, including 13 immune response genes and five non-immune response genes discovered in the annotation process. Manual annotation provided evidence for many new alternative splice variants and 8 gene duplications. Over 1,100 transcripts without porcine sequence evidence were detected using cross-species annotation. We used a functional approach to discover and accurately annotate porcine immune response genes. A co-expression clustering analysis of transcriptomic data from selected experimental infections or immune stimulations of blood, macrophages or lymph nodes identified a large cluster of genes that exhibited a correlated positive response upon infection across multiple pathogens or immune stimuli. Interestingly, this gene cluster (cluster 4) is enriched for known general human immune response genes, yet contains many un-annotated porcine genes. A phylogenetic analysis of the encoded proteins of cluster 4 genes showed that 15% exhibited an accelerated evolution as compared to 4.1% across the entire genome. Conclusions This extensive annotation dramatically extends the genome-based knowledge of the molecular genetics and structure of a major portion of the porcine immunome. Our complementary functional approach using co-expression during immune response has provided new putative immune response annotation for over 500 porcine genes. Our phylogenetic analysis of this core immunome cluster confirms rapid evolutionary change in this set of genes, and that, as in other species, such genes are important components of the pig’s adaptation to pathogen challenge over evolutionary time. These comprehensive and integrated analyses increase the value of the porcine genome sequence and provide important tools for global analyses and data-mining of the porcine immune response. PMID:23676093

  19. Host Immune Response to Influenza A Virus Infection.

    PubMed

    Chen, Xiaoyong; Liu, Shasha; Goraya, Mohsan Ullah; Maarouf, Mohamed; Huang, Shile; Chen, Ji-Long

    2018-01-01

    Influenza A viruses (IAVs) are contagious pathogens responsible for severe respiratory infection in humans and animals worldwide. Upon detection of IAV infection, host immune system aims to defend against and clear the viral infection. Innate immune system is comprised of physical barriers (mucus and collectins), various phagocytic cells, group of cytokines, interferons (IFNs), and IFN-stimulated genes, which provide first line of defense against IAV infection. The adaptive immunity is mediated by B cells and T cells, characterized with antigen-specific memory cells, capturing and neutralizing the pathogen. The humoral immune response functions through hemagglutinin-specific circulating antibodies to neutralize IAV. In addition, antibodies can bind to the surface of infected cells and induce antibody-dependent cell-mediated cytotoxicity or complement activation. Although there are neutralizing antibodies against the virus, cellular immunity also plays a crucial role in the fight against IAVs. On the other hand, IAVs have developed multiple strategies to escape from host immune surveillance for successful replication. In this review, we discuss how immune system, especially innate immune system and critical molecules are involved in the antiviral defense against IAVs. In addition, we highlight how IAVs antagonize different immune responses to achieve a successful infection.

  20. An Analysis of Cryptographically Significant Boolean Functions With High Correlation Immunity by Reconfigurable Computer

    DTIC Science & Technology

    2010-12-01

    with high correlation immunity and then evaluate these functions for other desirable cryptographic features. C. METHOD The only known primary methods...out if not used) # ---------------------------------- # PRIMARY = < primary file 1> < primary file 2> #SECONDARY = <secondary file 1...finding the fuction value for a //set u and for each value of v. end end

  1. A benign helminth alters the host immune system and the gut microbiota in a rat model system.

    PubMed

    Wegener Parfrey, Laura; Jirků, Milan; Šíma, Radek; Jalovecká, Marie; Sak, Bohumil; Grigore, Karina; Jirků Pomajbíková, Kateřina

    2017-01-01

    Helminths and bacteria are major players in the mammalian gut ecosystem and each influences the host immune system and health. Declines in helminth prevalence and bacterial diversity appear to play a role in the dramatic rise of immune mediated inflammatory diseases (IMIDs) in western populations. Helminths are potent modulators of immune system and their reintroduction is a promising therapeutic avenue for IMIDs. However, the introduction of helminths represents a disturbance for the host and it is important to understand the impact of helminth reintroduction on the host, including the immune system and gut microbiome. We tested the impact of a benign tapeworm, Hymenolepis diminuta, in a rat model system. We find that H. diminuta infection results in increased interleukin 10 gene expression in the beginning of the prepatent period, consistent with induction of a type 2 immune response. We also find induction of humoral immunity during the patent period, shown here by increased IgA in feces. Further, we see an immuno-modulatory effect in the small intestine and spleen in patent period, as measured by reductions in tissue immune cells. We observed shifts in microbiota community composition during the patent period (beta-diversity) in response to H. diminuta infection. However, these compositional changes appear to be minor; they occur within families and genera common to both treatment groups. There was no change in alpha diversity. Hymenolepis diminuta is a promising model for helminth therapy because it establishes long-term, stable colonization in rats and modulates the immune system without causing bacterial dysbiosis. These results suggest that the goal of engineering a therapeutic helminth that can safely manipulate the mammalian immune system without disrupting the rest of the gut ecosystem is in reach.

  2. A benign helminth alters the host immune system and the gut microbiota in a rat model system

    PubMed Central

    Wegener Parfrey, Laura; Jirků, Milan; Šíma, Radek; Jalovecká, Marie; Sak, Bohumil; Grigore, Karina; Jirků Pomajbíková, Kateřina

    2017-01-01

    Helminths and bacteria are major players in the mammalian gut ecosystem and each influences the host immune system and health. Declines in helminth prevalence and bacterial diversity appear to play a role in the dramatic rise of immune mediated inflammatory diseases (IMIDs) in western populations. Helminths are potent modulators of immune system and their reintroduction is a promising therapeutic avenue for IMIDs. However, the introduction of helminths represents a disturbance for the host and it is important to understand the impact of helminth reintroduction on the host, including the immune system and gut microbiome. We tested the impact of a benign tapeworm, Hymenolepis diminuta, in a rat model system. We find that H. diminuta infection results in increased interleukin 10 gene expression in the beginning of the prepatent period, consistent with induction of a type 2 immune response. We also find induction of humoral immunity during the patent period, shown here by increased IgA in feces. Further, we see an immuno-modulatory effect in the small intestine and spleen in patent period, as measured by reductions in tissue immune cells. We observed shifts in microbiota community composition during the patent period (beta-diversity) in response to H. diminuta infection. However, these compositional changes appear to be minor; they occur within families and genera common to both treatment groups. There was no change in alpha diversity. Hymenolepis diminuta is a promising model for helminth therapy because it establishes long-term, stable colonization in rats and modulates the immune system without causing bacterial dysbiosis. These results suggest that the goal of engineering a therapeutic helminth that can safely manipulate the mammalian immune system without disrupting the rest of the gut ecosystem is in reach. PMID:28771620

  3. Improving vaccine registries through mobile technologies: a vision for mobile enhanced Immunization information systems.

    PubMed

    Wilson, Kumanan; Atkinson, Katherine M; Deeks, Shelley L; Crowcroft, Natasha S

    2016-01-01

    Immunization registries or information systems are critical to improving the quality and evaluating the ongoing success of immunization programs. However, the completeness of these systems is challenged by a myriad of factors including the fragmentation of vaccine administration, increasing mobility of individuals, new vaccine development, use of multiple products, and increasingly frequent changes in recommendations. Mobile technologies could offer a solution, which mitigates some of these challenges. Engaging individuals to have more control of their own immunization information using their mobile devices could improve the timeliness and accuracy of data in central immunization information systems. Other opportunities presented by mobile technologies that could be exploited to improve immunization information systems include mobile reporting of adverse events following immunization, the capacity to scan 2D barcodes, and enabling bidirectional communication between individuals and public health officials. Challenges to utilizing mobile solutions include ensuring privacy of data, access, and equity concerns, obtaining consent and ensuring adoption of technology at sufficiently high rates. By empowering individuals with their own health information, mobile technologies can also serve as a mechanism to transfer immunization information as individuals cross local, regional, and national borders. Ultimately, mobile enhanced immunization information systems can help realize the goal of the individual, the healthcare provider, and public health officials always having access to the same immunization information. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Osteoimmunology and Beyond

    PubMed Central

    Ginaldi, Lia; De Martinis, Massimo

    2016-01-01

    Abstract: Objective Osteoimmunology investigates interactions between skeleton and immune system. In the light of recent discoveries in this field, a new reading register of osteoporosis is actually emerging, in which bone and immune cells are strictly interconnected. Osteoporosis could therefore be considered a chronic immune mediated disease which shares with other age related disorders a common inflammatory background. Here, we highlight these recent discoveries and the new landscape that is emerging. Method Extensive literature search in PubMed central. Results While the inflammatory nature of osteoporosis has been clearly recognized, other interesting aspects of osteoimmunology are currently emerging. In addition, mounting evidence indicates that the immunoskeletal interface is involved in the regulation of important body functions beyond bone remodeling. Bone cells take part with cells of the immune system in various immunological functions, configuring a real expanded immune system, and are therefore variously involved not only as target but also as main actors in various pathological conditions affecting primarily the immune system, such as autoimmunity and immune deficiencies, as well as in aging, menopause and other diseases sharing an inflammatory background. Conclusion The review highlights the complexity of interwoven pathways and shared mechanisms of the crosstalk between the immune and bone systems. More interestingly, the interdisciplinary field of osteoimmunology is now expanding beyond bone and immune cells, defining new homeostatic networks in which other organs and systems are functionally interconnected. Therefore, the correct skeletal integrity maintenance may be also relevant to other functions outside its involvement in bone mineral homeostasis, hemopoiesis and immunity. PMID:27604089

  5. Combining tabular, rule-based, and procedural knowledge in computer-based guidelines for childhood immunization.

    PubMed

    Miller, P L; Frawley, S J; Sayward, F G; Yasnoff, W A; Duncan, L; Fleming, D W

    1997-06-01

    IMM/Serve is a computer program which implements the clinical guidelines for childhood immunization. IMM/Serve accepts as input a child's immunization history. It then indicates which vaccinations are due and which vaccinations should be scheduled next. The clinical guidelines for immunization are quite complex and are modified quite frequently. As a result, it is important that IMM/Serve's knowledge be represented in a format that facilitates the maintenance of that knowledge as the field evolves over time. To achieve this goal, IMM/Serve uses four representations for different parts of its knowledge base: (1) Immunization forecasting parameters that specify the minimum ages and wait-intervals for each dose are stored in tabular form. (2) The clinical logic that determines which set of forecasting parameters applies for a particular patient in each vaccine series is represented using if-then rules. (3) The temporal logic that combines dates, ages, and intervals to calculate recommended dates, is expressed procedurally. (4) The screening logic that checks each previous dose for validity is performed using a decision table that combines minimum ages and wait intervals with a small amount of clinical logic. A knowledge maintenance tool, IMM/Def, has been developed to help maintain the rule-based logic. The paper describes the design of IMM/Serve and the rationale and role of the different forms of knowledge used.

  6. Immunotoxicological effects of JP-8 jet fuel exposure.

    PubMed

    Harris, D T; Sakiestewa, D; Robledo, R F; Witten, M

    1997-01-01

    Chronic exposure to jet fuel has been shown to have adverse effects on human liver function, to cause emotional dysfunction, to cause abnormal electroencephalograms, to cause shortened attention spans, and to decrease sensorimotor speed (3-5). Due to the decision by the United States Air Force to implement the widespread use of JP-8 jet fuel in its operations, a thorough understanding of its potential effects upon exposed personnel is both critical and necessary. Exposure to potential environmental toxicants such as JP-8 may have significant effects on host systems beyond those readily visible (e.g., physiology, cardiology, respiratory, etc.); e.g., the immune system. Significant changes in immune consequences, even if short-lived, may have serious consequences for the exposed host that may impinge affect susceptibility to infectious agents. Major alterations in immune function that are long-lasting may result in an increased likelihood of development and/or progression of cancer, as well as autoimmune diseases. In the current study mice were exposed for 1h/day for 7 days to varying concentrations of aerosolized JP-8 jet fuel to simulate occupational exposures. Twenty-four hours after the last exposure the mice were analyzed for effects on their immune systems. It was observed that even at exposure concentrations as low as 100 mg/m3 detrimental effects on the immune system occurred. Decreases in viable immune cell numbers and immune organ weights were found. Jet fuel exposure resulted in losses of different immune cell subpopulations depending upon the immune organ being examined. Further, JP-8 exposure resulted in significantly decreased immune function, as analyzed by mitogenesis assays. Suppressed immune function could not be overcome by the addition of exogenous growth factors known to stimulate immune function. Thus, short-term, low concentration exposure of mice to JP-8 jet fuel caused significant toxicological effects on the immune system. It appears that the immune system may be the most sensitive indicator of toxicological damage due to JP-8 exposure, as effects were seen at concentrations of jet fuel that did not evidence change in other biological systems. Such changes may have significant effects on the health of the exposed individual.

  7. Immune mediators in the brain and peripheral tissues in autism spectrum disorder

    PubMed Central

    Estes, Myka L.; McAllister, A. Kimberley

    2017-01-01

    Increasing evidence points to a central role for immune dysregulation in autism spectrum disorder (ASD). Several ASD risk genes encode components of the immune system and many maternal immune system-related risk factors — including autoimmunity, infection and fetal reactive antibodies — are associated with ASD. In addition, there is evidence of ongoing immune dysregulation in individuals with ASD and animal models of this disorder. Recently, several molecular signalling pathways have been identified that link immune activation to ASD phenotypes, including pathways downstream of cytokines, hepatocyte growth factor receptor (MET), MHCI molecules, microglia and complement factors. These findings indicate that the immune system is a point of convergence for various ASD-related genetic and environmental risk factors. PMID:26189694

  8. Modernizing Immunization Practice Through the Use of Cloud Based Platforms.

    PubMed

    Bell, Cameron; Atkinson, Katherine M; Wilson, Kumanan

    2017-04-01

    Collection of timely and accurate immunization information is essential for effective immunization programs. Current immunization information systems have important limitations that impact the ability to collect this data. Based on our experience releasing a national immunization app we describe a cloud-based platform that would allow individuals to store their records digitally and exchange these records with public health information systems thus improving the quality of immunization information held by individuals and public health officials.

  9. Breast Milk and Solid Food Shaping Intestinal Immunity

    PubMed Central

    Parigi, Sara M.; Eldh, Maria; Larssen, Pia; Gabrielsson, Susanne; Villablanca, Eduardo J.

    2015-01-01

    After birth, the intestinal immune system enters a critical developmental stage, in which tolerogenic and pro-inflammatory cells emerge to contribute to the overall health of the host. The neonatal health is continuously challenged by microbial colonization and food intake, first in the form of breast milk or formula and later in the form of solid food. The microbiota and dietary compounds shape the newborn immune system, which acquires the ability to induce tolerance against innocuous antigens or induce pro-inflammatory immune responses against pathogens. Disruption of these homeostatic mechanisms might lead to undesired immune reactions, such as food allergies and inflammatory bowel disease. Hence, a proper education and maturation of the intestinal immune system is likely important to maintain life-long intestinal homeostasis. In this review, the most recent literature regarding the effects of dietary compounds in the development of the intestinal immune system are discussed. PMID:26347740

  10. Selfish brain and selfish immune system interplay: A theoretical framework for metabolic comorbidities of mood disorders.

    PubMed

    Yamagata, Ana Sayuri; Mansur, Rodrigo Barbachan; Rizzo, Lucas Bortolotto; Rosenstock, Tatiana; McIntyre, Roger S; Brietzke, Elisa

    2017-01-01

    According to the "selfish brain" theory, the brain regulates its own energy supply influencing the peripheral metabolism and food intake according to its needs. The immune system has been likewise "selfish" due to independent energy consumption; and it may compete with the brain (another high energy-consumer) for glucose. In mood disorders, stress in mood episodes or physiological stress activate homeostasis mechanisms from the brain and the immune system to solve the imbalance. The interaction between the selfish brain and the selfish immune system may explain various conditions of medical impairment in mood disorders, such as Metabolic Syndrome (MetS), obesity, type 2 diabetes mellitus (T2DM) and immune dysregulation. The objective of this study is to comprehensively review the literature regarding the competition between the brain and the immune system for energy substrate. Targeting the energetic regulation of the brain and the immune system and their cross-talk open alternative treatments and a different approach in the study of general medical comorbidities in mood disorders, although more investigation is needed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Acute and Subacute Oral Toxicity of Periodate in Rats

    DTIC Science & Technology

    2014-11-17

    presence of decreased TSH, a pattern associated with uremia. Sodium periodate exposed rats exhibited both activation of the innate immune system and...associated with kidney disease are characterized by activation of the innate immune system coupled with immune deficiency. Sodium periodate exposed rats...exhibited both activation of the innate immune system and lymphocyte depletion; however, the pattern of effects was more indicative of a stress leukogram

  12. Jet fuel-induced immunotoxicity.

    PubMed

    Harris, D T; Sakiestewa, D; Titone, D; Robledo, R F; Young, R S; Witten, M

    2000-09-01

    Chronic exposure to jet fuel has been shown to cause human liver dysfunction, emotional dysfunction, abnormal electroencephalograms, shortened attention spans, and to decrease sensorimotor speed (3-5). Exposure to potential environmental toxicants such as jet fuel may have significant effects on host systems beyond those readily visible (e.g., physiology, cardiology, respiratory, etc.), e.g., the immune system. Significant changes in immune function, even if short-lived, may have serious consequences for the exposed host that may impinge affect susceptibility to infectious agents. Major alterations in immune function that are long lasting may result in an increased likelihood of development and/or progression of cancer, as well as autoimmune diseases. In the current study mice were exposed 1 h/day for 7 days to a 1000-mg/m3 concentration of aerosolized jet fuel obtained from various sources (JP-8, JP-8+100 and Jet A1) and of differing compositions to simulate occupational exposures. Twenty-four hours after the last exposure the mice were analyzed for effects on the immune system. It was observed that exposure to all jet fuel sources examined had detrimental effects on the immune system. Decreases in viable immune cell numbers and immune organ weights were found. Jet fuel exposure resulted in differential losses of immune cell populations in the thymus. Further, jet fuel exposure resulted in significantly decreased immune function, as analyzed by mitogenesis assays. Suppressed immune function could not be overcome by the addition of exogenous growth factors known to stimulate immune function. Thus, short-term, low-concentration exposure of mice to aerosolized jet fuel, regardless of source or composition, caused significant deleterious effects on the immune system.

  13. Acceptance of direct physician access to a computer-based patient record in a managed care setting.

    PubMed

    Dewey, J B; Manning, P; Brandt, S

    1993-01-01

    Kaiser Permanente Mid-Atlantic States has developed a fully integrated outpatient information system which currently runs on an IBM ES9000 on a VM platform written in MUMPS. The applications include Lab, Radiology, Transcription, Appointments. Pharmacy, Encounter tracking, Hospitalizations, Referrals, Phone Advice, Pap tracking, Problem list, Immunization tracking, and Patient demographics. They are department specific and require input and output from a dumb terminal. We have developed a physician's work station to access this information using PC compatible computers running Microsoft Windows and a custom Microsoft Visual Basic 2.0 environment which draws from these 14 applications giving the physician a comprehensive view of all electronic medical records. Through rapid prototyping, voluntary participation, formal training and gradual implementation we have created an enthusiastic response. 95% of our physician PC users access the system each month. The use ranges from 0.2 to 3.0 screens of data viewed per patient visit. This response continues to drive the process toward still greater user acceptance and further practice enhancement.

  14. The roles of the immune system in women's reproduction: evolutionary constraints and life history trade-offs.

    PubMed

    Abrams, Elizabeth T; Miller, Elizabeth M

    2011-01-01

    Life history theory posits that, as long as survival is assured, finite resources are available for reproduction, maintenance, and growth/storage. To maximize lifetime reproductive success, resources are subject to trade-offs both within individuals and between current and future investment. For women, reproducing is costly and time-consuming; the bulk of available resources must be allocated to reproduction at the expense of more flexible systems like immune function. When reproducing women contract infectious diseases, the resources required for immune activation can fundamentally shift the patterns of resource allocation. Adding to the complexity of the reproductive-immune trade-offs in women are the pleiotropic effects of many immune factors, which were modified to serve key roles in mammalian reproduction. In this review, we explore the complex intersections between immune function and female reproduction to situate proximate immunological processes within a life history framework. After a brief overview of the immune system, we discuss some important physiological roles of immune factors in women's reproduction and the conflicts that may arise when these factors must play dual roles. We then discuss the influence of reproductive-immune trade-offs on the patterning of lifetime reproductive success: (1) the effect of immune activation/infectious disease on the timing of life history events; (2) the role of the immune system, immune activation, and infectious disease on resource allocation within individual reproductive events, particularly pregnancy; and (3) the role of the immune system in shaping the offspring's patterns of future life history trade-offs. We close with a discussion of future directions in reproductive immunology for anthropologists. Copyright © 2011 Wiley Periodicals, Inc.

  15. Sexual dimorphism in immune function changes during the annual cycle in house sparrows

    NASA Astrophysics Data System (ADS)

    Pap, Péter László; Czirják, Gábor Árpád; Vágási, Csongor István; Barta, Zoltán; Hasselquist, Dennis

    2010-10-01

    Difference between sexes in parasitism is a common phenomenon among birds, which may be related to differences between males and females in their investment into immune functions or as a consequence of differential exposure to parasites. Because life-history strategies change sex specifically during the annual cycle, immunological responses of the host aiming to reduce the impact of parasites may be sexually dimorphic. Despite the great complexity of the immune system, studies on immunoecology generally characterise the immune status through a few variables, often overlooking potentially important seasonal and gender effects. However, because of the differences in physiological and defence mechanisms among different arms of the immune system, we expect divergent responses of immune components to environmental seasonality. In male and female house sparrows ( Passer domesticus), we measured the major components of the immune system (innate, acquired, cellular and humoral) during four important life-history stages across the year: (1) mating, (2) breeding, (3) moulting and (4) during the winter capture and also following introduction to captivity in aviary. Different individuals were sampled from the same population during the four life cycle stages. We found that three out of eight immune variables showed a significant life cycle stage × sex interaction. The difference in immune response between the sexes was significant in five immune variables during the mating stage, when females had consistently stronger immune function than males, while variables varied generally non-significantly with sex during the remaining three life cycle stages. Our results show that the immune system is highly variable between life cycle stages and sexes, highlighting the potential fine tuning of the immune system to specific physiological states and environmental conditions.

  16. The University Immune System: Overcoming Resistance to Change

    ERIC Educational Resources Information Center

    Gilley, Ann; Godek, Marisha; Gilley, Jerry W.

    2009-01-01

    A university, similar to any other organization, has an immune system that erects a powerful barrier against change. This article discusses the university immune system and what can be done to counteract its negative effects and thereby allow change to occur.

  17. Microglia, the missing link in maternal immune activation and fetal neurodevelopment; and a possible link in preeclampsia and disturbed neurodevelopment?

