Neilson, Christine J
2010-01-01
The Saskatchewan Health Information Resources Partnership (SHIRP) provides library instruction to Saskatchewan's health care practitioners and students on placement in health care facilities as part of its mission to provide province-wide access to evidence-based health library resources. A portable computer lab was assembled in 2007 to provide hands-on training in rural health facilities that do not have computer labs of their own. Aside from some minor inconveniences, the introduction and operation of the portable lab has gone smoothly. The lab has been well received by SHIRP patrons and continues to be an essential part of SHIRP outreach.
Integrating Multiple On-line Knowledge Bases for Disease-Lab Test Relation Extraction.
Zhang, Yaoyun; Soysal, Ergin; Moon, Sungrim; Wang, Jingqi; Tao, Cui; Xu, Hua
2015-01-01
A computable knowledge base containing relations between diseases and lab tests would be a great resource for many biomedical informatics applications. This paper describes our initial step towards establishing a comprehensive knowledge base of disease and lab tests relations utilizing three public on-line resources. LabTestsOnline, MedlinePlus and Wikipedia are integrated to create a freely available, computable disease-lab test knowledgebase. Disease and lab test concepts are identified using MetaMap and relations between diseases and lab tests are determined based on source-specific rules. Experimental results demonstrate a high precision for relation extraction, with Wikipedia achieving the highest precision of 87%. Combining the three sources reached a recall of 51.40%, when compared with a subset of disease-lab test relations extracted from a reference book. Moreover, we found additional disease-lab test relations from on-line resources, indicating they are complementary to existing reference books for building a comprehensive disease and lab test relation knowledge base.
The Ever-Present Demand for Public Computing Resources. CDS Spotlight
ERIC Educational Resources Information Center
Pirani, Judith A.
2014-01-01
This Core Data Service (CDS) Spotlight focuses on public computing resources, including lab/cluster workstations in buildings, virtual lab/cluster workstations, kiosks, laptop and tablet checkout programs, and workstation access in unscheduled classrooms. The findings are derived from 758 CDS 2012 participating institutions. A dataset of 529…
Simulations, Games, and Virtual Labs for Science Education: a Compendium and Some Examples
NASA Astrophysics Data System (ADS)
Russell, R. M.
2011-12-01
We have assembled a list of computer-based simulations, games, and virtual labs for science education. This list, with links to the sources of these resources, is available online. The entries span a broad range of science, math, and engineering topics. They also span a range of target student ages, from elementary school to university students. We will provide a brief overview of this web site and the resources found on it. We will also briefly demonstrate some of our own educational simulations, including the "Very, Very Simple Climate Model", and report on formative evaluations of these resources. Computer-based simulations and virtual labs are valuable resources for science educators in various settings, allowing learners to experiment and explore "what if" scenarios. Educational computer games can motivate learners in both formal and informal settings, encouraging them to spend much more time exploring a topic than they might otherwise be inclined to do. Part of this presentation is effectively a "literature review" of numerous sources of simulations, games, and virtual labs. Although we have encountered several nice collections of such resources, those collections seem to be restricted in scope. They either represent materials developed by a specific group or agency (e.g. NOAA's games web site) or are restricted to a specific discipline (e.g. geology simulations and virtual labs). This presentation directs viewers to games, simulations, and virtual labs from many different sources and spanning a broad range of STEM disciplines.
Games, Simulations and Virtual Labs for Science Education: a Compendium and Some Examples
NASA Astrophysics Data System (ADS)
Russell, R. M.
2012-12-01
We have assembled a list of computer-based simulations, games, and virtual labs for science education. This list, with links to the sources of these resources, is available online. The entries span a broad range of science, math, and engineering topics. They also span a range of target student ages, from elementary school to university students. We will provide a brief overview of this web site and the resources found on it. We will also briefly demonstrate some of our own educational simulations and games. Computer-based simulations and virtual labs are valuable resources for science educators in various settings, allowing learners to experiment and explore "what if" scenarios. Educational computer games can motivate learners in both formal and informal settings, encouraging them to spend much more time exploring a topic than they might otherwise be inclined to do. Part of this presentation is effectively a "literature review" of numerous sources of simulations, games, and virtual labs. Although we have encountered several nice collections of such resources, those collections seem to be restricted in scope. They either represent materials developed by a specific group or agency (e.g. NOAA's games web site) or are restricted to a specific discipline (e.g. geology simulations and virtual labs). This presentation directs viewers to games, simulations, and virtual labs from many different sources and spanning a broad range of STEM disciplines.
Custovic, Adnan; Ainsworth, John; Arshad, Hasan; Bishop, Christopher; Buchan, Iain; Cullinan, Paul; Devereux, Graham; Henderson, John; Holloway, John; Roberts, Graham; Turner, Steve; Woodcock, Ashley; Simpson, Angela
2015-01-01
We created Asthma e-Lab, a secure web-based research environment to support consistent recording, description and sharing of data, computational/statistical methods and emerging findings across the five UK birth cohorts. The e-Lab serves as a data repository for our unified dataset and provides the computational resources and a scientific social network to support collaborative research. All activities are transparent, and emerging findings are shared via the e-Lab, linked to explanations of analytical methods, thus enabling knowledge transfer. eLab facilitates the iterative interdisciplinary dialogue between clinicians, statisticians, computer scientists, mathematicians, geneticists and basic scientists, capturing collective thought behind the interpretations of findings. PMID:25805205
Operating Dedicated Data Centers - Is It Cost-Effective?
NASA Astrophysics Data System (ADS)
Ernst, M.; Hogue, R.; Hollowell, C.; Strecker-Kellog, W.; Wong, A.; Zaytsev, A.
2014-06-01
The advent of cloud computing centres such as Amazon's EC2 and Google's Computing Engine has elicited comparisons with dedicated computing clusters. Discussions on appropriate usage of cloud resources (both academic and commercial) and costs have ensued. This presentation discusses a detailed analysis of the costs of operating and maintaining the RACF (RHIC and ATLAS Computing Facility) compute cluster at Brookhaven National Lab and compares them with the cost of cloud computing resources under various usage scenarios. An extrapolation of likely future cost effectiveness of dedicated computing resources is also presented.
Spaceport Processing System Development Lab
NASA Technical Reports Server (NTRS)
Dorsey, Michael
2013-01-01
The Spaceport Processing System Development Lab (SPSDL), developed and maintained by the Systems Hardware and Engineering Branch (NE-C4), is a development lab with its own private/restricted networks. A private/restricted network is a network with restricted or no communication with other networks. This allows users from different groups to work on their own projects in their own configured environment without interfering with others utilizing their resources in the lab. The different networks being used in the lab have no way to talk with each other due to the way they are configured, so how a user configures his software, operating system, or the equipment doesn't interfere or carry over on any of the other networks in the lab. The SPSDL is available for any project in KSC that is in need of a lab environment. My job in the SPSDL was to assist in maintaining the lab to make sure it's accessible for users. This includes, but is not limited to, making sure the computers in the lab are properly running and patched with updated hardware/software. In addition to this, I also was to assist users who had issues in utilizing the resources in the lab, which may include helping to configure a restricted network for their own environment. All of this was to ensure workers were able to use the SPSDL to work on their projects without difficulty which would in turn, benefit the work done throughout KSC. When I wasn't working in the SPSDL, I would instead help other coworkers with smaller tasks which included, but wasn't limited to, the proper disposal, moving of, or search for essential equipment. I also, during the free time I had, used NASA's resources to increase my knowledge and skills in a variety of subjects related to my major as a computer engineer, particularly in UNIX, Networking, and Embedded Systems.
Immersive Education, an Annotated Webliography
ERIC Educational Resources Information Center
Pricer, Wayne F.
2011-01-01
In this second installment of a two-part feature on immersive education a webliography will provide resources discussing the use of various types of computer simulations including: (a) augmented reality, (b) virtual reality programs, (c) gaming resources for teaching with technology, (d) virtual reality lab resources, (e) virtual reality standards…
Shared-resource computing for small research labs.
Ackerman, M J
1982-04-01
A real time laboratory computer network is described. This network is composed of four real-time laboratory minicomputers located in each of four division laboratories and a larger minicomputer in a centrally located computer room. Off the shelf hardware and software were used with no customization. The network is configured for resource sharing using DECnet communications software and the RSX-11-M multi-user real-time operating system. The cost effectiveness of the shared resource network and multiple real-time processing using priority scheduling is discussed. Examples of utilization within a medical research department are given.
The community FabLab platform: applications and implications in biomedical engineering.
Stephenson, Makeda K; Dow, Douglas E
2014-01-01
Skill development in science, technology, engineering and math (STEM) education present one of the most formidable challenges of modern society. The Community FabLab platform presents a viable solution. Each FabLab contains a suite of modern computer numerical control (CNC) equipment, electronics and computing hardware and design, programming, computer aided design (CAD) and computer aided machining (CAM) software. FabLabs are community and educational resources and open to the public. Development of STEM based workforce skills such as digital fabrication and advanced manufacturing can be enhanced using this platform. Particularly notable is the potential of the FabLab platform in STEM education. The active learning environment engages and supports a diversity of learners, while the iterative learning that is supported by the FabLab rapid prototyping platform facilitates depth of understanding, creativity, innovation and mastery. The product and project based learning that occurs in FabLabs develops in the student a personal sense of accomplishment, self-awareness, command of the material and technology. This helps build the interest and confidence necessary to excel in STEM and throughout life. Finally the introduction and use of relevant technologies at every stage of the education process ensures technical familiarity and a broad knowledge base needed for work in STEM based fields. Biomedical engineering education strives to cultivate broad technical adeptness, creativity, interdisciplinary thought, and an ability to form deep conceptual understanding of complex systems. The FabLab platform is well designed to enhance biomedical engineering education.
Exploring the changing learning environment of the gross anatomy lab.
Hopkins, Robin; Regehr, Glenn; Wilson, Timothy D
2011-07-01
The objective of this study was to assess the impact of virtual models and prosected specimens in the context of the gross anatomy lab. In 2009, student volunteers from an undergraduate anatomy class were randomly assigned to study groups in one of three learning conditions. All groups studied the muscles of mastication and completed identical learning objectives during a 45-minute lab. All groups were provided with two reference atlases. Groups were distinguished by the type of primary tools they were provided: gross prosections, three-dimensional stereoscopic computer model, or both resources. The facilitator kept observational field notes. A prepost multiple-choice knowledge test was administered to evaluate students' learning. No significant effect of the laboratory models was demonstrated between groups on the prepost assessment of knowledge. Recurring observations included students' tendency to revert to individual memorization prior to the posttest, rotation of models to match views in the provided atlas, and dissemination of groups into smaller working units. The use of virtual lab resources seemed to influence the social context and learning environment of the anatomy lab. As computer-based learning methods are implemented and studied, they must be evaluated beyond their impact on knowledge gain to consider the effect technology has on students' social development.
The StratusLab cloud distribution: Use-cases and support for scientific applications
NASA Astrophysics Data System (ADS)
Floros, E.
2012-04-01
The StratusLab project is integrating an open cloud software distribution that enables organizations to setup and provide their own private or public IaaS (Infrastructure as a Service) computing clouds. StratusLab distribution capitalizes on popular infrastructure virtualization solutions like KVM, the OpenNebula virtual machine manager, Claudia service manager and SlipStream deployment platform, which are further enhanced and expanded with additional components developed within the project. The StratusLab distribution covers the core aspects of a cloud IaaS architecture, namely Computing (life-cycle management of virtual machines), Storage, Appliance management and Networking. The resulting software stack provides a packaged turn-key solution for deploying cloud computing services. The cloud computing infrastructures deployed using StratusLab can support a wide range of scientific and business use cases. Grid computing has been the primary use case pursued by the project and for this reason the initial priority has been the support for the deployment and operation of fully virtualized production-level grid sites; a goal that has already been achieved by operating such a site as part of EGI's (European Grid Initiative) pan-european grid infrastructure. In this area the project is currently working to provide non-trivial capabilities like elastic and autonomic management of grid site resources. Although grid computing has been the motivating paradigm, StratusLab's cloud distribution can support a wider range of use cases. Towards this direction, we have developed and currently provide support for setting up general purpose computing solutions like Hadoop, MPI and Torque clusters. For what concerns scientific applications the project is collaborating closely with the Bioinformatics community in order to prepare VM appliances and deploy optimized services for bioinformatics applications. In a similar manner additional scientific disciplines like Earth Science can take advantage of StratusLab cloud solutions. Interested users are welcomed to join StratusLab's user community by getting access to the reference cloud services deployed by the project and offered to the public.
ERIC Educational Resources Information Center
Gooler, Dennis D., Ed.
This resource guide for community college teachers and administrators focuses on hardware and software. The following are discussed: (1) individual technologies--computer-assisted instruction, audio tape, films, filmstrips/slides, dial access, programmed instruction, learning activity packages, video cassettes, cable TV, independent learning labs,…
Pedagogy and Related Criteria: The Selection of Software for Computer Assisted Language Learning
ERIC Educational Resources Information Center
Samuels, Jeffrey D.
2013-01-01
Computer-Assisted Language Learning (CALL) is an established field of academic inquiry with distinct applications for second language teaching and learning. Many CALL professionals direct language labs or language resource centers (LRCs) in which CALL software applications and generic software applications support language learning programs and…
Polyphony: A Workflow Orchestration Framework for Cloud Computing
NASA Technical Reports Server (NTRS)
Shams, Khawaja S.; Powell, Mark W.; Crockett, Tom M.; Norris, Jeffrey S.; Rossi, Ryan; Soderstrom, Tom
2010-01-01
Cloud Computing has delivered unprecedented compute capacity to NASA missions at affordable rates. Missions like the Mars Exploration Rovers (MER) and Mars Science Lab (MSL) are enjoying the elasticity that enables them to leverage hundreds, if not thousands, or machines for short durations without making any hardware procurements. In this paper, we describe Polyphony, a resilient, scalable, and modular framework that efficiently leverages a large set of computing resources to perform parallel computations. Polyphony can employ resources on the cloud, excess capacity on local machines, as well as spare resources on the supercomputing center, and it enables these resources to work in concert to accomplish a common goal. Polyphony is resilient to node failures, even if they occur in the middle of a transaction. We will conclude with an evaluation of a production-ready application built on top of Polyphony to perform image-processing operations of images from around the solar system, including Mars, Saturn, and Titan.
UBioLab: a web-LABoratory for Ubiquitous in-silico experiments.
Bartocci, E; Di Berardini, M R; Merelli, E; Vito, L
2012-03-01
The huge and dynamic amount of bioinformatic resources (e.g., data and tools) available nowadays in Internet represents a big challenge for biologists -for what concerns their management and visualization- and for bioinformaticians -for what concerns the possibility of rapidly creating and executing in-silico experiments involving resources and activities spread over the WWW hyperspace. Any framework aiming at integrating such resources as in a physical laboratory has imperatively to tackle -and possibly to handle in a transparent and uniform way- aspects concerning physical distribution, semantic heterogeneity, co-existence of different computational paradigms and, as a consequence, of different invocation interfaces (i.e., OGSA for Grid nodes, SOAP for Web Services, Java RMI for Java objects, etc.). The framework UBioLab has been just designed and developed as a prototype following the above objective. Several architectural features -as those ones of being fully Web-based and of combining domain ontologies, Semantic Web and workflow techniques- give evidence of an effort in such a direction. The integration of a semantic knowledge management system for distributed (bioinformatic) resources, a semantic-driven graphic environment for defining and monitoring ubiquitous workflows and an intelligent agent-based technology for their distributed execution allows UBioLab to be a semantic guide for bioinformaticians and biologists providing (i) a flexible environment for visualizing, organizing and inferring any (semantics and computational) "type" of domain knowledge (e.g., resources and activities, expressed in a declarative form), (ii) a powerful engine for defining and storing semantic-driven ubiquitous in-silico experiments on the domain hyperspace, as well as (iii) a transparent, automatic and distributed environment for correct experiment executions.
Portable classroom leads to partnership.
Le Ber, Jeanne Marie; Lombardo, Nancy T; Weber, Alice; Bramble, John
2004-01-01
Library faculty participation on the School of Medicine Curriculum Steering Committee led to a unique opportunity to partner technology and teaching utilizing the library's portable wireless classroom. The pathology lab course master expressed a desire to revise the curriculum using patient cases and direct access to the Web and library resources. Since the pathology lab lacked computers, the library's portable wireless classroom provided a solution. Originally developed to provide maximum portability and flexibility, the wireless classroom consists of ten laptop computers configured with wireless cards and an access point. While the portable wireless classroom led to a partnership with the School of Medicine, there were additional benefits and positive consequences for the library.
NASA Technical Reports Server (NTRS)
1996-01-01
The Educator Resource Center has created the Technology, Research, Education and Discovery (TREND) 2000 computer lab at NASA's John C. Stennis Space Center to facilitate the integration of technology into schools' curriculums by providing innovative and creative classroom strategies using state-of-the-art technology.
UBioLab: a web-laboratory for ubiquitous in-silico experiments.
Bartocci, Ezio; Cacciagrano, Diletta; Di Berardini, Maria Rita; Merelli, Emanuela; Vito, Leonardo
2012-07-09
The huge and dynamic amount of bioinformatic resources (e.g., data and tools) available nowadays in Internet represents a big challenge for biologists –for what concerns their management and visualization– and for bioinformaticians –for what concerns the possibility of rapidly creating and executing in-silico experiments involving resources and activities spread over the WWW hyperspace. Any framework aiming at integrating such resources as in a physical laboratory has imperatively to tackle –and possibly to handle in a transparent and uniform way– aspects concerning physical distribution, semantic heterogeneity, co-existence of different computational paradigms and, as a consequence, of different invocation interfaces (i.e., OGSA for Grid nodes, SOAP for Web Services, Java RMI for Java objects, etc.). The framework UBioLab has been just designed and developed as a prototype following the above objective. Several architectural features –as those ones of being fully Web-based and of combining domain ontologies, Semantic Web and workflow techniques– give evidence of an effort in such a direction. The integration of a semantic knowledge management system for distributed (bioinformatic) resources, a semantic-driven graphic environment for defining and monitoring ubiquitous workflows and an intelligent agent-based technology for their distributed execution allows UBioLab to be a semantic guide for bioinformaticians and biologists providing (i) a flexible environment for visualizing, organizing and inferring any (semantics and computational) "type" of domain knowledge (e.g., resources and activities, expressed in a declarative form), (ii) a powerful engine for defining and storing semantic-driven ubiquitous in-silico experiments on the domain hyperspace, as well as (iii) a transparent, automatic and distributed environment for correct experiment executions.
DARPA Agreement HR0011-06-1-0028 (Robert C. Byrd Institute for Advanced Flexible Manufacturing)
2011-12-13
cutting edge design software, state-of-the-art computer labs, manufacturing staff expertise, training resources, as well as video-teleconference...started its own Design Works labs in an effort to provide manufacturers, entrepreneurs, students, machinists and engineers with access to a one-stop...shop and turn their ideas and talent into new products. From a concept drawn on a napkin or the back of an envelope to a 3D design to a working
A remote laboratory for USRP-based software defined radio
NASA Astrophysics Data System (ADS)
Gandhinagar Ekanthappa, Rudresh; Escobar, Rodrigo; Matevossian, Achot; Akopian, David
2014-02-01
Electrical and computer engineering graduates need practical working skills with real-world electronic devices, which are addressed to some extent by hands-on laboratories. Deployment capacity of hands-on laboratories is typically constrained due to insufficient equipment availability, facility shortages, and lack of human resources for in-class support and maintenance. At the same time, at many sites, existing experimental systems are usually underutilized due to class scheduling bottlenecks. Nowadays, online education gains popularity and remote laboratories have been suggested to broaden access to experimentation resources. Remote laboratories resolve many problems as various costs can be shared, and student access to instrumentation is facilitated in terms of access time and locations. Labs are converted to homeworks that can be done without physical presence in laboratories. Even though they are not providing full sense of hands-on experimentation, remote labs are a viable alternatives for underserved educational sites. This paper studies remote modality of USRP-based radio-communication labs offered by National Instruments (NI). The labs are offered to graduate and undergraduate students and tentative assessments support feasibility of remote deployments.
Dunne, James R; McDonald, Claudia L
2010-07-01
Pulse!! The Virtual Clinical Learning Lab at Texas A&M University-Corpus Christi, in collaboration with the United States Navy, has developed a model for research and technological development that they believe is an essential element in the future of military and civilian medical education. The Pulse!! project models a strategy for providing cross-disciplinary expertise and resources to educational, governmental, and business entities challenged with meeting looming health care crises. It includes a three-dimensional virtual learning platform that provides unlimited, repeatable, immersive clinical experiences without risk to patients, and is available anywhere there is a computer. Pulse!! utilizes expertise in the fields of medicine, medical education, computer science, software engineering, physics, computer animation, art, and architecture. Lab scientists collaborate with the commercial virtual-reality simulation industry to produce research-based learning platforms based on cutting-edge computer technology.
TEACHING "MATH-LITE" CONSERVATION (BOOK REVIEW OF CONSERVATION BIOLOGY WITH RAMAS ECOLAB)
This book is designed to serve as a laboratory workbook for an undergraduate course in conservation biology, environmental science, or natural resource management. By integrating with RAMAS EcoLab software, the book provides instructors with hands-on computer exercises that can ...
NMRbox: A Resource for Biomolecular NMR Computation.
Maciejewski, Mark W; Schuyler, Adam D; Gryk, Michael R; Moraru, Ion I; Romero, Pedro R; Ulrich, Eldon L; Eghbalnia, Hamid R; Livny, Miron; Delaglio, Frank; Hoch, Jeffrey C
2017-04-25
Advances in computation have been enabling many recent advances in biomolecular applications of NMR. Due to the wide diversity of applications of NMR, the number and variety of software packages for processing and analyzing NMR data is quite large, with labs relying on dozens, if not hundreds of software packages. Discovery, acquisition, installation, and maintenance of all these packages is a burdensome task. Because the majority of software packages originate in academic labs, persistence of the software is compromised when developers graduate, funding ceases, or investigators turn to other projects. To simplify access to and use of biomolecular NMR software, foster persistence, and enhance reproducibility of computational workflows, we have developed NMRbox, a shared resource for NMR software and computation. NMRbox employs virtualization to provide a comprehensive software environment preconfigured with hundreds of software packages, available as a downloadable virtual machine or as a Platform-as-a-Service supported by a dedicated compute cloud. Ongoing development includes a metadata harvester to regularize, annotate, and preserve workflows and facilitate and enhance data depositions to BioMagResBank, and tools for Bayesian inference to enhance the robustness and extensibility of computational analyses. In addition to facilitating use and preservation of the rich and dynamic software environment for biomolecular NMR, NMRbox fosters the development and deployment of a new class of metasoftware packages. NMRbox is freely available to not-for-profit users. Copyright © 2017 Biophysical Society. All rights reserved.
Autonomous Navigation, Dynamic Path and Work Flow Planning in Multi-Agent Robotic Swarms Project
NASA Technical Reports Server (NTRS)
Falker, John; Zeitlin, Nancy; Leucht, Kurt; Stolleis, Karl
2015-01-01
Kennedy Space Center has teamed up with the Biological Computation Lab at the University of New Mexico to create a swarm of small, low-cost, autonomous robots, called Swarmies, to be used as a ground-based research platform for in-situ resource utilization missions. The behavior of the robot swarm mimics the central-place foraging strategy of ants to find and collect resources in an unknown environment and return those resources to a central site.
Neves Tafula, Sérgio M; Moreira da Silva, Nádia; Rozanski, Verena E; Silva Cunha, João Paulo
2014-01-01
Neuroscience is an increasingly multidisciplinary and highly cooperative field where neuroimaging plays an important role. Neuroimaging rapid evolution is demanding for a growing number of computing resources and skills that need to be put in place at every lab. Typically each group tries to setup their own servers and workstations to support their neuroimaging needs, having to learn from Operating System management to specific neuroscience software tools details before any results can be obtained from each setup. This setup and learning process is replicated in every lab, even if a strong collaboration among several groups is going on. In this paper we present a new cloud service model - Brain Imaging Application as a Service (BiAaaS) - and one of its implementation - Advanced Brain Imaging Lab (ABrIL) - in the form of an ubiquitous virtual desktop remote infrastructure that offers a set of neuroimaging computational services in an interactive neuroscientist-friendly graphical user interface (GUI). This remote desktop has been used for several multi-institution cooperative projects with different neuroscience objectives that already achieved important results, such as the contribution to a high impact paper published in the January issue of the Neuroimage journal. The ABrIL system has shown its applicability in several neuroscience projects with a relatively low-cost, promoting truly collaborative actions and speeding up project results and their clinical applicability.
Laboratory Directed Research and Development Program FY 2006
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen
2007-03-08
The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.« less
A New Look at Security Education: YouTube as YouTool
ERIC Educational Resources Information Center
Werner, Laurie A.; Frank, Charles E.
2010-01-01
Teaching a computer security course which includes network administration and protection software is especially challenging because textbook tools are out of date by the time the text is published. In an effort to use lab activities that work effectively, we turned to the internet. This paper describes several resources for teaching computer…
Computers, Networks, and Desegregation at San Jose High Academy.
ERIC Educational Resources Information Center
Solomon, Gwen
1987-01-01
Describes magnet high school which was created in California to meet desegregation requirements and emphasizes computer technology. Highlights include local computer networks that connect science and music labs, the library/media center, business computer lab, writing lab, language arts skills lab, and social studies classrooms; software; teacher…
Nasa's Ant-Inspired Swarmie Robots
NASA Technical Reports Server (NTRS)
Leucht, Kurt W.
2016-01-01
As humans push further beyond the grasp of earth, robotic missions in advance of human missions will play an increasingly important role. These robotic systems will find and retrieve valuable resources as part of an in-situ resource utilization (ISRU) strategy. They will need to be highly autonomous while maintaining high task performance levels. NASA Kennedy Space Center has teamed up with the Biological Computation Lab at the University of New Mexico to create a swarm of small, low-cost, autonomous robots to be used as a ground-based research platform for ISRU missions. The behavior of the robot swarm mimics the central-place foraging strategy of ants to find and collect resources in a previously unmapped environment and return those resources to a central site. This talk will guide the audience through the Swarmie robot project from its conception by students in a New Mexico research lab to its robot trials in an outdoor parking lot at NASA. The software technologies and techniques used on the project will be discussed, as well as various challenges and solutions that were encountered by the development team along the way.
ERIC Educational Resources Information Center
Preusse-Burr, Beatrix
2011-01-01
Many classrooms have interactive whiteboards and several computers and many schools are equipped with a computer lab and mobile labs. However, there typically are not enough computers for every student in each classroom; mobile labs are often shared between several members of a team and time in the computer labs needs to be scheduled in advance.…
ERIC Educational Resources Information Center
Macias, J. A.
2012-01-01
Project-based learning is one of the main successful student-centered pedagogies broadly used in computing science courses. However, this approach can be insufficient when dealing with practical subjects that implicitly require many deliverables and a great deal of feedback and organizational resources. In this paper, a worked e-portfolio is…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Eric D.
1999-06-17
In the world of computer-based data acquisition and control, the graphical interface program LabVIEW from National Instruments is so ubiquitous that in many ways it has almost become the laboratory standard. To date, there have been approximately fifteen books concerning LabVIEW, but Professor Essick's treatise takes on a completely different tack than all of the previous discussions. In the more standard treatments of the ways and wherefores of LabVIEW such as LabVIEW Graphical Programming: Practical Applications in Instrumentation and Control by Gary W. Johnson (McGraw Hill, NY 1997), the emphasis has been instructing the reader how to program LabVIEW tomore » create a Virtual Instrument (VI) on the computer for interfacing to a particular instruments. LabVIEW is written in G a graphical programming language developed by National Instruments. In the past the emphasis has been on training the experimenter to learn G . Without going into details here, G incorporates the usual loops, arithmetic expressions, etc., found in many programming languages, but in an icon (graphical) environment. The net result being that LabVIEW contains all of the standard methods needed for interfacing to instruments, data acquisition, data analysis, graphics, and also methodology to incorporate programs written in other languages into LabVIEW. Historically, according to Professor Essick, he developed a series of experiments for an upper division laboratory course for computer-based instrumentation. His observation was that while many students had the necessary background in computer programming languages, there were students who had virtually no concept about writing a computer program let alone a computer- based interfacing program. Thus the beginnings of a concept for not only teaching computer- based instrumentation techniques, but aiso a method for the beginner to experience writing a com- puter program. Professor Essick saw LabVIEW as the perfect environment in which to teach computer-based research skills. With this goal in mind, he has succeeded admirably. Advanced LabVIEW Labs presents a series of chapters devoted to not only introducing the reader to LabVIEW, but also to the concepts necessary for writing a successful computer pro- gram. Each chapter is an assignment for the student and is suitable for a ten week course. The first topic introduces the while loop and waveform chart VI'S. After learning how to launch LabVIEW, the student then leans how to use LabVIEW functions such as sine and cosine. The beauty of thk and subsequent chapters, the student is introduced immediately to computer-based instruction by learning how to display the results in graph form on the screen. At each point along the way, the student is not only introduced to another LabVIEW operation, but also to such subjects as spread sheets for data storage, numerical integration, Fourier transformations', curve fitting algorithms, etc. The last few chapters conclude with the purpose of the learning module, and that is, com- puter-based instrumentation. Computer-based laboratory projects such as analog-to-digital con- version, digitizing oscilloscopes treated. Advanced Lab VIEW Labs finishes with a treatment on GPIB interfacing and finally, the student is asked to create an operating VI for temperature con- trol. This is an excellent text, not only as an treatise on LabVIEW but also as an introduction to computer programming logic. All programmers, who are struggling to not only learning how interface computers to instruments, but also trying understand top down programming and other programming language techniques, should add Advanced Lab-VIEW Labs to their computer library.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Eric D.
1999-06-17
In the world of computer-based data acquisition and control, the graphical interface program LabVIEW from National Instruments is so ubiquitous that in many ways it has almost become the laboratory standard. To date, there have been approximately fifteen books concerning LabVIEW, but Professor Essick's treatise takes on a completely different tack than all of the previous discussions. In the more standard treatments of the ways and wherefores of LabVIEW such as LabVIEW Graphical Programming: Practical Applications in Instrumentation and Control by Gary W. Johnson (McGraw Hill, NY 1997), the emphasis has been instructing the reader how to program LabVIEW tomore » create a Virtual Instrument (VI) on the computer for interfacing to a particular instruments. LabVIEW is written in "G" a graphical programming language developed by National Instruments. In the past the emphasis has been on training the experimenter to learn "G". Without going into details here, "G" incorporates the usual loops, arithmetic expressions, etc., found in many programming languages, but in an icon (graphical) environment. The net result being that LabVIEW contains all of the standard methods needed for interfacing to instruments, data acquisition, data analysis, graphics, and also methodology to incorporate programs written in other languages into LabVIEW. Historically, according to Professor Essick, he developed a series of experiments for an upper division laboratory course for computer-based instrumentation. His observation was that while many students had the necessary background in computer programming languages, there were students who had virtually no concept about writing a computer program let alone a computer- based interfacing program. Thus the beginnings of a concept for not only teaching computer- based instrumentation techniques, but aiso a method for the beginner to experience writing a com- puter program. Professor Essick saw LabVIEW as the "perfect environment in which to teach computer-based research skills." With this goal in mind, he has succeeded admirably. Advanced LabVIEW Labs presents a series of chapters devoted to not only introducing the reader to LabVIEW, but also to the concepts necessary for writing a successful computer pro- gram. Each chapter is an assignment for the student and is suitable for a ten week course. The first topic introduces the while loop and waveform chart VI'S. After learning how to launch LabVIEW, the student then leans how to use LabVIEW functions such as sine and cosine. The beauty of thk and subsequent chapters, the student is introduced immediately to computer-based instruction by learning how to display the results in graph form on the screen. At each point along the way, the student is not only introduced to another LabVIEW operation, but also to such subjects as spread sheets for data storage, numerical integration, Fourier transformations', curve fitting algorithms, etc. The last few chapters conclude with the purpose of the learning module, and that is, com- puter-based instrumentation. Computer-based laboratory projects such as analog-to-digital con- version, digitizing oscilloscopes treated. Advanced Lab VIEW Labs finishes with a treatment on GPIB interfacing and finally, the student is asked to create an operating VI for temperature con- trol. This is an excellent text, not only as an treatise on LabVIEW but also as an introduction to computer programming logic. All programmers, who are struggling to not only learning how interface computers to instruments, but also trying understand top down programming and other programming language techniques, should add Advanced Lab-VIEW Labs to their computer library.« less
Smartphone technology can be transformative to the deployment of lab-on-chip diagnostics.
Erickson, David; O'Dell, Dakota; Jiang, Li; Oncescu, Vlad; Gumus, Abdurrahman; Lee, Seoho; Mancuso, Matthew; Mehta, Saurabh
2014-09-07
The rapid expansion of mobile technology is transforming the biomedical landscape. By 2016 there will be 260 M active smartphones in the US and millions of health accessories and software "apps" running off them. In parallel with this have come major technical achievements in lab-on-a-chip technology leading to incredible new biochemical sensors and molecular diagnostic devices. Despite these advancements, the uptake of lab-on-a-chip technologies at the consumer level has been somewhat limited. We believe that the widespread availability of smartphone technology and the capabilities they offer in terms of computation, communication, social networking, and imaging will be transformative to the deployment of lab-on-a-chip type technology both in the developed and developing world. In this paper we outline why we believe this is the case, the new business models that may emerge, and detail some specific application areas in which this synergy will have long term impact, namely: nutrition monitoring and disease diagnostics in limited resource settings.
Smartphone technology can be transformative to the deployment of lab-on-chip diagnostics
Erickson, David; O’Dell, Dakota; Jiang, Li; Oncescu, Vlad; Gumus, Abdurrahman; Lee, Seoho; Mancuso, Matthew; Mehta, Saurabh
2014-01-01
The rapid expansion of mobile technology is transforming the biomedical landscape. By 2016 there will be 260M active smartphones in the US and millions of health accessories and software “apps” running off them. In parallel with this have come major technical achievements in lab-on-a-chip technology leading to incredible new biochemical sensors and molecular diagnostic devices. Despite these advancements, the uptake of lab-on-a-chip technologies at the consumer level has been somewhat limited. We believe that the widespread availability of smartphone technology and the capabilities they offer in terms of computation, communication, social networking, and imaging will be transformative to the deployment of lab-on-a-chip type technology both in the developed and developing world. In this paper we outline why we believe this is the case, the new business models that may emerge, and detail some specific application areas in which this synergy will have long term impact, namely: nutrition monitoring and disease diagnostics in limited resource settings. PMID:24700127
Laboratory directed research and development program FY 1999
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Todd; Levy, Karin
2000-03-08
The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.« less
Virtualization in education: Information Security lab in your hands
NASA Astrophysics Data System (ADS)
Karlov, A. A.
2016-09-01
The growing demand for qualified specialists in advanced information technologies poses serious challenges to the education and training of young personnel for science, industry and social problems. Virtualization as a way to isolate the user from the physical characteristics of computing resources (processors, servers, operating systems, networks, applications, etc.), has, in particular, an enormous influence in the field of education, increasing its efficiency, reducing the cost, making it more widely and readily available. The study of Information Security of computer systems is considered as an example of use of virtualization in education.
ERIC Educational Resources Information Center
Caminero, Agustín C.; Ros, Salvador; Hernández, Roberto; Robles-Gómez, Antonio; Tobarra, Llanos; Tolbaños Granjo, Pedro J.
2016-01-01
The use of practical laboratories is a key in engineering education in order to provide our students with the resources needed to acquire practical skills. This is specially true in the case of distance education, where no physical interactions between lecturers and students take place, so virtual or remote laboratories must be used. UNED has…
A Computer Lab that Students Use but Never See
ERIC Educational Resources Information Center
Young, Jeffrey R.
2008-01-01
North Carolina State University may never build another computer lab. Instead the university has installed racks of equipment in windowless rooms where students and professors never go. This article describes a project called the Virtual Computing Lab. Users enter it remotely from their own computers in dormitory rooms or libraries. They get all…
omniClassifier: a Desktop Grid Computing System for Big Data Prediction Modeling
Phan, John H.; Kothari, Sonal; Wang, May D.
2016-01-01
Robust prediction models are important for numerous science, engineering, and biomedical applications. However, best-practice procedures for optimizing prediction models can be computationally complex, especially when choosing models from among hundreds or thousands of parameter choices. Computational complexity has further increased with the growth of data in these fields, concurrent with the era of “Big Data”. Grid computing is a potential solution to the computational challenges of Big Data. Desktop grid computing, which uses idle CPU cycles of commodity desktop machines, coupled with commercial cloud computing resources can enable research labs to gain easier and more cost effective access to vast computing resources. We have developed omniClassifier, a multi-purpose prediction modeling application that provides researchers with a tool for conducting machine learning research within the guidelines of recommended best-practices. omniClassifier is implemented as a desktop grid computing system using the Berkeley Open Infrastructure for Network Computing (BOINC) middleware. In addition to describing implementation details, we use various gene expression datasets to demonstrate the potential scalability of omniClassifier for efficient and robust Big Data prediction modeling. A prototype of omniClassifier can be accessed at http://omniclassifier.bme.gatech.edu/. PMID:27532062
How Data Becomes Physics: Inside the RACF
Ernst, Michael; Rind, Ofer; Rajagopalan, Srini; Lauret, Jerome; Pinkenburg, Chris
2018-06-22
The RHIC & ATLAS Computing Facility (RACF) at the U.S. Department of Energyâs (DOE) Brookhaven National Laboratory sits at the center of a global computing network. It connects more than 2,500 researchers around the world with the data generated by millions of particle collisions taking place each second at Brookhaven Lab's Relativistic Heavy Ion Collider (RHIC, a DOE Office of Science User Facility for nuclear physics research), and the ATLAS experiment at the Large Hadron Collider in Europe. Watch this video to learn how the people and computing resources of the RACF serve these scientists to turn petabytes of raw data into physics discoveries.
Introduction to Computing: Lab Manual. Faculty Guide [and] Student Guide.
ERIC Educational Resources Information Center
Frasca, Joseph W.
This lab manual is designed to accompany a college course introducing students to computing. The exercises are designed to be completed by the average student in a supervised 2-hour block of time at a computer lab over 15 weeks. The intent of each lab session is to introduce a topic and have the student feel comfortable with the use of the machine…
Planning a Computer Lab: Considerations To Ensure Success.
ERIC Educational Resources Information Center
IALL Journal of Language Learning Technologies, 1994
1994-01-01
Presents points to consider when organizing a computer laboratory. These include the lab's overall objectives and how best to meet them; what type of students will use the lab; where the lab will be located; and what software and hardware can best meet the lab's overall objectives, population, and location requirements. Other factors include time,…
Practical Physics Labs: A Resource Manual.
ERIC Educational Resources Information Center
Goodwin, Peter
This resource manual focuses on physics labs that relate to the world around us and utilize simple equipment and situations. Forty-five laboratories are included that relate to thermodynamics, electricity, magnetism, dynamics, optics, wave transmission, centripetal force, and atomic physics. Each lab has three sections. The first section…
Varsos, Constantinos; Patkos, Theodore; Pavloudi, Christina; Gougousis, Alexandros; Ijaz, Umer Zeeshan; Filiopoulou, Irene; Pattakos, Nikolaos; Vanden Berghe, Edward; Fernández-Guerra, Antonio; Faulwetter, Sarah; Chatzinikolaou, Eva; Pafilis, Evangelos; Bekiari, Chryssoula; Doerr, Martin; Arvanitidis, Christos
2016-01-01
Abstract Background Parallel data manipulation using R has previously been addressed by members of the R community, however most of these studies produce ad hoc solutions that are not readily available to the average R user. Our targeted users, ranging from the expert ecologist/microbiologists to computational biologists, often experience difficulties in finding optimal ways to exploit the full capacity of their computational resources. In addition, improving performance of commonly used R scripts becomes increasingly difficult especially with large datasets. Furthermore, the implementations described here can be of significant interest to expert bioinformaticians or R developers. Therefore, our goals can be summarized as: (i) description of a complete methodology for the analysis of large datasets by combining capabilities of diverse R packages, (ii) presentation of their application through a virtual R laboratory (RvLab) that makes execution of complex functions and visualization of results easy and readily available to the end-user. New information In this paper, the novelty stems from implementations of parallel methodologies which rely on the processing of data on different levels of abstraction and the availability of these processes through an integrated portal. Parallel implementation R packages, such as the pbdMPI (Programming with Big Data – Interface to MPI) package, are used to implement Single Program Multiple Data (SPMD) parallelization on primitive mathematical operations, allowing for interplay with functions of the vegan package. The dplyr and RPostgreSQL R packages are further integrated offering connections to dataframe like objects (databases) as secondary storage solutions whenever memory demands exceed available RAM resources. The RvLab is running on a PC cluster, using version 3.1.2 (2014-10-31) on a x86_64-pc-linux-gnu (64-bit) platform, and offers an intuitive virtual environmet interface enabling users to perform analysis of ecological and microbial communities based on optimized vegan functions. A beta version of the RvLab is available after registration at: https://portal.lifewatchgreece.eu/ PMID:27932907
Varsos, Constantinos; Patkos, Theodore; Oulas, Anastasis; Pavloudi, Christina; Gougousis, Alexandros; Ijaz, Umer Zeeshan; Filiopoulou, Irene; Pattakos, Nikolaos; Vanden Berghe, Edward; Fernández-Guerra, Antonio; Faulwetter, Sarah; Chatzinikolaou, Eva; Pafilis, Evangelos; Bekiari, Chryssoula; Doerr, Martin; Arvanitidis, Christos
2016-01-01
Parallel data manipulation using R has previously been addressed by members of the R community, however most of these studies produce ad hoc solutions that are not readily available to the average R user. Our targeted users, ranging from the expert ecologist/microbiologists to computational biologists, often experience difficulties in finding optimal ways to exploit the full capacity of their computational resources. In addition, improving performance of commonly used R scripts becomes increasingly difficult especially with large datasets. Furthermore, the implementations described here can be of significant interest to expert bioinformaticians or R developers. Therefore, our goals can be summarized as: (i) description of a complete methodology for the analysis of large datasets by combining capabilities of diverse R packages, (ii) presentation of their application through a virtual R laboratory (RvLab) that makes execution of complex functions and visualization of results easy and readily available to the end-user. In this paper, the novelty stems from implementations of parallel methodologies which rely on the processing of data on different levels of abstraction and the availability of these processes through an integrated portal. Parallel implementation R packages, such as the pbdMPI (Programming with Big Data - Interface to MPI) package, are used to implement Single Program Multiple Data (SPMD) parallelization on primitive mathematical operations, allowing for interplay with functions of the vegan package. The dplyr and RPostgreSQL R packages are further integrated offering connections to dataframe like objects (databases) as secondary storage solutions whenever memory demands exceed available RAM resources. The RvLab is running on a PC cluster, using version 3.1.2 (2014-10-31) on a x86_64-pc-linux-gnu (64-bit) platform, and offers an intuitive virtual environmet interface enabling users to perform analysis of ecological and microbial communities based on optimized vegan functions. A beta version of the RvLab is available after registration at: https://portal.lifewatchgreece.eu/.
Teaching Lab Science Courses Online: Resources for Best Practices, Tools, and Technology
ERIC Educational Resources Information Center
Jeschofnig, Linda; Jeschofnig, Peter
2011-01-01
"Teaching Lab Science Courses Online" is a practical resource for educators developing and teaching fully online lab science courses. First, it provides guidance for using learning management systems and other web 2.0 technologies such as video presentations, discussion boards, Google apps, Skype, video/web conferencing, and social media…
Health care information infrastructure: what will it be and how will we get there?
NASA Astrophysics Data System (ADS)
Kun, Luis G.
1996-02-01
During the first Health Care Technology Policy [HCTPI conference last year, during Health Care Reform, four major issues were brought up in regards to the underway efforts to develop a Computer Based Patient Record (CBPR)I the National Information Infrastructure (NIl) as part of the High Performance Computers & Communications (HPCC), and the so-called "Patient Card" . More specifically it was explained how a national information system will greatly affect the way health care delivery is provided to the United States public and reduce its costs. These four issues were: Constructing a National Information Infrastructure (NIl); Building a Computer Based Patient Record System; Bringing the collective resources of our National Laboratories to bear in developing and implementing the NIl and CBPR, as well as a security system with which to safeguard the privacy rights of patients and the physician-patient privilege; Utilizing Government (e.g. DOD, DOE) capabilities (technology and human resources) to maximize resource utilization, create new jobs and accelerate technology transfer to address health care issues. During the second HCTP conference, in mid 1 995, a section of this meeting entitled: "Health Care Technology Assets of the Federal Government" addressed benefits of the technology transfer which should occur for maximizing already developed resources. Also a section entitled:"Transfer and Utilization of Government Technology Assets to the Private Sector", looked at both Health Care and non-Health Care related technologies since many areas such as Information Technologies (i.e. imaging, communications, archival I retrieval, systems integration, information display, multimedia, heterogeneous data bases, etc.) already exist and are part of our National Labs and/or other federal agencies, i.e. ARPA. These technologies although they are not labeled under "Health Care" programs they could provide enormous value to address technical needs. An additional issue deals with both the technical (hardware, software) and human expertise that resides within these labs and their possible role in creating cost effective solutions.
NASA Astrophysics Data System (ADS)
Kun, Luis G.
1995-10-01
During the first Health Care Technology Policy conference last year, during health care reform, four major issues were brought up in regards to the efforts underway to develop a computer based patient record (CBPR), the National Information Infrastructure (NII) as part of the high performance computers and communications (HPCC), and the so-called 'patient card.' More specifically it was explained how a national information system will greatly affect the way health care delivery is provided to the United States public and reduce its costs. These four issues were: (1) Constructing a national information infrastructure (NII); (2) Building a computer based patient record system; (3) Bringing the collective resources of our national laboratories to bear in developing and implementing the NII and CBPR, as well as a security system with which to safeguard the privacy rights of patients and the physician-patient privilege; (4) Utilizing government (e.g., DOD, DOE) capabilities (technology and human resources) to maximize resource utilization, create new jobs, and accelerate technology transfer to address health care issues. This year a section of this conference entitled: 'Health Care Technology Assets of the Federal Government' addresses benefits of the technology transfer which should occur for maximizing already developed resources. This section entitled: 'Transfer and Utilization of Government Technology Assets to the Private Sector,' will look at both health care and non-health care related technologies since many areas such as information technologies (i.e. imaging, communications, archival/retrieval, systems integration, information display, multimedia, heterogeneous data bases, etc.) already exist and are part of our national labs and/or other federal agencies, i.e., ARPA. These technologies although they are not labeled under health care programs they could provide enormous value to address technical needs. An additional issue deals with both the technical (hardware, software) and human expertise that resides within these labs and their possible role in creating cost effective solutions.
Cloud computing: a new business paradigm for biomedical information sharing.
Rosenthal, Arnon; Mork, Peter; Li, Maya Hao; Stanford, Jean; Koester, David; Reynolds, Patti
2010-04-01
We examine how the biomedical informatics (BMI) community, especially consortia that share data and applications, can take advantage of a new resource called "cloud computing". Clouds generally offer resources on demand. In most clouds, charges are pay per use, based on large farms of inexpensive, dedicated servers, sometimes supporting parallel computing. Substantial economies of scale potentially yield costs much lower than dedicated laboratory systems or even institutional data centers. Overall, even with conservative assumptions, for applications that are not I/O intensive and do not demand a fully mature environment, the numbers suggested that clouds can sometimes provide major improvements, and should be seriously considered for BMI. Methodologically, it was very advantageous to formulate analyses in terms of component technologies; focusing on these specifics enabled us to bypass the cacophony of alternative definitions (e.g., exactly what does a cloud include) and to analyze alternatives that employ some of the component technologies (e.g., an institution's data center). Relative analyses were another great simplifier. Rather than listing the absolute strengths and weaknesses of cloud-based systems (e.g., for security or data preservation), we focus on the changes from a particular starting point, e.g., individual lab systems. We often find a rough parity (in principle), but one needs to examine individual acquisitions--is a loosely managed lab moving to a well managed cloud, or a tightly managed hospital data center moving to a poorly safeguarded cloud? 2009 Elsevier Inc. All rights reserved.
