NASA Astrophysics Data System (ADS)
Lee, Ahlam
2011-12-01
Using the Educational Longitudinal Study of 2002/06, this study examined the effects of the selected mathematical learning and teacher motivation factors on graduates' science, technology, engineering, and math (STEM) related major choices in 4-year colleges and universities, as mediated by math performance and math self-efficacy. Using multilevel structural equation modeling, I analyzed: (1) the association between mathematical learning instruction factors (i.e., computer, individual, and lecture-based learning activities in mathematics) and students' STEM major choices in 4-year colleges and universities as mediated by math performance and math self-efficacy and (2) the association between school factor, teacher motivation and students' STEM major choices in 4-year colleges and universities via mediators of math performance and math self-efficacy. The results revealed that among the selected learning experience factors, computer-based learning activities in math classrooms yielded the most positive effects on math self-efficacy, which significantly predicted the increase in the proportion of students' STEM major choice as mediated by math self-efficacy. Further, when controlling for base-year math Item Response Theory (IRT) scores, a positive relationship between individual-based learning activities in math classrooms and the first follow-up math IRT scores emerged, which related to the high proportion of students' STEM major choices. The results also indicated that individual and lecture-based learning activities in math yielded positive effects on math self-efficacy, which related to STEM major choice. Concerning between-school levels, teacher motivation yielded positive effects on the first follow up math IRT score, when controlling for base year IRT score. The results from this study inform educators, parents, and policy makers on how mathematics instruction can improve student math performance and encourage more students to prepare for STEM careers. Students should receive all possible opportunities to use computers to enhance their math self-efficacy, be encouraged to review math materials, and concentrate on listening to math teachers' lectures. While all selected math-learning activities should be embraced in math instruction, computer and individual-based learning activities, which reflect student-driven learning, should be emphasized in the high school instruction. Likewise, students should be encouraged to frequently engage in individual-based learning activities to improve their math performance.
Combinatorial Reliability and Repair
1992-07-01
Press, Oxford, 1987. [2] G. Gordon and L. Traldi, Generalized activities and the Tutte polynomial, Discrete Math . 85 (1990), 167-176. [3] A. B. Huseby, A...Chromatic polynomials and network reliability, Discrete Math . 67 (1987), 57-79. [7] A. Satayanarayana and R. K. Wood, A linear-time algorithm for comput- ing...K-terminal reliability in series-parallel networks, SIAM J. Comput. 14 (1985), 818-832. [8] L. Traldi, Generalized activities and K-terminal reliability, Discrete Math . 96 (1991), 131-149. 4
ERIC Educational Resources Information Center
Brown, Joan Marie
1996-01-01
Describes a multimedia math activity for sixth-grade students who have access to a computer lab. Students work in groups and interview an adult who uses math in his or her job. Then, they write an explanatory narrative describing how that adult uses math. Finally, they create a KidPix video slideshow with voice overlays to share with the class.…
Math is Functional! A Math Fair for Kids.
ERIC Educational Resources Information Center
Reys, Barbara J.; Wasman, Deanna G.
1998-01-01
Describes a mathematics fair prepared by the University of Missouri Mathematics Teachers Organization (UM2TO) which includes games involving numbers and computation, logic puzzles, geometry and spatial-visualization exploration, and probability and statistics activities. Presents tips for developing a mathematics fair. (ASK)
Scratch Your Brain Where It Itches: Math Games, Tricks and Quick Activities, Book C-1.
ERIC Educational Resources Information Center
Brumbaugh, Doug
This resource book contains mathematical games, tricks, and quick activities for the classroom. Categories of activities include computation, manipulative challenges, puzzlers, picky puzzlers, patterns, measurement, money, and riddles. The computation section contains 13 classroom games and activities along with 4 manipulative challenges.…
ERIC Educational Resources Information Center
1997
Astro Algebra is one of six titles in the Mighty Math Series from Edmark, a comprehensive line of math software for students from kindergarten through ninth grade. Many of the activities in Astro Algebra contain a unique technology that uses the computer to help students make the connection between concrete and abstract mathematics. This software…
Using Computer Simulations to Integrate Learning.
ERIC Educational Resources Information Center
Liao, Thomas T.
1983-01-01
Describes the primary design criteria and the classroom activities involved in "The Yellow Light Problem," a minicourse on decision making in the secondary school Mathematics, Engineering and Science Achievement (MESA) program in California. Activities include lectures, discussions, science and math labs, computer labs, and development…
Tai chi/yoga effects on anxiety, heartrate, EEG and math computations.
Field, Tiffany; Diego, Miguel; Hernandez-Reif, Maria
2010-11-01
To determine the immediate effects of a combined form of Tai chi/yoga. 38 adults participated in a 20-min Tai chi/yoga class. The session was comprised of standing Tai chi movements, balancing poses and a short Tai chi form and 10 min of standing, sitting and lying down yoga poses. The pre- and post- Tai chi/yoga effects were assessed using the State Anxiety Inventory (STAI), EKG, EEG and math computations. Heartrate increased during the session, as would be expected for this moderate-intensity exercise. Changes from pre to post-session assessments suggested increased relaxation including decreased anxiety and a trend for increased EEG theta activity. The increased relaxation may have contributed to the increased speed and accuracy noted on math computations following the Tai chi/yoga class. Copyright © 2010 Elsevier Ltd. All rights reserved.
Tai Chi/ Yoga Effects on Anxiety, Heartrate, EEG and Math Computations
Field, Tiffany; Diego, Miguel; Hernandez-Reif, Maria
2010-01-01
Objective To determine the immediate effects of a combined form of tai chi/yoga. Design 38 adults participated in a 20-minute tai chi/yoga class. The session was comprised of standing tai chi movements, balancing poses and a short tai chi form and 10 minutes of standing, sitting and lying down yoga poses. Main outcome measures The pre- and post- tai chi/ yoga effects were assessed using the State Anxiety Inventory (STAI), EKG, EEG and math computations. Results Heartrate increased during the session, as would be expected for this moderate intensity exercise. Changes from pre to post session assessments suggested increased relaxation including decreased anxiety and a trend for increased EEG theta activity. Conclusions The increased relaxation may have contributed to the increased speed and accuracy noted on math computations following the tai chi/yoga class. PMID:20920810
Math Activities Using LogoWriter--Investigations.
ERIC Educational Resources Information Center
Flewelling, Gary
This book is one in a series of teacher resource books developed to: (1) rescue students from the clutches of computers that drill and control; and (2) supply teachers with computer activities compatible with a mathematics program that emphasizes investigation, problem solving, creativity, and hypothesis making and testing. This is not a book…
Computer Science | Classification | College of Engineering & Applied
EMS 1011 profile photo Adrian Dumitrescu, Ph.D.ProfessorComputer Science(414) 229-4265Eng & Math @uwm.eduEng & Math Sciences 919 profile photo Hossein Hosseini, Ph.D.ProfessorComputer Science(414) 229 -5184hosseini@uwm.eduEng & Math Sciences 1091 profile photo Amol Mali, Ph.D.Associate ProfessorComputer
Comparing computer adaptive and curriculum-based measures of math in progress monitoring.
Shapiro, Edward S; Dennis, Minyi Shih; Fu, Qiong
2015-12-01
The purpose of the study was to compare the use of a Computer Adaptive Test and Curriculum-Based Measurement in the assessment of mathematics. This study also investigated the degree to which slope or rate of change predicted student outcomes on the annual state assessment of mathematics above and beyond scores of single point screening assessments (i.e., the computer adaptive test or the CBM assessment just before the administration of the state assessment). Repeated measurement of mathematics once per month across a 7-month period using a Computer Adaptive Test (STAR-Math) and Curriculum-Based Measurement (CBM, AIMSweb Math Computation, AIMSweb Math Concepts/Applications) was collected for a maximum total of 250 third, fourth, and fifth grade students. Results showed STAR-Math in all 3 grades and AIMSweb Math Concepts/Applications in the third and fifth grades had primarily linear growth patterns in mathematics. AIMSweb Math Computation in all grades and AIMSweb Math Concepts/Applications in Grade 4 had decelerating positive trends. Predictive validity evidence showed the strongest relationships were between STAR-Math and outcomes for third and fourth grade students. The blockwise multiple regression by grade revealed that slopes accounted for only a very small proportion of additional variance above and beyond what was explained by the scores obtained on a single point of assessment just prior to the administration of the state assessment. (c) 2015 APA, all rights reserved).
Scratch Your Brain Where It Itches: Math Games, Tricks and Quick Activities, Book A-1.
ERIC Educational Resources Information Center
Brumbaugh, Linda
This resource book contains mathematical games, tricks, and quick activities for the classroom. Categories include place value, number lines, basic facts and computation, computation and calculator practice, puzzles for tricky thinkers, and geometry. Ten classroom games and activities are found in the place value and number line sections, 27…
ERIC Educational Resources Information Center
Pittsburg Unified School District, CA.
The card games in this publication are an alternative activity to help students master computational skills. Games for operations with whole numbers, fractions, decimals, percents, integers, and square roots are included. They can be used to introduce math topics and for practice and review, with either the whole class or in small groups with 2 to…
Math Activities Using LogoWriter--Patterns and Designs.
ERIC Educational Resources Information Center
Flewelling, Gary
This book is one in a series of teacher resource books developed to: (1) rescue students from the clutches of computers that drill and control; and (2) supply teachers with computer activities compatible with a mathematics program that emphasizes investigation, problem solving, creativity, and hypothesis making and testing. This is not a book…
Math Activities Using LogoWriter--Numbers & Operations.
ERIC Educational Resources Information Center
Flewelling, Gary
This book is one in a series of teacher resource books developed to: (1) rescue students from the clutches of computers that drill and control; and (2) supply teachers with computer activities compatible with a mathematics program that emphasizes investigation, problem solving, creativity, and hypothesis making and testing. This is not a book…
A Case Study of Computer Gaming for Math: Engaged Learning from Gameplay?
ERIC Educational Resources Information Center
Ke, Fengfeng
2008-01-01
Employing mixed-method approach, this case study examined the in situ use of educational computer games in a summer math program to facilitate 4th and 5th graders' cognitive math achievement, metacognitive awareness, and positive attitudes toward math learning. The results indicated that students developed more positive attitudes toward math…
Using Computer-Assisted Instruction to Build Math Fact Fluency: An Implementation Guide
ERIC Educational Resources Information Center
Hawkins, Renee O.; Collins, Tai; Hernan, Colleen; Flowers, Emily
2017-01-01
Research findings support the use of computer-assisted instruction (CAI) as a curriculum supplement for improving math skills, including math fact fluency. There are a number of websites and mobile applications (i.e., apps) designed to build students' math fact fluency, but the options can become overwhelming. This article provides implementation…
ERIC Educational Resources Information Center
Learning, 1992
1992-01-01
Provides on-task activities to fill in unexpected extra moments in elementary classes. The activities require little preparation and take 5-15 minutes to complete. There are activities for math, language arts, social science, science, critical thinking, and computer. An outer space board game is also included. (SM)
Sturm, Alexandra; Rozenman, Michelle; Piacentini, John C; McGough, James J; Loo, Sandra K; McCracken, James T
2018-03-20
Predictors of math achievement in attention-deficit/hyperactivity disorder (ADHD) are not well-known. To address this gap in the literature, we examined individual differences in neurocognitive functioning domains on math computation in a cross-sectional sample of youth with ADHD. Gender and anxiety symptoms were explored as potential moderators. The sample consisted of 281 youth (aged 8-15 years) diagnosed with ADHD. Neurocognitive tasks assessed auditory-verbal working memory, visuospatial working memory, and processing speed. Auditory-verbal working memory speed significantly predicted math computation. A three-way interaction revealed that at low levels of anxious perfectionism, slower processing speed predicted poorer math computation for boys compared to girls. These findings indicate the uniquely predictive values of auditory-verbal working memory and processing speed on math computation, and their differential moderation. These findings provide preliminary support that gender and anxious perfectionism may influence the relationship between neurocognitive functioning and academic achievement.
NASA Technical Reports Server (NTRS)
Lawson, Charles L.; Krogh, Fred; Van Snyder, W.; Oken, Carol A.; Mccreary, Faith A.; Lieske, Jay H.; Perrine, Jack; Coffin, Ralph S.; Wayne, Warren J.
1994-01-01
MATH77 is high-quality library of ANSI FORTRAN 77 subprograms implementing contemporary algorithms for basic computational processes of science and engineering. Release 4.0 of MATH77 contains 454 user-callable and 136 lower-level subprograms. MATH77 release 4.0 subroutine library designed to be usable on any computer system supporting full ANSI standard FORTRAN 77 language.
1990-06-01
The objective of this thesis research is to create a tutorial for teaching aspects of undirected graphs in discrete math . It is one of the submodules...of the Discrete Math Tutorial (DMT), which is a Computer Aided Instructional (CAI) tool for teaching discrete math to the Naval Academy and the
1990-06-01
The objective of this thesis research is to create a tutorial for teaching aspects of undirected graphs in discrete math . It is one of the submodules...of the Discrete Math Tutorial (DMT), which is a Computer Aided Instructional (CAI) tool for teaching discrete math to the Naval Academy and the
MATH77 - A LIBRARY OF MATHEMATICAL SUBPROGRAMS FOR FORTRAN 77, RELEASE 4.0
NASA Technical Reports Server (NTRS)
Lawson, C. L.
1994-01-01
MATH77 is a high quality library of ANSI FORTRAN 77 subprograms implementing contemporary algorithms for the basic computational processes of science and engineering. The portability of MATH77 meets the needs of present-day scientists and engineers who typically use a variety of computing environments. Release 4.0 of MATH77 contains 454 user-callable and 136 lower-level subprograms. Usage of the user-callable subprograms is described in 69 sections of the 416 page users' manual. The topics covered by MATH77 are indicated by the following list of chapter titles in the users' manual: Mathematical Functions, Pseudo-random Number Generation, Linear Systems of Equations and Linear Least Squares, Matrix Eigenvalues and Eigenvectors, Matrix Vector Utilities, Nonlinear Equation Solving, Curve Fitting, Table Look-Up and Interpolation, Definite Integrals (Quadrature), Ordinary Differential Equations, Minimization, Polynomial Rootfinding, Finite Fourier Transforms, Special Arithmetic , Sorting, Library Utilities, Character-based Graphics, and Statistics. Besides subprograms that are adaptations of public domain software, MATH77 contains a number of unique packages developed by the authors of MATH77. Instances of the latter type include (1) adaptive quadrature, allowing for exceptional generality in multidimensional cases, (2) the ordinary differential equations solver used in spacecraft trajectory computation for JPL missions, (3) univariate and multivariate table look-up and interpolation, allowing for "ragged" tables, and providing error estimates, and (4) univariate and multivariate derivative-propagation arithmetic. MATH77 release 4.0 is a subroutine library which has been carefully designed to be usable on any computer system that supports the full ANSI standard FORTRAN 77 language. It has been successfully implemented on a CRAY Y/MP computer running UNICOS, a UNISYS 1100 computer running EXEC 8, a DEC VAX series computer running VMS, a Sun4 series computer running SunOS, a Hewlett-Packard 720 computer running HP-UX, a Macintosh computer running MacOS, and an IBM PC compatible computer running MS-DOS. Accompanying the library is a set of 196 "demo" drivers that exercise all of the user-callable subprograms. The FORTRAN source code for MATH77 comprises 109K lines of code in 375 files with a total size of 4.5Mb. The demo drivers comprise 11K lines of code and 418K. Forty-four percent of the lines of the library code and 29% of those in the demo code are comment lines. The standard distribution medium for MATH77 is a .25 inch streaming magnetic tape cartridge in UNIX tar format. It is also available on a 9track 1600 BPI magnetic tape in VAX BACKUP format and a TK50 tape cartridge in VAX BACKUP format. An electronic copy of the documentation is included on the distribution media. Previous releases of MATH77 have been used over a number of years in a variety of JPL applications. MATH77 Release 4.0 was completed in 1992. MATH77 is a copyrighted work with all copyright vested in NASA.