    PubMed

    Prins, Jelmer R; Eskandar, Sharon; Eggen, Bart J L; Scherjon, Sicco A

    2018-04-01

    Disturbances in fetal neurodevelopment have extensively been related to neurodevelopmental disorders in early and later life. Fetal neurodevelopment is dependent on adequate functioning of the fetal immune system. During pregnancy, the maternal immune system is challenged to both tolerate the semi-allogenic fetus and to protect the mother and fetus from microbes. The fetal immune system is influenced by maternal immune disturbances; therefore, perturbations in maternal immunity likely do not only alter pregnancy outcome but also alter fetal neurodevelopment. A possible common pathway could be modulating the functioning of tissue macrophages in the placenta and brain. Maternal immune tolerance towards the fetus involves several complex adaptations. In this active maternal immune state, the fetus develops its own immunity. As cytokines and other players of the immune system -which can pass the placenta- are involved in neurodevelopment, disruptions in immune balance influence fetal neurodevelopment. Several studies reported an association between maternal immune activation, complications of pregnancy as preeclampsia, and altered neonatal neurodevelopment. A possible pathway involves dysfunctioning of microglia cells, the immune cells of the brain. Functionality of microglia cells during normal pregnancy is, however, poorly understood. The recent outbreak of ZIKA virus (ZKV), but also the literature on virus infections in general and its consequences on microglial cell function and fetal neurodevelopment show the devastating effects a virus infection during pregnancy can have. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Aging of the Immune System. Mechanisms and Therapeutic Targets.

    PubMed

    Weyand, Cornelia M; Goronzy, Jörg J

    2016-12-01

    Beginning with the sixth decade of life, the human immune system undergoes dramatic aging-related changes, which continuously progress to a state of immunosenescence. The aging immune system loses the ability to protect against infections and cancer and fails to support appropriate wound healing. Vaccine responses are typically impaired in older individuals. Conversely, inflammatory responses mediated by the innate immune system gain in intensity and duration, rendering older individuals susceptible to tissue-damaging immunity and inflammatory disease. Immune system aging functions as an accelerator for other age-related pathologies. It occurs prematurely in some clinical conditions, most prominently in patients with the autoimmune syndrome rheumatoid arthritis (RA); and such patients serve as an informative model system to study molecular mechanisms of immune aging. T cells from patients with RA are prone to differentiate into proinflammatory effector cells, sustaining chronic-persistent inflammatory lesions in the joints and many other organ systems. RA T cells have several hallmarks of cellular aging; most importantly, they accumulate damaged DNA. Because of deficiency of the DNA repair kinase ataxia telangiectasia mutated, RA T cells carry a higher burden of DNA double-strand breaks, triggering cell-indigenous stress signals that shift the cell's survival potential and differentiation pattern. Immune aging in RA T cells is also associated with metabolic reprogramming; specifically, with reduced glycolytic flux and diminished ATP production. Chronic energy stress affects the longevity and the functional differentiation of older T cells. Altered metabolic patterns provide opportunities to therapeutically target the immune aging process through metabolic interference.

  19. Interactions of the innate and adaptive arms of the immune system in the pathogenesis of spondyloarthritis

    PubMed Central

    Stoll, Matthew L

    2011-01-01

    The immune system can be divided into the innate and adaptive arms. Historically, most of the research into the pathogenesis of spondyloarthritis (SpA) and other types of chronic arthritis focused on the adaptive immune system. Recently, the pendulum has shifted, and much current work in SpA focuses on innate immunity. Herein, I summarize evidence demonstrating that both the innate and the adaptive arms of the immune system are involved in the pathogenesis of SpA, propose a mechanism in which both arms interact to maintain chronic arthritis, and discuss potential research directions. PMID:21269576

  20. Using Swarming Agents for Scalable Security in Large Network Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crouse, Michael; White, Jacob L.; Fulp, Errin W.

    2011-09-23

    The difficulty of securing computer infrastructures increases as they grow in size and complexity. Network-based security solutions such as IDS and firewalls cannot scale because of exponentially increasing computational costs inherent in detecting the rapidly growing number of threat signatures. Hostbased solutions like virus scanners and IDS suffer similar issues, and these are compounded when enterprises try to monitor these in a centralized manner. Swarm-based autonomous agent systems like digital ants and artificial immune systems can provide a scalable security solution for large network environments. The digital ants approach offers a biologically inspired design where each ant in the virtualmore » colony can detect atoms of evidence that may help identify a possible threat. By assembling the atomic evidences from different ant types the colony may detect the threat. This decentralized approach can require, on average, fewer computational resources than traditional centralized solutions; however there are limits to its scalability. This paper describes how dividing a large infrastructure into smaller managed enclaves allows the digital ant framework to effectively operate in larger environments. Experimental results will show that using smaller enclaves allows for more consistent distribution of agents and results in faster response times.« less

  1. JingleBells: A Repository of Immune-Related Single-Cell RNA-Sequencing Datasets.

    PubMed

    Ner-Gaon, Hadas; Melchior, Ariel; Golan, Nili; Ben-Haim, Yael; Shay, Tal

    2017-05-01

    Recent advances in single-cell RNA-sequencing (scRNA-seq) technology increase the understanding of immune differentiation and activation processes, as well as the heterogeneity of immune cell types. Although the number of available immune-related scRNA-seq datasets increases rapidly, their large size and various formats render them hard for the wider immunology community to use, and read-level data are practically inaccessible to the non-computational immunologist. To facilitate datasets reuse, we created the JingleBells repository for immune-related scRNA-seq datasets ready for analysis and visualization of reads at the single-cell level (http://jinglebells.bgu.ac.il/). To this end, we collected the raw data of publicly available immune-related scRNA-seq datasets, aligned the reads to the relevant genome, and saved aligned reads in a uniform format, annotated for cell of origin. We also added scripts and a step-by-step tutorial for visualizing each dataset at the single-cell level, through the commonly used Integrated Genome Viewer (www.broadinstitute.org/igv/). The uniform scRNA-seq format used in JingleBells can facilitate reuse of scRNA-seq data by computational biologists. It also enables immunologists who are interested in a specific gene to visualize the reads aligned to this gene to estimate cell-specific preferences for splicing, mutation load, or alleles. Thus JingleBells is a resource that will extend the usefulness of scRNA-seq datasets outside the programming aficionado realm. Copyright © 2017 by The American Association of Immunologists, Inc.

  2. Uncovering the Role of RNA-Binding Proteins in Gene Expression in the Immune System.

    PubMed

    Díaz-Muñoz, Manuel D; Turner, Martin

    2018-01-01

    Fighting external pathogens requires an ever-changing immune system that relies on tight regulation of gene expression. Transcriptional control is the first step to build efficient responses while preventing immunodeficiencies and autoimmunity. Post-transcriptional regulation of RNA editing, location, stability, and translation are the other key steps for final gene expression, and they are all controlled by RNA-binding proteins (RBPs). Nowadays we have a deep understanding of how transcription factors control the immune system but recent evidences suggest that post-transcriptional regulation by RBPs is equally important for both development and activation of immune responses. Here, we review current knowledge about how post-transcriptional control by RBPs shapes our immune system and discuss the perspective of RBPs being the key players of a hidden immune cell epitranscriptome.

  3. Interactions between Innate Lymphoid Cells and Cells of the Innate and Adaptive Immune System

    PubMed Central

    Symowski, Cornelia; Voehringer, David

    2017-01-01

    Type 2 innate lymphoid cells (ILC2s) are a major source of cytokines, which are also produced by Th2 cells and several cell types of the innate immune system. Work over the past few years indicates that ILC2s play a central role in regulating type 2 immune responses against allergens and helminths. ILC2s can interact with a variety of cells types of the innate and adaptive immune system by cell–cell contacts or by communication via soluble factors. In this review, we provide an overview about recent advances in our understanding how ILC2s orchestrate type 2 immune responses with focus on direct interactions between ILC2s and other cells of the immune system. PMID:29163497

  4. Interactions between Innate Lymphoid Cells and Cells of the Innate and Adaptive Immune System.

    PubMed

    Symowski, Cornelia; Voehringer, David

    2017-01-01

    Type 2 innate lymphoid cells (ILC2s) are a major source of cytokines, which are also produced by Th2 cells and several cell types of the innate immune system. Work over the past few years indicates that ILC2s play a central role in regulating type 2 immune responses against allergens and helminths. ILC2s can interact with a variety of cells types of the innate and adaptive immune system by cell-cell contacts or by communication via soluble factors. In this review, we provide an overview about recent advances in our understanding how ILC2s orchestrate type 2 immune responses with focus on direct interactions between ILC2s and other cells of the immune system.

  5. Neural circuitry and immunity

    PubMed Central

    Pavlov, Valentin A.; Tracey, Kevin J.

    2015-01-01

    Research during the last decade has significantly advanced our understanding of the molecular mechanisms at the interface between the nervous system and the immune system. Insight into bidirectional neuroimmune communication has characterized the nervous system as an important partner of the immune system in the regulation of inflammation. Neuronal pathways, including the vagus nerve-based inflammatory reflex are physiological regulators of immune function and inflammation. In parallel, neuronal function is altered in conditions characterized by immune dysregulation and inflammation. Here, we review these regulatory mechanisms and describe the neural circuitry modulating immunity. Understanding these mechanisms reveals possibilities to use targeted neuromodulation as a therapeutic approach for inflammatory and autoimmune disorders. These findings and current clinical exploration of neuromodulation in the treatment of inflammatory diseases defines the emerging field of Bioelectronic Medicine. PMID:26512000

  6. The Immune System Game

    ERIC Educational Resources Information Center

    Work, Kirsten A.; Gibbs, Melissa A.; Friedman, Erich J.

    2015-01-01

    We describe a card game that helps introductory biology students understand the basics of the immune response to pathogens. Students simulate the steps of the immune response with cards that represent the pathogens and the cells and molecules mobilized by the immune system. In the process, they learn the similarities and differences between the…

  7. The developing immune system - from foetus to toddler.

    PubMed

    Ygberg, Sofia; Nilsson, Anna

    2012-02-01

    During foetal development, neonatal period and childhood, the immune system is constantly maturing. In the foetus, infection responsiveness is low and associates with spontaneous abortion. During the neonatal period, the infection response shifts towards a more pro-inflammatory response. The immune system of the newborn acquires adaptive features as a result of exposure to microbes. The development of the human immune system is a continuous process where both accelerated and retarded development is deleterious. © 2011 The Author(s)/Acta Paediatrica © 2011 Foundation Acta Paediatrica.

  8. An Investigation of the Memory Response of the Local Immune System to Shigella Antigens.

    DTIC Science & Technology

    1985-12-31

    kAD-A±75 215 AN INVESTIOATION OF THE MEMORY RESPONSE OF THE LOCAL L/1 I IMMUNE SYSTEM TO SHIGELLA ANTIGENS(U) MICHIGAN UNIV ANN I RBOR D F KEREN 31...IMMUNE SYSTEM TO SHIGELLA ANTIGENS ANNUAL REPORT DAVID F. KEREN, M.D. DECEMBER 31, 1985 FOR THE PERIOD DECEMBER 1, 1984 - NOVEMBER 30, 1985 SUPPORTED...Security Classification) An Investigation of the Memory Response of the Local Immune System to Shigella Antigens 12 PERSONAL AUTHOR(S) Keren, David F

  9. Alcohol and HIV Effects on the Immune System.

    PubMed

    Bagby, Gregory J; Amedee, Angela M; Siggins, Robert W; Molina, Patricia E; Nelson, Steve; Veazey, Ronald S

    2015-01-01

    HIV disease and alcohol independently influence the human immune system, so it stands to reason that, together, their influence may be additive. Here, we review the evidence that alcohol can exacerbate HIV's influence on the immune system, thereby affecting disease progression and transmission. We focus particularly on alcohol's effect on the mucosal immune system in the tissues of the gastrointestinal tract, the genital tract and the lungs, all of which play a role in transmission and progression of HIV disease.

  10. Alcohol and HIV Effects on the Immune System

    PubMed Central

    Bagby, Gregory J.; Amedee, Angela M.; Siggins, Robert W.; Molina, Patricia E.; Nelson, Steve; Veazey, Ronald S.

    2015-01-01

    HIV disease and alcohol independently influence the human immune system, so it stands to reason that, together, their influence may be additive. Here, we review the evidence that alcohol can exacerbate HIV’s influence on the immune system, thereby affecting disease progression and transmission. We focus particularly on alcohol’s effect on the mucosal immune system in the tissues of the gastrointestinal tract, the genital tract and the lungs, all of which play a role in transmission and progression of HIV disease. PMID:26695751

  11. Modulating the function of the immune system by thyroid hormones and thyrotropin.

    PubMed

    Jara, Evelyn L; Muñoz-Durango, Natalia; Llanos, Carolina; Fardella, Carlos; González, Pablo A; Bueno, Susan M; Kalergis, Alexis M; Riedel, Claudia A

    2017-04-01

    Accumulating evidence suggests a close bidirectional communication and regulation between the neuroendocrine and immune systems. Thyroid hormones (THs) can exert responses in various immune cells, e.g., monocytes, macrophages, natural killer cells, and lymphocytes, affecting several inflammation-related processes (such as, chemotaxis, phagocytosis, reactive oxygen species generation, and cytokines production). The interactions between the endocrine and immune systems have been shown to contribute to pathophysiological conditions, including sepsis, inflammation, autoimmune diseases and viral infections. Under these conditions, TH therapy could contribute to restoring normal physiological functions. Here we discuss the effects of THs and thyroid stimulating hormone (TSH) on the immune system and the contribution to inflammation and pathogen clearance, as well as the consequences of thyroid pathologies over the function of the immune system. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  12. SIMPL Systems, or: Can We Design Cryptographic Hardware without Secret Key Information?

    NASA Astrophysics Data System (ADS)

    Rührmair, Ulrich

    This paper discusses a new cryptographic primitive termed SIMPL system. Roughly speaking, a SIMPL system is a special type of Physical Unclonable Function (PUF) which possesses a binary description that allows its (slow) public simulation and prediction. Besides this public key like functionality, SIMPL systems have another advantage: No secret information is, or needs to be, contained in SIMPL systems in order to enable cryptographic protocols - neither in the form of a standard binary key, nor as secret information hidden in random, analog features, as it is the case for PUFs. The cryptographic security of SIMPLs instead rests on (i) a physical assumption on their unclonability, and (ii) a computational assumption regarding the complexity of simulating their output. This novel property makes SIMPL systems potentially immune against many known hardware and software attacks, including malware, side channel, invasive, or modeling attacks.

  13. Electronic health record - public health (EHR-PH) system prototype for interoperability in 21st century healthcare systems.

    PubMed

    Orlova, Anna O; Dunnagan, Mark; Finitzo, Terese; Higgins, Michael; Watkins, Todd; Tien, Allen; Beales, Steven

    2005-01-01

    Information exchange, enabled by computable interoperability, is the key to many of the initiatives underway including the development of Regional Health Information Exchanges, Regional Health Information Organizations, and the National Health Information Network. These initiatives must include public health as a full partner in the emerging transformation of our nation's healthcare system through the adoption and use of information technology. An electronic health record - public health (EHR-PH)system prototype was developed to demonstrate the feasibility of electronic data transfer from a health care provider, i.e. hospital or ambulatory care settings, to multiple customized public health systems which include a Newborn Metabolic Screening Registry, a Newborn Hearing Screening Registry, an Immunization Registry and a Communicable Disease Registry, using HL7 messaging standards. Our EHR-PH system prototype can be considered a distributed EHR-based RHIE/RHIO model - a principal element for a potential technical architecture for a NHIN.

  14. Letting Our Cells Do the Fighting: Flight-Induced Changes in the Immune Response

    NASA Technical Reports Server (NTRS)

    Pierson, Duane; Bloomberg, Jacob; Lee, Angie (Technical Monitor)

    2002-01-01

    The organisms that make us ill, such as bacteria, viruses, and fungi, are like attacking armies. We now know a great deal more about this unseen world of microscopic invaders. Fortunately for us, the human immune system is ever vigilant against them. Microorganisms such as bacteria, viruses, and fungi occupy almost every corner of the Earth, and even parts of the human body. Some organisms are beneficial to us, helping to produce milk, cheese or yogurt. Others are potentially harmful, yet we don#t always develop illnesses from them; they are kept in check by the sentinels of our immune system. Our immune system is routinely challenged by these organisms every day. When the immune response is diminished, our ability to fight off these "bugs" is lowered. And that's when we become ill. Space flight presents a challenge to the immune system. Scientists believe that the stressful conditions of space flight - launch into orbit, adapting to microgravity, heavy workloads, and isolation from family and friends, to name but a few - reduce the astronauts' immunity. This immune suppression makes them more susceptible to common illnesses from bacteria and to re-infections from latent viruses in the body. In addition, risk of spreading illness in the confined environment of the Space Shuttle is high. Understanding changes in immune function will help scientists develop ways to keep astronauts healthy in space. This knowledge can also benefit earthbound populations. This experiment will give scientists insight into the immune system by comparing how certain cells of astronauts' innate immune system - the first line of defense against invaders - function after flight compared to before flight.

  15. Web-based e-learning and virtual lab of human-artificial immune system.

    PubMed

    Gong, Tao; Ding, Yongsheng; Xiong, Qin

    2014-05-01

    Human immune system is as important in keeping the body healthy as the brain in supporting the intelligence. However, the traditional models of the human immune system are built on the mathematics equations, which are not easy for students to understand. To help the students to understand the immune systems, a web-based e-learning approach with virtual lab is designed for the intelligent system control course by using new intelligent educational technology. Comparing the traditional graduate educational model within the classroom, the web-based e-learning with the virtual lab shows the higher inspiration in guiding the graduate students to think independently and innovatively, as the students said. It has been found that this web-based immune e-learning system with the online virtual lab is useful for teaching the graduate students to understand the immune systems in an easier way and design their simulations more creatively and cooperatively. The teaching practice shows that the optimum web-based e-learning system can be used to increase the learning effectiveness of the students.

  16. C 60 fullerene localization and membrane interactions in RAW 264.7 immortalized mouse macrophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russ, K. A.; Elvati, P.; Parsonage, T. L.

    There continues to be a significant increase in the number and complexity of hydrophobic nanomaterials that are engineered for a variety of commercial purposes making human exposure a significant health concern. This study uses a combination of biophysical, biochemical and computational methods to probe potential mechanisms for uptake of C 60 nanoparticles into various compartments of living immune cells. Cultures of RAW 264.7 immortalized murine macrophage were used as a canonical model of immune-competent cells that are likely to provide the first line of defense following inhalation. Modes of entry studied were endocytosis/pinocytosis and passive permeation of cellular membranes. Themore » evidence suggests marginal uptake of C 60 clusters is achieved through endocytosis/pinocytosis, and that passive diffusion into membranes provides a significant source of biologically-available nanomaterial. Compu-tational modeling of both a single molecule and a small cluster of fullerenes predicts that low concentrations of fullerenes enter the membrane individually and produce limited perturbation; however, at higher concentrations the clusters in the membrane causes deformation of the membrane. These findings are bolstered by nuclear magnetic resonance (NMR) of model membranes that reveal defor-mation of the cell membrane upon exposure to high concentrations of fullerenes. The atomistic and NMR models fail to explain escape of the particle out of biological membranes, but are limited to idealized systems that do not completely recapitulate the complexity of cell membranes. Lastly, the surprising contribution of passive modes of cellular entry provides new avenues for toxicological research that go beyond the pharmacological inhibition of bulk transport systems such as pinocytosis.« less

  17. C 60 fullerene localization and membrane interactions in RAW 264.7 immortalized mouse macrophages

    DOE PAGES

    Russ, K. A.; Elvati, P.; Parsonage, T. L.; ...

    2016-01-01

    There continues to be a significant increase in the number and complexity of hydrophobic nanomaterials that are engineered for a variety of commercial purposes making human exposure a significant health concern. This study uses a combination of biophysical, biochemical and computational methods to probe potential mechanisms for uptake of C 60 nanoparticles into various compartments of living immune cells. Cultures of RAW 264.7 immortalized murine macrophage were used as a canonical model of immune-competent cells that are likely to provide the first line of defense following inhalation. Modes of entry studied were endocytosis/pinocytosis and passive permeation of cellular membranes. Themore » evidence suggests marginal uptake of C 60 clusters is achieved through endocytosis/pinocytosis, and that passive diffusion into membranes provides a significant source of biologically-available nanomaterial. Compu-tational modeling of both a single molecule and a small cluster of fullerenes predicts that low concentrations of fullerenes enter the membrane individually and produce limited perturbation; however, at higher concentrations the clusters in the membrane causes deformation of the membrane. These findings are bolstered by nuclear magnetic resonance (NMR) of model membranes that reveal defor-mation of the cell membrane upon exposure to high concentrations of fullerenes. The atomistic and NMR models fail to explain escape of the particle out of biological membranes, but are limited to idealized systems that do not completely recapitulate the complexity of cell membranes. Lastly, the surprising contribution of passive modes of cellular entry provides new avenues for toxicological research that go beyond the pharmacological inhibition of bulk transport systems such as pinocytosis.« less

  18. Innate immune memory: implications for development of pediatric immunomodulatory agents and adjuvanted vaccines

    PubMed Central

    Levy, Ofer; Netea, Mihai G.

    2014-01-01

    Unique features of immunity early in life include a distinct immune system particularly reliant on innate immunity, with weak T helper (Th)1-polarizing immune responses, and impaired responses to certain vaccines leading to a heightened susceptibility to infection. To these important aspects, we now add an increasingly appreciated concept that the innate immune system displays epigenetic memory of an earlier infection or vaccination, a phenomenon that has been named “trained immunity”. Exposure of neonatal leukocytes in vitro or neonatal animals or humans in vivo to specific innate immune stimuli results in an altered innate immune set point. Given the particular importance of innate immunity early in life, trained immunity to early life infection and/or immunization may play an important role in modulating both acute and chronic diseases. PMID:24352476

  19. CSP: A Multifaceted Hybrid Architecture for Space Computing

    NASA Technical Reports Server (NTRS)

    Rudolph, Dylan; Wilson, Christopher; Stewart, Jacob; Gauvin, Patrick; George, Alan; Lam, Herman; Crum, Gary Alex; Wirthlin, Mike; Wilson, Alex; Stoddard, Aaron

    2014-01-01

    Research on the CHREC Space Processor (CSP) takes a multifaceted hybrid approach to embedded space computing. Working closely with the NASA Goddard SpaceCube team, researchers at the National Science Foundation (NSF) Center for High-Performance Reconfigurable Computing (CHREC) at the University of Florida and Brigham Young University are developing hybrid space computers that feature an innovative combination of three technologies: commercial-off-the-shelf (COTS) devices, radiation-hardened (RadHard) devices, and fault-tolerant computing. Modern COTS processors provide the utmost in performance and energy-efficiency but are susceptible to ionizing radiation in space, whereas RadHard processors are virtually immune to this radiation but are more expensive, larger, less energy-efficient, and generations behind in speed and functionality. By featuring COTS devices to perform the critical data processing, supported by simpler RadHard devices that monitor and manage the COTS devices, and augmented with novel uses of fault-tolerant hardware, software, information, and networking within and between COTS devices, the resulting system can maximize performance and reliability while minimizing energy consumption and cost. NASA Goddard has adopted the CSP concept and technology with plans underway to feature flight-ready CSP boards on two upcoming space missions.