Computational Labs Using VPython Complement Conventional Labs in Online and Regular Physics Classes
NASA Astrophysics Data System (ADS)
Bachlechner, Martina E.
2009-03-01
Fairmont State University has developed online physics classes for the high-school teaching certificate based on the text book Matter and Interaction by Chabay and Sherwood. This lead to using computational VPython labs also in the traditional class room setting to complement conventional labs. The computational modeling process has proven to provide an excellent basis for the subsequent conventional lab and allows for a concrete experience of the difference between behavior according to a model and realistic behavior. Observations in the regular class room setting feed back into the development of the online classes.
Berkeley Lab - Materials Sciences Division
Emergency Diversity and Inclusion Committee Members Lab Contacts Resources & Operations Acknowledging ; Finance Templates Travel One-Stop Personnel Resources Committees In Case of Emergency Looking for MSD0010
Galaxy CloudMan: delivering cloud compute clusters.
Afgan, Enis; Baker, Dannon; Coraor, Nate; Chapman, Brad; Nekrutenko, Anton; Taylor, James
2010-12-21
Widespread adoption of high-throughput sequencing has greatly increased the scale and sophistication of computational infrastructure needed to perform genomic research. An alternative to building and maintaining local infrastructure is "cloud computing", which, in principle, offers on demand access to flexible computational infrastructure. However, cloud computing resources are not yet suitable for immediate "as is" use by experimental biologists. We present a cloud resource management system that makes it possible for individual researchers to compose and control an arbitrarily sized compute cluster on Amazon's EC2 cloud infrastructure without any informatics requirements. Within this system, an entire suite of biological tools packaged by the NERC Bio-Linux team (http://nebc.nerc.ac.uk/tools/bio-linux) is available for immediate consumption. The provided solution makes it possible, using only a web browser, to create a completely configured compute cluster ready to perform analysis in less than five minutes. Moreover, we provide an automated method for building custom deployments of cloud resources. This approach promotes reproducibility of results and, if desired, allows individuals and labs to add or customize an otherwise available cloud system to better meet their needs. The expected knowledge and associated effort with deploying a compute cluster in the Amazon EC2 cloud is not trivial. The solution presented in this paper eliminates these barriers, making it possible for researchers to deploy exactly the amount of computing power they need, combined with a wealth of existing analysis software, to handle the ongoing data deluge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Robert K.
Ernest Orland Lawrence Berkeley National Laboratory (Berkeley Lab) is the oldest of America's national laboratories and has been a leader in science and engineering technology for more than 65 years, serving as a powerful resource to meet Us national needs. As a multi-program Department of Energy laboratory, Berkeley Lab is dedicated to performing leading edge research in the biological, physical, materials, chemical, energy, environmental and computing sciences. Ernest Orlando Lawrence, the Lab's founder and the first of its nine Nobel prize winners, invented the cyclotron, which led to a Golden Age of particle physics and revolutionary discoveries about the naturemore » of the universe. To this day, the Lab remains a world center for accelerator and detector innovation and design. The Lab is the birthplace of nuclear medicine and the cradle of invention for medical imaging. In the field of heart disease, Lab researchers were the first to isolate lipoproteins and the first to determine that the ratio of high density to low density lipoproteins is a strong indicator of heart disease risk. The demise of the dinosaurs--the revelation that they had been killed off by a massive comet or asteroid that had slammed into the Earth--was a theory developed here. The invention of the chemical laser, the unlocking of the secrets of photosynthesis--this is a short preview of the legacy of this Laboratory.« less
Developing a Science Commons for Geosciences
NASA Astrophysics Data System (ADS)
Lenhardt, W. C.; Lander, H.
2016-12-01
Many scientific communities, recognizing the research possibilities inherent in data sets, have created domain specific archives such as the Incorporated Research Institutions for Seismology (iris.edu) and ClinicalTrials.gov. Though this is an important step forward, most scientists, including geoscientists, also use a variety of software tools and at least some amount of computation to conduct their research. While the archives make it simpler for scientists to locate the required data, provisioning disk space, compute resources, and network bandwidth can still require significant efforts. This challenge exists despite the wealth of resources available to researchers, namely lab IT resources, institutional IT resources, national compute resources (XSEDE, OSG), private clouds, public clouds, and the development of cyberinfrastructure technologies meant to facilitate use of those resources. Further tasks include obtaining and installing required tools for analysis and visualization. If the research effort is a collaboration or involves certain types of data, then the partners may well have additional non-scientific tasks such as securing the data and developing secure sharing methods for the data. These requirements motivate our investigations into the "Science Commons". This paper will present a working definition of a science commons, compare and contrast examples of existing science commons, and describe a project based at RENCI to implement a science commons for risk analytics. We will then explore what a similar tool might look like for the geosciences.
Overview of DOE Oil and Gas Field Laboratory Projects
NASA Astrophysics Data System (ADS)
Bromhal, G.; Ciferno, J.; Covatch, G.; Folio, E.; Melchert, E.; Ogunsola, O.; Renk, J., III; Vagnetti, R.
2017-12-01
America's abundant unconventional oil and natural gas (UOG) resources are critical components of our nation's energy portfolio. These resources need to be prudently developed to derive maximum benefits. In spite of the long history of hydraulic fracturing, the optimal number of fracturing stages during multi-stage fracture stimulation in horizontal wells is not known. In addition, there is the dire need of a comprehensive understanding of ways to improve the recovery of shale gas with little or no impacts on the environment. Research that seeks to expand our view of effective and environmentally sustainable ways to develop our nation's oil and natural gas resources can be done in the laboratory or at a computer; but, some experiments must be performed in a field setting. The Department of Energy (DOE) Field Lab Observatory projects are designed to address those research questions that must be studied in the field. The Department of Energy (DOE) is developing a suite of "field laboratory" test sites to carry out collaborative research that will help find ways of improving the recovery of energy resources as much as possible, with as little environmental impact as possible, from "unconventional" formations, such as shale and other low permeability rock formations. Currently there are three field laboratories in various stages of development and operation. Work is on-going at two of the sites: The Hydraulic Fracturing Test Site (HFTS) in the Permian Basin and the Marcellus Shale Energy and Environmental Lab (MSEEL) project in the Marcellus Shale Play. Agreement on the third site, the Utica Shale Energy and Environmental Lab (USEEL) project in the Utica Shale Play, was just recently finalized. Other field site opportunities may be forthcoming. This presentation will give an overview of the three field laboratory projects.
ERIC Educational Resources Information Center
Kuan, Wen-Hsuan; Tseng, Chi-Hung; Chen, Sufen; Wong, Ching-Chang
2016-01-01
We propose an integrated curriculum to establish essential abilities of computer programming for the freshmen of a physics department. The implementation of the graphical-based interfaces from Scratch to LabVIEW then to LabVIEW for Arduino in the curriculum "Computer-Assisted Instrumentation in the Design of Physics Laboratories" brings…
ERIC Educational Resources Information Center
Santavenere, Alex
An action research study was undertaken to examine the effects of educational technology resources on critical thinking and analytical skills. The researcher observed 3 different 11th grade classes, a total of 75 students, over a week as they worked in the school's computer lab. Each class was composed of 25 to 30 students, all of whom were…
Systems Engineering Building Advances Power Grid Research
Virden, Jud; Huang, Henry; Skare, Paul; Dagle, Jeff; Imhoff, Carl; Stoustrup, Jakob; Melton, Ron; Stiles, Dennis; Pratt, Rob
2018-01-16
Researchers and industry are now better equipped to tackle the nationâs most pressing energy challenges through PNNLâs new Systems Engineering Building â including challenges in grid modernization, buildings efficiency and renewable energy integration. This lab links real-time grid data, software platforms, specialized laboratories and advanced computing resources for the design and demonstration of new tools to modernize the grid and increase buildings energy efficiency.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-28
... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Bio-Life Labs, Inc., BSI2000, Inc., Calais Resources, Inc., EGX Funds Transfer, Inc., Great Western Land Recreation, Inc. (a/k/a Great Western Land and... securities of Bio-Life Labs, Inc. because it has not filed any periodic reports since the period ended March...
A Multimedia Approach to Lab Reporting via Computer Presentation Software
NASA Astrophysics Data System (ADS)
Jenkinson, Gregory T.; Fraiman, Ana
1999-02-01
The use of multimedia software presents a new way for the educator to gather and present information. In a laboratory report, students are required to gather and present data that are available from a wide variety of resources. In the past, this information was compiled into a hard-copy report, consisting merely of text and possibly two-dimensional graphics. Today, Northeastern Illinois University students use Podium, one of many multimedia presentation applications available on the market. These presentation applications offer a rich array of choices for the type and quantity of information to compile. This "paperless" implementation gives students the opportunity to create a lab report that is a network of ideas, cross-referenced with hyperlinks in a personal fashion that is logical for that particular student. The use of hyperlinks allows easy access to previously learned concepts that may be needed for future labs. This new technology allows students to make links of their own and to begin to see chemistry as an encompassing industry with connection to all disciplines of science.
Galaxy CloudMan: delivering cloud compute clusters
2010-01-01
Background Widespread adoption of high-throughput sequencing has greatly increased the scale and sophistication of computational infrastructure needed to perform genomic research. An alternative to building and maintaining local infrastructure is “cloud computing”, which, in principle, offers on demand access to flexible computational infrastructure. However, cloud computing resources are not yet suitable for immediate “as is” use by experimental biologists. Results We present a cloud resource management system that makes it possible for individual researchers to compose and control an arbitrarily sized compute cluster on Amazon’s EC2 cloud infrastructure without any informatics requirements. Within this system, an entire suite of biological tools packaged by the NERC Bio-Linux team (http://nebc.nerc.ac.uk/tools/bio-linux) is available for immediate consumption. The provided solution makes it possible, using only a web browser, to create a completely configured compute cluster ready to perform analysis in less than five minutes. Moreover, we provide an automated method for building custom deployments of cloud resources. This approach promotes reproducibility of results and, if desired, allows individuals and labs to add or customize an otherwise available cloud system to better meet their needs. Conclusions The expected knowledge and associated effort with deploying a compute cluster in the Amazon EC2 cloud is not trivial. The solution presented in this paper eliminates these barriers, making it possible for researchers to deploy exactly the amount of computing power they need, combined with a wealth of existing analysis software, to handle the ongoing data deluge. PMID:21210983
ERIC Educational Resources Information Center
Tuskegee Inst., AL.
A blueprint for Educational Resource Agents (ERA's) has been compiled by a consortium consisting of the National Federation for the Improvement of Rural Education, Tuskegee Institute, New Mexico State University, University of North Dakota, Northwest Regional Educational Lab., Southwestern Cooperative Educational Lab., Appalachia Educational Lab.,…
Parikh, Priti P; Minning, Todd A; Nguyen, Vinh; Lalithsena, Sarasi; Asiaee, Amir H; Sahoo, Satya S; Doshi, Prashant; Tarleton, Rick; Sheth, Amit P
2012-01-01
Research on the biology of parasites requires a sophisticated and integrated computational platform to query and analyze large volumes of data, representing both unpublished (internal) and public (external) data sources. Effective analysis of an integrated data resource using knowledge discovery tools would significantly aid biologists in conducting their research, for example, through identifying various intervention targets in parasites and in deciding the future direction of ongoing as well as planned projects. A key challenge in achieving this objective is the heterogeneity between the internal lab data, usually stored as flat files, Excel spreadsheets or custom-built databases, and the external databases. Reconciling the different forms of heterogeneity and effectively integrating data from disparate sources is a nontrivial task for biologists and requires a dedicated informatics infrastructure. Thus, we developed an integrated environment using Semantic Web technologies that may provide biologists the tools for managing and analyzing their data, without the need for acquiring in-depth computer science knowledge. We developed a semantic problem-solving environment (SPSE) that uses ontologies to integrate internal lab data with external resources in a Parasite Knowledge Base (PKB), which has the ability to query across these resources in a unified manner. The SPSE includes Web Ontology Language (OWL)-based ontologies, experimental data with its provenance information represented using the Resource Description Format (RDF), and a visual querying tool, Cuebee, that features integrated use of Web services. We demonstrate the use and benefit of SPSE using example queries for identifying gene knockout targets of Trypanosoma cruzi for vaccine development. Answers to these queries involve looking up multiple sources of data, linking them together and presenting the results. The SPSE facilitates parasitologists in leveraging the growing, but disparate, parasite data resources by offering an integrative platform that utilizes Semantic Web techniques, while keeping their workload increase minimal.
A Series of Computational Neuroscience Labs Increases Comfort with MATLAB.
Nichols, David F
2015-01-01
Computational simulations allow for a low-cost, reliable means to demonstrate complex and often times inaccessible concepts to undergraduates. However, students without prior computer programming training may find working with code-based simulations to be intimidating and distracting. A series of computational neuroscience labs involving the Hodgkin-Huxley equations, an Integrate-and-Fire model, and a Hopfield Memory network were used in an undergraduate neuroscience laboratory component of an introductory level course. Using short focused surveys before and after each lab, student comfort levels were shown to increase drastically from a majority of students being uncomfortable or with neutral feelings about working in the MATLAB environment to a vast majority of students being comfortable working in the environment. Though change was reported within each lab, a series of labs was necessary in order to establish a lasting high level of comfort. Comfort working with code is important as a first step in acquiring computational skills that are required to address many questions within neuroscience.
A Series of Computational Neuroscience Labs Increases Comfort with MATLAB
Nichols, David F.
2015-01-01
Computational simulations allow for a low-cost, reliable means to demonstrate complex and often times inaccessible concepts to undergraduates. However, students without prior computer programming training may find working with code-based simulations to be intimidating and distracting. A series of computational neuroscience labs involving the Hodgkin-Huxley equations, an Integrate-and-Fire model, and a Hopfield Memory network were used in an undergraduate neuroscience laboratory component of an introductory level course. Using short focused surveys before and after each lab, student comfort levels were shown to increase drastically from a majority of students being uncomfortable or with neutral feelings about working in the MATLAB environment to a vast majority of students being comfortable working in the environment. Though change was reported within each lab, a series of labs was necessary in order to establish a lasting high level of comfort. Comfort working with code is important as a first step in acquiring computational skills that are required to address many questions within neuroscience. PMID:26557798
Teaching computer interfacing with virtual instruments in an object-oriented language.
Gulotta, M
1995-01-01
LabVIEW is a graphic object-oriented computer language developed to facilitate hardware/software communication. LabVIEW is a complete computer language that can be used like Basic, FORTRAN, or C. In LabVIEW one creates virtual instruments that aesthetically look like real instruments but are controlled by sophisticated computer programs. There are several levels of data acquisition VIs that make it easy to control data flow, and many signal processing and analysis algorithms come with the software as premade VIs. In the classroom, the similarity between virtual and real instruments helps students understand how information is passed between the computer and attached instruments. The software may be used in the absence of hardware so that students can work at home as well as in the classroom. This article demonstrates how LabVIEW can be used to control data flow between computers and instruments, points out important features for signal processing and analysis, and shows how virtual instruments may be used in place of physical instrumentation. Applications of LabVIEW to the teaching laboratory are also discussed, and a plausible course outline is given. PMID:8580361
Teaching computer interfacing with virtual instruments in an object-oriented language.
Gulotta, M
1995-11-01
LabVIEW is a graphic object-oriented computer language developed to facilitate hardware/software communication. LabVIEW is a complete computer language that can be used like Basic, FORTRAN, or C. In LabVIEW one creates virtual instruments that aesthetically look like real instruments but are controlled by sophisticated computer programs. There are several levels of data acquisition VIs that make it easy to control data flow, and many signal processing and analysis algorithms come with the software as premade VIs. In the classroom, the similarity between virtual and real instruments helps students understand how information is passed between the computer and attached instruments. The software may be used in the absence of hardware so that students can work at home as well as in the classroom. This article demonstrates how LabVIEW can be used to control data flow between computers and instruments, points out important features for signal processing and analysis, and shows how virtual instruments may be used in place of physical instrumentation. Applications of LabVIEW to the teaching laboratory are also discussed, and a plausible course outline is given.
Berkeley lab checkpoint/restart (BLCR) for Linux clusters
Hargrove, Paul H.; Duell, Jason C.
2006-09-01
This article describes the motivation, design and implementation of Berkeley Lab Checkpoint/Restart (BLCR), a system-level checkpoint/restart implementation for Linux clusters that targets the space of typical High Performance Computing applications, including MPI. Application-level solutions, including both checkpointing and fault-tolerant algorithms, are recognized as more time and space efficient than system-level checkpoints, which cannot make use of any application-specific knowledge. However, system-level checkpointing allows for preemption, making it suitable for responding to fault precursors (for instance, elevated error rates from ECC memory or network CRCs, or elevated temperature from sensors). Preemption can also increase the efficiency of batch scheduling; for instancemore » reducing idle cycles (by allowing for shutdown without any queue draining period or reallocation of resources to eliminate idle nodes when better fitting jobs are queued), and reducing the average queued time (by limiting large jobs to running during off-peak hours, without the need to limit the length of such jobs). Each of these potential uses makes BLCR a valuable tool for efficient resource management in Linux clusters. © 2006 IOP Publishing Ltd.« less
ERIC Educational Resources Information Center
Swanson, Dewey A.; Phillips, Julie A.
At the Purdue University School of Technology (PST) at Columbus, Indiana, the Total Quality Management (TQM) philosophy was used in the computer laboratories to better meet student needs. A customer satisfaction survey was conducted to gather data on lab facilities, lab assistants, and hardware/software; other sections of the survey included…
Program Processes Thermocouple Readings
NASA Technical Reports Server (NTRS)
Quave, Christine A.; Nail, William, III
1995-01-01
Digital Signal Processor for Thermocouples (DART) computer program implements precise and fast method of converting voltage to temperature for large-temperature-range thermocouple applications. Written using LabVIEW software. DART available only as object code for use on Macintosh II FX or higher-series computers running System 7.0 or later and IBM PC-series and compatible computers running Microsoft Windows 3.1. Macintosh version of DART (SSC-00032) requires LabVIEW 2.2.1 or 3.0 for execution. IBM PC version (SSC-00031) requires LabVIEW 3.0 for Windows 3.1. LabVIEW software product of National Instruments and not included with program.
LBNL Computational ResearchTheory Facility Groundbreaking - Full Press Conference. Feb 1st, 2012
Yelick, Kathy
2018-01-24
Energy Secretary Steven Chu, along with Berkeley Lab and UC leaders, broke ground on the Lab's Computational Research and Theory (CRT) facility yesterday. The CRT will be at the forefront of high-performance supercomputing research and be DOE's most efficient facility of its kind. Joining Secretary Chu as speakers were Lab Director Paul Alivisatos, UC President Mark Yudof, Office of Science Director Bill Brinkman, and UC Berkeley Chancellor Robert Birgeneau. The festivities were emceed by Associate Lab Director for Computing Sciences, Kathy Yelick, and Berkeley Mayor Tom Bates joined in the shovel ceremony.
LBNL Computational Research and Theory Facility Groundbreaking. February 1st, 2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yelick, Kathy
2012-02-02
Energy Secretary Steven Chu, along with Berkeley Lab and UC leaders, broke ground on the Lab's Computational Research and Theory (CRT) facility yesterday. The CRT will be at the forefront of high-performance supercomputing research and be DOE's most efficient facility of its kind. Joining Secretary Chu as speakers were Lab Director Paul Alivisatos, UC President Mark Yudof, Office of Science Director Bill Brinkman, and UC Berkeley Chancellor Robert Birgeneau. The festivities were emceed by Associate Lab Director for Computing Sciences, Kathy Yelick, and Berkeley Mayor Tom Bates joined in the shovel ceremony.
LBNL Computational Research and Theory Facility Groundbreaking. February 1st, 2012
Yelick, Kathy
2017-12-09
Energy Secretary Steven Chu, along with Berkeley Lab and UC leaders, broke ground on the Lab's Computational Research and Theory (CRT) facility yesterday. The CRT will be at the forefront of high-performance supercomputing research and be DOE's most efficient facility of its kind. Joining Secretary Chu as speakers were Lab Director Paul Alivisatos, UC President Mark Yudof, Office of Science Director Bill Brinkman, and UC Berkeley Chancellor Robert Birgeneau. The festivities were emceed by Associate Lab Director for Computing Sciences, Kathy Yelick, and Berkeley Mayor Tom Bates joined in the shovel ceremony.
ERIC Educational Resources Information Center
Balakrishnan, B.; Woods, P. C.
2013-01-01
Over the years, rapid development in computer technology has engendered simulation-based laboratory (lab) in addition to the traditional hands-on (physical) lab. Many higher education institutions adopt simulation lab, replacing some existing physical lab experiments. The creation of new systems for conducting engineering lab activities has raised…
Cloudbursting - Solving the 3-body problem
NASA Astrophysics Data System (ADS)
Chang, G.; Heistand, S.; Vakhnin, A.; Huang, T.; Zimdars, P.; Hua, H.; Hood, R.; Koenig, J.; Mehrotra, P.; Little, M. M.; Law, E.
2014-12-01
Many science projects in the future will be accomplished through collaboration among 2 or more NASA centers along with, potentially, external scientists. Science teams will be composed of more geographically dispersed individuals and groups. However, the current computing environment does not make this easy and seamless. By being able to share computing resources among members of a multi-center team working on a science/ engineering project, limited pre-competition funds could be more efficiently applied and technical work could be conducted more effectively with less time spent moving data or waiting for computing resources to free up. Based on the work from an NASA CIO IT Labs task, this presentation will highlight our prototype work in identifying the feasibility and identify the obstacles, both technical and management, to perform "Cloudbursting" among private clouds located at three different centers. We will demonstrate the use of private cloud computing infrastructure at the Jet Propulsion Laboratory, Langley Research Center, and Ames Research Center to provide elastic computation to each other to perform parallel Earth Science data imaging. We leverage elastic load balancing and auto-scaling features at each data center so that each location can independently define how many resources to allocate to a particular job that was "bursted" from another data center and demonstrate that compute capacity scales up and down with the job. We will also discuss future work in the area, which could include the use of cloud infrastructure from different cloud framework providers as well as other cloud service providers.
Berkeley Lab - Materials Sciences Division
Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials Investigators Division Staff Facilities and Centers Staff Jobs Safety Personnel Resources Committees In Case of
A Comparison of the Effects of Random Versus Fixed Order of Item Presentation Via the Computer
1989-02-01
Copies) Dr. Hans Crombag Dr. Stephen Dunbar University of Leyden Lindquist Center Education Research Center for Measurement Boerhaavelaan 2 University of...Iowa 2334 EN Leyden Iowa City, IA 52242 The NETHERLANDS Dr. James A. Earles Dr. Timothy Davey Air Force Human Resources Lab Educational Testing...Montague 4401 Ford Avenue NPRDC Code 13 P.O. Box 16268 San Diego, CA 92152-6800 Alexandria, VA 22302-0268 Ms. Kathleen Moreno Dr..William L. Maloy
ERIC Educational Resources Information Center
Gercek, Gokhan; Saleem, Naveed
2006-01-01
Providing adequate computing lab support for Management Information Systems (MIS) and Computer Science (CS) programs is a perennial challenge for most academic institutions in the US and abroad. Factors, such as lack of physical space, budgetary constraints, conflicting needs of different courses, and rapid obsolescence of computing technology,…
Logistics in the Computer Lab.
ERIC Educational Resources Information Center
Cowles, Jim
1989-01-01
Discusses ways to provide good computer laboratory facilities for elementary and secondary schools. Topics discussed include establishing the computer lab and selecting hardware; types of software; physical layout of the room; printers; networking possibilities; considerations relating to the physical environment; and scheduling methods. (LRW)
The University of Ibadan/Grass Foundation Workshop in Neuroscience Teaching
Dzakpasu, Rhonda; Johnson, Bruce R.; Olopade, James O.
2017-01-01
The University of Ibadan/Grass Foundation Workshop in Neuroscience Teaching (March 31st to April 2nd, 2017) in Ibadan, Nigeria was sponsored by the Grass Foundation as a “proof of principle” outreach program for young neuroscience faculty at Nigerian universities with limited educational and research resources. The workshop’s goal was to introduce low cost equipment for student lab exercises and computational tutorials that could enhance the teaching and research capabilities of local neuroscience educators. Participant assessment of the workshop’s activities was very positive and suggested that similar workshops for other faculty from institutions with limited resources could have a great impact on the quality of both the undergraduate and faculty experience. PMID:29371853
Games and Simulations for Climate, Weather and Earth Science Education
NASA Astrophysics Data System (ADS)
Russell, R. M.
2013-12-01
We will demonstrate several interactive, computer-based simulations, games, and other interactive multimedia. These resources were developed for weather, climate, atmospheric science, and related Earth system science education. The materials were created by education groups at NCAR/UCAR in Boulder, primarily Spark and the COMET Program. These materials have been disseminated via Spark's web site (spark.ucar.edu), webinars, online courses, teacher workshops, and large touchscreen displays in weather and Sun-Earth connections exhibits in NCAR's Mesa Lab facility. Spark has also assembled a web-based list of similar resources, especially simulations and games, from other sources that touch upon weather, climate, and atmospheric science topics. We'll briefly demonstrate this directory.
Games and Simulations for Climate, Weather and Earth Science Education
NASA Astrophysics Data System (ADS)
Russell, R. M.; Clark, S.
2015-12-01
We will demonstrate several interactive, computer-based simulations, games, and other interactive multimedia. These resources were developed for weather, climate, atmospheric science, and related Earth system science education. The materials were created by the UCAR Center for Science Education. These materials have been disseminated via our web site (SciEd.ucar.edu), webinars, online courses, teacher workshops, and large touchscreen displays in weather and Sun-Earth connections exhibits in NCAR's Mesa Lab facility in Boulder, Colorado. Our group has also assembled a web-based list of similar resources, especially simulations and games, from other sources that touch upon weather, climate, and atmospheric science topics. We'll briefly demonstrate this directory.
Hire Payroll, Taxes Retirees Travel Verification of Employment Life at the Lab Career Stories Dual Careers Inclusion & Diversity Work-Life Balance Career Resources Apply for a Job Postdocs Students Employees (need password) Dual Career Services Educational Assistance, Scholarships Housing Life at the Lab
The Computer-Networked Writing Lab: One Instructor's View. ERIC Digest.
ERIC Educational Resources Information Center
Puccio, P. M.
According to an instructor of basic writing in the Writing Lab at the University of Massachusetts in Amherst, he can teach differently in a computer-networked writing lab than he did in a conventional classroom. Because the room is designed to teach writing and nothing else, it offers a congenial workspace where the teacher can interact with…
Online Physics Lab Exercises--A Binational Study on the Transfer of Teaching Resources
ERIC Educational Resources Information Center
Theyßen, Heike; Struzyna, Sarah; Mylott, Elliot; Widenhorn, Ralf
2016-01-01
In this paper, we present the design and the results of a comparative study that evaluated the success of a transfer of an online-teaching resource between two universities, one in Germany and one in the USA. The teaching resource is an online physics lab that has been used in the physics education of medical students in Germany since 2003. The…
ESIP Lab: Supporting Development of Earth Sciences Cyberinfrastructure through Innovation Commons
NASA Astrophysics Data System (ADS)
Burgess, A. B.; Robinson, E.
2017-12-01
The Earth Science Information Partners (ESIP) is an open, networked community that brings together science, data and information technology practitioners from across sectors. Participation in ESIP is beneficial because it provides an intellectual commons to expose, gather and enhance in-house capabilities in support of an organization's own mandate. Recently, ESIP has begun to explore piloting activities that have worked in the U.S. in other countries as a way to facilitate international collaboration and cross-pollination. The newly formed ESIP Lab realizes the commons concept by providing a virtual place to come up with with new solutions through facilitated ideation, take that idea to a low stakes development environment and potentially fail, but if successful, expose developing technology to domain experts through a technology evaluation process. The Lab does this by supporting and funding solution-oriented projects that have discrete development periods and associated budgets across organizations and agencies. In addition, the Lab provides access to AWS cloud computing resources, travel support, virtual and in-person collaborative platform for distributed groups and exposure to the ESIP community as an expert pool. This cycle of ideation to incubation to evaluation and ultimately adoption or infusion of Earth sciences cyberinfrastructure empowers the scientific community and has spawned a variety of developments like community-led ontology portals, ideas for W3C prov standard improvement and an evaluation framework that pushes technology forward and aides in infusion. The Lab is one of these concepts that could be implemented in other countries and the outputs of the Lab would be shared as a commons and available across traditional borders. This presentation will share the methods and the outcomes of the Lab and seed ideas for adoption internationally.
Large Data at Small Universities: Astronomical processing using a computer classroom
NASA Astrophysics Data System (ADS)
Fuller, Nathaniel James; Clarkson, William I.; Fluharty, Bill; Belanger, Zach; Dage, Kristen
2016-06-01
The use of large computing clusters for astronomy research is becoming more commonplace as datasets expand, but access to these required resources is sometimes difficult for research groups working at smaller Universities. As an alternative to purchasing processing time on an off-site computing cluster, or purchasing dedicated hardware, we show how one can easily build a crude on-site cluster by utilizing idle cycles on instructional computers in computer-lab classrooms. Since these computers are maintained as part of the educational mission of the University, the resource impact on the investigator is generally low.By using open source Python routines, it is possible to have a large number of desktop computers working together via a local network to sort through large data sets. By running traditional analysis routines in an “embarrassingly parallel” manner, gains in speed are accomplished without requiring the investigator to learn how to write routines using highly specialized methodology. We demonstrate this concept here applied to 1. photometry of large-format images and 2. Statistical significance-tests for X-ray lightcurve analysis. In these scenarios, we see a speed-up factor which scales almost linearly with the number of cores in the cluster. Additionally, we show that the usage of the cluster does not severely limit performance for a local user, and indeed the processing can be performed while the computers are in use for classroom purposes.
Strain, J J; Felciano, R M; Seiver, A; Acuff, R; Fagan, L
1996-01-01
Approximately 30 minutes of computer access time are required by surgical residents at Stanford University Medical Center (SUMC) to examine the lab values of all patients on a surgical intensive care unit (ICU) service, a task that must be performed several times a day. To reduce the time accessing this information and simultaneously increase the readability and currency of the data, we have created a mobile, pen-based user interface and software system that delivers lab results to surgeons in the ICU. The ScroungeMaster system, loaded on a portable tablet computer, retrieves lab results for a subset of patients from the central laboratory computer and stores them in a local database cache. The cache can be updated on command; this update takes approximately 2.7 minutes for all ICU patients being followed by the surgeon, and can be performed as a background task while the user continues to access selected lab results. The user interface presents lab results according to physiologic system. Which labs are displayed first is governed by a layout selection algorithm based on previous accesses to the patient's lab information, physician preferences, and the nature of the patient's medical condition. Initial evaluation of the system has shown that physicians prefer the ScroungeMaster interface to that of existing systems at SUMC and are satisfied with the system's performance. We discuss the evolution of ScroungeMaster and make observations on changes to physician work flow with the presence of mobile, pen-based computing in the ICU.
The Development of MSFC Usability Lab
NASA Technical Reports Server (NTRS)
Cheng, Yiwei; Richardson, Sally
2010-01-01
This conference poster reviews the development of the usability lab at Marshall Space Flight Center. The purpose of the lab was to integrate a fully functioning usability laboratory to provide a resource for future human factor assessments. and to implement preliminary usability testing on a MSFC website to validate the functionality of the lab.
ERIC Educational Resources Information Center
Furberg, Anniken
2016-01-01
This paper reports on a study of teacher support in a setting where students engaged with computer-supported collaborative learning (CSCL) in science. The empirical basis is an intervention study where secondary school students and their teacher performed a lab experiment in genetics supported by a digital learning environment. The analytical…
Life Lab Computer Support System's Manual.
ERIC Educational Resources Information Center
Lippman, Beatrice D.; Walfish, Stephen
Step-by-step procedures for utilizing the computer support system of Miami-Dade Community College's Life Lab program are described for the following categories: (1) Registration--Student's Lists and Labels, including three separate computer programs for current listings, next semester listings, and grade listings; (2) Competence and Resource…
NASA Astrophysics Data System (ADS)
Smith-Konter, B.; Jacobs, A.; Lawrence, K.; Kilb, D.
2006-12-01
The most effective means of communicating science to today's "high-tech" students is through the use of visually attractive and animated lessons, hands-on activities, and interactive Internet-based exercises. To address these needs, we have developed Earthquakes in Action, a summer high school enrichment course offered through the California State Summer School for Mathematics and Science (COSMOS) Program at the University of California, San Diego. The summer course consists of classroom lectures, lab experiments, and a final research project designed to foster geophysical innovations, technological inquiries, and effective scientific communication (http://topex.ucsd.edu/cosmos/earthquakes). Course content includes lessons on plate tectonics, seismic wave behavior, seismometer construction, fault characteristics, California seismicity, global seismic hazards, earthquake stress triggering, tsunami generation, and geodetic measurements of the Earth's crust. Students are introduced to these topics through lectures-made-fun using a range of multimedia, including computer animations, videos, and interactive 3-D visualizations. These lessons are further enforced through both hands-on lab experiments and computer-based exercises. Lab experiments included building hand-held seismometers, simulating the frictional behavior of faults using bricks and sandpaper, simulating tsunami generation in a mini-wave pool, and using the Internet to collect global earthquake data on a daily basis and map earthquake locations using a large classroom map. Students also use Internet resources like Google Earth and UNAVCO/EarthScope's Jules Verne Voyager Jr. interactive mapping tool to study Earth Science on a global scale. All computer-based exercises and experiments developed for Earthquakes in Action have been distributed to teachers participating in the 2006 Earthquake Education Workshop, hosted by the Visualization Center at Scripps Institution of Oceanography (http://siovizcenter.ucsd.edu/workshop). In addition to daily lecture and lab exercises, COSMOS students also conduct a mini-research project of their choice that uses data ranging from the 2004 Parkfield Earthquake, to Southern California seismicity, to global seismicity. Students collect seismic data from the Internet and evaluate earthquake locations, magnitudes, temporal sequence of seismic activity, active fault planes, and plate tectonic boundaries using research quality techniques. Students are given the opportunity to build 3-D visualizations of their research data sets and archive these at the SIO Visualization Center's online library, which is globally accessible to students, teachers, researchers, and the general public (http://www.siovizcenter.ucsd.edu/library.php). These student- generated visualizations have become a practical resource for not only students and teachers, but also geophysical researchers that use the visual objects as research tools to better explore and understand their data. Through Earthquakes in Action, we offer both the tools for scientific exploration and the thrills of scientific discovery, providing students with valuable knowledge, novel research experience, and a unique sense of scientific contribution.
Synchronized Pair Configuration in Virtualization-Based Lab for Learning Computer Networks
ERIC Educational Resources Information Center
Kongcharoen, Chaknarin; Hwang, Wu-Yuin; Ghinea, Gheorghita
2017-01-01
More studies are concentrating on using virtualization-based labs to facilitate computer or network learning concepts. Some benefits are lower hardware costs and greater flexibility in reconfiguring computer and network environments. However, few studies have investigated effective mechanisms for using virtualization fully for collaboration.…
Report to the Institutional Computing Executive Group (ICEG) August 14, 2006
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carnes, B
We have delayed this report from its normal distribution schedule for two reasons. First, due to the coverage provided in the White Paper on Institutional Capability Computing Requirements distributed in August 2005, we felt a separate 2005 ICEG report would not be value added. Second, we wished to provide some specific information about the Peloton procurement and we have just now reached a point in the process where we can make some definitive statements. The Peloton procurement will result in an almost complete replacement of current M&IC systems. We have plans to retire MCR, iLX, and GPS. We will replacemore » them with new parallel and serial capacity systems based on the same node architecture in the new Peloton capability system named ATLAS. We are currently adding the first users to the Green Data Oasis, a large file system on the open network that will provide the institution with external collaboration data sharing. Only Thunder will remain from the current M&IC system list and it will be converted from Capability to Capacity. We are confident that we are entering a challenging yet rewarding new phase for the M&IC program. Institutional computing has been an essential component of our S&T investment strategy and has helped us achieve recognition in many scientific and technical forums. Through consistent institutional investments, M&IC has grown into a powerful unclassified computing resource that is being used across the Lab to push the limits of computing and its application to simulation science. With the addition of Peloton, the Laboratory will significantly increase the broad-based computing resources available to meet the ever-increasing demand for the large scale simulations indispensable to advancing all scientific disciplines. All Lab research efforts are bolstered through the long term development of mission driven scalable applications and platforms. The new systems will soon be fully utilized and will position Livermore to extend the outstanding science and technology breakthroughs the M&IC program has enabled to date.« less
Damanakis, Alexander; Blaum, Wolf E.; Stosch, Christoph; Lauener, Hansjörg; Richter, Sabine; Schnabel, Kai P.
2013-01-01
During the last decade, medical education in the German-speaking world has been striving to become more practice-oriented. This is currently being achieved in many schools through the implementation of simulation-based instruction in Skills Labs. Simulators are thus an essential part of this type of medical training, and their acquisition and operation by a Skills Lab require a large outlay of resources. Therefore, the Practical Skills Committee of the Medical Education Society (GMA) introduced a new project, which aims to improve the flow of information between the Skills Labs and enable a transparent assessment of the simulators via an online database (the Simulator Network). PMID:23467581
Community College Uses a Video-Game Lab to Lure Students to Computer Courses
ERIC Educational Resources Information Center
Young, Jeffrey R.
2007-01-01
A computer lab has become one of the most popular hangouts at Northern Virginia Community College after officials decided to load its PCs with popular video games, install a PlayStation and an Xbox, and declare it "for gamers only." The goal of this lab is to entice students to take game-design and other IT courses. John Min, dean of…
Human and Robotic Space Mission Use Cases for High-Performance Spaceflight Computing
NASA Technical Reports Server (NTRS)
Some, Raphael; Doyle, Richard; Bergman, Larry; Whitaker, William; Powell, Wesley; Johnson, Michael; Goforth, Montgomery; Lowry, Michael
2013-01-01
Spaceflight computing is a key resource in NASA space missions and a core determining factor of spacecraft capability, with ripple effects throughout the spacecraft, end-to-end system, and mission. Onboard computing can be aptly viewed as a "technology multiplier" in that advances provide direct dramatic improvements in flight functions and capabilities across the NASA mission classes, and enable new flight capabilities and mission scenarios, increasing science and exploration return. Space-qualified computing technology, however, has not advanced significantly in well over ten years and the current state of the practice fails to meet the near- to mid-term needs of NASA missions. Recognizing this gap, the NASA Game Changing Development Program (GCDP), under the auspices of the NASA Space Technology Mission Directorate, commissioned a study on space-based computing needs, looking out 15-20 years. The study resulted in a recommendation to pursue high-performance spaceflight computing (HPSC) for next-generation missions, and a decision to partner with the Air Force Research Lab (AFRL) in this development.
SoftLab: A Soft-Computing Software for Experimental Research with Commercialization Aspects
NASA Technical Reports Server (NTRS)
Akbarzadeh-T, M.-R.; Shaikh, T. S.; Ren, J.; Hubbell, Rob; Kumbla, K. K.; Jamshidi, M
1998-01-01
SoftLab is a software environment for research and development in intelligent modeling/control using soft-computing paradigms such as fuzzy logic, neural networks, genetic algorithms, and genetic programs. SoftLab addresses the inadequacies of the existing soft-computing software by supporting comprehensive multidisciplinary functionalities from management tools to engineering systems. Furthermore, the built-in features help the user process/analyze information more efficiently by a friendly yet powerful interface, and will allow the user to specify user-specific processing modules, hence adding to the standard configuration of the software environment.
Towards a Flexible Language Lab for Community Colleges.
ERIC Educational Resources Information Center
Conway, Diana
1992-01-01
Suggestions are offered for ways to modify a typical community college language laboratory to serve diverse student needs. The discussion is based on experiences of Anchorage Community College, which modeled its lab on a learning resources center rather than a traditional lab. (LB)
Games and Simulations for Climate, Weather and Earth Science Education
NASA Astrophysics Data System (ADS)
Russell, R. M.
2014-12-01
We will demonstrate several interactive, computer-based simulations, games, and other interactive multimedia. These resources were developed for weather, climate, atmospheric science, and related Earth system science education. The materials were created by the UCAR Center for Science Education. These materials have been disseminated via our web site (SciEd.ucar.edu), webinars, online courses, teacher workshops, and large touchscreen displays in weather and Sun-Earth connections exhibits in NCAR's Mesa Lab facility in Boulder, Colorado. Our group has also assembled a web-based list of similar resources, especially simulations and games, from other sources that touch upon weather, climate, and atmospheric science topics. We'll briefly demonstrate this directory. More info available at: scied.ucar.edu/events/agu-2014-games-simulations-sessions
PandASoft: Open Source Instructional Laboratory Administration Software
NASA Astrophysics Data System (ADS)
Gay, P. L.; Braasch, P.; Synkova, Y. N.
2004-12-01
PandASoft (Physics and Astronomy Software) is software for organizing and archiving a department's teaching resources and materials. An easy to use, secure interface allows faculty and staff to explore equipment inventories, see what laboratory experiments are available, find handouts, and track what has been used in different classes in the past. Divided into five sections: classes, equipment, laboratories, links, and media, its database cross links materials, allowing users to see what labs are used with which classes, what media and equipment are used with which labs, or simply what equipment is lurking in which room. Written in PHP and MySQL, this software can be installed on any UNIX / Linux platform, including Macintosh OS X. It is designed to allow users to easily customize the headers, footers and colors to blend with existing sites - no programming experience required. While initial data input is labor intensive, the system will save time later by allowing users to quickly answer questions related to what is in inventory, where it is located, how many are in stock, and where online they can learn more. It will also provide a central location for storing PDFs of handouts, and links to applets and cool sites at other universities. PandASoft comes with over 100 links to online resources pre-installed. We would like to thank Dr. Wolfgang Rueckner and the Harvard University Science Center for providing computers and resources for this project.
Virtual Computing Laboratories: A Case Study with Comparisons to Physical Computing Laboratories
ERIC Educational Resources Information Center
Burd, Stephen D.; Seazzu, Alessandro F.; Conway, Christopher
2009-01-01
Current technology enables schools to provide remote or virtual computing labs that can be implemented in multiple ways ranging from remote access to banks of dedicated workstations to sophisticated access to large-scale servers hosting virtualized workstations. This paper reports on the implementation of a specific lab using remote access to…
Integration of Computer Technology Into an Introductory-Level Neuroscience Laboratory
ERIC Educational Resources Information Center
Evert, Denise L.; Goodwin, Gregory; Stavnezer, Amy Jo
2005-01-01
We describe 3 computer-based neuroscience laboratories. In the first 2 labs, we used commercially available interactive software to enhance the study of functional and comparative neuroanatomy and neurophysiology. In the remaining lab, we used customized software and hardware in 2 psychophysiological experiments. With the use of the computer-based…
ERIC Educational Resources Information Center
Elmore, Donald E.; Guayasamin, Ryann C.; Kieffer, Madeleine E.
2010-01-01
As computational modeling plays an increasingly central role in biochemical research, it is important to provide students with exposure to common modeling methods in their undergraduate curriculum. This article describes a series of computer labs designed to introduce undergraduate students to energy minimization, molecular dynamics simulations,…
Buss, Beate; Krautter, Markus; Möltner, Andreas; Weyrich, Peter; Werner, Anne; Jünger, Jana; Nikendei, Christoph
2012-01-01
Purpose: The acquisition of clinical-technical skills is of particular importance for the doctors of tomorrow. Procedural skills are often trained for the first time in skills laboratories, which provide a sheltered learning environment. However, costs to implement and maintain skills laboratories are considerably high. Therefore, the purpose of the present study was to investigate students’ patterns of attendance of voluntary skills-lab training sessions and thereby answer the following question: Is it possible to measure an effect of the theoretical construct related to motivational psychology described in the literature – ‘Assessment drives learning’ – reflected in patterns of attendance at voluntary skills-lab training sessions? By answering this question, design recommendations for curriculum planning and resource management should be derived. Method: A retrospective, descriptive analysis of student skills-lab attendance related to voluntary basic and voluntary advanced skills-lab sessions was conducted. The attendance patterns of a total of 340 third-year medical students in different successive year groups from the Medical Faculty at the University of Heidelberg were assessed. Results: Students showed a preference for voluntary basic skills-lab training sessions, which were relevant to clinical skills assessment, especially at the beginning and at the end of the term. Voluntary advanced skills-lab training sessions without reference to clinical skills assessment were used especially at the beginning of the term, but declined towards the end of term. Conclusion: The results show a clear influence of assessments on students’ attendance at skills-lab training sessions. First recommendations for curriculum design and resource management will be described. Nevertheless, further prospective research studies will be necessary to gain a more comprehensive understanding of the motivational factors impacting students’ utilisation of voluntary skills-lab training in order to reach a sufficient concordance between students’ requirements and faculty offers, as well as resource management. PMID:23255965
TIMESERIESSTREAMING.VI: LabVIEW program for reliable data streaming of large analog time series
NASA Astrophysics Data System (ADS)
Czerwinski, Fabian; Oddershede, Lene B.
2011-02-01
With modern data acquisition devices that work fast and very precise, scientists often face the task of dealing with huge amounts of data. These need to be rapidly processed and stored onto a hard disk. We present a LabVIEW program which reliably streams analog time series of MHz sampling. Its run time has virtually no limitation. We explicitly show how to use the program to extract time series from two experiments: For a photodiode detection system that tracks the position of an optically trapped particle and for a measurement of ionic current through a glass capillary. The program is easy to use and versatile as the input can be any type of analog signal. Also, the data streaming software is simple, highly reliable, and can be easily customized to include, e.g., real-time power spectral analysis and Allan variance noise quantification. Program summaryProgram title: TimeSeriesStreaming.VI Catalogue identifier: AEHT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHT_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 250 No. of bytes in distributed program, including test data, etc.: 63 259 Distribution format: tar.gz Programming language: LabVIEW ( http://www.ni.com/labview/) Computer: Any machine running LabVIEW 8.6 or higher Operating system: Windows XP and Windows 7 RAM: 60-360 Mbyte Classification: 3 Nature of problem: For numerous scientific and engineering applications, it is highly desirable to have an efficient, reliable, and flexible program to perform data streaming of time series sampled with high frequencies and possibly for long time intervals. This type of data acquisition often produces very large amounts of data not easily streamed onto a computer hard disk using standard methods. Solution method: This LabVIEW program is developed to directly stream any kind of time series onto a hard disk. Due to optimized timing and usage of computational resources, such as multicores and protocols for memory usage, this program provides extremely reliable data acquisition. In particular, the program is optimized to deal with large amounts of data, e.g., taken with high sampling frequencies and over long time intervals. The program can be easily customized for time series analyses. Restrictions: Only tested in Windows-operating LabVIEW environments, must use TDMS format, acquisition cards must be LabVIEW compatible, driver DAQmx installed. Running time: As desirable: microseconds to hours
Integrating all medical records to an enterprise viewer.
Li, Haomin; Duan, Huilong; Lu, Xudong; Zhao, Chenhui; An, Jiye
2005-01-01
The idea behind hospital information systems is to make all of a patient's medical reports, lab results, and images electronically available to clinicians, instantaneously, wherever they are. But the higgledy-piggledy evolution of most hospital computer systems makes it hard to integrate all these clinical records. Although several integration standards had been proposed to meet this challenger, none of them is fit to Chinese hospitals. In this paper, we introduce our work of implementing a three-tiered architecture enterprise viewer in Huzhou Central Hospital to integration all existing medical information systems using limited resource.