Hofstadter-Duke, Kristi L; Daly, Edward J
2015-03-01
This study investigated a method for conducting experimental analyses of academic responding. In the experimental analyses, academic responding (math computation), rather than problem behavior, was reinforced across conditions. Two separate experimental analyses (one with fluent math computation problems and one with non-fluent math computation problems) were conducted with three elementary school children using identical contingencies while math computation rate was measured. Results indicate that the experimental analysis with non-fluent problems produced undifferentiated responding across participants; however, differentiated responding was achieved for all participants in the experimental analysis with fluent problems. A subsequent comparison of the single-most effective condition from the experimental analyses replicated the findings with novel computation problems. Results are discussed in terms of the critical role of stimulus control in identifying controlling consequences for academic deficits, and recommendations for future research refining and extending experimental analysis to academic responding are made. © The Author(s) 2014.
ERIC Educational Resources Information Center
Ellingsen, Ryleigh; Clinton, Elias
2017-01-01
This manuscript reviews the empirical literature of the TouchMath© instructional program. The TouchMath© program is a commercial mathematics series that uses a dot notation system to provide multisensory instruction of computation skills. Using the program, students are taught to solve computational tasks in a multisensory manner that does not…
Alternative Goal Structures for Computer Game-Based Learning
ERIC Educational Resources Information Center
Ke, Fengfeng
2008-01-01
This field study investigated the application of cooperative, competitive, and individualistic goal structures in classroom use of computer math games and its impact on students' math performance and math learning attitudes. One hundred and sixty 5th-grade students were recruited and randomly assigned to Teams-Games-Tournament cooperative gaming,…
ERIC Educational Resources Information Center
Zaidel, Lisa Brusman
1991-01-01
Presents suggestions to help elementary teachers organize learning centers and activities around the themes of Peter Rabbit (Grade 1), weather (Grade 3), and bees (Grade 5). Suggestions are given for activities in centers for listening/reading, language arts, computers, math, science, cooperative learning, research, and writing. (SM)
Activity Book. Celebrate Apollo 11.
ERIC Educational Resources Information Center
Barchert, Linda; And Others
1994-01-01
An activity book helps students learn about the 1969 Apollo 11 mission to the moon as they get a sense of the mission's impact on their lives. The activities enhance understanding of science, math, social studies, and language arts. A teacher's page offers information on books, magazines, computer materials, and special resources. (SM)
ERIC Educational Resources Information Center
Jansen, Brenda R. J.; Louwerse, Jolien; Straatemeier, Marthe; Van der Ven, Sanne H. G.; Klinkenberg, Sharon; Van der Maas, Han L. J.
2013-01-01
It was investigated whether children would experience less math anxiety and feel more competent when they, independent of ability level, experienced high success rates in math. Comparable success rates were achieved by adapting problem difficulty to individuals' ability levels with a computer-adaptive program. A total of 207 children (grades 3-6)…
ERIC Educational Resources Information Center
Gardenhire, Alissa; Diamond, John; Headlam, Camielle; Weiss, Michael J.
2016-01-01
Community colleges nationwide are looking for solutions to help students complete developmental (remedial) math--a known barrier to graduation. Some are offering computer-assisted, modular developmental math courses that allow students to earn credits incrementally and move through the curriculum at their own pace. One of these modularized…
Computer Courseware Evaluations, June 1985 to March 1986.
ERIC Educational Resources Information Center
Alberta Dept. of Education, Edmonton. Curriculum Branch.
The fifth in a series, this report reviews Apple microcomputer courseware--and some IBM computer courseware--authorized by Alberta Education from June 1985 to March 1986. It provides detailed evaluations of 97 authorized programs in business education (11), business education/math (1), computer literacy (4), computer literacy/math/problem solving…
Using an Intelligent Tutor and Math Fluency Training to Improve Math Performance
ERIC Educational Resources Information Center
Arroyo, Ivon; Royer, James M.; Woolf, Beverly P.
2011-01-01
This article integrates research in intelligent tutors with psychology studies of memory and math fluency (the speed to retrieve or calculate answers to basic math operations). It describes the impact of computer software designed to improve either strategic behavior or math fluency. Both competencies are key to improved performance and both…
ERIC Educational Resources Information Center
Erturan, Selin; Jansen, Brenda
2015-01-01
Gender differences in children's emotional experience of math, their math performance, and the relation between these variables were investigated in two studies. In Study 1, test anxiety, math anxiety, and math performance (whole-number computation) were measured in 134 children in grades 3-8 (ages 7-15 years). In Study 2, perceived math…
Long-term Stable Conservative Multiscale Methods for Vortex Flows
2017-10-31
Computational and Applied Mathematics and Engeneering, Eccomas 2016 (Crete, June, 2016) - M. A. Olshanskii, Scientific computing seminar of Math ...UMass Dartmouth (October 2015) - L. Rebholz, Applied Math Seminar Talk, University of Alberta (October 2015) - L. Rebholz, Colloquium Talk, Scientific...Colloquium, (November 2016) - L. Rebholz, Joint Math Meetings 2017, Special session on recent advances in numerical analysis of PDEs, Atlanta GA
Self-Concept of Computer and Math Ability: Gender Implications across Time and within ICT Studies
ERIC Educational Resources Information Center
Sainz, Milagros; Eccles, Jacquelynne
2012-01-01
The scarcity of women in ICT-related studies has been systematically reported by the scientific community for many years. This paper has three goals: to analyze gender differences in self-concept of computer and math abilities along with math performance in two consecutive academic years; to study the ontogeny of gender differences in self-concept…
ERIC Educational Resources Information Center
Zhang, Meilan; Trussell, Robert P.; Gallegos, Benjamin; Asam, Rasmiyeh R.
2015-01-01
Recent years have seen a quick expansion of tablet computers in households and schools. One of the educational affordances of tablet computers is using math apps to engage students in mathematics learning. However, given the short history of the mobile devices, little research exists on the effectiveness of math apps, particularly for struggling…
Using the Intel Math Kernel Library on Peregrine | High-Performance
Computing | NREL the Intel Math Kernel Library on Peregrine Using the Intel Math Kernel Library on Peregrine Learn how to use the Intel Math Kernel Library (MKL) with Peregrine system software. MKL architectures. Core math functions in MKL include BLAS, LAPACK, ScaLAPACK, sparse solvers, fast Fourier
Mathematics skills in good readers with hydrocephalus.
Barnes, Marcia A; Pengelly, Sarah; Dennis, Maureen; Wilkinson, Margaret; Rogers, Tracey; Faulkner, Heather
2002-01-01
Children with hydrocephalus have poor math skills. We investigated the nature of their arithmetic computation errors by comparing written subtraction errors in good readers with hydrocephalus, typically developing good readers of the same age, and younger children matched for math level to the children with hydrocephalus. Children with hydrocephalus made more procedural errors (although not more fact retrieval or visual-spatial errors) than age-matched controls; they made the same number of procedural errors as younger, math-level matched children. We also investigated a broad range of math abilities, and found that children with hydrocephalus performed more poorly than age-matched controls on tests of geometry and applied math skills such as estimation and problem solving. Computation deficits in children with hydrocephalus reflect delayed development of procedural knowledge. Problems in specific math domains such as geometry and applied math, were associated with deficits in constituent cognitive skills such as visual spatial competence, memory, and general knowledge.
Mathematics anxiety: separating the math from the anxiety.
Lyons, Ian M; Beilock, Sian L
2012-09-01
Anxiety about math is tied to low math grades and standardized test scores, yet not all math-anxious individuals perform equally poorly in math. We used functional magnetic resonance imaging to separate neural activity during the anticipation of doing math from activity during math performance itself. For higher (but not lower) math-anxious individuals, increased activity in frontoparietal regions when simply anticipating doing math mitigated math-specific performance deficits. This network included bilateral inferior frontal junction, a region involved in cognitive control and reappraisal of negative emotional responses. Furthermore, the relation between frontoparietal anticipatory activity and highly math-anxious individuals' math deficits was fully mediated (or accounted for) by activity in caudate, nucleus accumbens, and hippocampus during math performance. These subcortical regions are important for coordinating task demands and motivational factors during skill execution. Individual differences in how math-anxious individuals recruit cognitive control resources prior to doing math and motivational resources during math performance predict the extent of their math deficits. This work suggests that educational interventions emphasizing control of negative emotional responses to math stimuli (rather than merely additional math training) will be most effective in revealing a population of mathematically competent individuals, who might otherwise go undiscovered.
Compact Information Representations
2016-08-02
applied computer science, and applied math . Within the scope of this proposal, the focus is preliminarily on the fundamental, theoretical research...Science & Technology • Tung-Lung Wu, now Assistant Professor, Dept. of Math and Stat, Mississippi State Univ 2 Papers In this section, we list the papers...computer science, and applied math . Within the scope of this proposal, the focus is preliminarily on the fundamental, theoretical research which lies in
Destination Math. What Works Clearinghouse Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2009
2009-01-01
"Destination Math" is a series of computer-based curricula designed to be used for at least 90 minutes a week. Featuring sequenced, prescriptive, step-by-step instruction, "Destination Math" is designed for the development of fluency in critical skills, math reasoning, conceptual understanding, and problem-solving skills.…
Parallel and Distributed Computing Combinatorial Algorithms
1993-10-01
Discrete Math , 1991. In press. [551 L. Finkelstein, D. Kleitman, and T. Leighton. Applying the classification theorem for finite simple groups to minimize...Mathematics (in press). [741 L. Heath, T. Leighton, and A. Rosenberg. Comparing queue and stack layouts. SIAM J Discrete Math , 5(3):398-412, August 1992...line can meet only a few. DIMA CS Series in Discrete Math and Theoretical Computer Science, 9, 1993. Publications, Presentations and Theses Supported
Preliminary Success and Retention Rates in Selected Math Courses. Research Report.
ERIC Educational Resources Information Center
Cuesta Coll., San Luis Obispo, CA. Matriculation and Research Services.
This report presents findings of exploratory research on success, retention, and persistence in math courses at Cuesta College. The following research questions were addressed: (1) How do success rates in Math 23 (elementary algebra) and Math 27 (intermediate algebra) compare with traditional and computer-assisted formats? (2) What are the…
1984-06-01
A.Arays, G.V.Sibiriskov. The AVTO -ANALTZE J. Comput. Math. and Mth. Phys., v. 11, N.4, Progrn eg System. J. Comput. Math. and Cinpur. 1971, pp. 1071...1075. Mach., No.3, Kharkov, 1972. 2. S.A.Abhrmov. On Sam Algorithms for Algebraic 13. Z.A.Arays, C.V.Sibiriakov. AVTO -AALM.K. Novo- Transformstions of
Singapore Math: Place Value, Computation & Number Sense. [CD-ROM
ERIC Educational Resources Information Center
Chen, Sandra
2008-01-01
"Singapore Math: Place Value, Computation & Number Sense" is a six-part presentation on CD-ROM that can be used by individual teachers or an entire school. The author takes primary to upper elementary grade teachers through place value skills with each of the computational operations: addition, subtraction, multiplication, and division. She gives…
NASA Technical Reports Server (NTRS)
1994-01-01
MathSoft Plus 5.0 is a calculation software package for electrical engineers and computer scientists who need advanced math functionality. It incorporates SmartMath, an expert system that determines a strategy for solving difficult mathematical problems. SmartMath was the result of the integration into Mathcad of CLIPS, a NASA-developed shell for creating expert systems. By using CLIPS, MathSoft, Inc. was able to save the time and money involved in writing the original program.
NASA Astrophysics Data System (ADS)
Mann, Christopher; Narasimhamurthi, Natarajan
1998-08-01
This paper discusses a specific implementation of a web and complement based simulation systems. The overall simulation container is implemented within a web page viewed with Microsoft's Internet Explorer 4.0 web browser. Microsoft's ActiveX/Distributed Component Object Model object interfaces are used in conjunction with the Microsoft DirectX graphics APIs to provide visualization functionality for the simulation. The MathWorks' Matlab computer aided control system design program is used as an ActiveX automation server to provide the compute engine for the simulations.
Beginning School Math Competence: Minority and Majority Comparisons. Report No. 34.
ERIC Educational Resources Information Center
Entwisle, Doris R.; Alexander, Karl L.
This paper uses a structural model with a large random sample of urban children to explain children's competence in math concepts and computation at the time they begin first grade. These two aspects of math ability respond differently to environmental resources, with math concepts much more responsive to family factors before formal schooling…
SSMILes: Investigating Various Volcanic Eruptions and Volcano Heights.
ERIC Educational Resources Information Center
Wagner-Pine, Linda; Keith, Donna Graham
1994-01-01
Presents an integrated math/science activity that shows students the differences among the three types of volcanoes using observation, classification, graphing, sorting, problem solving, measurement, averages, pattern relationships, calculators, computers, and research skills. Includes reproducible student worksheet. Lists 13 teacher resources.…
ERIC Educational Resources Information Center
Burns, Matthew K.; Ysseldyke, Jim; Nelson, Peter M.; Kanive, Rebecca
2015-01-01
Computational fluency is an important aspect of math proficiency. Despite widely held beliefs about the differential difficulty of single-digit multiplication math facts, little empirical work has examined this issue. The current study analyzed the number of repetitions needed to master multiplication math facts. Data from 15,402 3rd, 4th, and 5th…
Math anxiety differentially affects WAIS-IV arithmetic performance in undergraduates.
Buelow, Melissa T; Frakey, Laura L
2013-06-01
Previous research has shown that math anxiety can influence the math performance level; however, to date, it is unknown whether math anxiety influences performance on working memory tasks during neuropsychological evaluation. In the present study, 172 undergraduate students completed measures of math achievement (the Math Computation subtest from the Wide Range Achievement Test-IV), math anxiety (the Math Anxiety Rating Scale-Revised), general test anxiety (from the Adult Manifest Anxiety Scale-College version), and the three Working Memory Index tasks from the Wechsler Adult Intelligence Scale-IV Edition (WAIS-IV; Digit Span [DS], Arithmetic, Letter-Number Sequencing [LNS]). Results indicated that math anxiety predicted performance on Arithmetic, but not DS or LNS, above and beyond the effects of gender, general test anxiety, and math performance level. Our findings suggest that math anxiety can negatively influence WAIS-IV working memory subtest scores. Implications for clinical practice include the utilization of LNS in individuals expressing high math anxiety.
Computer Ratio and Student Achievement in Reading and Math in a North Carolina School District
ERIC Educational Resources Information Center
Preswood, Erica
2017-01-01
This longitudinal research project explored the relationship between a 1:1 computing initiative and student achievement on the North Carolina End of Grade Reading Comprehension and Math tests in the study school district. The purpose of this research study was to determine if the implementation of a 1:1 computing initiative impacted student…
A Pilot Study of a Self-Voicing Computer Program for Prealgebra Math Problems
ERIC Educational Resources Information Center
Beal, Carole R.; Rosenblum, L. Penny; Smith, Derrick W.
2011-01-01
Fourteen students with visual impairments in Grades 5-12 participated in the field-testing of AnimalWatch-VI-Beta. This computer program delivered 12 prealgebra math problems and hints through a self-voicing audio feature. The students provided feedback about how the computer program can be improved and expanded to make it accessible to all users.…
When math hurts: math anxiety predicts pain network activation in anticipation of doing math.