  20. HIV-positive patient with herpes zoster: a manifestation of the immune reconstitution inflammatory syndrome.

    PubMed

    Lutwak, Nancy; Dill, Curt

    2012-01-01

    Herpes zoster is a common illness that can lead to serious morbidity. There is now evidence that HIV-infected patients who have been treated with antiretroviral therapy are at greater risk of developing herpes zoster not when they are severely immunocompromised but, paradoxically, when their immune system is recovering. This is a manifestation of the immune reconstitution inflammatory syndrome. The objectives of this report are to (1) inform health care providers that HIV-infected patients may develop multiple infectious, autoimmune, and oncological manifestations after treatment with antiretroviral medication, as they have immune system reconstitution, and (2) discuss herpes zoster, one of the possible manifestations. The patient is a 68-year-old HIV-positive man who presented with herpes zoster after being treated with highly active antiretroviral therapy (HAART) when his immune system was recovering, not when he was most immunosuppressed. Emergency department physicians should be aware that HIV-infected patients treated with HAART may have clinical deterioration despite immune system strengthening. This immune reconstitution inflammatory syndrome can present with infectious, autoimmune, or oncological manifestations. Our case patient, an HIV-positive man with immune system recovery after treatment with HAART, presented with an infectious manifestation, herpes zoster.

  1. Insect Immunity to Entomopathogenic Fungi.

    PubMed

    Lu, H-L; St Leger, R J

    2016-01-01

    The study of infection and immunity in insects has achieved considerable prominence with the appreciation that their host defense mechanisms share many fundamental characteristics with the innate immune system of vertebrates. Studies on the highly tractable model organism Drosophila in particular have led to a detailed understanding of conserved innate immunity networks, such as Toll. However, most of these studies have used opportunistic human pathogens and may not have revealed specialized immune strategies that have arisen through evolutionary arms races with natural insect pathogens. Fungi are the commonest natural insect pathogens, and in this review, we focus on studies using Metarhizium and Beauveria spp. that have addressed immune system function and pathogen virulence via behavioral avoidance, the use of physical barriers, and the activation of local and systemic immune responses. In particular, we highlight studies on the evolutionary genetics of insect immunity and discuss insect-pathogen coevolution. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Studying the Impact of Spaceflight Environment on Immune Functions Using New Molecular Diagnostics System

    NASA Astrophysics Data System (ADS)

    Cohen, Luchino

    Immune functions are altered during space flights. Latent virus reactivation, reduction in the number of immune cells, decreased cell activation and increased sensitivity of astronauts to infections following their return on Earth demonstrate that the immune system is less efficient during space flight. The causes of this immune deficiency are not fully understood and this dysfunction during long-term missions could result in the appearance of opportunistic infections or a decrease in the immuno-surveillance mechanisms that eradicate cancer cells. Therefore, the immune functions of astronauts will have to be monitored continuously during long-term missions in space, using miniature and semi-automated diagnostic systems. The objectives of this project are to study the causes of space-related immunodeficiency, to develop countermeasures to maintain an optimal immune function and to improve our capacity to detect infectious diseases during space missions through the monitoring of astronauts' immune system. In order to achieve these objectives, an Immune Function Diagnostic System (IFDS) will be designed to perform a set of immunological assays on board spacecrafts or on planet-bound bases. Through flow cytometric assays and molecular biology analyses, this diagnostic system could improve medical surveillance of astronauts and could be used to test countermeasures aimed at preventing immune deficiency during space missions. The capacity of the instrument to assess cellular fluorescence and to quantify the presence of soluble molecules in biological samples would support advanced molecular studies in space life sciences. Finally, such diagnostic system could also be used on Earth in remote areas or in mobile hospitals following natural disasters to fight against infectious diseases and other pathologies.

  3. Effects of surgery, immunization, and laser immunotherapy on a non-immunogenic metastic tumor model

    NASA Astrophysics Data System (ADS)

    Chen, Wei R.; Huang, Zheng; Andrienko, Kirill; Stefanov, Stefan; Wolf, Roman F.; Liu, Hong

    2006-08-01

    Traditional local cancer treatment modalities include surgery and radiation, which has the immediate tumor response due to tumor removal or radiation induced cell death. However, such therapeutic approaches usually do not result in eradiation of tumors, particularly when treating metastatic tumors. In fact, local treatment of primary tumors may stimulate the growth and spread of remote metastasis. Commonly used systemic therapies include chemotherapy and immunotherapy, which target the dividing cells or the immune systems. However, in addition to the severe side effects, chemotherapy often suppresses the immune systems, hence lessening the host's ability to fight the disease. Immunotherapy, on the other hand, aims at educating and stimulating immune systems using either general immune enhancements or antigen-oriented specific immune stimulation. However, so far, the traditional immunotherapy has yielded only limited success in treating cancer patients. A different approach is needed. To combine the advantages of both local therapies for acute and targeted treatment responses and the systemic therapies for stimulation of the immune systems, laser immunotherapy was proposed to use selective photothermal therapy as the local treatment modality and the adjuvant-assisted immunotherapy for systemic control. Laser immunotherapy has show positive results in treating metastatic tumors. In this study, we conducted a comparative study using surgery, freeze-thaw immunization and laser immunotherapy in the treatment of metastatic rat mammary tumors. Our results showed that removal of the primary tumors was unsuccessful at changing the course of tumor progression. The tumor cell lysate immunization delayed the emergence of metastases but did not provide immunity against the tumor challenge. Laser immunotherapy, on the other hand, resulted in regression and eradication.

  4. Immune regulation of systemic hypertension, pulmonary arterial hypertension, and preeclampsia: shared disease mechanisms and translational opportunities.

    PubMed

    Jafri, Salema; Ormiston, Mark L

    2017-12-01

    Systemic hypertension, preeclampsia, and pulmonary arterial hypertension (PAH) are diseases of high blood pressure in the systemic or pulmonary circulation. Beyond the well-defined contribution of more traditional pathophysiological mechanisms, such as changes in the renin-angiotensin-aldosterone system, to the development of these hypertensive disorders, there is substantial clinical evidence supporting an important role for inflammation and immunity in the pathogenesis of each of these three conditions. Over the last decade, work in small animal models, bearing targeted deficiencies in specific cytokines or immune cell subsets, has begun to clarify the immune-mediated mechanisms that drive changes in vascular structure and tone in hypertensive disease. By summarizing the clinical and experimental evidence supporting a contribution of the immune system to systemic hypertension, preeclampsia, and PAH, the current review highlights the cellular and molecular pathways that are common to all three hypertensive disorders. These mechanisms are centered on an imbalance in CD4 + helper T cell populations, defined by excessive Th17 responses and impaired T reg activity, as well as the excessive activation or impairment of additional immune cell types, including macrophages, dendritic cells, CD8 + T cells, B cells, and natural killer cells. The identification of common immune mechanisms in systemic hypertension, preeclampsia, and PAH raises the possibility of new therapeutic strategies that target the immune component of hypertension across multiple disorders. Copyright © 2017 the American Physiological Society.

  5. Innate control of adaptive immunity: Beyond the three-signal paradigm

    PubMed Central

    Jain, Aakanksha; Pasare, Chandrashekhar

    2017-01-01

    Activation of cells in the adaptive immune system is a highly orchestrated process dictated by multiples cues from the innate immune system. Although the fundamental principles of innate control of adaptive immunity are well established, it is not fully understood how innate cells integrate qualitative pathogenic information in order to generate tailored protective adaptive immune responses. In this review, we discuss complexities involved in the innate control of adaptive immunity that extend beyond T cell receptor engagement, co-stimulation and priming cytokine production but are critical for generation of protective T cell immunity. PMID:28483987

  6. Chronic grouped social restriction triggers long-lasting immune system adaptations.

    PubMed

    Tian, Rui; Hou, Gonglin; Song, Liuwei; Zhang, Jianming; Yuan, Ti-Fei

    2017-05-16

    Chronic stress triggers rigorous psychological and physiological changes, including immunological system adaptations. However, the effects of long-term social restriction on human immune system have not been investigated. The present study is to investigate the effect of chronic stress on immune changes in human blood, with the stress stimuli controlled.10 male volunteers were group isolated from the modern society in a 50-meter-square room for 150 days, with enriched nutrition and good living conditions provided. Serum examination of immune system markers demonstrated numerous changes in different aspects of the immune functions. The changes were observed as early as 30 days and could last for another 150 days after the termination of the restriction period (300 days' time point). The results strongly argued for the adaptation of immunological system under chronic social restriction stress in adult human, preceding a clear change in psychological conditions. The changes of these immune system factors could as well act as the serum biomarkers in clinical early-diagnosis of stress-related disorders.

  7. Understanding Internal Accountability in Nigeria's Routine Immunization System: Perspectives From Government Officials at the National, State, and Local Levels.

    PubMed

    Erchick, Daniel J; George, Asha S; Umeh, Chukwunonso; Wonodi, Chizoba

    2016-12-10

    Routine immunization coverage in Nigeria has remained low, and studies have identified a lack of accountability as a barrier to high performance in the immunization system. Accountability lies at the heart of various health systems strengthening efforts recently launched in Nigeria, including those related to immunization. Our aim was to understand the views of health officials on the accountability challenges hindering immunization service delivery at various levels of government. A semi-structured questionnaire was used to interview immunization and primary healthcare (PHC) officials from national, state, local, and health facility levels in Niger State in north central Nigeria. Individuals were selected to represent a range of roles and responsibilities in the immunization system. The questionnaire explored concepts related to internal accountability using a framework that organizes accountability into three axes based upon how they drive change in the health system. Respondents highlighted accountability challenges across multiple components of the immunization system, including vaccine availability, financing, logistics, human resources, and data management. A major focus was the lack of clear roles and responsibilities both within institutions and between levels of government. Delays in funding, especially at lower levels of government, disrupted service delivery. Supervision occurred less frequently than necessary, and the limited decision space of managers prevented problems from being resolved. Motivation was affected by the inability of officials to fulfill their responsibilities. Officials posited numerous suggestions to improve accountability, including clarifying roles and responsibilities, ensuring timely release of funding, and formalizing processes for supervision, problem solving, and data reporting. Weak accountability presents a significant barrier to performance of the routine immunization system and high immunization coverage in Nigeria. As one stakeholder in ensuring the performance of health systems, routine immunization officials reveal critical areas that need to be prioritized if emerging interventions to improve accountability in routine immunization are to have an effect. © 2017 The Author(s); Published by Kerman University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

  8. Interactions between adipose tissue and the immune system in health and malnutrition.

    PubMed

    Wensveen, Felix M; Valentić, Sonja; Šestan, Marko; Wensveen, Tamara Turk; Polić, Bojan

    2015-09-01

    Adipose tissue provides the body with a storage depot of nutrients that is drained during times of starvation and replenished when food sources are abundant. As such, it is the primary sensor for nutrient availability in the milieu of an organism, which it communicates to the body through the excretion of hormones. Adipose tissue regulates a multitude of body functions associated with metabolism, such as gluconeogenesis, feeding and nutrient uptake. The immune system forms a vital layer of protection against micro-organisms that try to gain access to the nutrients contained in the body. Because infections need to be resolved as quickly as possible, speed is favored over energy-efficiency in an immune response. Especially when immune cells are activated, they switch to fast, but energy-inefficient anaerobic respiration to fulfill their energetic needs. Despite the necessity for an effective immune system, it is not given free rein in its energy expenditure. Signals derived from adipose tissue limit immune cell numbers and activity under conditions of nutrient shortage, whereas they allow proper immune cell activity when food sources are sufficiently available. When excessive fat accumulation occurs, such as in diet-induced obesity, adipose tissue becomes the site of pathological immune cell activation, causing chronic low-grade systemic inflammation. Obesity is therefore associated with a number of disorders in which the immune system plays a central role, such as atherosclerosis and non-alcoholic steatohepatitis. In this review, we will discuss the way in which adipose tissue regulates activity of the immune system under healthy and pathological conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Maternal immunity enhances systemic recall immune responses upon oral immunization of piglets with F4 fimbriae.

    PubMed

    Nguyen, Ut V; Melkebeek, Vesna; Devriendt, Bert; Goetstouwers, Tiphanie; Van Poucke, Mario; Peelman, Luc; Goddeeris, Bruno M; Cox, Eric

    2015-06-23

    F4 enterotoxigenic Escherichia coli (ETEC) cause diarrhoea and mortality in piglets leading to severe economic losses. Oral immunization of piglets with F4 fimbriae induces a protective intestinal immune response evidenced by an F4-specific serum and intestinal IgA response. However, successful oral immunization of pigs with F4 fimbriae in the presence of maternal immunity has not been demonstrated yet. In the present study we aimed to evaluate the effect of maternal immunity on the induction of a systemic immune response upon oral immunization of piglets. Whereas F4-specific IgG and IgA could be induced by oral immunization of pigs without maternal antibodies and by intramuscular immunization of pigs with maternal antibodies, no such response was seen in the orally immunized animals with maternal antibodies. Since maternal antibodies can mask an antibody response, we also looked by ELIspot assays for circulating F4-specific antibody secreting cells (ASCs). Enumerating the F4-specific ASCs within the circulating peripheral blood mononuclear cells, and the number of F4-specific IgA ASCs within the circulating IgA(+) B-cells revealed an F4-specific immune response in the orally immunized animals with maternal antibodies. Interestingly, results suggest a more robust IgA booster response by oral immunization of pigs with than without maternal antibodies. These results demonstrate that oral immunization of piglets with F4-specific maternal antibodies is feasible and that these maternal antibodies seem to enhance the secondary systemic immune response. Furthermore, our ELIspot assay on enriched IgA(+) B-cells could be used as a screening procedure to optimize mucosal immunization protocols in pigs with maternal immunity.

  10. Qa-1/HLA-E-restricted regulatory CD8+ T cells and self-nonself discrimination: an essay on peripheral T-cell regulation.

    PubMed

    Jiang, Hong; Chess, Leonard

    2008-11-01

    By discriminating self from nonself and controlling the magnitude and class of immune responses, the immune system mounts effective immunity against virtually any foreign antigens but avoids harmful immune responses to self. These are two equally important and related but distinct processes, which function in concert to ensure an optimal function of the immune system. Immunologically relevant clinical problems often occur because of failure of either process, especially the former. Currently, there is no unified conceptual framework to characterize the precise relationship between thymic negative selection and peripheral immune regulation, which is the basis for understanding self-non-self discrimination versus control of magnitude and class of immune responses. In this article, we explore a novel hypothesis of how the immune system discriminates self from nonself in the periphery during adaptive immunity. This hypothesis permits rational analysis of various seemingly unrelated biomedical problems inherent in immunologic disorders that cannot be uniformly interpreted by any currently existing paradigms. The proposed hypothesis is based on a unified conceptual framework of the "avidity model of peripheral T-cell regulation" that we originally proposed and tested, in both basic and clinical immunology, to understand how the immune system achieves self-nonself discrimination in the periphery.

  11. The mucosal immune system in health and disease, with an emphasis on parasitic infection

    PubMed Central

    Allardyce, R. A.; Bienenstock, J.

    1984-01-01

    This article briefly describes the network of immunity involving selected humoral and cellular elements shared between mucosal surfaces that are both exposed to and remote from antigen challenge. The mechanisms promoting the production, concentration, and secretion of specific antibody isotypes, as well as the migration and localization of various lymphoid cell populations, have been discussed with regard to host mucosal protection against pathogenic agents and other potentially harmful macromolecules. Although certain aspects of the mucosal immune system may be viewed as separate from the systemic immune system, they are not exclusively so. We have drawn attention to their interactions with systemic immune reactants and other, nonimmunological, cellular and humoral constituents of mucosal surfaces and tissues such as the liver. At another level of interaction we have considered the teleological translation of host defence and immunoregulation from one generation to the next through the medium of colostrum and breast milk. The manipulation of the mucosal immune system in order to enhance host resistance, modulate autoimmune and allergic systemic reactivity, or even modify fertility holds great promise. Achievement of these goals depends on gaining further insight into the mechanisms that contribute to mucosal immunity and their interactions with the systemic immune system. Much of our current knowledge is based upon experimental animal models or human populations living in relative prosperity. However, the results of oral vaccination, for example, are known to differ considerably in populations that suffer from parasitic infestations, lack adequate nutrition, and are very old or very young. We have chosen to focus attention on these groups because they constitute a large proportion of the world's population and because mucosal infections are a common cause of illness and death among them. Lastly, the recent discovery that immune deficiencies due to insufficient dietary zinc may extend to subsequent generations of optimally nourished offspring calls for a re-evaluation of immunization protocols in malnourished populations, and of our current understanding of disease inheritance and susceptibility. PMID:6424959

  12. Immune system gene dysregulation in autism and schizophrenia.

    PubMed

    Michel, Maximilian; Schmidt, Martin J; Mirnics, Karoly

    2012-10-01

    Gene*environment interactions play critical roles in the emergence of autism and schizophrenia pathophysiology. In both disorders, recent genetic association studies have provided evidence for disease-linked variation in immune system genes and postmortem gene expression studies have shown extensive chronic immune abnormalities in brains of diseased subjects. Furthermore, peripheral biomarker studies revealed that both innate and adaptive immune systems are dysregulated. In both disorders symptoms of the disease correlate with the immune system dysfunction; yet, in autism this process appears to be chronic and sustained, while in schizophrenia it is exacerbated during acute episodes. Furthermore, since immune abnormalities endure into adulthood and anti-inflammatory agents appear to be beneficial, it is likely that these immune changes actively contribute to disease symptoms. Modeling these changes in animals provided further evidence that prenatal maternal immune activation alters neurodevelopment and leads to behavioral changes that are relevant for autism and schizophrenia. The converging evidence strongly argues that neurodevelopmental immune insults and genetic background critically interact and result in increased risk for either autism or schizophrenia. Further research in these areas may improve prenatal health screening in genetically at-risk families and may also lead to new preventive and/or therapeutic strategies. Copyright © 2012 Wiley Periodicals, Inc.

  13. An impulsive receptance technique for the time domain computation of the vibration of a whole aero-engine model with nonlinear bearings

    NASA Astrophysics Data System (ADS)

    Hai, Pham Minh; Bonello, Philip

    2008-12-01

    The direct study of the vibration of real engine structures with nonlinear bearings, particularly aero-engines, has been severely limited by the fact that current nonlinear computational techniques are not well-suited for complex large-order systems. This paper introduces a novel implicit "impulsive receptance method" (IRM) for the time domain analysis of such structures. The IRM's computational efficiency is largely immune to the number of modes used and dependent only on the number of nonlinear elements. This means that, apart from retaining numerical accuracy, a much more physically accurate solution is achievable within a short timeframe. Simulation tests on a realistically sized representative twin-spool aero-engine showed that the new method was around 40 times faster than a conventional implicit integration scheme. Preliminary results for a given rotor unbalance distribution revealed the varying degree of journal lift, orbit size and shape at the example engine's squeeze-film damper bearings, and the effect of end-sealing at these bearings.

  14. Adjoint equations and analysis of complex systems: Application to virus infection modelling

    NASA Astrophysics Data System (ADS)

    Marchuk, G. I.; Shutyaev, V.; Bocharov, G.

    2005-12-01

    Recent development of applied mathematics is characterized by ever increasing attempts to apply the modelling and computational approaches across various areas of the life sciences. The need for a rigorous analysis of the complex system dynamics in immunology has been recognized since more than three decades ago. The aim of the present paper is to draw attention to the method of adjoint equations. The methodology enables to obtain information about physical processes and examine the sensitivity of complex dynamical systems. This provides a basis for a better understanding of the causal relationships between the immune system's performance and its parameters and helps to improve the experimental design in the solution of applied problems. We show how the adjoint equations can be used to explain the changes in hepatitis B virus infection dynamics between individual patients.

  15. Why AIDS? The Mystery of How HIV Attacks the Immune System.

    ERIC Educational Resources Information Center

    Christensen, Damaris

    1999-01-01

    Reviews differing theories surrounding the mystery of how human immunodeficiency virus (HIV) attacks the immune system. Claims that understanding how HIV triggers immune-cell depletion may enable researchers to block its effects. New knowledge could reveal strategies for acquired immune deficiency syndrome (AIDS) therapies that go beyond the drugs…

  16. Diet Modifies the Neuroimmune System by Influencing Macrophage Activation

    ERIC Educational Resources Information Center

    Sherry, Christina Lynn

    2009-01-01

    It has long been appreciated that adequate nutrition is required for proper immune function and it is now recognized that dietary components contribute to modulation of immune cells, subsequently impacting the whole body's response during an immune challenge. Macrophage activation plays a critical role in the immune system and directs the…

  17. The neuroendocrine immunomodulatory axis-like pathway mediated by circulating haemocytes in pacific oyster Crassostrea gigas.

    PubMed

    Liu, Zhaoqun; Zhou, Zhi; Jiang, Qiufen; Wang, Lingling; Yi, Qilin; Qiu, Limei; Song, Linsheng

    2017-01-01

    The neuroendocrine-immune (NEI) regulatory network is a complex system, which plays an indispensable role in the immunity of host. In this study, a neuroendocrine immunomodulatory axis (NIA)-like pathway mediated by the nervous system and haemocytes was characterized in the oyster Crassostrea gigas Once invaded pathogen was recognized by the host, the nervous system would temporally release neurotransmitters to modulate the immune response. Instead of acting passively, oyster haemocytes were able to mediate neuronal immunomodulation promptly by controlling the expression of specific neurotransmitter receptors on cell surface and modulating their binding sensitivities, thus regulating intracellular concentration of Ca 2+ This neural immunomodulation mediated by the nervous system and haemocytes could influence cellular immunity in oyster by affecting mRNA expression level of TNF genes, and humoral immunity by affecting the activities of key immune-related enzymes. In summary, though simple in structure, the 'nervous-haemocyte' NIA-like pathway regulates both cellular and humoral immunity in oyster, meaning a world to the effective immune regulation of the NEI network. © 2017 The Authors.

  18. The Impact of Gut Microbiota on Gender-Specific Differences in Immunity

    PubMed Central

    Fransen, Floris; van Beek, Adriaan A.; Borghuis, Theo; Meijer, Ben; Hugenholtz, Floor; van der Gaast-de Jongh, Christa; Savelkoul, Huub F.; de Jonge, Marien I.; Faas, Marijke M.; Boekschoten, Mark V.; Smidt, Hauke; El Aidy, Sahar; de Vos, Paul

    2017-01-01

    Males and females are known to have gender-specific differences in their immune system and gut microbiota composition. Whether these differences in gut microbiota composition are a cause or consequence of differences in the immune system is not known. To investigate this issue, gut microbiota from conventional males or females was transferred to germ-free (GF) animals of the same or opposing gender. We demonstrate that microbiota-independent gender differences in immunity are already present in GF mice. In particular, type I interferon signaling was enhanced in the intestine of GF females. Presumably, due to these immune differences bacterial groups, such as Alistipes, Rikenella, and Porphyromonadaceae, known to expand in the absence of innate immune defense mechanism were overrepresented in the male microbiota. The presence of these bacterial groups was associated with induction of weight loss, inflammation, and DNA damage upon transfer of the male microbiota to female GF recipients. In summary, our data suggest that microbiota-independent gender differences in the immune system select a gender-specific gut microbiota composition, which in turn further contributes to gender differences in the immune system. PMID:28713378

  19. Novel Roles for Immune Molecules in Neural Development: Implications for Neurodevelopmental Disorders

    PubMed Central

    Garay, Paula A.; McAllister, A. Kimberley

    2010-01-01

    Although the brain has classically been considered “immune-privileged”, current research suggests an extensive communication between the immune and nervous systems in both health and disease. Recent studies demonstrate that immune molecules are present at the right place and time to modulate the development and function of the healthy and diseased central nervous system (CNS). Indeed, immune molecules play integral roles in the CNS throughout neural development, including affecting neurogenesis, neuronal migration, axon guidance, synapse formation, activity-dependent refinement of circuits, and synaptic plasticity. Moreover, the roles of individual immune molecules in the nervous system may change over development. This review focuses on the effects of immune molecules on neuronal connections in the mammalian central nervous system – specifically the roles for MHCI and its receptors, complement, and cytokines on the function, refinement, and plasticity of geniculate, cortical and hippocampal synapses, and their relationship to neurodevelopmental disorders. These functions for immune molecules during neural development suggest that they could also mediate pathological responses to chronic elevations of cytokines in neurodevelopmental disorders, including autism spectrum disorders (ASD) and schizophrenia. PMID:21423522

  20. Immunology.

    PubMed

    Toskala, Elina

    2014-09-01

    Knowledge of our immune system functions is critical for understanding allergic airway disease development as well as for selection of appropriate diagnostic and therapeutic options for patients with respiratory allergies. This review explains the current understanding of the basic immunology of the upper airways and the pathophysiology of allergic responses, including the mechanisms behind allergic rhinitis. The immune system can be divided to 2 main defense systems that function differently-innate immunity and adaptive immunity. Innate immunity includes several defensive mechanisms such as anatomic or physical barriers, physiological barriers, phagocytosis, and inflammation. The adaptive immune response is activated in an antigen-specific way to provide for the elimination of antigen and induce lasting protection. Hypersensitivity reactions occur when an exaggerated adaptive immune response is activated. Allergic rhinitis is an example of a type I, immunoglobulin E, mediated hypersensitivity reaction. Today we have several immunomodulatory treatment options for patients with allergic airway diseases, such as subcutaneous and sublingual immunotherapy. An understanding of the basics of our immune system and its method of functions is key for using these therapies appropriately. © 2014 ARS-AAOA, LLC.