A microprogrammable radar controller
NASA Technical Reports Server (NTRS)
Law, D. C.
1986-01-01
The Wave Propagation Lab. has completed the design and construction of a microprogrammable radar controller for atmospheric wind profiling. Unlike some radar controllers using state machines or hardwired logic for radar timing, this design is a high speed programmable sequencer with signal processing resources. A block diagram of the device is shown. The device is a single 8 1/2 inch by 10 1/2 inch printed circuit board and consists of three main subsections: (1) the host computer interface; (2) the microprogram sequencer; and (3) the signal processing circuitry. Each of these subsections are described in detail.
Assessing Usage and Maximizing Finance Lab Impact: A Case Exploration
ERIC Educational Resources Information Center
Noguera, Magdy; Budden, Michael Craig; Silva, Alberto
2011-01-01
This paper reports the results of a survey conducted to assess students' usage and perceptions of a finance lab. Finance labs differ from simple computer labs as they typically contain data boards, streaming market quotes, terminals and software that allow for real-time financial analyses. Despite the fact that such labs represent significant and…
NASA Astrophysics Data System (ADS)
Cowell, Martin Andrew
The world already hosts more internet connected devices than people, and that ratio is only increasing. These devices seamlessly integrate with peoples lives to collect rich data and give immediate feedback about complex systems from business, health care, transportation, and security. As every aspect of global economies integrate distributed computing into their industrial systems and these systems benefit from rich datasets. Managing the power demands of these distributed computers will be paramount to ensure the continued operation of these networks, and is elegantly addressed by including local energy harvesting and storage on a per-node basis. By replacing non-rechargeable batteries with energy harvesting, wireless sensor nodes will increase their lifetimes by an order of magnitude. This work investigates the coupling of high power energy storage with energy harvesting technologies to power wireless sensor nodes; with sections covering device manufacturing, system integration, and mathematical modeling. First we consider the energy storage mechanism of supercapacitors and batteries, and identify favorable characteristics in both reservoir types. We then discuss experimental methods used to manufacture high power supercapacitors in our labs. We go on to detail the integration of our fabricated devices with collaborating labs to create functional sensor node demonstrations. With the practical knowledge gained through in-lab manufacturing and system integration, we build mathematical models to aid in device and system design. First, we model the mechanism of energy storage in porous graphene supercapacitors to aid in component architecture optimization. We then model the operation of entire sensor nodes for the purpose of optimally sizing the energy harvesting and energy reservoir components. In consideration of deploying these sensor nodes in real-world environments, we model the operation of our energy harvesting and power management systems subject to spatially and temporally varying energy availability in order to understand sensor node reliability. Looking to the future, we see an opportunity for further research to implement machine learning algorithms to control the energy resources of distributed computing networks.
A future for systems and computational neuroscience in France?
Faugeras, Olivier; Frégnac, Yves; Samuelides, Manuel
2007-01-01
This special issue of the Journal of Physiology, Paris, is an outcome of NeuroComp'06, the first French conference in Computational Neuroscience. The preparation for this conference, held at Pont-à-Mousson in October 2006, was accompanied by a survey which has resulted in an up-to-date inventory of human resources and labs in France concerned with this emerging new field of research (see team directory in http://neurocomp.risc.cnrs.fr/). This thematic JPP issue gathers some of the key scientific presentations made on the occasion of this first interdisciplinary meeting, which should soon become recognized as a yearly national conference representative of a new scientific community. The present introductory paper presents the general scientific context of the conference and reviews some of the historical and conceptual foundations of Systems and Computational Neuroscience in France.
The Evidence and Conclusion Ontology (ECO): Supporting GO Annotations.
Chibucos, Marcus C; Siegele, Deborah A; Hu, James C; Giglio, Michelle
2017-01-01
The Evidence and Conclusion Ontology (ECO) is a community resource for describing the various types of evidence that are generated during the course of a scientific study and which are typically used to support assertions made by researchers. ECO describes multiple evidence types, including evidence resulting from experimental (i.e., wet lab) techniques, evidence arising from computational methods, statements made by authors (whether or not supported by evidence), and inferences drawn by researchers curating the literature. In addition to summarizing the evidence that supports a particular assertion, ECO also offers a means to document whether a computer or a human performed the process of making the annotation. Incorporating ECO into an annotation system makes it possible to leverage the structure of the ontology such that associated data can be grouped hierarchically, users can select data associated with particular evidence types, and quality control pipelines can be optimized. Today, over 30 resources, including the Gene Ontology, use the Evidence and Conclusion Ontology to represent both evidence and how annotations are made.
ERIC Educational Resources Information Center
MacMillan, Don
2010-01-01
This case study describes an information literacy lab for an undergraduate biology course that leads students through a range of resources to discover aspects of genetic information. The lab provides over 560 students per semester with the opportunity for hands-on exploration of resources in steps that simulate the pathways of higher-level…
EarthLabs - Investigating Hurricanes: Earth's Meteorological Monsters
NASA Astrophysics Data System (ADS)
McDaris, J. R.; Dahlman, L.; Barstow, D.
2007-12-01
Earth science is one of the most important tools that the global community needs to address the pressing environmental, social, and economic issues of our time. While, at times considered a second-rate science at the high school level, it is currently undergoing a major revolution in the depth of content and pedagogical vitality. As part of this revolution, labs in Earth science courses need to shift their focus from cookbook-like activities with known outcomes to open-ended investigations that challenge students to think, explore and apply their learning. We need to establish a new model for Earth science as a rigorous lab science in policy, perception, and reality. As a concerted response to this need, five states, a coalition of scientists and educators, and an experienced curriculum team are creating a national model for a lab-based high school Earth science course named EarthLabs. This lab course will comply with the National Science Education Standards as well as the states' curriculum frameworks. The content will focus on Earth system science and environmental literacy. The lab experiences will feature a combination of field work, classroom experiments, and computer access to data and visualizations, and demonstrate the rigor and depth of a true lab course. The effort is being funded by NOAA's Environmental Literacy program. One of the prototype units of the course is Investigating Hurricanes. Hurricanes are phenomena which have tremendous impact on humanity and the resources we use. They are also the result of complex interacting Earth systems, making them perfect objects for rigorous investigation of many concepts commonly covered in Earth science courses, such as meteorology, climate, and global wind circulation. Students are able to use the same data sets, analysis tools, and research techniques that scientists employ in their research, yielding truly authentic learning opportunities. This month-long integrated unit uses hurricanes as the story line by which students investigate the different interactions involved in hurricane generation, steering, and intensification. Students analyze a variety of visualization resources looking for patterns in occurrence and to develop an understanding of hurricane structure. They download archived data about past hurricanes and produce temporal and spatial plots to discover patterns in hurricane life cycles. They investigate the relationship between hurricane wind speed and factors such as barometric pressure and sea surface temperature by conducting spreadsheet analyses on archived data. They also conduct hands-on laboratory experiments in order to understand the physical processes that underpin energy transfer in convection, condensation, and latent heat. These activities highlight Earth science as a vital, rich, invigorating course, employing state-of-the-art technologies and in-depth labs with high relevance for our daily lives and the future.
Safer Soldering Guidelines and Instructional Resources
ERIC Educational Resources Information Center
Love, Tyler S.; Tomlinson, Joel
2018-01-01
Soldering is a useful and necessary process for many classroom, makerspace, Fab Lab, technology and engineering lab, and science lab activities. As described in this article, soldering can pose many safety risks without proper engineering controls, standard operating procedures, and direct instructor supervision. There are many safety hazards…
Integration of High-Performance Computing into Cloud Computing Services
NASA Astrophysics Data System (ADS)
Vouk, Mladen A.; Sills, Eric; Dreher, Patrick
High-Performance Computing (HPC) projects span a spectrum of computer hardware implementations ranging from peta-flop supercomputers, high-end tera-flop facilities running a variety of operating systems and applications, to mid-range and smaller computational clusters used for HPC application development, pilot runs and prototype staging clusters. What they all have in common is that they operate as a stand-alone system rather than a scalable and shared user re-configurable resource. The advent of cloud computing has changed the traditional HPC implementation. In this article, we will discuss a very successful production-level architecture and policy framework for supporting HPC services within a more general cloud computing infrastructure. This integrated environment, called Virtual Computing Lab (VCL), has been operating at NC State since fall 2004. Nearly 8,500,000 HPC CPU-Hrs were delivered by this environment to NC State faculty and students during 2009. In addition, we present and discuss operational data that show that integration of HPC and non-HPC (or general VCL) services in a cloud can substantially reduce the cost of delivering cloud services (down to cents per CPU hour).
Scalable Entity-Based Modeling of Population-Based Systems, Final LDRD Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cleary, A J; Smith, S G; Vassilevska, T K
2005-01-27
The goal of this project has been to develop tools, capabilities and expertise in the modeling of complex population-based systems via scalable entity-based modeling (EBM). Our initial focal application domain has been the dynamics of large populations exposed to disease-causing agents, a topic of interest to the Department of Homeland Security in the context of bioterrorism. In the academic community, discrete simulation technology based on individual entities has shown initial success, but the technology has not been scaled to the problem sizes or computational resources of LLNL. Our developmental emphasis has been on the extension of this technology to parallelmore » computers and maturation of the technology from an academic to a lab setting.« less
The ASCI Network for SC 2000: Gigabyte Per Second Networking
DOE Office of Scientific and Technical Information (OSTI.GOV)
PRATT, THOMAS J.; NAEGLE, JOHN H.; MARTINEZ JR., LUIS G.
2001-11-01
This document highlights the Discom's Distance computing and communication team activities at the 2000 Supercomputing conference in Dallas Texas. This conference is sponsored by the IEEE and ACM. Sandia's participation in the conference has now spanned a decade, for the last five years Sandia National Laboratories, Los Alamos National Lab and Lawrence Livermore National Lab have come together at the conference under the DOE's ASCI, Accelerated Strategic Computing Initiatives, Program rubric to demonstrate ASCI's emerging capabilities in computational science and our combined expertise in high performance computer science and communication networking developments within the program. At SC 2000, DISCOM demonstratedmore » an infrastructure. DISCOM2 uses this forum to demonstrate and focus communication and pre-standard implementation of 10 Gigabit Ethernet, the first gigabyte per second data IP network transfer application, and VPN technology that enabled a remote Distributed Resource Management tools demonstration. Additionally a national OC48 POS network was constructed to support applications running between the show floor and home facilities. This network created the opportunity to test PSE's Parallel File Transfer Protocol (PFTP) across a network that had similar speed and distances as the then proposed DISCOM WAN. The SCINET SC2000 showcased wireless networking and the networking team had the opportunity to explore this emerging technology while on the booth. This paper documents those accomplishments, discusses the details of their convention exhibit floor. We also supported the production networking needs of the implementation, and describes how these demonstrations supports DISCOM overall strategies in high performance computing networking.« less
The Effectiveness of Using Virtual Laboratories to Teach Computer Networking Skills in Zambia
ERIC Educational Resources Information Center
Lampi, Evans
2013-01-01
The effectiveness of using virtual labs to train students in computer networking skills, when real equipment is limited or unavailable, is uncertain. The purpose of this study was to determine the effectiveness of using virtual labs to train students in the acquisition of computer network configuration and troubleshooting skills. The study was…
Online Writing Labs as Sites for Community Engagement
ERIC Educational Resources Information Center
Wells, Jaclyn Michelle
2010-01-01
This dissertation investigates the Community Writing and Education Station (CWEST), a community engagement project that partners a community adult basic literacy program with a university writing lab. The author argues that the community and university partners, the Lafayette Adult Resource Academy (LARA) and the Purdue Writing Lab, offer positive…
Networking Labs in the Online Environment: Indicators for Success
ERIC Educational Resources Information Center
Lahoud, Hilmi A.; Krichen, Jack P.
2010-01-01
Several techniques have been used to provide hands-on educational experiences to online learners, including remote labs, simulation software, and virtual labs, which offer a more structured environment, including simulations and scheduled asynchronous access to physical resources. This exploratory study investigated how these methods can be used…
Using Computer Simulations to Integrate Learning.
ERIC Educational Resources Information Center
Liao, Thomas T.
1983-01-01
Describes the primary design criteria and the classroom activities involved in "The Yellow Light Problem," a minicourse on decision making in the secondary school Mathematics, Engineering and Science Achievement (MESA) program in California. Activities include lectures, discussions, science and math labs, computer labs, and development…
... Record Research & Training Medical Research Initiatives Science Highlights Science Education Research in NIH Labs & Clinics Training Opportunities Library Resources Research Resources Clinical Research Resources Safety, Regulation ...
Berkeley Lab 2nd Grader Outreach
Scoggins, Jackie; Louie, Virginia
2017-12-11
The Berkeley Lab IT Department sponsored a community outreach program aimed at teaching young children about computers and networks. Second graders from LeConte Elementary School joined Lab IT Staff for a day of in-depth exercises and fun.
Innovative Use of a Classroom Response System During Physics Lab
NASA Astrophysics Data System (ADS)
Walgren, Jay
2011-01-01
More and more physics instructors are making use of personal/classroom response systems or "clickers." The use of clickers to engage students with multiple-choice questions during lecture and available instructor resources for clickers have been well documented in this journal.1-4 Newer-generation clickers, which I refer to as classroom response systems (CRS), have evolved to accept numeric answers (such as 9.81) instead of just single "multiple-choice" entries (Fig. 1). This advancement is available from most major clicker companies and allows for a greater variety of engaging questions during lecture. In addition, these new "numeric ready" clickers are marketed to be used for student assessments. During a test or quiz, students' answers are entered into their clicker instead of on paper or Scantron® and immediately absorbed by wireless connection into a computer for grading and analysis. I recognize the usefulness and benefit these new-generation CRSs provide for many instructors. However, I do not use my CRS in either of the aforementioned activities. Instead, I use it in an unconventional way. I use the CRS to electronically capture students' lab data as they are performing a physics lab (Fig. 2). I set up the clickers as if I were going to use them for a test, but instead of entering answers to a test, my students enter lab data as they collect it. In this paper I discuss my use of a classroom response system during physics laboratory and three benefits that result: 1) Students are encouraged to "take ownership of" and "have integrity with" their physics lab data. 2) Students' measuring and unit conversion deficiencies are identified immediately during the lab. 3) The process of grading students' labs is simplified because the results of each student's lab calculations can be pre-calculated for the instructor using a spreadsheet. My use of clickers during lab can be implemented with most clicker systems available to instructors today. The CRS I use is the eInstruction's® Classroom Performance System™ (CPS™).5 (Fig. 1)
Jackson, M E; Gnadt, J W
1999-03-01
The object-oriented graphical programming language LabView was used to implement the numerical solution to a computational model of saccade generation in primates. The computational model simulates the activity and connectivity of anatomical strictures known to be involved in saccadic eye movements. The LabView program provides a graphical user interface to the model that makes it easy to observe and modify the behavior of each element of the model. Essential elements of the source code of the LabView program are presented and explained. A copy of the model is available for download from the internet.
Protein Linked to Atopic Dermatitis
... Record Research & Training Medical Research Initiatives Science Highlights Science Education Research in NIH Labs & Clinics Training Opportunities Library Resources Research Resources Clinical Research Resources Safety, Regulation ...
LabVIEW: a software system for data acquisition, data analysis, and instrument control.
Kalkman, C J
1995-01-01
Computer-based data acquisition systems play an important role in clinical monitoring and in the development of new monitoring tools. LabVIEW (National Instruments, Austin, TX) is a data acquisition and programming environment that allows flexible acquisition and processing of analog and digital data. The main feature that distinguishes LabVIEW from other data acquisition programs is its highly modular graphical programming language, "G," and a large library of mathematical and statistical functions. The advantage of graphical programming is that the code is flexible, reusable, and self-documenting. Subroutines can be saved in a library and reused without modification in other programs. This dramatically reduces development time and enables researchers to develop or modify their own programs. LabVIEW uses a large amount of processing power and computer memory, thus requiring a powerful computer. A large-screen monitor is desirable when developing larger applications. LabVIEW is excellently suited for testing new monitoring paradigms, analysis algorithms, or user interfaces. The typical LabVIEW user is the researcher who wants to develop a new monitoring technique, a set of new (derived) variables by integrating signals from several existing patient monitors, closed-loop control of a physiological variable, or a physiological simulator.
Tao, Yuan; Liu, Juan
2005-01-01
The Internet has already deflated our world of working and living into a very small scope, thus bringing out the concept of Earth Village, in which people could communicate and co-work though thousands' miles far away from each other. This paper describes a prototype, which is just like an Earth Lab for bioinformatics, based on Web services framework to build up a network architecture for bioinformatics research and for world wide biologists to easily implement enormous, complex processes, and effectively share and access computing resources and data, regardless of how heterogeneous the format of the data is and how decentralized and distributed these resources are around the world. A diminutive and simplified example scenario is given out to realize the prototype after that.
Generator Inspection Report: Bio - Lab, Inc.
Contains report from Georgia Department of Natural Resources of July 21, 1999 inspection of the Bio - Lab Incorporated Plant 4 in Conyers, Rockdale County, Georgia, reporting that no violations were observed.
Cost-effective cloud computing: a case study using the comparative genomics tool, roundup.
Kudtarkar, Parul; Deluca, Todd F; Fusaro, Vincent A; Tonellato, Peter J; Wall, Dennis P
2010-12-22
Comparative genomics resources, such as ortholog detection tools and repositories are rapidly increasing in scale and complexity. Cloud computing is an emerging technological paradigm that enables researchers to dynamically build a dedicated virtual cluster and may represent a valuable alternative for large computational tools in bioinformatics. In the present manuscript, we optimize the computation of a large-scale comparative genomics resource-Roundup-using cloud computing, describe the proper operating principles required to achieve computational efficiency on the cloud, and detail important procedures for improving cost-effectiveness to ensure maximal computation at minimal costs. Utilizing the comparative genomics tool, Roundup, as a case study, we computed orthologs among 902 fully sequenced genomes on Amazon's Elastic Compute Cloud. For managing the ortholog processes, we designed a strategy to deploy the web service, Elastic MapReduce, and maximize the use of the cloud while simultaneously minimizing costs. Specifically, we created a model to estimate cloud runtime based on the size and complexity of the genomes being compared that determines in advance the optimal order of the jobs to be submitted. We computed orthologous relationships for 245,323 genome-to-genome comparisons on Amazon's computing cloud, a computation that required just over 200 hours and cost $8,000 USD, at least 40% less than expected under a strategy in which genome comparisons were submitted to the cloud randomly with respect to runtime. Our cost savings projections were based on a model that not only demonstrates the optimal strategy for deploying RSD to the cloud, but also finds the optimal cluster size to minimize waste and maximize usage. Our cost-reduction model is readily adaptable for other comparative genomics tools and potentially of significant benefit to labs seeking to take advantage of the cloud as an alternative to local computing infrastructure.
The Macintosh Lab Monitor, Numbers 1-4.
ERIC Educational Resources Information Center
Wanderman, Richard; And Others
1987-01-01
Four issues of the "Macintosh Lab Monitor" document the Computer-Aided Writing Project at the Forman School (Connecticut) which is a college preparatory school for bright dyslexic adolescents. The project uses Macintosh computers to teach outlining, writing, organizational and thinking skills. Sample articles have the following titles:…
ERIC Educational Resources Information Center
Dowling, John, Jr.
1972-01-01
Discusses the use of a set of computer programs (FORTRAN IV) in an introductory mechanics course for science majors. One laboratory activity is described for determining the coefficient of restitution of a glider on an air track. A student evaluation for the lab is included in the appendix. (Author/TS)
NIH Clinical Research Trials and You
... Record Research & Training Medical Research Initiatives Science Highlights Science Education Research in NIH Labs & Clinics Training Opportunities Library Resources Research Resources Clinical Research Resources Safety, Regulation ...
Integrated Computational Materials Engineering for Magnesium in Automotive Body Applications
NASA Astrophysics Data System (ADS)
Allison, John E.; Liu, Baicheng; Boyle, Kevin P.; Hector, Lou; McCune, Robert
This paper provides an overview and progress report for an international collaborative project which aims to develop an ICME infrastructure for magnesium for use in automotive body applications. Quantitative processing-micro structure-property relationships are being developed for extruded Mg alloys, sheet-formed Mg alloys and high pressure die cast Mg alloys. These relationships are captured in computational models which are then linked with manufacturing process simulation and used to provide constitutive models for component performance analysis. The long term goal is to capture this information in efficient computational models and in a web-centered knowledge base. The work is being conducted at leading universities, national labs and industrial research facilities in the US, China and Canada. This project is sponsored by the U.S. Department of Energy, the U.S. Automotive Materials Partnership (USAMP), Chinese Ministry of Science and Technology (MOST) and Natural Resources Canada (NRCan).
Multicore: Fallout from a Computing Evolution
Yelick, Kathy [Director, NERSC
2017-12-09
July 22, 2008 Berkeley Lab lecture: Parallel computing used to be reserved for big science and engineering projects, but in two years that's all changed. Even laptops and hand-helds use parallel processors. Unfortunately, the software hasn't kept pace. Kathy Yelick, Director of the National Energy Research Scientific Computing Center at Berkeley Lab, describes the resulting chaos and the computing community's efforts to develop exciting applications that take advantage of tens or hundreds of processors on a single chip.
A Computer Learning Center for Environmental Sciences
NASA Technical Reports Server (NTRS)
Mustard, John F.
2000-01-01
In the fall of 1998, MacMillan Hall opened at Brown University to students. In MacMillan Hall was the new Computer Learning Center, since named the EarthLab which was outfitted with high-end workstations and peripherals primarily focused on the use of remotely sensed and other spatial data in the environmental sciences. The NASA grant we received as part of the "Centers of Excellence in Applications of Remote Sensing to Regional and Global Integrated Environmental Assessments" was the primary source of funds to outfit this learning and research center. Since opening, we have expanded the range of learning and research opportunities and integrated a cross-campus network of disciplines who have come together to learn and use spatial data of all kinds. The EarthLab also forms a core of undergraduate, graduate, and faculty research on environmental problems that draw upon the unique perspective of remotely sensed data. Over the last two years, the Earthlab has been a center for research on the environmental impact of water resource use in and regions, impact of the green revolution on forest cover in India, the design of forest preserves in Vietnam, and detailed assessments of the utility of thermal and hyperspectral data for water quality analysis. It has also been used extensively for local environmental activities, in particular studies on the impact of lead on the health of urban children in Rhode Island. Finally, the EarthLab has also served as a key educational and analysis center for activities related to the Brown University Affiliated Research Center that is devoted to transferring university research to the private sector.
Steroid Treatments Equally Effective Against Sudden Deafness
... Record Research & Training Medical Research Initiatives Science Highlights Science Education Research in NIH Labs & Clinics Training Opportunities Library Resources Research Resources Clinical Research Resources Safety, Regulation ...
Vitamin D Levels Predict Multiple Sclerosis Progression
... Record Research & Training Medical Research Initiatives Science Highlights Science Education Research in NIH Labs & Clinics Training Opportunities Library Resources Research Resources Clinical Research Resources Safety, Regulation ...
Plain Language: Getting Started or Brushing Up
... Record Research & Training Medical Research Initiatives Science Highlights Science Education Research in NIH Labs & Clinics Training Opportunities Library Resources Research Resources Clinical Research Resources Safety, Regulation ...
Student construction of small molecule models using Spartan Model to explore polarity
NASA Astrophysics Data System (ADS)
Dale, Glenn Lamar
2006-12-01
This study compared the attitudes and the gains of knowledge concerning Lewis structures and polarity of molecules. The students performed a lab exercise in which they drew Lewis structures, constructed models of the molecules, determined the geometry of the molecules, and determined the polarity of the molecules. The control group students constructed models using physical ball-and-stick models. The treatment group students used Spartan Model to construct models. Students from a university and a community college participated in this study. Four lab classes at each school made up the treatment group. Five lab classes at the university and three lab classes at the community college made up the control group. The treatment group classes were selected based on available computer resources. All students in the study were given the Lab Pre Test, Lab Post Test, and the Lecture Post Test to assess the student's ability to answer questions pertaining to Lewis structures and polarity of molecules. An Attitudinal Survey assessed the attitudes of the students who participated in the study. Student interviews were performed to assess the student's attitudes towards the lab exercise. The interviews investigated attitudes about the modeling exercise, Lewis structures, and polarity of molecules. There were no significant differences in the performance of the treatment group when compared to the control group on the performance assessment instruments at the university or the community college. The treatment group students at the university had a more positive attitude about the lab activity. They believed that the lab activity helped them better understand the concepts of Lewis structure and molecular polarity. At the community college, the control group students had a more positive attitude about the lab activity. The students involved in the study believed that the lab activity helped them to understand the concepts of molecular geometry and polarity. The interviews of the treatment group students indicated that they strongly believed that the lab activity helped them better understand the concept of Lewis structures and of molecular polarity. As reflected in the interviews of the treatment group and the control group, the lab activity did not help the students be able to look at a Lewis structure and build a mental image of the molecule. The students believed the electrostatic potential plots generated by Spartan Model were very insightful into the concept of polarity. It gave them a visual representation of a difficult topic.
Sustainable dual-use labs: neurovascular interventional capabilities within the cath lab.
Lang, Stacey
2012-01-01
The inclusion of neurovascular interventional capabilities within the cath lab setting can be key to optimal utilization of resources, increased staff efficiency, and streamlined operations. When considering an expansion, look beyond the patient population traditionally associated with cardiac cath labs and consider the integration of programs outside cardiac alone--to create a true dual-use lab space. With proper planning, quality dual purpose equipment, appropriately trained staff, capable physicians, and strong leadership, an organization willing to embrace the challenge can build a truly extraordinary service.
Student's Lab Assignments in PDE Course with MAPLE.
ERIC Educational Resources Information Center
Ponidi, B. Alhadi
Computer-aided software has been used intensively in many mathematics courses, especially in computational subjects, to solve initial value and boundary value problems in Partial Differential Equations (PDE). Many software packages were used in student lab assignments such as FORTRAN, PASCAL, MATLAB, MATHEMATICA, and MAPLE in order to accelerate…
Complete LabVIEW-Controlled HPLC Lab: An Advanced Undergraduate Experience
ERIC Educational Resources Information Center
Beussman, Douglas J.; Walters, John P.
2017-01-01
Virtually all modern chemical instrumentation is controlled by computers. While software packages are continually becoming easier to use, allowing for more researchers to utilize more complex instruments, conveying some level of understanding as to how computers and instruments communicate is still an important part of the undergraduate…
From Computer Lab to Technology Class.
ERIC Educational Resources Information Center
Sherwood, Sandra
1999-01-01
Discussion of integrating technology into elementary school classrooms focuses on teacher training that is based on a three-year plan developed at an elementary school in Marathon, New York. Describes the role of a technology teacher who facilitates technology integration by running the computer lab, offering workshops, and developing inservice…
Music Learning in Your School Computer Lab.
ERIC Educational Resources Information Center
Reese, Sam
1998-01-01
States that a growing number of schools are installing general computer labs equipped to use notation, accompaniment, and sequencing software independent of MIDI keyboards. Discusses (1) how to configure the software without MIDI keyboards or external sound modules, (2) using the actual MIDI software, (3) inexpensive enhancements, and (4) the…
The Hidden Costs of Wireless Computer Labs
ERIC Educational Resources Information Center
Daly, Una
2005-01-01
Various elementary schools and middle schools across the U.S. have purchased one or more mobile laboratories. Although the wireless labs have provided more classroom computing, teachers and technology aides still have mixed views about their cost-benefit ratio. This is because the proliferation of viruses and spyware has dramatically increased…
Restoring Bone Density in Women with Ovarian Disorder
... Record Research & Training Medical Research Initiatives Science Highlights Science Education Research in NIH Labs & Clinics Training Opportunities Library Resources Research Resources Clinical Research Resources Safety, Regulation ...
Protein-Based Urine Test Predicts Kidney Transplant Outcomes
... Record Research & Training Medical Research Initiatives Science Highlights Science Education Research in NIH Labs & Clinics Training Opportunities Library Resources Research Resources Clinical Research Resources Safety, Regulation ...
The Next Wave: Humans, Computers, and Redefining Reality
NASA Technical Reports Server (NTRS)
Little, William
2018-01-01
The Augmented/Virtual Reality (AVR) Lab at KSC is dedicated to " exploration into the growing computer fields of Extended Reality and the Natural User Interface (it is) a proving ground for new technologies that can be integrated into future NASA projects and programs." The topics of Human Computer Interface, Human Computer Interaction, Augmented Reality, Virtual Reality, and Mixed Reality are defined; examples of work being done in these fields in the AVR Lab are given. Current new and future work in Computer Vision, Speech Recognition, and Artificial Intelligence are also outlined.
NASA Astrophysics Data System (ADS)
Mote, A. S.; Ellins, K. K.; Haddad, N.
2011-12-01
Humans are modifying planet Earth at an alarming rate without fully understanding how our actions will affect the atmosphere, hydrosphere, or biosphere. Recognizing the value of educating people to become citizens who can make informed decisions about Earth's resources and challenges, Texas currently offers Earth and Space Science as a rigorous high school capstone course. The new course has created a need for high quality instructional resources and professional development to equip teachers with the most up to date content knowledge, pedagogical approaches, and technological skills to be able to teach a rigorous Earth and Space Science course. As a participant in the NSF-sponsored Texas Earth and Space Science (TXESS) Revolution teacher professional development program, I was selected to participate in a curriculum development project led by TERC to create Earth System Science and climate change resources for the EarthLabs collection. To this end, I am involved in multiple phases of the EarthLabs project, including reviewing the lab-based units during the development phase, pilot teaching the units with my students, participating in research, and ultimately delivering professional development to other teachers to turn them on to the new modules. My partnership with the EarthLabs project has strengthened my teaching practice by increasing my involvement with curriculum development and collaboration and interaction with other Earth science educators. Critically evaluating the lab modules prior to delivering the lessons to my students has prepared me to more effectively teach the EarthLabs modules in my classroom and present the material to other teachers during professional development workshops. The workshop was also strengthened by planning meetings held with EarthLabs partner teachers in which we engaged in lively discussions regarding misconceptions in Earth science, held by both students and adults, and pedagogical approaches to uncover these misconceptions. Collaboration and discussion among members of the EarthLabs team and partner teachers was instrumental to improving the quality of the EarthLabs modules and the professional development workshop. Furthermore, leading the workshop alongside other partner teachers gave me the confidence and experience to deliver professional development to my colleagues and introduce the newly developed EarthLabs modules to other teachers. In this session I will share my experiences and report on the successes, challenges, and lessons learned from being a part of the EarthLabs curriculum and professional development process.
Drug Improves Birth Rates for Women with Ovary Disorder
... Record Research & Training Medical Research Initiatives Science Highlights Science Education Research in NIH Labs & Clinics Training Opportunities Library Resources Research Resources Clinical Research Resources Safety, Regulation ...
Mobile Cloud Computing with SOAP and REST Web Services
NASA Astrophysics Data System (ADS)
Ali, Mushtaq; Fadli Zolkipli, Mohamad; Mohamad Zain, Jasni; Anwar, Shahid
2018-05-01
Mobile computing in conjunction with Mobile web services drives a strong approach where the limitations of mobile devices may possibly be tackled. Mobile Web Services are based on two types of technologies; SOAP and REST, which works with the existing protocols to develop Web services. Both the approaches carry their own distinct features, yet to keep the constraint features of mobile devices in mind, the better in two is considered to be the one which minimize the computation and transmission overhead while offloading. The load transferring of mobile device to remote servers for execution called computational offloading. There are numerous approaches to implement computational offloading a viable solution for eradicating the resources constraints of mobile device, yet a dynamic method of computational offloading is always required for a smooth and simple migration of complex tasks. The intention of this work is to present a distinctive approach which may not engage the mobile resources for longer time. The concept of web services utilized in our work to delegate the computational intensive tasks for remote execution. We tested both SOAP Web services approach and REST Web Services for mobile computing. Two parameters considered in our lab experiments to test; Execution Time and Energy Consumption. The results show that RESTful Web services execution is far better than executing the same application by SOAP Web services approach, in terms of execution time and energy consumption. Conducting experiments with the developed prototype matrix multiplication app, REST execution time is about 200% better than SOAP execution approach. In case of energy consumption REST execution is about 250% better than SOAP execution approach.
ERIC Educational Resources Information Center
Terris, Ben
2010-01-01
Colleges are looking for ways to cut costs, and most students now own laptops. As a result, many campus technology leaders are taking a hard look at those brightly lit rooms with rows of networked computers, which cost hundreds of thousands of dollars a year to maintain. More than 11% of colleges and universities are phasing out computer labs or…
Dawn Usage, Scheduling, and Governance Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Louis, S
2009-11-02
This document describes Dawn use, scheduling, and governance concerns. Users started running full-machine science runs in early April 2009 during the initial open shakedown period. Scheduling Dawn while in the Open Computing Facility (OCF) was controlled and coordinated via phone calls, emails, and a small number of controlled banks. With Dawn moving to the Secure Computing Facility (SCF) in fall of 2009, a more detailed scheduling and governance model is required. The three major objectives are: (1) Ensure Dawn resources are allocated on a program priority-driven basis; (2) Utilize Dawn resources on the job mixes for which they were intended;more » and (3) Minimize idle cycles through use of partitions, banks and proper job mix. The SCF workload for Dawn will be inherently different than Purple or BG/L, and therefore needs a different approach. Dawn's primary function is to permit adequate access for tri-lab code development in preparation for Sequoia, and in particular for weapons multi-physics codes in support of UQ. A second purpose is to provide time allocations for large-scale science runs and for UQ suite calculations to advance SSP program priorities. This proposed governance model will be the basis for initial time allocation of Dawn computing resources for the science and UQ workloads that merit priority on this class of resource, either because they cannot be reasonably attempted on any other resources due to size of problem, or because of the unavailability of sizable allocations on other ASC capability or capacity platforms. This proposed model intends to make the most effective use of Dawn as possible, but without being overly constrained by more formal proposal processes such as those now used for Purple CCCs.« less
NASA Technical Reports Server (NTRS)
Sen, Syamal K.; Shaykhian, Gholam Ali
2011-01-01
MatLab(TradeMark)(MATrix LABoratory) is a numerical computation and simulation tool that is used by thousands Scientists and Engineers in many countries. MatLab does purely numerical calculations, which can be used as a glorified calculator or interpreter programming language; its real strength is in matrix manipulations. Computer algebra functionalities are achieved within the MatLab environment using "symbolic" toolbox. This feature is similar to computer algebra programs, provided by Maple or Mathematica to calculate with mathematical equations using symbolic operations. MatLab in its interpreter programming language form (command interface) is similar with well known programming languages such as C/C++, support data structures and cell arrays to define classes in object oriented programming. As such, MatLab is equipped with most of the essential constructs of a higher programming language. MatLab is packaged with an editor and debugging functionality useful to perform analysis of large MatLab programs and find errors. We believe there are many ways to approach real-world problems; prescribed methods to ensure foregoing solutions are incorporated in design and analysis of data processing and visualization can benefit engineers and scientist in gaining wider insight in actual implementation of their perspective experiments. This presentation will focus on data processing and visualizations aspects of engineering and scientific applications. Specifically, it will discuss methods and techniques to perform intermediate-level data processing covering engineering and scientific problems. MatLab programming techniques including reading various data files formats to produce customized publication-quality graphics, importing engineering and/or scientific data, organizing data in tabular format, exporting data to be used by other software programs such as Microsoft Excel, data presentation and visualization will be discussed.
Prevalence of Allergies the Same, Regardless of Where You Live
... Record Research & Training Medical Research Initiatives Science Highlights Science Education Research in NIH Labs & Clinics Training Opportunities Library Resources Research Resources Clinical Research Resources Safety, Regulation ...
Gene Linked to Excess Male Hormones in Female Infertility Disorder
... Record Research & Training Medical Research Initiatives Science Highlights Science Education Research in NIH Labs & Clinics Training Opportunities Library Resources Research Resources Clinical Research Resources Safety, Regulation ...
PyDREAM: high-dimensional parameter inference for biological models in python.
Shockley, Erin M; Vrugt, Jasper A; Lopez, Carlos F; Valencia, Alfonso
2018-02-15
Biological models contain many parameters whose values are difficult to measure directly via experimentation and therefore require calibration against experimental data. Markov chain Monte Carlo (MCMC) methods are suitable to estimate multivariate posterior model parameter distributions, but these methods may exhibit slow or premature convergence in high-dimensional search spaces. Here, we present PyDREAM, a Python implementation of the (Multiple-Try) Differential Evolution Adaptive Metropolis [DREAM(ZS)] algorithm developed by Vrugt and ter Braak (2008) and Laloy and Vrugt (2012). PyDREAM achieves excellent performance for complex, parameter-rich models and takes full advantage of distributed computing resources, facilitating parameter inference and uncertainty estimation of CPU-intensive biological models. PyDREAM is freely available under the GNU GPLv3 license from the Lopez lab GitHub repository at http://github.com/LoLab-VU/PyDREAM. c.lopez@vanderbilt.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.
This presentation gives a brief introduction to EPA's computational toxicology program and the Athens Lab's role in it. The talk also covered a brief introduction to metabolomics; advantages/disadvanage of metabolomics for toxicity assessment; goals of the EPA Athens metabolomics...
Computer Labs Report to the Holodeck
ERIC Educational Resources Information Center
Raths, David
2011-01-01
In many ways, specialized computer labs are the black holes of IT organizations. Budgets, equipment, employees--even space itself--are sucked in. Given a choice, many IT shops would engage warp drive and escape their gravitational pull forever. While Captain Kirk might have looked to Scotty for a fix to the problem, colleges and universities are…
ODU-CAUSE: Computer Based Learning Lab.
ERIC Educational Resources Information Center
Sachon, Michael W.; Copeland, Gary E.
This paper describes the Computer Based Learning Lab (CBLL) at Old Dominion University (ODU) as a component of the ODU-Comprehensive Assistance to Undergraduate Science Education (CAUSE) Project. Emphasis is directed to the structure and management of the facility and to the software under development by the staff. Serving the ODU-CAUSE User Group…
Modelling the Landing of a Plane in a Calculus Lab
ERIC Educational Resources Information Center
Morante, Antonio; Vallejo, Jose A.
2012-01-01
We exhibit a simple model of a plane landing that involves only basic concepts of differential calculus, so it is suitable for a first-year calculus lab. We use the computer algebra system Maxima and the interactive geometry software GeoGebra to do the computations and graphics. (Contains 5 figures and 1 note.)
NIH Study Offers Insight into Why Cancer Incidence Increases with Age
... Record Research & Training Medical Research Initiatives Science Highlights Science Education Research in NIH Labs & Clinics Training Opportunities Library Resources Research Resources Clinical Research Resources Safety, Regulation ...
NIH Study Finds Regular Aspirin Use May Reduce Ovarian Cancer Risk
... Record Research & Training Medical Research Initiatives Science Highlights Science Education Research in NIH Labs & Clinics Training Opportunities Library Resources Research Resources Clinical Research Resources Safety, Regulation ...
NASA Astrophysics Data System (ADS)
Kuan, Wen-Hsuan; Tseng, Chi-Hung; Chen, Sufen; Wong, Ching-Chang
2016-06-01
We propose an integrated curriculum to establish essential abilities of computer programming for the freshmen of a physics department. The implementation of the graphical-based interfaces from Scratch to LabVIEW then to LabVIEW for Arduino in the curriculum `Computer-Assisted Instrumentation in the Design of Physics Laboratories' brings rigorous algorithm and syntax protocols together with imagination, communication, scientific applications and experimental innovation. The effectiveness of the curriculum was evaluated via statistical analysis of questionnaires, interview responses, the increase in student numbers majoring in physics, and performance in a competition. The results provide quantitative support that the curriculum remove huge barriers to programming which occur in text-based environments, helped students gain knowledge of programming and instrumentation, and increased the students' confidence and motivation to learn physics and computer languages.
Teens Using E-cigarettes May Be More Likely to Start Smoking Tobacco
... Record Research & Training Medical Research Initiatives Science Highlights Science Education Research in NIH Labs & Clinics Training Opportunities Library Resources Research Resources Clinical Research Resources Safety, Regulation ...
Statement on Public-Private Partnerships as Part of the NIH HEAL Initiative
... Record Research & Training Medical Research Initiatives Science Highlights Science Education Research in NIH Labs & Clinics Training Opportunities Library Resources Research Resources Clinical Research Resources Safety, Regulation ...
Adapting NBODY4 with a GRAPE-6a Supercomputer for Web Access, Using NBodyLab
NASA Astrophysics Data System (ADS)
Johnson, V.; Aarseth, S.
2006-07-01
A demonstration site has been developed by the authors that enables researchers and students to experiment with the capabilities and performance of NBODY4 running on a GRAPE-6a over the web. NBODY4 is a sophisticated open-source N-body code for high accuracy simulations of dense stellar systems (Aarseth 2003). In 2004, NBODY4 was successfully tested with a GRAPE-6a, yielding an unprecedented low-cost tool for astrophysical research. The GRAPE-6a is a supercomputer card developed by astrophysicists to accelerate high accuracy N-body simulations with a cluster or a desktop PC (Fukushige et al. 2005, Makino & Taiji 1998). The GRAPE-6a card became commercially available in 2004, runs at 125 Gflops peak, has a standard PCI interface and costs less than 10,000. Researchers running the widely used NBODY6 (which does not require GRAPE hardware) can compare their own PC or laptop performance with simulations run on http://www.NbodyLab.org. Such comparisons may help justify acquisition of a GRAPE-6a. For workgroups such as university physics or astronomy departments, the demonstration site may be replicated or serve as a model for a shared computing resource. The site was constructed using an NBodyLab server-side framework.
The Influence of Tablet PCs on Students' Use of Multiple Representations in Lab Reports
NASA Astrophysics Data System (ADS)
Guelman, Clarisa Bercovich; De Leone, Charles; Price, Edward
2009-11-01
This study examined how different tools influenced students' use of representations in the Physics laboratory. In one section of a lab course, every student had a Tablet PC that served as a digital-ink based lab notebook. Students could seamlessly create hand-drawn graphics and equations, and write lab reports on the same computer used for data acquisition, simulation, and analysis. In another lab section, students used traditional printed lab guides, kept paper notebooks, and then wrote lab reports on regular laptops. Analysis of the lab reports showed differences between the sections' use of multiple representations, including an increased use of diagrams and equations by the Tablet users.
NASA Astrophysics Data System (ADS)
Orr, C. H.; Mcfadden, R. R.; Manduca, C. A.; Kempler, L. A.
2016-12-01
Teaching with data, simulations, and models in the geosciences can increase many facets of student success in the classroom, and in the workforce. Teaching undergraduates about programming and improving students' quantitative and computational skills expands their perception of Geoscience beyond field-based studies. Processing data and developing quantitative models are critically important for Geoscience students. Students need to be able to perform calculations, analyze data, create numerical models and visualizations, and more deeply understand complex systems—all essential aspects of modern science. These skills require students to have comfort and skill with languages and tools such as MATLAB. To achieve comfort and skill, computational and quantitative thinking must build over a 4-year degree program across courses and disciplines. However, in courses focused on Geoscience content it can be challenging to get students comfortable with using computational methods to answers Geoscience questions. To help bridge this gap, we have partnered with MathWorks to develop two workshops focused on collecting and developing strategies and resources to help faculty teach students to incorporate data, simulations, and models into the curriculum at the course and program levels. We brought together faculty members from the sciences, including Geoscience and allied fields, who teach computation and quantitative thinking skills using MATLAB to build a resource collection for teaching. These materials, and the outcomes of the workshops are freely available on our website. The workshop outcomes include a collection of teaching activities, essays, and course descriptions that can help faculty incorporate computational skills at the course or program level. The teaching activities include in-class assignments, problem sets, labs, projects, and toolboxes. These activities range from programming assignments to creating and using models. The outcomes also include workshop syntheses that highlights best practices, a set of webpages to support teaching with software such as MATLAB, and an interest group actively discussing aspects these issues in Geoscience and allied fields. Learn more and view the resources at http://serc.carleton.edu/matlab_computation2016/index.html
Computer Programs for Chemistry Experiments I and II.
ERIC Educational Resources Information Center
Reynard, Dale C.
This unit of instruction includes nine laboratory experiments. All of the experiments are from the D.C. Health Revision of the Chemical Education Materials Study (CHEMS) with one exception. Program six is the lab from the original version of the CHEMS program. Each program consists of three parts (1) the lab and computer hints, (2) the description…
Sneak Preview of Berkeley Lab's Science at the Theatre on June 6th, 2011
Sanii, Babak
2017-12-11
Babak Sanii provides a sneak preview of Berkeley Lab's next Science at the Theater Event: Big Thinking: The Power of Nanoscience. Berkeley Lab scientists reveal how nanoscience will bring us cleaner energy, faster computers, and improved medicine. Berkeley Repertory Theatre on June 6th, 2011.
Sneak Preview of Berkeley Lab's Science at the Theatre on June 6th, 2011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanii, Babak
Babak Sanii provides a sneak preview of Berkeley Lab's next Science at the Theater Event: Big Thinking: The Power of Nanoscience. Berkeley Lab scientists reveal how nanoscience will bring us cleaner energy, faster computers, and improved medicine. Berkeley Repertory Theatre on June 6th, 2011.
ASM LabCap's contributions to disease surveillance and the International Health Regulations (2005).
Specter, Steven; Schuermann, Lily; Hakiruwizera, Celestin; Sow, Mah-Séré Keita
2010-12-03
The revised International Health Regulations [IHR(2005)], which requires the Member States of the World Health Organization (WHO) to develop core capacities to detect, assess, report, and respond to public health threats, is bringing new challenges for national and international surveillance systems. As more countries move toward implementation and/or strengthening of their infectious disease surveillance programs, the strengthening of clinical microbiology laboratories becomes increasingly important because they serve as the first line responders to detect new and emerging microbial threats, re-emerging infectious diseases, the spread of antibiotic resistance, and the possibility of bioterrorism. In fact, IHR(2005) Core Capacity #8, "Laboratory", requires that laboratory services be a part of every phase of alert and response.Public health laboratories in many resource-constrained countries require financial and technical assistance to build their capacity. In recognition of this, in 2006, the American Society for Microbiology (ASM) established an International Laboratory Capacity Building Program, LabCap, housed under the ASM International Board. ASM LabCap utilizes ASM's vast resources and its membership's expertise-40,000 microbiologists worldwide-to strengthen clinical and public health laboratory systems in low and low-middle income countries. ASM LabCap's program activities align with HR(2005) by building the capability of resource-constrained countries to develop quality-assured, laboratory-based information which is critical to disease surveillance and the rapid detection of disease outbreaks, whether they stem from natural, deliberate or accidental causes.ASM LabCap helps build laboratory capacity under a cooperative agreement with the U.S. Centers for Disease Control and Prevention (CDC) and under a sub-contract with the Program for Appropriate Technology in Health (PATH) funded by the United States Agency for International Development (USAID). Successful activities of ASM LabCap have occurred throughout Africa, Asia, Central America and the Caribbean. In addition, ASM LabCap coordinates efforts with international agencies such as the WHO in order to maximize resources and ensure a unified response, with the intended goal to help build integrated disease surveillance and response capabilities worldwide in compliance with HR(2005)'s requirements.
Technology: Catalyst for Enhancing Chemical Education for Pre-service Teachers
NASA Astrophysics Data System (ADS)
Kumar, Vinay; Bedell, Julia Yang; Seed, Allen H.