Lyons, Ian M; Beilock, Sian L
2012-01-01
Math can be difficult, and for those with high levels of mathematics-anxiety (HMAs), math is associated with tension, apprehension, and fear. But what underlies the feelings of dread effected by math anxiety? Are HMAs' feelings about math merely psychological epiphenomena, or is their anxiety grounded in simulation of a concrete, visceral sensation - such as pain - about which they have every right to feel anxious? We show that, when anticipating an upcoming math-task, the higher one's math anxiety, the more one increases activity in regions associated with visceral threat detection, and often the experience of pain itself (bilateral dorso-posterior insula). Interestingly, this relation was not seen during math performance, suggesting that it is not that math itself hurts; rather, the anticipation of math is painful. Our data suggest that pain network activation underlies the intuition that simply anticipating a dreaded event can feel painful. These results may also provide a potential neural mechanism to explain why HMAs tend to avoid math and math-related situations, which in turn can bias HMAs away from taking math classes or even entire math-related career paths.
Programming experience promotes higher STEM motivation among first-grade girls.
Master, Allison; Cheryan, Sapna; Moscatelli, Adriana; Meltzoff, Andrew N
2017-08-01
The gender gap in science, technology, engineering, and math (STEM) engagement is large and persistent. This gap is significantly larger in technological fields such as computer science and engineering than in math and science. Gender gaps begin early; young girls report less interest and self-efficacy in technology compared with boys in elementary school. In the current study (N=96), we assessed 6-year-old children's stereotypes about STEM fields and tested an intervention to develop girls' STEM motivation despite these stereotypes. First-grade children held stereotypes that boys were better than girls at robotics and programming but did not hold these stereotypes about math and science. Girls with stronger stereotypes about robotics and programming reported lower interest and self-efficacy in these domains. We experimentally tested whether positive experience with programming robots would lead to greater interest and self-efficacy among girls despite these stereotypes. Children were randomly assigned either to a treatment group that was given experience in programming a robot using a smartphone or to control groups (no activity or other activity). Girls given programming experience reported higher technology interest and self-efficacy compared with girls without this experience and did not exhibit a significant gender gap relative to boys' interest and self-efficacy. These findings show that children's views mirror current American cultural messages about who excels at computer science and engineering and show the benefit of providing young girls with chances to experience technological activities. Copyright © 2017 Elsevier Inc. All rights reserved.
DoD Science and Engineering Apprenticeship Program for High-School Students
1995-06-01
Mu Alpha Theta for Computers, Calculus, Integral Calculus, and Precalculus ; 1994 Georgia Tech Distinguished Math Scholar; Captain of First Place...Computers. Calr.uIns. TntPg^i Painii»«. and Precalculus ; 1994 Georgia Tech Distinguished Math Scholar;.Captain of.First.Place Brain Bowl
2000-11-01
Discrete Math . 115, 141-152. [7] Edmonds J., Giles R. (1977) A Min-Max relation for submodular functions on graphs, Annals of Discrete Math . 1, 185...projective planes, handwritten man- uscript, published: (1990) Polyhedral Combinatorics (W. Cook, P.D. Seymour eds.), DIMACS Series in Discrete Math . and...Theoretical Computer Science 1, 101-105. [11] Lovasz L. (1972) Normal hypergraphs and the perfect graph conjecture, Discrete Math . 2, 253-267. [12
Errors in Multi-Digit Arithmetic and Behavioral Inattention in Children With Math Difficulties
Raghubar, Kimberly; Cirino, Paul; Barnes, Marcia; Ewing-Cobbs, Linda; Fletcher, Jack; Fuchs, Lynn
2009-01-01
Errors in written multi-digit computation were investigated in children with math difficulties. Third-and fourth-grade children (n = 291) with coexisting math and reading difficulties, math difficulties, reading difficulties, or no learning difficulties were compared. A second analysis compared those with severe math learning difficulties, low average achievement in math, and no learning difficulties. Math fact errors were related to the severity of the math difficulties, not to reading status. Contrary to predictions, children with poorer reading, regardless of math achievement, committed more visually based errors. Operation switch errors were not systematically related to group membership. Teacher ratings of behavioral inattention were related to accuracy, math fact errors, and procedural bugs. The findings are discussed with respect to hypotheses about the cognitive origins of arithmetic errors and in relation to current discussions about how to conceptualize math disabilities. PMID:19380494
Using Computer Symbolic Algebra to Solve Differential Equations.
ERIC Educational Resources Information Center
Mathews, John H.
1989-01-01
This article illustrates that mathematical theory can be incorporated into the process to solve differential equations by a computer algebra system, muMATH. After an introduction to functions of muMATH, several short programs for enhancing the capabilities of the system are discussed. Listed are six references. (YP)
IBM techexplorer and MathML: Interactive Multimodal Scientific Documents
NASA Astrophysics Data System (ADS)
Diaz, Angel
2001-06-01
The World Wide Web provides a standard publishing platform for disseminating scientific and technical articles, books, journals, courseware, or even homework on the internet; however, the transition from paper to web-based interactive content has brought new opportunities for creating interactive content. Students, scientists, and engineers are now faced with the task of rendering the 2D presentational structure of mathematics, harnessing the wealth of scientific and technical software, and creating truly accessible scientific portals across international boundaries and markets. The recent emergence of World Wide Web Consortium (W3C) standards such as the Mathematical Markup Language (MathML), Language (XSL), and Aural CSS (ACSS) provide a foundation whereby mathematics can be displayed, enlivened, computed, and audio formatted. With interoperability ensured by standards, software applications can be easily brought together to create extensible and interactive scientific content. In this presentation we will provide an overview of the IBM techexplorer Hypermedia Browser, a web browser plug-in and ActiveX control aimed at bringing interactive mathematics to the masses across platforms and applications. We will demonstrate "live" mathematics where documents that contain MathML expressions can be edited and computed right inside your favorite web browser. This demonstration will be generalized as we show how MathML can be used to enliven even PowerPoint presentations. Finally, we will close the loop by demonstrating a novel approach to spoken mathematics based on MathML, DOM, XSL, ACSS, techexplorer, and IBM ViaVoice. By making use of techexplorer as the glue that binds the rendered content to the web browser, the back-end computation software, the Java applets that augment the exposition, and voice-rendering systems such as ViaVoice, authors can indeed create truly extensible and interactive scientific content. For more information see: [http://www.software.ibm.com/techexplorer] [http://www.alphaworks.ibm.com] [http://www.w3.org
ERIC Educational Resources Information Center
Mac Iver, Douglas J.; Balfanz, Robert; Plank, Stephen B.
In Talent Development Middle Schools, students needing extra help in mathematics participate in the Computer- and Team-Assisted Mathematics Acceleration (CATAMA) course. CATAMA is an innovative combination of computer-assisted instruction and structured cooperative learning that students receive in addition to their regular math course for about…
Workplace Math II: Math Works!
ERIC Educational Resources Information Center
Wilson, Nancy; Goschen, Claire
This learning module, a continuation of the math I module, provides review and practice of the concepts explored in the earlier module at an intermediate level involving workplace problems. The following concepts are covered: instruction in performing basic computations, using general numerical concepts such as whole numbers, fractions, decimals,…
When Math Hurts: Math Anxiety Predicts Pain Network Activation in Anticipation of Doing Math
Lyons, Ian M.; Beilock, Sian L.
2012-01-01
Math can be difficult, and for those with high levels of mathematics-anxiety (HMAs), math is associated with tension, apprehension, and fear. But what underlies the feelings of dread effected by math anxiety? Are HMAs’ feelings about math merely psychological epiphenomena, or is their anxiety grounded in simulation of a concrete, visceral sensation – such as pain – about which they have every right to feel anxious? We show that, when anticipating an upcoming math-task, the higher one’s math anxiety, the more one increases activity in regions associated with visceral threat detection, and often the experience of pain itself (bilateral dorso-posterior insula). Interestingly, this relation was not seen during math performance, suggesting that it is not that math itself hurts; rather, the anticipation of math is painful. Our data suggest that pain network activation underlies the intuition that simply anticipating a dreaded event can feel painful. These results may also provide a potential neural mechanism to explain why HMAs tend to avoid math and math-related situations, which in turn can bias HMAs away from taking math classes or even entire math-related career paths. PMID:23118929
Integrating Reform-Oriented Math Instruction in Special Education Settings
ERIC Educational Resources Information Center
Bottge, Brian A.; Rueda, Enrique; LaRoque, Perry T.; Serlin, Ronald C.; Kwon, Jungmin
2007-01-01
This mixed-methods study assessed the effects of Enhanced Anchored Instruction (EAI) on the math performance of adolescents with learning disabilities in math (MLD). A quasi-experimental pretest-posttest control group design with switching replications was used to measure students' computation and problem-solving skills on EAI compared to control…
Feedback Design Patterns for Math Online Learning Systems
ERIC Educational Resources Information Center
Inventado, Paul Salvador; Scupelli, Peter; Heffernan, Cristina; Heffernan, Neil
2017-01-01
Increasingly, computer-based learning systems are used by educators to facilitate learning. Evaluations of several math learning systems show that they result in significant student learning improvements. Feedback provision is one of the key features in math learning systems that contribute to its success. We have recently been uncovering feedback…
Math and numeracy in young adults with spina bifida and hydrocephalus.
Dennis, Maureen; Barnes, Marcia
2002-01-01
The developmental stability of poor math skill was studied in 31 young adults with spina bifida and hydrocephalus (SBH), a neurodevelopmental disorder involving malformations of the brain and spinal cord. Longitudinally, individuals with poor math problem solving as children grew into adults with poor problem solving and limited functional numeracy. As a group, young adults with SBH had poor computation accuracy, computation speed, problem solving, a ndfunctional numeracy. Computation accuracy was related to a supporting cognitive system (working memory for numbers), and functional numeracy was related to one medical history variable (number of lifetime shunt revisions). Adult functional numeracy, but not functional literacy, was predictive of higher levels of social, personal, and community independence.
National Geographic Society Kids Network: Report on 1994 teacher participants
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
In 1994, National Geographic Society Kids Network, a computer/telecommunications-based science curriculum, was presented to elementary and middle school teachers through summer programs sponsored by NGS and US DOE. The network program assists teachers in understanding the process of doing science; understanding the role of computers and telecommunications in the study of science, math, and engineering; and utilizing computers and telecommunications appropriately in the classroom. The program enables teacher to integrate science, math, and technology with other subjects with the ultimate goal of encouraging students of all abilities to pursue careers in science/math/engineering. This report assesses the impact of the networkmore » program on participating teachers.« less
Neural correlates of math anxiety - an overview and implications.
Artemenko, Christina; Daroczy, Gabriella; Nuerk, Hans-Christoph
2015-01-01
Math anxiety is a common phenomenon which can have a negative impact on numerical and arithmetic performance. However, so far little is known about the underlying neurocognitive mechanisms. This mini review provides an overview of studies investigating the neural correlates of math anxiety which provide several hints regarding its influence on math performance: while behavioral studies mostly observe an influence of math anxiety on difficult math tasks, neurophysiological studies show that processing efficiency is already affected in basic number processing. Overall, the neurocognitive literature suggests that (i) math anxiety elicits emotion- and pain-related activation during and before math activities, (ii) that the negative emotional response to math anxiety impairs processing efficiency, and (iii) that math deficits triggered by math anxiety may be compensated for by modulating the cognitive control or emotional regulation network. However, activation differs strongly between studies, depending on tasks, paradigms, and samples. We conclude that neural correlates can help to understand and explore the processes underlying math anxiety, but the data are not very consistent yet.
Neural correlates of math anxiety – an overview and implications
Artemenko, Christina; Daroczy, Gabriella; Nuerk, Hans-Christoph
2015-01-01
Math anxiety is a common phenomenon which can have a negative impact on numerical and arithmetic performance. However, so far little is known about the underlying neurocognitive mechanisms. This mini review provides an overview of studies investigating the neural correlates of math anxiety which provide several hints regarding its influence on math performance: while behavioral studies mostly observe an influence of math anxiety on difficult math tasks, neurophysiological studies show that processing efficiency is already affected in basic number processing. Overall, the neurocognitive literature suggests that (i) math anxiety elicits emotion- and pain-related activation during and before math activities, (ii) that the negative emotional response to math anxiety impairs processing efficiency, and (iii) that math deficits triggered by math anxiety may be compensated for by modulating the cognitive control or emotional regulation network. However, activation differs strongly between studies, depending on tasks, paradigms, and samples. We conclude that neural correlates can help to understand and explore the processes underlying math anxiety, but the data are not very consistent yet. PMID:26388824
1990-03-01
Assmus, E. F., and J. D. Key, "Affine and projective planes", to appear in Discrete Math (Special Coding Theory Issue). 5. Assumus, E. F. and J. D...S. Locke, ’The subchromatic number of a graph", Discrete Math . 74 (1989)33-49. 24. Hedetniemi, S. T., and T. V. Wimer, "K-terminal recursive families...34Designs and geometries with Cayley", submitted to Journal of Symbolic Computation. 34. Key, J. D., "Regular sets in geometries", Annals of Discrete Math . 37
2012-03-22
with performance profiles, Math. Program., 91 (2002), pp. 201–213. [6] P. DRINEAS, R. KANNAN, AND M. W. MAHONEY , Fast Monte Carlo algorithms for matrices...computing invariant subspaces of non-Hermitian matri- ces, Numer. Math., 25 ( 1975 /76), pp. 123–136. [25] , Matrix algorithms Vol. II: Eigensystems
Use of MathCAD in a Pharmacokinetics Course for PharmD Students.
ERIC Educational Resources Information Center
Sullivan, Timothy J.
1992-01-01
This paper describes the application of the Student Edition of MathCAD as a computational aid in an introductory graduate level pharmacokinetics course. The program allows the student to perform mathematical calculations and analysis on a computer screen. The advantages and disadvantages of this application are discussed. (GLR)
Group Activities for Math Enthusiasts
ERIC Educational Resources Information Center
Holdener, J.; Milnikel, R.
2016-01-01
In this article we present three group activities designed for math students: a balloon-twisting workshop, a group proof of the irrationality of p, and a game of Math Bingo. These activities have been particularly successful in building enthusiasm for mathematics and camaraderie among math faculty and students at Kenyon College.
Bringing Computational Thinking into the High School Science and Math Classroom
NASA Astrophysics Data System (ADS)
Trouille, Laura; Beheshti, E.; Horn, M.; Jona, K.; Kalogera, V.; Weintrop, D.; Wilensky, U.; University CT-STEM Project, Northwestern; University CenterTalent Development, Northwestern
2013-01-01
Computational thinking (for example, the thought processes involved in developing algorithmic solutions to problems that can then be automated for computation) has revolutionized the way we do science. The Next Generation Science Standards require that teachers support their students’ development of computational thinking and computational modeling skills. As a result, there is a very high demand among teachers for quality materials. Astronomy provides an abundance of opportunities to support student development of computational thinking skills. Our group has taken advantage of this to create a series of astronomy-based computational thinking lesson plans for use in typical physics, astronomy, and math high school classrooms. This project is funded by the NSF Computing Education for the 21st Century grant and is jointly led by Northwestern University’s Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), the Computer Science department, the Learning Sciences department, and the Office of STEM Education Partnerships (OSEP). I will also briefly present the online ‘Astro Adventures’ courses for middle and high school students I have developed through NU’s Center for Talent Development. The online courses take advantage of many of the amazing online astronomy enrichment materials available to the public, including a range of hands-on activities and the ability to take images with the Global Telescope Network. The course culminates with an independent computational research project.