  1. Genes of the major histocompatibility complex highlight interactions of the innate and adaptive immune system

    PubMed Central

    Lukasch, Barbara; Westerdahl, Helena; Strandh, Maria; Winkler, Hans; Moodley, Yoshan; Knauer, Felix

    2017-01-01

    Background A well-functioning immune defence is crucial for fitness, but our knowledge about the immune system and its complex interactions is still limited. Major histocompatibility complex (MHC) molecules are involved in T-cell mediated adaptive immune responses, but MHC is also highly upregulated during the initial innate immune response. The aim of our study was therefore to determine to what extent the highly polymorphic MHC is involved in interactions of the innate and adaptive immune defence and if specific functional MHC alleles (FA) or heterozygosity at the MHC are more important. Methods To do this we used captive house sparrows (Passer domesticus) to survey MHC diversity and immune function controlling for several environmental factors. MHC class I alleles were identified using parallel amplicon sequencing and to mirror immune function, several immunological tests that correspond to the innate and adaptive immunity were conducted. Results Our results reveal that MHC was linked to all immune tests, highlighting its importance for the immune defence. While all innate responses were associated with one single FA, adaptive responses (cell-mediated and humoral) were associated with several different alleles. Discussion We found that repeated injections of an antibody in nestlings and adults were linked to different FA and hence might affect different areas of the immune system. Also, individuals with a higher number of different FA produced a smaller secondary response, indicating a disadvantage of having numerous MHC alleles. These results demonstrate the complexity of the immune system in relation to the MHC and lay the foundation for other studies to further investigate this topic. PMID:28875066

  2. Genes of the major histocompatibility complex highlight interactions of the innate and adaptive immune system.

    PubMed

    Lukasch, Barbara; Westerdahl, Helena; Strandh, Maria; Winkler, Hans; Moodley, Yoshan; Knauer, Felix; Hoi, Herbert

    2017-01-01

    A well-functioning immune defence is crucial for fitness, but our knowledge about the immune system and its complex interactions is still limited. Major histocompatibility complex (MHC) molecules are involved in T-cell mediated adaptive immune responses, but MHC is also highly upregulated during the initial innate immune response. The aim of our study was therefore to determine to what extent the highly polymorphic MHC is involved in interactions of the innate and adaptive immune defence and if specific functional MHC alleles (FA) or heterozygosity at the MHC are more important. To do this we used captive house sparrows ( Passer domesticus ) to survey MHC diversity and immune function controlling for several environmental factors. MHC class I alleles were identified using parallel amplicon sequencing and to mirror immune function, several immunological tests that correspond to the innate and adaptive immunity were conducted. Our results reveal that MHC was linked to all immune tests, highlighting its importance for the immune defence. While all innate responses were associated with one single FA, adaptive responses (cell-mediated and humoral) were associated with several different alleles. We found that repeated injections of an antibody in nestlings and adults were linked to different FA and hence might affect different areas of the immune system. Also, individuals with a higher number of different FA produced a smaller secondary response, indicating a disadvantage of having numerous MHC alleles. These results demonstrate the complexity of the immune system in relation to the MHC and lay the foundation for other studies to further investigate this topic.

  3. Immune-Specific Expression and Estrogenic Regulation of the Four Estrogen Receptor Isoforms in Female Rainbow Trout (Oncorhynchus mykiss).

    PubMed

    Casanova-Nakayama, Ayako; Wernicke von Siebenthal, Elena; Kropf, Christian; Oldenberg, Elisabeth; Segner, Helmut

    2018-03-21

    Genomic actions of estrogens in vertebrates are exerted via two intracellular estrogen receptor (ER) subtypes, ERα and ERβ, which show cell- and tissue-specific expression profiles. Mammalian immune cells express ERs and are responsive to estrogens. More recently, evidence became available that ERs are also present in the immune organs and cells of teleost fish, suggesting that the immunomodulatory function of estrogens has been conserved throughout vertebrate evolution. For a better understanding of the sensitivity and the responsiveness of the fish immune system to estrogens, more insight is needed on the abundance of ERs in the fish immune system, the cellular ratios of the ER subtypes, and their autoregulation by estrogens. Consequently, the aims of the present study were (i) to determine the absolute mRNA copy numbers of the four ER isoforms in the immune organs and cells of rainbow trout, Oncorhynchus mykiss , and to compare them to the hepatic ER numbers; (ii) to analyse the ER mRNA isoform ratios in the immune system; and, (iii) finally, to examine the alterations of immune ER mRNA expression levels in sexually immature trout exposed to 17β-estradiol (E2), as well as the alterations of immune ER mRNA expression levels in sexually mature trout during the reproductive cycle. All four ER isoforms were present in immune organs-head kidney, spleen-and immune cells from head kidney and blood of rainbow trout, but their mRNA levels were substantially lower than in the liver. The ER isoform ratios were tissue- and cell-specific, both within the immune system, but also between the immune system and the liver. Short-term administration of E2 to juvenile female trout altered the ER mRNA levels in the liver, but the ERs of the immune organs and cells were not responsive. Changes of ER gene transcript numbers in immune organs and cells occurred during the reproductive cycle of mature female trout, but the changes in the immune ER profiles differed from those in the liver and gonads. The correlation between ER gene transcript numbers and serum E2 concentrations was only moderate to low. In conclusion, the low mRNA numbers of nuclear ER in the trout immune system, together with their limited estrogen-responsiveness, suggest that the known estrogen actions on trout immunity may be not primarily mediated through genomic actions, but may involve other mechanisms, such as non-genomic pathways or indirect effects.

  4. Immune system

    USDA-ARS?s Scientific Manuscript database

    This chapter is an update on the swine Immune System. It will be Chapter 16 in the 11th Edition (2018) of Diseases of Swine. The chapter outlines all aspects of the swine immune system in development and in responses to infection and vaccination. It illustrates the tremendous influence that the immu...

  5. Overview of fish immune system and infectious diseases

    USDA-ARS?s Scientific Manuscript database

    A brief overview of the fish immune system and the emerging or re-emerging bacterial, viral, parasitic and fungal diseases considered to currently have a negative impact on aquaculture is presented. The fish immune system has evolved with both innate (natural resistance) and adaptive (acquired) immu...

  6. 76 FR 30731 - Government-Owned Inventions; Availability for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    ... as systemic immune response. The method comprises administrating to the treated subject at least two... vaccination strategy assure both local (i.e. vaginal track) and systemic immunity. Development Status: Proof... technology can provide mucosal/local and systemic immunization simultaneously and thus it may prove to be...

  7. Validation of Procedures for Monitoring Crewmember Immune Function

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Stowe, Raymond; Mehta, Satish; Uchakin, Peter; Quiriarte, Heather; Pierson, Duane; Sams, Clarence

    2008-01-01

    There is ample evidence to suggest that space flight leads to immune system dysregulation. This may be a result of microgravity, confinement, physiological stress, radiation, environment or other mission-associated factors. The clinical risk (if any) from prolonged immune dysregulation during exploration-class space flight has not yet been determined, but may include increased incidence of infection, allergy, hypersensitivity, hematological malignancy or altered wound healing. Each of the clinical events resulting from immune dysfunction has the potential to impact mission critical objectives during exploration-class missions. To date, precious little in-flight immune data has been generated to assess this phenomenon. The majority of recent flight immune studies have been post-flight assessments, which may not accurately reflect the in-flight status of immunity as it resolves over prolonged flight. There are no procedures currently in place to monitor immune function or its effect on crew health. The objective of this Supplemental Medical Objective (SMO) is to develop and validate an immune monitoring strategy consistent with operational flight requirements and constraints. This SMO will assess immunity, latent viral reactivation and physiological stress during both short and long duration flights. Upon completion, it is expected that any clinical risks resulting from the adverse effects of space flight on the human immune system will have been determined. In addition, a flight-compatible immune monitoring strategy will have been developed with which countermeasures validation could be performed. This study will determine, to the best level allowed by current technology, the in-flight status of crewmembers' immune systems. The in-flight samples will allow a distinction between legitimate in-flight alterations and the physiological stresses of landing and readaptation which are believed to alter R+0 assessments. The overall status of the immune system during flight (activation, deficiency, dysregulation) and the response of the immune system to specific latent virus reactivation (known to occur during space flight) will be thoroughly assessed. The first in-flight activity for integrated immunity very recently occurred during the STS-120 Space Shuttle mission. The protocols functioned well from a technical perspective, and accurate in-flight data was obtained from 1 Shuttle and 2 ISS crewmembers. Crew participation rates for the study continue to be robust.

  8. [Indicators of the persistent pro-inflammatory activation of the immune system in depression].

    PubMed

    Cubała, Wiesław Jerzy; Godlewska, Beata; Trzonkowski, Piotr; Landowski, Jerzy

    2006-01-01

    The aetiology of depression remains tentative. Current hypotheses on the aetiology of the depressive disorder tend to integrate monoaminoergic, neuroendocrine and immunological concepts of depression. A number of research papers emphasise the altered hormonal and immune status of patients with depression with pronounced cytokine level variations. Those studies tend to link the variable course of depression in relation to the altered proinflammatory activity of the immune system. The results of the studies on the activity of the selected elements of the immune system are ambiguous indicating both increased and decreased activities of its selected elements. However, a number of basic and psychopharmacological studies support the hypothesis of the increased proinflammatory activity of the immune system in the course of depression which is the foundation for the immunological hypothesis of depression. The aim of this paper is to review the functional abnormalities that are observed in depression focusing on the monoaminoergic deficiency and increased immune activation as well as endocrine dysregulation. This paper puts together and discusses current studies related to this subject with a detailed insight into interactions involving nervous, endocrine and immune systems.

  9. Uncovering the Role of RNA-Binding Proteins in Gene Expression in the Immune System

    PubMed Central

    Díaz-Muñoz, Manuel D.; Turner, Martin

    2018-01-01

    Fighting external pathogens requires an ever-changing immune system that relies on tight regulation of gene expression. Transcriptional control is the first step to build efficient responses while preventing immunodeficiencies and autoimmunity. Post-transcriptional regulation of RNA editing, location, stability, and translation are the other key steps for final gene expression, and they are all controlled by RNA-binding proteins (RBPs). Nowadays we have a deep understanding of how transcription factors control the immune system but recent evidences suggest that post-transcriptional regulation by RBPs is equally important for both development and activation of immune responses. Here, we review current knowledge about how post-transcriptional control by RBPs shapes our immune system and discuss the perspective of RBPs being the key players of a hidden immune cell epitranscriptome. PMID:29875770

  10. Immunology and Immunotherapy of Head and Neck Cancer

    PubMed Central

    Ferris, Robert L.

    2015-01-01

    The immune system plays a key role in the development, establishment, and progression of head and neck squamous cell carcinoma (HNSCC). A greater understanding of the dysregulation and evasion of the immune system in the evolution and progression of HNSCC provides the basis for improved therapies and outcomes for patients. HNSCC cells evade the host immune system through manipulation of their own immunogenicity, production of immunosuppressive mediators, and promotion of immunomodulatory cell types. Through the tumor's influence on the microenvironment, the immune system can be exploited to promote metastasis, angiogenesis, and growth. This article provides a brief overview of key components of the immune infiltrating cells in the tumor microenvironment, reviewing immunological principles related to head and neck cancer, including the concept of cancer immunosurveillance and immune escape. Current immunotherapeutic strategies and emerging results from ongoing clinical trials are presented. PMID:26351330

  11. The Importance of Human Milk for Immunity in Preterm Infants.

    PubMed

    Lewis, Erin D; Richard, Caroline; Larsen, Bodil M; Field, Catherine J

    2017-03-01

    The immune system of preterm infants is immature, placing them at increased risk for serious immune-related complications. Human milk provides a variety of immune protective and immune maturation factors that are beneficial to the preterm infant's poorly developed immune system. The most studied immune components in human milk include antimicrobial proteins, maternal leukocytes, immunoglobulins, cytokines and chemokines, oligosaccharides, gangliosides, nucleotides, and long-chain polyunsaturated fatty acids. There is growing evidence that these components contribute to the lower incidence of immune-related conditions in the preterm infant. Therefore, provision of these components in human milk, donor milk, or formula may provide immunologic benefits. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Interaction Between Familial Transmission and a Constitutively Active Immune System Shapes Gut Microbiota in Drosophila melanogaster

    PubMed Central

    Mistry, Rupal; Kounatidis, Ilias; Ligoxygakis, Petros

    2017-01-01

    Resident gut bacteria are constantly influencing the immune system, yet the role of the immune system in shaping microbiota composition during an organism’s life span has remained unclear. Experiments in mice have been inconclusive due to differences in husbandry schemes that led to conflicting results. We used Drosophila as a genetically tractable system with a simpler gut bacterial population structure streamlined genetic backgrounds and established cross schemes to address this issue. We found that, depending on their genetic background, young flies had microbiota of different diversities that converged with age to the same Acetobacteraceae-dominated pattern in healthy flies. This pattern was accelerated in immune-compromised flies with higher bacterial load and gut cell death. Nevertheless, immune-compromised flies resembled their genetic background, indicating that familial transmission was the main force regulating gut microbiota. In contrast, flies with a constitutively active immune system had microbiota readily distinguishable from their genetic background with the introduction and establishment of previously undetectable bacterial families. This indicated the influence of immunity over familial transmission. Moreover, hyperactive immunity and increased enterocyte death resulted in the highest bacterial load observed starting from early adulthood. Cohousing experiments showed that the microenvironment also played an important role in the structure of the microbiota where flies with constitutive immunity defined the gut microbiota of their cohabitants. Our data show that, in Drosophila, constitutively active immunity shapes the structure and density of gut microbiota. PMID:28413160

  13. Influence of the Cholinergic System on the Immune Response of Teleost Fishes: Potential Model in Biomedical Research

    PubMed Central

    Toledo-Ibarra, G. A.; Rojas-Mayorquín, A. E.; Girón-Pérez, M. I.

    2013-01-01

    Fishes are the phylogenetically oldest vertebrate group, which includes more than one-half of the vertebrates on the planet; additionally, many species have ecological and economic importance. Fish are the first evolved group of organisms with adaptive immune mechanisms; consequently, they are an important link in the evolution of the immune system, thus a potential model for understanding the mechanisms of immunoregulation. Currently, the influence of the neurotransmitter acetylcholine (ACh) on the cells of the immune system is widely studied in mammalian models, which have provided evidence on ACh production by immune cells (the noncholinergic neuronal system); however, these neuroimmunomodulation mechanisms in fish and lower vertebrates are poorly studied. Therefore, the objective of this review paper was to analyze the influence of the cholinergic system on the immune response of teleost fish, which could provide information concerning the possibility of bidirectional communication between the nervous and immune systems in these organisms and provide data for a better understanding of basic issues in neuroimmunology in lower vertebrates, such as bony fishes. Thus, the use of fish as a model in biomedical research may contribute to a better understanding of human diseases and diseases in other animals. PMID:24324508

  14. Influence of the cholinergic system on the immune response of teleost fishes: potential model in biomedical research.

    PubMed

    Toledo-Ibarra, G A; Rojas-Mayorquín, A E; Girón-Pérez, M I

    2013-01-01

    Fishes are the phylogenetically oldest vertebrate group, which includes more than one-half of the vertebrates on the planet; additionally, many species have ecological and economic importance. Fish are the first evolved group of organisms with adaptive immune mechanisms; consequently, they are an important link in the evolution of the immune system, thus a potential model for understanding the mechanisms of immunoregulation. Currently, the influence of the neurotransmitter acetylcholine (ACh) on the cells of the immune system is widely studied in mammalian models, which have provided evidence on ACh production by immune cells (the noncholinergic neuronal system); however, these neuroimmunomodulation mechanisms in fish and lower vertebrates are poorly studied. Therefore, the objective of this review paper was to analyze the influence of the cholinergic system on the immune response of teleost fish, which could provide information concerning the possibility of bidirectional communication between the nervous and immune systems in these organisms and provide data for a better understanding of basic issues in neuroimmunology in lower vertebrates, such as bony fishes. Thus, the use of fish as a model in biomedical research may contribute to a better understanding of human diseases and diseases in other animals.

  15. A novel model to study neonatal Escherichia coli sepsis and the effect of treatment on the human immune system using humanized mice.

    PubMed

    Schlieckau, Florian; Schulz, Daniela; Fill Malfertheiner, Sara; Entleutner, Kathrin; Seelbach-Goebel, Birgit; Ernst, Wolfgang

    2018-04-19

    Neonatal sepsis is a serious threat especially for preterm infants. As existing in vitro and in vivo models have limitations, we generated a novel neonatal sepsis model using humanized mice and tested the effect of Betamethasone and Indomethacin which are used in the clinic in case of premature birth. Humanized mice were infected with Escherichia coli (E. coli). Subsequently, the effect of the infection itself, and treatment with Betamethasone and Indomethacin on survival, recovery, bacterial burden, leukocyte populations, and cytokine production, was analyzed. The human immune system in the animals responded with leukocyte trafficking to the site of infection and granulopoiesis in the bone marrow. Treatment with Indomethacin had no pronounced effect on the immune system or bacterial burden. Betamethasone induced a decline of splenocytes. The human immune system in humanized mice responds to the infection, making them a suitable model to study neonatal E. coli sepsis and the immune response of the neonatal immune system. Treatment with Betamethasone could have potential negative long-term effects for the immune system of the child. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Insight on the impacts of free amino acids and their metabolites on the immune system from a perspective of inborn errors of amino acid metabolism.

    PubMed

    Pakula, Malgorzata M; Maier, Thorsten J; Vorup-Jensen, Thomas

    2017-06-01

    Amino acids (AAs) support a broad range of functions in living organisms, including several that affect the immune system. The functions of the immune system are affected when free AAs are depleted or in excess because of external factors, such as starvation, or because of genetic factors, such as inborn errors of metabolism. Areas covered: In this review, we discuss the current insights into how free AAs affect immune responses. When possible, we make comparisons to known disease states resulting from inborn errors of metabolism, in which changed levels of AAs or AA metabolites provide insight into the impact of AAs on the human immune system in vivo. We also explore the literature describing how changes in AA levels might provide pharmaceutical targets for safe immunomodulatory treatment. Expert opinion: The impact of free AAs on the immune system is a neglected topic in most immunology textbooks. That neglect is undeserved, because free AAs have both direct and indirect effects on the immune system. Consistent choices of pre-clinical models and better strategies for creating formulations are required to gain clinical impact.

  17. Neural regulation of immunity: Role of NPR-1 in pathogen avoidance and regulation of innate immunity

    PubMed Central

    Aballay, Alejandro

    2010-01-01

    The nervous and immune systems consist of complex networks that have been known to be closely interrelated. However, given the complexity of the nervous and immune systems of mammals, including humans, the precise mechanisms by which the two systems influence each other remain understudied. To cut through this complexity, we used the nematode Caenorhabditis elegans as a simple system to study the relationship between the immune and nervous systems using sophisticated genetic manipulations. We found that C. elegans mutants in G-protein coupled receptors (GPCRs) expressed in the nervous system exhibit aberrant responses to pathogen infection. The use of different pathogens, different modes of infection, and genome-wide microarrays highlighted the importance of the GPCR NPR-1 in avoidance to certain pathogens and in the regulation of innate immunity. The regulation of innate immunity was found to take place at least in part through a mitogen-activated protein kinase signaling pathway similar to the mammalian p38 MAPK pathway. Here, the results that support the different roles of the NPR-1 neural circuit in the regulation of C. elegans responses to pathogen infection are discussed. PMID:19270528

  18. Visceral Inflammation and Immune Activation Stress the Brain

    PubMed Central

    Holzer, Peter; Farzi, Aitak; Hassan, Ahmed M.; Zenz, Geraldine; Jačan, Angela; Reichmann, Florian

    2017-01-01

    Stress refers to a dynamic process in which the homeostasis of an organism is challenged, the outcome depending on the type, severity, and duration of stressors involved, the stress responses triggered, and the stress resilience of the organism. Importantly, the relationship between stress and the immune system is bidirectional, as not only stressors have an impact on immune function, but alterations in immune function themselves can elicit stress responses. Such bidirectional interactions have been prominently identified to occur in the gastrointestinal tract in which there is a close cross-talk between the gut microbiota and the local immune system, governed by the permeability of the intestinal mucosa. External stressors disturb the homeostasis between microbiota and gut, these disturbances being signaled to the brain via multiple communication pathways constituting the gut–brain axis, ultimately eliciting stress responses and perturbations of brain function. In view of these relationships, the present article sets out to highlight some of the interactions between peripheral immune activation, especially in the visceral system, and brain function, behavior, and stress coping. These issues are exemplified by the way through which the intestinal microbiota as well as microbe-associated molecular patterns including lipopolysaccharide communicate with the immune system and brain, and the mechanisms whereby overt inflammation in the GI tract impacts on emotional-affective behavior, pain sensitivity, and stress coping. The interactions between the peripheral immune system and the brain take place along the gut–brain axis, the major communication pathways of which comprise microbial metabolites, gut hormones, immune mediators, and sensory neurons. Through these signaling systems, several transmitter and neuropeptide systems within the brain are altered under conditions of peripheral immune stress, enabling adaptive processes related to stress coping and resilience to take place. These aspects of the impact of immune stress on molecular and behavioral processes in the brain have a bearing on several disturbances of mental health and highlight novel opportunities of therapeutic intervention. PMID:29213271

  19. Artificial Immune System Approaches for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    KrishnaKumar, Kalmanje; Koga, Dennis (Technical Monitor)

    2002-01-01

    Artificial Immune Systems (AIS) combine a priori knowledge with the adapting capabilities of biological immune system to provide a powerful alternative to currently available techniques for pattern recognition, modeling, design, and control. Immunology is the science of built-in defense mechanisms that are present in all living beings to protect against external attacks. A biological immune system can be thought of as a robust, adaptive system that is capable of dealing with an enormous variety of disturbances and uncertainties. Biological immune systems use a finite number of discrete "building blocks" to achieve this adaptiveness. These building blocks can be thought of as pieces of a puzzle which must be put together in a specific way-to neutralize, remove, or destroy each unique disturbance the system encounters. In this paper, we outline AIS models that are immediately applicable to aerospace problems and identify application areas that need further investigation.