1999-05-01
A DOE/KYEPSCoR-funded project enabled us to introduce a new curricular initiative aimed at improving the chemical education of pre-service elementary teachers. The new curriculum was developed in collaboration with the School of Education faculty. A new course for the pre-service teachers, "Discovering Chemistry with Lab" (CHE 105), was developed. The integrated lecture and lab course covers basic principles of chemistry and their applications in daily life. The course promotes reasoning and problem-solving skills and utilizes hands-on, discovery/guided-inquiry, and cooperative learning approaches. This paper describes the implementation of technology (computer-interfacing and simulation experiments) in the lab. Results of two assessment surveys conducted in the laboratory are also discussed. The key features of the lab course are eight new experiments, including four computer-interfacing/simulation experiments involving the use of Macintosh Power PCs, temperature and pH probes, and a serial box interface, and use of household materials. Several experiments and the midterm and final lab practical exams emphasize the discovery/guided-inquiry approach. The results of pre- and post-surveys showed very significant positive changes in students' attitude toward the relevancy of chemistry, use of technology (computers) in elementary school classrooms, and designing and teaching discovery-based units. Most students indicated that they would be very interested (52%) or interested (36%) in using computers in their science teaching.
NASA Astrophysics Data System (ADS)
Henderson, Jean Foster
The purpose of this study was to assess the effect of classroom restructuring involving computer laboratories on student achievement and student attitudes toward computers and computer courses. The effects of the targeted student attributes of gender, previous programming experience, math background, and learning style were also examined. The open lab-based class structure consisted of a traditional lecture class with a separate, unscheduled lab component in which lab assignments were completed outside of class; the closed lab-based class structure integrated a lab component within the lecture class so that half the class was reserved for lecture and half the class was reserved for students to complete lab assignments by working cooperatively with each other and under the supervision and guidance of the instructor. The sample consisted of 71 students enrolled in four intact classes of Computer Science I during the fall and spring semesters of the 2006--2007 school year at two southern universities: two classes were held in the fall (one at each university) and two classes were held in the spring (one at each university). A counterbalanced repeated measures design was used in which all students experienced both class structures for half of each semester. The order of control and treatment was rotated among the four classes. All students received the same amount of class and instructor time. A multivariate analysis of variance (MANOVA) via a multiple regression strategy was used to test the study's hypotheses. Although the overall MANOVA model was statistically significant, independent follow-up univariate analyses relative to each dependent measure found that the only significant research factor was math background: Students whose mathematics background was at the level of Calculus I or higher had significantly higher student achievement than students whose mathematics background was less than Calculus I. The results suggest that classroom structures that incorporate an open laboratory setting are just as effective on student achievement and attitudes as classroom structures that incorporate a closed laboratory setting. The results also suggest that math background is a strong predictor of student achievement in CS 1.
Theme: Land Laboratories--Urban Settings, Liability, Natural Resources Labs.
ERIC Educational Resources Information Center
Whaley, David, Ed.; And Others
1994-01-01
Includes "With a Little Imagination"; "From Fallow to Fertile"; "Operating a School Enterprise in Agriculture"; "Using a Nontraditional Greenhouse to Enhance Lab Instruction"; "Risk Management for Liability in Operating Land Laboratories"; "Working Land and Water Laboratory for Natural…
Rutkowski, Tomasz M
2015-08-01
This paper presents an applied concept of a brain-computer interface (BCI) student research laboratory (BCI-LAB) at the Life Science Center of TARA, University of Tsukuba, Japan. Several successful case studies of the student projects are reviewed together with the BCI Research Award 2014 winner case. The BCI-LAB design and project-based teaching philosophy is also explained. Future teaching and research directions summarize the review.
Macintosh/LabVIEW based control and data acquisition system for a single photon counting fluorometer
NASA Astrophysics Data System (ADS)
Stryjewski, Wieslaw J.
1991-08-01
A flexible software system has been developed for controlling fluorescence decay measurements using the virtual instrument approach offered by LabVIEW. The time-correlated single photon counting instrument operates under computer control in both manual and automatic mode. Implementation time was short and the equipment is now easier to use, reducing the training time required for new investigators. It is not difficult to customize the front panel or adapt the program to a different instrument. We found LabVIEW much more convenient to use for this application than traditional, textual computer languages.
ERIC Educational Resources Information Center
Mok, Heng Ngee; Lee, Yeow Leong; Tan, Wee Kiat
2012-01-01
This paper describes how a generic computer laboratory equipped with 52 workstations is set up for teaching IT-related courses and other general purpose usage. The authors have successfully constructed a lab management system based on decentralised, client-side software virtualisation technology using Linux and free software tools from VMware that…
ERIC Educational Resources Information Center
Bradford, Jane T.; And Others
1996-01-01
Academic Computing Services staff and University librarians at Stetson University (DeLand, Florida) designed and implemented a three-day Internet workshop for interested faculty. The workshop included both hands-on lab sessions and discussions covering e-mail, telnet, ftp, Gopher, and World Wide Web. The planning, preparation of the lab and…
Making the Switch to Open Source Software
ERIC Educational Resources Information Center
Surran, Michael
2003-01-01
During the 2001-2002 school year the author was struck with the reality that their computer lab would not meet the demands of their school for another year. Greater Houlton Christian Academy (www.ghca.com) is a private school in Maine, and thus does not have access to state or federal funding. This meant that financing a new computer lab would be…
Simulated Exercise Physiology Laboratories.
ERIC Educational Resources Information Center
Morrow, James R., Jr.; Pivarnik, James M.
This book consists of a lab manual and computer disks for either Apple or IBM hardware. The lab manual serves as "tour guide" for the learner going through the various lab experiences. The manual contains definitions, proper terminology, and other basic information about physiological principles. It is organized so a step-by-step procedure may be…
A Computer Engineering Curriculum for the Air Force Academy: An Implementation Plan
1985-04-01
engineerinq is needed as a r ul of the findings? 5. What is the impact of this study’s rocommendat ion to pursue the Electrico I Engineering deqree with onpt...stepper motor 9 S35 LAB 36 Serial 10 S37 GR #3 - 38 8251 10 chip ) 39 LAB serial 10 10 * 40 LAB " 1)41 LAB S 42 Course review - S FINAL EXAM 00 % 80 0
Computer Modeling of Complete IC Fabrication Process.
1987-05-28
James Shipley National Semi.Peter N. Manos AMD Ritu Shrivastava Cypress Semi. Corp.Deborah D. Maracas Motorola, Inc. Paramjit Singh Rockwell Intl.Sidney...Carl F Daegs Sandia Hishan Z Massoud Duke* UnIVersdy Anant Dix* Silicon Systems David Matthews Hughes Rese~arch Lab DIolidi DoIIos Spery Tmioomly K...Jaczynski AT&T Bell Labs Jack C. Carlson Motorola Sanjay Jain AT&T Bell Labs Andrew Chan Fairchild Weston Systems Werner Juengling AT&T Bell Labs
75 FR 60734 - Endangered Species; File No. 13599-01
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-01
... Species; File No. 13599-01 AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and..., Permits, Conservation and Education Division, Office of Protected Resources, National Marine Fisheries... is hereby given that National Ocean Service Marine Forensic Lab (NOS Lab, Julie Carter, Principal...
NASA Astrophysics Data System (ADS)
Holmes, N. G.; Olsen, Jack; Thomas, James L.; Wieman, Carl E.
2017-06-01
Instructional labs are widely seen as a unique, albeit expensive, way to teach scientific content. We measured the effectiveness of introductory lab courses at achieving this educational goal across nine different lab courses at three very different institutions. These institutions and courses encompassed a broad range of student populations and instructional styles. The nine courses studied had two key things in common: the labs aimed to reinforce the content presented in lectures, and the labs were optional. By comparing the performance of students who did and did not take the labs (with careful normalization for selection effects), we found universally and precisely no added value to learning course content from taking the labs as measured by course exam performance. This work should motivate institutions and departments to reexamine the goals and conduct of their lab courses, given their resource-intensive nature. We show why these results make sense when looking at the comparative mental processes of students involved in research and instructional labs, and offer alternative goals and instructional approaches that would make lab courses more educationally valuable.
Multi-Attribute Task Battery - Applications in pilot workload and strategic behavior research
NASA Technical Reports Server (NTRS)
Arnegard, Ruth J.; Comstock, J. R., Jr.
1991-01-01
The Multi-Attribute Task (MAT) Battery provides a benchmark set of tasks for use in a wide range of lab studies of operator performance and workload. The battery incorporates tasks analogous to activities that aircraft crewmembers perform in flight, while providing a high degree of experimenter control, performance data on each subtask, and freedom to nonpilot test subjects. Features not found in existing computer based tasks include an auditory communication task (to simulate Air Traffic Control communication), a resource management task permitting many avenues or strategies of maintaining target performance, a scheduling window which gives the operator information about future task demands, and the option of manual or automated control of tasks. Performance data are generated for each subtask. In addition, the task battery may be paused and onscreen workload rating scales presented to the subject. The MAT Battery requires a desktop computer with color graphics. The communication task requires a serial link to a second desktop computer with a voice synthesizer or digitizer card.
The multi-attribute task battery for human operator workload and strategic behavior research
NASA Technical Reports Server (NTRS)
Comstock, J. Raymond, Jr.; Arnegard, Ruth J.
1992-01-01
The Multi-Attribute Task (MAT) Battery provides a benchmark set of tasks for use in a wide range of lab studies of operator performance and workload. The battery incorporates tasks analogous to activities that aircraft crewmembers perform in flight, while providing a high degree of experimenter control, performance data on each subtask, and freedom to use nonpilot test subjects. Features not found in existing computer based tasks include an auditory communication task (to simulate Air Traffic Control communication), a resource management task permitting many avenues or strategies of maintaining target performance, a scheduling window which gives the operator information about future task demands, and the option of manual or automated control of tasks. Performance data are generated for each subtask. In addition, the task battery may be paused and onscreen workload rating scales presented to the subject. The MAT Battery requires a desktop computer with color graphics. The communication task requires a serial link to a second desktop computer with a voice synthesizer or digitizer card.
MatLab Script and Functional Programming
NASA Technical Reports Server (NTRS)
Shaykhian, Gholam Ali
2007-01-01
MatLab Script and Functional Programming: MatLab is one of the most widely used very high level programming languages for scientific and engineering computations. It is very user-friendly and needs practically no formal programming knowledge. Presented here are MatLab programming aspects and not just the MatLab commands for scientists and engineers who do not have formal programming training and also have no significant time to spare for learning programming to solve their real world problems. Specifically provided are programs for visualization. The MatLab seminar covers the functional and script programming aspect of MatLab language. Specific expectations are: a) Recognize MatLab commands, script and function. b) Create, and run a MatLab function. c) Read, recognize, and describe MatLab syntax. d) Recognize decisions, loops and matrix operators. e) Evaluate scope among multiple files, and multiple functions within a file. f) Declare, define and use scalar variables, vectors and matrices.
MatLab Programming for Engineers Having No Formal Programming Knowledge
NASA Technical Reports Server (NTRS)
Shaykhian, Linda H.; Shaykhian, Gholam Ali
2007-01-01
MatLab is one of the most widely used very high level programming languages for Scientific and engineering computations. It is very user-friendly and needs practically no formal programming knowledge. Presented here are MatLab programming aspects and not just the MatLab commands for scientists and engineers who do not have formal programming training and also have no significant time to spare for learning programming to solve their real world problems. Specifically provided are programs for visualization. Also, stated are the current limitations of the MatLab, which possibly can be taken care of by Mathworks Inc. in a future version to make MatLab more versatile.
FAQ's | College of Engineering & Applied Science
zipped (compressed) format. This will help when the file is very large or created by one of the high end Milwaukee Engineer People Faculty and Staff Biomedical Engineering Civil & Environmental Engineering Computer Labs Technical Questions The labs are generally open 24/7, how will I know when a lab/system
Assessment Outcomes: Computerized Instruction in a Human Gross Anatomy Course.
ERIC Educational Resources Information Center
Bukowski, Elaine L.
2002-01-01
The first of three successive classes of beginning physical therapy students (n=17) completed traditional cadaver anatomy lecture/lab; the next 17 a self-study computerized anatomy lab, and the next 20 both lectures and computer lab. No differences in study times and course or licensure exam performance appeared. Computerized self-study is a…
Berkeley Lab - Materials Sciences Division
MSD Support Human Resources Facilities & Space Planning Procurement and Property Proposals & ; Finance Templates Travel One-Stop Acknowledging MSD Support Human Resources Facilities & Space Operations For information regarding Human Resources, procedures for acknowledging MSD support, division
Berkeley Lab - Materials Sciences Division
MSD Support Human Resources Facilities & Space Planning Procurement and Property Proposals & ; Finance Templates Travel One-Stop Acknowledging MSD Support Human Resources Facilities & Space Planning Procurement and Property Proposals & Finance Templates Travel Human Resources General
Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials Investigators Division Staff Facilities and Centers Staff Jobs Safety Personnel Resources Committees In Case of ; Finance Templates Travel One-Stop Investigators Division Staff Facilities and Centers Staff Jobs
NASA Technical Reports Server (NTRS)
Sen, Syamal K.; Shaykhian, Gholam Ali
2011-01-01
MatLab(R) (MATrix LABoratory) is a numerical computation and simulation tool that is used by thousands Scientists and Engineers in many cou ntries. MatLab does purely numerical calculations, which can be used as a glorified calculator or interpreter programming language; its re al strength is in matrix manipulations. Computer algebra functionalities are achieved within the MatLab environment using "symbolic" toolbo x. This feature is similar to computer algebra programs, provided by Maple or Mathematica to calculate with mathematical equations using s ymbolic operations. MatLab in its interpreter programming language fo rm (command interface) is similar with well known programming languag es such as C/C++, support data structures and cell arrays to define c lasses in object oriented programming. As such, MatLab is equipped with most ofthe essential constructs of a higher programming language. M atLab is packaged with an editor and debugging functionality useful t o perform analysis of large MatLab programs and find errors. We belie ve there are many ways to approach real-world problems; prescribed methods to ensure foregoing solutions are incorporated in design and ana lysis of data processing and visualization can benefit engineers and scientist in gaining wider insight in actual implementation of their perspective experiments. This presentation will focus on data processing and visualizations aspects of engineering and scientific applicati ons. Specifically, it will discuss methods and techniques to perform intermediate-level data processing covering engineering and scientifi c problems. MatLab programming techniques including reading various data files formats to produce customized publication-quality graphics, importing engineering and/or scientific data, organizing data in tabu lar format, exporting data to be used by other software programs such as Microsoft Excel, data presentation and visualization will be discussed. The presentation will emphasize creating practIcal scripts (pro grams) that extend the basic features of MatLab TOPICS mclude (1) Ma trix and vector analysis and manipulations (2) Mathematical functions (3) Symbolic calculations & functions (4) Import/export data files (5) Program lOgic and flow control (6) Writing function and passing parameters (7) Test application programs
None
2018-01-16
Take a virtual tour of the campus of Thomas Jefferson National Accelerator Facility. You can see inside our two accelerators, three experimental areas, accelerator component fabrication and testing areas, high-performance computing areas and laser labs.
Inexpensive DAQ based physics labs
NASA Astrophysics Data System (ADS)
Lewis, Benjamin; Clark, Shane
2015-11-01
Quality Data Acquisition (DAQ) based physics labs can be designed using microcontrollers and very low cost sensors with minimal lab equipment. A prototype device with several sensors and documentation for a number of DAQ-based labs is showcased. The device connects to a computer through Bluetooth and uses a simple interface to control the DAQ and display real time graphs, storing the data in .txt and .xls formats. A full device including a larger number of sensors combined with software interface and detailed documentation would provide a high quality physics lab education for minimal cost, for instance in high schools lacking lab equipment or students taking online classes. An entire semester’s lab course could be conducted using a single device with a manufacturing cost of under $20.
NASA Astrophysics Data System (ADS)
Oien, R. P.; Anders, A. M.; Long, A.
2014-12-01
We present the initial results of transitioning laboratory activities in an introductory physical geology course from passive to active learning. Educational research demonstrates that student-driven investigations promote increased engagement and better retention of material. Surveys of students in introductory physical geology helped us identify lab activities which do not engage students. We designed new lab activities to be more collaborative, open-ended and "hands-on". Student feedback was most negative for lab activities which are computer-based. In response, we have removed computers from the lab space and increased the length and number of activities involving physical manipulation of samples and models. These changes required investment in lab equipment and supplies. New lab activities also include student-driven exploration of data with open-ended responses. Student-evaluations of the new lab activities will be compiled during Fall 2014 and Spring 2015 to allow us to measure the impact of the changes on student satisfaction and we will report on our findings to date. Modification of this course has been sponsored by NSF's Widening Implementation & Demonstration of Evidence Based Reforms (WIDER) program through grant #1347722 to the University of Illinois. The overall goal of the grant is to increase retention and satisfaction of STEM students in introductory courses.
Michalsky, Marc P; Inge, Thomas H; Teich, Steven; Eneli, Ihuoma; Miller, Rosemary; Brandt, Mary L; Helmrath, Michael; Harmon, Carroll M; Zeller, Meg H; Jenkins, Todd M; Courcoulas, Anita; Buncher, Ralph C
2014-02-01
The number of adolescents undergoing weight loss surgery (WLS) has increased in response to the increasing prevalence of severe childhood obesity. Adolescents undergoing WLS require unique support, which may differ from adult programs. The aim of this study was to describe institutional and programmatic characteristics of centers participating in Teen Longitudinal Assessment of Bariatric Surgery (Teen-LABS), a prospective study investigating safety and efficacy of adolescent WLS. Data were obtained from the Teen-LABS database, and site survey completed by Teen-LABS investigators. The survey queried (1) institutional characteristics, (2) multidisciplinary team composition, (3) clinical program characteristics, and (4) clinical research infrastructure. All centers had extensive multidisciplinary involvement in the assessment, pre-operative education, and post-operative management of adolescents undergoing WLS. Eligibility criteria and pre-operative clinical and diagnostic evaluations were similar between programs. All programs have well-developed clinical research infrastructure, use adolescent-specific educational resources, and maintain specialty equipment, including high weight capacity diagnostic imaging equipment. The composition of clinical team and institutional resources is consistent with current clinical practice guidelines. These characteristics, coupled with dedicated research staff, have facilitated enrollment of 242 participants into Teen-LABS. © 2013 Published by Elsevier Inc.
Michalsky, M.P.; Inge, T.H.; Teich, S.; Eneli, I.; Miller, R.; Brandt, M.L.; Helmrath, M.; Harmon, C.M.; Zeller, M.H.; Jenkins, T.M.; Courcoulas, A.; Buncher, C.R.
2013-01-01
Background The number of adolescents undergoing weight loss surgery (WLS) has increased in response to the increasing prevalence of severe childhood obesity. Adolescents undergoing WLS require unique support, which may differ from adult programs. The aim of this study was to describe institutional and programmatic characteristics of centers participating in Teen-Longitudinal Assessment of Bariatric Surgery (Teen-LABS), a prospective study investigating safety and efficacy of adolescent WLS. Methods Data were obtained from the Teen-LABS database and site survey completed by Teen-LABS investigators. The survey queried (1) institutional characteristics, (2) multidisciplinary team composition, (3) clinical program characteristics, and (4) clinical research infrastructure. Results All centers had extensive multidisciplinary involvement in the assessment, preoperative education and post-operative management of adolescents undergoing WLS. Eligibility criteria, pre-operative clinical and diagnostic evaluations were similar between programs. All programs have well developed clinical research infrastructure, use adolescent-specific educational resources, and maintain specialty equipment, including high weight capacity diagnostic imaging equipment. Conclusions The composition of clinical team and institutional resources are consistent with current clinical practice guidelines. These characteristics, coupled with dedicated research staff, have facilitated enrollment of 242 participants into Teen-LABS. PMID:24491361
Computer systems and software engineering
NASA Technical Reports Server (NTRS)
Mckay, Charles W.
1988-01-01
The High Technologies Laboratory (HTL) was established in the fall of 1982 at the University of Houston Clear Lake. Research conducted at the High Tech Lab is focused upon computer systems and software engineering. There is a strong emphasis on the interrelationship of these areas of technology and the United States' space program. In Jan. of 1987, NASA Headquarters announced the formation of its first research center dedicated to software engineering. Operated by the High Tech Lab, the Software Engineering Research Center (SERC) was formed at the University of Houston Clear Lake. The High Tech Lab/Software Engineering Research Center promotes cooperative research among government, industry, and academia to advance the edge-of-knowledge and the state-of-the-practice in key topics of computer systems and software engineering which are critical to NASA. The center also recommends appropriate actions, guidelines, standards, and policies to NASA in matters pertinent to the center's research. Results of the research conducted at the High Tech Lab/Software Engineering Research Center have given direction to many decisions made by NASA concerning the Space Station Program.
Dave Sperling's Guide to the Internet's Best Writing Resources.
ERIC Educational Resources Information Center
Sperling, Dave
2003-01-01
Provides a guide to writing resources on the Internet, including resources for business writing, dictionaries and thesauruses, e-mail, encyclopedias, free Web space, grammar, fun, online help, online writing labs, punctuation, and spelling. Lists useful Internet tips. (Author/VWL)
NASA Astrophysics Data System (ADS)
Balakrishnan, B.; Woods, P. C.
2013-05-01
Over the years, rapid development in computer technology has engendered simulation-based laboratory (lab) in addition to the traditional hands-on (physical) lab. Many higher education institutions adopt simulation lab, replacing some existing physical lab experiments. The creation of new systems for conducting engineering lab activities has raised concerns among educators on the merits and shortcomings of both physical and simulation labs; at the same time, many arguments have been raised on the differences of both labs. Investigating the effectiveness of both labs is complicated, as there are multiple factors that should be considered. In view of this challenge, a study on students' perspectives on their experience related to key aspects on engineering laboratory exercise was conducted. In this study, the Visual Auditory Read and Kinetic model was utilised to measure the students' cognitive styles. The investigation was done through a survey among participants from Multimedia University, Malaysia. The findings revealed that there are significant differences for most of the aspects in physical and simulation labs.
Scientific Visualization, Seeing the Unseeable
LBNL
2017-12-09
June 24, 2008 Berkeley Lab lecture: Scientific visualization transforms abstract data into readily comprehensible images, provide a vehicle for "seeing the unseeable," and play a central role in bo... June 24, 2008 Berkeley Lab lecture: Scientific visualization transforms abstract data into readily comprehensible images, provide a vehicle for "seeing the unseeable," and play a central role in both experimental and computational sciences. Wes Bethel, who heads the Scientific Visualization Group in the Computational Research Division, presents an overview of visualization and computer graphics, current research challenges, and future directions for the field.
Pawlik, Aleksandra; van Gelder, Celia W.G.; Nenadic, Aleksandra; Palagi, Patricia M.; Korpelainen, Eija; Lijnzaad, Philip; Marek, Diana; Sansone, Susanna-Assunta; Hancock, John; Goble, Carole
2017-01-01
Quality training in computational skills for life scientists is essential to allow them to deliver robust, reproducible and cutting-edge research. A pan-European bioinformatics programme, ELIXIR, has adopted a well-established and progressive programme of computational lab and data skills training from Software and Data Carpentry, aimed at increasing the number of skilled life scientists and building a sustainable training community in this field. This article describes the Pilot action, which introduced the Carpentry training model to the ELIXIR community. PMID:28781745
Pawlik, Aleksandra; van Gelder, Celia W G; Nenadic, Aleksandra; Palagi, Patricia M; Korpelainen, Eija; Lijnzaad, Philip; Marek, Diana; Sansone, Susanna-Assunta; Hancock, John; Goble, Carole
2017-01-01
Quality training in computational skills for life scientists is essential to allow them to deliver robust, reproducible and cutting-edge research. A pan-European bioinformatics programme, ELIXIR, has adopted a well-established and progressive programme of computational lab and data skills training from Software and Data Carpentry, aimed at increasing the number of skilled life scientists and building a sustainable training community in this field. This article describes the Pilot action, which introduced the Carpentry training model to the ELIXIR community.
Hydrogen Technology and Energy Curriculum (HyTEC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagle, Barbara
The Lawrence Hall of Science of the University of California, Berkeley has collaborated with scientists and engineers, a local transit agency, school districts, and a commercial curriculum publisher to develop, field-test nationally, and publish a two-week curriculum module on hydrogen and fuel cells for high school science. Key partners in this project are the Schatz Energy Research Center (SERC) of Humboldt State University, the Alameda-Contra Costa Transit District (AC Transit), FilmSight Productions, Lab-Aids, Inc., and 32 teachers and 2,370 students in field-test classrooms in California, Connecticut, Ohio, New York, South Carolina, and Washington. Field-test teachers received two to three daysmore » of professional development before teaching the curriculum and providing feedback used for revision of the curriculum. The curriculum, titled Investigating Alternative Energy: Hydrogen and Fuel Cells and published by Lab-Aids, Inc., includes a teachers guide (with lesson plans, resources, and student handout pages), two interactive computer animations, a video, a website, and a laboratory materials kit. The project has been disseminated to over 950 teachers through awareness workshops at state, regional, and national science teacher conferences.« less
ERIC Educational Resources Information Center
Houston, Linda; Johnson, Candice
After much trial and error, the Agricultural Technical Institute of the Ohio State University (ATI/OSO) discovered that training of writing lab tutors can best be done through collaboration of the Writing Lab Coordinator with the "Development of Tutor Effectiveness" course offered at the institute. The ATI/OSO main computer lab and…
ERIC Educational Resources Information Center
Rodriguez, Santiago; Zamorano, Juan; Rosales, Francisco; Dopico, Antonio Garcia; Pedraza, Jose Luis
2007-01-01
This paper describes a complete lab work management framework designed and developed in the authors' department to help teachers to manage the small projects that students are expected to complete as lab assignments during their graduate-level computer engineering studies. The paper focuses on an application example of the framework to a specific…
NASA Astrophysics Data System (ADS)
Stroobant, M.; Locritani, M.; Marini, D.; Sabbadini, L.; Carmisciano, C.; Manzella, G.; Magaldi, M.; Aliani, S.
2012-04-01
DLTM is the Ligurian Region (north Italy) cluster of Centre of Excellence (CoE) in waterborne technologies, that involves about 120 enterprises - of which, more than 100 SMEs -, the University of Genoa, all the main National Research Centres dealing with maritime and marine technologies established in Liguria (CNR, INGV, ENEA-UTMAR), the NATO Undersea Research Centre (NURC) and the Experimental Centre of the Italian Navy (CSSN), the Bank, the Port Authority and the Chamber of Commerce of the city of La Spezia. Following its mission, DLTM has recently established three Collaborative Research Laboratories focused on: 1. Computational Fluid dynamics (CFD_Lab) 2. High Performance Computing (HPC_Lab) 3. Monitoring and Analysis of Marine Ecosystems (MARE_Lab). The main role of them is to improve the relationships among the research centres and the enterprises, encouraging a systematic networking approach and sharing of knowledge, data, services, tools and human resources. Two of the key objectives of Lab_MARE are the establishment of: - an integrated system of observation and sea forecasting; - a Regional Marine Instrument Centre (RMIC) for oceanographic and metereological instruments (assembled using 'shared' tools and facilities). Besides, an important and innovative research project has been recently submitted to the Italian Ministry for Education, University and Research (MIUR). This project, in agreement with the European Directives (COM2009 (544)), is aimed to develop a Management Information System (MIS) for oceanographic and meteorological data in the Mediterranean Sea. The availability of adequate HPC inside DLTM is, of course, an important asset for achieving useful results; for example, the Regional Ocean Modeling System (ROMS) model is currently running on a high-resolution mesh on the cluster to simulate and reproduce the circulation within the Ligurian Sea. ROMS outputs will have broad and multidisciplinary impacts because ocean circulation affects the dispersion of different substances like oil spills and other pollutants but also sediments, nutrients and larvae. This could be an important tool for the environmental preservation, prevention and remediation, by placing the bases for the integrated management of the ocean.
Virtual Labs in proteomics: new E-learning tools.
Ray, Sandipan; Koshy, Nicole Rachel; Reddy, Panga Jaipal; Srivastava, Sanjeeva
2012-05-17
Web-based educational resources have gained enormous popularity recently and are increasingly becoming a part of modern educational systems. Virtual Labs are E-learning platforms where learners can gain the experience of practical experimentation without any direct physical involvement on real bench work. They use computerized simulations, models, videos, animations and other instructional technologies to create interactive content. Proteomics being one of the most rapidly growing fields of the biological sciences is now an important part of college and university curriculums. Consequently, many E-learning programs have started incorporating the theoretical and practical aspects of different proteomic techniques as an element of their course work in the form of Video Lectures and Virtual Labs. To this end, recently we have developed a Virtual Proteomics Lab at the Indian Institute of Technology Bombay, which demonstrates different proteomics techniques, including basic and advanced gel and MS-based protein separation and identification techniques, bioinformatics tools and molecular docking methods, and their applications in different biological samples. This Tutorial will discuss the prominent Virtual Labs featuring proteomics content, including the Virtual Proteomics Lab of IIT-Bombay, and E-resources available for proteomics study that are striving to make proteomic techniques and concepts available and accessible to the student and research community. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 14). Details can be found at: http://www.proteomicstutorials.org/. Copyright © 2012 Elsevier B.V. All rights reserved.
Wan, Shixiang; Zou, Quan
2017-01-01
Multiple sequence alignment (MSA) plays a key role in biological sequence analyses, especially in phylogenetic tree construction. Extreme increase in next-generation sequencing results in shortage of efficient ultra-large biological sequence alignment approaches for coping with different sequence types. Distributed and parallel computing represents a crucial technique for accelerating ultra-large (e.g. files more than 1 GB) sequence analyses. Based on HAlign and Spark distributed computing system, we implement a highly cost-efficient and time-efficient HAlign-II tool to address ultra-large multiple biological sequence alignment and phylogenetic tree construction. The experiments in the DNA and protein large scale data sets, which are more than 1GB files, showed that HAlign II could save time and space. It outperformed the current software tools. HAlign-II can efficiently carry out MSA and construct phylogenetic trees with ultra-large numbers of biological sequences. HAlign-II shows extremely high memory efficiency and scales well with increases in computing resource. THAlign-II provides a user-friendly web server based on our distributed computing infrastructure. HAlign-II with open-source codes and datasets was established at http://lab.malab.cn/soft/halign.
Integrating Robotic Observatories into Astronomy Labs
NASA Astrophysics Data System (ADS)
Ruch, Gerald T.
2015-01-01
The University of St. Thomas (UST) and a consortium of five local schools is using the UST Robotic Observatory, housing a 17' telescope, to develop labs and image processing tools that allow easy integration of observational labs into existing introductory astronomy curriculum. Our lab design removes the burden of equipment ownership by sharing access to a common resource and removes the burden of data processing by automating processing tasks that are not relevant to the learning objectives.Each laboratory exercise takes place over two lab periods. During period one, students design and submit observation requests via the lab website. Between periods, the telescope automatically acquires the data and our image processing pipeline produces data ready for student analysis. During period two, the students retrieve their data from the website and perform the analysis. The first lab, 'Weighing Jupiter,' was successfully implemented at UST and several of our partner schools. We are currently developing a second lab to measure the age of and distance to a globular cluster.
The VLAB OER Experience: Modeling Potential-Adopter Student Acceptance
ERIC Educational Resources Information Center
Raman, Raghu; Achuthan, Krishnashree; Nedungadi, Prema; Diwakar, Shyam; Bose, Ranjan
2014-01-01
Virtual Labs (VLAB) is a multi-institutional Open Educational Resources (OER) initiative, exclusively focused on lab experiments for engineering education. This project envisages building a large OER repository, containing over 1650 virtual experiments mapped to the engineering curriculum. The introduction of VLAB is a paradigm shift in an…
... Grant Grant Finder Therapy Acceleration Program Academic Concierge Biotechnology Accelerator Clinical Trials Division Resources for HCPs Continuing ... Grant Grant Finder Therapy Acceleration Program Academic Concierge Biotechnology Accelerator Clinical Trials Division Resources for HCPs Continuing ...
Summer Series 2012 - Conversation with Kathy Yelick
Yelick, Kathy, Miller, Jeff
2018-05-11
Jeff Miller, head of Public Affairs, sat down in conversation with Kathy Yelick, Associate Berkeley Lab Director, Computing Sciences, in the second of a series of powerpoint-free talks on July 18th 2012, at Berkeley Lab.
Summer Series 2012 - Conversation with Kathy Yelick
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yelick, Kathy, Miller, Jeff
2012-07-23
Jeff Miller, head of Public Affairs, sat down in conversation with Kathy Yelick, Associate Berkeley Lab Director, Computing Sciences, in the second of a series of powerpoint-free talks on July 18th 2012, at Berkeley Lab.
Computer-based Astronomy Labs for Non-science Majors
NASA Astrophysics Data System (ADS)
Smith, A. B. E.; Murray, S. D.; Ward, R. A.
1998-12-01
We describe and demonstrate two laboratory exercises, Kepler's Third Law and Stellar Structure, which are being developed for use in an astronomy laboratory class aimed at non-science majors. The labs run with Microsoft's Excel 98 (Macintosh) or Excel 97 (Windows). They can be run in a classroom setting or in an independent learning environment. The intent of the labs is twofold; first and foremost, students learn the subject matter through a series of informational frames. Next, students enhance their understanding by applying their knowledge in lab procedures, while also gaining familiarity with the use and power of a widely-used software package and scientific tool. No mathematical knowledge beyond basic algebra is required to complete the labs or to understand the computations in the spreadsheets, although the students are exposed to the concepts of numerical integration. The labs are contained in Excel workbook files. In the files are multiple spreadsheets, which contain either a frame with information on how to run the lab, material on the subject, or one or more procedures. Excel's VBA macro language is used to automate the labs. The macros are accessed through button interfaces positioned on the spreadsheets. This is done intentionally so that students can focus on learning the subject matter and the basic spreadsheet features without having to learn advanced Excel features all at once. Students open the file and progress through the informational frames to the procedures. After each procedure, student comments and data are automatically recorded in a preformatted Lab Report spreadsheet. Once all procedures have been completed, the student is prompted for a filename in which to save their Lab Report. The lab reports can then be printed or emailed to the instructor. The files will have full worksheet and workbook protection, and will have a "redo" feature at the end of the lab for students who want to repeat a procedure.
A UML model for the description of different brain-computer interface systems.
Quitadamo, Lucia Rita; Abbafati, Manuel; Saggio, Giovanni; Marciani, Maria Grazia; Cardarilli, Gian Carlo; Bianchi, Luigi
2008-01-01
BCI research lacks a universal descriptive language among labs and a unique standard model for the description of BCI systems. This results in a serious problem in comparing performances of different BCI processes and in unifying tools and resources. In such a view we implemented a Unified Modeling Language (UML) model for the description virtually of any BCI protocol and we demonstrated that it can be successfully applied to the most common ones such as P300, mu-rhythms, SCP, SSVEP, fMRI. Finally we illustrated the advantages in utilizing a standard terminology for BCIs and how the same basic structure can be successfully adopted for the implementation of new systems.
The Advanced Labs Website: resources for upper-level laboratories
NASA Astrophysics Data System (ADS)
Torres-Isea, Ramon
2012-03-01
The Advanced Labs web resource collection is an effort to create a central, comprehensive information base for college/university faculty who teach upper-level undergraduate laboratories. The website is produced by the American Association of Physics Teachers (AAPT). It is a part of ComPADRE, the online collection of resources in physics and astronomy education, which itself is a part of the National Science Foundation-funded National Science Digital Library (NSDL). After a brief review of its history, we will discuss the current status of the website while describing the various types of resources available at the site and presenting examples of each. We will detail a step-by-step procedure for submitting resources to the website. The resource collection is designed to be a community effort and thus welcomes input and contributions from its users. We will also present plans, and will seek audience feedback, for additional website services and features. The constraints, roadblocks, and rewards of this project will also be addressed.
2013-01-01
Analyzing and storing data and results from next-generation sequencing (NGS) experiments is a challenging task, hampered by ever-increasing data volumes and frequent updates of analysis methods and tools. Storage and computation have grown beyond the capacity of personal computers and there is a need for suitable e-infrastructures for processing. Here we describe UPPNEX, an implementation of such an infrastructure, tailored to the needs of data storage and analysis of NGS data in Sweden serving various labs and multiple instruments from the major sequencing technology platforms. UPPNEX comprises resources for high-performance computing, large-scale and high-availability storage, an extensive bioinformatics software suite, up-to-date reference genomes and annotations, a support function with system and application experts as well as a web portal and support ticket system. UPPNEX applications are numerous and diverse, and include whole genome-, de novo- and exome sequencing, targeted resequencing, SNP discovery, RNASeq, and methylation analysis. There are over 300 projects that utilize UPPNEX and include large undertakings such as the sequencing of the flycatcher and Norwegian spruce. We describe the strategic decisions made when investing in hardware, setting up maintenance and support, allocating resources, and illustrate major challenges such as managing data growth. We conclude with summarizing our experiences and observations with UPPNEX to date, providing insights into the successful and less successful decisions made. PMID:23800020
Improve Problem Solving Skills through Adapting Programming Tools
NASA Technical Reports Server (NTRS)
Shaykhian, Linda H.; Shaykhian, Gholam Ali
2007-01-01
There are numerous ways for engineers and students to become better problem-solvers. The use of command line and visual programming tools can help to model a problem and formulate a solution through visualization. The analysis of problem attributes and constraints provide insight into the scope and complexity of the problem. The visualization aspect of the problem-solving approach tends to make students and engineers more systematic in their thought process and help them catch errors before proceeding too far in the wrong direction. The problem-solver identifies and defines important terms, variables, rules, and procedures required for solving a problem. Every step required to construct the problem solution can be defined in program commands that produce intermediate output. This paper advocates improved problem solving skills through using a programming tool. MatLab created by MathWorks, is an interactive numerical computing environment and programming language. It is a matrix-based system that easily lends itself to matrix manipulation, and plotting of functions and data. MatLab can be used as an interactive command line or a sequence of commands that can be saved in a file as a script or named functions. Prior programming experience is not required to use MatLab commands. The GNU Octave, part of the GNU project, a free computer program for performing numerical computations, is comparable to MatLab. MatLab visual and command programming are presented here.
Kilaru, Varun; Barfield, Richard T; Schroeder, James W; Smith, Alicia K
2012-01-01
Recent evidence suggests that DNA methylation changes may underlie numerous complex traits and diseases. The advent of commercial, array-based methods to interrogate DNA methylation has led to a profusion of epigenetic studies in the literature. Array-based methods, such as the popular Illumina GoldenGate and Infinium platforms, estimate the proportion of DNA methylated at single-base resolution for thousands of CpG sites across the genome. These arrays generate enormous amounts of data, but few software resources exist for efficient and flexible analysis of these data. We developed a software package called MethLAB (http://genetics.emory.edu/conneely/MethLAB) using R, an open source statistical language that can be edited to suit the needs of the user. MethLAB features a graphical user interface (GUI) with a menu-driven format designed to efficiently read in and manipulate array-based methylation data in a user-friendly manner. MethLAB tests for association between methylation and relevant phenotypes by fitting a separate linear model for each CpG site. These models can incorporate both continuous and categorical phenotypes and covariates, as well as fixed or random batch or chip effects. MethLAB accounts for multiple testing by controlling the false discovery rate (FDR) at a user-specified level. Standard output includes a spreadsheet-ready text file and an array of publication-quality figures. Considering the growing interest in and availability of DNA methylation data, there is a great need for user-friendly open source analytical tools. With MethLAB, we present a timely resource that will allow users with no programming experience to implement flexible and powerful analyses of DNA methylation data. PMID:22430798
Crasto, Chiquito J.; Marenco, Luis N.; Liu, Nian; Morse, Thomas M.; Cheung, Kei-Hoi; Lai, Peter C.; Bahl, Gautam; Masiar, Peter; Lam, Hugo Y.K.; Lim, Ernest; Chen, Huajin; Nadkarni, Prakash; Migliore, Michele; Miller, Perry L.; Shepherd, Gordon M.
2009-01-01
This article presents the latest developments in neuroscience information dissemination through the SenseLab suite of databases: NeuronDB, CellPropDB, ORDB, OdorDB, OdorMapDB, ModelDB and BrainPharm. These databases include information related to: (i) neuronal membrane properties and neuronal models, and (ii) genetics, genomics, proteomics and imaging studies of the olfactory system. We describe here: the new features for each database, the evolution of SenseLab’s unifying database architecture and instances of SenseLab database interoperation with other neuroscience online resources. PMID:17510162
Developing a Virtual Rock Deformation Laboratory
NASA Astrophysics Data System (ADS)
Zhu, W.; Ougier-simonin, A.; Lisabeth, H. P.; Banker, J. S.
2012-12-01
Experimental rock physics plays an important role in advancing earthquake research. Despite its importance in geophysics, reservoir engineering, waste deposits and energy resources, most geology departments in U.S. universities don't have rock deformation facilities. A virtual deformation laboratory can serve as an efficient tool to help geology students naturally and internationally learn about rock deformation. Working with computer science engineers, we built a virtual deformation laboratory that aims at fostering user interaction to facilitate classroom and outreach teaching and learning. The virtual lab is built to center around a triaxial deformation apparatus in which laboratory measurements of mechanical and transport properties such as stress, axial and radial strains, acoustic emission activities, wave velocities, and permeability are demonstrated. A student user can create her avatar to enter the virtual lab. In the virtual lab, the avatar can browse and choose among various rock samples, determine the testing conditions (pressure, temperature, strain rate, loading paths), then operate the virtual deformation machine to observe how deformation changes physical properties of rocks. Actual experimental results on the mechanical, frictional, sonic, acoustic and transport properties of different rocks at different conditions are compiled. The data acquisition system in the virtual lab is linked to the complied experimental data. Structural and microstructural images of deformed rocks are up-loaded and linked to different deformation tests. The integration of the microstructural image and the deformation data allows the student to visualize how forces reshape the structure of the rock and change the physical properties. The virtual lab is built using the Game Engine. The geological background, outstanding questions related to the geological environment, and physical and mechanical concepts associated with the problem will be illustrated on the web portal. In addition, some web based data collection tools are available to collect student feedback and opinions on their learning experience. The virtual laboratory is designed to be an online education tool that facilitates interactive learning.; Virtual Deformation Laboratory
Berkeley Lab - Materials Sciences Division
Investigators Division Staff Facilities and Centers Staff Jobs Safety Personnel Resources Committees In Case of ? Click Here! Personnel Safety Personnel MSD EH&S Manager Martin Neitzel 66-242 ext. 6169 MLNeitzel Schwartz 66-250E ext. 4957 nischwartz@lbl.gov Lab Safety Advisory Committee Rep Robert Kaindl 2-354 ext
40 Low-Waste, Low-Risk Chemistry Labs.
ERIC Educational Resources Information Center
Dougan, David
This resource book contains 40 chemistry labs and provides a single solution to the problems of purchase, storage, use, and disposal of chemicals. The text is designed to be used alone or integrated with current textbooks. A mixture of microchemistry and macrochemistry is used to provide variety and reflects trends in research and industry. Most…
Busting the Limits of Science Laboratory Economics
ERIC Educational Resources Information Center
Bush, Robert C.
2008-01-01
This article discusses the trend facing today's scientific laboratories: that the more specialized the lab, the more expensive it is, and the less accessible it becomes. Or conversely, the more accessible a lab needs to be, the fewer resources can be dedicated per capita, and the less specialized it becomes. From a numerical standpoint, "real"…
Semantic SenseLab: implementing the vision of the Semantic Web in neuroscience
Samwald, Matthias; Chen, Huajun; Ruttenberg, Alan; Lim, Ernest; Marenco, Luis; Miller, Perry; Shepherd, Gordon; Cheung, Kei-Hoi
2011-01-01
Summary Objective Integrative neuroscience research needs a scalable informatics framework that enables semantic integration of diverse types of neuroscience data. This paper describes the use of the Web Ontology Language (OWL) and other Semantic Web technologies for the representation and integration of molecular-level data provided by several of SenseLab suite of neuroscience databases. Methods Based on the original database structure, we semi-automatically translated the databases into OWL ontologies with manual addition of semantic enrichment. The SenseLab ontologies are extensively linked to other biomedical Semantic Web resources, including the Subcellular Anatomy Ontology, Brain Architecture Management System, the Gene Ontology, BIRNLex and UniProt. The SenseLab ontologies have also been mapped to the Basic Formal Ontology and Relation Ontology, which helps ease interoperability with many other existing and future biomedical ontologies for the Semantic Web. In addition, approaches to representing contradictory research statements are described. The SenseLab ontologies are designed for use on the Semantic Web that enables their integration into a growing collection of biomedical information resources. Conclusion We demonstrate that our approach can yield significant potential benefits and that the Semantic Web is rapidly becoming mature enough to realize its anticipated promises. The ontologies are available online at http://neuroweb.med.yale.edu/senselab/ PMID:20006477
Semantic SenseLab: Implementing the vision of the Semantic Web in neuroscience.
Samwald, Matthias; Chen, Huajun; Ruttenberg, Alan; Lim, Ernest; Marenco, Luis; Miller, Perry; Shepherd, Gordon; Cheung, Kei-Hoi
2010-01-01
Integrative neuroscience research needs a scalable informatics framework that enables semantic integration of diverse types of neuroscience data. This paper describes the use of the Web Ontology Language (OWL) and other Semantic Web technologies for the representation and integration of molecular-level data provided by several of SenseLab suite of neuroscience databases. Based on the original database structure, we semi-automatically translated the databases into OWL ontologies with manual addition of semantic enrichment. The SenseLab ontologies are extensively linked to other biomedical Semantic Web resources, including the Subcellular Anatomy Ontology, Brain Architecture Management System, the Gene Ontology, BIRNLex and UniProt. The SenseLab ontologies have also been mapped to the Basic Formal Ontology and Relation Ontology, which helps ease interoperability with many other existing and future biomedical ontologies for the Semantic Web. In addition, approaches to representing contradictory research statements are described. The SenseLab ontologies are designed for use on the Semantic Web that enables their integration into a growing collection of biomedical information resources. We demonstrate that our approach can yield significant potential benefits and that the Semantic Web is rapidly becoming mature enough to realize its anticipated promises. The ontologies are available online at http://neuroweb.med.yale.edu/senselab/. 2009 Elsevier B.V. All rights reserved.
What is Supercomputing? A Conversation with Kathy Yelick
Yelick, Kathy
2017-12-11
In this highlight video, Jeff Miller, head of Public Affairs, sat down in conversation with Kathy Yelick, Associate Berkeley Lab Director, Computing Sciences, in the second of a series of "powerpoint-free" talks on July 18th 2012, at Berkeley Lab.
What is Supercomputing? A Conversation with Kathy Yelick
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yelick, Kathy
2012-07-23
In this highlight video, Jeff Miller, head of Public Affairs, sat down in conversation with Kathy Yelick, Associate Berkeley Lab Director, Computing Sciences, in the second of a series of "powerpoint-free" talks on July 18th 2012, at Berkeley Lab.
Study Suggests Brain Is Hard-Wired for Chronic Pain
... Trials and You Talking to Your Doctor Science Education Resources Community Resources Clear Health A–Z Publications ... Research & Training Medical Research Initiatives Science Highlights Science Education Research in NIH Labs & Clinics Training Opportunities Library ...
Commerce Lab - An enabling facility and test bed for commercial flight opportunities
NASA Technical Reports Server (NTRS)
Robertson, Jack; Atkins, Harry L.; Williams, John R.
1986-01-01
Commerce Lab is conceived as an adjunct to the National Space Transportation System (NSTS) by providing a focal point for commercial missions which could utilize existing NSTS carrier and resource capabilities for on-orbit experimentation in the microgravity sciences. In this context, the Commerce Lab provides an enabling facility and test bed for commercial flight opportunities. Commerce Lab program activities to date have focused on mission planning for private sector involvement in the space program to facilitate the commercial exploitation of the microgravity environment for materials processing research and development. It is expected that Commerce Lab will provide a logical transition between currently planned NSTS missions and future microgravity science and commercial R&D missions centered around the Space Station. The present study identifies candidate Commerce Lab flight experiments and their development status and projects a mission traffic model that can be used in commercial mission planning.