Putting the spark into physical science and algebra
NASA Astrophysics Data System (ADS)
Pill, Bruce; Dagenais, Andre
2007-06-01
The presenters will describe a number of laboratory activities developed in collaboration with the Department of Electrical Engineering at the University of Delaware as part of their outreach program to help make math and science more authentic on the pre-college level. Lessons relating to electrical topics are often abstract and appropriate only for advanced students in math and science. We have devised lessons that rely on simple equipment. They promote skills that are included in National and State Standards. They emphasize the connections between math and science; they are appropriate for an algebra course, a physical science course, a PhysicsFirst course or a traditional physics course. Students benefit from seeing that what they learn in math and science courses can lead to cutting-edge work in areas such as passive wave imaging, photonics, wireless communication and high performance computing. The collaboration has been meaningful because it has motivated us to tailor our lessons to reflect what is happening in the research lab of our local university. Written materials for use in teacher training workshops will also be available.
Electrical Engineering | Classification | College of Engineering & Applied
) 229-6916bsra@uwm.eduEng & Math Sciences 995 profile photo Robert Cuzner, Ph.D.Assistant ChairDepartment Chair of Electrical Engineering(414) 229-3885george@uwm.eduEng & Math Sciences 1245 profile photo Hossein Hosseini, Ph.D.ProfessorComputer Science(414) 229-5184hosseini@uwm.eduEng & Math
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-12
... Student Assessment Systems (CASAS) Life Skills Math Assessments--Application of Mathematics (Secondary... Proficiency Test (MAPT) for Math. This test is approved for use through a computer-adaptive delivery format...: www.wonderlic.com . (2) General Assessment of Instructional Needs (GAIN)--Test of Math Skills. Forms A...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-06
... Student Assessment Systems (CASAS) Life Skills Math Assessments--Application of Mathematics (Secondary... Proficiency Test (MAPT) for Math. This test is approved for use through a computer-adaptive delivery format...) Employability Competency System (ECS) Math Assessments--Workforce Learning Systems (WLS). Forms 11, 12, 13, 14...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-12
... (CASAS) Life Skills Math Assessments--Application of Mathematics (Secondary Level). We are clarifying... Proficiency Test (MAPT) for Math. We are clarifying that the computer-adaptive test (CAT) is an approved...): (1) Comprehensive Adult Student Assessment Systems (CASAS) Employability Competency System (ECS) Math...
Let the Data Speak: Gender Differences in Math Curriculum-Based Measurement
ERIC Educational Resources Information Center
Yarbrough, Jamie L.; Cannon, Laura; Bergman, Shawn; Kidder-Ashley, Pamela; McCane-Bowling, Sara
2017-01-01
Numerous studies have identified differences between males and females in academic performance across the areas of reading, writing, and mathematics. The current study examined whether or not gender differences exist when math curriculum-based measures (M-CBMs) are used to assess basic math computation skills in a sample of third- through…
Evaluating Procedures for Reducing Measurement Error in Math Curriculum-Based Measurement Probes
ERIC Educational Resources Information Center
Methe, Scott A.; Briesch, Amy M.; Hulac, David
2015-01-01
At present, it is unclear whether math curriculum-based measurement (M-CBM) procedures provide a dependable measure of student progress in math computation because support for its technical properties is based largely upon a body of correlational research. Recent investigations into the dependability of M-CBM scores have found that evaluating…
ERIC Educational Resources Information Center
Lee, Ahlam
2013-01-01
Many STEM studies have focused on traditional learning contexts, such as math- and science-related learning factors, as pre-college learning predictors for STEM major choices in colleges. Few studies have considered a progressive learning activity embedded within STEM contexts. This study chose computer-based learning activities in K-12 math…
Automated Creation of Labeled Pointcloud Datasets in Support of Machine-Learning Based Perception
2017-12-01
computationally intensive 3D vector math and took more than ten seconds to segment a single LIDAR frame from the HDL-32e with the Dell XPS15 9650’s Intel...Core i7 CPU. Depth Clustering avoids the computationally intensive 3D vector math of Euclidean Clustering-based DON segmentation and, instead
I CAN Learn®. [Secondary Mathematics.] What Works Clearinghouse Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2017
2017-01-01
"I CAN Learn"® is a computer-based math curriculum for students in middle school, high school, and college. It provides math instruction through a series of interactive lessons that students work on individually at their own computers. Students move at their own pace and must demonstrate mastery of each concept before progressing to the…
I CAN Learn®. [Primary Mathematics.] What Works Clearinghouse Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2017
2017-01-01
"I CAN Learn"® is a computer-based math curriculum for students in middle school, high school, and college. It provides math instruction through a series of interactive lessons that students work on individually at their own computers. Students move at their own pace and must demonstrate mastery of each concept before progressing to the…
Minimum-complexity helicopter simulation math model
NASA Technical Reports Server (NTRS)
Heffley, Robert K.; Mnich, Marc A.
1988-01-01
An example of a minimal complexity simulation helicopter math model is presented. Motivating factors are the computational delays, cost, and inflexibility of the very sophisticated math models now in common use. A helicopter model form is given which addresses each of these factors and provides better engineering understanding of the specific handling qualities features which are apparent to the simulator pilot. The technical approach begins with specification of features which are to be modeled, followed by a build up of individual vehicle components and definition of equations. Model matching and estimation procedures are given which enable the modeling of specific helicopters from basic data sources such as flight manuals. Checkout procedures are given which provide for total model validation. A number of possible model extensions and refinement are discussed. Math model computer programs are defined and listed.
Saad, Carmel S; Meyer, Oanh L; Dhindsa, Manveen; Zane, Nolan
2015-01-01
We examined whether an individual difference factor, math domain identification, moderated performance following positive stereotype activation. We hypothesized that positive stereotype activation would improve performance for those more math identified (compared to a control condition), but would hinder performance for those less math identified. We examined 116 Chinese American women (mean age = 19 years). Participants were assigned to the positive stereotype activation condition or to the control condition before completing a math test. Positive stereotype activation led more math identified participants to perform significantly better than the control condition, whereas it led less math identified participants to perform significantly worse than the control condition. Domain identification moderates the effect of positive stereotype activation. Educators should consider how testing situations are constructed, especially when test takers do not identify highly with the domain. (PsycINFO Database Record (c) 2015 APA, all rights reserved).
Conference Offers Girls Opportunity to Expand Career Horizons
math, science, technology and non-traditional occupations. The conference will take place Saturday of computers, math, engineering, natural sciences, medical sciences, public service and the
Educational Technology, E.C.I.A. Chapter 2. Final Evaluation Report.
ERIC Educational Resources Information Center
District of Columbia Public Schools, Washington, DC. Div. of Quality Assurance.
The Planning, Monitoring and Implementing (PMI) Evaluation Model for Decision-Making was used by the District of Columbia Public Schools to monitor their Office of Educational Technology in its efforts to provide direction and coordination for computer related activities, and to plan and implement educational television projects in math and…
Bureau of Indian Affairs Outstanding Programs in Math, Science and Technology, 1995.
ERIC Educational Resources Information Center
Bureau of Indian Affairs (Dept. of Interior), Washington, DC. Office of Indian Education Programs.
This booklet describes the goals and activities of 20 exemplary programs in mathematics, science and technology for students and teachers in schools operated or funded by the Bureau of Indian Affairs. The programs are: "Computer Home Improvement Reading Program," Beclabito Day School (New Mexico); "Cherokee High School Science:…
ERIC Educational Resources Information Center
Lorenzi, Natalie
2012-01-01
Math games bring out kids' natural love of numbers. Yet in the waning days of school, students can't wait for that final bell to ring. Each summer, most students lose about two months of mathematical computation skills. So how do teachers keep their students focused on math up till the end? Before sending them off for the summer, get them hooked…
NASA Astrophysics Data System (ADS)
Matott, L. S.; Hymiak, B.; Reslink, C. F.; Baxter, C.; Aziz, S.
2012-12-01
As part of the NSF-sponsored 'URGE (Undergraduate Research Group Experiences) to Compute' program, Dr. Matott has been collaborating with talented Math majors to explore the design of cost-effective systems to safeguard groundwater supplies from contaminated sites. Such activity is aided by a combination of groundwater modeling, simulation-based optimization, and high-performance computing - disciplines largely unfamiliar to the students at the outset of the program. To help train and engage the students, a number of interactive and graphical software packages were utilized. Examples include: (1) a tutorial for exploring the behavior of evolutionary algorithms and other heuristic optimizers commonly used in simulation-based optimization; (2) an interactive groundwater modeling package for exploring alternative pump-and-treat containment scenarios at a contaminated site in Billings, Montana; (3) the R software package for visualizing various concepts related to subsurface hydrology; and (4) a job visualization tool for exploring the behavior of numerical experiments run on a large distributed computing cluster. Further engagement and excitement in the program was fostered by entering (and winning) a computer art competition run by the Coalition for Academic Scientific Computation (CASC). The winning submission visualizes an exhaustively mapped optimization cost surface and dramatically illustrates the phenomena of artificial minima - valley locations that correspond to designs whose costs are only partially optimal.
ERIC Educational Resources Information Center
Waters, Hugh E.; Boon, Richard T.
2011-01-01
This study investigated the effects of the TouchMath[C] program (Bullock, Pierce,&McClellan, 1989) to teach students with mild intellectual disabilities to subtract 3-digit money computational problems with regrouping. Three students with mild intellectual disabilities in high school received instruction in a special education mathematics…
ERIC Educational Resources Information Center
Ray, Darrell L.
2013-01-01
Students often enter biology programs deficient in the math and computational skills that would enhance their attainment of a deeper understanding of the discipline. To address some of these concerns, I developed a series of spreadsheet simulation exercises that focus on some of the mathematical foundations of scientific inquiry and the benefits…
ERIC Educational Resources Information Center
Nottke, Regina
2017-01-01
The gap in academic achievement between regular and special education students is well documented. Math was once the stronger area for students with IEPs; however, the scores in Illinois in 2013 suggest that for the subgroup of IEP students, reading and math performance has reached an all-time ten-year low, even when correcting for the change in…
Impact of Math Snacks Games on Students' Conceptual Understanding
ERIC Educational Resources Information Center
Winburg, Karin; Chamberlain, Barbara; Valdez, Alfred; Trujillo, Karen; Stanford, Theodore B.
2016-01-01
This "Math Snacks" intervention measured 741 fifth grade students' gains in conceptual understanding of core math concepts after game-based learning activities. Teachers integrated four "Math Snacks" games and related activities into instruction on ratios, coordinate plane, number systems, fractions and decimals. Using a…
ERIC Educational Resources Information Center
Forsten, Char
2005-01-01
This book offers classroom-tested activities designed to make even the most reluctant learners crazy about math. Appealing to everyone from sports fans to readers, future fashion designers to budding musicians, the activities presented in this book offer ways to develop a deep-rooted love and appreciation of math in every student. Teachers are…
The preconditioned Gauss-Seidel method faster than the SOR method
NASA Astrophysics Data System (ADS)
Niki, Hiroshi; Kohno, Toshiyuki; Morimoto, Munenori
2008-09-01
In recent years, a number of preconditioners have been applied to linear systems [A.D. Gunawardena, S.K. Jain, L. Snyder, Modified iterative methods for consistent linear systems, Linear Algebra Appl. 154-156 (1991) 123-143; T. Kohno, H. Kotakemori, H. Niki, M. Usui, Improving modified Gauss-Seidel method for Z-matrices, Linear Algebra Appl. 267 (1997) 113-123; H. Kotakemori, K. Harada, M. Morimoto, H. Niki, A comparison theorem for the iterative method with the preconditioner (I+Smax), J. Comput. Appl. Math. 145 (2002) 373-378; H. Kotakemori, H. Niki, N. Okamoto, Accelerated iteration method for Z-matrices, J. Comput. Appl. Math. 75 (1996) 87-97; M. Usui, H. Niki, T.Kohno, Adaptive Gauss-Seidel method for linear systems, Internat. J. Comput. Math. 51(1994)119-125 [10
Students from Pueblo Triumph in Colorado Science Bowl
questions about physics, math, biology, astronomy, chemistry, computers and the earth sciences, students science and math. The competition has evolved into one of the Energy Department's premier educational
Students from Aurora Triumph in Competition of the Mind
fast-paced questions about physics, math, biology, astronomy, chemistry, computers and the earth educational programs to help stimulate young people's interest in science and math. NR-00797
Students from Aurora Triumph in Denver Regional Science Bowl
questions about physics, math, biology, astronomy, chemistry, computers and the earth sciences, students science and math. The competition has evolved into one of the Energy Department's premier educational
75 FR 34107 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-16
... Sciences Type of Review: Revision. Title: NAEP 2011 Wave II (Writing and Math Multi-Stage Computer- based, KASA Math and PR, NIES, NAEP-TIMSS Alignment) Frequency: Affected Public: Individuals or household...
Effective STEM Programs for Adolescent Girls: Three Approaches and Many Lessons Learned
ERIC Educational Resources Information Center
Mosatche, Harriet S.; Matloff-Nieves, Susan; Kekelis, Linda; Lawner, Elizabeth K.
2013-01-01
While women's participation in math and physical science continues to lag to some degree behind that of men, the disparity is much greater in engineering and computer science. Though boys may outperform girls at the highest levels on math and science standardized tests, girls tend to get better course grades in math and science than boys do.…
ERIC Educational Resources Information Center
Rutherford-Becker, Kristy J.; Vanderwood, Michael L.
2009-01-01
The purpose of this study was to evaluate the extent that reading performance (as measured by curriculum-based measures [CBM] of oral reading fluency [ORF] and Maze reading comprehension), is related to math performance (as measured by CBM math computation and applied math). Additionally, this study examined which of the two reading measures was a…
ERIC Educational Resources Information Center
Denison, Aaron
2013-01-01
The purpose of this study was to examine the utility of a brief assessment for the selection of an effective instruction to increase fluency performance on computation math problems. Participants were four general education third-grade students who performed below the median score on a classwide administered multiple math skills probe. Students…
ERIC Educational Resources Information Center
Kitsantas, Anastasia; Kitsantas, Panagiota; Kitsantas, Thomas
2012-01-01
The purpose of this exploratory study was to assess the relative importance of a number of variables in predicting students' interest in math and/or computer science. Classification and regression trees (CART) were employed in the analysis of survey data collected from 276 college students enrolled in two U.S. and Greek universities. The results…
Colorado Students Contend in Competition of the Mind
-paced match of questions about physics, math, biology, astronomy, chemistry, computers and the earth one of its premier educational programs to help stimulate young people's interest in science and math
Colorado Students Head to National Science Competition
question and answer tournament that focuses on physics, math, biology, astronomy, chemistry, computers and nine years ago to help stimulate interest in science and math. The competition has evolved into one of
Children with Essential Tremor
... or the blackboard. • Encourage oral responses, even in math. • Allow the use of a computer for written ... X” can mark the correct answer. More accommodations Math class. • Allow verbal testing. • Allow inaccuracy when drawing ...
Students From Highlands Ranch Triumph in Colorado Science Bowl
final round of rapid-fire questions about physics, math, biology, astronomy, chemistry, computers and interest in science and math. The competition has evolved into one of the Energy Department's premier
Floaters and Sinkers: Solutions for Math and Science. Densities and Volumes. Book 5.