  20. Crosstalk between cancer and the neuro-immune system.

    PubMed

    Kuol, Nyanbol; Stojanovska, Lily; Apostolopoulos, Vasso; Nurgali, Kulmira

    2018-02-15

    In the last decade, understanding of cancer initiation and progression has been given much attention with studies mainly focusing on genetic abnormalities. Importantly, cancer cells can influence their microenvironment and bi-directionally communicate with other systems such as the immune system. The nervous system plays a fundamental role in regulating immune responses to a range of disease states including cancer. Its dysfunction influences the progression of cancer. The role of the immune system in tumor progression is of relevance to the nervous system since they can bi-directionally communicate via neurotransmitters and neuropeptides, common receptors, and, cytokines. However, cross-talk between these cells is highly complex in nature, and numerous variations are possible according to the type of cancer involved. The neuro-immune interaction is essential in influencing cancer development and progression. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. A Brief Journey through the Immune System

    PubMed Central

    Yatim, Karim M.

    2015-01-01

    This review serves as an introduction to an Immunology Series for the Nephrologist published in CJASN. It provides a brief overview of the immune system, how it works, and why it matters to kidneys. This review describes in broad terms the main divisions of the immune system (innate and adaptive), their cellular and tissue components, and the ways by which they function and are regulated. The story is told through the prism of evolution in order to relay to the reader why the immune system does what it does and why imperfections in the system can lead to renal disease. Detailed descriptions of cell types, molecules, and other immunologic curiosities are avoided as much as possible in an effort to not detract from the importance of the broader concepts that define the immune system and its relationship to the kidney. PMID:25845377

  2. [Chronobiology of immune system].

    PubMed

    Trufakin, V A; Shurlygina, A V; Dergacheva, T I; Litvinenko, G I; Verbitskaia, L V

    1999-01-01

    The biological rhythmological programme of the immune system is a constituent of the body's common biological rhythmological programme. Its pattern seems to be genetically determined and reflects the functional status of the system. The chronobiological mechanisms responsible for the regulation of immune functions lie in the presence of certain phasic interrelations between the biological rhythms of the synthesis and production of regulatory agents on the one hand, and those of the receptor system and metabolic potential of immunocompetent cells on the other. The facts given in the paper may be a basis for a chronobiological approach to better understanding the mechanisms of the physiology and pathology of the immune system. The medical significance of study of the structural and temporal pattern of the immune system consists in the development of new techniques for diagnosis, prognosis, therapy, and assessment of risk factors in immunopathological conditions.

  3. Identification of an immune-responsive mesolimbocortical serotonergic system: Potential role in regulation of emotional behavior

    PubMed Central

    Lowry, C.A.; Hollis, J.H.; de Vries, A.; Pan, B.; Brunet, L.R.; Hunt, J.R.F.; Paton, J.F.R.; van Kampen, E.; Knight, D.M.; Evans, A.K.; Rook, G.A.W.; Lightman, S.L.

    2007-01-01

    Peripheral immune activation can have profound physiological and behavioral effects including induction of fever and sickness behavior. One mechanism through which immune activation or immunomodulation may affect physiology and behavior is via actions on brainstem neuromodulatory systems, such as serotonergic systems. We have found that peripheral immune activation with antigens derived from the nonpathogenic, saprophytic bacterium, Mycobacterium vaccae, activated a specific subset of serotonergic neurons in the interfascicular part of the dorsal raphe nucleus (DRI) of mice, as measured by quantification of c-Fos expression following intratracheal (12 h) or s.c. (6 h) administration of heat-killed, ultrasonically disrupted M. vaccae, or heat-killed, intact M. vaccae, respectively. These effects were apparent after immune activation by M. vaccae or its components but not by ovalbumin, which induces a qualitatively different immune response. The effects of immune activation were associated with increases in serotonin metabolism within the ventromedial prefrontal cortex, consistent with an effect of immune activation on mesolimbocortical serotonergic systems. The effects of M. vaccae administration on serotonergic systems were temporally associated with reductions in immobility in the forced swim test, consistent with the hypothesis that the stimulation of mesolimbocortical serotonergic systems by peripheral immune activation alters stress-related emotional behavior. These findings suggest that the immune-responsive subpopulation of serotonergic neurons in the DRI is likely to play an important role in the neural mechanisms underlying regulation of the physiological and pathophysiological responses to both acute and chronic immune activation, including regulation of mood during health and disease states. Together with previous studies, these findings also raise the possibility that immune stimulation activates a functionally and anatomically distinct subset of serotonergic neurons, different from the subset of serotonergic neurons activated by anxiogenic stimuli or uncontrollable stressors. Consequently, selective activation of specific subsets of serotonergic neurons may have distinct behavioral outcomes. PMID:17367941

  4. Vitamin D, the immune system and asthma

    PubMed Central

    Lange, Nancy E; Litonjua, Augusto; Hawrylowicz, Catherine M; Weiss, Scott

    2010-01-01

    The effects of vitamin D on bone metabolism and calcium homeostasis have long been recognized. Emerging evidence has implicated vitamin D as a critical regulator of immunity, playing a role in both the innate and cell-mediated immune systems. Vitamin D deficiency has been found to be associated with several immune-mediated diseases, susceptibility to infection and cancer. Recently, there has been increasing interest in the possible link between vitamin D and asthma. Further elucidation of the role of vitamin D in lung development and immune system function may hold profound implications for the prevention and treatment of asthma. PMID:20161622

  5. Electronic immunization data collection systems: application of an evaluation framework.

    PubMed

    Heidebrecht, Christine L; Kwong, Jeffrey C; Finkelstein, Michael; Quan, Sherman D; Pereira, Jennifer A; Quach, Susan; Deeks, Shelley L

    2014-01-14

    Evaluating the features and performance of health information systems can serve to strengthen the systems themselves as well as to guide other organizations in the process of designing and implementing surveillance tools. We adapted an evaluation framework in order to assess electronic immunization data collection systems, and applied it in two Ontario public health units. The Centers for Disease Control and Prevention's Guidelines for Evaluating Public Health Surveillance Systems are broad in nature and serve as an organizational tool to guide the development of comprehensive evaluation materials. Based on these Guidelines, and informed by other evaluation resources and input from stakeholders in the public health community, we applied an evaluation framework to two examples of immunization data collection and examined several system attributes: simplicity, flexibility, data quality, timeliness, and acceptability. Data collection approaches included key informant interviews, logic and completeness assessments, client surveys, and on-site observations. Both evaluated systems allow high-quality immunization data to be collected, analyzed, and applied in a rapid fashion. However, neither system is currently able to link to other providers' immunization data or provincial data sources, limiting the comprehensiveness of coverage assessments. We recommended that both organizations explore possibilities for external data linkage and collaborate with other jurisdictions to promote a provincial immunization repository or data sharing platform. Electronic systems such as the ones described in this paper allow immunization data to be collected, analyzed, and applied in a rapid fashion, and represent the infostructure required to establish a population-based immunization registry, critical for comprehensively assessing vaccine coverage.

  6. ENGINEERING NANO- AND MICRO-PARTICLES TO TUNE IMMUNITY

    PubMed Central

    Moon, James J.; Irvine, Darrell J.; Huang, Bonnie

    2013-01-01

    The immune system can be a cure or cause of disease, fulfilling a protective role in attacking cancer or pathogenic microbes but also causing tissue destruction in autoimmune disorders. Thus, therapies aimed to amplify or suppress immune reactions are of great interest. However, the complex regulation of the immune system, coupled with the potential systemic side effects associated with traditional systemic drug therapies, has presented a major hurdle for the development of successful immunotherapies,. Recent progress in the design of synthetic micro- and nano-particles that can target drugs, deliver imaging agents, or stimulate immune cells directly through their physical and chemical properties is leading to new approaches to deliver vaccines, promote immune responses against tumors, and suppress autoimmunity. In addition, novel strategies, such as the use of particle-laden immune cells as living targeting agents for drugs, are providing exciting new approaches for immunotherapy. This progress report describes recent advances in the design of micro- and nano-particles in immunotherapies and diagnostics. PMID:22641380

  7. The interplay between the immune system and chemotherapy: emerging methods for optimizing therapy.

    PubMed

    Ghiringhelli, François; Apetoh, Lionel

    2014-01-01

    Preclinical studies have revealed an unexpected ability of the immune system to contribute to the success of chemotherapy and radiotherapy. Anticancer therapies can trigger immune system activation by promoting the release of danger signals from dying tumor cells and/or the elimination of immunosuppressive cells. We have, however, recently discovered that some chemotherapies, such as 5-fluorouracil and gemcitabine, exert conflicting effects on anticancer immune responses. Although 5-fluorouracil and Gem selectively eliminated myeloid-derived suppressive cells in tumor-bearing rodents, these chemotherapies promoted the release of IL-1β and the development of pro-angiogenic IL-17-producing CD4 T cells. The ambivalent effects of chemotherapy on immune responses should thus be carefully considered to design effective combination therapies based on chemotherapy and immune modulators. Herein, we discuss how the initial findings underscoring the key role of the immune system in mediating the antitumor efficacy of anticancer agents could begin to translate into effective therapies in humans.

  8. Studying brain-regulation of immunity with optogenetics and chemogenetics; A new experimental platform.

    PubMed

    Ben-Shaanan, Tamar; Schiller, Maya; Rolls, Asya

    2017-10-01

    The interactions between the brain and the immune system are bidirectional. Nevertheless, we have far greater understanding of how the immune system affects the brain than how the brain affects immunity. New technological developments such as optogenetics and chemogenetics (using DREADDs; Designer Receptors Exclusively Activated by Designer Drugs) can bridge this gap in our understanding, as they enable an unprecedented mechanistic and systemic analysis of the communication between the brain and the immune system. In this review, we discuss new experimental approaches for revealing neuronal circuits that can participate in regulation of immunity. In addition, we discuss methods, specifically optogenetics and chemogenetics, that enable targeted neuronal manipulation to reveal how different brain regions affect immunity. We describe how these techniques can be used as an experimental platform to address fundamental questions in psychoneuroimmunology and to understand how neuronal circuits associate with different psychological states can affect physiology. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Revisiting immunosurveillance and immunostimulation: Implications for cancer immunotherapy

    PubMed Central

    Ichim, Christine V

    2005-01-01

    Experimental and clinical experience demonstrates that the resolution of a pathogenic challenge depends not only on the presence or absence of an immune reaction, but also on the initiation of the proper type of immune reaction. The initiation of a non-protective type of immune reaction will not only result in a lack of protection, but may also exacerbate the underlying condition. For example, in cancer, constituents of the immune system have been shown to augment tumor proliferation, angiogenesis, and metastases. This review discusses the duality of the role of the immune system in cancer, from the theories of immunosurveillance and immunostimulation to current studies, which illustrate that the immune system has both a protective role and a tumor-promoting role in neoplasia. The potential of using chemotherapy to inhibit a tumor-promoting immune reaction is also discussed. PMID:15698481

  10. Current understanding of HIV-1 and T-cell adaptive immunity: progress to date.

    PubMed

    Mohan, Teena; Bhatnagar, Santwana; Gupta, Dablu L; Rao, D N

    2014-08-01

    The cellular immune response to human immunodeficiency virus (HIV) has different components originating from both the adaptive and innate immune systems. HIV cleverly utilizes the host machinery to survive by its intricate nature of interaction with the host immune system. HIV evades the host immune system at innate ad adaptive, allows the pathogen to replicate and transmit from one host to another. Researchers have shown that HIV has multipronged effects especially on the adaptive immunity, with CD4(+) cells being the worst effect T-cell populations. Various analyses have revealed that, the exposure to HIV results in clonal expansion and excessive activation of the immune system. Also, an abnormal process of differentiation has been observed suggestive of an alteration and blocks in the maturation of various T-cell subsets. Additionally, HIV has shown to accelerate immunosenescence and exhaustion of the overtly activated T-cells. Apart from causing phenotypic changes, HIV has adverse effects on the functional aspect of the immune system, with evidences implicating it in the loss of the capacity of T-cells to secrete various antiviral cytokines and chemokines. However, there continues to be many aspects of the immune- pathogenesis of HIV that are still unknown and thus required further research in order to convert the malaise of HIV into a manageable epidemic. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Cutting the Stone: Health Defined in the Era of Value-based Care

    PubMed Central

    2017-01-01

    The immune system contributes to the maintenance of health by preventing and limiting the clinical consequences of infections by pathogenic microorganisms. During the evolution of Homo sapiens, those with the fittest immune system survived. The immune system of Homo sapiens was further improved and adapted by admixture with Neanderthal genes. Nowadays, the human immune system provides adequate protection against the majority of infections. For some 20 infectious diseases, the immune system needs to be improved by vaccination. Vaccination is the number one value-based healthcare intervention and has resulted in global eradication of smallpox. Eradication of poliomyelitis and measles is within reach. A continuous effort will be required for recently emerged pathogens, such as Ebola and HIV, as well as the most difficult - malaria and tuberculosis.   PMID:28348941

  12. Cutting the Stone: Health Defined in the Era of Value-based Care.

    PubMed

    Rijkers, Ger

    2017-02-10

    The immune system contributes to the maintenance of health by preventing and limiting the clinical consequences of infections by pathogenic microorganisms. During the evolution of Homo sapiens, those with the fittest immune system survived. The immune system of Homo sapiens was further improved and adapted by admixture with Neanderthal genes. Nowadays, the human immune system provides adequate protection against the majority of infections. For some 20 infectious diseases, the immune system needs to be improved by vaccination. Vaccination is the number one value-based healthcare intervention and has resulted in global eradication of smallpox. Eradication of poliomyelitis and measles is within reach. A continuous effort will be required for recently emerged pathogens, such as Ebola and HIV, as well as the most difficult - malaria and tuberculosis.

  13. How (and why) the immune system makes us sleep

    PubMed Central

    Imeri, Luca; Opp, Mark R.

    2010-01-01

    Good sleep is necessary for physical and mental health. For example, sleep loss impairs immune function, and sleep is altered during infection. Immune signalling molecules are present in the healthy brain, where they interact with neurochemical systems to contribute to the regulation of normal sleep. Animal studies have shown that interactions between immune signalling molecules (such as the cytokine interleukin 1) and brain neurochemical systems (such as the serotonin system) are amplified during infection, indicating that these interactions might underlie the changes in sleep that occur during infection. Why should the immune system cause us to sleep differently when we are sick? We propose that the alterations in sleep architecture during infection are exquisitely tailored to support the generation of fever, which in turn imparts survival value. PMID:19209176

  14. How (and why) the immune system makes us sleep.

    PubMed

    Imeri, Luca; Opp, Mark R

    2009-03-01

    Good sleep is necessary for physical and mental health. For example, sleep loss impairs immune function, and sleep is altered during infection. Immune signalling molecules are present in the healthy brain, where they interact with neurochemical systems to contribute to the regulation of normal sleep. Animal studies have shown that interactions between immune signalling molecules (such as the cytokine interleukin 1) and brain neurochemical systems (such as the serotonin system) are amplified during infection, indicating that these interactions might underlie the changes in sleep that occur during infection. Why should the immune system cause us to sleep differently when we are sick? We propose that the alterations in sleep architecture during infection are exquisitely tailored to support the generation of fever, which in turn imparts survival value.

  15. Enhancing the role of veterinary vaccines reducing zoonotic diseases of humans: Linking systems biology with vaccine development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Leslie G.; Khare, Sangeeta; Lawhon, Sara D.

    The aim of research on infectious diseases is their prevention, and brucellosis and salmonellosis as such are classic examples of worldwide zoonoses for application of a systems biology approach for enhanced rational vaccine development. When used optimally, vaccines prevent disease manifestations, reduce transmission of disease, decrease the need for pharmaceutical intervention, and improve the health and welfare of animals, as well as indirectly protecting against zoonotic diseases of people. Advances in the last decade or so using comprehensive systems biology approaches linking genomics, proteomics, bioinformatics, and biotechnology with immunology, pathogenesis and vaccine formulation and delivery are expected to enable enhancedmore » approaches to vaccine development. The goal of this paper is to evaluate the role of computational systems biology analysis of host:pathogen interactions (the interactome) as a tool for enhanced rational design of vaccines. Systems biology is bringing a new, more robust approach to veterinary vaccine design based upon a deeper understanding of the host pathogen interactions and its impact on the host's molecular network of the immune system. A computational systems biology method was utilized to create interactome models of the host responses to Brucella melitensis (BMEL), Mycobacterium avium paratuberculosis (MAP), Salmonella enterica Typhimurium (STM), and a Salmonella mutant (isogenic *sipA, sopABDE2) and linked to the basis for rational development of vaccines for brucellosis and salmonellosis as reviewed by Adams et al. and Ficht et al. [1,2]. A bovine ligated ileal loop biological model was established to capture the host gene expression response at multiple time points post infection. New methods based on Dynamic Bayesian Network (DBN) machine learning were employed to conduct a comparative pathogenicity analysis of 219 signaling and metabolic pathways and 1620 gene ontology (GO) categories that defined the host's biosignatures to each infectious condition. Through this DBN computational approach, the method identified significantly perturbed pathways and GO category groups of genes that define the pathogenicity signatures of the infectious agent. Our preliminary results provide deeper understanding of the overall complexity of host innate immune response as well as the identification of host gene perturbations that defines a unique host temporal biosignature response to each pathogen. The application of advanced computational methods for developing interactome models based on DBNs has proven to be instrumental in elucidating novel host responses and improved functional biological insight into the host defensive mechanisms. Evaluating the unique differences in pathway and GO perturbations across pathogen conditions allowed the identification of plausible host pathogen interaction mechanisms. Accordingly, a systems biology approach to study molecular pathway gene expression profiles of host cellular responses to microbial pathogens holds great promise as a methodology to identify, model and predict the overall dynamics of the host pathogen interactome. Thus, we propose that such an approach has immediate application to the rational design of brucellosis and salmonellosis vaccines.« less

  16. Enhancing the role of veterinary vaccines reducing zoonotic diseases of humans: linking systems biology with vaccine development.

    PubMed

    Adams, L Garry; Khare, Sangeeta; Lawhon, Sara D; Rossetti, Carlos A; Lewin, Harris A; Lipton, Mary S; Turse, Joshua E; Wylie, Dennis C; Bai, Yu; Drake, Kenneth L

    2011-09-22

    The aim of research on infectious diseases is their prevention, and brucellosis and salmonellosis as such are classic examples of worldwide zoonoses for application of a systems biology approach for enhanced rational vaccine development. When used optimally, vaccines prevent disease manifestations, reduce transmission of disease, decrease the need for pharmaceutical intervention, and improve the health and welfare of animals, as well as indirectly protecting against zoonotic diseases of people. Advances in the last decade or so using comprehensive systems biology approaches linking genomics, proteomics, bioinformatics, and biotechnology with immunology, pathogenesis and vaccine formulation and delivery are expected to enable enhanced approaches to vaccine development. The goal of this paper is to evaluate the role of computational systems biology analysis of host:pathogen interactions (the interactome) as a tool for enhanced rational design of vaccines. Systems biology is bringing a new, more robust approach to veterinary vaccine design based upon a deeper understanding of the host-pathogen interactions and its impact on the host's molecular network of the immune system. A computational systems biology method was utilized to create interactome models of the host responses to Brucella melitensis (BMEL), Mycobacterium avium paratuberculosis (MAP), Salmonella enterica Typhimurium (STM), and a Salmonella mutant (isogenic ΔsipA, sopABDE2) and linked to the basis for rational development of vaccines for brucellosis and salmonellosis as reviewed by Adams et al. and Ficht et al. [1,2]. A bovine ligated ileal loop biological model was established to capture the host gene expression response at multiple time points post infection. New methods based on Dynamic Bayesian Network (DBN) machine learning were employed to conduct a comparative pathogenicity analysis of 219 signaling and metabolic pathways and 1620 gene ontology (GO) categories that defined the host's biosignatures to each infectious condition. Through this DBN computational approach, the method identified significantly perturbed pathways and GO category groups of genes that define the pathogenicity signatures of the infectious agent. Our preliminary results provide deeper understanding of the overall complexity of host innate immune response as well as the identification of host gene perturbations that defines a unique host temporal biosignature response to each pathogen. The application of advanced computational methods for developing interactome models based on DBNs has proven to be instrumental in elucidating novel host responses and improved functional biological insight into the host defensive mechanisms. Evaluating the unique differences in pathway and GO perturbations across pathogen conditions allowed the identification of plausible host-pathogen interaction mechanisms. Accordingly, a systems biology approach to study molecular pathway gene expression profiles of host cellular responses to microbial pathogens holds great promise as a methodology to identify, model and predict the overall dynamics of the host-pathogen interactome. Thus, we propose that such an approach has immediate application to the rational design of brucellosis and salmonellosis vaccines. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Efficient immunization strategies to prevent financial contagion

    NASA Astrophysics Data System (ADS)

    Kobayashi, Teruyoshi; Hasui, Kohei

    2014-01-01

    Many immunization strategies have been proposed to prevent infectious viruses from spreading through a network. In this work, we study efficient immunization strategies to prevent a default contagion that might occur in a financial network. An essential difference from the previous studies on immunization strategy is that we take into account the possibility of serious side effects. Uniform immunization refers to a situation in which banks are ``vaccinated'' with a common low-risk asset. The riskiness of immunized banks will decrease significantly, but the level of systemic risk may increase due to the de-diversification effect. To overcome this side effect, we propose another immunization strategy, called counteractive immunization, which prevents pairs of banks from failing simultaneously. We find that counteractive immunization can efficiently reduce systemic risk without altering the riskiness of individual banks.

  18. Simulation model of converging-diverging (CD) nozzle to improve particle delivery system of deoxyribonucleic acid (DNA)

    NASA Astrophysics Data System (ADS)

    Sumarsono, Danardono A.; Ibrahim, Fera; Santoso, Satria P.; Sari, Gema P.

    2018-02-01

    Gene gun is a mechanical device which has been used to deliver DNA vaccine into the cells and tissues by increasing the uptake of DNA plasmid so it can generate a high immune response with less amount of DNA. Nozzle is an important part of the gene gun which used to accelerate DNA in particle form with a gas flow to reach adequate momentum to enter the epidermis of human skin and elicit immune response. We developed new designs of nozzle for gene gun to make DNA uptake more efficient in vaccination. We used Computational Fluid Dynamics (CFD) by Autodesk® Simulation 2015 to simulate static fluid pressure and velocity contour of supersonic wave and parametric distance to predict the accuracy of the new nozzle. The result showed that the nozzle could create a shockwave at the distance parametric to the object from 4 to 5 cm using fluid pressure varied between 0.8-1.2 MPa. This is indication a possibility that the DNA particle could penetrate under the mammalian skin. For the future research step, this new nozzle model could be considered for development the main component of the DNA delivery system in vaccination in vivo

  19. [IMMUNE SYSTEM INTERNSHIP WITH SYMBIOTIC MICROORGANISMS IN GNOTOBIOTIC ANIMAL'S INTESTINUM ILEUM].