Integration of the HTC Vive into the medical platform MeVisLab
NASA Astrophysics Data System (ADS)
Egger, Jan; Gall, Markus; Wallner, Jürgen; de Almeida Germano Boechat, Pedro; Hann, Alexander; Li, Xing; Chen, Xiaojun; Schmalstieg, Dieter
2017-03-01
Virtual Reality (VR) is an immersive technology that replicates an environment via computer-simulated reality. VR gets a lot of attention in computer games but has also great potential in other areas, like the medical domain. Examples are planning, simulations and training of medical interventions, like for facial surgeries where an aesthetic outcome is important. However, importing medical data into VR devices is not trivial, especially when a direct connection and visualization from your own application is needed. Furthermore, most researcher don't build their medical applications from scratch, rather they use platforms, like MeVisLab, Slicer or MITK. The platforms have in common that they integrate and build upon on libraries like ITK and VTK, further providing a more convenient graphical interface to them for the user. In this contribution, we demonstrate the usage of a VR device for medical data under MeVisLab. Therefore, we integrated the OpenVR library into MeVisLab as an own module. This enables the direct and uncomplicated usage of head mounted displays, like the HTC Vive under MeVisLab. Summarized, medical data from other MeVisLab modules can directly be connected per drag-and-drop to our VR module and will be rendered inside the HTC Vive for an immersive inspection.
Is This Real Life? Is This Just Fantasy?: Realism and Representations in Learning with Technology
NASA Astrophysics Data System (ADS)
Sauter, Megan Patrice
Students often engage in hands-on activities during science learning; however, financial and practical constraints often limit the availability of these activities. Recent advances in technology have led to increases in the use of simulations and remote labs, which attempt to recreate hands-on science learning via computer. Remote labs and simulations are interesting from a cognitive perspective because they allow for different relations between representations and their referents. Remote labs are unique in that they provide a yoked representation, meaning that the representation of the lab on the computer screen is actually linked to that which it represents: a real scientific device. Simulations merely represent the lab and are not connected to any real scientific devices. However, the type of visual representations used in the lab may modify the effects of the lab technology. The purpose of this dissertation is to examine the relation between representation and technology and its effects of students' psychological experiences using online science labs. Undergraduates participated in two studies that investigated the relation between technology and representation. In the first study, participants performed either a remote lab or a simulation incorporating one of two visual representations, either a static image or a video of the equipment. Although participants in both lab conditions learned, participants in the remote lab condition had more authentic experiences. However, effects were moderated by the realism of the visual representation. Participants who saw a video were more invested and felt the experience was more authentic. In a second study, participants performed a remote lab and either saw the same video as in the first study, an animation, or the video and an animation. Most participants had an authentic experience because both representations evoked strong feelings of presence. However, participants who saw the video were more likely to believe the remote technology was real. Overall, the findings suggest that participants' experiences with technology were shaped by representation. Students had more authentic experiences using the remote lab than the simulation. However, incorporating visual representations that enhance presence made these experiences even more authentic and meaningful than afforded by the technology alone.
Commerce Lab - A program of commercial flight opportunities
NASA Technical Reports Server (NTRS)
Robertson, J.; Atkins, H. L.; Williams, J. R.
1985-01-01
Commerce Lab is conceived as an adjunct to the National Space Transportation System (NSTS) by providing a focal point for commercial missions which could utilize existing NSTS carrier and resource capabilities for on-orbit experimentation in the microgravity sciences. In this context, the Commerce Lab program provides mission planning for private sector involvement in the space program, in general, and the commercial exploitation of the microgravity environment for materials processing research and development. It is expected that Commerce Lab will provide a logical transition between currently planned NSTS missions and future microgravity science and commercial R&D missions centered around the Space Station. The present study identifies candidate Commerce Lab flight experiments and their development status and projects a mission traffic model that can be used in commercial mission planning.
INFORM Lab: a testbed for high-level information fusion and resource management
NASA Astrophysics Data System (ADS)
Valin, Pierre; Guitouni, Adel; Bossé, Eloi; Wehn, Hans; Happe, Jens
2011-05-01
DRDC Valcartier and MDA have created an advanced simulation testbed for the purpose of evaluating the effectiveness of Network Enabled Operations in a Coastal Wide Area Surveillance situation, with algorithms provided by several universities. This INFORM Lab testbed allows experimenting with high-level distributed information fusion, dynamic resource management and configuration management, given multiple constraints on the resources and their communications networks. This paper describes the architecture of INFORM Lab, the essential concepts of goals and situation evidence, a selected set of algorithms for distributed information fusion and dynamic resource management, as well as auto-configurable information fusion architectures. The testbed provides general services which include a multilayer plug-and-play architecture, and a general multi-agent framework based on John Boyd's OODA loop. The testbed's performance is demonstrated on 2 types of scenarios/vignettes for 1) cooperative search-and-rescue efforts, and 2) a noncooperative smuggling scenario involving many target ships and various methods of deceit. For each mission, an appropriate subset of Canadian airborne and naval platforms are dispatched to collect situation evidence, which is fused, and then used to modify the platform trajectories for the most efficient collection of further situation evidence. These platforms are fusion nodes which obey a Command and Control node hierarchy.
Hyle, Emily P; Jani, Ilesh V; Lehe, Jonathan; Su, Amanda E; Wood, Robin; Quevedo, Jorge; Losina, Elena; Bassett, Ingrid V; Pei, Pamela P; Paltiel, A David; Resch, Stephen; Freedberg, Kenneth A; Peter, Trevor; Walensky, Rochelle P
2014-09-01
Point-of-care CD4 tests at HIV diagnosis could improve linkage to care in resource-limited settings. Our objective is to evaluate the clinical and economic impact of point-of-care CD4 tests compared to laboratory-based tests in Mozambique. We use a validated model of HIV testing, linkage, and treatment (CEPAC-International) to examine two strategies of immunological staging in Mozambique: (1) laboratory-based CD4 testing (LAB-CD4) and (2) point-of-care CD4 testing (POC-CD4). Model outcomes include 5-y survival, life expectancy, lifetime costs, and incremental cost-effectiveness ratios (ICERs). Input parameters include linkage to care (LAB-CD4, 34%; POC-CD4, 61%), probability of correctly detecting antiretroviral therapy (ART) eligibility (sensitivity: LAB-CD4, 100%; POC-CD4, 90%) or ART ineligibility (specificity: LAB-CD4, 100%; POC-CD4, 85%), and test cost (LAB-CD4, US$10; POC-CD4, US$24). In sensitivity analyses, we vary POC-CD4-specific parameters, as well as cohort and setting parameters to reflect a range of scenarios in sub-Saharan Africa. We consider ICERs less than three times the per capita gross domestic product in Mozambique (US$570) to be cost-effective, and ICERs less than one times the per capita gross domestic product in Mozambique to be very cost-effective. Projected 5-y survival in HIV-infected persons with LAB-CD4 is 60.9% (95% CI, 60.9%-61.0%), increasing to 65.0% (95% CI, 64.9%-65.1%) with POC-CD4. Discounted life expectancy and per person lifetime costs with LAB-CD4 are 9.6 y (95% CI, 9.6-9.6 y) and US$2,440 (95% CI, US$2,440-US$2,450) and increase with POC-CD4 to 10.3 y (95% CI, 10.3-10.3 y) and US$2,800 (95% CI, US$2,790-US$2,800); the ICER of POC-CD4 compared to LAB-CD4 is US$500/year of life saved (YLS) (95% CI, US$480-US$520/YLS). POC-CD4 improves clinical outcomes and remains near the very cost-effective threshold in sensitivity analyses, even if point-of-care CD4 tests have lower sensitivity/specificity and higher cost than published values. In other resource-limited settings with fewer opportunities to access care, POC-CD4 has a greater impact on clinical outcomes and remains cost-effective compared to LAB-CD4. Limitations of the analysis include the uncertainty around input parameters, which is examined in sensitivity analyses. The potential added benefits due to decreased transmission are excluded; their inclusion would likely further increase the value of POC-CD4 compared to LAB-CD4. POC-CD4 at the time of HIV diagnosis could improve survival and be cost-effective compared to LAB-CD4 in Mozambique, if it improves linkage to care. POC-CD4 could have the greatest impact on mortality in settings where resources for HIV testing and linkage are most limited. Please see later in the article for the Editors' Summary.
Good enough practices in scientific computing.
Wilson, Greg; Bryan, Jennifer; Cranston, Karen; Kitzes, Justin; Nederbragt, Lex; Teal, Tracy K
2017-06-01
Computers are now essential in all branches of science, but most researchers are never taught the equivalent of basic lab skills for research computing. As a result, data can get lost, analyses can take much longer than necessary, and researchers are limited in how effectively they can work with software and data. Computing workflows need to follow the same practices as lab projects and notebooks, with organized data, documented steps, and the project structured for reproducibility, but researchers new to computing often don't know where to start. This paper presents a set of good computing practices that every researcher can adopt, regardless of their current level of computational skill. These practices, which encompass data management, programming, collaborating with colleagues, organizing projects, tracking work, and writing manuscripts, are drawn from a wide variety of published sources from our daily lives and from our work with volunteer organizations that have delivered workshops to over 11,000 people since 2010.
Parmitano and Cassidy in U.S. Lab
2013-05-31
ISS036-E-005515 (31 May 2013) --- European Space Agency astronaut Luca Parmitano (left) and NASA astronaut Chris Cassidy talk with fellow human beings on Earth using videoconferencing software and one of their on-board laptop computers in the U.S. lab Destiny.
Have Observatory, Will Travel.
ERIC Educational Resources Information Center
White, James C., II
1996-01-01
Describes several of the labs developed by Project CLEA (Contemporary Laboratory Experiences in Astronomy). The computer labs cover simulated spectrometer use, investigating the moons of Jupiter, radar measurements, energy flow out of the sun, classifying stellar spectra, photoelectric photometry, Doppler effect, eclipsing binary stars, and lunar…
Computational Science News | Computational Science | NREL
-Cooled High-Performance Computing Technology at the ESIF February 28, 2018 NREL Launches New Website for High-Performance Computing System Users The National Renewable Energy Laboratory (NREL) Computational Science Center has launched a revamped website for users of the lab's high-performance computing (HPC
An Algebra-Based Introductory Computational Neuroscience Course with Lab.
Fink, Christian G
2017-01-01
A course in computational neuroscience has been developed at Ohio Wesleyan University which requires no previous experience with calculus or computer programming, and which exposes students to theoretical models of neural information processing and techniques for analyzing neural data. The exploration of theoretical models of neural processes is conducted in the classroom portion of the course, while data analysis techniques are covered in lab. Students learn to program in MATLAB and are offered the opportunity to conclude the course with a final project in which they explore a topic of their choice within computational neuroscience. Results from a questionnaire administered at the beginning and end of the course indicate significant gains in student facility with core concepts in computational neuroscience, as well as with analysis techniques applied to neural data.
High Precision Prediction of Functional Sites in Protein Structures
Buturovic, Ljubomir; Wong, Mike; Tang, Grace W.; Altman, Russ B.; Petkovic, Dragutin
2014-01-01
We address the problem of assigning biological function to solved protein structures. Computational tools play a critical role in identifying potential active sites and informing screening decisions for further lab analysis. A critical parameter in the practical application of computational methods is the precision, or positive predictive value. Precision measures the level of confidence the user should have in a particular computed functional assignment. Low precision annotations lead to futile laboratory investigations and waste scarce research resources. In this paper we describe an advanced version of the protein function annotation system FEATURE, which achieved 99% precision and average recall of 95% across 20 representative functional sites. The system uses a Support Vector Machine classifier operating on the microenvironment of physicochemical features around an amino acid. We also compared performance of our method with state-of-the-art sequence-level annotator Pfam in terms of precision, recall and localization. To our knowledge, no other functional site annotator has been rigorously evaluated against these key criteria. The software and predictive models are incorporated into the WebFEATURE service at http://feature.stanford.edu/wf4.0-beta. PMID:24632601
ERIC Educational Resources Information Center
Oliveira, Ana; Pombo, Lúcia
2017-01-01
The EduLab model is a "new" educational model that integrates technologies in educational contexts comprising full equipped classrooms with attractive and easy-to-use technological resources. This model tries to promote a dynamic and more effective teaching and learning process. For this purpose, the model provides teachers training and…
Flexible Work Strategies | Climate Neutral Research Campuses | NREL
physical resources through shared offices and hotelling. Employees take turns using physical office and lab , telecommuting, and similar strategies make the most of limited physical space and, in some cases, avoid new construction. Hotelling is a popular option under which employees take turns using physical office and lab
Use of a Wiki-Based Software to Manage Research Group Activities
ERIC Educational Resources Information Center
Wang, Ting; Vezenov, Dmitri V.; Simboli, Brian
2014-01-01
This paper discusses use of the wiki software Confluence to organize research group activities and lab resources. Confluence can serve as an electronic lab notebook (ELN), as well as an information management and collaboration tool. The article provides a case study in how researchers can use wiki software in "home-grown" fashion to…
NASA Technical Reports Server (NTRS)
Smith, Kevin
2011-01-01
This tutorial will explain the concepts and steps for interfacing a National Instruments LabView virtual instrument (VI) running on a Windows platform with another computer via the Object Management Group (OMG) Data Distribution Service (DDS) as implemented by the Twin Oaks Computing CoreDX. This paper is for educational purposes only and therefore, the referenced source code will be simplistic and void of all error checking. Implementation will be accomplished using the C programming language.
MethLAB: a graphical user interface package for the analysis of array-based DNA methylation data.
Kilaru, Varun; Barfield, Richard T; Schroeder, James W; Smith, Alicia K; Conneely, Karen N
2012-03-01
Recent evidence suggests that DNA methylation changes may underlie numerous complex traits and diseases. The advent of commercial, array-based methods to interrogate DNA methylation has led to a profusion of epigenetic studies in the literature. Array-based methods, such as the popular Illumina GoldenGate and Infinium platforms, estimate the proportion of DNA methylated at single-base resolution for thousands of CpG sites across the genome. These arrays generate enormous amounts of data, but few software resources exist for efficient and flexible analysis of these data. We developed a software package called MethLAB (http://genetics.emory.edu/conneely/MethLAB) using R, an open source statistical language that can be edited to suit the needs of the user. MethLAB features a graphical user interface (GUI) with a menu-driven format designed to efficiently read in and manipulate array-based methylation data in a user-friendly manner. MethLAB tests for association between methylation and relevant phenotypes by fitting a separate linear model for each CpG site. These models can incorporate both continuous and categorical phenotypes and covariates, as well as fixed or random batch or chip effects. MethLAB accounts for multiple testing by controlling the false discovery rate (FDR) at a user-specified level. Standard output includes a spreadsheet-ready text file and an array of publication-quality figures. Considering the growing interest in and availability of DNA methylation data, there is a great need for user-friendly open source analytical tools. With MethLAB, we present a timely resource that will allow users with no programming experience to implement flexible and powerful analyses of DNA methylation data.
ERIC Educational Resources Information Center
Ruben, Barbara
1994-01-01
Reviews a number of interactive environmental computer education networks and software packages. Computer networks include National Geographic Kids Network, Global Lab, and Global Rivers Environmental Education Network. Computer software involve environmental decision making, simulation games, tropical rainforests, the ocean, the greenhouse…
Energy and technology review, July--August, 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burnham, A.K.
1990-01-01
This report highlights various research programs conducted at the Lab to include: defense systems, laser research, fusion energy, biomedical and environmental sciences, engineering, physics, chemistry, materials science, and computational analysis. It also contains a statement on the state of the Lab and Laboratory Administration. (JEF)
BioLab: Using Yeast Fermentation as a Model for the Scientific Method.
ERIC Educational Resources Information Center
Pigage, Helen K.; Neilson, Milton C.; Greeder, Michele M.
This document presents a science experiment demonstrating the scientific method. The experiment consists of testing the fermentation capabilities of yeasts under different circumstances. The experiment is supported with computer software called BioLab which demonstrates yeast's response to different environments. (YDS)
GeneLab: NASA's Open Access, Collaborative Platform for Systems Biology and Space Medicine
NASA Technical Reports Server (NTRS)
Berrios, Daniel C.; Thompson, Terri G.; Fogle, Homer W.; Rask, Jon C.; Coughlan, Joseph C.
2015-01-01
NASA is investing in GeneLab1 (http:genelab.nasa.gov), a multi-year effort to maximize utilization of the limited resources to conduct biological and medical research in space, principally aboard the International Space Station (ISS). High-throughput genomic, transcriptomic, proteomic or other omics analyses from experiments conducted on the ISS will be stored in the GeneLab Data Systems (GLDS), an open-science information system that will also include a biocomputation platform with collaborative science capabilities, to enable the discovery and validation of molecular networks.
Window Observational Research Facility (WORF)
NASA Technical Reports Server (NTRS)
Pelfrey, Joseph; Sledd, Annette
2007-01-01
This viewgraph document concerns the Window Observational Research Facility (WORF) Rack, a unique facility designed for use with the US Lab Destiny Module window. WORF will provide valuable resources for Earth Science payloads along with serving the purpose of protecting the lab window. The facility can be used for remote sensing instrumentation test and validation in a shirt sleeve environment. WORF will also provide a training platform for crewmembers to do orbital observations of other planetary bodies. WORF payloads will be able to conduct terrestrial studies utilizing the data collected from utilizing WORF and the lab window.
Teaching physiology and the World Wide Web: electrochemistry and electrophysiology on the Internet.
Dwyer, T M; Fleming, J; Randall, J E; Coleman, T G
1997-12-01
Students seek active learning experiences that can rapidly impart relevant information in the most convenient way possible. Computer-assisted education can now use the resources of the World Wide Web to convey the important characteristics of events as elemental as the physical properties of osmotically active particles in the cell and as complex as the nerve action potential or the integrative behavior of the intact organism. We have designed laboratory exercises that introduce first-year medical students to membrane and action potentials, as well as the more complex example of integrative physiology, using the dynamic properties of computer simulations. Two specific examples are presented. The first presents the physical laws that apply to osmotic, chemical, and electrical gradients, leading to the development of the concept of membrane potentials; this module concludes with the simulation of the ability of the sodium-potassium pump to establish chemical gradients and maintain cell volume. The second module simulates the action potential according to the Hodgkin-Huxley model, illustrating the concepts of threshold, inactivation, refractory period, and accommodation. Students can access these resources during the scheduled laboratories or on their own time via our Web site on the Internet (http./(/)phys-main.umsmed.edu) by using the World Wide Web protocol. Accurate version control is possible because one valid, but easily edited, copy of the labs exists at the Web site. A common graphical interface is possible through the use of the Hypertext mark-up language. Platform independence is possible through the logical and arithmetic calculations inherent to graphical browsers and the Javascript computer language. The initial success of this program indicates that medical education can be very effective both by the use of accurate simulations and by the existence of a universally accessible Internet resource.
NASA Astrophysics Data System (ADS)
Weagant, Scott; Karanassios, Vassili
2015-06-01
The use of portable hand held computing devices for the acquisition of spectrochemical data is briefly discussed using examples from the author's laboratory. Several network topologies are evaluated. At present, one topology that involves a portable computing device for data acquisition and spectrometer control and that has wireless access to the internet at one end and communicates with a smart phone at the other end appears to be better suited for "taking part of the lab to the sample" types of applications. Thus, spectrometric data can be accessed from anywhere in the world.
Blast2GO goes grid: developing a grid-enabled prototype for functional genomics analysis.
Aparicio, G; Götz, S; Conesa, A; Segrelles, D; Blanquer, I; García, J M; Hernandez, V; Robles, M; Talon, M
2006-01-01
The vast amount in complexity of data generated in Genomic Research implies that new dedicated and powerful computational tools need to be developed to meet their analysis requirements. Blast2GO (B2G) is a bioinformatics tool for Gene Ontology-based DNA or protein sequence annotation and function-based data mining. The application has been developed with the aim of affering an easy-to-use tool for functional genomics research. Typical B2G users are middle size genomics labs carrying out sequencing, ETS and microarray projects, handling datasets up to several thousand sequences. In the current version of B2G. The power and analytical potential of both annotation and function data-mining is somehow restricted to the computational power behind each particular installation. In order to be able to offer the possibility of an enhanced computational capacity within this bioinformatics application, a Grid component is being developed. A prototype has been conceived for the particular problem of speeding up the Blast searches to obtain fast results for large datasets. Many efforts have been done in the literature concerning the speeding up of Blast searches, but few of them deal with the use of large heterogeneous production Grid Infrastructures. These are the infrastructures that could reach the largest number of resources and the best load balancing for data access. The Grid Service under development will analyse requests based on the number of sequences, splitting them accordingly to the available resources. Lower-level computation will be performed through MPIBLAST. The software architecture is based on the WSRF standard.
Towards autonomous lab-on-a-chip devices for cell phone biosensing.
Comina, Germán; Suska, Anke; Filippini, Daniel
2016-03-15
Modern cell phones are a ubiquitous resource with a residual capacity to accommodate chemical sensing and biosensing capabilities. From the different approaches explored to capitalize on such resource, the use of autonomous disposable lab-on-a-chip (LOC) devices-conceived as only accessories to complement cell phones-underscores the possibility to entirely retain cell phones' ubiquity for distributed biosensing. The technology and principles exploited for autonomous LOC devices are here selected and reviewed focusing on their potential to serve cell phone readout configurations. Together with this requirement, the central aspects of cell phones' resources that determine their potential for analytical detection are examined. The conversion of these LOC concepts into universal architectures that are readable on unaccessorized phones is discussed within this context. Copyright © 2015 Elsevier B.V. All rights reserved.
AnimatLab: a 3D graphics environment for neuromechanical simulations.
Cofer, David; Cymbalyuk, Gennady; Reid, James; Zhu, Ying; Heitler, William J; Edwards, Donald H
2010-03-30
The nervous systems of animals evolved to exert dynamic control of behavior in response to the needs of the animal and changing signals from the environment. To understand the mechanisms of dynamic control requires a means of predicting how individual neural and body elements will interact to produce the performance of the entire system. AnimatLab is a software tool that provides an approach to this problem through computer simulation. AnimatLab enables a computational model of an animal's body to be constructed from simple building blocks, situated in a virtual 3D world subject to the laws of physics, and controlled by the activity of a multicellular, multicompartment neural circuit. Sensor receptors on the body surface and inside the body respond to external and internal signals and then excite central neurons, while motor neurons activate Hill muscle models that span the joints and generate movement. AnimatLab provides a common neuromechanical simulation environment in which to construct and test models of any skeletal animal, vertebrate or invertebrate. The use of AnimatLab is demonstrated in a neuromechanical simulation of human arm flexion and the myotactic and contact-withdrawal reflexes. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Computer-Mediated Communication in a High School: The Users Shape the Medium--Part 1.
ERIC Educational Resources Information Center
Bresler, Liora
1990-01-01
This field study represents a departure from structured, or directed, computer-mediated communication as used in its natural environment, the computer lab. Using observations, interviews, and the computer medium itself, the investigators report how high school students interact with computers and create their own agendas for computer usage and…
A "Language Lab" for Architectural Design.
ERIC Educational Resources Information Center
Mackenzie, Arch; And Others
This paper discusses a "language lab" strategy in which traditional studio learning may be supplemented by language lessons using computer graphics techniques to teach architectural grammar, a body of elements and principles that govern the design of buildings belonging to a particular architectural theory or style. Two methods of…
Interfacing LabVIEW With Instrumentation for Electronic Failure Analysis and Beyond
NASA Technical Reports Server (NTRS)
Buchanan, Randy K.; Bryan, Coleman; Ludwig, Larry
1996-01-01
The Laboratory Virtual Instrumentation Engineering Workstation (LabVIEW) software is designed such that equipment and processes related to control systems can be operationally lined and controlled by the use of a computer. Various processes within the failure analysis laboratories of NASA's Kennedy Space Center (KSC) demonstrate the need for modernization and, in some cases, automation, using LabVIEW. An examination of procedures and practices with the Failure Analaysis Laboratory resulted in the conclusion that some device was necessary to elevate the potential users of LabVIEW to an operational level in minimum time. This paper outlines the process involved in creating a tutorial application to enable personnel to apply LabVIEW to their specific projects. Suggestions for furthering the extent to which LabVIEW is used are provided in the areas of data acquisition and process control.
McCallum, Ethan B; Peterson, Zoë D
2015-11-01
Factors related to the research context, such as inquiry mode, setting, and experimenter contact, may affect participants' comfort with and willingness to disclose certain sexual attitudes or admit to engaging in sensitive sexual behaviors. In this study, 255 female undergraduates (42.7 % non-White) completed a survey containing measures of sexual behavior and attitudes. The level of experimenter contact (high vs. low contact), setting (in lab vs. out of lab), and inquiry mode (pencil-and-paper vs. computer) were manipulated and participants were randomly assigned to conditions. We hypothesized that low-contact, out-of-lab, computer conditions would be associated with more liberal sexual attitudes and higher rates of reported sexual behaviors than high-contact, in-lab, and paper-and-pencil conditions, respectively. Further, we hypothesized that effects would be moderated by race, such that differences would be greater for non-White participants because of concerns that reporting socially undesirable behavior might fuel racial stereotypes. For attitudinal measures, White participants endorsed more liberal attitudes toward sex in high-contact conditions and non-White participants endorsed more liberal attitudes in low-contact conditions. For behavioral measures, non-White participants reported more behaviors on pencil-and-paper surveys than on computers. White participants demonstrated no significant mode-related differences or reported more sexual behaviors in computer conditions than paper-and-pencil conditions. Overall, results suggest that experimenter contact and mode significantly impact sexual self-report and this impact is often moderated by race.
Liu, Ruxiu; Wang, Ningquan; Kamili, Farhan; Sarioglu, A Fatih
2016-04-21
Numerous biophysical and biochemical assays rely on spatial manipulation of particles/cells as they are processed on lab-on-a-chip devices. Analysis of spatially distributed particles on these devices typically requires microscopy negating the cost and size advantages of microfluidic assays. In this paper, we introduce a scalable electronic sensor technology, called microfluidic CODES, that utilizes resistive pulse sensing to orthogonally detect particles in multiple microfluidic channels from a single electrical output. Combining the techniques from telecommunications and microfluidics, we route three coplanar electrodes on a glass substrate to create multiple Coulter counters producing distinct orthogonal digital codes when they detect particles. We specifically design a digital code set using the mathematical principles of Code Division Multiple Access (CDMA) telecommunication networks and can decode signals from different microfluidic channels with >90% accuracy through computation even if these signals overlap. As a proof of principle, we use this technology to detect human ovarian cancer cells in four different microfluidic channels fabricated using soft lithography. Microfluidic CODES offers a simple, all-electronic interface that is well suited to create integrated, low-cost lab-on-a-chip devices for cell- or particle-based assays in resource-limited settings.
Unraveling the Complexities of Life Sciences Data.
Higdon, Roger; Haynes, Winston; Stanberry, Larissa; Stewart, Elizabeth; Yandl, Gregory; Howard, Chris; Broomall, William; Kolker, Natali; Kolker, Eugene
2013-03-01
The life sciences have entered into the realm of big data and data-enabled science, where data can either empower or overwhelm. These data bring the challenges of the 5 Vs of big data: volume, veracity, velocity, variety, and value. Both independently and through our involvement with DELSA Global (Data-Enabled Life Sciences Alliance, DELSAglobal.org), the Kolker Lab ( kolkerlab.org ) is creating partnerships that identify data challenges and solve community needs. We specialize in solutions to complex biological data challenges, as exemplified by the community resource of MOPED (Model Organism Protein Expression Database, MOPED.proteinspire.org ) and the analysis pipeline of SPIRE (Systematic Protein Investigative Research Environment, PROTEINSPIRE.org ). Our collaborative work extends into the computationally intensive tasks of analysis and visualization of millions of protein sequences through innovative implementations of sequence alignment algorithms and creation of the Protein Sequence Universe tool (PSU). Pushing into the future together with our collaborators, our lab is pursuing integration of multi-omics data and exploration of biological pathways, as well as assigning function to proteins and porting solutions to the cloud. Big data have come to the life sciences; discovering the knowledge in the data will bring breakthroughs and benefits.
Characterization of a Low-Cost Multi-Parameter Sensor for Resource Applications: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habte, Aron M; Sengupta, Manajit; Andreas, Afshin M
Low-cost multi-parameter sensing and measurement devices enable cost-effective monitoring of the functional, operational reliability, efficiency, and resiliency of the electrical grid. The National Renewable Research Laboratory (NREL) Solar Radiation Research Laboratory (SRRL), in collaboration with Arable Labs Inc., deployed Arable Lab's Mark multi-parameter sensor system. The unique suite of system sensors measures the down-welling and upwelling shortwave solar resource and longwave radiation, humidity, air temperature, and ground temperature. This study describes the shortwave calibration, characteriza-tion, and validation of measurement accuracy of this instrument by comparison with existing instruments that are part of NREL-SRRL's Baseline Measurement System.
Leyland, Rebecca; Freedman, Danielle B
2016-11-01
Background Lab Tests Online-UK celebrated its 10th anniversary in 2014 and to mark the occasion the first comprehensive survey of website users was undertaken. Methods A pop-up box with a link to Survey Monkey was used to offer website users the chance to participate in the survey, which was live from 4 March 2014 to 11 April 2014. Results Six hundred and sixty-one participants started the questionnaire and 338 completed all of the demographic questions. Although the website is designed and aimed at patients and the public, a significant number of respondents were health-care professionals (47%). The majority of survey participants found the Lab Tests Online-UK website via a search engine and were visiting the site for themselves. The majority of participants found what they were looking for on the website and found the information very easy or fairly easy to understand. The patient respondents were keen to see their laboratory test results (87%), but the majority did not have access (60%) at the time of the survey. Conclusions This survey provides good evidence that the Lab Tests Online-UK website is a useful resource for patients and health-care professionals alike. It comes at a poignant time as the release of results direct to patients starts with access to their medical records. The Lab Tests Online-UK website has a key role in enabling patients to understand their lab test results, and therefore empowering them to take an interest and engage in their own healthcare.
Kowalski, Marcin; DeVille, J Brian; Svinarich, J Thomas; Dan, Dan; Wickliffe, Andrew; Kantipudi, Charan; Foell, Jason D; Filardo, Giovanni; Holbrook, Reece; Baker, James; Baydoun, Hassan; Jenkins, Mark; Chang-Sing, Peter
2016-05-01
The VALUE PVI study demonstrated that atrial fibrillation (AF) ablation procedures and electrophysiology laboratory (EP lab) occupancy times were reduced for the cryoballoon compared with focal radiofrequency (RF) ablation. However, the economic impact associated with the cryoballoon procedure for hospitals has not been determined. Assess the economic value associated with shorter AF ablation procedure times based on VALUE PVI data. A model was formulated from data from the VALUE PVI study. This model used a discrete event simulation to translate procedural efficiencies into metrics utilized by hospital administrators. A 1000-day period was simulated to determine the accrued impact of procedure time on an institution's EP lab when considering staff and hospital resources. The simulation demonstrated that procedures performed with the cryoballoon catheter resulted in several efficiencies, including: (1) a reduction of 36.2% in days with overtime (422 days RF vs 60 days cryoballoon); (2) 92.7% less cumulative overtime hours (370 hours RF vs 27 hours cryoballoon); and (3) an increase of 46.7% in days with time for an additional EP lab usage (186 days RF vs 653 days cryoballoon). Importantly, the added EP lab utilization could not support the time required for an additional AF ablation procedure. The discrete event simulation of the VALUE PVI data demonstrates the potential positive economic value of AF ablation procedures using the cryoballoon. These benefits include more days where overtime is avoided, fewer cumulative overtime hours, and more days with time left for additional usage of EP lab resources.
Acid Rain: Resource Materials for Schools.
ERIC Educational Resources Information Center
American Biology Teacher, 1983
1983-01-01
Provides listings of acid rain resource material groups under: (1) printed materials (pamphlets, books, articles); (2) audiovisuals (slide/tape presentations, tape, video-cassette); (3) miscellaneous (buttons, pocket lab, umbrella); (4) transparencies; (5) bibliographies; and (6) curriculum materials. Sources and prices (when applicable) are…
Biolik, A; Heide, S; Lessig, R; Hachmann, V; Stoevesandt, D; Kellner, J; Jäschke, C; Watzke, S
2018-04-01
One option for improving the quality of medical post mortem examinations is through intensified training of medical students, especially in countries where such a requirement exists regardless of the area of specialisation. For this reason, new teaching and learning methods on this topic have recently been introduced. These new approaches include e-learning modules or SkillsLab stations; one way to objectify the resultant learning outcomes is by means of the OSCE process. However, despite offering several advantages, this examination format also requires considerable resources, in particular in regards to medical examiners. For this reason, many clinical disciplines have already implemented computer-based OSCE examination formats. This study investigates whether the conventional exam format for the OSCE forensic "Death Certificate" station could be replaced with a computer-based approach in future. For this study, 123 students completed the OSCE "Death Certificate" station, using both a computer-based and conventional format, half starting with the Computer the other starting with the conventional approach in their OSCE rotation. Assignment of examination cases was random. The examination results for the two stations were compared and both overall results and the individual items of the exam checklist were analysed by means of inferential statistics. Following statistical analysis of examination cases of varying difficulty levels and correction of the repeated measures effect, the results of both examination formats appear to be comparable. Thus, in the descriptive item analysis, while there were some significant differences between the computer-based and conventional OSCE stations, these differences were not reflected in the overall results after a correction factor was applied (e.g. point deductions for assistance from the medical examiner was possible only at the conventional station). Thus, we demonstrate that the computer-based OSCE "Death Certificate" station is a cost-efficient and standardised format for examination that yields results comparable to those from a conventional format exam. Moreover, the examination results also indicate the need to optimize both the test itself (adjusting the degree of difficulty of the case vignettes) and the corresponding instructional and learning methods (including, for example, the use of computer programmes to complete the death certificate in small group formats in the SkillsLab). Copyright © 2018 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Arvidsson, Per I; Sandberg, Kristian; Sakariassen, Kjell S
2017-01-01
The Science for Life Laboratory Drug Discovery and Development Platform (SciLifeLab DDD) was established in Stockholm and Uppsala, Sweden, in 2014. It is one of ten platforms of the Swedish national SciLifeLab which support projects run by Swedish academic researchers with large-scale technologies for molecular biosciences with a focus on health and environment. SciLifeLab was created by the coordinated effort of four universities in Stockholm and Uppsala: Stockholm University, Karolinska Institutet, KTH Royal Institute of Technology and Uppsala University, and has recently expanded to other Swedish university locations. The primary goal of the SciLifeLab DDD is to support selected academic discovery and development research projects with tools and resources to discover novel lead therapeutics, either molecules or human antibodies. Intellectual property developed with the help of SciLifeLab DDD is wholly owned by the academic research group. The bulk of SciLifeLab DDD's research and service activities are funded from the Swedish state, with only consumables paid by the academic research group through individual grants. PMID:28670468
Arvidsson, Per I; Sandberg, Kristian; Sakariassen, Kjell S
2017-06-01
The Science for Life Laboratory Drug Discovery and Development Platform (SciLifeLab DDD) was established in Stockholm and Uppsala, Sweden, in 2014. It is one of ten platforms of the Swedish national SciLifeLab which support projects run by Swedish academic researchers with large-scale technologies for molecular biosciences with a focus on health and environment. SciLifeLab was created by the coordinated effort of four universities in Stockholm and Uppsala: Stockholm University, Karolinska Institutet, KTH Royal Institute of Technology and Uppsala University, and has recently expanded to other Swedish university locations. The primary goal of the SciLifeLab DDD is to support selected academic discovery and development research projects with tools and resources to discover novel lead therapeutics, either molecules or human antibodies. Intellectual property developed with the help of SciLifeLab DDD is wholly owned by the academic research group. The bulk of SciLifeLab DDD's research and service activities are funded from the Swedish state, with only consumables paid by the academic research group through individual grants.
A Computer-Based Simulation of an Acid-Base Titration
ERIC Educational Resources Information Center
Boblick, John M.
1971-01-01
Reviews the advantages of computer simulated environments for experiments, referring in particular to acid-base titrations. Includes pre-lab instructions and a sample computer printout of a student's use of an acid-base simulation. Ten references. (PR)
When Everyone Is a Probe, Everyone Is a Learner
ERIC Educational Resources Information Center
Berenfeld, Boris; Krupa, Tatiana; Lebedev, Arseny; Stafeev, Sergey
2014-01-01
Most students globally have mobile devices and the Global Students Laboratory (GlobalLab) project is integrating mobility into learning. First launched in 1991, GlobalLab builds a community of learners engaged in collaborative, distributed investigations. Long relying on stationary desktop computers, or students inputting their observations by…
Berkeley Lab Wins Seven 2015 R&D 100 Awards | Berkeley Lab
products from industry, academia, and government-sponsored research, ranging from chemistry to materials to problems in metrology techniques: the quantitative characterization of the imaging instrumentation Computational Research Division led the development of the technology. Sensor Integrated with Recombinant and
The Virtual Genetics Lab: A Freely-Available Open-Source Genetics Simulation
ERIC Educational Resources Information Center
White, Brian; Bolker, Ethan; Koolar, Nikunj; Ma, Wei; Maw, Naing Naing; Yu, Chung Ying
2007-01-01
This lab is a computer simulation of transmission genetics. It presents students with a genetic phenomenon--the inheritance of a randomly--selected trait. The students' task is to determine how this trait is inherited by designing their own crosses and analyzing the results produced by the software.
Using SimCPU in Cooperative Learning Laboratories.
ERIC Educational Resources Information Center
Lin, Janet Mei-Chuen; Wu, Cheng-Chih; Liu, Hsi-Jen
1999-01-01
Reports research findings of an experimental design in which cooperative-learning strategies were applied to closed-lab instruction of computing concepts. SimCPU, a software package specially designed for closed-lab usage was used by 171 high school students of four classes. Results showed that collaboration enhanced learning and that blending…
FY2014 LBNL LDRD Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Darren
2015-06-01
Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE’s National Laboratory System, Berkeley Lab supports DOE’s missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation. The LDRD program supports Berkeley Lab’s mission in many ways. First, because LDRD funds can be allocated within a relatively short time frame, Berkeley Lab researchers can support the mission of the Department of Energy (DOE) and serve the needs of the nationmore » by quickly responding to forefront scientific problems. Second, LDRD enables Berkeley Lab to attract and retain highly qualified scientists and to support their efforts to carry out worldleading research. In addition, the LDRD program also supports new projects that involve graduate students and postdoctoral fellows, thus contributing to the education mission of Berkeley Lab.« less
2008-03-01
Appendix 82 MatLab© Cd Calculator Routine FORTRAN© Subroutine of the Variable Cd Model ii ABBREVIATIONS & ACRONYMS Cd...Figure 29. Overview Flowchart of Benét Labs Recoil Analysis Code Figure 30. Overview Flowchart of Recoil Brake Subroutine Figure 31...Detail Flowchart of Recoil Pressure/Force Calculations Figure 32. Detail Flowchart of Variable Cd Subroutine Figure 33. Simulated Brake
Incorporating learning goals about modeling into an upper-division physics laboratory experiment
NASA Astrophysics Data System (ADS)
Zwickl, Benjamin M.; Finkelstein, Noah; Lewandowski, H. J.
2014-09-01
Implementing a laboratory activity involves a complex interplay among learning goals, available resources, feedback about the existing course, best practices for teaching, and an overall philosophy about teaching labs. Building on our previous work, which described a process of transforming an entire lab course, we now turn our attention to how an individual lab activity on the polarization of light was redesigned to include a renewed emphasis on one broad learning goal: modeling. By using this common optics lab as a concrete case study of a broadly applicable approach, we highlight many aspects of the activity development and show how modeling is used to integrate sophisticated conceptual and quantitative reasoning into the experimental process through the various aspects of modeling: constructing models, making predictions, interpreting data, comparing measurements with predictions, and refining models. One significant outcome is a natural way to integrate an analysis and discussion of systematic error into a lab activity.
Transforming the advanced lab: Part I - Learning goals
NASA Astrophysics Data System (ADS)
Zwickl, Benjamin; Finkelstein, Noah; Lewandowski, H. J.
2012-02-01
Within the physics education research community relatively little attention has been given to laboratory courses, especially at the upper-division undergraduate level. As part of transforming our senior-level Optics and Modern Physics Lab at the University of Colorado Boulder we are developing learning goals, revising curricula, and creating assessments. In this paper, we report on the establishment of our learning goals and a surrounding framework that have emerged from discussions with a wide variety of faculty, from a review of the literature on labs, and from identifying the goals of existing lab courses. Our goals go beyond those of specific physics content and apparatus, allowing instructors to personalize them to their contexts. We report on four broad themes and associated learning goals: Modeling (math-physics-data connection, statistical error analysis, systematic error, modeling of engineered "black boxes"), Design (of experiments, apparatus, programs, troubleshooting), Communication, and Technical Lab Skills (computer-aided data analysis, LabVIEW, test and measurement equipment).
Social Play at the Computer: Preschoolers Scaffold and Support Peers' Computer Competence.
ERIC Educational Resources Information Center
Freeman, Nancy K.; Somerindyke, Jennifer
2001-01-01
Describes preschoolers' collaboration during free play in a computer lab, focusing on the computer's contribution to active, peer-mediated learning. Discusses these observations in terms of Parten's insights on children's social play and Vygotsky's socio-cultural learning theory, noting that the children scaffolded each other's growing computer…
An Educational Approach to Computationally Modeling Dynamical Systems
ERIC Educational Resources Information Center
Chodroff, Leah; O'Neal, Tim M.; Long, David A.; Hemkin, Sheryl
2009-01-01
Chemists have used computational science methodologies for a number of decades and their utility continues to be unabated. For this reason we developed an advanced lab in computational chemistry in which students gain understanding of general strengths and weaknesses of computation-based chemistry by working through a specific research problem.…
Atmospheric simulation using a liquid crystal wavefront-controlling device
NASA Astrophysics Data System (ADS)
Brooks, Matthew R.; Goda, Matthew E.
2004-10-01
Test and evaluation of laser warning devices is important due to the increased use of laser devices in aerial applications. This research consists of an atmospheric aberrating system to enable in-lab testing of various detectors and sensors. This system employs laser light at 632.8nm from a Helium-Neon source and a spatial light modulator (SLM) to cause phase changes using a birefringent liquid crystal material. Measuring outgoing radiation from the SLM using a CCD targetboard and Shack-Hartmann wavefront sensor reveals an acceptable resemblance of system output to expected atmospheric theory. Over three turbulence scenarios, an error analysis reveals that turbulence data matches theory. A wave optics computer simulation is created analogous to the lab-bench design. Phase data, intensity data, and a computer simulation affirm lab-bench results so that the aberrating SLM system can be operated confidently.
Interactive, Online, Adsorption Lab to Support Discovery of the Scientific Process
NASA Astrophysics Data System (ADS)
Carroll, K. C.; Ulery, A. L.; Chamberlin, B.; Dettmer, A.
2014-12-01
Science students require more than methods practice in lab activities; they must gain an understanding of the application of the scientific process through lab work. Large classes, time constraints, and funding may limit student access to science labs, denying students access to the types of experiential learning needed to motivate and develop new scientists. Interactive, discovery-based computer simulations and virtual labs provide an alternative, low-risk opportunity for learners to engage in lab processes and activities. Students can conduct experiments, collect data, draw conclusions, and even abort a session. We have developed an online virtual lab, through which students can interactively develop as scientists as they learn about scientific concepts, lab equipment, and proper lab techniques. Our first lab topic is adsorption of chemicals to soil, but the methodology is transferrable to other topics. In addition to learning the specific procedures involved in each lab, the online activities will prompt exploration and practice in key scientific and mathematical concepts, such as unit conversion, significant digits, assessing risks, evaluating bias, and assessing quantity and quality of data. These labs are not designed to replace traditional lab instruction, but to supplement instruction on challenging or particularly time-consuming concepts. To complement classroom instruction, students can engage in a lab experience outside the lab and over a shorter time period than often required with real-world adsorption studies. More importantly, students can reflect, discuss, review, and even fail at their lab experience as part of the process to see why natural processes and scientific approaches work the way they do. Our Media Productions team has completed a series of online digital labs available at virtuallabs.nmsu.edu and scienceofsoil.com, and these virtual labs are being integrated into coursework to evaluate changes in student learning.
Teaching Calculus with Wolfram|Alpha
ERIC Educational Resources Information Center
Dimiceli, Vincent E.; Lang, Andrew S. I. D.; Locke, LeighAnne
2010-01-01
This article describes the benefits and drawbacks of using Wolfram|Alpha as the platform for teaching calculus concepts in the lab setting. It is a result of our experiences designing and creating an entirely new set of labs using Wolfram|Alpha. We present the reasoning behind our transition from using a standard computer algebra system (CAS) to…
Reflections on Teaching in a Wireless Laptop Lab
ERIC Educational Resources Information Center
Beasley, William; Dobda, Kathyanne W.; Wang, Lih-Ching Chen
2005-01-01
In recent years laptop computers have become increasingly popular in educational settings; wireless connectivity is a more recent development which is only now being fully explored, and which has led to the creation of the "wireless laptop lab." In this article, the authors share some of the experiences and concerns that they have encountered…
The Study on Virtual Medical Instrument based on LabVIEW.
Chengwei, Li; Limei, Zhang; Xiaoming, Hu
2005-01-01
With the increasing performance of computer, the virtual instrument technology has greatly advanced over the years, and then virtual medical instrument technology becomes available. This paper presents the virtual medical instrument, and then as an example, an application of a signal acquisition, processing and analysis system using LabVIEW is also given.
Implementing Wireless Mobile Instructional Labs: Planning Issues and Case Study
ERIC Educational Resources Information Center
McKimmy, Paul B.
2005-01-01
In April 2002, the Technology Advisory Committee of the University of Hawaii-Manoa College of Education (COE) prioritized the upgrade of existing instructional computer labs. Following several weeks of research and discussion, a decision was made to support wireless and mobile technologies during the upgrade. In June 2002, the first of three…
ERIC Educational Resources Information Center
Auld, Lawrence W. S.; Pantelidis, Veronica S.
1994-01-01
Describes the Virtual Reality and Education Lab (VREL) established at East Carolina University to study the implications of virtual reality for elementary and secondary education. Highlights include virtual reality software evaluation; hardware evaluation; computer-based curriculum objectives which could use virtual reality; and keeping current…
Brain-computer interfacing under distraction: an evaluation study
NASA Astrophysics Data System (ADS)
Brandl, Stephanie; Frølich, Laura; Höhne, Johannes; Müller, Klaus-Robert; Samek, Wojciech
2016-10-01
Objective. While motor-imagery based brain-computer interfaces (BCIs) have been studied over many years by now, most of these studies have taken place in controlled lab settings. Bringing BCI technology into everyday life is still one of the main challenges in this field of research. Approach. This paper systematically investigates BCI performance under 6 types of distractions that mimic out-of-lab environments. Main results. We report results of 16 participants and show that the performance of the standard common spatial patterns (CSP) + regularized linear discriminant analysis classification pipeline drops significantly in this ‘simulated’ out-of-lab setting. We then investigate three methods for improving the performance: (1) artifact removal, (2) ensemble classification, and (3) a 2-step classification approach. While artifact removal does not enhance the BCI performance significantly, both ensemble classification and the 2-step classification combined with CSP significantly improve the performance compared to the standard procedure. Significance. Systematically analyzing out-of-lab scenarios is crucial when bringing BCI into everyday life. Algorithms must be adapted to overcome nonstationary environments in order to tackle real-world challenges.
NASA Technical Reports Server (NTRS)
McDowell Bomani, Bilal Mark; Elbuluk, Malik; Fain, Henry; Kankam, Mark D.