ERIC Educational Resources Information Center
Wiebe, Arthur, Ed.; And Others
Developed to serve as a way to integrate mathematics skills and science processes, this booklet provides activities which demonstrate the concept of density for students of grades five through nine. Investigations are offered on the densities of water, salt, salt water, and woods. Opportunities are also provided in computing volumes of cylinders…
Edge Simulation Laboratory Progress and Plans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, R
The Edge Simulation Laboratory (ESL) is a project to develop a gyrokinetic code for MFE edge plasmas based on continuum (Eulerian) techniques. ESL is a base-program activity of OFES, with an allied algorithm research activity funded by the OASCR base math program. ESL OFES funds directly support about 0.8 FTE of career staff at LLNL, a postdoc and a small fraction of an FTE at GA, and a graduate student at UCSD. In addition the allied OASCR program funds about 1/2 FTE each in the computations directorates at LBNL and LLNL. OFES ESL funding for LLNL and UCSD began inmore » fall 2005, while funding for GA and the math team began about a year ago. ESL's continuum approach is a complement to the PIC-based methods of the CPES Project, and was selected (1) because of concerns about noise issues associated with PIC in the high-density-contrast environment of the edge pedestal, (2) to be able to exploit advanced numerical methods developed for fluid codes, and (3) to build upon the successes of core continuum gyrokinetic codes such as GYRO, GS2 and GENE. The ESL project presently has three components: TEMPEST, a full-f, full-geometry (single-null divertor, or arbitrary-shape closed flux surfaces) code in E, {mu} (energy, magnetic-moment) coordinates; EGK, a simple-geometry rapid-prototype code, presently of; and the math component, which is developing and implementing algorithms for a next-generation code. Progress would be accelerated if we could find funding for a fourth, computer science, component, which would develop software infrastructure, provide user support, and address needs for data handing and analysis. We summarize the status and plans for the three funded activities.« less
Putting the “Spark” into Physical Science and Algebra
NASA Astrophysics Data System (ADS)
Dagenais, Andre; Pill, B.
2006-12-01
The presenters will describe a number of laboratory activities developed in collaboration with the Department of Electrical Engineering at the University of Delaware as part of their outreach program to help make math and science more authentic on the pre-college level. Lessons relating to electrical topics are often abstract and appropriate only for advanced students in math and science. We have devised lessons that rely on simple equipment. They promote skills that are included in National and State Standards. They emphasize the connections between math and science; they are appropriate for an algebra course, a physical science course, a PhysicsFirst course or a traditional physics course. Students benefit from seeing that what they learn in math and science courses can lead to cutting-edge work in areas such as passive wave imaging, photonics, wireless communication and high performance computing. The collaboration has been meaningful because it has motivated us to tailor our lessons to reflect what is happening in the research lab of our local university. Written materials for use in teacher training workshops will also be available. Funded by NSF Research Experience for Teachers(RET #0322633) program under the direction of Dr. Dennis Prather, University of Delaware Electrical Engineering
Pyke, Aryn A; Fincham, Jon M; Anderson, John R
2017-06-01
How does processing differ during purely symbolic problem solving versus when mathematical operations can be mentally associated with meaningful (here, visuospatial) referents? Learners were trained on novel math operations (↓, ↑), that were defined strictly symbolically or in terms of a visuospatial interpretation (operands mapped to dimensions of shaded areas, answer = total area). During testing (scanner session), no visuospatial representations were displayed. However, we expected visuospatially-trained learners to form mental visuospatial representations for problems, and exhibit distinct activations. Since some solution intervals were long (~10s) and visuospatial representations might only be instantiated in some stages during solving, group differences were difficult to detect when treating the solving interval as a whole. However, an HSMM-MVPA process (Anderson and Fincham, 2014a) to parse fMRI data identified four distinct problem-solving stages in each group, dubbed: 1) encode; 2) plan; 3) compute; and 4) respond. We assessed stage-specific differences across groups. During encoding, several regions implicated in general semantic processing and/or mental imagery were more active in visuospatially-trained learners, including: bilateral supramarginal, precuneus, cuneus, parahippocampus, and left middle temporal regions. Four of these regions again emerged in the computation stage: precuneus, right supramarginal/angular, left supramarginal/inferior parietal, and left parahippocampal gyrus. Thus, mental visuospatial representations may not just inform initial problem interpretation (followed by symbolic computation), but may scaffold on-going computation. In the second stage, higher activations were found among symbolically-trained solvers in frontal regions (R. medial and inferior and L. superior) and the right angular and middle temporal gyrus. Activations in contrasting regions may shed light on solvers' degree of use of symbolic versus mental visuospatial strategies, even in absence of behavioral differences. Copyright © 2017 Elsevier Inc. All rights reserved.
High Productivity Computing Systems Analysis and Performance
2005-07-01
cubic grid Discrete Math Global Updates per second (GUP/S) RandomAccess Paper & Pencil Contact Bob Lucas (ISI) Multiple Precision none...can be found at the web site. One of the HPCchallenge codes, RandomAccess, is derived from the HPCS discrete math benchmarks that we released, and...Kernels Discrete Math … Graph Analysis … Linear Solvers … Signal Processi ng Execution Bounds Execution Indicators 6 Scalable Compact
ERIC Educational Resources Information Center
Kercood, Suneeta; Zentall, Sydney S.; Vinh, Megan; Tom-Wright, Kinsey
2012-01-01
The purpose of this theoretically-based study was to examine the effects of yellow-highlighting "relevant" words and units within math word problems. Initial differences were documented between 10 girls at-risk for ADHD and 10 comparisons on the performance of group and individual assessments of math computations and word problems, as had…
High School Students Gear Up for Battle of the Brains
answer tournament, which focuses on physics, math, biology, astronomy, chemistry, computers and the earth to help stimulate interest in science and math. The competition has evolved into one of the Energy
Si, Jiwei; Li, Hongxia; Sun, Yan; Xu, Yanli; Sun, Yu
2016-01-01
The present study used the choice/no-choice method to investigate the effect of math anxiety on the strategy used in computational estimation and mental arithmetic tasks and to examine age-related differences in this regard. Fifty-seven fourth graders, 56 sixth graders, and 60 adults were randomly selected to participate in the experiment. Results showed the following: (1) High-anxious individuals were more likely to use a rounding-down strategy in the computational estimation task under the best-choice condition. Additionally, sixth-grade students and adults performed faster than fourth-grade students on the strategy execution parameter. Math anxiety affected response times (RTs) and the accuracy with which strategies were executed. (2) The execution of the partial-decomposition strategy was superior to that of the full-decomposition strategy on the mental arithmetic task. Low-math-anxious persons provided more accurate answers than did high-math-anxious participants under the no-choice condition. This difference was significant for sixth graders. With regard to the strategy selection parameter, the RTs for strategy selection varied with age. PMID:27803685
Si, Jiwei; Li, Hongxia; Sun, Yan; Xu, Yanli; Sun, Yu
2016-01-01
The present study used the choice/no-choice method to investigate the effect of math anxiety on the strategy used in computational estimation and mental arithmetic tasks and to examine age-related differences in this regard. Fifty-seven fourth graders, 56 sixth graders, and 60 adults were randomly selected to participate in the experiment. Results showed the following: (1) High-anxious individuals were more likely to use a rounding-down strategy in the computational estimation task under the best-choice condition. Additionally, sixth-grade students and adults performed faster than fourth-grade students on the strategy execution parameter. Math anxiety affected response times (RTs) and the accuracy with which strategies were executed. (2) The execution of the partial-decomposition strategy was superior to that of the full-decomposition strategy on the mental arithmetic task. Low-math-anxious persons provided more accurate answers than did high-math-anxious participants under the no-choice condition. This difference was significant for sixth graders. With regard to the strategy selection parameter, the RTs for strategy selection varied with age.
ERIC Educational Resources Information Center
Mac Iver, Douglas J.; Balfanz, Robert; Plank, Stephan B.
1999-01-01
Two studies evaluated the Computer- and Team-Assisted Mathematics Acceleration course (CATAMA) in Talent Development Middle Schools. The first study compared growth in math achievement for 96 seventh-graders (48 of whom participated in CATAMA and 48 of whom did not); the second study gathered data from interviews with, and observations of, CATAMA…
The Neurodevelopmental Basis of Math Anxiety
Young, Christina B.; Wu, Sarah S.; Menon, Vinod
2012-01-01
Math anxiety is a negative emotional reaction to situations involving mathematical problem solving. Math anxiety has a detrimental impact on an individual’s long-term professional success, but its neurodevelopmental origins are unknown. In a functional MRI study on 7- to 9-year-old children, we showed that math anxiety was associated with hyperactivity in right amygdala regions that are important for processing negative emotions. In addition, we found that math anxiety was associated with reduced activity in posterior parietal and dorsolateral prefrontal cortex regions involved in mathematical reasoning. Multivariate classification analysis revealed distinct multivoxel activity patterns, which were independent of overall activation levels in the right amygdala. Furthermore, effective connectivity between the amygdala and ventromedial prefrontal cortex regions that regulate negative emotions was elevated in children with math anxiety. These effects were specific to math anxiety and unrelated to general anxiety, intelligence, working memory, or reading ability. Our study identified the neural correlates of math anxiety for the first time, and our findings have significant implications for its early identification and treatment. PMID:22434239
The neurodevelopmental basis of math anxiety.
Young, Christina B; Wu, Sarah S; Menon, Vinod
2012-05-01
Math anxiety is a negative emotional reaction to situations involving mathematical problem solving. Math anxiety has a detrimental impact on an individual's long-term professional success, but its neurodevelopmental origins are unknown. In a functional MRI study on 7- to 9-year-old children, we showed that math anxiety was associated with hyperactivity in right amygdala regions that are important for processing negative emotions. In addition, we found that math anxiety was associated with reduced activity in posterior parietal and dorsolateral prefrontal cortex regions involved in mathematical reasoning. Multivariate classification analysis revealed distinct multivoxel activity patterns, which were independent of overall activation levels in the right amygdala. Furthermore, effective connectivity between the amygdala and ventromedial prefrontal cortex regions that regulate negative emotions was elevated in children with math anxiety. These effects were specific to math anxiety and unrelated to general anxiety, intelligence, working memory, or reading ability. Our study identified the neural correlates of math anxiety for the first time, and our findings have significant implications for its early identification and treatment.
High School Students Gear Up for Battle of the Brains
tournament, which focuses on physics, math, biology, astronomy, chemistry, computers and the earth sciences competition. DOE began the National Science Bowl 11 years ago to help stimulate interest in science and math
Students from Grand Junction High School Triumph in Colorado Science Bowl
-fire questions about physics, math, biology, astronomy, chemistry, computers and the earth sciences years ago to help stimulate interest in science and math. The competition has evolved into one of the
High School Students Gear Up for Battle of the Brains
focuses on physics, math, biology, astronomy, chemistry, computers and the earth sciences. Each team is Science Bowl a decade ago to help stimulate interest in science and math. The competition has evolved into
Sánchez-Pérez, Noelia; Castillo, Alejandro; López-López, José A.; Pina, Violeta; Puga, Jorge L.; Campoy, Guillermo; González-Salinas, Carmen; Fuentes, Luis J.
2018-01-01
Student academic achievement has been positively related to further development outcomes, such as the attainment of higher educational, employment, and socioeconomic aspirations. Among all the academic competences, mathematics has been identified as an essential skill in the field of international leadership as well as for those seeking positions in disciplines related to science, technology, and engineering. Given its positive consequences, studies have designed trainings to enhance children's mathematical skills. Additionally, the ability to regulate and control actions and cognitions, i.e., executive functions (EF), has been associated with school success, which has resulted in a strong effort to develop EF training programs to improve students' EF and academic achievement. The present study examined the efficacy of a school computer-based training composed of two components, namely, working memory and mathematics tasks. Among the advantages of using a computer-based training program is the ease with which it can be implemented in school settings and the ease by which the difficulty of the tasks can be adapted to fit the child's ability level. To test the effects of the training, children's cognitive skills (EF and IQ) and their school achievement (math and language grades and abilities) were evaluated. The results revealed a significant improvement in cognitive skills, such as non-verbal IQ and inhibition, and better school performance in math and reading among the children who participated in the training compared to those children who did not. Most of the improvements were related to training on WM tasks. These findings confirmed the efficacy of a computer-based training that combined WM and mathematics activities as part of the school routines based on the training's impact on children's academic competences and cognitive skills. PMID:29375442
Sánchez-Pérez, Noelia; Castillo, Alejandro; López-López, José A; Pina, Violeta; Puga, Jorge L; Campoy, Guillermo; González-Salinas, Carmen; Fuentes, Luis J
2017-01-01
Student academic achievement has been positively related to further development outcomes, such as the attainment of higher educational, employment, and socioeconomic aspirations. Among all the academic competences, mathematics has been identified as an essential skill in the field of international leadership as well as for those seeking positions in disciplines related to science, technology, and engineering. Given its positive consequences, studies have designed trainings to enhance children's mathematical skills. Additionally, the ability to regulate and control actions and cognitions, i.e., executive functions (EF), has been associated with school success, which has resulted in a strong effort to develop EF training programs to improve students' EF and academic achievement. The present study examined the efficacy of a school computer-based training composed of two components, namely, working memory and mathematics tasks. Among the advantages of using a computer-based training program is the ease with which it can be implemented in school settings and the ease by which the difficulty of the tasks can be adapted to fit the child's ability level. To test the effects of the training, children's cognitive skills (EF and IQ) and their school achievement (math and language grades and abilities) were evaluated. The results revealed a significant improvement in cognitive skills, such as non-verbal IQ and inhibition, and better school performance in math and reading among the children who participated in the training compared to those children who did not. Most of the improvements were related to training on WM tasks. These findings confirmed the efficacy of a computer-based training that combined WM and mathematics activities as part of the school routines based on the training's impact on children's academic competences and cognitive skills.
Cybersecurity Education for Military Officers
2017-12-01
lecture showed the math behind the possible combinations of passwords of different lengths, and made the recommendation to increase your password to...2. Math the system to the real world: Use of effective metaphors and real world language wherever possible. 3. User Control: Try to give the user...given any training on this topic outside of annual NKO courses. I was a math major for my undergraduate degree, so I have no computer science
Math in Action. Number-Sense Fun: Solving Riddles, Making Change.
ERIC Educational Resources Information Center
Bresser, Rusty; Sheffield, Stephanie; Burns, Marilyn, Ed.
1997-01-01
Presents two activities for teaching elementary level mathematics by immersing students in worthwhile literature (the Hello Math Reader series) while introducing them to real-life mathematics. The primary level activity teaches students to use number relationships to solve math riddles. The intermediate level activity has students explore…
Preschool Math Exposure in Private Center-Based Care and Low-SES Children's Math Development
ERIC Educational Resources Information Center
Bachman, Heather J.; Degol, Jessica L.; Elliott, Leanne; Scharphorn, Laura; El Nokali, Nermeen E.; Palmer, Kalani M.