    PubMed

    Kochlamasashvili, B; Gogiashvili, L; Jandieri, K

    2017-11-01

    Structures, responsible for acceptive (comensaling relation) and protective (pathogenic defense) immunity, were studied and compared in small intestine - to ileum mucosa. Data shown, that main application of the both domains of immune system is to support the correlation between body and foreign microbes, but they response is different. Most significant differences are as follows: in acceptive reactions presented only in aseptic animals - gnotobionts, inflammatory changes absent, so immune reaction complex develops into physiological condition. Symbiotic reactions release in mucosa epithelial cells, also in cells, responsible for adaptive and congenital immune reactivity. Thus, acceptive immune reactions contribute symbiotic biocenosis versus elimination; which is function of protective immunity.

  20. Transmission probabilities and durations of immunity for three pathogenic group B Streptococcus serotypes

    PubMed Central

    Percha, Bethany; Newman, M. E. J.; Foxman, Betsy

    2012-01-01

    Group B Streptococcus (GBS) remains a major cause of neonatal sepsis and is an emerging cause of invasive bacterial infections. The 9 known serotypes vary in virulence, and there is little cross-immunity. Key parameters for planning an effective vaccination strategy, such as average length of immunity and transmission probabilities by serotype, are unknown. We simulated GBS spread in a population using a computational model with parameters derived from studies of GBS sexual transmission in a college dormitory. Here we provide estimates of the duration of immunity relative to the transmission probabilities for the 3 GBS serotypes most associated with invasive disease: Ia, III, and V. We also place upper limits on the durations of immunity for serotype Ia (570 days), III (1125 days) and V (260 days). Better transmission estimates are required to establish the epidemiological parameters of GBS infection and determine the best vaccination strategies to prevent GBS disease. PMID:21605704

  1. The role of the immune system in neurofibromatosis type 1-associated nervous system tumors.

    PubMed

    Karmakar, Souvik; Reilly, Karlyne M

    2017-01-01

    With the recent development of new anticancer therapies targeting the immune system, it is important to understand which immune cell types and cytokines play critical roles in suppressing or promoting tumorigenesis. The role of mast cells in promoting neurofibroma growth in neurofibromatosis type 1 (NF1) patients was hypothesized decades ago. More recent experiments in mouse models have demonstrated the causal role of mast cells in neurofibroma development and of microglia in optic pathway glioma development. We review here what is known about the role of NF1 mutation in immune cell function and the role of immune cells in promoting tumorigenesis in NF1. We also review the therapies targeting immune cell pathways and their promise in NF1 tumors.

  2. Country Immunization Information System Assessments - Kenya, 2015 and Ghana, 2016.

    PubMed

    Scott, Colleen; Clarke, Kristie E N; Grevendonk, Jan; Dolan, Samantha B; Ahmed, Hussein Osman; Kamau, Peter; Ademba, Peter Aswani; Osadebe, Lynda; Bonsu, George; Opare, Joseph; Diamenu, Stanley; Amenuvegbe, Gregory; Quaye, Pamela; Osei-Sarpong, Fred; Abotsi, Francis; Ankrah, Joseph Dwomor; MacNeil, Adam

    2017-11-10

    The collection, analysis, and use of data to measure and improve immunization program performance are priorities for the World Health Organization (WHO), global partners, and national immunization programs (NIPs). High quality data are essential for evidence-based decision-making to support successful NIPs. Consistent recording and reporting practices, optimal access to and use of health information systems, and rigorous interpretation and use of data for decision-making are characteristics of high-quality immunization information systems. In 2015 and 2016, immunization information system assessments (IISAs) were conducted in Kenya and Ghana using a new WHO and CDC assessment methodology designed to identify root causes of immunization data quality problems and facilitate development of plans for improvement. Data quality challenges common to both countries included low confidence in facility-level target population data (Kenya = 50%, Ghana = 53%) and poor data concordance between child registers and facility tally sheets (Kenya = 0%, Ghana = 3%). In Kenya, systemic challenges included limited supportive supervision and lack of resources to access electronic reporting systems; in Ghana, challenges included a poorly defined subdistrict administrative level. Data quality improvement plans (DQIPs) based on assessment findings are being implemented in both countries. IISAs can help countries identify and address root causes of poor immunization data to provide a stronger evidence base for future investments in immunization programs.

  3. Cancer-Targeted Oncolytic Adenoviruses for Modulation of the Immune System.

    PubMed

    Cerullo, Vincenzo; Capasso, Cristian; Vaha-Koskela, Markus; Hemminki, Otto; Hemminki, Akseli

    2018-01-01

    Adenovirus is one of the most commonly used vectors for gene therapy and it is the first approved virus-derived drug for treatment of cancer. As an oncolytic agent, it can induce lysis of infected cells, but it can also engage the immune system, promoting activation and maturation of antigen- presenting cells (APCs). In essence, oncolysis combined with the associated immunostimulatory actions result in a "personalized in situ vaccine" for each patient. In order to take full advantage of these features, we should try to understand how adenovirus interacts with the immune system, what are the receptors involved in triggering subsequent signals and which kind of responses they elicit. Tackling these questions will give us further insight in how to manipulate adenovirus-mediated immune responses for enhancement of anti-tumor efficacy. In this review, we first highlight how oncolytic adenovirus interacts with the innate immune system and its receptors such as Toll-like receptors, nucleotide-binding and oligomerization domain (NOD)- like receptors and other immune sensors. Then we describe the effect of these interactions on the adaptive immune system and its cells, especially B and T lymphocytes. Finally, we summarize the most significant preclinical and clinical results in the field of gene therapy where researchers have engineered adenovirus to manipulate the host immune system by expressing cytokines and signalingmediators. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Immune system responses and fitness costs associated with consumption of bacteria in larvae of Trichoplusia ni

    PubMed Central

    Freitak, Dalial; Wheat, Christopher W; Heckel, David G; Vogel, Heiko

    2007-01-01

    Background Insects helped pioneer, and persist as model organisms for, the study of specific aspects of immunity. Although they lack an adaptive immune system, insects possess an innate immune system that recognizes and destroys intruding microorganisms. Its operation under natural conditions has not been well studied, as most studies have introduced microbes to laboratory-reared insects via artificial mechanical wounding. One of the most common routes of natural exposure and infection, however, is via food; thus, the role of dietary microbial communities in herbivorous insect immune system evolution invites study. Here, we examine the immune system response and consequences of exposing a lepidopteran agricultural pest to non-infectious microorganisms via simple oral consumption. Results Immune system response was compared between Trichoplusia ni larvae reared on diets with or without non-pathogenic bacteria (Escherichia coli and Micrococcus luteus). Two major immune response-related enzymatic activities responded to diets differently – phenoloxidase activity was inhibited in the bacteria-fed larvae, whereas general antibacterial activity was enhanced. Eight proteins were highly expressed in the hemolymph of the bacteria fed larvae, among them immune response related proteins arylphorin, apolipophorin III and gloverin. Expression response among 25 putative immune response-related genes were assayed via RT-qPCR. Seven showed more than fivefold up regulation in the presence of bacterial diet, with 22 in total being differentially expressed, among them apolipophorin III, cecropin, gallerimycin, gloverin, lysozyme, and phenoloxidase inhibiting enzyme. Finally, potential life-history trade-offs were studied, with pupation time and pupal mass being negatively affected in bacteria fed larvae. Conclusion The presence of bacteria in food, even if non-pathogenic, can trigger an immune response cascade with life history tradeoffs. Trichoplusia ni larvae are able to detect and respond to environmental microbes encountered in the diet, possibly even using midgut epithelial tissue as a sensing organ. Potential benefits of this immune system priming may outweigh the observed tradeoffs, as priming based on environmentally sensed bacterial may decrease risk of serious infection. These results show that food plant microbial communities represent a dynamic and unstudied part of the coevolutionary interactions between plants and their insect herbivores. PMID:18154650

  5. Artificial immune system approach for air combat maneuvering

    NASA Astrophysics Data System (ADS)

    Kaneshige, John; Krishnakumar, Kalmanje

    2007-04-01

    Since future air combat missions will involve both manned and unmanned aircraft, the primary motivation for this research is to enable unmanned aircraft with intelligent maneuvering capabilities. During air combat maneuvering, pilots use their knowledge and experience of maneuvering strategies and tactics to determine the best course of action. As a result, we try to capture these aspects using an artificial immune system approach. The biological immune system protects the body against intruders by recognizing and destroying harmful cells or molecules. It can be thought of as a robust adaptive system that is capable of dealing with an enormous variety of disturbances and uncertainties. However, another critical aspect of the immune system is that it can remember how previous encounters were successfully defeated. As a result, it can respond faster to similar encounters in the future. This paper describes how an artificial immune system is used to select and construct air combat maneuvers. These maneuvers are composed of autopilot mode and target commands, which represent the low-level building blocks of the parameterized system. The resulting command sequences are sent to a tactical autopilot system, which has been enhanced with additional modes and an aggressiveness factor for enabling high performance maneuvers. Just as vaccinations train the biological immune system how to combat intruders, training sets are used to teach the maneuvering system how to respond to different enemy aircraft situations. Simulation results are presented, which demonstrate the potential of using immunized maneuver selection for the purposes of air combat maneuvering.

  6. Design and Fabrication of Millimeter Wave Hexagonal Nano-Ferrite Circulator on Silicon CMOS Substrate

    NASA Astrophysics Data System (ADS)

    Oukacha, Hassan

    The rapid advancement of Complementary Metal Oxide Semiconductor (CMOS) technology has formed the backbone of the modern computing revolution enabling the development of computationally intensive electronic devices that are smaller, faster, less expensive, and consume less power. This well-established technology has transformed the mobile computing and communications industries by providing high levels of system integration on a single substrate, high reliability and low manufacturing cost. The driving force behind this computing revolution is the scaling of semiconductor devices to smaller geometries which has resulted in faster switching speeds and the promise of replacing traditional, bulky radio frequency (RF) components with miniaturized devices. Such devices play an important role in our society enabling ubiquitous computing and on-demand data access. This thesis presents the design and development of a magnetic circulator component in a standard 180 nm CMOS process. The design approach involves integration of nanoscale ferrite materials on a CMOS chip to avoid using bulky magnetic materials employed in conventional circulators. This device constitutes the next generation broadband millimeter-wave circulator integrated in CMOS using ferrite materials operating in the 60GHz frequency band. The unlicensed ultra-high frequency spectrum around 60GHz offers many benefits: very high immunity to interference, high security, and frequency re-use. Results of both simulations and measurements are presented in this thesis. The presented results show the benefits of this technique and the potential that it has in incorporating a complete system-on-chip (SoC) that includes low noise amplifier, power amplier, and antenna. This system-on-chip can be used in the same applications where the conventional circulator has been employed, including communication systems, radar systems, navigation and air traffic control, and military equipment. This set of applications of circulator shows how crucial this device is to many industries and the need for smaller, cost effective RF components.

  7. Identification of immune correlates of protection in Shigella infection by application of machine learning.

    PubMed

    Arevalillo, Jorge M; Sztein, Marcelo B; Kotloff, Karen L; Levine, Myron M; Simon, Jakub K

    2017-10-01

    Immunologic correlates of protection are important in vaccine development because they give insight into mechanisms of protection, assist in the identification of promising vaccine candidates, and serve as endpoints in bridging clinical vaccine studies. Our goal is the development of a methodology to identify immunologic correlates of protection using the Shigella challenge as a model. The proposed methodology utilizes the Random Forests (RF) machine learning algorithm as well as Classification and Regression Trees (CART) to detect immune markers that predict protection, identify interactions between variables, and define optimal cutoffs. Logistic regression modeling is applied to estimate the probability of protection and the confidence interval (CI) for such a probability is computed by bootstrapping the logistic regression models. The results demonstrate that the combination of Classification and Regression Trees and Random Forests complements the standard logistic regression and uncovers subtle immune interactions. Specific levels of immunoglobulin IgG antibody in blood on the day of challenge predicted protection in 75% (95% CI 67-86). Of those subjects that did not have blood IgG at or above a defined threshold, 100% were protected if they had IgA antibody secreting cells above a defined threshold. Comparison with the results obtained by applying only logistic regression modeling with standard Akaike Information Criterion for model selection shows the usefulness of the proposed method. Given the complexity of the immune system, the use of machine learning methods may enhance traditional statistical approaches. When applied together, they offer a novel way to quantify important immune correlates of protection that may help the development of vaccines. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Mucosal immunization: a review of strategies and challenges.

    PubMed

    Patel, Hinal; Yewale, Chetan; Rathi, Mohan N; Misra, Ambikanandan

    2014-01-01

    The vast majority of pathogens enter the human body via the mucosal surfaces of the gastrointestinal, respiratory, and urogenital tracts, where they initiate mucosal infections that lead to systemic infections. Despite strong evidence that a good mucosal immune response can effectively prevent systemic infection too, only a few mucosal vaccines are available due to their low efficiency. Most current immunization techniques involve systemic injection, but they are ineffective to induce immunization at a mucosal site. It is a great challenge to target a mucosal compartment that can induce protective immunity at mucosal sites as well as systemic sites. A better understanding of cellular and molecular factors involved in the regulation of mucosal immunity will aid in the design of safer mucosal vaccines that elicit the desired protective immunity against infectious diseases such as HIV. The development of mucosal vaccines, whether for prevention of infectious diseases or for immunotherapy, requires antigen delivery and adjuvant systems that can effectively present vaccine or immunotherapeutic antigens to the mucosal sites. In this review, we examine the mechanism of mucosal protection, induction of mucosal immune response, types of vaccines, current status of marketed vaccines, and novel strategies for protection against infections and for treatment of inflammatory disorders. Additionally, we offer perspectives on future challenges and research directions.

  9. Molecular dialogues between the ischemic brain and the peripheral immune system: Dualistic roles in injury and repair

    PubMed Central

    An, Chengrui; Shi, Yejie; Li, Peiying; Hu, Xiaoming; Gan, Yu; Stetler, Ruth A.; Leak, Rehana K.; Gao, Yanqin; Sun, Bao-Liang; Zheng, Ping; Chen, Jun

    2014-01-01

    Immune and inflammatory responses actively modulate the pathophysiological processes of acute brain injuries such as stroke. Soon after the onset of stroke, signals such as brain-derived antigens, danger-associated molecular patterns (DAMPs), cytokines, and chemokines are released from the injured brain into the systemic circulation. The injured brain also communicates with peripheral organs through the parasympathetic and sympathetic branches of the autonomic nervous system. Many of these diverse signals not only activate resident immune cells in the brain, but also trigger robust immune responses in the periphery. Peripheral immune cells then migrate toward the site of injury and release additional cytokines, chemokines, and other molecules, causing further disruptive or protective effects in the ischemic brain. Bidirectional communication between the injured brain and the peripheral immune system is now known to regulate the progression of stroke pathology as well as tissue repair. In the end, this exquisitely coordinated crosstalk helps determine the fate of animals after stroke. This article reviews the literature on ischemic brain-derived signals through which peripheral immune responses are triggered, and the potential impact of these peripheral responses on brain injury and repair. Pharmacological strategies and cell-based therapies that target the dialogue between the brain and peripheral immune system show promise as potential novel treatments for stroke. PMID:24374228

  10. The Impact of Chemotherapy, Radiation and Epigenetic Modifiers in Cancer Cell Expression of Immune Inhibitory and Stimulatory Molecules and Anti-Tumor Efficacy.

    PubMed

    Chacon, Jessica Ann; Schutsky, Keith; Powell, Daniel J

    2016-11-14

    Genomic destabilizers, such as radiation and chemotherapy, and epigenetic modifiers are used for the treatment of cancer due to their apoptotic effects on the aberrant cells. However, these therapies may also induce widespread changes within the immune system and cancer cells, which may enable tumors to avoid immune surveillance and escape from host anti-tumor immunity. Genomic destabilizers can induce immunogenic death of tumor cells, but also induce upregulation of immune inhibitory ligands on drug-resistant cells, resulting in tumor progression. While administration of immunomodulatory antibodies that block the interactions between inhibitory receptors on immune cells and their ligands on tumor cells can mediate cancer regression in a subset of treated patients, it is crucial to understand how genomic destabilizers alter the immune system and malignant cells, including which inhibitory molecules, receptors and/or ligands are upregulated in response to genotoxic stress. Knowledge gained in this area will aid in the rational design of trials that combine genomic destabilizers, epigenetic modifiers and immunotherapeutic agents that may be synergized to improve clinical responses and prevent tumor escape from the immune system. Our review article describes the impact genomic destabilizers, such as radiation and chemotherapy, and epigenetic modifiers have on anti-tumor immunity and the tumor microenvironment. Although genomic destabilizers cause DNA damage on cancer cells, these therapies can also have diverse effects on the immune system, promote immunogenic cell death or survival and alter the cancer cell expression of immune inhibitor molecules.

  11. Recognition of bacterial plant pathogens: local, systemic and transgenerational immunity.

    PubMed

    Henry, Elizabeth; Yadeta, Koste A; Coaker, Gitta

    2013-09-01

    Bacterial pathogens can cause multiple plant diseases and plants rely on their innate immune system to recognize and actively respond to these microbes. The plant innate immune system comprises extracellular pattern recognition receptors that recognize conserved microbial patterns and intracellular nucleotide binding leucine-rich repeat (NLR) proteins that recognize specific bacterial effectors delivered into host cells. Plants lack the adaptive immune branch present in animals, but still afford flexibility to pathogen attack through systemic and transgenerational resistance. Here, we focus on current research in plant immune responses against bacterial pathogens. Recent studies shed light onto the activation and inactivation of pattern recognition receptors and systemic acquired resistance. New research has also uncovered additional layers of complexity surrounding NLR immune receptor activation, cooperation and sub-cellular localizations. Taken together, these recent advances bring us closer to understanding the web of molecular interactions responsible for coordinating defense responses and ultimately resistance. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  12. Effects of the space flight environment on the immune system

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald; Butel, Janet S.; Shearer, William T.

    2003-01-01

    Space flight conditions have a dramatic effect on a variety of physiologic functions of mammals, including muscle, bone, and neurovestibular function. Among the physiological functions that are affected when humans or animals are exposed to space flight conditions is the immune response. The focus of this review is on the function of the immune system in space flight conditions during actual space flights, as well as in models of space flight conditions on the earth. The experiments were carried out in tissue culture systems, in animal models, and in human subjects. The results indicate that space flight conditions alter cell-mediated immune responses, including lymphocyte proliferation and subset distribution, and cytokine production. The mechanism(s) of space flight-induced alterations in immune system function remain(s) to be established. It is likely, however, that multiple factors, including microgravity, stress, neuroendocrine factors, sleep disruption, and nutritional factors, are involved in altering certain functions of the immune system. Such alterations could lead to compromised defenses against infections and tumors.

  13. Human adaptive immune system Rag2-/-gamma(c)-/- mice.

    PubMed

    Chicha, Laurie; Tussiwand, Roxane; Traggiai, Elisabetta; Mazzucchelli, Luca; Bronz, Lucio; Piffaretti, Jean-Claude; Lanzavecchia, Antonio; Manz, Markus G

    2005-06-01

    Although many biologic principles are conserved in mice and humans, species-specific differences exist, for example, in susceptibility and response to pathogens, that often do not allow direct implementation of findings in experimental mice to humans. Research in humans, however, for ethical and practical reasons, is largely restricted to in vitro assays that lack components and the complexity of a living organism. To nevertheless study the human hematopoietic and immune system in vivo, xenotransplantation assays have been developed that substitute human components to small animals. Here, we summarize our recent findings that transplantation of human cord blood CD34(+) cells to newborn Rag2(-/-)gamma(c)(-/-) mice leads to de novo development of major functional components of the human adaptive immune system. These human adaptive immune system Rag2(-/-)gamma(c)(-/-) (huAIS-RG) mice can now be used as a technically straightforward preclinical model to evaluate in vivo human adaptive immune system development as well as immune responses, for example, to vaccines or live infectious pathogens.

  14. Statistical Physics of T-Cell Development and Pathogen Specificity

    NASA Astrophysics Data System (ADS)

    Košmrlj, Andrej; Kardar, Mehran; Chakraborty, Arup K.

    2013-04-01

    In addition to an innate immune system that battles pathogens in a nonspecific fashion, higher organisms, such as humans, possess an adaptive immune system to combat diverse (and evolving) microbial pathogens. Remarkably, the adaptive immune system mounts pathogen-specific responses, which can be recalled upon reinfection with the same pathogen. It is difficult to see how the adaptive immune system can be preprogrammed to respond specifically to a vast and unknown set of pathogens. Although major advances have been made in understanding pertinent molecular and cellular phenomena, the precise principles that govern many aspects of an immune response are largely unknown. We discuss complementary approaches from statistical mechanics and cell biology that can shed light on how key components of the adaptive immune system, T cells, develop to enable pathogen-specific responses against many diverse pathogens. The mechanistic understanding that emerges has implications for how host genetics may influence the development of T cells with differing responses to the human immunodeficiency virus (HIV) infection.

  15. Regulation of obesity-related insulin resistance with gut anti-inflammatory agents.

    PubMed

    Luck, Helen; Tsai, Sue; Chung, Jason; Clemente-Casares, Xavier; Ghazarian, Magar; Revelo, Xavier S; Lei, Helena; Luk, Cynthia T; Shi, Sally Yu; Surendra, Anuradha; Copeland, Julia K; Ahn, Jennifer; Prescott, David; Rasmussen, Brittany A; Chng, Melissa Hui Yen; Engleman, Edgar G; Girardin, Stephen E; Lam, Tony K T; Croitoru, Kenneth; Dunn, Shannon; Philpott, Dana J; Guttman, David S; Woo, Minna; Winer, Shawn; Winer, Daniel A

    2015-04-07

    Obesity has reached epidemic proportions, but little is known about its influence on the intestinal immune system. Here we show that the gut immune system is altered during high-fat diet (HFD) feeding and is a functional regulator of obesity-related insulin resistance (IR) that can be exploited therapeutically. Obesity induces a chronic phenotypic pro-inflammatory shift in bowel lamina propria immune cell populations. Reduction of the gut immune system, using beta7 integrin-deficient mice (Beta7(null)), decreases HFD-induced IR. Treatment of wild-type HFD C57BL/6 mice with the local gut anti-inflammatory, 5-aminosalicyclic acid (5-ASA), reverses bowel inflammation and improves metabolic parameters. These beneficial effects are dependent on adaptive and gut immunity and are associated with reduced gut permeability and endotoxemia, decreased visceral adipose tissue inflammation, and improved antigen-specific tolerance to luminal antigens. Thus, the mucosal immune system affects multiple pathways associated with systemic IR and represents a novel therapeutic target in this disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Construction of an integrated gene regulatory network link to stress-related immune system in cattle.

    PubMed

    Behdani, Elham; Bakhtiarizadeh, Mohammad Reza

    2017-10-01

    The immune system is an important biological system that is negatively impacted by stress. This study constructed an integrated regulatory network to enhance our understanding of the regulatory gene network used in the stress-related immune system. Module inference was used to construct modules of co-expressed genes with bovine leukocyte RNA-Seq data. Transcription factors (TFs) were then assigned to these modules using Lemon-Tree algorithms. In addition, the TFs assigned to each module were confirmed using the promoter analysis and protein-protein interactions data. Therefore, our integrated method identified three TFs which include one TF that is previously known to be involved in immune response (MYBL2) and two TFs (E2F8 and FOXS1) that had not been recognized previously and were identified for the first time in this study as novel regulatory candidates in immune response. This study provides valuable insights on the regulatory programs of genes involved in the stress-related immune system.