2012-01-01
There is a large gap between the production and demand for energy from alternative fuel and alternative renewable energy sources. The NASA Glenn Research Center (GRC) has initiated a laboratory-pilot study that concentrates on using biofuels as viable alternative fuel resources for the field of aviation, as well as, utilizing wind and solar technologies as alternative renewable energy resources, and in addition, the use of pumped water for storage of energy that can be retrieved through hydroelectric generation. This paper describes the GreenLab Research Facility and its power and energy sources with .recommendations for worldwide expansion and adoption of the concept of such a facility
Bayomy, Hanaa; El Awadi, Mona; El Araby, Eman; Abed, Hala A
2016-12-01
Computer-assisted medical education has been developed to enhance learning and enable high-quality medical care. This study aimed to assess computer knowledge and attitude toward the inclusion of computers in medical education among second-year medical students in Benha Faculty of Medicine, Egypt, to identify limitations, and obtain suggestions for successful computer-based learning. This was a one-group pre-post-test study, which was carried out on second-year students in Benha Faculty of Medicine. A structured self-administered questionnaire was used to compare students' knowledge, attitude, limitations, and suggestions toward computer usage in medical education before and after the computer course to evaluate the change in students' responses. The majority of students were familiar with use of the mouse and keyboard, basic word processing, internet and web searching, and e-mail both before and after the computer course. The proportion of students who were familiar with software programs other than the word processing and trouble-shoot software/hardware was significantly higher after the course (P<0.001). There was a significant increase in the proportion of students who agreed on owning a computer (P=0.008), the inclusion of computer skills course in medical education, downloading lecture handouts, and computer-based exams (P<0.001) after the course. After the course, there was a significant increase in the proportion of students who agreed that the lack of central computers limited the inclusion of computer in medical education (P<0.001). Although the lack of computer labs, lack of Information Technology staff mentoring, large number of students, unclear course outline, and lack of internet access were more frequently reported before the course (P<0.001), the majority of students suggested the provision of computer labs, inviting Information Technology staff to support computer teaching, and the availability of free Wi-Fi internet access covering several areas in the university campus; all would support computer-assisted medical education. Medical students in Benha University are computer literate, which allows for computer-based medical education. Staff training, provision of computer labs, and internet access are essential requirements for enhancing computer usage in medical education in the university.
Prediction of quantitative intrathoracic fluid volume to diagnose pulmonary oedema using LabVIEW.
Urooj, Shabana; Khan, M; Ansari, A Q; Lay-Ekuakille, Aimé; Salhan, Ashok K
2012-01-01
Pulmonary oedema is a life-threatening disease that requires special attention in the area of research and clinical diagnosis. Computer-based techniques are rarely used to quantify the intrathoracic fluid volume (IFV) for diagnostic purposes. This paper discusses a software program developed to detect and diagnose pulmonary oedema using LabVIEW. The software runs on anthropometric dimensions and physiological parameters, mainly transthoracic electrical impedance (TEI). This technique is accurate and faster than existing manual techniques. The LabVIEW software was used to compute the parameters required to quantify IFV. An equation relating per cent control and IFV was obtained. The results of predicted TEI and measured TEI were compared with previously reported data to validate the developed program. It was found that the predicted values of TEI obtained from the computer-based technique were much closer to the measured values of TEI. Six new subjects were enrolled to measure and predict transthoracic impedance and hence to quantify IFV. A similar difference was also observed in the measured and predicted values of TEI for the new subjects.
National Guard > Resources > Image Gallery
ARNG Command Sergeant Major of the ARNG State Mission Sustainability Training ARNG Distributed Learning Program Training & Technology Battle Lab (T3BL) Civil Support Simulation Exercises Regional Training Site Maintenance Battle Focused Training Strategy Battle Staff Training Resources News Publications
New Technology and the Curriculum.
ERIC Educational Resources Information Center
Conklin, Joyce
1987-01-01
Hillsdale High School, in San Mateo, California, installed the nation's first 15-computer Macintosh laboratory donated by Apple Computer, Inc. This article describes the lab and the uses to which it has been put, including computer education, word processing, preparation of student publications, and creative writing instruction. (PGD)
Computer Series, 98. Electronics for Scientists: A Computer-Intensive Approach.
ERIC Educational Resources Information Center
Scheeline, Alexander; Mork, Brian J.
1988-01-01
Reports the design for a principles-before-details presentation of electronics for an instrumental analysis class. Uses computers for data collection and simulations. Requires one semester with two 2.5-hour periods and two lectures per week. Includes lab and lecture syllabi. (MVL)
Implementing Equal Access Computer Labs.
ERIC Educational Resources Information Center
Clinton, Janeen; And Others
This paper discusses the philosophy followed in Palm Beach County to adapt computer literacy curriculum, hardware, and software to meet the needs of all children. The Department of Exceptional Student Education and the Department of Instructional Computing Services cooperated in planning strategies and coordinating efforts to implement equal…
A virtual computer lab for distance biomedical technology education.
Locatis, Craig; Vega, Anibal; Bhagwat, Medha; Liu, Wei-Li; Conde, Jose
2008-03-13
The National Library of Medicine's National Center for Biotechnology Information offers mini-courses which entail applying concepts in biochemistry and genetics to search genomics databases and other information sources. They are highly interactive and involve use of 3D molecular visualization software that can be computationally taxing. Methods were devised to offer the courses at a distance so as to provide as much functionality of a computer lab as possible, the venue where they are normally taught. The methods, which can be employed with varied videoconferencing technology and desktop sharing software, were used to deliver mini-courses at a distance in pilot applications where students could see demonstrations by the instructor and the instructor could observe and interact with students working at their remote desktops. Student ratings of the learning experience and comments to open ended questions were similar to those when the courses are offered face to face. The real time interaction and the instructor's ability to access student desktops from a distance in order to provide individual assistance and feedback were considered invaluable. The technologies and methods mimic much of the functionality of computer labs and may be usefully applied in any context where content changes frequently, training needs to be offered on complex computer applications at a distance in real time, and where it is necessary for the instructor to monitor students as they work.
Effects of Computer Animation Exercises on Student Cognitive Processes.
ERIC Educational Resources Information Center
Fowler, Will
A study examining the effects of computer animation exercises on cognitive development asked two groups of seventh graders to create computer animations, working from a simple mythic text. The ability of students to create narrative scenarios from this mythic text was analyzed. These scenarios were then recreated in the school computer lab, using…
ERIC Educational Resources Information Center
Roblyer, M. D., Ed.
Current issues in educational uses for microcomputers are addressed in this collection of 139 abstracts of papers in which computer literacy and practical applications dominate. Topics discussed include factors related to computer use in the classroom, e.g., computer lab utilization; teaching geometry, science, math, and English via…
ERIC Educational Resources Information Center
Ziegler, Blake E.
2013-01-01
Computational chemistry undergraduate laboratory courses are now part of the chemistry curriculum at many universities. However, there remains a lack of computational chemistry exercises available to instructors. This exercise is presented for students to develop skills using computational chemistry software while supplementing their knowledge of…
FAST copper for broadband access
NASA Astrophysics Data System (ADS)
Chiang, Mung; Huang, Jianwei; Cendrillon, Raphael; Tan, Chee Wei; Xu, Dahai
2006-10-01
FAST Copper is a multi-year, U.S. NSF funded project that started in 2004, and is jointly pursued by the research groups of Mung Chiang at Princeton University, John Cioffi at Stanford University, and Alexader Fraser at Fraser Research Lab, and in collaboration with several industrial partners including AT&T. The goal of the FAST Copper Project is to provide ubiquitous, 100 Mbps, fiber/DSL broadband access to everyone in the U.S. with a phone line. This goal will be achieved through two threads of research: dynamic and joint optimization of resources in Frequency, Amplitude, Space, and Time (thus the name 'FAST') to overcome the attenuation and crosstalk bottlenecks, and the integration of communication, networking, computation, modeling, and distributed information management and control for the multi-user twisted pair network.
PyPWA: A partial-wave/amplitude analysis software framework
NASA Astrophysics Data System (ADS)
Salgado, Carlos
2016-05-01
The PyPWA project aims to develop a software framework for Partial Wave and Amplitude Analysis of data; providing the user with software tools to identify resonances from multi-particle final states in photoproduction. Most of the code is written in Python. The software is divided into two main branches: one general-shell where amplitude's parameters (or any parametric model) are to be estimated from the data. This branch also includes software to produce simulated data-sets using the fitted amplitudes. A second branch contains a specific realization of the isobar model (with room to include Deck-type and other isobar model extensions) to perform PWA with an interface into the computer resources at Jefferson Lab. We are currently implementing parallelism and vectorization using the Intel's Xeon Phi family of coprocessors.
Energy Innovations: Science & Technology at NREL, Winter 2010 (Brochure)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2010-02-01
The Energy Innovations newsletter serves as a key outreach tool for NREL to tout the lab's accomplishments, progress, and activities to key stakeholders who can impact the lab's level of funding and potential resources. Audiences include VIP visitors to NREL, current and potential partners in our work, and key decision makers who want to know about NREL's R&D directions and the quality and significance of our results.
Energy Innovations: Science & Technology at NREL, Fall 2009
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2009-09-01
The Energy Innovations newsletter serves as a key outreach tool for NREL to tout the lab's accomplishments, progress, and activities to key stakeholders who can impact the lab's level of funding and potential resources. Audiences include VIP visitors to NREL, current and potential partners in our work, and key decision makers who want to know about NREL's R&D directions and the quality and significance of our results.
Exploring sustainability transitions in households: insights from real-life experiments
NASA Astrophysics Data System (ADS)
Baedeker, Carolin; Buhl, Johannes; Greiff, Kathrin; Hasselkuß, Marco; Liedtke, Christa; Lukas, Melanie
2016-04-01
Societal transformation towards sustainable consumption and production, especially in urban areas, is a key challenge. The design and implementation of sustainable product service systems (PSS) might be the initial point, in which private households play a major role. The Sustainable LivingLab research infrastructure was developed as an experimental setting for investigating consumption and production patterns in private households, especially to explore socio-technical innovations which are helpful to guide sustainability transitions. The suggested presentation describes results of several real-life experiments conducted in German households, e.g. the project SusLabNRW (North-Rhine Westphalia as part of the European SusLabNWE-Project), the EnerTransRuhr project as well as the PATHWAYS project that explore patterns of action, time use, social practices and the related resource use in private households. The presentation gives an overview of the employed methods and analysed data (qualitative interviews, social network analysis, survey on household activities and inventories and a sustainability assessment (resource profiles - MIPS household analysis). Households' resource consumption was calculated in all fields of activity to analyse social practices' impact. The presentation illustrates how aggregated data can inform scenario analysis and concludes with an outlook onto transition pathways at household level and socio-technical innovations in the fields of housing, nutrition and mobility.
Annotated Bibliography of the Air Force Human Resources Laboratory Technical Reports - 1979.
1981-05-01
Force Human Resources Laboratory, March 1980. (Covers all AFHRL projects.) NTIS. This document provides the academic and industrial R&D community with...D-AI02 04 AIR FORCE HUMAN RESOURCES LAB BROOKS AF TX F/G 5/2 ANNOTATED BIBLIOGRAPHY OF THE AIR FORCE HUMAN RESOURCES LABORAT--ETC(U) MAY 81 E M...OF THE AIR FORCE HUMAN RESOURCES LABORATORY TECHNICAL REPORTS - 1979U M By M Esther M. Barlow A N TECHNICAL SERVICES DIVISION Brooks Air Force Base
Evaluation and recommendations for work group integration within the Materials and Processes Lab
NASA Technical Reports Server (NTRS)
Farrington, Phillip A.
1992-01-01
The goal of this study was to evaluate and make recommendations for improving the level of integration of several work groups within the Materials and Processes Lab at the Marshall Space Flight Center. This evaluation has uncovered a variety of projects that could improve the efficiency and operation of the work groups as well as the overall integration of the system. In addition, this study provides the foundation for specification of a computer integrated manufacturing test bed environment in the Materials and Processes Lab.
NASA Astrophysics Data System (ADS)
Møll Nilsen, Halvor; Lie, Knut-Andreas; Andersen, Odd
2015-06-01
MRST-co2lab is a collection of open-source computational tools for modeling large-scale and long-time migration of CO2 in conductive aquifers, combining ideas from basin modeling, computational geometry, hydrology, and reservoir simulation. Herein, we employ the methods of MRST-co2lab to study long-term CO2 storage on the scale of hundreds of megatonnes. We consider public data sets of two aquifers from the Norwegian North Sea and use geometrical methods for identifying structural traps, percolation-type methods for identifying potential spill paths, and vertical-equilibrium methods for efficient simulation of structural, residual, and solubility trapping in a thousand-year perspective. In particular, we investigate how data resolution affects estimates of storage capacity and discuss workflows for identifying good injection sites and optimizing injection strategies.
Nordstrom, M A; Mapletoft, E A; Miles, T S
1995-11-01
A solution is described for the acquisition on a personal computer of standard pulses derived from neuronal discharge, measurement of neuronal discharge times, real-time control of stimulus delivery based on specified inter-pulse interval conditions in the neuronal spike train, and on-line display and analysis of the experimental data. The hardware consisted of an Apple Macintosh IIci computer and a plug-in card (National Instruments NB-MIO16) that supports A/D, D/A, digital I/O and timer functions. The software was written in the object-oriented graphical programming language LabView. Essential elements of the source code of the LabView program are presented and explained. The use of the system is demonstrated in an experiment in which the reflex responses to muscle stretch are assessed for a single motor unit in the human masseter muscle.
Arduino: a low-cost multipurpose lab equipment.
D'Ausilio, Alessandro
2012-06-01
Typical experiments in psychological and neurophysiological settings often require the accurate control of multiple input and output signals. These signals are often generated or recorded via computer software and/or external dedicated hardware. Dedicated hardware is usually very expensive and requires additional software to control its behavior. In the present article, I present some accuracy tests on a low-cost and open-source I/O board (Arduino family) that may be useful in many lab environments. One of the strengths of Arduinos is the possibility they afford to load the experimental script on the board's memory and let it run without interfacing with computers or external software, thus granting complete independence, portability, and accuracy. Furthermore, a large community has arisen around the Arduino idea and offers many hardware add-ons and hundreds of free scripts for different projects. Accuracy tests show that Arduino boards may be an inexpensive tool for many psychological and neurophysiological labs.
ERIC Educational Resources Information Center
Chen, Baiyun; DeMara, Ronald F.; Salehi, Soheil; Hartshorne, Richard
2018-01-01
A laboratory pedagogy interweaving weekly student portfolios with onsite formative electronic laboratory assessments (ELAs) is developed and assessed within the laboratory component of a required core course of the electrical and computer engineering (ECE) undergraduate curriculum. The approach acts to promote student outcomes, and neutralize…
Gene Expression Analysis: Teaching Students to Do 30,000 Experiments at Once with Microarray
ERIC Educational Resources Information Center
Carvalho, Felicia I.; Johns, Christopher; Gillespie, Marc E.
2012-01-01
Genome scale experiments routinely produce large data sets that require computational analysis, yet there are few student-based labs that illustrate the design and execution of these experiments. In order for students to understand and participate in the genomic world, teaching labs must be available where students generate and analyze large data…
Teaching Mathematics in the PC Lab--The Students' Viewpoints
ERIC Educational Resources Information Center
Schmidt, Karsten; Kohler, Anke
2013-01-01
The Matrix Algebra portion of the intermediate mathematics course at the Schmalkalden University Faculty of Business and Economics has been moved from a traditional classroom setting to a technology-based setting in the PC lab. A Computer Algebra System license was acquired that also allows its use on the students' own PCs. A survey was carried…
Effectiveness of e-Lab Use in Science Teaching at the Omani Schools
ERIC Educational Resources Information Center
Al Musawi, A.; Ambusaidi, A.; Al-Balushi, S.; Al-Balushi, K.
2015-01-01
Computer and information technology can be used so that students can individually, in groups, or by electronic demonstration experiment and draw conclusion for the required activities in an electronic form in what is now called "e-lab". It enables students to conduct experiments more flexibly and in an interactive way using multimedia.…
A Comparison, for Teaching Purposes, of Three Data-Acquisition Systems for the Macintosh.
ERIC Educational Resources Information Center
Swanson, Harold D.
1990-01-01
Three commercial products for data acquisition with the Macintosh computer, known by the trade names of LabVIEW, Analog Connection WorkBench, and MacLab were reviewed and compared, on the basis of actual trials, for their suitability in physiological and biological teaching laboratories. Suggestions for using these software packages are provided.…
ERIC Educational Resources Information Center
Schellhammer, Karl Sebastian; Cuniberti, Gianaurelio
2017-01-01
We are hereby presenting a didactic concept for an advanced lab course that focuses on the design of donor materials for organic solar cells. Its research-related and competence-based approach qualifies the students to independently and creatively apply computational methods and to profoundly and critically discuss the results obtained. The high…
SenseCube--A Novel Inexpensive Wireless Multisensor for Physics Lab Experimentations
ERIC Educational Resources Information Center
Mehta, Vedant; Lane, Charles D.
2018-01-01
SenseCube is a multisensor capable of measuring many different real-time events and changes in environment. Most conventional sensors used in introductory-physics labs use their own software and have wires that must be attached to a computer or an alternate device to analyze the data. This makes the standard sensors time consuming, tedious, and…
18. VIEW OF THE GENERAL CHEMISTRY LAB. THE LABORATORY PROVIDED ...
18. VIEW OF THE GENERAL CHEMISTRY LAB. THE LABORATORY PROVIDED GENERAL ANALYTICAL AND STANDARDS CALIBRATION, AS WELL AS DEVELOPMENT OPERATIONS INCLUDING WASTE TECHNOLOGY DEVELOPMENT AND DEVELOPMENT AND TESTING OF MECHANICAL SYSTEMS FOR WEAPONS SYSTEMS. (4/4/66) - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO
Collaboration Careers Community Environment Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations Science Programs Applied Energy Programs
NASA Astrophysics Data System (ADS)
Scherrer, Deborah K.; Hildreth, S.; Lee, S.; Dave, T.; Scherrer, P. H.
2013-07-01
A partnership between Stanford University and Chabot Community College (Hayward, CA) has developed a series of laboratory exercises using SDO (AIA, HMI) data, targeted for community college students in an introductory astronomy lab class. The labs lead students to explore what SDO can do via online resources and videos. Students investigate their chosen solar events, generate their own online videos, prepare their own hypotheses relating to the events, and explore outcomes. Final assessment should be completed by the end of summer 2013. Should the labs prove valuable, they may be adapted for high school use.
Creating an X Window Terminal-Based Information Technology Center.
ERIC Educational Resources Information Center
Klassen, Tim W.
1997-01-01
The creation of an information technology center at the University of Oregon Science Library is described. Goals included providing access to Internet-based resources and multimedia software, platforms for running science-oriented software, and resources so students can create multimedia materials. A mixed-lab platform was created with Unix-based…
NASA Astrophysics Data System (ADS)
Chulaki, A.; Kuznetsova, M. M.; Rastaetter, L.; MacNeice, P. J.; Shim, J. S.; Pulkkinen, A. A.; Taktakishvili, A.; Mays, M. L.; Mendoza, A. M. M.; Zheng, Y.; Mullinix, R.; Collado-Vega, Y. M.; Maddox, M. M.; Pembroke, A. D.; Wiegand, C.
2015-12-01
Community Coordinated Modeling Center (CCMC) is a NASA affiliated interagency partnership with the primary goal of aiding the transition of modern space science models into space weather forecasting while supporting space science research. Additionally, over the past ten years it has established itself as a global space science education resource supporting undergraduate and graduate education and research, and spreading space weather awareness worldwide. A unique combination of assets, capabilities and close ties to the scientific and educational communities enable this small group to serve as a hub for raising generations of young space scientists and engineers. CCMC resources are publicly available online, providing unprecedented global access to the largest collection of modern space science models (developed by the international research community). CCMC has revolutionized the way simulations are utilized in classrooms settings, student projects, and scientific labs and serves hundreds of educators, students and researchers every year. Another major CCMC asset is an expert space weather prototyping team primarily serving NASA's interplanetary space weather needs. Capitalizing on its unrivaled capabilities and experiences, the team provides in-depth space weather training to students and professionals worldwide, and offers an amazing opportunity for undergraduates to engage in real-time space weather monitoring, analysis, forecasting and research. In-house development of state-of-the-art space weather tools and applications provides exciting opportunities to students majoring in computer science and computer engineering fields to intern with the software engineers at the CCMC while also learning about the space weather from the NASA scientists.
Red Storm usage model :Version 1.12.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jefferson, Karen L.; Sturtevant, Judith E.
Red Storm is an Advanced Simulation and Computing (ASC) funded massively parallel supercomputer located at Sandia National Laboratories (SNL). The Red Storm Usage Model (RSUM) documents the capabilities and the environment provided for the FY05 Tri-Lab Level II Limited Availability Red Storm User Environment Milestone and the FY05 SNL Level II Limited Availability Red Storm Platform Milestone. This document describes specific capabilities, tools, and procedures to support both local and remote users. The model is focused on the needs of the ASC user working in the secure computing environments at Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL),more » and SNL. Additionally, the Red Storm Usage Model maps the provided capabilities to the Tri-Lab ASC Computing Environment (ACE) requirements. The ACE requirements reflect the high performance computing requirements for the ASC community and have been updated in FY05 to reflect the community's needs. For each section of the RSUM, Appendix I maps the ACE requirements to the Limited Availability User Environment capabilities and includes a description of ACE requirements met and those requirements that are not met in that particular section. The Red Storm Usage Model, along with the ACE mappings, has been issued and vetted throughout the Tri-Lab community.« less
Computing Systems | High-Performance Computing | NREL
investigate, build, and test models of complex phenomena or entire integrated systems-that cannot be directly observed or manipulated in the lab, or would be too expensive or time consuming. Models and visualizations
The College of Charleston's 400-Student Observational Lab Program
NASA Astrophysics Data System (ADS)
True, C. M.
2006-06-01
For over thirty years the College of Charleston has been teaching a year-long introductory astronomy course incorporating a mandatory 3 hour lab. Despite our location in a very light polluted, coastal, high humidity, and often cloudy metropolitan area we have emphasized observational activities as much as possible. To accommodate our population of between 300-400 students per semester, we have 28 8-inch Celestron Telescopes and 25 GPS capable 8-inch Meade LX-200 telescopes. Finally, we have a 16 DFM adjacent to our rooftop observing decks. For indoor activities we have access to 42 computers running a variety of astronomy education software. Some of the computer activities are based on the Starry Night software (Backyard and Pro), the CLEA software from Gettysburg College, and Spectrum Explorer from Boston University. Additionally, we have labs involving cratering, eclipses and phases, coordinate systems with celestial globes, the inverse square law, spectroscopy and spectral classification, as well as others. In this presentation we will discuss the difficulties in managing a program of this size. We have approximately 14 lab sections a week. The lab manager's task involves coordinating 8-10 lab instructors and the same number of undergraduate teaching assistants as well as trying to maintain a coherent experience between the labs and lecture sections. Our lab manuals are produced locally with yearly updates. Samples from the manuals will be available. This program has been developed by a large number of College of Charleston astronomy faculty, including Don Drost, Bob Dukes, Chris Fragile, Tim Giblin, Jon Hakkila, Bill Kubinec, Lee Lindner, Jim Neff, Laura Penny, Al Rainis, Terry Richardson, and D. J. Williams, as well as adjunct and visiting faculty Bill Baird, Kevin Bourque, Ethan Denault, Kwayera Davis, Francie Halter, and Alan Johnson. Part of this work has been funded by NSF DUE grants to the College of Charleston.
Kariuki, Jacob K; Gona, Philimon; Leveille, Suzanne G; Stuart-Shor, Eileen M; Hayman, Laura L; Cromwell, Jerry
2018-06-01
The non-lab Framingham algorithm, which substitute body mass index for lipids in the laboratory based (lab-based) Framingham algorithm, has been validated among African Americans (AAs). However, its cost-effectiveness and economic tradeoffs have not been evaluated. This study examines the incremental cost-effectiveness ratio (ICER) of two cardiovascular disease (CVD) prevention programs guided by the non-lab versus lab-based Framingham algorithm. We simulated the World Health Organization CVD prevention guidelines on a cohort of 2690 AA participants in the Atherosclerosis Risk in Communities (ARIC) cohort. Costs were estimated using Medicare fee schedules (diagnostic tests, drugs & visits), Bureau of Labor Statistics (RN wages), and estimates for managing incident CVD events. Outcomes were assumed to be true positive cases detected at a data driven treatment threshold. Both algorithms had the best balance of sensitivity/specificity at the moderate risk threshold (>10% risk). Over 12years, 82% and 77% of 401 incident CVD events were accurately predicted via the non-lab and lab-based Framingham algorithms, respectively. There were 20 fewer false negative cases in the non-lab approach translating into over $900,000 in savings over 12years. The ICER was -$57,153 for every extra CVD event prevented when using the non-lab algorithm. The approach guided by the non-lab Framingham strategy dominated the lab-based approach with respect to both costs and predictive ability. Consequently, the non-lab Framingham algorithm could potentially provide a highly effective screening tool at lower cost to address the high burden of CVD especially among AA and in resource-constrained settings where lab tests are unavailable. Copyright © 2017 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Spennemann, Dirk H. R.; Atkinson, John; Cornforth, David
2007-01-01
Most universities have invested in extensive infrastructure in the form of computer laboratories and computer kiosks. However, is this investment justified when it is suggested that students work predominantly from home using their own computers? This paper provides an empirical study investigating how students at a regional multi-campus…
ERIC Educational Resources Information Center
Singh, Gurmukh
2012-01-01
The present article is primarily targeted for the advanced college/university undergraduate students of chemistry/physics education, computational physics/chemistry, and computer science. The most recent software system such as MS Visual Studio .NET version 2010 is employed to perform computer simulations for modeling Bohr's quantum theory of…
Educationally and Cost Effective: Computers in the Classroom.
ERIC Educational Resources Information Center
Agee, Roy
1986-01-01
The author states that the educational community must provide programs that assure students they will be able to learn how to use and control computers. He discusses micro labs, prerequisites to computer literacy, curriculum development, teaching methods, simulation projects, a systems analysis project, new job titles, and primary basic skills…
Using Flash Technology for Motivation and Assessment
ERIC Educational Resources Information Center
Deal, Walter F., III
2004-01-01
A visit to most any technology education laboratory or classroom will reveal that computers, software, and multimedia software are rapidly becoming a mainstay in learning about technology and technological literacy. Almost all technology labs have at least several computers dedicated to specialized software or hardware such as Computer-aided…
CAI at CSDF: Organizational Strategies.
ERIC Educational Resources Information Center
Irwin, Margaret G.
1982-01-01
The computer assisted instruction (CAI) program at the California School for the Deaf, at Fremont, features individual Apple computers in classrooms as well as in CAI labs. When the whole class uses computers simultaneously, the teacher can help individuals, identify group weaknesses, note needs of the materials, and help develop additional CAI…
College Students' Use of the Internet.
ERIC Educational Resources Information Center
McFadden, Anna C.
1999-01-01
Studied use of the Internet by college students by determining sites selected on 6 of 70 computers in a college computer laboratory. The overwhelming use of the Internet in this open lab conformed to university acceptable-use policy, with almost no use of the computers to contact pornographic sites. (SLD)
Berkeley Lab - Materials Sciences Division
Computational Study of Excited-State Phenomena in Energy Materials Center for X-ray Optics MSD Facilities Ion and Materials Physics Scattering and Instrumentation Science Centers Center for Computational Study of Sciences Centers Center for Computational Study of Excited-State Phenomena in Energy Materials Center for X
Computers in Post-Secondary Developmental Education and Learning Assistance.
ERIC Educational Resources Information Center
Christ, Frank L.; McLaughlin, Richard C.
This update on computer technology--as it affects learning assistance directors and developmental education personnel--begins by reporting on new developments and changes that have taken place during the past two years in five areas: (1) hardware (microcomputer systems, low cost PC clones, combination Apple/PC machines, lab computer controllers…
Berkeley Lab - Materials Sciences Division
; Finance Templates Travel One-Stop Acknowledging MSD Support Human Resources Facilities & Space Planning Procurement and Property Proposals & Finance Templates Travel Facilities & Space Planning
Characterization of a Low-Cost Multiparameter Sensor for Solar Resource Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habte, Aron M; Sengupta, Manajit; Andreas, Afshin M
Low-cost, multiparameter sensing and measurement devices enable cost-effective monitoring of the functional, operational reliability, efficiency, and resiliency of the electric grid. The National Renewable Research Laboratory (NREL) Solar Radiation Research Laboratory (SRRL), in collaboration with Arable Labs, Inc., deployed Arable Lab's Mark multiparameter sensor system. The device measures the downwelling and upwelling shortwave solar resource and longwave radiation, humidity, air temperature, and ground temperature. The system is also equipped with six downward-and upward-facing narrowband spectrometer channels that measure spectral radiation and surface spectral reflectance. This study describes the shortwave calibration, characterization, and validation of measurement accuracy of this instrument bymore » comparison with existing instruments that are part of NREL-SRRL's Baseline Measurement System.« less
ERIC Educational Resources Information Center
Armstrong, Matt; Comitz, Richard L.; Biaglow, Andrew; Lachance, Russ; Sloop, Joseph
2008-01-01
A novel approach to the Chemical Engineering curriculum sequence of courses at West Point enabled our students to experience a much more realistic design process, which more closely replicated a real world scenario. Students conduct the synthesis in the organic chemistry lab, then conduct computer modeling of the reaction with ChemCad and…
Automatic Response to Intrusion
2002-10-01
Computing Corporation Sidewinder Firewall [18] SRI EMERALD Basic Security Module (BSM) and EMERALD File Transfer Protocol (FTP) Monitors...the same event TCP Wrappers [24] Internet Security Systems RealSecure [31] SRI EMERALD IDIP monitor NAI Labs Generic Software Wrappers Prototype...included EMERALD , NetRadar, NAI Labs UNIX wrappers, ARGuE, MPOG, NetRadar, CyberCop Server, Gauntlet, RealSecure, and the Cyber Command System
STS-105 Crew Training in VR Lab
2001-03-15
JSC2001-00751 (15 March 2001) --- Astronaut Scott J. Horowitz, STS-105 mission commander, uses the virtual reality lab at the Johnson Space Center (JSC) to train for his duties aboard the Space Shuttle Discovery. This type of computer interface paired with virtual reality training hardware and software helps to prepare the entire team for dealing with International Space Station (ISS) elements.
Photographic coverage of STS-112 during EVA 3 in VR Lab.
2002-08-21
JSC2002-E-34622 (21 August 2002) --- Astronaut David A. Wolf, STS-112 mission specialist, uses the virtual reality lab at the Johnson Space Center (JSC) to train for his duties aboard the Space Shuttle Atlantis. This type of computer interface paired with virtual reality training hardware and software helps to prepare the entire team for dealing with ISS elements.
2005-06-07
JSC2005-E-21191 (7 June 2005) --- Astronaut Steven G. MacLean, STS-115 mission specialist representing the Canadian Space Agency, uses the virtual reality lab at the Johnson Space Center to train for his duties aboard the space shuttle. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.
STS-105 Crew Training in VR Lab
2001-03-15
JSC2001-00758 (15 March 2001) --- Astronaut Frederick W. Sturckow, STS-105 pilot, uses the virtual reality lab at the Johnson Space Center (JSC) to train for his duties aboard the Space Shuttle Discovery. This type of computer interface paired with virtual reality training hardware and software helps to prepare the entire team for dealing with International Space Station (ISS) elements.
2005-06-07
JSC2005-E-21192 (7 June 2005) --- Astronauts Christopher J. Ferguson (left), STS-115 pilot, and Daniel C. Burbank, mission specialist, use the virtual reality lab at the Johnson Space Center to train for their duties aboard the space shuttle. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.
Laboratories for Teaching of Mathematical Subjects
ERIC Educational Resources Information Center
Berežný, Štefan
2017-01-01
We have adapted our two laboratories at our department based on our research results, which were presented at the conference CADGME 2014 in Halle and published in the journal. In this article we describe the hardware and software structure of the Laboratory 1: LabIT4KT-1: Laboratory of Computer Modelling and the Laboratory 2: LabIT4KT-2:…
Providing Guidance in Virtual Lab Experimentation: The Case of an Experiment Design Tool
ERIC Educational Resources Information Center
Efstathiou, Charalampos; Hovardas, Tasos; Xenofontos, Nikoletta A.; Zacharia, Zacharias C.; deJong, Ton; Anjewierden, Anjo; van Riesen, Siswa A. N.
2018-01-01
The present study employed a quasi-experimental design to assess a computer-based tool, which was intended to scaffold the task of designing experiments when using a virtual lab for the process of experimentation. In particular, we assessed the impact of this tool on primary school students' cognitive processes and inquiry skills before and after…
Problem-Based Labs and Group Projects in an Introductory University Physics Course
ERIC Educational Resources Information Center
Kohnle, Antje; Brown, C. Tom A.; Rae, Cameron F.; Sinclair, Bruce D.
2012-01-01
This article describes problem-based labs and analytical and computational project work we have been running at the University of St Andrews in an introductory physics course since 2008/2009. We have found the choice of topics, scaffolding of the process, timing in the year and facilitator guidance decisive for the success of these activities.…
ERIC Educational Resources Information Center
Wolf, Walter A., Ed.
1977-01-01
Presents classroom and laboratory teaching and demonstration ideas, including a demonstration of optical rotation, automatic potentiometric titration, preparation of radioactive lead, and an organic lab practical in library resources. (SL)
A Paperless Lab Manual - Lessons Learned
NASA Astrophysics Data System (ADS)
Hatten, Daniel L.; Hatten, Maggie W.
1999-10-01
Every freshman entering Rose-Hulman Institute of Technology is equipped with a laptop computer and a software package that allow classroom and laboratory instructors the freedom to make computer-based assignments, publish course materials in electronic form, etc. All introductory physics laboratories and many of our classrooms are networked, and students routinely take their laptop computers to class/lab. The introductory physics laboratory manual was converted to HTML in the summer of 1997 and was made available to students over the Internet vice printing a paper manual during the 1998-99 school year. The aim was to reduce paper costs and allow timely updates of the laboratory experiments. A poll conducted at the end of the school year showed a generally positive student response to the online laboratory manual, with some reservations.
Designing virtual science labs for the Islamic Academy of Delaware
NASA Astrophysics Data System (ADS)
AlZahrani, Nada Saeed
Science education is a basic part of the curriculum in modern day classrooms. Instructional approaches to science education can take many forms but hands-on application of theory via science laboratory activities for the learner is common. Not all schools have the resources to provide the laboratory environment necessary for hands-on application of science theory. Some settings rely on technology to provide a virtual laboratory experience instead. The Islamic Academy of Delaware (IAD), a typical community-based organization, was formed to support and meet the essential needs of the Muslim community of Delaware. IAD provides science education as part of the overall curriculum, but cannot provide laboratory activities as part of the science program. Virtual science labs may be a successful model for students at IAD. This study was conducted to investigate the potential of implementing virtual science labs at IAD and to develop an implementation plan for integrating the virtual labs. The literature has shown us that the lab experience is a valuable part of the science curriculum (NBPTS, 2013, Wolf, 2010, National Research Council, 1997 & 2012). The National Research Council (2012) stressed the inclusion of laboratory investigations in the science curriculum. The literature also supports the use of virtual labs as an effective substitute for classroom labs (Babateen, 2011; National Science Teachers Association, 2008). Pyatt and Simms (2011) found evidence that virtual labs were as good, if not better than physical lab experiences in some respects. Although not identical in experience to a live lab, the virtual lab has been shown to provide the student with an effective laboratory experience in situations where the live lab is not possible. The results of the IAD teacher interviews indicate that the teachers are well-prepared for, and supportive of, the implementation of virtual labs to improve the science education curriculum. The investigator believes that with the support of the literature and the readiness of the IAD administration and teachers, a recommendation to implement virtual labs into the curriculum can be made.
Chaudhry, Fouad A; Ismail, Sanaa Z; Davis, Edward T
2018-05-01
Computer-assisted navigation techniques are used to optimise component placement and alignment in total hip replacement. It has developed in the last 10 years but despite its advantages only 0.3% of all total hip replacements in England and Wales are done using computer navigation. One of the reasons for this is that computer-assisted technology increases operative time. A new method of pelvic registration has been developed without the need to register the anterior pelvic plane (BrainLab hip 6.0) which has shown to improve the accuracy of THR. The purpose of this study was to find out if the new method reduces the operating time. This was a retrospective analysis of comparing operating time in computer navigated primary uncemented total hip replacement using two methods of registration. Group 1 included 128 cases that were performed using BrainLab versions 2.1-5.1. This version relied on the acquisition of the anterior pelvic plane for registration. Group 2 included 128 cases that were performed using the newest navigation software, BrainLab hip 6.0 (registration possible with the patient in the lateral decubitus position). The operating time was 65.79 (40-98) minutes using the old method of registration and was 50.87 (33-74) minutes using the new method of registration. This difference was statistically significant. The body mass index (BMI) was comparable in both groups. The study supports the use of new method of registration in improving the operating time in computer navigated primary uncemented total hip replacements.
The HVAC Challenges of Upgrading an Old Lab for High-end Light Microscopes
Richard, R.; Martone, P.; Callahan, L.M.
2014-01-01
The University of Rochester Medical Center forms the centerpiece of the University of Rochester's health research, teaching, patient care, and community outreach missions. Within this large facility of over 5 million square feet, demolition and remodeling of existing spaces is a constant activity. With more than $145 million in federal research funding, lab space is frequently repurposed and renovated to support this work. The URMC Medical Center Facilities Organization supporting small to medium space renovations is constantly challenged and constrained by the existing mechanical infrastructure and budgets to deliver a renovated space that functions within the equipment environmental parameters. One recent project, sponsored by the URMC Shared Resources Laboratory, demonstrates these points. The URMC Light Microscopy Shared Resource Laboratory requested renovation of a 121 sq. ft. room in a 40 year old building which would enable placement of a laser capture microdissection microscope and a Pascal 5 laser scanning confocal microscope with the instruments separated by a blackout curtain. This poster discusses the engineering approach implemented to bring an older lab into the environmental specifications needed for the proper operation of the high-end light microscopes.
Issues Surrounding Accounting Lab and Online Accounting Resource Implementation
ERIC Educational Resources Information Center
Arnaudovska, Emilija; Gonzalez, Lacey; Tumblin, Wendy; Budden, Michael C.
2009-01-01
Students find themselves troubled with understanding concepts and processes involved in different subject areas. Many times they seek assistance but find themselves at a loss. Being aware of support resources and having assistance at one's disposal can eliminate the stress of searching for help. Nevertheless, as in the movies, the question begs to…
A Remotely Operated Science Experiment Framework for Under-Resourced Schools
ERIC Educational Resources Information Center
Song, Donggil; Karimi, Arafeh; Kim, Paul
2016-01-01
Teaching argumentation with appropriate activities and strategies would support a wide range of goals in science education. Though science labs have been suggested and employed for argumentation activities, such educational expenditures are likely to be beyond the means of most schools in under-resourced areas. Due to the lack of appropriate…
Environmental Resource Management Issues in Agronomy: A Lecture/Laboratory Course
ERIC Educational Resources Information Center
Munn, D. A.
2004-01-01
Environmental Sciences Technology T272 is a course with a laboratory addressing problems in soil and water quality and organic wastes utilization to serve students from associate degree programs in laboratory science and environmental resources management at a 2-year technical college. Goals are to build basic lab skills and understand the role…
ERIC Educational Resources Information Center
Journal of Chemical Education, 1988
1988-01-01
Reviews three computer software packages for chemistry education including "Osmosis and Diffusion" and "E.M.E. Titration Lab" for Apple II and "Simplex-V: An Interactive Computer Program for Experimental Optimization" for IBM PC. Summary ratings include ease of use, content, pedagogic value, student reaction, and…
ERIC Educational Resources Information Center
Collins, Michael J.; Vitz, Ed
1988-01-01
Examines two computer interfaced lab experiments: 1) discusses the automation of a Perkin Elmer 337 infrared spectrophotometer noting the mechanical and electronic changes needed; 2) uses the Gouy method and Lotus Measure software to automate magnetic susceptibility determinations. Methodology is described. (MVL)
EnviroLand: A Simple Computer Program for Quantitative Stream Assessment.
ERIC Educational Resources Information Center
Dunnivant, Frank; Danowski, Dan; Timmens-Haroldson, Alice; Newman, Meredith
2002-01-01
Introduces the Enviroland computer program which features lab simulations of theoretical calculations for quantitative analysis and environmental chemistry, and fate and transport models. Uses the program to demonstrate the nature of linear and nonlinear equations. (Author/YDS)
Teacher experiences in the use of the "Zoology Zone" multimedia resource in elementary science
NASA Astrophysics Data System (ADS)
Paradis, Lynne Darlene
This interpretive research study explored the experiences of teachers with the use of the Zoology Zone multimedia resource in teaching grade three science. Four generalist teachers used the multimedia resource in the teaching of the Animal Life Cycle topic from the Alberta grade three science program. The experiences of the teachers were examined through individual interviews, classroom visits and group interviews. Three dimensions of the study, as they related to elementary science teaching using the Zoology Zone multimedia resource were examined: (a) technology as a teaching resource, (b) science education and constructivist theory, and (c) teacher learning. In the area of planning for instruction, the teachers found that using the multimedia resource demanded more time and effort than using non-computer resources because of the dependence teachers had on others for ensuring access to computer labs and setting up the multimedia resource to run on school computers. The teachers felt there was value in giving students the opportunity to independently explore the multimedia resource because it captured their attention, included appropriate content, and was designed so that students could navigate through the teaming activities easily and make choices about how to proceed with their own learning. Despite the opportunities for student directed learning, the teachers found that it was also necessary to include some teacher directed learning to ensure that students were learning the mandated curriculum. As the study progressed, it became evident that the teachers valued the social dimensions of learning by making it a priority to include lessons that encouraged student to student interaction, student to teacher interaction, small group and whole class discussion, and peer teaching. When students were engaged with the multimedia resource, the teacher facilitated learning by circulating to each student and discussing student findings. Teachers focussed primarily on the content components of the Alberta science program of studies. They stated that the time allotted for science instruction was insufficient to effectively address the teaching of skills for science inquiry and of the 'big' ideas in science. The teachers stated that they valued inquiry teaching, constructivist teaching and the integration of the Information and Communication Technology (ICT) outcomes but that utilizing these teaching approaches was challenging because of the depth and breadth of the mandated curriculum. It became apparent that science instruction did not meet all the expectations of the mandated science curriculum and that the teachers did not plan for the integration of the ICT outcomes. The teachers in the study stated that they felt that multimedia resources did have a place in the elementary science curriculum and that the ICT outcomes could be achieved as part of science instruction using the Zoology Zone multimedia resource. The study concludes with some implications for teachers, educational policy makers and school administration, related to the use of multimedia resources in the teaching of elementary science and in the teaching of the ICT outcomes.
Applications of a digital darkroom in the forensic laboratory
NASA Astrophysics Data System (ADS)
Bullard, Barry D.; Birge, Brian
1997-02-01
Through a joint agreement with the Indiana-Marion County Forensic Laboratory Services Agency, the Institute for Forensic Imaging conducted a pilot program to investigate crime lab applications of a digital darkroom. IFI installed and staffed a state-of-the-art digital darkroom in the photography laboratory of the Indianapolis-Marion County crime lab located at Indianapolis, Indiana. The darkroom consisted of several high resolution color digital cameras, image processing computer, dye sublimation continuous tone digital printers, and CD-ROM writer. This paper describes the use of the digital darkroom in several crime lab investigations conducted during the program.
Reflection Effects in Multimode Fiber Systems Utilizing Laser Transmitters
NASA Technical Reports Server (NTRS)
Bates, Harry E.
1991-01-01
A number of optical communication lines are now in use at NASA-Kennedy for the transmission of voice, computer data, and video signals. Now, all of these channels use a single carrier wavelength centered near 1300 or 1550 nm. Engineering tests in the past have given indications of the growth of systematic and random noise in the RF spectrum of a fiber network as the number of connector pairs is increased. This noise seems to occur when a laser transmitter is used instead of a LED. It has been suggested that the noise is caused by back reflections created at connector fiber interfaces. Experiments were performed to explore the effect of reflection on the transmitting laser under conditions of reflective feedback. This effort included computer integration of some of the instrumentation in the fiber optic lab using the Lab View software recently acquired by the lab group. The main goal was to interface the Anritsu Optical and RF spectrum analyzers to the MacIntosh II computer so that laser spectra and network RF spectra could be simultaneously and rapidly acquired in a form convenient for analysis. Both single and multimode fiber is installed at Kennedy. Since most are multimode, this effort concentrated on multimode systems.
Reflection effects in multimode fiber systems utilizing laser transmitters
NASA Astrophysics Data System (ADS)
Bates, Harry E.
1991-11-01
A number of optical communication lines are now in use at NASA-Kennedy for the transmission of voice, computer data, and video signals. Now, all of these channels use a single carrier wavelength centered near 1300 or 1550 nm. Engineering tests in the past have given indications of the growth of systematic and random noise in the RF spectrum of a fiber network as the number of connector pairs is increased. This noise seems to occur when a laser transmitter is used instead of a LED. It has been suggested that the noise is caused by back reflections created at connector fiber interfaces. Experiments were performed to explore the effect of reflection on the transmitting laser under conditions of reflective feedback. This effort included computer integration of some of the instrumentation in the fiber optic lab using the Lab View software recently acquired by the lab group. The main goal was to interface the Anritsu Optical and RF spectrum analyzers to the MacIntosh II computer so that laser spectra and network RF spectra could be simultaneously and rapidly acquired in a form convenient for analysis. Both single and multimode fiber is installed at Kennedy. Since most are multimode, this effort concentrated on multimode systems.
Grid Computing in K-12 Schools. Soapbox Digest. Volume 3, Number 2, Fall 2004
ERIC Educational Resources Information Center
AEL, 2004
2004-01-01
Grid computing allows large groups of computers (either in a lab, or remote and connected only by the Internet) to extend extra processing power to each individual computer to work on components of a complex request. Grid middleware, recognizing priorities set by systems administrators, allows the grid to identify and use this power without…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-03
... anchors, both as centers for digital literacy and as hubs for access to public computers. While their... expansion of computer labs, and facilitated deployment of new educational applications that would not have... computer fees to help defray the cost of computers or training fees to help cover the cost of training...