2018-01-01
Research Findings: The present study examined the amount of exposure to math activities that children of low socioeconomic status (SES) encounter in private community-based preschool classrooms and whether greater time in these activities predicted higher math skills. Three cohorts of 4- to 5-year-old children were recruited from 30 private…
Differentiated Instruction for K-8 Math and Science: Activities and Lesson Plans
ERIC Educational Resources Information Center
Hamm, Mary; Adams, Dennis
2008-01-01
This book offers practical recommendations to reach every student in a K-8 classroom. Research-based and written in a teacher-friendly style, it will help teachers with classroom organization and lesson planning in math and science. Included are math and science games, activities, ideas, and lesson plans based on the math and science standards.…
ERIC Educational Resources Information Center
Rimbey, Kimberly
2008-01-01
Created by teachers for teachers, the Math Academy tools and activities included in this booklet were designed to create hands-on activities and a fun learning environment for the teaching of mathematics to the students. This booklet contains the "Math Academy--Play Ball! Explorations in Data Analysis & Statistics," which teachers can use to…
Math Academy: Are You Game? Explorations in Probability. Supplemental Math Materials for Grades 3-6
ERIC Educational Resources Information Center
Rimbey, Kimberly
2007-01-01
Created by teachers for teachers, the Math Academy tools and activities included in this booklet were designed to create hands-on activities and a fun learning environment for the teaching of mathematics to the students. This booklet contains the themed program "Are You Game? Math Academy--Explorations in Probability," which teachers can use to…
ERIC Educational Resources Information Center
Rimbey, Kimberly
2007-01-01
Created by teachers for teachers, the Math Academy tools and activities included in this booklet were designed to create hands-on activities and a fun learning environment for the teaching of mathematics to the students. This booklet contains the "Math Academy--Dining Out! Explorations in Fractions, Decimals, and Percents," which teachers can use…
2014-08-29
KISSIMMEE, Fla. – Guests at the Tom Joyner Family Reunion talk with Brain Norton and Emily Fields, both of the Program Planning Office in NASA’s Launch Services Program. They described a computer demonstration on rockets. The Tom Joyner Family Reunion is designed to present uplifting programs, entertainment and information about growing, diverse communities. An annual event of the nationally-syndicated Tom Joyner Morning Show, the many exhibits included NASA's participation focusing on encouraging young people to consider studies and careers in STEM -- science, technology, engineering and math. NASA's Education Division promoted the benefits of math and scientific learning along with career opportunities offered by the space agency. The activities took place at the Gaylord Palms Resort in Kissimmee, Florida, during the Labor Day weekend. Photo credit: NASA/Daniel Casper
NASA Astrophysics Data System (ADS)
Kazmi, K. R.; Khan, F. A.
2008-01-01
In this paper, using proximal-point mapping technique of P-[eta]-accretive mapping and the property of the fixed-point set of set-valued contractive mappings, we study the behavior and sensitivity analysis of the solution set of a parametric generalized implicit quasi-variational-like inclusion involving P-[eta]-accretive mapping in real uniformly smooth Banach space. Further, under suitable conditions, we discuss the Lipschitz continuity of the solution set with respect to the parameter. The technique and results presented in this paper can be viewed as extension of the techniques and corresponding results given in [R.P. Agarwal, Y.-J. Cho, N.-J. Huang, Sensitivity analysis for strongly nonlinear quasi-variational inclusions, Appl. MathE Lett. 13 (2002) 19-24; S. Dafermos, Sensitivity analysis in variational inequalities, Math. Oper. Res. 13 (1988) 421-434; X.-P. Ding, Sensitivity analysis for generalized nonlinear implicit quasi-variational inclusions, Appl. Math. Lett. 17 (2) (2004) 225-235; X.-P. Ding, Parametric completely generalized mixed implicit quasi-variational inclusions involving h-maximal monotone mappings, J. Comput. Appl. Math. 182 (2) (2005) 252-269; X.-P. Ding, C.L. Luo, On parametric generalized quasi-variational inequalities, J. Optim. Theory Appl. 100 (1999) 195-205; Z. Liu, L. Debnath, S.M. Kang, J.S. Ume, Sensitivity analysis for parametric completely generalized nonlinear implicit quasi-variational inclusions, J. Math. Anal. Appl. 277 (1) (2003) 142-154; R.N. Mukherjee, H.L. Verma, Sensitivity analysis of generalized variational inequalities, J. Math. Anal. Appl. 167 (1992) 299-304; M.A. Noor, Sensitivity analysis framework for general quasi-variational inclusions, Comput. Math. Appl. 44 (2002) 1175-1181; M.A. Noor, Sensitivity analysis for quasivariational inclusions, J. Math. Anal. Appl. 236 (1999) 290-299; J.Y. Park, J.U. Jeong, Parametric generalized mixed variational inequalities, Appl. Math. Lett. 17 (2004) 43-48].
Revalidation of the Selection Instrument for Flight Training
2017-07-01
AACog) composite, as measured by the following SIFT subscales: o Mechanical Comprehension Test (MCT) o Math Skills Test (MST) o Reading...applied mechanical science. varies/ 15 minutes MST Math Skills Test—Assesses the examinee’s computational skill and mathematical aptitude...3.36 2.11 .03 1.01 Mechanical Comprehension 463 -1.95 3.58 .01 0.92 Math Skills 463 -2.59 2.87 .06 0.82 Reading Comprehension 463 -2.51 2.93 .52
ERIC Educational Resources Information Center
Lee, Ahlam
2017-01-01
Background/Context: Because of the growing concern over the decline of bachelor degree recipients in the disciplines of science, technology, engineering, and math (STEM) in the U.S., several studies have been devoted to identifying the factors that affect students' STEM major choices. A majority of these studies have focused on factors relevant to…
Number Wonders: 171 Activities to Meet Math Standards & Inspire Students
ERIC Educational Resources Information Center
Kuhns, Catherine Jones
2006-01-01
In this book, author Catherine Jones Kuhns introduces student- and teacher-friendly math activities designed to get students thinking like mathematicians and loving mathematics, while addressing content standards through grade 2. She also shows how to make math fun for students, get children actively engaged in learning, create a student-centered…
ERIC Educational Resources Information Center
Rimbey, Kimberly
2008-01-01
Created by teachers for teachers, the Math Academy tools and activities included in this booklet were designed to create hands-on activities and a fun learning environment for the teaching of mathematics to the students. This booklet contains the "Math Academy--Let's Go to the Mall! Explorations in Combinatorics," which teachers can use to enhance…
Workplace Math I: Easing into Math.
ERIC Educational Resources Information Center
Wilson, Nancy; Goschen, Claire
This basic skills learning module includes instruction in performing basic computations, using general numerical concepts such as whole numbers, fractions, decimals, averages, ratios, proportions, percentages, and equivalents in practical situations. The problems are relevant to all aspects of the printing and manufacturing industry, with emphasis…
Block, Shannon S; Tooley, Trevor R; Nagy, Matthew R; O'Sullivan, Molly P; Robinson, Leah E; Colabianchi, Natalie; Hasson, Rebecca E
2018-02-27
The purpose of this study was to compare the acute effects of video game breaks and intermittent exercise breaks, performed at varying intensities, on math performance in preadolescent children. A total of 39 children (18 males and 21 females; aged 7-11 y) completed 4 experimental conditions in random order: 8 hours of sitting interrupted with 20 two-minute low-, moderate-, or high-intensity exercise breaks or 20 two-minute sedentary computer game breaks. The intensity of exercise breaks for the low-, moderate-, and high-intensity conditions corresponded with 25%, 50%, and 75% of heart rate reserve, respectively. Math performance was assessed 3 times throughout each condition day using a 90-second math test consisting of 40 single-digit addition and subtraction questions. There were no significant differences in percent change in math scores (correct answers out of attempted) by condition [low: -1.3 (0.8), moderate: 0.1 (1.3), high: -1.8 (0.7), and computer: -2.5 (0.8); P > .05]. There were significant differences in percent change in math scores over the course of the condition days with lower math scores reported at end-of-day test compared with midday test [-2.4 (0.5) vs -0.4 (0.3); P = .01]. There were no significant condition × time, time × age, condition × age, or condition × time × age interactions (all Ps > .05). Action-based video game and exercise breaks elicit the same level of math performance in children; however, time of day may impact this relationship. These findings may have important implications for instructional time in elementary classrooms.
Fuchs, Lynn S.; Powell, Sarah R.; Seethaler, Pamela M.; Cirino, Paul T.; Fletcher, Jack M.; Fuchs, Douglas; Hamlett, Carol L.; Zumeta, Rebecca O.
2009-01-01
The purposes of this study were to assess the efficacy of remedial tutoring for 3rd graders with mathematics difficulty, to investigate whether tutoring is differentially efficacious depending on students’ math difficulty status (mathematics difficulty alone vs. mathematics plus reading difficulty), to explore transfer from number combination (NC) remediation, and to examine the transportability of the tutoring protocols. At 2 sites, 133 students were stratified on mathematics difficulty status and site and then randomly assigned to 3 conditions: control (no tutoring), tutoring on automatic retrieval of NCs (i.e., Math Flash), or tutoring on word problems with attention to the foundational skills of NCs, procedural calculations, and algebra (i.e., Pirate Math). Tutoring occurred for 16 weeks, 3 sessions per week and 20–30 min per session. Math Flash enhanced fluency with NCs with transfer to procedural computation but without transfer to algebra or word problems. Pirate Math enhanced word problem skill as well as fluency with NCs, procedural computation, and algebra. Tutoring was not differentially efficacious as a function of students’ mathematics difficulty status. The tutoring protocols proved transportable across sites. PMID:19865600
Primary Place. Math Projects That Count.
ERIC Educational Resources Information Center
Buschman, Larry; And Others
1993-01-01
Offers elementary math-centered recycling activities and ideas on transforming throwaways into valuable classroom resources. The math activities teach estimating, counting, measuring, weighing, graphing, patterning, thinking, comparing, proportion, and dimensions. The recycling ideas present ways to use pieces of trash to create educational games.…
Promoting children's health through physically active math classes: a pilot study.
Erwin, Heather E; Abel, Mark G; Beighle, Aaron; Beets, Michael W
2011-03-01
School-based interventions are encouraged to support youth physical activity (PA). Classroom-based PA has been incorporated as one component of school wellness policies. The purpose of this pilot study is to examine the effects of integrating PA with mathematics content on math class and school day PA levels of elementary students. Participants include four teachers and 75 students. Five math classes are taught without PA integration (i.e., baseline) followed by 13 math classes that integrate PA. Students wear pedometers and accelerometers to track PA during math class and throughout the school day. Students perform significantly more PA on school days and in math classes during the intervention. In addition, students perform higher intensity (step min(-1)) PA during PA integration math classes compared with baseline math classes. Integrating PA into the classroom is an effective alternative approach to improving PA levels among youth and is an important component of school-based wellness policies.
Math Anxiety in Second and Third Graders and Its Relation to Mathematics Achievement
Wu, Sarah S.; Barth, Maria; Amin, Hitha; Malcarne, Vanessa; Menon, Vinod
2012-01-01
Although the detrimental effects of math anxiety in adults are well understood, few studies have examined how it affects younger children who are beginning to learn math in a formal academic setting. Here, we examine the relationship between math anxiety and math achievement in second and third graders. In response to the need for a grade-appropriate measure of assessing math anxiety in this group we first describe the development of Scale for Early Mathematics Anxiety (SEMA), a new measure for assessing math anxiety in second and third graders that is based on the Math Anxiety Rating Scale. We demonstrate the construct validity and reliability of the SEMA and use it to characterize the effect of math anxiety on standardized measures of math abilities, as assessed using the Mathematical Reasoning and Numerical Operations subtests of the Wechsler Individual Achievement Test (WIAT-II). Math achievement, as measured by the WIAT-II Math Composite score, was significantly and negatively correlated with SEMA but not with trait anxiety scores. Additional analyses showed that SEMA scores were strongly correlated with Mathematical Reasoning scores, which involves more complex verbal problem solving. SEMA scores were weakly correlated with Numerical Operations which assesses basic computation skills, suggesting that math anxiety has a pronounced effect on more demanding calculations. We also found that math anxiety has an equally detrimental impact on math achievement regardless of whether children have an anxiety related to numbers or to the situational and social experience of doing math. Critically, these effects were unrelated to trait anxiety, providing the first evidence that the specific effects of math anxiety can be detected in the earliest stages of formal math learning in school. Our findings provide new insights into the developmental origins of math anxiety, and further underscore the need to remediate math anxiety and its deleterious effects on math achievement in young children. PMID:22701105
Math anxiety in second and third graders and its relation to mathematics achievement.
Wu, Sarah S; Barth, Maria; Amin, Hitha; Malcarne, Vanessa; Menon, Vinod
2012-01-01
Although the detrimental effects of math anxiety in adults are well understood, few studies have examined how it affects younger children who are beginning to learn math in a formal academic setting. Here, we examine the relationship between math anxiety and math achievement in second and third graders. In response to the need for a grade-appropriate measure of assessing math anxiety in this group we first describe the development of Scale for Early Mathematics Anxiety (SEMA), a new measure for assessing math anxiety in second and third graders that is based on the Math Anxiety Rating Scale. We demonstrate the construct validity and reliability of the SEMA and use it to characterize the effect of math anxiety on standardized measures of math abilities, as assessed using the Mathematical Reasoning and Numerical Operations subtests of the Wechsler Individual Achievement Test (WIAT-II). Math achievement, as measured by the WIAT-II Math Composite score, was significantly and negatively correlated with SEMA but not with trait anxiety scores. Additional analyses showed that SEMA scores were strongly correlated with Mathematical Reasoning scores, which involves more complex verbal problem solving. SEMA scores were weakly correlated with Numerical Operations which assesses basic computation skills, suggesting that math anxiety has a pronounced effect on more demanding calculations. We also found that math anxiety has an equally detrimental impact on math achievement regardless of whether children have an anxiety related to numbers or to the situational and social experience of doing math. Critically, these effects were unrelated to trait anxiety, providing the first evidence that the specific effects of math anxiety can be detected in the earliest stages of formal math learning in school. Our findings provide new insights into the developmental origins of math anxiety, and further underscore the need to remediate math anxiety and its deleterious effects on math achievement in young children.
Mathematical and Computational Aspects Related to Soil Modeling and Simulation
2017-09-26
and simulation challenges at the interface of applied math (homogenization, handling of discontinuous behavior, discrete vs. continuum representations...applied math tools need to be established and used to figure out how to impose compatible boundary conditions, how to better approximate the gradient
A Correlation of Community College Math Readiness and Student Success
NASA Astrophysics Data System (ADS)
Brown, Jayna Nicole
Although traditional college students are more prepared for college-level math based on college admissions tests, little data have been collected on nontraditional adult learners. The purpose of this study was to investigate relationships between math placement tests and community college students' success in math courses and persistence to degree or certificate completion. Guided by Tinto's theory of departure and student retention, the research questions addressed relationships and predictability of math Computer-adaptive Placement Assessment and Support System (COMPASS) test scores and students' performance in math courses, persistence in college, and degree completion. After conducting correlation and regression analyses, no significant relationships were identified between COMPASS Math test scores and students' performance (n = 234) in math courses, persistence in college, or degree completion. However, independent t test and chi-squared analyses of the achievements of college students who tested into Basic Math (n = 138) vs. Introduction to Algebra (n = 96) yielded statistically significant differences in persistence (p = .039), degree completion (p < .001), performance (p = .008), and progress ( p = .001), indicating students who tested into Introduction to Algebra were more successful and persisted more often to degree completion. In order to improve instructional methods for Basic Math courses, a 3-day professional development workshop was developed for math faculty focusing on current, best practices in remedial math instruction. Implications for social change include providing math faculty with the knowledge and skills to develop new instructional methods for remedial math courses. A change in instructional methods may improve community college students' math competencies and degree achievement.
ERIC Educational Resources Information Center
Rimbey, Kimberly
2007-01-01
Created by teachers for teachers, the Math Academy tools and activities included in this booklet were designed to create hands-on activities and a fun learning environment for the teaching of mathematics to students. This booklet contains the "Math Academy--Can You See It in Nature? Explorations in Patterns & Functions," which a teacher can use to…
Hart, Sara A; Ganley, Colleen M; Purpura, David J
2016-01-01
There is a growing literature concerning the role of the home math environment in children's math development. In this study, we examined the relation between these constructs by specifically addressing three goals. The first goal was to identify the measurement structure of the home math environment through a series of confirmatory factor analyses. The second goal was to examine the role of the home math environment in predicting parent report of children's math skills. The third goal was to test a series of potential alternative explanations for the relation between the home math environment and parent report of children's skills, specifically the direct and indirect role of household income, parent math anxiety, and parent math ability as measured by their approximate number system performance. A final sample of 339 parents of children aged 3 through 8 drawn from Mechanical Turk answered a questionnaire online. The best fitting model of the home math environment was a bifactor model with a general factor representing the general home math environment, and three specific factors representing the direct numeracy environment, the indirect numeracy environment, and the spatial environment. When examining the association of the home math environment factors to parent report of child skills, the general home math environment factor and the spatial environment were the only significant predictors. Parents who reported doing more general math activities in the home reported having children with higher math skills, whereas parents who reported doing more spatial activities reported having children with lower math skills.