  17. Local activation of p53 in the tumor microenvironment overcomes immune suppression and enhances antitumor immunity

    PubMed Central

    Guo, Gang; Yu, Miao; Xiao, Wei; Celis, Esteban; Cui, Yan

    2017-01-01

    Mutations in tumor suppressor p53 remain a vital mechanism of tumor escape from apoptosis and senescence. Emerging evidence suggests that p53 dysfunction also fuels inflammation and supports tumor immune evasion, thereby serving as an immunological driver of tumorigenesis. Therefore, targeting p53 in the tumor microenvironment (TME) also represents an immunologically desirable strategy for reversing immunosuppression and enhancing antitumor immunity. Using a pharmacological p53 activator nutlin-3a, we show that local p53 activation in TME comprising overt tumor infiltrating leukocytes (TILeus) induces systemic antitumor immunity and tumor regression, but not in TME with scarce TILeus, such as B16 melanoma. Maneuvers that recruit leukocytes to TME, such as TLR3 ligand in B16 tumors, greatly enhanced nutlin-induced antitumor immunity and tumor control. Mechanistically, nutlin-3a-induced antitumor immunity was contingent on two non-redundant but immunologically synergistic p53-dependent processes: reversal of immunosuppression in TME and induction of tumor immunogenic cell death (ICD), leading to activation and expansion of polyfunctional CD8 CTLs and tumor regression. Our study demonstrates that unlike conventional tumoricidal therapies, which rely on effective p53 targeting in each tumor cell and often associate with systemic toxicity, this immune-based strategy requires only limited local p53 activation to alter the immune landscape of TME and subsequently amplify immune response to systemic antitumor immunity. Hence, targeting the p53 pathway in TME can be exploited to reverse immunosuppression and augment therapeutic benefits beyond tumoricidal effects to harness tumor-specific, durable, and systemic antitumor immunity with minimal toxicity. PMID:28280037

  18. Novel Target for Ameliorating Pain and Other Problems after SCI: Spontaneous Activity in Nociceptors

    DTIC Science & Technology

    2014-10-01

    disruption of the BSCB will permit blood-borne mye- loid and lymphoid immune cells to enter the spinal cord parenchyma and exert direct inflammatory actions...recently evolved adaptive immune system, the innate immune system does not em- ploy antigen-specific humoral and cell -mediated immunity mecha- nisms. Two... innate immune functions have been emphasized traditionally: 1) the recruitment of cells and proteins to destroy pathogens and toxins, and 2) increases

  19. Immune System

    EPA Science Inventory

    A properly functioning immune system is essential to good health. It defends the body against infectious agents and in some cases tumor cells. Individuals with immune deficiencies resulting from genetic defects, diseases (e.g., AIDS, leukemia), or drug therapies are more suscepti...

  20. The role of immune system exhaustion on cancer cell escape and anti-tumor immune induction after irradiation.

    PubMed

    Mendes, Fernando; Domingues, Cátia; Rodrigues-Santos, Paulo; Abrantes, Ana Margarida; Gonçalves, Ana Cristina; Estrela, Jéssica; Encarnação, João; Pires, Ana Salomé; Laranjo, Mafalda; Alves, Vera; Teixo, Ricardo; Sarmento, Ana Bela; Botelho, Maria Filomena; Rosa, Manuel Santos

    2016-04-01

    Immune surveillance seems to represent an effective tumor suppressor mechanism. However, some cancer cells survive and become variants, being poorly immunogenic and able to enter a steady-state phase. These cells become functionally dormant or remain hidden clinically throughout. Neoplastic cells seem to be able to instruct immune cells to undergo changes promoting malignancy. Radiotherapy may act as a trigger of the immune response. After radiotherapy a sequence of reactions occurs, starting in the damage of oncogenic cells by multiple mechanisms, leading to the immune system positive feedback against the tumor. The link between radiotherapy and the immune system is evident. T cells, macrophages, Natural Killer cells and other immune cells seem to have a key role in controlling the tumor. T cells may be dysfunctional and remain in a state of T cell exhaustion, nonetheless, they often retain a high potential for successful defense against cancer, being able to be mobilized to become highly functional. The lack of clinical trials on a large scale makes data a little robust, in spite of promising information, there are still many variables in the studies relating to radiation and immune system. The clarification of the mechanisms underlying immune response to radiation exposure may contribute to treatment improvement, gain of life quality and span of patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. The effects of stress hormones on immune function may be vital for the adaptive reconfiguration of the immune system during fight-or-flight behavior.

    PubMed

    Adamo, Shelley A

    2014-09-01

    Intense, short-term stress (i.e., robust activation of the fight-or-flight response) typically produces a transient decline in resistance to disease in animals across phyla. Chemical mediators of the stress response (e.g., stress hormones) help induce this decline, suggesting that this transient immunosuppression is an evolved response. However, determining the function of stress hormones on immune function is difficult because of their complexity. Nevertheless, evidence suggests that stress hormones help maintain maximal resistance to disease during the physiological changes needed to optimize the body for intense physical activity. Work on insects demonstrates that stress hormones both shunt resources away from the immune system during fight-or-flight responses as well as reconfigure the immune system. Reconfiguring the immune system minimizes the impact of the loss of these resources and reduces the increased costs of some immune functions due to the physiological changes demanded by the fight-or-flight response. For example, during the stress response of the cricket Gryllus texensis, some molecular resources are shunted away from the immune system and toward lipid transport, resulting in a reduction in resistance to disease. However, insects' immune cells (hemocytes) have receptors for octopamine (the insect stress neurohormone). Octopamine increases many hemocyte functions, such as phagocytosis, and these changes would tend to mitigate the decline in immunity due to the loss of molecular resources. Moreover, because the stress response generates oxidative stress, some immune responses are probably more costly when activated during a stress response (e.g., those that produce reactive molecules). Some of these immune responses are depressed during stress in crickets, while others, whose costs are probably not increased during a stress response, are enhanced. Some effects of stress hormones on immune systems may be better understood as examples of reconfiguration rather than as mediating a trade-off. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  2. Cheetahs have a stronger constitutive innate immunity than leopards

    PubMed Central

    Heinrich, Sonja K.; Hofer, Heribert; Courtiol, Alexandre; Melzheimer, Jörg; Dehnhard, Martin; Czirják, Gábor Á.; Wachter, Bettina

    2017-01-01

    As a textbook case for the importance of genetics in conservation, absence of genetic variability at the major histocompatibility complex (MHC) is thought to endanger species viability, since it is considered crucial for pathogen resistance. An alternative view of the immune system inspired by life history theory posits that a strong response should evolve in other components of the immune system if there is little variation in the MHC. In contrast to the leopard (Panthera pardus), the cheetah (Acinonyx jubatus) has a relatively low genetic variability at the MHC, yet free-ranging cheetahs are healthy. By comparing the functional competence of the humoral immune system of both species in sympatric populations in Namibia, we demonstrate that cheetahs have a higher constitutive innate but lower induced innate and adaptive immunity than leopards. We conclude (1) immunocompetence of cheetahs is higher than previously thought; (2) studying both innate and adaptive components of immune systems will enrich conservation science. PMID:28333126

  3. Cheetahs have a stronger constitutive innate immunity than leopards.

    PubMed

    Heinrich, Sonja K; Hofer, Heribert; Courtiol, Alexandre; Melzheimer, Jörg; Dehnhard, Martin; Czirják, Gábor Á; Wachter, Bettina

    2017-03-23

    As a textbook case for the importance of genetics in conservation, absence of genetic variability at the major histocompatibility complex (MHC) is thought to endanger species viability, since it is considered crucial for pathogen resistance. An alternative view of the immune system inspired by life history theory posits that a strong response should evolve in other components of the immune system if there is little variation in the MHC. In contrast to the leopard (Panthera pardus), the cheetah (Acinonyx jubatus) has a relatively low genetic variability at the MHC, yet free-ranging cheetahs are healthy. By comparing the functional competence of the humoral immune system of both species in sympatric populations in Namibia, we demonstrate that cheetahs have a higher constitutive innate but lower induced innate and adaptive immunity than leopards. We conclude (1) immunocompetence of cheetahs is higher than previously thought; (2) studying both innate and adaptive components of immune systems will enrich conservation science.

  4. From bench to pet shop to bedside? The environment and immune function in mice.

    PubMed

    Kitching, A Richard; Ooi, Joshua D

    2016-12-01

    The generation of inbred mouse strains in the late 19th and early 20th centuries, coupled with the later establishment of specific pathogen-free animal research facilities created a powerful biological platform for exploration of the immune system in health and disease. Studies in this setting have been responsible for huge advances in our understanding of immunobiology and disease, including immune-mediated kidney disease. However, whereas this reductionist and relatively standardized approach allows us to make sense of complex disease biology, it takes place in controlled environments that clearly differ from those that we humans encounter in everyday life. Recent studies comparing the immune systems of wild mice, pet shop mice, and laboratory mice suggest ways in which the murine immune system can be influenced to behave more like the human immune system. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  5. Immunology and Immunotherapy of Head and Neck Cancer.

    PubMed

    Ferris, Robert L

    2015-10-10

    The immune system plays a key role in the development, establishment, and progression of head and neck squamous cell carcinoma (HNSCC). A greater understanding of the dysregulation and evasion of the immune system in the evolution and progression of HNSCC provides the basis for improved therapies and outcomes for patients. HNSCC cells evade the host immune system through manipulation of their own immunogenicity, production of immunosuppressive mediators, and promotion of immunomodulatory cell types. Through the tumor's influence on the microenvironment, the immune system can be exploited to promote metastasis, angiogenesis, and growth. This article provides a brief overview of key components of the immune infiltrating cells in the tumor microenvironment, reviewing immunological principles related to head and neck cancer, including the concept of cancer immunosurveillance and immune escape. Current immunotherapeutic strategies and emerging results from ongoing clinical trials are presented. © 2015 by American Society of Clinical Oncology.

  6. Targeted Immunomodulation Using Antigen-Conjugated Nanoparticles

    PubMed Central

    McCarthy, Derrick P.; Hunter, Zoe N.; Chackerian, Bryce; Shea, Lonnie D.; Miller, Stephen D.

    2014-01-01

    The growing prevalence of nanotechnology in the fields of biology, medicine and the pharmaceutical industry is confounded by the relatively small amount of data on the impact of these materials on the immune system. In addition to concerns surrounding the potential toxicity of nanoparticle (NP)-based delivery systems, there is also a demand for a better understanding of the mechanisms governing interactions of NPs with the immune system. Nanoparticles can be tailored to suppress, enhance, or subvert recognition by the immune system. This “targeted immunomodulation” can be achieved by delivery of unmodified particles, or by modifying particles to deliver drugs, proteins/peptides or genes to a specific site. In order to elicit the desired, beneficial immune response, considerations should be made at every step of the design process: the NP platform itself, ligands and other modifiers, the delivery route, and the immune cells that will encounter the conjugated NPs can all impact host immune responses. PMID:24616452

  7. Using an Inductive Learning Algorithm to Improve Antibody Generation in a Single Packet Computer Defense Immune System

    DTIC Science & Technology

    2002-03-01

    allow the network to perform as a much better classifier. Another disadvantage of neural networks is that it is difficult to know what is going on...could be shown to have a cause and effect relationship in producing bad antibodies, the next phase of the research was destined to go more smoothly...Number Bad 2,402 1,803 80 253 266 Training File Number Good 1,201 316 307 312 266 Number Bad 1,201 901 40 127 133 Testing File Number Good 1,201 322 333

  8. Systems Imaging of the Immune Synapse.

    PubMed

    Ambler, Rachel; Ruan, Xiangtao; Murphy, Robert F; Wülfing, Christoph

    2017-01-01

    Three-dimensional live cell imaging of the interaction of T cells with antigen-presenting cells (APCs) visualizes the subcellular distributions of signaling intermediates during T cell activation at thousands of resolved positions within a cell. These information-rich maps of local protein concentrations are a valuable resource in understanding T cell signaling. Here, we describe a protocol for the efficient acquisition of such imaging data and their computational processing to create four-dimensional maps of local concentrations. This protocol allows quantitative analysis of T cell signaling as it occurs inside live cells with resolution in time and space across thousands of cells.

  9. Immune evasion, immunopathology and the regulation of the immune system.

    PubMed

    Sorci, Gabriele; Cornet, Stéphane; Faivre, Bruno

    2013-02-13

    Costs and benefits of the immune response have attracted considerable attention in the last years among evolutionary biologists. Given the cost of parasitism, natural selection should favor individuals with the most effective immune defenses. Nevertheless, there exists huge variation in the expression of immune effectors among individuals. To explain this apparent paradox, it has been suggested that an over-reactive immune system might be too costly, both in terms of metabolic resources and risks of immune-mediated diseases, setting a limit to the investment into immune defenses. Here, we argue that this view neglects one important aspect of the interaction: the role played by evolving pathogens. We suggest that taking into account the co-evolutionary interactions between the host immune system and the parasitic strategies to overcome the immune response might provide a better picture of the selective pressures that shape the evolution of immune functioning. Integrating parasitic strategies of host exploitation can also contribute to understand the seemingly contradictory results that infection can enhance, but also protect from, autoimmune diseases. In the last decades, the incidence of autoimmune disorders has dramatically increased in wealthy countries of the northern hemisphere with a concomitant decrease of most parasitic infections. Experimental work on model organisms has shown that this pattern may be due to the protective role of certain parasites (i.e., helminths) that rely on the immunosuppression of hosts for their persistence. Interestingly, although parasite-induced immunosuppression can protect against autoimmunity, it can obviously favor the spread of other infections. Therefore, we need to think about the evolution of the immune system using a multidimensional trade-off involving immunoprotection, immunopathology and the parasitic strategies to escape the immune response.

  10. Heat and immunity: an experimental heat wave alters immune functions in three-spined sticklebacks (Gasterosteus aculeatus).

    PubMed

    Dittmar, Janine; Janssen, Hannah; Kuske, Andra; Kurtz, Joachim; Scharsack, Jörn P

    2014-07-01

    Global climate change is predicted to lead to increased temperatures and more extreme climatic events. This may influence host-parasite interactions, immunity and therefore the impact of infectious diseases on ecosystems. However, little is known about the effects of rising temperatures on immune defence, in particular in ectothermic animals, where the immune system is directly exposed to external temperature change. Fish are ideal models for studying the effect of temperature on immunity, because they are poikilothermic, but possess a complete vertebrate immune system with both innate and adaptive immunity. We used three-spined sticklebacks ( Gasterosteus aculeatus) originating from a stream and a pond, whereby the latter supposedly were adapted to higher temperature variation. We studied the effect of increasing and decreasing temperatures and a simulated heat wave with subsequent recovery on body condition and immune parameters. We hypothesized that the immune system might be less active at low temperatures, but will be even more suppressed at temperatures towards the upper tolerable temperature range. Contrary to our expectation, we found innate and adaptive immune activity to be highest at a temperature as low as 13 °C. Exposure to a simulated heat wave induced long-lasting immune disorders, in particular in a stickleback population that might be less adapted to temperature variation in its natural environment. The results show that the activity of the immune system of an ectothermic animal species is temperature dependent and suggest that heat waves associated with global warming may immunocompromise host species, thereby potentially facilitating the spread of infectious diseases. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  11. Modulation of Immune Function by Polyphenols: Possible Contribution of Epigenetic Factors

    PubMed Central

    Cuevas, Alejandro; Saavedra, Nicolás; Salazar, Luis A.; Abdalla, Dulcineia S. P.

    2013-01-01

    Several biological activities have been described for polyphenolic compounds, including a modulator effect on the immune system. The effects of these biologically active compounds on the immune system are associated to processes as differentiation and activation of immune cells. Among the mechanisms associated to immune regulation are epigenetic modifications as DNA methylation of regulatory sequences, histone modifications and posttranscriptional repression by microRNAs that influences the gene expression of key players involved in the immune response. Considering that polyphenols are able to regulate the immune function and has been also demonstrated an effect on epigenetic mechanisms, it is possible to hypothesize that there exists a mediator role of epigenetic mechanisms in the modulation of the immune response by polyphenols. PMID:23812304

  12. Hormetic Response to Low-Dose Radiation: Focus on the Immune System and Its Clinical Implications

    PubMed Central

    Cui, Jiuwei; Yang, Guozi; Pan, Zhenyu; Zhao, Yuguang; Liang, Xinyue; Li, Wei; Cai, Lu

    2017-01-01

    The interrelationship between ionizing radiation and the immune system is complex, multifactorial, and dependent on radiation dose/quality and immune cell type. High-dose radiation usually results in immune suppression. On the contrary, low-dose radiation (LDR) modulates a variety of immune responses that have exhibited the properties of immune hormesis. Although the underlying molecular mechanism is not fully understood yet, LDR has been used clinically for the treatment of autoimmune diseases and malignant tumors. These advancements in preclinical and clinical studies suggest that LDR-mediated immune modulation is a well-orchestrated phenomenon with clinical potential. We summarize recent developments in the understanding of LDR-mediated immune modulation, with an emphasis on its potential clinical applications. PMID:28134809

  13. Human body motion tracking based on quantum-inspired immune cloning algorithm

    NASA Astrophysics Data System (ADS)

    Han, Hong; Yue, Lichuan; Jiao, Licheng; Wu, Xing

    2009-10-01

    In a static monocular camera system, to gain a perfect 3D human body posture is a great challenge for Computer Vision technology now. This paper presented human postures recognition from video sequences using the Quantum-Inspired Immune Cloning Algorithm (QICA). The algorithm included three parts. Firstly, prior knowledge of human beings was used, the key joint points of human could be detected automatically from the human contours and skeletons which could be thinning from the contours; And due to the complexity of human movement, a forecasting mechanism of occlusion joint points was addressed to get optimum 2D key joint points of human body; And then pose estimation recovered by optimizing between the 2D projection of 3D human key joint points and 2D detection key joint points using QICA, which recovered the movement of human body perfectly, because this algorithm could acquire not only the global optimal solution, but the local optimal solution.

  14. Clonal Selection Based Artificial Immune System for Generalized Pattern Recognition

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terry

    2011-01-01

    The last two decades has seen a rapid increase in the application of AIS (Artificial Immune Systems) modeled after the human immune system to a wide range of areas including network intrusion detection, job shop scheduling, classification, pattern recognition, and robot control. JPL (Jet Propulsion Laboratory) has developed an integrated pattern recognition/classification system called AISLE (Artificial Immune System for Learning and Exploration) based on biologically inspired models of B-cell dynamics in the immune system. When used for unsupervised or supervised classification, the method scales linearly with the number of dimensions, has performance that is relatively independent of the total size of the dataset, and has been shown to perform as well as traditional clustering methods. When used for pattern recognition, the method efficiently isolates the appropriate matches in the data set. The paper presents the underlying structure of AISLE and the results from a number of experimental studies.

  15. The intersection of cancer, cancer stem cells, and the immune system: therapeutic opportunities.

    PubMed

    Silver, Daniel J; Sinyuk, Maksim; Vogelbaum, Michael A; Ahluwalia, Manmeet S; Lathia, Justin D

    2016-02-01

    During brain neoplasia, malignant cells subjugate the immune system to provide an environment that favors tumor growth. These mechanisms capitalize on tumor-promoting functions of various immune cell types and typically result in suppression of tumor immune rejection. Immunotherapy efforts are underway to disrupt these mechanisms and turn the immune system against developing tumors. While many of these therapies are already in early-stage clinical trials, understanding how these therapies impact various tumor cell populations, including self-renewing cancer stem cells, may help to predict their efficacy and clarify their mechanisms of action. Moreover, interrogating the biology of glioma cell, cancer stem cell, and immune cell interactions may provide additional therapeutic targets to leverage against disease progression. In this review, we begin by highlighting a series of investigations into immune cell-mediated tumor promotion that do not parse the tumor into stem and non-stem components. We then take a closer look at the immune-suppressive mechanisms derived specifically from cancer stem cell interactions with the immune system and end with an update on immunotherapy and cancer stem cell-directed clinical trials in glioblastoma. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. The immune response against Candida spp. and Sporothrix schenckii.

    PubMed

    Martínez-Álvarez, José A; Pérez-García, Luis A; Flores-Carreón, Arturo; Mora-Montes, Héctor M

    2014-01-01

    Candida albicans is the main causative agent of systemic candidiasis, a condition with high mortality rates. The study of the interaction between C. albicans and immune system components has been thoroughly studied and nowadays there is a model for the anti-C. albicans immune response; however, little is known about the sensing of other pathogenic species of the Candida genus. Sporothrix schenckii is the causative agent of sporotrichosis, a subcutaneous mycosis, and thus far there is limited information about its interaction with the immune system. In this paper, we review the most recent information about the immune sensing of species from genus Candida and S. schenckii. Thoroughly searches in scientific journal databases were performed, looking for papers addressing either Candida- or Sporothrix-immune system interactions. There is a significant advance in the knowledge of non-C. albicans species of Candida and Sporothrix immune sensing; however, there are still relevant points to address, such as the specific contribution of pathogen-associated molecular patterns (PAMPs) for sensing by different immune cells and the immune receptors involved in such interactions. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  17. Early infections by myxoma virus of young rabbits (Oryctolagus cuniculus) protected by maternal antibodies activate their immune system and enhance herd immunity in wild populations.

    PubMed

    Marchandeau, Stéphane; Pontier, Dominique; Guitton, Jean-Sébastien; Letty, Jérôme; Fouchet, David; Aubineau, Jacky; Berger, Francis; Léonard, Yves; Roobrouck, Alain; Gelfi, Jacqueline; Peralta, Brigitte; Bertagnoli, Stéphane

    2014-03-04

    The role of maternal antibodies is to protect newborns against acute early infection by pathogens. This can be achieved either by preventing any infection or by allowing attenuated infections associated with activation of the immune system, the two strategies being based on different cost/benefit ratios. We carried out an epidemiological survey of myxomatosis, which is a highly lethal infectious disease, in two distant wild populations of rabbits to describe the epidemiological pattern of the disease. Detection of specific IgM and IgG enabled us to describe the pattern of immunity. We show that maternal immunity attenuates early infection of juveniles and enables activation of their immune system. This mechanism associated with steady circulation of the myxoma virus in both populations, which induces frequent reinfections of immune rabbits, leads to the maintenance of high immunity levels within populations. Thus, myxomatosis has a low impact, with most infections being asymptomatic. This work shows that infection of young rabbits protected by maternal antibodies induces attenuated disease and activates their immune system. This may play a major role in reducing the impact of a highly lethal disease when ecological conditions enable permanent circulation of the pathogen.