Computer-Aided College Algebra: Learning Components that Students Find Beneficial
ERIC Educational Resources Information Center
Aichele, Douglas B.; Francisco, Cynthia; Utley, Juliana; Wescoatt, Benjamin
2011-01-01
A mixed-method study was conducted during the Fall 2008 semester to better understand the experiences of students participating in computer-aided instruction of College Algebra using the software MyMathLab. The learning environment included a computer learning system for the majority of the instruction, a support system via focus groups (weekly…
Software Solution Saves Dollars
ERIC Educational Resources Information Center
Trotter, Andrew
2004-01-01
This article discusses computer software that can give classrooms and computer labs the capabilities of costly PC's at a small fraction of the cost. A growing number of cost-conscious school districts are finding budget relief in low-cost computer software known as "open source" that can do everything from manage school Web sites to equip…
Cane Toad or Computer Mouse? Real and Computer-Simulated Laboratory Exercises in Physiology Classes
ERIC Educational Resources Information Center
West, Jan; Veenstra, Anneke
2012-01-01
Traditional practical classes in many countries are being rationalised to reduce costs. The challenge for university educators is to provide students with the opportunity to reinforce theoretical concepts by running something other than a traditional practical program. One alternative is to replace wet labs with comparable computer simulations.…
A preliminary and qualitative study of resource ratio theory to nitrifying lab-scale bioreactors
Bellucci, Micol; Ofiţeru, Irina D; Beneduce, Luciano; Graham, David W; Head, Ian M; Curtis, Thomas P
2015-01-01
The incorporation of microbial diversity in design would ideally require predictive theory that would relate operational parameters to the numbers and distribution of taxa. Resource ratio-theory (RRT) might be one such theory. Based on Monod kinetics, it explains diversity in function of resource-ratio and richness. However, to be usable in biological engineered system, the growth parameters of all the bacteria under consideration and the resource supply and diffusion parameters for all the relevant nutrients should be determined. This is challenging, but plausible, at least for low diversity groups with simple resource requirements like the ammonia oxidizing bacteria (AOB). One of the major successes of RRT was its ability to explain the ‘paradox of enrichment’ which states that diversity first increases and then decreases with resource richness. Here, we demonstrate that this pattern can be seen in lab-scale-activated sludge reactors and parallel simulations that incorporate the principles of RRT in a floc-based system. High and low ammonia and oxygen were supplied to continuous flow bioreactors with resource conditions correlating with the composition and diversity of resident AOB communities based on AOB 16S rDNA clone libraries. Neither the experimental work nor the simulations are definitive proof for the application of RRT in this context. However, it is sufficient evidence that such approach might work and justify a more rigorous investigation. PMID:25874592
Machine learning for micro-tomography
NASA Astrophysics Data System (ADS)
Parkinson, Dilworth Y.; Pelt, Daniël. M.; Perciano, Talita; Ushizima, Daniela; Krishnan, Harinarayan; Barnard, Harold S.; MacDowell, Alastair A.; Sethian, James
2017-09-01
Machine learning has revolutionized a number of fields, but many micro-tomography users have never used it for their work. The micro-tomography beamline at the Advanced Light Source (ALS), in collaboration with the Center for Applied Mathematics for Energy Research Applications (CAMERA) at Lawrence Berkeley National Laboratory, has now deployed a series of tools to automate data processing for ALS users using machine learning. This includes new reconstruction algorithms, feature extraction tools, and image classification and recommen- dation systems for scientific image. Some of these tools are either in automated pipelines that operate on data as it is collected or as stand-alone software. Others are deployed on computing resources at Berkeley Lab-from workstations to supercomputers-and made accessible to users through either scripting or easy-to-use graphical interfaces. This paper presents a progress report on this work.
Partially coherent lensfree tomographic microscopy⋄
Isikman, Serhan O.; Bishara, Waheb; Ozcan, Aydogan
2012-01-01
Optical sectioning of biological specimens provides detailed volumetric information regarding their internal structure. To provide a complementary approach to existing three-dimensional (3D) microscopy modalities, we have recently demonstrated lensfree optical tomography that offers high-throughput imaging within a compact and simple platform. In this approach, in-line holograms of objects at different angles of partially coherent illumination are recorded using a digital sensor-array, which enables computing pixel super-resolved tomographic images of the specimen. This imaging modality, which forms the focus of this review, offers micrometer-scale 3D resolution over large imaging volumes of, for example, 10–15 mm3, and can be assembled in light weight and compact architectures. Therefore, lensfree optical tomography might be particularly useful for lab-on-a-chip applications as well as for microscopy needs in resource-limited settings. PMID:22193016
Berkeley Lab - Materials Sciences Division
MSD Support Human Resources Facilities & Space Planning Procurement and Property Proposals & Planning Procurement and Property Proposals & Finance Templates Travel Procurement and Property This
The Frederick National Lab develops and applies advanced, next-generation technologies to solve basic and applied problems in the biomedical sciences, and serves as a national resource of shared high-tech facilities.
Berkeley Lab - Materials Sciences Division
; Finance Templates Travel One-Stop Acknowledging MSD Support Human Resources Facilities & Space Planning Procurement and Property Proposals & Finance Templates Travel Travel This page has been moved
Improving "lab-on-a-chip" techniques using biomedical nanotechnology: a review.
Gorjikhah, Fatemeh; Davaran, Soodabeh; Salehi, Roya; Bakhtiari, Mohsen; Hasanzadeh, Arash; Panahi, Yunes; Emamverdy, Masumeh; Akbarzadeh, Abolfazl
2016-11-01
Nanotechnology and its applications in biomedical sciences principally in molecular nanodiagnostics are known as nanomolecular diagnostics, which provides new options for clinical nanodiagnostic techniques. Molecular nanodiagnostics are a critical role in the development of personalized medicine, which features point-of care performance of diagnostic procedure. This can to check patients at point-of-care facilities or in remote or resource-poor locations, therefore reducing checking time from days to minutes. In this review, applications of nanotechnology suited to biomedicine are discussed in two main class: biomedical applications for use inside (such as drugs, diagnostic techniques, prostheses, and implants) and outside the body (such as "lab-on-a-chip" techniques). A lab-on-a-chip (LOC) is a tool that incorporates numerous laboratory tasks onto a small device, usually only millimeters or centimeters in size. Finally, are discussed the applications of biomedical nanotechnology in improving "lab-on-a-chip" techniques.
STS-111 Training in VR lab with Expedition IV and V Crewmembers
2001-10-18
JSC2001-E-39090 (18 October 2001) --- Cosmonaut Valeri G. Korzun, Expedition Five mission commander representing Rosaviakosmos, uses the virtual reality lab at the Johnson Space Center (JSC) to train for his duties on the International Space Station (ISS). This type of computer interface paired with virtual reality training hardware and software helps the entire team for dealing with ISS elements.
Ding Dong, You've Got Mail! A Lab Activity for Teaching the Internet of Things
ERIC Educational Resources Information Center
Frydenberg, Mark
2017-01-01
Connecting ordinary devices to the Internet is a defining characteristic of the Internet of Things. In this hands-on lab activity, students will connect a wireless doorbell to the Internet using a Raspberry Pi computer. By modifying and running a program on the Raspberry Pi to send an email or text message notifying a recipient that someone is at…
Hadlich, Marcelo Souza; Oliveira, Gláucia Maria Moraes; Feijóo, Raúl A; Azevedo, Clerio F; Tura, Bernardo Rangel; Ziemer, Paulo Gustavo Portela; Blanco, Pablo Javier; Pina, Gustavo; Meira, Márcio; Souza e Silva, Nelson Albuquerque de
2012-10-01
The standardization of images used in Medicine in 1993 was performed using the DICOM (Digital Imaging and Communications in Medicine) standard. Several tests use this standard and it is increasingly necessary to design software applications capable of handling this type of image; however, these software applications are not usually free and open-source, and this fact hinders their adjustment to most diverse interests. To develop and validate a free and open-source software application capable of handling DICOM coronary computed tomography angiography images. We developed and tested the ImageLab software in the evaluation of 100 tests randomly selected from a database. We carried out 600 tests divided between two observers using ImageLab and another software sold with Philips Brilliance computed tomography appliances in the evaluation of coronary lesions and plaques around the left main coronary artery (LMCA) and the anterior descending artery (ADA). To evaluate intraobserver, interobserver and intersoftware agreements, we used simple and kappa statistics agreements. The agreements observed between software applications were generally classified as substantial or almost perfect in most comparisons. The ImageLab software agreed with the Philips software in the evaluation of coronary computed tomography angiography tests, especially in patients without lesions, with lesions < 50% in the LMCA and < 70% in the ADA. The agreement for lesions > 70% in the ADA was lower, but this is also observed when the anatomical reference standard is used.
The Cloud Area Padovana: from pilot to production
NASA Astrophysics Data System (ADS)
Andreetto, P.; Costa, F.; Crescente, A.; Dorigo, A.; Fantinel, S.; Fanzago, F.; Sgaravatto, M.; Traldi, S.; Verlato, M.; Zangrando, L.
2017-10-01
The Cloud Area Padovana has been running for almost two years. This is an OpenStack-based scientific cloud, spread across two different sites: the INFN Padova Unit and the INFN Legnaro National Labs. The hardware resources have been scaled horizontally and vertically, by upgrading some hypervisors and by adding new ones: currently it provides about 1100 cores. Some in-house developments were also integrated in the OpenStack dashboard, such as a tool for user and project registrations with direct support for the INFN-AAI Identity Provider as a new option for the user authentication. In collaboration with the EU-funded Indigo DataCloud project, the integration with Docker-based containers has been experimented with and will be available in production soon. This computing facility now satisfies the computational and storage demands of more than 70 users affiliated with about 20 research projects. We present here the architecture of this Cloud infrastructure, the tools and procedures used to operate it. We also focus on the lessons learnt in these two years, describing the problems that were found and the corrective actions that had to be applied. We also discuss about the chosen strategy for upgrades, which combines the need to promptly integrate the OpenStack new developments, the demand to reduce the downtimes of the infrastructure, and the need to limit the effort requested for such updates. We also discuss how this Cloud infrastructure is being used. In particular we focus on two big physics experiments which are intensively exploiting this computing facility: CMS and SPES. CMS deployed on the cloud a complex computational infrastructure, composed of several user interfaces for job submission in the Grid environment/local batch queues or for interactive processes; this is fully integrated with the local Tier-2 facility. To avoid a static allocation of the resources, an elastic cluster, based on cernVM, has been configured: it allows to automatically create and delete virtual machines according to the user needs. SPES, using a client-server system called TraceWin, exploits INFN’s virtual resources performing a very large number of simulations on about a thousand nodes elastically managed.
Advanced Physics Labs and Undergraduate Research: Helping Them Work Together
NASA Astrophysics Data System (ADS)
Peterson, Richard W.
2009-10-01
The 2009 Advanced Lab Topical Conference in Ann Arbor affirmed the importance of advanced labs that teach crucial skills and methodologies by carefully conducting a time-honored experiment. Others however argued that such a constrained experiment can play a complementary role to more open-ended, project experiences. A genuine ``experiment'' where neither student or faculty member is exactly sure of the best approach or anticipated result can often trigger real excitement, creativity, and career direction for students while reinforcing the advanced lab and undergraduate research interface. Several examples are cited in areas of AMO physics, optics, fluids, and acoustics. Colleges and universities that have dual-degree engineering, engineering physics, or applied physics programs may especially profit from interdisciplinary projects that utilize optical, electromagnetic, and acoustical measurements in conjunction with computational physics and simulation.
cStress: Towards a Gold Standard for Continuous Stress Assessment in the Mobile Environment
Hovsepian, Karen; al’Absi, Mustafa; Ertin, Emre; Kamarck, Thomas; Nakajima, Motohiro; Kumar, Santosh
2015-01-01
Recent advances in mobile health have produced several new models for inferring stress from wearable sensors. But, the lack of a gold standard is a major hurdle in making clinical use of continuous stress measurements derived from wearable sensors. In this paper, we present a stress model (called cStress) that has been carefully developed with attention to every step of computational modeling including data collection, screening, cleaning, filtering, feature computation, normalization, and model training. More importantly, cStress was trained using data collected from a rigorous lab study with 21 participants and validated on two independently collected data sets — in a lab study on 26 participants and in a week-long field study with 20 participants. In testing, the model obtains a recall of 89% and a false positive rate of 5% on lab data. On field data, the model is able to predict each instantaneous self-report with an accuracy of 72%. PMID:26543926
Attitude identification for SCOLE using two infrared cameras
NASA Technical Reports Server (NTRS)
Shenhar, Joram
1991-01-01
An algorithm is presented that incorporates real time data from two infrared cameras and computes the attitude parameters of the Spacecraft COntrol Lab Experiment (SCOLE), a lab apparatus representing an offset feed antenna attached to the Space Shuttle by a flexible mast. The algorithm uses camera position data of three miniature light emitting diodes (LEDs), mounted on the SCOLE platform, permitting arbitrary camera placement and an on-line attitude extraction. The continuous nature of the algorithm allows identification of the placement of the two cameras with respect to some initial position of the three reference LEDs, followed by on-line six degrees of freedom attitude tracking, regardless of the attitude time history. A description is provided of the algorithm in the camera identification mode as well as the mode of target tracking. Experimental data from a reduced size SCOLE-like lab model, reflecting the performance of the camera identification and the tracking processes, are presented. Computer code for camera placement identification and SCOLE attitude tracking is listed.
Introductory Soils Online: An Effective Way to Get Online Students in the Field
ERIC Educational Resources Information Center
Reuter, Ron
2007-01-01
Traditional soil science courses, especially with a hands-on lab component, have been face-to-face events. Several universities in the United States now offer a distance natural resources related degree, yet few have developed distance soils courses, arguably an essential part of a complete natural resource education. This article discusses the…
The Next Generation of Lab and Classroom Computing - The Silver Lining
2016-12-01
desktop infrastructure (VDI) solution, as well as the computing solutions at three universities, was selected as the basis for comparison. The research... infrastructure , VDI, hardware cost, software cost, manpower, availability, cloud computing, private cloud, bring your own device, BYOD, thin client...virtual desktop infrastructure (VDI) solution, as well as the computing solutions at three universities, was selected as the basis for comparison. The
2004-06-17
KENNEDY SPACE CENTER, FLA. - In the KSC Space Life Sciences Lab’s Resource Recovery lab, bioengineer Tony Rector checks the ARMS reactor vessel. ARMS, or Aerobic Rotational Membrane System, is a wastewater processing project being tested for use on the International Space Station to collect, clean and reuse wastewater. It could be adapted for use on the Moon and Mars. The Lab is exploring various aspects of a bioregenerative life support system. Such research and technology development will be crucial to long-term habitation of space by humans.
2004-06-17
KENNEDY SPACE CENTER, FLA. - In the KSC Space Life Sciences Lab’s Resource Recovery lab, bioengineer Tony Rector checks the clear plexiglass ARMS reactor vessel. ARMS, or Aerobic Rotational Membrane System, is a wastewater processing project being tested for use on the International Space Station to collect, clean and reuse wastewater. It could be adapted for use on the Moon and Mars. The Lab is exploring various aspects of a bioregenerative life support system. Such research and technology development will be crucial to long-term habitation of space by humans.
Integration for navigation on the UMASS mobile perception lab
NASA Technical Reports Server (NTRS)
Draper, Bruce; Fennema, Claude; Rochwerger, Benny; Riseman, Edward; Hanson, Allen
1994-01-01
Integration of real-time visual procedures for use on the Mobile Perception Lab (MPL) was presented. The MPL is an autonomous vehicle designed for testing visually guided behavior. Two critical areas of focus in the system design were data storage/exchange and process control. The Intermediate Symbolic Representation (ISR3) supported data storage and exchange, and the MPL script monitor provided process control. Resource allocation, inter-process communication, and real-time control are difficult problems which must be solved in order to construct strong autonomous systems.
Jin, Hao; Mo, Lanxin; Pan, Lin; Hou, Qaingchaun; Li, Chuanjuan; Darima, Iaptueva; Yu, Jie
2018-05-09
Traditional fermented dairy foods including cottage cheese have been major components of the Buryatia diet for centuries. Buryatian cheeses have maintained not only their unique taste and flavor but also their rich natural lactic acid bacteria (LAB) content. However, relatively few studies have described their microbial communities or explored their potential to serve as LAB resources. In this study, the bacterial microbiota community of 7 traditional artisan cheeses produced by local Buryatian families was investigated using single-molecule, real-time sequencing. In addition, we compared the bacterial microbiota of the Buryatian cheese samples with data sets of cheeses from Kazakhstan and Italy. Furthermore, we isolated and preserved several LAB samples from Buryatian cheese. A total of 62 LAB strains (belonging to 6 genera and 14 species or subspecies) were isolated from 7 samples of Buryatian cheese. Full-length 16S rRNA sequencing of the microbiota revealed 145 species of 82 bacterial genera, belonging to 7 phyla. The most dominant species was Lactococcus lactis (43.89%). Data sets of cheeses from Italy and Kazakhstan were retrieved from public databases. Principal component analysis and multivariate ANOVA showed marked differences in the structure of the microbiota communities in the cheese data sets from the 3 regions. Linear discriminant analyses of the effect size identified 48 discriminant bacterial clades among the 3 groups, which might have contributed to the observed structural differences. Our results indicate that the bacterial communities of traditional artisan cheeses vary depending on geographic origin. In addition, we isolated novel and valuable LAB resources for the improvement of cottage cheese production. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Experiences in supporting the structured collection of cancer nanotechnology data using caNanoLab
Gaheen, Sharon; Lijowski, Michal; Heiskanen, Mervi; Klemm, Juli
2015-01-01
Summary The cancer Nanotechnology Laboratory (caNanoLab) data portal is an online nanomaterial database that allows users to submit and retrieve information on well-characterized nanomaterials, including composition, in vitro and in vivo experimental characterizations, experimental protocols, and related publications. Initiated in 2006, caNanoLab serves as an established resource with an infrastructure supporting the structured collection of nanotechnology data to address the needs of the cancer biomedical and nanotechnology communities. The portal contains over 1,000 curated nanomaterial data records that are publicly accessible for review, comparison, and re-use, with the ultimate goal of accelerating the translation of nanotechnology-based cancer therapeutics, diagnostics, and imaging agents to the clinic. In this paper, we will discuss challenges associated with developing a nanomaterial database and recognized needs for nanotechnology data curation and sharing in the biomedical research community. We will also describe the latest version of caNanoLab, caNanoLab 2.0, which includes enhancements and new features to improve usability such as personalized views of data and enhanced search and navigation. PMID:26425409
Children, Computers, and Powerful Ideas
ERIC Educational Resources Information Center
Bull, Glen
2005-01-01
Today it is commonplace that computers and technology permeate almost every aspect of education. In the late 1960s, though, the idea that computers could serve as a catalyst for thinking about the way children learn was a radical concept. In the early 1960s, Seymour Papert joined the faculty of MIT and founded the Artificial Intelligence Lab with…
Teaching Business Statistics in a Computer Lab: Benefit or Distraction?
ERIC Educational Resources Information Center
Martin, Linda R.
2011-01-01
Teaching in a classroom configured with computers has been heralded as an aid to learning. Students receive the benefits of working with large data sets and real-world problems. However, with the advent of network and wireless connections, students can now use the computer for alternating tasks, such as emailing, web browsing, and social…
On-line determination of pork color and intramuscular fat by computer vision
NASA Astrophysics Data System (ADS)
Liao, Yi-Tao; Fan, Yu-Xia; Wu, Xue-Qian; Xie, Li-juan; Cheng, Fang
2010-04-01
In this study, the application potential of computer vision in on-line determination of CIE L*a*b* and content of intramuscular fat (IMF) of pork was evaluated. Images of pork chop from 211 pig carcasses were captured while samples were on a conveyor belt at the speed of 0.25 m•s-1 to simulate the on-line environment. CIE L*a*b* and IMF content were measured with colorimeter and chemical extractor as reference. The KSW algorithm combined with region selection was employed in eliminating the surrounding fat of longissimus dorsi muscle (MLD). RGB values of the pork were counted and five methods were applied for transforming RGB values to CIE L*a*b* values. The region growing algorithm with multiple seed points was applied to mask out the IMF pixels within the intensity corrected images. The performances of the proposed algorithms were verified by comparing the measured reference values and the quality characteristics obtained by image processing. MLD region of six samples could not be identified using the KSW algorithm. Intensity nonuniformity of pork surface in the image can be eliminated efficiently, and IMF region of three corrected images failed to be extracted. Given considerable variety of color and complexity of the pork surface, CIE L*, a* and b* color of MLD could be predicted with correlation coefficients of 0.84, 0.54 and 0.47 respectively, and IMF content could be determined with a correlation coefficient more than 0.70. The study demonstrated that it is feasible to evaluate CIE L*a*b* values and IMF content on-line using computer vision.
Demo of three ways to use a computer to assist in lab
NASA Technical Reports Server (NTRS)
Neville, J. P.
1990-01-01
The objective is to help the slow learner and students with a language problem, or to challenge the advanced student. Technology has advanced to the point where images generated on a computer can easily be recorded on a VCR and used as a video tutorial. This transfer can be as simple as pointing a video camera at the screen and recording the image. For more clarity and professional results, a board may be inserted into a computer which will convert the signals directly to the TV standard. Using a computer program that generates movies one can animate various principles which would normally be impossible to show or would require time-lapse photography. For example, you might show the change in shape of grains as a piece of metal is cold worked and then show the recrystallization and grain growth as heat is applied. More imaginative titles and graphics are also possible using this technique. Remedial help may also be offered via computer to those who find a specific concept difficult. A printout of specific data, details of the theory or equipment set-up can be offered. Programs are now available that will help as well as test the student in specific areas so that a Keller type approach can be used with each student to insure each knows the subject before going on to the next topic. A computer can serve as an information source and contain the microstructures, physical data and availability of each material tested in the lab. With this source present unknowns can be evaluated and various tests simulated to create a simple or complex case study lab assignment.
Teaching mathematics in the PC lab - the students' viewpoints
NASA Astrophysics Data System (ADS)
Schmidt, Karsten; Köhler, Anke
2013-04-01
The Matrix Algebra portion of the intermediate mathematics course at the Schmalkalden University Faculty of Business and Economics has been moved from a traditional classroom setting to a technology-based setting in the PC lab. A Computer Algebra System license was acquired that also allows its use on the students' own PCs. A survey was carried out to analyse the students' attitudes towards the use of technology in mathematics teaching.
Fast Realistic MRI Simulations Based on Generalized Multi-Pool Exchange Tissue Model.
Liu, Fang; Velikina, Julia V; Block, Walter F; Kijowski, Richard; Samsonov, Alexey A
2017-02-01
We present MRiLab, a new comprehensive simulator for large-scale realistic MRI simulations on a regular PC equipped with a modern graphical processing unit (GPU). MRiLab combines realistic tissue modeling with numerical virtualization of an MRI system and scanning experiment to enable assessment of a broad range of MRI approaches including advanced quantitative MRI methods inferring microstructure on a sub-voxel level. A flexible representation of tissue microstructure is achieved in MRiLab by employing the generalized tissue model with multiple exchanging water and macromolecular proton pools rather than a system of independent proton isochromats typically used in previous simulators. The computational power needed for simulation of the biologically relevant tissue models in large 3D objects is gained using parallelized execution on GPU. Three simulated and one actual MRI experiments were performed to demonstrate the ability of the new simulator to accommodate a wide variety of voxel composition scenarios and demonstrate detrimental effects of simplified treatment of tissue micro-organization adapted in previous simulators. GPU execution allowed ∼ 200× improvement in computational speed over standard CPU. As a cross-platform, open-source, extensible environment for customizing virtual MRI experiments, MRiLab streamlines the development of new MRI methods, especially those aiming to infer quantitatively tissue composition and microstructure.
Fast Realistic MRI Simulations Based on Generalized Multi-Pool Exchange Tissue Model
Velikina, Julia V.; Block, Walter F.; Kijowski, Richard; Samsonov, Alexey A.
2017-01-01
We present MRiLab, a new comprehensive simulator for large-scale realistic MRI simulations on a regular PC equipped with a modern graphical processing unit (GPU). MRiLab combines realistic tissue modeling with numerical virtualization of an MRI system and scanning experiment to enable assessment of a broad range of MRI approaches including advanced quantitative MRI methods inferring microstructure on a sub-voxel level. A flexibl representation of tissue microstructure is achieved in MRiLab by employing the generalized tissue model with multiple exchanging water and macromolecular proton pools rather than a system of independent proton isochromats typically used in previous simulators. The computational power needed for simulation of the biologically relevant tissue models in large 3D objects is gained using parallelized execution on GPU. Three simulated and one actual MRI experiments were performed to demonstrate the ability of the new simulator to accommodate a wide variety of voxel composition scenarios and demonstrate detrimental effects of simplifie treatment of tissue micro-organization adapted in previous simulators. GPU execution allowed ∼200× improvement in computational speed over standard CPU. As a cross-platform, open-source, extensible environment for customizing virtual MRI experiments, MRiLab streamlines the development of new MRI methods, especially those aiming to infer quantitatively tissue composition and microstructure. PMID:28113746
researcher profiles, and find other resources for media. View all news and feature stories Leadership Bios Learn more about NREL's director, deputy lab directors, and the complete leadership team. About NREL
GridLAB-D: An Agent-Based Simulation Framework for Smart Grids
Chassin, David P.; Fuller, Jason C.; Djilali, Ned
2014-01-01
Simulation of smart grid technologies requires a fundamentally new approach to integrated modeling of power systems, energy markets, building technologies, and the plethora of other resources and assets that are becoming part of modern electricity production, delivery, and consumption systems. As a result, the US Department of Energy’s Office of Electricity commissioned the development of a new type of power system simulation tool called GridLAB-D that uses an agent-based approach to simulating smart grids. This paper presents the numerical methods and approach to time-series simulation used by GridLAB-D and reviews applications in power system studies, market design, building control systemmore » design, and integration of wind power in a smart grid.« less
GridLAB-D: An Agent-Based Simulation Framework for Smart Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chassin, David P.; Fuller, Jason C.; Djilali, Ned
2014-06-23
Simulation of smart grid technologies requires a fundamentally new approach to integrated modeling of power systems, energy markets, building technologies, and the plethora of other resources and assets that are becoming part of modern electricity production, delivery, and consumption systems. As a result, the US Department of Energy’s Office of Electricity commissioned the development of a new type of power system simulation tool called GridLAB-D that uses an agent-based approach to simulating smart grids. This paper presents the numerical methods and approach to time-series simulation used by GridLAB-D and reviews applications in power system studies, market design, building control systemmore » design, and integration of wind power in a smart grid.« less
Computer Based Simulation of Laboratory Experiments.
ERIC Educational Resources Information Center
Edward, Norrie S.
1997-01-01
Examines computer based simulations of practical laboratory experiments in engineering. Discusses the aims and achievements of lab work (cognitive, process, psychomotor, and affective); types of simulations (model building and behavioral); and the strengths and weaknesses of simulations. Describes the development of a centrifugal pump simulation,…
A Planning Guide for Instructional Networks, Part II.
ERIC Educational Resources Information Center
Daly, Kevin F.
1994-01-01
This second in a series of articles on planning for instructional computer networks focuses on site preparation, installation, service, and support. Highlights include an implementation schedule; classroom and computer lab layouts; electrical power needs; workstations; network cable; telephones; furniture; climate control; and security. (LRW)
Lab4CE: A Remote Laboratory for Computer Education
ERIC Educational Resources Information Center
Broisin, Julien; Venant, Rémi; Vidal, Philippe
2017-01-01
Remote practical activities have been demonstrated to be efficient when learners come to acquire inquiry skills. In computer science education, virtualization technologies are gaining popularity as this technological advance enables instructors to implement realistic practical learning activities, and learners to engage in authentic and…
An interactive computer lab of the galvanic cell for students in biochemistry.
Ahlstrand, Emma; Buetti-Dinh, Antoine; Friedman, Ran
2018-01-01
We describe an interactive module that can be used to teach basic concepts in electrochemistry and thermodynamics to first year natural science students. The module is used together with an experimental laboratory and improves the students' understanding of thermodynamic quantities such as Δ r G, Δ r H, and Δ r S that are calculated but not directly measured in the lab. We also discuss how new technologies can substitute some parts of experimental chemistry courses, and improve accessibility to course material. Cloud computing platforms such as CoCalc facilitate the distribution of computer codes and allow students to access and apply interactive course tools beyond the course's scope. Despite some limitations imposed by cloud computing, the students appreciated the approach and the enhanced opportunities to discuss study questions with their classmates and instructor as facilitated by the interactive tools. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(1):58-65, 2018. © 2017 The International Union of Biochemistry and Molecular Biology.
PatternLab for proteomics 4.0: A one-stop shop for analyzing shotgun proteomic data
Carvalho, Paulo C; Lima, Diogo B; Leprevost, Felipe V; Santos, Marlon D M; Fischer, Juliana S G; Aquino, Priscila F; Moresco, James J; Yates, John R; Barbosa, Valmir C
2017-01-01
PatternLab for proteomics is an integrated computational environment that unifies several previously published modules for analyzing shotgun proteomic data. PatternLab contains modules for formatting sequence databases, performing peptide spectrum matching, statistically filtering and organizing shotgun proteomic data, extracting quantitative information from label-free and chemically labeled data, performing statistics for differential proteomics, displaying results in a variety of graphical formats, performing similarity-driven studies with de novo sequencing data, analyzing time-course experiments, and helping with the understanding of the biological significance of data in the light of the Gene Ontology. Here we describe PatternLab for proteomics 4.0, which closely knits together all of these modules in a self-contained environment, covering the principal aspects of proteomic data analysis as a freely available and easily installable software package. All updates to PatternLab, as well as all new features added to it, have been tested over the years on millions of mass spectra. PMID:26658470
NBodyLab Simulation Experiments with GRAPE-6a AND MD-GRAPE2 Acceleration
NASA Astrophysics Data System (ADS)
Johnson, V.; Ates, A.
2005-12-01
NbodyLab is an astrophysical N-body simulation testbed for student research. It is accessible via a web interface and runs as a backend framework under Linux. NbodyLab can generate data models or perform star catalog lookups, transform input data sets, perform direct summation gravitational force calculations using a variety of integration schemes, and produce analysis and visualization output products. NEMO (Teuben 1994), a popular stellar dynamics toolbox, is used for some functions. NbodyLab integrators can optionally utilize two types of low-cost desktop supercomputer accelerators, the newly available GRAPE-6a (125 Gflops peak) and the MD-GRAPE2 (64-128 Gflops peak). The initial version of NBodyLab was presented at ADASS 2002. This paper summarizes software enhancements developed subsequently, focusing on GRAPE-6a related enhancements, and gives examples of computational experiments and astrophysical research, including star cluster and solar system studies, that can be conducted with the new testbed functionality.
Bethune-Cookman University STEM Research Lab. DOE Renovation Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Herbert W.
DOE funding was used to renovate 4,500 square feet of aging laboratories and classrooms that support science, engineering, and mathematics disciplines (specifically environmental science, and computer engineering). The expansion of the labs was needed to support robotics and environmental science research, and to better accommodate a wide variety of teaching situations. The renovated space includes a robotics laboratory, two multi-use labs, safe spaces for the storage of instrumentation, modern ventilation equipment, and other “smart” learning venues. The renovated areas feature technologies that are environmentally friendly with reduced energy costs. A campus showcase, the laboratories are a reflection of the University’smore » commitment to the environment and research as a tool for teaching. As anticipated, the labs facilitate the exploration of emerging technologies that are compatible with local and regional economic plans.« less
ERIC Educational Resources Information Center
Murray, Michael
This report describes the use of the Internet as an image and information resource in an introductory television and radio production class (COMM 223: Principles of Radio and Television Production) at Western Illinois University. The report states that the class's two lab sections spent the first half of the semester preparing a television…
Ernest Orlando Lawrence Berkeley National Laboratory Institutional Plan FY 2000-2004
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chartock, Mike; Hansen, Todd
1999-08-01
The FY 2000-2004 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab, the Laboratory) mission, strategic plan, initiatives, and the resources required to fulfill its role in support of national needs in fundamental science and technology, energy resources, and environmental quality. To advance the Department of Energy's ongoing efforts to define the Integrated Laboratory System, the Berkeley Lab Institutional Plan reflects the strategic elements of our planning efforts. The Institutional Plan is a management report that supports the Department of Energy's mission and programs and is an element of the Department of Energy's strategicmore » management planning activities, developed through an annual planning process. The Plan supports the Government Performance and Results Act of 1993 and complements the performance-based contract between the Department of Energy and the Regents of the University of California. It identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by Berkeley Lab's scientific and support divisions.« less
NASA Astrophysics Data System (ADS)
2011-07-01
WE RECOMMEND Fun Fly Stick Science Kit Fun fly stick introduces electrostatics to youngsters Special Relativity Text makes a useful addition to the study of relativity as an undergraduate LabVIEWTM 2009 Education Edition LabVIEW sets industry standard for gathering and analysing data, signal processing, instrumentation design and control, and automation and robotics Edison and Ford Winter Estates Thomas Edison's home is open to the public The Computer History Museum Take a walk through technology history at this computer museum WORTH A LOOK Fast Car Physics Book races through physics Beautiful Invisible The main subject of this book is theoretical physics Quantum Theory Cannot Hurt You A guide to physics on the large and small scale Chaos: The Science of Predictable Random Motion Book explores the mathematics behind chaotic behaviour Seven Wonders of the Universe A textual trip through the wonderful universe HANDLE WITH CARE Marie Curie: A Biography Book fails to capture Curie's science WEB WATCH Web clips to liven up science lessons
Kaufman, Michael G.; Pelz-Stelinski, Kirsten S.; Yee, Donald A.; Juliano, Steven A.; Ostrom, Peggy H.; Walker, Edward D.
2010-01-01
1. Detritus that forms the basis for mosquito production in tree hole ecosystems can vary in type and timing of input. We investigated the contributions of plant- and animal-derived detritus to the biomass of Aedes triseriatus (Say) pupae and adults by using stable isotope (15N and 13C) techniques in lab experiments and field collections. 2. Lab-reared mosquito isotope values reflected their detrital resource base, providing a clear distinction between mosquitoes reared on plant or animal detritus. 3. Isotope values from field-collected pupae were intermediate between what would be expected if a single (either plant or animal) detrital source dominated the resource base. However, mosquito isotope values clustered most closely with plant-derived values, and a mixed feeding model analysis indicated tree floral parts contributed approximately 80% of mosquito biomass. The mixed model also indicated that animal detritus contributed approximately 30% of mosquito tissue nitrogen. 4. Pupae collected later in the season generally had isotope values that were consistent with an increased contribution from animal detritus, suggesting this resource became more nutritionally important for mosquitoes as plant inputs declined over the summer. PMID:21132121
NASA's GreenLab Research Facility: A Guide for a Self-Sustainable Renewable Energy Ecosystem
NASA Technical Reports Server (NTRS)
Bomani, B. M. McDowell; Hendricks, R. C.; Elbuluk, Malik; Okon, Monica; Lee, Eric; Gigante, Bethany
2011-01-01
There is a large gap between the production and demand for energy from alternative fuel and alternative renewable energy sources. The sustainability of humanity, as we know it, directly depends on the ability to secure affordable fuel, food, and freshwater. NASA Glenn Research Center (Glenn) has initiated a laboratory pilot study on using biofuels as viable alternative fuel resources for the field of aviation, as well as utilizing wind and solar technology as alternative renewable energy resources. The GreenLab Research Facility focuses on optimizing biomass feedstock using algae and halophytes as the next generation of renewable aviation fuels. The unique approach in this facility helps achieve optimal biomass feedstock through climatic adaptation of balanced ecosystems that do not use freshwater, compete with food crops, or use arable land. In addition, the GreenLab Research Facility is powered, in part, by alternative and renewable energy sources, reducing the major environmental impact of present electricity sources. The ultimate goal is to have a 100 percent clean energy laboratory that, when combined with biomass feedstock research, has the framework in place for a self-sustainable renewable energy ecosystem that can be duplicated anywhere in the world and can potentially be used to mitigate the shortage of food, fuel, and water. This paper describes the GreenLab Research Facility at Glenn and its power and energy sources, and provides recommendations for worldwide expansion and adoption of the facility s concept.
A preliminary and qualitative study of resource ratio theory to nitrifying lab-scale bioreactors.
Bellucci, Micol; Ofiţeru, Irina D; Beneduce, Luciano; Graham, David W; Head, Ian M; Curtis, Thomas P
2015-05-01
The incorporation of microbial diversity in design would ideally require predictive theory that would relate operational parameters to the numbers and distribution of taxa. Resource ratio-theory (RRT) might be one such theory. Based on Monod kinetics, it explains diversity in function of resource-ratio and richness. However, to be usable in biological engineered system, the growth parameters of all the bacteria under consideration and the resource supply and diffusion parameters for all the relevant nutrients should be determined. This is challenging, but plausible, at least for low diversity groups with simple resource requirements like the ammonia oxidizing bacteria (AOB). One of the major successes of RRT was its ability to explain the 'paradox of enrichment' which states that diversity first increases and then decreases with resource richness. Here, we demonstrate that this pattern can be seen in lab-scale-activated sludge reactors and parallel simulations that incorporate the principles of RRT in a floc-based system. High and low ammonia and oxygen were supplied to continuous flow bioreactors with resource conditions correlating with the composition and diversity of resident AOB communities based on AOB 16S rDNA clone libraries. Neither the experimental work nor the simulations are definitive proof for the application of RRT in this context. However, it is sufficient evidence that such approach might work and justify a more rigorous investigation. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Foster, Joseph M; Moreno, Pablo; Fabregat, Antonio; Hermjakob, Henning; Steinbeck, Christoph; Apweiler, Rolf; Wakelam, Michael J O; Vizcaíno, Juan Antonio
2013-01-01
Protein sequence databases are the pillar upon which modern proteomics is supported, representing a stable reference space of predicted and validated proteins. One example of such resources is UniProt, enriched with both expertly curated and automatic annotations. Taken largely for granted, similar mature resources such as UniProt are not available yet in some other "omics" fields, lipidomics being one of them. While having a seasoned community of wet lab scientists, lipidomics lies significantly behind proteomics in the adoption of data standards and other core bioinformatics concepts. This work aims to reduce the gap by developing an equivalent resource to UniProt called 'LipidHome', providing theoretically generated lipid molecules and useful metadata. Using the 'FASTLipid' Java library, a database was populated with theoretical lipids, generated from a set of community agreed upon chemical bounds. In parallel, a web application was developed to present the information and provide computational access via a web service. Designed specifically to accommodate high throughput mass spectrometry based approaches, lipids are organised into a hierarchy that reflects the variety in the structural resolution of lipid identifications. Additionally, cross-references to other lipid related resources and papers that cite specific lipids were used to annotate lipid records. The web application encompasses a browser for viewing lipid records and a 'tools' section where an MS1 search engine is currently implemented. LipidHome can be accessed at http://www.ebi.ac.uk/apweiler-srv/lipidhome.
In Defense of the National Labs and Big-Budget Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodwin, J R
2008-07-29
The purpose of this paper is to present the unofficial and unsanctioned opinions of a Visiting Scientist at Lawrence Livermore National Laboratory on the values of LLNL and the other National Labs. The basic founding value and goal of the National Labs is big-budget scientific research, along with smaller-budget scientific research that cannot easily be done elsewhere. The most important example in the latter category is classified defense-related research. The historical guiding light here is the Manhattan Project. This endeavor was unique in human history, and might remain so. The scientific expertise and wealth of an entire nation was tappedmore » in a project that was huge beyond reckoning, with no advance guarantee of success. It was in many respects a clash of scientific titans, with a large supporting cast, collaborating toward a single well-defined goal. Never had scientists received so much respect, so much money, and so much intellectual freedom to pursue scientific progress. And never was the gap between theory and implementation so rapidly narrowed, with results that changed the world, completely. Enormous resources are spent at the national or international level on large-scale scientific projects. LLNL has the most powerful computer in the world, Blue Gene/L. (Oops, Los Alamos just seized the title with Roadrunner; such titles regularly change hands.) LLNL also has the largest laser in the world, the National Ignition Facility (NIF). Lawrence Berkeley National Lab (LBNL) has the most powerful microscope in the world. Not only is it beyond the resources of most large corporations to make such expenditures, but the risk exceeds the possible rewards for those corporations that could. Nor can most small countries afford to finance large scientific projects, and not even the richest can afford largess, especially if Congress is under major budget pressure. Some big-budget research efforts are funded by international consortiums, such as the Large Hadron Collider (LHC) at CERN, and the International Tokamak Experimental Reactor (ITER) in Cadarache, France, a magnetic-confinement fusion research project. The postWWII histories of particle and fusion physics contain remarkable examples of both international competition, with an emphasis on secrecy, and international cooperation, with an emphasis on shared knowledge and resources. Initiatives to share sometimes came from surprising directions. Most large-scale scientific projects have potential defense applications. NIF certainly does; it is primarily designed to create small-scale fusion explosions. Blue Gene/L operates in part in service to NIF, and in part to various defense projects. The most important defense projects include stewardship of the national nuclear weapons stockpile, and the proposed redesign and replacement of those weapons with fewer, safer, more reliable, longer-lived, and less apocalyptic warheads. Many well-meaning people will consider the optimal lifetime of a nuclear weapon to be zero, but most thoughtful people, when asked how much longer they think this nation will require them, will ask for some time to think. NIF is also designed to create exothermic small-scale fusion explosions. The malapropos 'exothermic' here is a convenience to cover a profusion of complexities, but the basic idea is that the explosions will create more recoverable energy than was used to create them. One can hope that the primary future benefits of success for NIF will be in cost-effective generation of electrical power through controlled small-scale fusion reactions, rather than in improved large-scale fusion explosions. Blue Gene/L also services climate research, genomic research, materials research, and a myriad of other computational problems that become more feasible, reliable, and precise the larger the number of computational nodes employed. Blue Gene/L has to be sited within a security complex for obvious reasons, but its value extends to the nation and the world. There is a duality here between large-scale scientific research machines and the supercomputers used to model them. An astounding example is illustrated in a graph released by EFDAJET, at Oxfordshire, UK, presently the largest operating magnetic-confinement fusion experiment. The graph shows plasma confinement times (an essential performance parameter) for all the major tokamaks in the international fusion program, over their existing lifetimes. The remarkable thing about the data is not so much confinement-time versus date or scale, but the fact that the data are given for both the computer model predictions and the actual experimental measurements, and the two are in phenomenal agreement over the extended range of scales. Supercomputer models, sometimes operating with the intricacy of Schroedinger's equation at quantum physical scales, have become a costly but enormously cost-saving tool.« less
2016-01-01
In this study, traditional culture method and 16S rRNA gene analysis were applied to reveal the composition and diversity of lactic acid bacteria (LAB) of fermented cow milk, huruud and urum from Baotou and Bayannur of midwestern Inner Mongolia. Also, the quantitative results of dominant LAB species in three different types of dairy products from Baotou and Bayannur were gained by quantitative polymerase chain reaction (q-PCR) technology. Two hundred and two LAB strains isolated from sixty-six samples were identified and classified into four genera, namely Enterococcus, Lactococcus, Lactobacillus, Leuconostoc, and twenty-one species and subspecies. From these isolates, Lactococcus lactis subsp. lactis (32.18%), Lactobacillus plantarum (12.38%) and Leuconosto mesenteroides (11.39%) were considered as the dominated LAB species under the condition of cultivating in MRS and M17 medium. And the q-PCR results revealed that the number of dominant species varied from samples to samples and from region to region. This study clearly shows the composition and diversity of LAB existing in fermented cow milk, huruud and urum, which could be considered as valuable resources for LAB isolation and further probiotic selection. PMID:27621691
Parents of Kids with Infectious Diseases
... news labs links & resources hpv overview why vaccinate posters buttons and banners videos someone you love flu ... such thing as stomach flu pregnancy and flu posters meningitis overview why vaccinate CDC and meningitis Stiletto ...
Transportation, Air Pollution, and Climate Change
... Offices Labs and Research Centers Contact Us Share Transportation, Air Pollution, and Climate Change Overview Learn about ... Smog, soot, and other air pollution from transportation Transportation and Air Quality Resources Press releases Federal Register ...
National Programs | FNLCR Staging
The Frederick National Lab (FNL) is a shared national resource that offers access to a suite of advanced biomedical technologies, provides selected science and technology services, and maintains vast repositories of research materials available to bi
Mammalian Toxicology Testing: Problem Definition Study, Personnel Plan.
1981-03-01
Technician X X Biochemist X Biologist !Bookkeeper Cage Washer X Clinical Chemist Compound Preparation Technician X Computer Cooer X Computer ...Biologist 62 Bookkeeper 60 Cage rasher 33 Clinical Chemist 26 Comp. Prep. Technician 20 Computer Coder 31 Computer Programer 31 Electron Microscope Op...29,200 * Computer Programmer BS S SFByAe 900-2.0 18,400 - $24500 e Lab Tec-inician (Chemistry) BS 5 SF Say Area 16,600- 24.000 - 14.200- ’,0 * Animal
ICCE/ICCAI 2000 Full & Short Papers (Virtual Lab/Classroom/School).
ERIC Educational Resources Information Center
2000
This document contains the following full and short papers on virtual laboratories, classrooms, and schools from ICCE/ICCAI 2000 (International Conference on Computers in Education/International Conference on Computer-Assisted Instruction): (1) "A Collaborative Learning Support System Based on Virtual Environment Server for Multiple…
Mathematics and Computer Science: Exploring a Symbiotic Relationship
ERIC Educational Resources Information Center
Bravaco, Ralph; Simonson, Shai
2004-01-01
This paper describes a "learning community" designed for sophomore computer science majors who are simultaneously studying discrete mathematics. The learning community consists of three courses: Discrete Mathematics, Data Structures and an Integrative Seminar/Lab. The seminar functions as a link that integrates the two disciplines. Participation…
Gender Effects of Computer Use in a Conceptual Physics Lab Course
ERIC Educational Resources Information Center
Van Domelen, Dave
2010-01-01
It's always hard to know what to expect when bringing computers into an educational setting, as things are always changing. Student skills with computers are different today than they were 10 years ago, and 20 years ago almost counts as an alien world. Still, one hopes that some of these changes result in positive trends, such as student attitudes…
ERIC Educational Resources Information Center
Bozzone, Meg A.
1997-01-01
Purchasing custom-made desks with durable glass tops to house computers and double as student work space solved the problem of how to squeeze in additional classroom computers at Johnson Park Elementary School in Princeton, New Jersey. This article describes a K-5 grade school's efforts to overcome barriers to integrating technology. (PEN)
NASA Technical Reports Server (NTRS)
1988-01-01
Martin Marietta Aero and Naval Systems has advanced the CAD art to a very high level at its Robotics Laboratory. One of the company's major projects is construction of a huge Field Material Handling Robot for the Army's Human Engineering Lab. Design of FMR, intended to move heavy and dangerous material such as ammunition, was a triumph in CAD Engineering. Separate computer problems modeled the robot's kinematics and dynamics, yielding such parameters as the strength of materials required for each component, the length of the arms, their degree of freedom and power of hydraulic system needed. The Robotics Lab went a step further and added data enabling computer simulation and animation of the robot's total operational capability under various loading and unloading conditions. NASA computer program (IAC), integrated Analysis Capability Engineering Database was used. Program contains a series of modules that can stand alone or be integrated with data from sensors or software tools.
Eirín-López, José M
2013-01-01
The study of chromatin constitutes one of the most active research fields in life sciences, being subject to constant revisions that continuously redefine the state of the art in its knowledge. As every other rapidly changing field, chromatin biology requires clear and straightforward educational strategies able to efficiently translate such a vast body of knowledge to the classroom. With this aim, the present work describes a multidisciplinary computer lab designed to introduce undergraduate students to the dynamic nature of chromatin, within the context of the one semester course "Chromatin: Structure, Function and Evolution." This exercise is organized in three parts including (a) molecular evolutionary biology of histone families (using the H1 family as example), (b) histone structure and variation across different animal groups, and (c) effect of histone diversity on nucleosome structure and chromatin dynamics. By using freely available bioinformatic tools that can be run on common computers, the concept of chromatin dynamics is interactively illustrated from a comparative/evolutionary perspective. At the end of this computer lab, students are able to translate the bioinformatic information into a biochemical context in which the relevance of histone primary structure on chromatin dynamics is exposed. During the last 8 years this exercise has proven to be a powerful approach for teaching chromatin structure and dynamics, allowing students a higher degree of independence during the processes of learning and self-assessment. Copyright © 2013 International Union of Biochemistry and Molecular Biology, Inc.
STS-126 crew during preflight VR LAB MSS EVA2 training
2008-04-14
JSC2008-E-033771 (14 April 2008) --- Astronaut Eric A. Boe, STS-126 pilot, uses the virtual reality lab in the Space Vehicle Mockup Facility at NASA's Johnson Space Center to train for some of his duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.
Probability of illness definition for the Skylab flight crew health stabilization program
NASA Technical Reports Server (NTRS)
1974-01-01
Management and analysis of crew and environmental microbiological data from SMEAT and Skylab are discussed. Samples were collected from ten different body sites on each SMEAT and Skylab crew-member on approximately 50 occasions and since several different organisms could be isolated from each sample, several thousand lab reports were generated. These lab reports were coded and entered in a computer file and from the file various tabular summaries were constructed.