Ganley, Colleen M.; Purpura, David J.
2016-01-01
There is a growing literature concerning the role of the home math environment in children’s math development. In this study, we examined the relation between these constructs by specifically addressing three goals. The first goal was to identify the measurement structure of the home math environment through a series of confirmatory factor analyses. The second goal was to examine the role of the home math environment in predicting parent report of children’s math skills. The third goal was to test a series of potential alternative explanations for the relation between the home math environment and parent report of children’s skills, specifically the direct and indirect role of household income, parent math anxiety, and parent math ability as measured by their approximate number system performance. A final sample of 339 parents of children aged 3 through 8 drawn from Mechanical Turk answered a questionnaire online. The best fitting model of the home math environment was a bifactor model with a general factor representing the general home math environment, and three specific factors representing the direct numeracy environment, the indirect numeracy environment, and the spatial environment. When examining the association of the home math environment factors to parent report of child skills, the general home math environment factor and the spatial environment were the only significant predictors. Parents who reported doing more general math activities in the home reported having children with higher math skills, whereas parents who reported doing more spatial activities reported having children with lower math skills. PMID:28005925
2018-03-14
pricing, Appl. Math . Comp. Vol.305, 174-187 (2017) 5. W. Li, S. Wang, Pricing European options with proportional transaction costs and stochastic...for fractional differential equation. Numer. Math . Theor. Methods Appl. 5, 229–241, 2012. [23] Kilbas A.A. and Marzan, S.A., Cauchy problem for...numerical technique for solving fractional optimal control problems, Comput. Math . Appl., 62, Issue 3, 1055–1067, 2011. [26] Lotfi A., Yousefi SA., Dehghan M
ERIC Educational Resources Information Center
Calgary Univ. (Alberta). Centre for Gifted Education.
This document presents the conference proceedings of the primary stakeholders in gifted education in Alberta (Canada): "Activities in Math for the Gifted Student" (Ballheim); "The Self Awareness Growth Experiences Approach" (Balogun); "Computer Simulations: An Integrating Tool" (Bilan); "The Portrayal of Gifted…
Simple arithmetic: not so simple for highly math anxious individuals.
Chang, Hyesang; Sprute, Lisa; Maloney, Erin A; Beilock, Sian L; Berman, Marc G
2017-12-01
Fluency with simple arithmetic, typically achieved in early elementary school, is thought to be one of the building blocks of mathematical competence. Behavioral studies with adults indicate that math anxiety (feelings of tension or apprehension about math) is associated with poor performance on cognitively demanding math problems. However, it remains unclear whether there are fundamental differences in how high and low math anxious individuals approach overlearned simple arithmetic problems that are less reliant on cognitive control. The current study used functional magnetic resonance imaging to examine the neural correlates of simple arithmetic performance across high and low math anxious individuals. We implemented a partial least squares analysis, a data-driven, multivariate analysis method to measure distributed patterns of whole-brain activity associated with performance. Despite overall high simple arithmetic performance across high and low math anxious individuals, performance was differentially dependent on the fronto-parietal attentional network as a function of math anxiety. Specifically, low-compared to high-math anxious individuals perform better when they activate this network less-a potential indication of more automatic problem-solving. These findings suggest that low and high math anxious individuals approach even the most fundamental math problems differently. © The Author (2017). Published by Oxford University Press.
Simple arithmetic: not so simple for highly math anxious individuals
Sprute, Lisa; Maloney, Erin A; Beilock, Sian L; Berman, Marc G
2017-01-01
Abstract Fluency with simple arithmetic, typically achieved in early elementary school, is thought to be one of the building blocks of mathematical competence. Behavioral studies with adults indicate that math anxiety (feelings of tension or apprehension about math) is associated with poor performance on cognitively demanding math problems. However, it remains unclear whether there are fundamental differences in how high and low math anxious individuals approach overlearned simple arithmetic problems that are less reliant on cognitive control. The current study used functional magnetic resonance imaging to examine the neural correlates of simple arithmetic performance across high and low math anxious individuals. We implemented a partial least squares analysis, a data-driven, multivariate analysis method to measure distributed patterns of whole-brain activity associated with performance. Despite overall high simple arithmetic performance across high and low math anxious individuals, performance was differentially dependent on the fronto-parietal attentional network as a function of math anxiety. Specifically, low—compared to high—math anxious individuals perform better when they activate this network less—a potential indication of more automatic problem-solving. These findings suggest that low and high math anxious individuals approach even the most fundamental math problems differently. PMID:29140499
ERIC Educational Resources Information Center
Kuhn, Matt; Dempsey, Kathleen
2011-01-01
In 1999, Richard Lee Colvin published an article in "The School Administrator" titled "Math Wars: Tradition vs. Real-World Applications" that described the pendulum swing of mathematics education reform. On one side are those who advocate for computational fluency, with a step-by-step emphasis on numbers and skills and the…
NASA Astrophysics Data System (ADS)
Reisel, John R.; Jablonski, Marissa; Hosseini, Hossein; Munson, Ethan
2012-06-01
A summer bridge program for incoming engineering and computer science freshmen has been used at the University of Wisconsin-Milwaukee from 2007 to 2010. The primary purpose of this program has been to improve the mathematics course placement for incoming students who initially place into a course below Calculus I on the math placement examination. The students retake the university's math placement examination after completing the bridge program to determine if they then place into a higher-level mathematics course. If the students improve their math placement, the program is considered successful for that student. The math portion of the bridge program is designed around using the ALEKS software package for targeted, self-guided learning. In the 2007 and 2008 versions of the program, both an on-line version and an on-campus version with additional instruction were offered. In 2009 and 2010, the program was exclusively in an on-campus format, and also featured a required residential component and additional engineering activities for the students. From the results of these four programs, we are able to evaluate the success of the program in its different formats. In addition, data has been collected and analysed regarding the impact of other factors on the program's success. The factors include student preparation before the beginning of the program (as measured by math ACT scores) and the amount of time the student spent working on the material during the program. Better math preparation and the amount of time spent on the program were found to be good indicators of success. Furthermore, the on-campus version of the program is more effective than the on-line version.
1984-04-01
Scientific- Architecture 4% 4% Technical Computer Sci 38% 37% Math 40% 40% Meteorology 6% 6% Physics 12 % 13% Nontechnical Quality Freeflow 2/ Quality...Architecture 4 Computer Sci 48 43 40 Math 30 35 38 Meteorology 6 6 6 Physics 12 12 12 Engineer Electrical 40% 50% 50% Aero Group 25 25 30 Other / 35 25 20...with Technical Degrees by Major Weapon System. . . 12 FIGURE 4 - Pilots with Technical Degrees by Category . . . . . . 13 FIGURE 5 - Regression
Math and science technology access and use in South Dakota public schools grades three through five
NASA Astrophysics Data System (ADS)
Schwietert, Debra L.
The development of K-12 technology standards, soon to be added to state testing of technology proficiency, and the increasing presence of computers in homes and classrooms reflects the growing importance of technology in current society. This study examined math and science teachers' responses on a survey of technology use in grades three through five in South Dakota. A researcher-developed survey instrument was used to collect data from a random sample of 100 public schools throughout the South Dakota. Forced choice and open-ended responses were recorded. Most teachers have access to computers, but they lack resources to purchase software for their content areas, especially in science areas. Three-fourths of teachers in this study reported multiple computers in their classrooms and 67% reported access to labs in other areas of the school building. These numbers are lower than the national average of 84% of teachers with computers in their classrooms and 95% with access to computers elsewhere in the building (USDOE, 2000). Almost eight out of 10 teachers noted time as a barrier to learning more about educational software. Additional barriers included lack of school funds (38%), access to relevant training (32%), personal funds (30%), and poor quality of training (7%). Teachers most often use math and science software as supplemental, with practice tutorials cited as another common use. The most common interest for software was math for both boys and girls. The second most common choice for boys was science and for girls, language arts. Teachers reported that there was no preference for either individual or group work on computers for girls or boys. Most teachers do not systematically evaluate software for gender preferences, but review software over subjectively.
ERIC Educational Resources Information Center
Leach, Debra
2016-01-01
Students with learning disabilities often struggle with math fact fluency and require specialized interventions to recall basic facts. Deficits in math fact fluency can result in later difficulties when learning higher-level mathematical computation, concepts, and problem solving. The response-to-intervention (RTI) and…
Math for Textile Technicians. Workforce 2000 Partnership.
ERIC Educational Resources Information Center
Enterprise State Junior Coll., AL.
This curriculum package on math for textile technicians has been developed by the Workforce 2000 Partnership, a network of industries and educational institutions provides training in communication, computation, and creative thinking to employees and supervisors in textile, apparel, and carpet industries at 15 plants in Alabama, Georgia, and South…
Consumer Math 4, Mathematics: 5285.24.
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
The last of four guidebooks for the General Math student covers installment purchases and small loans, investments, insurance, and cost of housing. Goals and strategies for the course are given; performance objectives for computational skills and for each unit are specified. A course outline, teaching suggestions for each unit, and sample pretests…
ERIC Educational Resources Information Center
Lo, Erika
2001-01-01
Presents seven mathematics games, located on the World Wide Web, for elementary students, including: Absurd Math: Pre-Algebra from Another Dimension; The Little Animals Activity Centre; MathDork Game Room (classic video games focusing on algebra); Lemonade Stand (students practice math and business skills); Math Cats (teaches the artistic beauty…
MAXHELP: Needs Assessment in the Montgomery Community
1984-04-01
become motivated for satisfactory accomplishments. 12 . Orientation flights. Simplified computer simulation games in math /science. Guest attendance of...NAME AND ADDRESS 12 . REPORT DATE APRIL 1984 ACSC/EDCC, MAXWELL AFB, AL 36112 13. NUMBER OF PAGES 14. MONITORING AGENCY NAME A AOORESS(’II dllerenl...and Finance specialist course where he was a distinguished graduate. In 1968 he was recalled to active duty and was assigned to Sewart Air Force Base
Math anxiety: Brain cortical network changes in anticipation of doing mathematics.
Klados, Manousos A; Pandria, Niki; Micheloyannis, Sifis; Margulies, Daniel; Bamidis, Panagiotis D
2017-12-01
Following our previous work regarding the involvement of math anxiety (MA) in math-oriented tasks, this study tries to explore the differences in the cerebral networks' topology between self-reported low math-anxious (LMA) and high math-anxious (HMA) individuals, during the anticipation phase prior to a mathematical related experiment. For this reason, multichannel EEG recordings were adopted, while the solution of the inverse problem was applied in a generic head model, in order to obtain the cortical signals. The cortical networks have been computed for each band separately, using the magnitude square coherence metric. The main graph theoretical parameters, showed differences in segregation and integration in almost all EEG bands of the HMAs in comparison to LMAs, indicative of a great influence of the anticipatory anxiety prior to mathematical performance. Copyright © 2017 Elsevier B.V. All rights reserved.
Attentional bias in math anxiety.
Rubinsten, Orly; Eidlin, Hili; Wohl, Hadas; Akibli, Orly
2015-01-01
Cognitive theory from the field of general anxiety suggests that the tendency to display attentional bias toward negative information results in anxiety. Accordingly, the current study aims to investigate whether attentional bias is involved in math anxiety (MA) as well (i.e., a persistent negative reaction to math). Twenty seven participants (14 with high levels of MA and 13 with low levels of MA) were presented with a novel computerized numerical version of the well established dot probe task. One of six types of prime stimuli, either math related or typically neutral, was presented on one side of a computer screen. The prime was preceded by a probe (either one or two asterisks) that appeared in either the prime or the opposite location. Participants had to discriminate probe identity (one or two asterisks). Math anxious individuals reacted faster when the probe was at the location of the numerical related stimuli. This suggests the existence of attentional bias in MA. That is, for math anxious individuals, the cognitive system selectively favored the processing of emotionally negative information (i.e., math related words). These findings suggest that attentional bias is linked to unduly intense MA symptoms.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-11
...; Comment Request; Impact Evaluation of Math Professional Development AGENCY: IES/NCES, Department of... of Math Professional Development. OMB Control Number: 1850-NEW. Type of Review: New information... requests clearance to recruit and collect data from districts, schools, and teachers for a study of math...
ERIC Educational Resources Information Center
Vasquez-Mireles, Selina; West, Sandra
2007-01-01
A correlated science lesson is characterized as an integrated science lesson in that it may incorporate traditionally integrated activities and use math as a tool. However, a correlated math-science lesson also: (1) has the pertinent math and science objectives aligned with state standards; and (2) teaches parallel science and math ideas equally.…
SRA Real Math Building Blocks PreK. What Works Clearinghouse Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2007
2007-01-01
"SRA Real Math Building Blocks PreK" (also referred to as "Building Blocks for Math") is a supplemental mathematics curriculum designed to develop preschool children's early mathematical knowledge through various individual and small- and large-group activities. It uses "Building Blocks for Math PreK" software,…
ERIC Educational Resources Information Center
Solana Beach Elementary School District, CA.
THE FOLLOWING IS THE FULL TEXT OF THIS DOCUMENT: MATH AND BEYOND is a schoolwide math incentive program designed to encourage students--and their parents--to investigate and explore the world of mathematics beyond those experiences provided during the school day. The program focuses on experiences and activities in seven different areas of math:…
Neural Correlates of Math Gains Vary Depending on Parental Socioeconomic Status (SES)
Demir-Lira, Özlem Ece; Prado, Jérôme; Booth, James R.
2016-01-01
We used functional magnetic resonance imaging (fMRI) to examine the neural predictors of math development, and asked whether these predictors vary as a function of parental socioeconomic status (SES) in children ranging in age from 8 to 13 years. We independently localized brain regions subserving verbal versus spatial processing in order to characterize relations between activation in these regions during an arithmetic task and long-term change in math skill (up to 3 years). Neural predictors of math gains encompassed brain regions subserving both verbal and spatial processing, but the relation between relative reliance on these regions and math skill growth varied depending on parental SES. Activity in an area of the left inferior frontal gyrus (IFG) identified by the verbal localizer was related to greater growth in math skill at the higher end of the SES continuum, but lesser improvements at the lower end. Activity in an area of the right superior parietal cortex identified by the spatial localizer was related to greater growth in math skill at the lower end of the SES continuum, but lesser improvements at the higher end. Results highlight early neural mechanisms as possible neuromarkers of long-term arithmetic learning and suggest that neural predictors of math gains vary with parental SES. PMID:27378987
Helping Students with Emotional and Behavioral Disorders Solve Mathematics Word Problems
ERIC Educational Resources Information Center
Alter, Peter
2012-01-01
The author presents a strategy for helping students with emotional and behavioral disorders become more proficient at solving math word problems. Math word problems require students to go beyond simple computation in mathematics (e.g., adding, subtracting, multiplying, and dividing) and use higher level reasoning that includes recognizing relevant…
Individualized Math Problems in Percent. Oregon Vo-Tech Mathematics Problem Sets.
ERIC Educational Resources Information Center
Cosler, Norma, Ed.
This is one of eighteen sets of individualized mathematics problems developed by the Oregon Vo-Tech Math Project. Each of these problem packages is organized around a mathematical topic and contains problems related to diverse vocations. Solutions are provided for all problems. This volume includes problems concerned with computing percents.…
Individualized Math Problems in Fractions. Oregon Vo-Tech Mathematics Problem Sets.