  18. Early infections by myxoma virus of young rabbits (Oryctolagus cuniculus) protected by maternal antibodies activate their immune system and enhance herd immunity in wild populations

    PubMed Central

    2014-01-01

    The role of maternal antibodies is to protect newborns against acute early infection by pathogens. This can be achieved either by preventing any infection or by allowing attenuated infections associated with activation of the immune system, the two strategies being based on different cost/benefit ratios. We carried out an epidemiological survey of myxomatosis, which is a highly lethal infectious disease, in two distant wild populations of rabbits to describe the epidemiological pattern of the disease. Detection of specific IgM and IgG enabled us to describe the pattern of immunity. We show that maternal immunity attenuates early infection of juveniles and enables activation of their immune system. This mechanism associated with steady circulation of the myxoma virus in both populations, which induces frequent reinfections of immune rabbits, leads to the maintenance of high immunity levels within populations. Thus, myxomatosis has a low impact, with most infections being asymptomatic. This work shows that infection of young rabbits protected by maternal antibodies induces attenuated disease and activates their immune system. This may play a major role in reducing the impact of a highly lethal disease when ecological conditions enable permanent circulation of the pathogen. PMID:24589193

  19. From immunotoxicity to carcinogenicity: the effects of carbamate pesticides on the immune system.

    PubMed

    Dhouib, Ines; Jallouli, Manel; Annabi, Alya; Marzouki, Soumaya; Gharbi, Najoua; Elfazaa, Saloua; Lasram, Mohamed Montassar

    2016-05-01

    The immune system can be the target of many chemicals, with potentially severe adverse effects on the host's health. In the literature, carbamate (CM) pesticides have been implicated in the increasing prevalence of diseases associated with alterations of the immune response, such as hypersensitivity reactions, some autoimmune diseases and cancers. CMs may initiate, facilitate, or exacerbate pathological immune processes, resulting in immunotoxicity by induction of mutations in genes coding for immunoregulatory factors and modifying immune tolerance. In the present study, direct immunotoxicity, endocrine disruption and inhibition of esterases activities have been introduced as the main mechanisms of CMs-induced immune dysregulation. Moreover, the evidence on the relationship between CM pesticide exposure, dysregulation of the immune system and predisposition to different types of cancers, allergies, autoimmune and infectious diseases is criticized. In addition, in this review, we will discuss the relationship between immunotoxicity and cancer, and the advances made toward understanding the basis of cancer immune evasion.

  20. Alternatives to conventional vaccines--mediators of innate immunity.

    PubMed

    Eisen, D P; Liley, H G; Minchinton, R M

    2004-01-01

    Vaccines have been described as "weapons of mass protection". The eradication of many diseases is testament to their utility and effectiveness. Nevertheless, many vaccine preventable diseases remain prevalent because of political and economic barriers. Additionally, the effects of immaturity and old age, therapies that incapacitate the adaptive immune system and the multitude of strategies evolved by pathogens to evade immediate or sustained recognition by the mammalian immune system are barriers to the effectiveness of existing vaccines or development of new vaccines. In the front line of defence against the pervasiness of infection are the elements of the innate immune system. Innate immunity is under studied and poorly appreciated. However, in the first days after entry of a pathogen into the body, our entire protective response is dependant upon the various elements of our innate immune repertoire. In spite of its place as our initial defence against infection, attention is only now turning to strategies which enhance or supplement innate immunity. This review examines the need for and potential of innate immune therapies.

  1. Immune Response in Thyroid Cancer: Widening the Boundaries

    PubMed Central

    Ward, Laura Sterian

    2014-01-01

    The association between thyroid cancer and thyroid inflammation has been repeatedly reported and highly debated in the literature. In fact, both molecular and epidemiological data suggest that these diseases are closely related and this association reinforces that the immune system is important for thyroid cancer progression. Innate immunity is the first line of defensive response. Unlike innate immune responses, adaptive responses are highly specific to the particular antigen that induced them. Both branches of the immune system may interact in antitumor immune response. Major effector cells of the immune system that directly target thyroid cancer cells include dendritic cells, macrophages, polymorphonuclear leukocytes, mast cells, and lymphocytes. A mixture of immune cells may infiltrate thyroid cancer microenvironment and the balance of protumor and antitumor activity of these cells may be associated with prognosis. Herein, we describe some evidences that immune response may be important for thyroid cancer progression and may help us identify more aggressive tumors, sparing the vast majority of patients from costly unnecessary invasive procedures. The future trend in thyroid cancer is an individualized therapy. PMID:25328756

  2. VDJServer: A Cloud-Based Analysis Portal and Data Commons for Immune Repertoire Sequences and Rearrangements.

    PubMed

    Christley, Scott; Scarborough, Walter; Salinas, Eddie; Rounds, William H; Toby, Inimary T; Fonner, John M; Levin, Mikhail K; Kim, Min; Mock, Stephen A; Jordan, Christopher; Ostmeyer, Jared; Buntzman, Adam; Rubelt, Florian; Davila, Marco L; Monson, Nancy L; Scheuermann, Richard H; Cowell, Lindsay G

    2018-01-01

    Recent technological advances in immune repertoire sequencing have created tremendous potential for advancing our understanding of adaptive immune response dynamics in various states of health and disease. Immune repertoire sequencing produces large, highly complex data sets, however, which require specialized methods and software tools for their effective analysis and interpretation. VDJServer is a cloud-based analysis portal for immune repertoire sequence data that provide access to a suite of tools for a complete analysis workflow, including modules for preprocessing and quality control of sequence reads, V(D)J gene segment assignment, repertoire characterization, and repertoire comparison. VDJServer also provides sophisticated visualizations for exploratory analysis. It is accessible through a standard web browser via a graphical user interface designed for use by immunologists, clinicians, and bioinformatics researchers. VDJServer provides a data commons for public sharing of repertoire sequencing data, as well as private sharing of data between users. We describe the main functionality and architecture of VDJServer and demonstrate its capabilities with use cases from cancer immunology and autoimmunity. VDJServer provides a complete analysis suite for human and mouse T-cell and B-cell receptor repertoire sequencing data. The combination of its user-friendly interface and high-performance computing allows large immune repertoire sequencing projects to be analyzed with no programming or software installation required. VDJServer is a web-accessible cloud platform that provides access through a graphical user interface to a data management infrastructure, a collection of analysis tools covering all steps in an analysis, and an infrastructure for sharing data along with workflows, results, and computational provenance. VDJServer is a free, publicly available, and open-source licensed resource.

  3. Modelling the Immune Response to Cancer: An Individual-Based Approach Accounting for the Difference in Movement Between Inactive and Activated T Cells.

    PubMed

    Macfarlane, Fiona R; Lorenzi, Tommaso; Chaplain, Mark A J

    2018-06-01

    A growing body of experimental evidence indicates that immune cells move in an unrestricted search pattern if they are in the pre-activated state, whilst they tend to stay within a more restricted area upon activation induced by the presence of tumour antigens. This change in movement is not often considered in the existing mathematical models of the interactions between immune cells and cancer cells. With the aim to fill such a gap in the existing literature, in this work we present a spatially structured individual-based model of tumour-immune competition that takes explicitly into account the difference in movement between inactive and activated immune cells. In our model, a Lévy walk is used to capture the movement of inactive immune cells, whereas Brownian motion is used to describe the movement of antigen-activated immune cells. The effects of activation of immune cells, the proliferation of cancer cells and the immune destruction of cancer cells are also modelled. We illustrate the ability of our model to reproduce qualitatively the spatial trajectories of immune cells observed in experimental data of single-cell tracking. Computational simulations of our model further clarify the conditions for the onset of a successful immune action against cancer cells and may suggest possible targets to improve the efficacy of cancer immunotherapy. Overall, our theoretical work highlights the importance of taking into account spatial interactions when modelling the immune response to cancer cells.

  4. The interplay between immunity and aging in Drosophila.

    PubMed

    Garschall, Kathrin; Flatt, Thomas

    2018-01-01

    Here, we provide a brief review of the mechanistic connections between immunity and aging-a fundamental biological relationship that remains poorly understood-by considering two intertwined questions: how does aging affect immunity, and how does immunity affect aging? On the one hand, aging contributes to the deterioration of immune function and predisposes the organism to infections ("immuno-senescence"). On the other hand, excessive activation of the immune system can accelerate degenerative processes, cause inflammation and immunopathology, and thus promote aging ("inflammaging"). Interestingly, several recent lines of evidence support the hypothesis that restrained or curbed immune activity at old age (that is, optimized age-dependent immune homeostasis) might actually improve realized immune function and thereby promote longevity. We focus mainly on insights from Drosophila , a powerful genetic model system in which both immunity and aging have been extensively studied, and conclude by outlining several unresolved questions in the field.

  5. An evaluation of immunization education resources by family medicine residency directors.

    PubMed

    Nowalk, Mary Patricia; Zimmerman, Richard K; Middleton, Donald B; Sherwood, Roger A; Ko, Feng-Shou; Kimmel, Sanford R; Troy, Judith A

    2007-01-01

    Immunization is a rapidly evolving field, and teachers of family medicine are responsible for ensuring that they and their students are knowledgeable about the latest vaccine recommendations. A survey was mailed to 456 family medicine residency directors across the United States to obtain their evaluation of immunization resources developed by the Society of Teachers of Family Medicine's Group on Immunization Education. Frequencies, measures of central tendency, and differences between responses from 2001 to 2005 were analyzed. Directors of 261 (57%) family medicine residencies responded, with >80% reporting satisfaction with immunization teaching resources. The popularity of bound resources decreased from 2001 to 2005, while immunization Web sites increased in importance. The journal supplement, "Vaccines Across the Lifespan, 2005" was less frequently read in 2005 than its predecessor published in 2001, but quality ratings remained high. Use of the Web site, www.ImmunizationEd.org, and the Shots software for both desktop and handheld computers has increased since their creation. Electronic immunization teaching resources are increasingly popular among family medicine residencies. As the field continues to change, the use of electronic resources is expected to continue, since they are easily updated and, in the case of www.ImmunizationEd.org and Shots software, are available free of charge.

  6. Nutritional modulation of age-related changes in the immune system and risk of infection

    USDA-ARS?s Scientific Manuscript database

    The immune system undergoes some adverse alterations during aging, many of which have been implicated in the increased morbidity and mortality associated with infection in the elderly. In addition to intrinsic changes to the immune system with aging, the elderly are more likely to have poor nutritio...

  7. Vaccines and the infant's immune system--what nurses need to know.

    PubMed

    Heurter, Helen; Langman, Eileen

    2005-01-01

    Vaccines prevent serious infections by stimulating the immune system to identify and destroy invading organisms rapidly before they have a chance to cause disease. Armed with the scientific facts to refute current misconceptions surrounding vaccines and the infant's immune system, nurses can provide parents with the answers they need.

  8. [Relationship between BCG immunization coverage and the immunization delivery system in the Tama area of Tokyo].

    PubMed

    Sugishita, Yoshiyuki; Hayashi, Kunihiko; Mori, Toru; Horiguchi, Itsuko; Marui, Eiji

    2012-03-01

    The BCG immunization has long been performed in Japan. Although the BCG immunization service is the responsibility of the municipality, the manner in which the BCG immunization is delivered differs from municipality to municipality. The purpose of this study was to clarify how the different manner of the BCG immunization delivery systems influenced the BCG immunization coverage. The study of BCG immunization coverage was conducted in the Tama area located in the western suburbs of Tokyo in 2004. The birth data and the immunization history by the age of 3 years were collected in the three-year-old health check-up from a total of 2,341 children residing in the Tama area. Based on the age at immunization for each child, the BCG immunization coverage was calculated according to the types of the BCG immunization delivery system. The immunization types were defined as follows; the BCG immunization given on the occasion of the mass health check-up (Group 1); the exclusive mass BCG immunization in a monthly service (Group 2); the exclusive mass BCG immunization in a bimonthly service (Group 3); the exclusive mass BCG immunization in services of fewer than every two months (Group 4); and the immunization given on an individual basis by a general practitioner (Group 5). A univariate analysis was performed to examine the relationship between the BCG immunization coverage by the age of 6 months and the difference among the BCG immunization delivery systems, followed by a multivariate regression analysis to adjust for the factors related to the demography, health care services and the socio-economic status of the municipalities. Unadjusted odds ratios and adjusted odds ratios for BCG unimmunized children under the age of 6 months by the BCG immunization delivery manner groups were OR 1 reference, adj. OR 1 reference in Group 1; OR 1.42 CI 0.87-2.29, adj. OR 4.01 CI 2.24-7.11 in Group 2; OR 4.96 CI 3.66-6.82, adj. OR 15.59 CI 10.10-24.49 in Group 3;OR 18.60 CI 13.77-25.49, adj. OR 48.17 CI 29.62-79.75 in Group 4; and OR 4.24 CI 2.86-6.31, adj. OR 15.61 CI 9.05-27.26 in Group 5. The univariate analysis and multivariate regression analysis revealed an influence of the BCG immunization delivery manner on the BCG immunization coverage. The choice of BCG immunization delivery manner is very important to raise the BCG immunization coverage. The BCG immunization given on the occasion of the mass health check-up and the high-frequent immunization service are thought to improve the BCG immunization coverage.

  9. Effects of prebiotics on immune system and cytokine expression.

    PubMed

    Shokryazdan, Parisa; Faseleh Jahromi, Mohammad; Navidshad, Bahman; Liang, Juan Boo

    2017-02-01

    Nowadays, use of prebiotics as feed and food additives has received increasing interest because of the beneficial effects of prebiotics on the health of animals and humans. One of the beneficial effects of prebiotics is stimulation of immune system, which can be direct or indirect through increasing population of beneficial microbes or probiotics, especially lactic acid bacteria and bifidobacteria, in the gut. An important mechanism of action of probiotics and prebiotics, by which they can affect the immune system, is changing the expression of cytokines. The present review tried to summarize the findings of studies that investigated the effects of prebiotics on immune system with focusing on their effects on cytokine expression. Generally, most of reviewed studies indicated beneficial effects for prebiotics in terms of improving immune system, by increasing the expression of anti-inflammatory cytokines, while reducing the expressions of proinflammatory cytokines. However, most of studies mainly considered the indirect effects of prebiotics on the immune system (through changing the composition and population of gut microbiota), and their direct effects still need to be further studied using prebiotics with different degree of polymerization in different hosts.

  10. A systems model for immune cell interactions unravels the mechanism of inflammation in human skin.

    PubMed

    Valeyev, Najl V; Hundhausen, Christian; Umezawa, Yoshinori; Kotov, Nikolay V; Williams, Gareth; Clop, Alex; Ainali, Crysanthi; Ouzounis, Christos; Tsoka, Sophia; Nestle, Frank O

    2010-12-02

    Inflammation is characterized by altered cytokine levels produced by cell populations in a highly interdependent manner. To elucidate the mechanism of an inflammatory reaction, we have developed a mathematical model for immune cell interactions via the specific, dose-dependent cytokine production rates of cell populations. The model describes the criteria required for normal and pathological immune system responses and suggests that alterations in the cytokine production rates can lead to various stable levels which manifest themselves in different disease phenotypes. The model predicts that pairs of interacting immune cell populations can maintain homeostatic and elevated extracellular cytokine concentration levels, enabling them to operate as an immune system switch. The concept described here is developed in the context of psoriasis, an immune-mediated disease, but it can also offer mechanistic insights into other inflammatory pathologies as it explains how interactions between immune cell populations can lead to disease phenotypes.

  11. Fungal Strategies to Evade the Host Immune Recognition.

    PubMed

    Hernández-Chávez, Marco J; Pérez-García, Luis A; Niño-Vega, Gustavo A; Mora-Montes, Héctor M

    2017-09-23

    The recognition of fungal cells by the host immune system is key during the establishment of a protective anti-fungal response. Even though the immune system has evolved a vast number of processes to control these organisms, they have developed strategies to fight back, avoiding the proper recognition by immune components and thus interfering with the host protective mechanisms. Therefore, the strategies to evade the immune system are as important as the virulence factors and attributes that damage the host tissues and cells. Here, we performed a thorough revision of the main fungal tactics to escape from the host immunosurveillance processes. These include the composition and organization of the cell wall, the fungal capsule, the formation of titan cells, biofilms, and asteroid bodies; the ability to undergo dimorphism; and the escape from nutritional immunity, extracellular traps, phagocytosis, and the action of humoral immune effectors.

  12. Changes in the immune system are conditioned by nutrition.

    PubMed

    Marcos, A; Nova, E; Montero, A

    2003-09-01

    Undernutrition due to insufficient intake of energy and macronutrients and/or due to deficiencies in specific micronutrients impairs the immune system, suppressing immune functions that are fundamental to host protection. The most consistent abnormalities are seen in cell-mediated immunity, complement system, phagocyte function, cytokine production, mucosal secretory antibody response, and antibody affinity. There is a number of physiological situations such as ageing and performance of intense physical exercise associated with an impairment of some immune parameters' response. Nutrition can influence the extent of immune alteration in both of them. There are also numerous pathological situations in which nutrition plays a role as a primary or secondary determinant of some underlying immunological impairments. This includes obesity, eating disorders (anorexia nervosa and bulimia nervosa), food hypersensitivity and gastrointestinal disorders as some examples. The implications of nutrition on immune function in these disorders are briefly reviewed.

  13. Learning immunology from the yellow fever vaccine: innate immunity to systems vaccinology.

    PubMed

    Pulendran, Bali

    2009-10-01

    Despite their great success, we understand little about how effective vaccines stimulate protective immune responses. Two recent developments promise to yield such understanding: the appreciation of the crucial role of the innate immune system in sensing microorganisms and tuning immune responses, and advances in systems biology. Here I review how these developments are yielding insights into the mechanism of action of the yellow fever vaccine, one of the most successful vaccines ever developed, and the broader implications for vaccinology.

  14. The Human in Space: Lesson from ISS

    NASA Technical Reports Server (NTRS)

    Sams, Clarence F.

    2009-01-01

    This viewgraph presentation reviews the lessons learned from manned space flight on the International Space Station. The contents include: 1) Overview of space flight effects on crewmembers; 2) General overview of immune system; 3) How does space flight alter immune system? 4) What factors associated with space flight inteact with crewmember immune function and impact health risks? 5) What is the current understanding of space flight effects on the immune system? and 6) Why should NASA be interested in immunology? Why is it significant?

  15. Interactions between the intestinal microbiota and innate lymphoid cells

    PubMed Central

    Chen, Vincent L; Kasper, Dennis L

    2014-01-01

    The mammalian intestine must manage to contain 100 trillion intestinal bacteria without inducing inappropriate immune responses to these microorganisms. The effects of the immune system on intestinal microorganisms are numerous and well-characterized, and recent research has determined that the microbiota influences the intestinal immune system as well. In this review, we first discuss the intestinal immune system and its role in containing and maintaining tolerance to commensal organisms. We next introduce a category of immune cells, the innate lymphoid cells, and describe their classification and function in intestinal immunology. Finally, we discuss the effects of the intestinal microbiota on innate lymphoid cells. PMID:24418741

  16. A surgeons' guide to renal transplant immunopathology, immunology, and immunosuppression.

    PubMed

    Gaber, Lillian W; Knight, Richard J; Patel, Samir J

    2013-12-01

    The response to allografting involves adaptive and innate immune mechanisms. In the adaptive system, activated T cells differentiate to cytotoxic effectors that attack the graft and trigger B cells to differentiation to plasma cells that produce anti-HLA antibodies. The innate immune system recognizes antigens in a non-specific manner and recruits immune cells to the graft through the productions of chemotactic factors, and activation of cytokines and the complement cascade. In the kidney the tubules and the endothelium are the targets of the rejection response. Immune suppression is effective in modulating the adaptive immune system effect on graft histology. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Systemic bacterial infection and immune defense phenotypes in Drosophila melanogaster.

    PubMed

    Khalil, Sarah; Jacobson, Eliana; Chambers, Moria C; Lazzaro, Brian P

    2015-05-13

    The fruit fly Drosophila melanogaster is one of the premier model organisms for studying the function and evolution of immune defense. Many aspects of innate immunity are conserved between insects and mammals, and since Drosophila can readily be genetically and experimentally manipulated, they are powerful for studying immune system function and the physiological consequences of disease. The procedure demonstrated here allows infection of flies by introduction of bacteria directly into the body cavity, bypassing epithelial barriers and more passive forms of defense and allowing focus on systemic infection. The procedure includes protocols for the measuring rates of host mortality, systemic pathogen load, and degree of induction of the host immune system. This infection procedure is inexpensive, robust and quantitatively repeatable, and can be used in studies of functional genetics, evolutionary life history, and physiology.

  18. Tribbles role in reproduction.

    PubMed

    Basatvat, Shaghayegh; Carter, Deborah Angela Louise; Kiss-Toth, Endre; Fazeli, Alireza

    2015-10-01

    Tribbles (TRIB) proteins, a family of evolutionary conserved psuedokinase proteins, modulate various signalling pathways within the cell. The regulatory roles of TRIB make them an important part of a number of biological processes ranging from cell proliferation to metabolism, immunity, inflammation and carcinogenesis. Innate immune system plays a pivotal role during the regulation of reproductive processes that allows successful creation of an offspring. Its involvement initiates from fertilization of the oocyte by spermatozoon and lasts throughout early embryonic development, pregnancy and labour. Therefore, there is a close cooperation between the reproductive system and the innate immune system. Evidence from our lab has demonstrated that improper activation of the innate immune system can reduce embryo implantation, thus leading to infertility. Therefore, control mechanisms regulating the innate immune system function can be critical for successful reproductive events. © 2015 Authors; published by Portland Press Limited.

  19. [Application to allergic diseases].

    PubMed

    Saito, Hirohisa

    2005-04-01

    The increasing prevalence of allergic diseases in developed countries is considered to be caused, at least in part, by rapid improvement of human hygiene. In human beings, the immune system developed as an ingenious device for defending against frequent attacks by microbes. Therefore, our immune system seems to have become deranged in our recent, unprecedentedly hygienic environment. It is now necessary to understand the total functional elements comprising the immune system, not just a single molecule present in an immunocyte working in our immune system. Microarray analysis is now becoming capable of detecting the whole transcripts present in a cell. It is anticipated that we can understand the deranged human immunity using the system biology. It is also expected to predict previously unexpected drug-related adverse events caused by interaction of a drug with responsible molecules present in vital organs.

  20. Active surveillance for influenza vaccine adverse events: the integrated vaccine surveillance system.

    PubMed

    Newes-Adeyi, Gabriella; Greece, Jacey; Bozeman, Sam; Walker, Deborah Klein; Lewis, Faith; Gidudu, Jane

    2012-02-01

    We conducted a pilot study of the Integrated Vaccine Surveillance System (IVSS), a novel active surveillance system for monitoring influenza vaccine adverse events that could be used in mass vaccination settings. We recruited 605 adult vaccinees from a convenience sample of 12 influenza vaccine clinics conducted by public health departments of two U.S. metropolitan regions. Vaccinees provided daily reports on adverse reactions following immunization (AEFI) using an interactive voice response system (IVR) or the internet for 14 consecutive days following immunization. Followup with nonrespondents was conducted through computer-assisted telephone interviewing (CATI). Data on vaccinee reports were available real-time through a dedicated secure website. 90% (545) of vaccinees made at least one daily report and 49% (299) reported consecutively for the full 14-day period. 58% (315) used internet, 20% (110) IVR, 6% (31) CATI, and 16% (89) used a combination for daily reports. Of the 545 reporters, 339 (62%) reported one or more AEFI, for a total of 594 AEFIs reported. The majority (505 or 85%) of these AEFIs were mild symptoms. It is feasible to develop a system to obtain real-time data on vaccine adverse events. Vaccinees are willing to provide daily reports for a considerable time post vaccination. Offering multiple modes of reporting encourages high response rates. Study findings on AEFIs showed that the IVSS was able to exhibit the emerging safety profile of the 2008 seasonal influenza vaccine. Copyright © 2011 Elsevier Ltd. All rights reserved.

Top