Naval Postgraduate School Research. Volume 8, Number 2, June 1998
1998-06-01
N P S R E S E A R C H Volume 8, Number 2 June 1998 Office of the Dean of Research • Naval Postgraduate School • Monterey, California...LABORATORY Department of Electrical and Computer Engineering Research Associate Professor Richard W. Adler Research Associate Wilbur R . Vincent Visiting...electromagnetic environmental effects. RESEARCH LAB SIGNAL ENHANCEMENT LAB, continued from page 1 -- continued on page 3 Wilbur R . Vincent is a Research
Pal, Reshmi; Mendelson, John; Clavier, Odile; Baggott, Mathew J; Coyle, Jeremy; Galloway, Gantt P
2016-01-01
In methamphetamine (MA) users, drug-induced neurocognitive deficits may help to determine treatment, monitor adherence, and predict relapse. To measure these relationships, we developed an iPhone app (Neurophone) to compare lab and field performance of N-Back, Stop Signal, and Stroop tasks that are sensitive to MA-induced deficits. Twenty healthy controls and 16 MA-dependent participants performed the tasks in-lab using a validated computerized platform and the Neurophone before taking the latter home and performing the tasks twice daily for two weeks. N-Back task: there were no clear differences in performance between computer-based vs. phone-based in-lab tests and phone-based in-lab vs. phone-based in-field tests. Stop-Signal task: difference in parameters prevented comparison of computer-based and phone-based versions. There was significant difference in phone performance between field and lab. Stroop task: response time measured by the speech recognition engine lacked precision to yield quantifiable results. There was no learning effect over time. On an average, each participant completed 84.3% of the in-field NBack tasks and 90.4% of the in-field Stop Signal tasks (MA-dependent participants: 74.8% and 84.3%; healthy controls: 91.4% and 95.0%, respectively). Participants rated Neurophone easy to use. Cognitive tasks performed in-field using Neurophone have the potential to yield results comparable to those obtained in a laboratory setting. Tasks need to be modified for use as the app's voice recognition system is not yet adequate for timed tests.
Nayor, David
2012-01-01
Doctors across the country who operate private medical practices are facing increasing financial obstacles, namely shrinking income as a result of rising costs and lower reimbursements. In addition, as hospitals have become overburdened many physicians have opened up private surgical centers; magnetic resonance imaging and computed tomography and positron emission tomography scanning facilities; pathology labs; colonoscopy/endoscopy suites; lithotripsy centers; and other medical businesses typically performed within the hospital. Moreover, many doctors seek loans to purchase existing practices or for their capital contribution in medical partnerships. The past decade has thus seen a significant increase in the number of doctors taking out small business loans. Indeed, banks view the healthcare industry as a large growth market. This article includes practical information, advice, and resources to help doctors to secure bank financing for their practices, ancillary services business, real estate, and equipment on the best possible market terms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramamurthy, Byravamurthy
2014-05-05
In this project, developed scheduling frameworks for dynamic bandwidth demands for large-scale science applications. In particular, we developed scheduling algorithms for dynamic bandwidth demands in this project. Apart from theoretical approaches such as Integer Linear Programming, Tabu Search and Genetic Algorithm heuristics, we have utilized practical data from ESnet OSCARS project (from our DOE lab partners) to conduct realistic simulations of our approaches. We have disseminated our work through conference paper presentations and journal papers and a book chapter. In this project we addressed the problem of scheduling of lightpaths over optical wavelength division multiplexed (WDM) networks. We published severalmore » conference papers and journal papers on this topic. We also addressed the problems of joint allocation of computing, storage and networking resources in Grid/Cloud networks and proposed energy-efficient mechanisms for operatin optical WDM networks.« less
Cost-Effective Cloud Computing: A Case Study Using the Comparative Genomics Tool, Roundup
Kudtarkar, Parul; DeLuca, Todd F.; Fusaro, Vincent A.; Tonellato, Peter J.; Wall, Dennis P.
2010-01-01
Background Comparative genomics resources, such as ortholog detection tools and repositories are rapidly increasing in scale and complexity. Cloud computing is an emerging technological paradigm that enables researchers to dynamically build a dedicated virtual cluster and may represent a valuable alternative for large computational tools in bioinformatics. In the present manuscript, we optimize the computation of a large-scale comparative genomics resource—Roundup—using cloud computing, describe the proper operating principles required to achieve computational efficiency on the cloud, and detail important procedures for improving cost-effectiveness to ensure maximal computation at minimal costs. Methods Utilizing the comparative genomics tool, Roundup, as a case study, we computed orthologs among 902 fully sequenced genomes on Amazon’s Elastic Compute Cloud. For managing the ortholog processes, we designed a strategy to deploy the web service, Elastic MapReduce, and maximize the use of the cloud while simultaneously minimizing costs. Specifically, we created a model to estimate cloud runtime based on the size and complexity of the genomes being compared that determines in advance the optimal order of the jobs to be submitted. Results We computed orthologous relationships for 245,323 genome-to-genome comparisons on Amazon’s computing cloud, a computation that required just over 200 hours and cost $8,000 USD, at least 40% less than expected under a strategy in which genome comparisons were submitted to the cloud randomly with respect to runtime. Our cost savings projections were based on a model that not only demonstrates the optimal strategy for deploying RSD to the cloud, but also finds the optimal cluster size to minimize waste and maximize usage. Our cost-reduction model is readily adaptable for other comparative genomics tools and potentially of significant benefit to labs seeking to take advantage of the cloud as an alternative to local computing infrastructure. PMID:21258651
Remote sensing from the desktop up, a students's personal stairway to space (Invited)
NASA Astrophysics Data System (ADS)
Church, W.
2013-12-01
Doing science with real-time quantitative experiments is becoming more and more affordable and accessible. Because lab equipment is more affordable and accessible, many universities are using lab class models wherein students conduct their experiments in informal settings such as the dorm, outside, or other places throughout the campus. Students are doing real-time measurements homework outside of class. By liberating experiments from facilities, the hope is to give students more experimental science opportunities. The challenge is support. In lab settings, instructors and peers can help students if they have trouble with the steps of assembling their experimental set-up, configuring the data acquisition software, conducting the real-time measurement and doing the analysis. Students working on their own in a dorm do not benefit from this support. Furthermore, when students are given the open ended experimental task of designing their own measurement system, they may need more guidance. In this poster presentation, I will articulate a triangle model to support students through the task of finding the necessary resources to design and build a mission to space. In the triangle model, students have access to base layer concept and skill resources to help them build their experiment. They then have access to middle layer mini-experiments to help them configure and test their experimental set-up. Finally, they have a motivating real-time experiment. As an example of this type of resource used in practice, I will have a balloon science remote sensing project as a stand-in for a balloon mission to 100,000 feet. I will use an Arduino based DAQ system and XBee modules for wireless data transmission to a LabVIEW front-panel. I will attach the DAQ to a tethered balloon to conduct a real-time microclimate experiment in the Moscone Center. Expanded microclimate studies can be the capstone project or can be a stepping-stone to space wherein students prepare a sensor package for a weather balloon launch to 100,000 feet.
Co-"Lab"oration: A New Paradigm for Building a Management Information Systems Course
ERIC Educational Resources Information Center
Breimer, Eric; Cotler, Jami; Yoder, Robert
2010-01-01
We propose a new paradigm for building a Management Information Systems course that focuses on laboratory activities developed collaboratively using Computer-Mediated Communication and Collaboration tools. A highlight of our paradigm is the "practice what you preach" concept where the computer communication tools and collaboration…
Computational Methods for Inviscid and Viscous Two-and-Three-Dimensional Flow Fields.
1975-01-01
Difference Equations Over a Network, Watson Sei. Comput. Lab. Report, 19U9. 173- Isaacson, E. and Keller, H. B., Analaysis of Numerical Methods...element method has given a new impulse to the old mathematical theory of multivariate interpolation. We first study the one-dimensional case, which
A Monte Carlo Simulation of Brownian Motion in the Freshman Laboratory
ERIC Educational Resources Information Center
Anger, C. D.; Prescott, J. R.
1970-01-01
Describes a dry- lab" experiment for the college freshman laboratory, in which the essential features of Browian motion are given principles, using the Monte Carlo technique. Calculations principles, using the Monte Carlo technique. Calculations are carried out by a computation sheme based on computer language. Bibliography. (LC)
ERIC Educational Resources Information Center
Roy, Ken
2005-01-01
Unless the teacher is working at an ergonomically designed workstation, using a computer can result in eyestrain, neck aches, backaches, and headaches. Unfortunately, most teachers do their keyboarding at desks, on lab tables, and in other spaces that were not designed with computer use in mind. Ergonomics is the science of adapting workstations,…
The Impact of Microcomputers on Composition Students.
ERIC Educational Resources Information Center
Hocking, Joan
To determine whether computer assisted instruction was just a fad or a viable alternative to traditional methods for teaching English composition, a microcomputer was used in a traditional college freshman English course. The class was divided into small groups: some went to the computer lab, while others worked in the classroom. Interactive…
Wireless Computing in the Library: A Successful Model at St. Louis Community College.
ERIC Educational Resources Information Center
Patton, Janice K.
2001-01-01
Describes the St. Louis Community College (Missouri) library's use of laptop computers in the instruction lab as a way to save space and wiring costs. Discusses the pros and cons of wireless library instruction-advantages include its flexibility and its ability to eliminate cabling. (NB)
Space lab system analysis: Advanced Solid Rocket Motor (ASRM) communications networks analysis
NASA Technical Reports Server (NTRS)
Ingels, Frank M.; Moorhead, Robert J., II; Moorhead, Jane N.; Shearin, C. Mark; Thompson, Dale R.
1990-01-01
A synopsis of research on computer viruses and computer security is presented. A review of seven technical meetings attended is compiled. A technical discussion on the communication plans for the ASRM facility is presented, with a brief tutorial on the potential local area network media and protocols.
SuperB Simulation Production System
NASA Astrophysics Data System (ADS)
Tomassetti, L.; Bianchi, F.; Ciaschini, V.; Corvo, M.; Del Prete, D.; Di Simone, A.; Donvito, G.; Fella, A.; Franchini, P.; Giacomini, F.; Gianoli, A.; Longo, S.; Luitz, S.; Luppi, E.; Manzali, M.; Pardi, S.; Paolini, A.; Perez, A.; Rama, M.; Russo, G.; Santeramo, B.; Stroili, R.
2012-12-01
The SuperB asymmetric e+e- collider and detector to be built at the newly founded Nicola Cabibbo Lab will provide a uniquely sensitive probe of New Physics in the flavor sector of the Standard Model. Studying minute effects in the heavy quark and heavy lepton sectors requires a data sample of 75 ab-1 and a peak luminosity of 1036 cm-2 s-1. The SuperB Computing group is working on developing a simulation production framework capable to satisfy the experiment needs. It provides access to distributed resources in order to support both the detector design definition and its performance evaluation studies. During last year the framework has evolved from the point of view of job workflow, Grid services interfaces and technologies adoption. A complete code refactoring and sub-component language porting now permits the framework to sustain distributed production involving resources from two continents and Grid Flavors. In this paper we will report a complete description of the production system status of the art, its evolution and its integration with Grid services; in particular, we will focus on the utilization of new Grid component features as in LB and WMS version 3. Results from the last official SuperB production cycle will be reported.
Katz, Jonathan E
2017-01-01
Laboratories tend to be amenable environments for long-term reliable operation of scientific measurement equipment. Indeed, it is not uncommon to find equipment 5, 10, or even 20+ years old still being routinely used in labs. Unfortunately, the Achilles heel for many of these devices is the control/data acquisition computer. Often these computers run older operating systems (e.g., Windows XP) and, while they might only use standard network, USB or serial ports, they require proprietary software to be installed. Even if the original installation disks can be found, it is a burdensome process to reinstall and is fraught with "gotchas" that can derail the process-lost license keys, incompatible hardware, forgotten configuration settings, etc. If you have running legacy instrumentation, the computer is the ticking time bomb waiting to put a halt to your operation.In this chapter, I describe how to virtualize your currently running control computer. This virtualized computer "image" is easy to maintain, easy to back up and easy to redeploy. I have used this multiple times in my own lab to greatly improve the robustness of my legacy devices.After completing the steps in this chapter, you will have your original control computer as well as a virtual instance of that computer with all the software installed ready to control your hardware should your original computer ever be decommissioned.
Computer aided statistical process control for on-line instrumentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meils, D.E.
1995-01-01
On-line chemical process instrumentation historically has been used for trending. Recent technological advances in on-line instrumentation have improved the accuracy and reliability of on-line instrumentation. However, little attention has been given to validating and verifying on-line instrumentation. This paper presents two practical approaches for validating instrument performance by comparison of on-line instrument response to either another portable instrument or another bench instrument. Because the comparison of two instruments` performance to each other requires somewhat complex statistical calculations, a computer code (Lab Stats Pack{reg_sign}) is used to simplify the calculations. Lab Stats Pack{reg_sign} also develops control charts that may be usedmore » for continuous verification of on-line instrument performance.« less
A nested virtualization tool for information technology practical education.
Pérez, Carlos; Orduña, Juan M; Soriano, Francisco R
2016-01-01
A common problem of some information technology courses is the difficulty of providing practical exercises. Although different approaches have been followed to solve this problem, it is still an open issue, specially in security and computer network courses. This paper proposes NETinVM, a tool based on nested virtualization that includes a fully functional lab, comprising several computers and networks, in a single virtual machine. It also analyzes and evaluates how it has been used in different teaching environments. The results show that this tool makes it possible to perform demos, labs and practical exercises, greatly appreciated by the students, that would otherwise be unfeasible. Also, its portability allows to reproduce classroom activities, as well as the students' autonomous work.
NASA Astrophysics Data System (ADS)
Yin, Leilei; Chen, Ying-Chieh; Gelb, Jeff; Stevenson, Darren M.; Braun, Paul A.
2010-09-01
High resolution x-ray computed tomography is a powerful non-destructive 3-D imaging method. It can offer superior resolution on objects that are opaque or low contrast for optical microscopy. Synchrotron based x-ray computed tomography systems have been available for scientific research, but remain difficult to access for broader users. This work introduces a lab-based high-resolution x-ray nanotomography system with 50nm resolution in absorption and Zernike phase contrast modes. Using this system, we have demonstrated high quality 3-D images of polymerized photonic crystals which have been analyzed for band gap structures. The isotropic volumetric data shows excellent consistency with other characterization results.
Van Oosten, Ellen B; Buse, Kathleen; Bilimoria, Diana
2017-01-01
Innovative professional development approaches are needed to address the ongoing lack of women leaders in science, technology, engineering, and math (STEM) careers. Developed from the research on women who persist in engineering and computing professions and essential elements of women's leadership development, the Leadership Lab for Women in STEM Program was launched in 2014. The Leadership Lab was created as a research-based leadership development program, offering 360-degree feedback, coaching, and practical strategies aimed at increasing the advancement and retention of women in the STEM professions. The goal is to provide women with knowledge, tools and a supportive learning environment to help them navigate, achieve, flourish, and catalyze organizational change in male-dominated and technology-driven organizations. This article describes the importance of creating unique development experiences for women in STEM fields, the genesis of the Leadership Lab, the design and content of the program, and the outcomes for the participants.
Teaching resources. The Sherlock Holmes lab: investigations in neurophysiology.
Adler, Elizabeth M; Schwartz, Paul J
2006-05-09
This Teaching Resource describes a research project that can be used in an advanced undergraduate course in neurobiology that covers basic electrophysiology and synaptic transmission. A thought experiment is provided that can be used to assess student understanding of (i) the scientific method, (ii) the process whereby nerve stimulation leads to muscle contraction, and (iii) the use of pharmacological agents to analyze a physiological system.
Integrated Speech and Language Technology for Intelligence, Surveillance, and Reconnaissance (ISR)
2017-07-01
applying submodularity techniques to address computing challenges posed by large datasets in speech and language processing. MT and speech tools were...aforementioned research-oriented activities, the IT system administration team provided necessary support to laboratory computing and network operations...operations of SCREAM Lab computer systems and networks. Other miscellaneous activities in relation to Task Order 29 are presented in an additional fourth
A Computer Based Education (CBE) Program for Middle School Mathematics Intervention
ERIC Educational Resources Information Center
Gulley, Bill
2009-01-01
A Computer Based Education (CBE) program for intervention mathematics was developed, used, and modified over a period of three years in a computer lab at an Arizona Title I middle school. The program is described along with a rationale for the need, design, and use of such a program. Data was collected in the third year and results of the program…
Novel 3-D Computer Model Can Help Predict Pathogens’ Roles in Cancer | Poster
To understand how bacterial and viral infections contribute to human cancers, four NCI at Frederick scientists turned not to the lab bench, but to a computer. The team has created the world’s first—and currently, only—3-D computational approach for studying interactions between pathogen proteins and human proteins based on a molecular adaptation known as interface mimicry.
Generic Software for Emulating Multiprocessor Architectures.
1985-05-01
RD-A157 662 GENERIC SOFTWARE FOR EMULATING MULTIPROCESSOR 1/2 AlRCHITECTURES(J) MASSACHUSETTS INST OF TECH CAMBRIDGE U LRS LAB FOR COMPUTER SCIENCE R...AREA & WORK UNIT NUMBERS MIT Laboratory for Computer Science 545 Technology Square Cambridge, MA 02139 ____________ I I. CONTROLLING OFFICE NAME AND...aide If neceeasy end Identify by block number) Computer architecture, emulation, simulation, dataf low 20. ABSTRACT (Continue an reverse slde It
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vigil,Benny Manuel; Ballance, Robert; Haskell, Karen
Cielo is a massively parallel supercomputer funded by the DOE/NNSA Advanced Simulation and Computing (ASC) program, and operated by the Alliance for Computing at Extreme Scale (ACES), a partnership between Los Alamos National Laboratory (LANL) and Sandia National Laboratories (SNL). The primary Cielo compute platform is physically located at Los Alamos National Laboratory. This Cielo Computational Environment Usage Model documents the capabilities and the environment to be provided for the Q1 FY12 Level 2 Cielo Capability Computing (CCC) Platform Production Readiness Milestone. This document describes specific capabilities, tools, and procedures to support both local and remote users. The model ismore » focused on the needs of the ASC user working in the secure computing environments at Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory, or Sandia National Laboratories, but also addresses the needs of users working in the unclassified environment. The Cielo Computational Environment Usage Model maps the provided capabilities to the tri-Lab ASC Computing Environment (ACE) Version 8.0 requirements. The ACE requirements reflect the high performance computing requirements for the Production Readiness Milestone user environment capabilities of the ASC community. A description of ACE requirements met, and those requirements that are not met, are included in each section of this document. The Cielo Computing Environment, along with the ACE mappings, has been issued and reviewed throughout the tri-Lab community.« less
Artificial Intelligence (AI) Center of Excellence at the University of Pennsylvania
1995-07-01
that controls impact forces. Robust Location Estimation for MLR and Non-MLR Distributions (Dissertation Proposal) Gerda L. Kamberova MS-CIS-92-28...Bayesian Approach To Computer Vision Problems Gerda L. Kamberova MS-CIS-92-29 GRASP LAB 310 The object of our study is the Bayesian approach in...Estimation for MLR and Non-MLR Distributions (Dissertation) Gerda L. Kamberova MS-CIS-92-93 GRASP LAB 340 We study the problem of estimating an unknown
STS-105 Crew Training in VR Lab
2001-03-15
JSC2001-00754 (15 March 2001) --- Astronaut Patrick G. Forrester, STS-105 mission specialist, uses specialized gear in the virtual reality lab at the Johnson Space Center (JSC) to train for his duties aboard the Space Shuttle Discovery. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the International Space Station (ISS) hardware with which they will be working.
STS-109 Crew Training in VR Lab, Building 9
2001-08-08
JSC2001-E-24452 (8 August 2001) --- Astronauts John M. Grunsfeld (left), STS-109 payload commander, and Nancy J. Currie, mission specialist, use the virtual reality lab at the Johnson Space Center (JSC) to train for some of their duties aboard the Space Shuttle Columbia. This type of computer interface paired with virtual reality training hardware and software helps to prepare the entire team to perform its duties during the fourth Hubble Space Telescope (HST) servicing mission.
STS-111 Training in VR lab with Expedition IV and V Crewmembers
2001-10-18
JSC2001-E-39082 (18 October 2001) --- Cosmonaut Valeri G. Korzun (left), Expedition Five mission commander, and astronaut Carl E. Walz, Expedition Four flight engineer, use the virtual reality lab at the Johnson Space Center (JSC) to train for their duties on the International Space Station (ISS). This type of computer interface paired with virtual reality training hardware and software helps the entire team for dealing with ISS elements. Korzun represents Rosaviakosmos.
The Role of Fixation and Visual Attention in Object Recognition.
1995-01-01
computers", Technical Report, Aritificial Intelligence Lab, M.I. T., AI-Memo-915, June 1986. [29] D.P. Huttenlocher and S.Ullman, "Object Recognition Using...attention", Technical Report, Aritificial Intelligence Lab, M.I. T., AI-memo-770, Jan 1984. [35] E.Krotkov, K. Henriksen and R. Kories, "Stereo...MIT Artificial Intelligence Laboratory [ PCTBTBimON STATEMENT X \\ Afipioved tor puciic reieo*«* \\ »?*•;.., jDi*tiibutK» U»lisut»d* 19951004
None
2017-12-09
Learn what it will take to create tomorrow's net-zero energy home as scientists reveal the secrets of cool roofs, smart windows, and computer-driven energy control systems. The net-zero energy home: Scientists are working to make tomorrow's homes more than just energy efficient -- they want them to be zero energy. Iain Walker, a scientist in the Lab's Energy Performance of Buildings Group, will discuss what it takes to develop net-zero energy houses that generate as much energy as they use through highly aggressive energy efficiency and on-site renewable energy generation. Talking back to the grid: Imagine programming your house to use less energy if the electricity grid is full or price are high. Mary Ann Piette, deputy director of Berkeley Lab's building technology department and director of the Lab's Demand Response Research Center, will discuss how new technologies are enabling buildings to listen to the grid and automatically change their thermostat settings or lighting loads, among other demands, in response to fluctuating electricity prices. The networked (and energy efficient) house: In the future, your home's lights, climate control devices, computers, windows, and appliances could be controlled via a sophisticated digital network. If it's plugged in, it'll be connected. Bruce Nordman, an energy scientist in Berkeley Lab's Energy End-Use Forecasting group, will discuss how he and other scientists are working to ensure these networks help homeowners save energy.
Integrated Laser Characterization, Data Acquisition, and Command and Control Test System
NASA Technical Reports Server (NTRS)
Stysley, Paul; Coyle, Barry; Lyness, Eric
2012-01-01
Satellite-based laser technology has been developed for topographical measurements of the Earth and of other planets. Lasers for such missions must be highly efficient and stable over long periods in the temperature variations of orbit. In this innovation, LabVIEW is used on an Apple Macintosh to acquire and analyze images of the laser beam as it exits the laser cavity to evaluate the laser s performance over time, and to monitor and control the environmental conditions under which the laser is tested. One computer attached to multiple cameras and instruments running LabVIEW-based software replaces a conglomeration of computers and software packages, saving hours in maintenance and data analysis, and making very longterm tests possible. This all-in-one system was written primarily using LabVIEW for Mac OS X, which allows the combining of data from multiple RS-232, USB, and Ethernet instruments for comprehensive laser analysis and control. The system acquires data from CCDs (charge coupled devices), power meters, thermistors, and oscilloscopes over a controllable period of time. This data is saved to an html file that can be accessed later from a variety of data analysis programs. Also, through the LabVIEW interface, engineers can easily control laser input parameters such as current, pulse width, chiller temperature, and repetition rates. All of these parameters can be adapted and cycled over a period of time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Learn what it will take to create tomorrow's net-zero energy home as scientists reveal the secrets of cool roofs, smart windows, and computer-driven energy control systems. The net-zero energy home: Scientists are working to make tomorrow's homes more than just energy efficient -- they want them to be zero energy. Iain Walker, a scientist in the Lab's Energy Performance of Buildings Group, will discuss what it takes to develop net-zero energy houses that generate as much energy as they use through highly aggressive energy efficiency and on-site renewable energy generation. Talking back to the grid: Imagine programming your house tomore » use less energy if the electricity grid is full or price are high. Mary Ann Piette, deputy director of Berkeley Lab's building technology department and director of the Lab's Demand Response Research Center, will discuss how new technologies are enabling buildings to listen to the grid and automatically change their thermostat settings or lighting loads, among other demands, in response to fluctuating electricity prices. The networked (and energy efficient) house: In the future, your home's lights, climate control devices, computers, windows, and appliances could be controlled via a sophisticated digital network. If it's plugged in, it'll be connected. Bruce Nordman, an energy scientist in Berkeley Lab's Energy End-Use Forecasting group, will discuss how he and other scientists are working to ensure these networks help homeowners save energy.« less
NASA Astrophysics Data System (ADS)
Orlić, Ivica; Mekterović, Darko; Mekterović, Igor; Ivošević, Tatjana
2015-11-01
VIBA-Lab is a computer program originally developed by the author and co-workers at the National University of Singapore (NUS) as an interactive software package for simulation of Particle Induced X-ray Emission and Rutherford Backscattering Spectra. The original program is redeveloped to a VIBA-Lab 3.0 in which the user can perform semi-quantitative analysis by comparing simulated and measured spectra as well as simulate 2D elemental maps for a given 3D sample composition. The latest version has a new and more versatile user interface. It also has the latest data set of fundamental parameters such as Coster-Kronig transition rates, fluorescence yields, mass absorption coefficients and ionization cross sections for K and L lines in a wider energy range than the original program. Our short-term plan is to introduce routine for quantitative analysis for multiple PIXE and XRF excitations. VIBA-Lab is an excellent teaching tool for students and researchers in using PIXE and RBS techniques. At the same time the program helps when planning an experiment and when optimizing experimental parameters such as incident ions, their energy, detector specifications, filters, geometry, etc. By "running" a virtual experiment the user can test various scenarios until the optimal PIXE and BS spectra are obtained and in this way save a lot of expensive machine time.
1979-06-01
especially 1 ~f~ yy ~~~~~~~~~~~~~~~~ March 19, 1 979 , p.34. 12 among those individuals whose background characteristics indicate relat ively low...lab i l i ty — which is periodically conducted on a 12 to 18 month cycle. Issuance of the Human Resource Management Survey during the Human Resource...Management Center personnel providing Human Resource Availability services. Due to surveys being administered in 12 to 18 month cycles and tour
An analysis of high school students' perceptions and academic performance in laboratory experiences
NASA Astrophysics Data System (ADS)
Mirchin, Robert Douglas
This research study is an investigation of student-laboratory (i.e., lab) learning based on students' perceptions of experiences using questionnaire data and evidence of their science-laboratory performance based on paper-and-pencil assessments using Maryland-mandated criteria, Montgomery County Public Schools (MCPS) criteria, and published laboratory questions. A 20-item questionnaire consisting of 18 Likert-scale items and 2 open-ended items that addressed what students liked most and least about lab was administered to students before labs were observed. A pre-test and post-test assessing laboratory achievement were administered before and after the laboratory experiences. The three labs observed were: soda distillation, stoichiometry, and separation of a mixture. Five significant results or correlations were found. For soda distillation, there were two positive correlations. Student preference for analyzing data was positively correlated with achievement on the data analysis dimension of the lab rubric. A student preference for using numbers and graphs to analyze data was positively correlated with achievement on the analysis dimension of the lab rubric. For the separating a mixture lab data the following pairs of correlations were significant. Student preference for doing chemistry labs where numbers and graphs were used to analyze data had a positive correlation with writing a correctly worded hypothesis. Student responses that lab experiences help them learn science positively correlated with achievement on the data dimension of the lab rubric. The only negative correlation found related to the first result where students' preference for computers was inversely correlated to their performance on analyzing data on their lab report. Other findings included the following: students like actual experimental work most and the write-up and analysis of a lab the least. It is recommended that lab science instruction be inquiry-based, hands-on, and that students be tested for lab content acquisition. The final conclusion of the study is that students expressed a preference for working in groups and working with materials and equipment as opposed to individual, non-group work and analyzing data.
ERIC Educational Resources Information Center
Markowitz, Dina; Holt, Susan
2011-01-01
Students use manipulative models and small-scale simulations that promote learning of complex biological concepts. The authors have developed inexpensive wet-lab simulations and manipulative models for "Diagnosing Diabetes," "A Kidney Problem?" and "A Medical Mystery." (Contains 5 figures and 3 online resources.)
StagLab: Post-Processing and Visualisation in Geodynamics
NASA Astrophysics Data System (ADS)
Crameri, Fabio
2017-04-01
Despite being simplifications of nature, today's Geodynamic numerical models can, often do, and sometimes have to become very complex. Additionally, a steadily-increasing amount of raw model data results from more elaborate numerical codes and the still continuously-increasing computational power available for their execution. The current need for efficient post-processing and sensible visualisation is thus apparent. StagLab (www.fabiocrameri.ch/software) provides such much-needed strongly-automated post-processing in combination with state-of-the-art visualisation. Written in MatLab, StagLab is simple, flexible, efficient and reliable. It produces figures and movies that are both fully-reproducible and publication-ready. StagLab's post-processing capabilities include numerous diagnostics for plate tectonics and mantle dynamics. Featured are accurate plate-boundary identification, slab-polarity recognition, plate-bending derivation, mantle-plume detection, and surface-topography component splitting. These and many other diagnostics are derived conveniently from only a few parameter fields thanks to powerful image processing tools and other capable algorithms. Additionally, StagLab aims to prevent scientific visualisation pitfalls that are, unfortunately, still too common in the Geodynamics community. Misinterpretation of raw data and exclusion of colourblind people introduced with the continuous use of the rainbow (a.k.a. jet) colour scheme is just one, but a dramatic example (e.g., Rogowitz and Treinish, 1998; Light and Bartlein, 2004; Borland and Ii, 2007). StagLab is currently optimised for binary StagYY output (e.g., Tackley 2008), but is adjustable for the potential use with other Geodynamic codes. Additionally, StagLab's post-processing routines are open-source. REFERENCES Borland, D., and R. M. T. Ii (2007), Rainbow color map (still) considered harmful, IEEE Computer Graphics and Applications, 27(2), 14-17. Light, A., and P. J. Bartlein (2004), The end of the rainbow? Color schemes for improved data graphics, Eos Trans. AGU, 85(40), 385-391. Rogowitz, B. E., and L. A. Treinish (1998), Data visualization: the end of the rainbow, IEEE Spectrum, 35(12), 52-59, doi:10.1109/6.736450. Tackley, P.J (2008) Modelling compressible mantle convection with large viscosity contrasts in a three-dimensional spherical shell using the yin-yang grid. Physics of the Earth and Planetary Interiors 171(1-4), 7-18.
Gaspar, Paula; Carvalho, Ana L; Vinga, Susana; Santos, Helena; Neves, Ana Rute
2013-11-01
The lactic acid bacteria (LAB) are a functionally related group of low-GC Gram-positive bacteria known essentially for their roles in bioprocessing of foods and animal feeds. Due to extensive industrial use and enormous economical value, LAB have been intensively studied and a large body of comprehensive data on their metabolism and genetics was generated throughout the years. This knowledge has been instrumental in the implementation of successful applications in the food industry, such as the selection of robust starter cultures with desired phenotypic traits. The advent of genomics, functional genomics and high-throughput experimentation combined with powerful computational tools currently allows for a systems level understanding of these food industry workhorses. The technological developments in the last decade have provided the foundation for the use of LAB in applications beyond the classic food fermentations. Here we discuss recent metabolic engineering strategies to improve particular cellular traits of LAB and to design LAB cell factories for the bioproduction of added value chemicals. Copyright © 2013 Elsevier Inc. All rights reserved.
StackSplit - a plugin for multi-event shear wave splitting analyses in SplitLab
NASA Astrophysics Data System (ADS)
Grund, Michael
2017-04-01
The SplitLab package (Wüstefeld et al., Computers and Geosciences, 2008), written in MATLAB, is a powerful and widely used tool for analysing seismological shear wave splitting of single event measurements. However, in many cases, especially temporary station deployments close to seaside or for recordings affected by strong anthropogenic noise, only multi-event approaches provide stable and reliable splitting results. In order to extend the original SplitLab environment for such analyses, I present the StackSplit plugin that can easily be implemented within the well accepted main program. StackSplit grants easy access to several different analysis approaches within SplitLab, including a new multiple waveform based inversion method as well as the most established standard stacking procedures. The possibility to switch between different analysis approaches at any time allows the user for the most flexible processing of individual multi-event splitting measurements for a single recording station. Besides the provided functions of the plugin, no other external program is needed for the multi-event analyses since StackSplit performs within the available SplitLab structure.
Laboratory Directed Research and Development Program FY 2008 Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
editor, Todd C Hansen
2009-02-23
The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Berkeley Lab LDRD program also play an important role in leveraging DOE capabilities for national needs. The fundamental scientific research and development conducted in the program advances the skills and technologies of importance to our Work For Others (WFO) sponsors. Among many directions, these include a broad range of health-related science and technology of interest to the National Institutes of Health, breast cancer and accelerator research supported by the Department of Defense, detector technologies that should be useful to the Department of Homeland Security, and particle detection that will be valuable to the Environmental Protection Agency. The Berkeley Lab Laboratory Directed Research and Development Program FY2008 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the LDRD program planning and documentation process that includes an annual planning cycle, project selection, implementation, and review.« less
NASA Astrophysics Data System (ADS)
Jain, Anubhav
2017-04-01
Density functional theory (DFT) simulations solve for the electronic structure of materials starting from the Schrödinger equation. Many case studies have now demonstrated that researchers can often use DFT to design new compounds in the computer (e.g., for batteries, catalysts, and hydrogen storage) before synthesis and characterization in the lab. In this talk, I will focus on how DFT calculations can be executed on large supercomputing resources in order to generate very large data sets on new materials for functional applications. First, I will briefly describe the Materials Project, an effort at LBNL that has virtually characterized over 60,000 materials using DFT and has shared the results with over 17,000 registered users. Next, I will talk about how such data can help discover new materials, describing how preliminary computational screening led to the identification and confirmation of a new family of bulk AMX2 thermoelectric compounds with measured zT reaching 0.8. I will outline future plans for how such data-driven methods can be used to better understand the factors that control thermoelectric behavior, e.g., for the rational design of electronic band structures, in ways that are different from conventional approaches.
ERIC Educational Resources Information Center
Dupont, Stephen
2000-01-01
Presents a selection of computers and peripherals designed to enhance the classroom. They include personal digital assistants (the AlphaSmart 30001R, CalcuScribe Duo, and DreamWriter IT); new Apple products (the iBook laptop, improved iMac, and OS 9 operating system); PC options (new Gateway and Compaq computers); and gadgets (imagiLab, the QX3…
The Development and Deployment of a Virtual Unit Operations Laboratory
ERIC Educational Resources Information Center
Vaidyanath, Sreeram; Williams, Jason; Hilliard, Marcus; Wiesner, Theodore
2007-01-01
Computer-simulated experiments offer many benefits to engineering curricula in the areas of safety, cost, and flexibility. We report our experience in developing and deploying a computer-simulated unit operations laboratory, driven by the guiding principle of maximum fidelity to the physical lab. We find that, while the up-front investment in…
Librarian of the Year 2009: Team Cedar Rapids
ERIC Educational Resources Information Center
Berry, John N., III
2009-01-01
When flood came to Cedar Rapids city, the Cedar Rapids Public Library (CRPL), IA, lost 160,000 items including large parts of its adult and youth collections, magazines, newspapers, reference materials, CDs, and DVDs. Most of its public access computers were destroyed as was its computer lab and microfilm equipment. The automatic circulation and…
Running into Trouble with the Time-Dependent Propagation of a Wavepacket
ERIC Educational Resources Information Center
Garriz, Abel E.; Sztrajman, Alejandro; Mitnik, Dario
2010-01-01
The propagation in time of a wavepacket is a conceptually rich problem suitable to be studied in any introductory quantum mechanics course. This subject is covered analytically in most of the standard textbooks. Computer simulations have become a widespread pedagogical tool, easily implemented in computer labs and in classroom demonstrations.…
Adapting to the Era of Information
ERIC Educational Resources Information Center
Stuart, Reginald
2008-01-01
Despite having wireless connectivity to the Internet on campus, the students at Northwest Indian College could not afford a laptop computer of their own to access the Internet. Using the school's three computer labs was also problematic, as many students were working parents who traveled long distances and had little time to stay on campus after…
How Word Processing Is Changing Our Teaching: New Technologies, New Approaches, New Challenges.
ERIC Educational Resources Information Center
Rodrigues, Dawn; Rodrigues, Raymond
1989-01-01
Presents teaching variations with a word-processing package and related tools that enable teachers to develop different computer-writing pedagogies for their distinct contexts: traditional classroom, computer lab, or some combination of both. Emphasizes that teachers who re-envision teaching with regard to available technology can create dynamic…
ERIC Educational Resources Information Center
Hunter-Doniger, Tracey
2005-01-01
Tracey Hunter-Doniger is an elementary visual arts teacher who is fortunate enough to work in a school that realizes the value and influence art has on technology. Twice a year, her first-through fifth-grade classes meet in the computer lab to create computer-generated works of art. the class discusses the importance of art in technology, such as…
School Librarians: Vital Educational Leaders
ERIC Educational Resources Information Center
Martineau, Pamela
2010-01-01
In the new millennium, school librarians are more likely to be found sitting behind a computer as they update the library web page or create a wiki on genetically modified organisms. Or they might be seen in the library computer lab as they lead students through tutorials on annotated bibliographies or Google docs. If adequately supported, school…
Makerspaces: The Next Iteration for Educational Technology in K-12 Schools
ERIC Educational Resources Information Center
Strycker, Jesse
2015-01-01
With the continually growing number of computers and mobile devices available in K-12 schools, the need is dwindling for dedicated computer labs and media centers. Some schools are starting to repurpose those facilities into different kinds of exploratory learning environments known as "makerspaces". This article discusses this next…
Local and Long Distance Computer Networking for Science Classrooms. Technical Report No. 43.
ERIC Educational Resources Information Center
Newman, Denis
This report describes Earth Lab, a project which is demonstrating new ways of using computers for upper-elementary and middle-school science instruction, and finding ways to integrate local-area and telecommunications networks. The discussion covers software, classroom activities, formative research on communications networks, and integration of…
1993-06-01
administering contractual support for lab-wide or multiple buys of ADP systems, software, and services. Computer systems located in the Central Computing Facility...Code Dr. D.L. Bradley Vacant Mrs. N.J. Beauchamp Dr. W.A. Kuperman Dr. E.R. Franchi Dr. M.H. Orr Dr. J.A. Bucaro Mr. L.B. Palmer Dr. D.J. Ramsdale Mr
The Affective Experience of Novice Computer Programmers
ERIC Educational Resources Information Center
Bosch, Nigel; D'Mello, Sidney
2017-01-01
Novice students (N = 99) participated in a lab study in which they learned the fundamentals of computer programming in Python using a self-paced computerized learning environment involving a 25-min scaffolded learning phase and a 10-min unscaffolded fadeout phase. Students provided affect judgments at approximately 100 points (every 15 s) over the…
Use of color and responses to computer-based surveys.
Godar, S H
2000-12-01
Mean answers by 217 students to an affective questionnaire, the Mach IV survey, did not vary with the use of different background and font colors when the survey was presented online in a computer lab. They indicated, however, that background color may be associated with rate and within-condition variability of response.
Software for Testing Electroactive Structural Components
NASA Technical Reports Server (NTRS)
Moses, Robert W.; Fox, Robert L.; Dimery, Archie D.; Bryant, Robert G.; Shams, Qamar
2003-01-01
A computer program generates a graphical user interface that, in combination with its other features, facilitates the acquisition and preprocessing of experimental data on the strain response, hysteresis, and power consumption of a multilayer composite-material structural component containing one or more built-in sensor(s) and/or actuator(s) based on piezoelectric materials. This program runs in conjunction with Lab-VIEW software in a computer-controlled instrumentation system. For a test, a specimen is instrumented with appliedvoltage and current sensors and with strain gauges. Once the computational connection to the test setup has been made via the LabVIEW software, this program causes the test instrumentation to step through specified configurations. If the user is satisfied with the test results as displayed by the software, the user activates an icon on a front-panel display, causing the raw current, voltage, and strain data to be digitized and saved. The data are also put into a spreadsheet and can be plotted on a graph. Graphical displays are saved in an image file for future reference. The program also computes and displays the power and the phase angle between voltage and current.
Ventura, Valérie; Todorova, Sonia
2015-05-01
Spike-based brain-computer interfaces (BCIs) have the potential to restore motor ability to people with paralysis and amputation, and have shown impressive performance in the lab. To transition BCI devices from the lab to the clinic, decoding must proceed automatically and in real time, which prohibits the use of algorithms that are computationally intensive or require manual tweaking. A common choice is to avoid spike sorting and treat the signal on each electrode as if it came from a single neuron, which is fast, easy, and therefore desirable for clinical use. But this approach ignores the kinematic information provided by individual neurons recorded on the same electrode. The contribution of this letter is a linear decoding model that extracts kinematic information from individual neurons without spike-sorting the electrode signals. The method relies on modeling sample averages of waveform features as functions of kinematics, which is automatic and requires minimal data storage and computation. In offline reconstruction of arm trajectories of a nonhuman primate performing reaching tasks, the proposed method performs as well as decoders based on expertly manually and automatically sorted spikes.
Black hole based quantum computing in labs and in the sky
NASA Astrophysics Data System (ADS)
Dvali, Gia; Panchenko, Mischa
2016-08-01
Analyzing some well established facts, we give a model-independent parameterization of black hole quantum computing in terms of a set of macro and micro quantities and their relations. These include the relations between the extraordinarily-small energy gap of black hole qubits and important time-scales of information-processing, such as, scrambling time and Page's time. We then show, confirming and extending previous results, that other systems of nature with identical quantum informatics features are attractive Bose-Einstein systems at the critical point of quantum phase transition. Here we establish a complete isomorphy between the quantum computational properties of these two systems. In particular, we show that the quantum hair of a critical condensate is strikingly similar to the quantum hair of a black hole. Irrespectively whether one takes the similarity between the two systems as a remarkable coincidence or as a sign of a deeper underlying connection, the following is evident. Black holes are not unique in their way of quantum information processing and we can manufacture black hole based quantum computers in labs by taking advantage of quantum criticality.
Applying ``intelligent`` materials for materials education: The Labless Lab{trademark}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrade, J.D.; Scheer, R.
1994-12-31
A very large number of science and engineering courses taught in colleges and universities today do not involve laboratories. Although good instructors incorporate class demonstrations, hands on homework, and various teaching aids, including computer simulations, the fact is that students in such courses often accept key concepts and experimental results without discovering them for themselves. The only partial solution to this problem has been increasing use of class demonstrations and computer simulations. The authors feel strongly that many complex concepts can be observed and assimilated through experimentation with properly designed materials. They propose the development of materials and specimens designedmore » specifically for education purposes. Intelligent and communicative materials are ideal for this purpose. Specimens which respond in an observable fashion to new environments and situations provided by the students/experimenter provide a far more effective materials science and engineering experience than readouts and data generated by complex and expensive machines, particularly in an introductory course. Modern materials can be designed to literally communicate with the observer. The authors embarked on a project to develop a series of Labless Labs{trademark} utilizing various degrees and levels of intelligence in materials. It is expected that such Labless Labs{trademark} would be complementary to textbooks and computer simulations and to be used to provide a reality for students in courses and other learning situations where access to a laboratory is non-existent or limited.« less
Bao, Shunxing; Weitendorf, Frederick D; Plassard, Andrew J; Huo, Yuankai; Gokhale, Aniruddha; Landman, Bennett A
2017-02-11
The field of big data is generally concerned with the scale of processing at which traditional computational paradigms break down. In medical imaging, traditional large scale processing uses a cluster computer that combines a group of workstation nodes into a functional unit that is controlled by a job scheduler. Typically, a shared-storage network file system (NFS) is used to host imaging data. However, data transfer from storage to processing nodes can saturate network bandwidth when data is frequently uploaded/retrieved from the NFS, e.g., "short" processing times and/or "large" datasets. Recently, an alternative approach using Hadoop and HBase was presented for medical imaging to enable co-location of data storage and computation while minimizing data transfer. The benefits of using such a framework must be formally evaluated against a traditional approach to characterize the point at which simply "large scale" processing transitions into "big data" and necessitates alternative computational frameworks. The proposed Hadoop system was implemented on a production lab-cluster alongside a standard Sun Grid Engine (SGE). Theoretical models for wall-clock time and resource time for both approaches are introduced and validated. To provide real example data, three T1 image archives were retrieved from a university secure, shared web database and used to empirically assess computational performance under three configurations of cluster hardware (using 72, 109, or 209 CPU cores) with differing job lengths. Empirical results match the theoretical models. Based on these data, a comparative analysis is presented for when the Hadoop framework will be relevant and non-relevant for medical imaging.
NASA Astrophysics Data System (ADS)
Bao, Shunxing; Weitendorf, Frederick D.; Plassard, Andrew J.; Huo, Yuankai; Gokhale, Aniruddha; Landman, Bennett A.
2017-03-01
The field of big data is generally concerned with the scale of processing at which traditional computational paradigms break down. In medical imaging, traditional large scale processing uses a cluster computer that combines a group of workstation nodes into a functional unit that is controlled by a job scheduler. Typically, a shared-storage network file system (NFS) is used to host imaging data. However, data transfer from storage to processing nodes can saturate network bandwidth when data is frequently uploaded/retrieved from the NFS, e.g., "short" processing times and/or "large" datasets. Recently, an alternative approach using Hadoop and HBase was presented for medical imaging to enable co-location of data storage and computation while minimizing data transfer. The benefits of using such a framework must be formally evaluated against a traditional approach to characterize the point at which simply "large scale" processing transitions into "big data" and necessitates alternative computational frameworks. The proposed Hadoop system was implemented on a production lab-cluster alongside a standard Sun Grid Engine (SGE). Theoretical models for wall-clock time and resource time for both approaches are introduced and validated. To provide real example data, three T1 image archives were retrieved from a university secure, shared web database and used to empirically assess computational performance under three configurations of cluster hardware (using 72, 109, or 209 CPU cores) with differing job lengths. Empirical results match the theoretical models. Based on these data, a comparative analysis is presented for when the Hadoop framework will be relevant and nonrelevant for medical imaging.
Combustion and Carbon Cycle 2.0 and Computation in CC 2.0 (Carbon Cycle 2.0)
Cheng, Robert K.; Meza, Juan
2018-05-04
Robert Cheng and Juan Meza provide two presentations in one session at the Carbon Cycle 2.0 kick-off symposium Feb. 3, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.
STS-105 Crew Training in VR Lab
2001-03-15
JSC2001-00748 (15 March 2001) --- Astronaut Patrick G. Forrester, STS-105 mission specialist, prepares to use specialized gear in the virtual reality lab at the Johnson Space Center (JSC) to train for his duties aboard the Space Shuttle Discovery. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the International Space Station (ISS) hardware with which they will be working.
STS-131 crew during VR Lab MSS/EVAB SUPT3 Team 91016 training
2009-09-25
JSC2009-E-214346 (25 Sept. 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki, STS-131 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of her duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.
STS-131 crew during VR Lab MSS/EVAB SUPT3 Team 91016 training
2009-09-25
JSC2009-E-214328 (25 Sept. 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki, STS-131 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of her duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.
STS-134 crew in Virtual Reality Lab during their MSS/EVAA SUPT2 Team training
2010-08-27
JSC2010-E-121049 (27 Aug. 2010) --- NASA astronaut Andrew Feustel (foreground), STS-134 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of his duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements. Photo credit: NASA or National Aeronautics and Space Administration