ERIC Educational Resources Information Center
Cosler, Norma, Ed.
This is one of eighteen sets of individualized mathematics problems developed by the Oregon Vo-Tech Math Project. Each of these problem packages is organized around a mathematical topic and contains problems related to diverse vocations. Solutions are provided for all problems. This package contains problems involving computation with common…
Differences in Growth on Math Curriculum-Based Measures Using Triannual Benchmarks
ERIC Educational Resources Information Center
Keller-Margulis, Milena A.; Mercer, Sterett H.; Shapiro, Edward S.
2014-01-01
Recent research on annual growth measured using curriculum-based measurement (CBM) indicates that growth may not be linear across the year and instead varies across semesters. Numerous studies in reading have confirmed this phenomenon with only one study of math computation yielding a similar finding. This study further investigated the presence…
Individualized Math Problems in Measurement and Conversion. Oregon Vo-Tech Mathematics Problem Sets.
ERIC Educational Resources Information Center
Cosler, Norma, Ed.
This is one of eighteen sets of individualized mathematics problems developed by the Oregon Vo-Tech Math Project. Each of these problem packages is organized around a mathematical topic and contains problems related to diverse vocations. Solutions are provided for all problems. This volume includes problems involving measurement, computation of…
Math/Measurement Literacy for Upgrading Skills of Industrial Hourly Workers. Math Manual.
ERIC Educational Resources Information Center
McMahon, Joan L.
This manual contains materials for a numeracy course for adult industrial workers. In addition to assessment tests, seven units are provided. Unit topics are whole numbers; fractions; decimals; percents, median, and range; measurement and signed numbers; ratio/proportion and introduction to algebra; and computer literacy using algebra software.…
Math + Science + Technology = Vocational Preparation for Girls: A Difficult Equation to Balance.
ERIC Educational Resources Information Center
Fear-Fenn, Marcia; Kapostasy, Kathy Karako
1992-01-01
Females are underrepresented in courses in mathematics, science, and computer and other high technology applications. Research in the last decade has identified a variety of factors that contribute to females' lack of participation in math, science, and technology. These factors include, but are not limited to, the following: stereotypic images…
Math at home adds up to achievement in school.
Berkowitz, Talia; Schaeffer, Marjorie W; Maloney, Erin A; Peterson, Lori; Gregor, Courtney; Levine, Susan C; Beilock, Sian L
2015-10-09
With a randomized field experiment of 587 first-graders, we tested an educational intervention designed to promote interactions between children and parents relating to math. We predicted that increasing math activities at home would increase children's math achievement at school. We tested this prediction by having children engage in math story time with their parents. The intervention, short numerical story problems delivered through an iPad app, significantly increased children's math achievement across the school year compared to a reading (control) group, especially for children whose parents are habitually anxious about math. Brief, high-quality parent-child interactions about math at home help break the intergenerational cycle of low math achievement. Copyright © 2015, American Association for the Advancement of Science.
Electrochemical carbon dioxide concentrator subsystem math model. [for manned space station
NASA Technical Reports Server (NTRS)
Marshall, R. D.; Carlson, J. N.; Schubert, F. H.
1974-01-01
A steady state computer simulation model has been developed to describe the performance of a total six man, self-contained electrochemical carbon dioxide concentrator subsystem built for the space station prototype. The math model combines expressions describing the performance of the electrochemical depolarized carbon dioxide concentrator cells and modules previously developed with expressions describing the performance of the other major CS-6 components. The model is capable of accurately predicting CS-6 performance over EDC operating ranges and the computer simulation results agree with experimental data obtained over the prediction range.
On exponential stability of linear Levin-Nohel integro-differential equations
NASA Astrophysics Data System (ADS)
Tien Dung, Nguyen
2015-02-01
The aim of this paper is to investigate the exponential stability for linear Levin-Nohel integro-differential equations with time-varying delays. To the best of our knowledge, the exponential stability for such equations has not yet been discussed. In addition, since we do not require that the kernel and delay are continuous, our results improve those obtained in Becker and Burton [Proc. R. Soc. Edinburgh, Sect. A: Math. 136, 245-275 (2006)]; Dung [J. Math. Phys. 54, 082705 (2013)]; and Jin and Luo [Comput. Math. Appl. 57(7), 1080-1088 (2009)].
2014-08-29
KISSIMMEE, Fla. – Guests at the Tom Joyner Family Reunion listen as Malcom Boston of the Fleet System Integration Branch of the Launch Services Program LSP explains a computer demonstration on rockets. Behind the table, from the left, are Brian Norton, Emily Fields and Randy Mizelle, all from the Program Planning Office in LSP. The Tom Joyner Family Reunion is designed to present uplifting programs, entertainment and information about growing, diverse communities. An annual event of the nationally-syndicated Tom Joyner Morning Show, the many exhibits included NASA's participation focusing on encouraging young people to consider studies and careers in STEM -- science, technology, engineering and math. NASA's Education Division promoted the benefits of math and scientific learning along with career opportunities offered by the space agency. The activities took place at the Gaylord Palms Resort in Kissimmee, Florida, during the Labor Day weekend. Photo credit: NASA/Daniel Casper
Duhon, Gary J; House, Sara H; Stinnett, Terry A
2012-06-01
Computer-based interventions are being used more in the classroom. Student responses to these interventions often contribute to decisions making regarding important outcomes. It is important to understand the effect of these interventions within the context of the intervention as well as across related context. The current study examined the generalization of math fact fluency gains resulting from a computer-based intervention to paper-and-pencil performance. A total of 31 second grade students completed fluency drills on the computer or with paper and pencil. Pretest-posttest performance on both computer and paper and pencil for all students was evaluated using a doubly multivariate repeated measure ANOVA. Results indicated that gains achieved on the computer did not generalize to paper-and-pencil performance. Copyright © 2012 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-26
...; Comment Request; Upward Bound and Upward Bound Math Science Annual Performance Report AGENCY: The Office... considered public records. Title of Collection: Upward Bound and Upward Bound Math Science Annual Performance...) and Upward Bound Math and Science (UBMS) Programs. The Department is requesting a new APR because of...
Integrating Music into Math in a Virtual Reality Game: Learning Fractions
ERIC Educational Resources Information Center
Lim, Taehyeong; Lee, Sungwoong; Ke, Fengfeng
2016-01-01
The purpose of this study was to investigate future teachers' experiences and perceptions of using a virtual reality game for elementary math education. The virtual reality game was designed and developed to integrate a musical activity (beat-making) into the math learning of fractions. Five math education major students participated in this…
Comparing student performance on paper- and computer-based math curriculum-based measures.
Hensley, Kiersten; Rankin, Angelica; Hosp, John
2017-01-01
As the number of computerized curriculum-based measurement (CBM) tools increases, it is necessary to examine whether or not student performance can generalize across a variety of test administration modes (i.e., paper or computer). The purpose of this study is to compare math fact fluency on paper versus computer for 197 upper elementary students. Students completed identical sets of probes on paper and on the computer, which were then scored for digits correct, problems correct, and accuracy. Results showed a significant difference in performance between the two sets of probes, with higher fluency rates on the paper probes. Because decisions about levels of student support and interventions often rely on measures such as these, more research in this area is needed to examine the potential differences in student performance between paper-based and computer-based CBMs.
Kesler, Shelli R.; Sheau, Kristen; Koovakkattu, Della; Reiss, Allan L.
2011-01-01
Number sense is believed to be critical for math development. It is putatively an implicitly learned skill and may therefore have limitations in terms of being explicitly trained, particularly in individuals with altered neurodevelopment. A case series study was conducted using an adaptive, computerized program that focused on number sense and general problem solving skills was designed to investigate training effects on performance as well as brain function in a group of children with Turner syndrome who are at risk for math difficulties and altered development of math-related brain networks. Standardized measurements of math and math-related cognitive skills as well as functional magnetic resonance imaging (fMRI) were used to assess behavioral and neurobiologic outcomes following training. Participants demonstrated significantly increased basic math skills, including number sense, and calculation as well as processing speed, cognitive flexibility and visual-spatial processing skills. With the exception of calculation, increased scores also were clinically significant (i.e. recovered) based on reliable change analysis. Participants additionally demonstrated significantly increased bilateral parietal lobe activation and decreased frontal-striatal and mesial temporal activation following the training program. These findings show proof of concept for an accessible training approach that may be potentially associated with improved number sense, math and related skills, as well as functional changes in math-related neural systems, even among individuals at risk for altered brain development. PMID:21714745
A micro-computer based system to compute magnetic variation
NASA Technical Reports Server (NTRS)
Kaul, R.
1984-01-01
A mathematical model of magnetic variation in the continental United States (COT48) was implemented in the Ohio University LORAN C receiver. The model is based on a least squares fit of a polynomial function. The implementation on the microprocessor based LORAN C receiver is possible with the help of a math chip, Am9511 which performs 32 bit floating point mathematical operations. A Peripheral Interface Adapter (M6520) is used to communicate between the 6502 based micro-computer and the 9511 math chip. The implementation provides magnetic variation data to the pilot as a function of latitude and longitude. The model and the real time implementation in the receiver are described.
Burns, Matthew K; Ysseldyke, Jim; Nelson, Peter M; Kanive, Rebecca
2015-09-01
Computational fluency is an important aspect of math proficiency. Despite widely held beliefs about the differential difficulty of single-digit multiplication math facts, little empirical work has examined this issue. The current study analyzed the number of repetitions needed to master multiplication math facts. Data from 15,402 3rd, 4th, and 5th graders were analyzed using a national database. Results suggested that (a) students with lower math skills required significantly (p < .001) more repetitions than more skilled students; (b) across all students, single-digit multiplication facts with 4s, 5s, 6s, and 7s required significantly (p < .001) more repetition than did 2s and 3s; and (c) the number of practice sessions needed to attain mastery significantly (p < .001) decreased with increase in grade level. Implications for instructional planning and implementation are discussed. (c) 2015 APA, all rights reserved).
Geometric Variational Methods for Controlled Active Vision
2006-08-01
Haker , L. Zhu, and A. Tannenbaum, ``Optimal mass transport for registration and warping’’ Int. Journal Computer Vision, volume 60, 2004, pp. 225-240. G...pp. 119-142. A. Angenent, S. Haker , and A. Tannenbaum, ``Minimizing flows for the Monge-Kantorovich problem,’’ SIAM J. Math. Analysis, volume 35...Shape analysis of structures using spherical wavelets’’ (with S. Haker and D. Nain), Proceeedings of MICCAI, 2005. ``Affine surface evolution for 3D
Goal Orientation Framing and Its Influence on Performance
2012-12-01
first-person shooter computer games Call of Duty: Modern Warfare 2 and Call of Duty: Modern Warfare 3. During the simulation, participants were...working understanding of social expectations and norms (Duda & Nicholis, 1992). It is true that obese people, drug addicts and abusive parents exist in...Monterey Student Activity Center. B. MEASURES Performance was assessed in two tests, a math test and a first-person shooter game . It was the intent of
Solving Math and Science Problems in the Real World with a Computational Mind
ERIC Educational Resources Information Center
Olabe, Juan Carlos; Basogain, Xabier; Olabe, Miguel Ángel; Maíz, Inmaculada; Castaño, Carlos
2014-01-01
This article presents a new paradigm for the study of Math and Sciences curriculum during primary and secondary education. A workshop for Education undergraduates at four different campuses (n = 242) was designed to introduce participants to the new paradigm. In order to make a qualitative analysis of the current school methodologies in…
Individualized Math Problems in Whole Numbers. Oregon Vo-Tech Mathematics Problem Sets.
ERIC Educational Resources Information Center
Cosler, Norma, Ed.
This is one of eighteen sets of individualized mathematics problems developed by the Oregon Vo-Tech Math Project. Each of these problem packages is organized around a mathematical topic and contains problems related to diverse vocations. Solutions are provided for all problems. Problems in this set require computations involving whole numbers.…
"Battleship Numberline": A Digital Game for Improving Estimation Accuracy on Fraction Number Lines
ERIC Educational Resources Information Center
Lomas, Derek; Ching, Dixie; Stampfer, Eliane; Sandoval, Melanie; Koedinger, Ken
2011-01-01
Given the strong relationship between number line estimation accuracy and math achievement, might a computer-based number line game help improve math achievement? In one study by Rittle-Johnson, Siegler and Alibali (2001), a simple digital game called "Catch the Monster" provided practice in estimating the location of decimals on a…
DSMC Modeling of Flows with Recombination Reactions
2017-06-23
Rogasinsky, “Analysis of the numerical techniques of the direct simulation Monte Carlo method in the rarefied gas dynamics,” Russ. J. Numer. Anal. Math ...reflection in steady flows,” Comput. Math . Appl. 35(1-2), 113–126 (1998). 45K. L. Wray, “Shock-tube study of the recombination of O atoms by Ar catalysts at
Evaluation of Available Software for Reconstruction of a Structure from its Imagery
2017-04-01
Math . 2, 164–168. Lowe, D. G. (1999) Object recognition from local scale-invariant features, in Proc. Int. Conf. Computer Vision, Vol. 2, pp. 1150–1157...Marquardt, D. (1963) An algorithm for least-squares estimation of nonlinear parameters, SIAM J. Appl. Math . 11(2), 431–441. UNCLASSIFIED 11 DST-Group–TR
Accelerated Mathematics and High-Ability Students' Math Achievement in Grades Three and Four
ERIC Educational Resources Information Center
Stanley, Ashley M.
2011-01-01
The purpose of this study was to explore the relationship between the use of a computer-managed integrated learning system entitled Accelerated Math (AM) as a supplement to traditional mathematics instruction on achievement as measured by TerraNova achievement tests of third and fourth grade high-ability students. Gender, socioeconomic status, and…
On the Computational Complexity of Stochastic Scheduling Problems,
1981-09-01
Survey": 1979, Ann. Discrete Math . 5, pp. 287-326. i I (.4) Karp, R.M., "Reducibility Among Combinatorial Problems": 1972, R.E. Miller and J.W...Weighted Completion Time Subject to Precedence Constraints": 1978, Ann. Discrete Math . 2, pp. 75-90. (8) Lawler, E.L. and J.W. Moore, "A Functional
ERIC Educational Resources Information Center
Mikula, Brendon D.; Heckler, Andrew F.
2017-01-01
We propose a framework for improving accuracy, fluency, and retention of basic skills essential for solving problems relevant to STEM introductory courses, and implement the framework for the case of basic vector math skills over several semesters in an introductory physics course. Using an iterative development process, the framework begins with…
ERIC Educational Resources Information Center
Reisener, Carmen D.; Dufrene, Brad A.; Clark, Chelsi R.; Olmi, D. Joe; Tingstrom, Daniel H.
2016-01-01
In a response to intervention RtI paradigm, the use of brief experimental analyses (BEAs) for identifying effective interventions for elementary and middle school students struggling with math is a relatively new area of research. This investigation includes two studies, both of which employed a brief multielement design and an extended analysis…
Individualized Math Problems in Volume. Oregon Vo-Tech Mathematics Problem Sets.
ERIC Educational Resources Information Center
Cosler, Norma, Ed.
This is one of eighteen sets of individualized mathematics problems developed by the Oregon Vo-Tech Math Project. Each of these problem packages is organized around a mathematical topic and contains problems related to diverse vocations. Solutions are provided for all problems. Problems in this booklet require the computation of volumes of solids,…
New algorithms to compute the nearness symmetric solution of the matrix equation.
Peng, Zhen-Yun; Fang, Yang-Zhi; Xiao, Xian-Wei; Du, Dan-Dan
2016-01-01
In this paper we consider the nearness symmetric solution of the matrix equation AXB = C to a given matrix [Formula: see text] in the sense of the Frobenius norm. By discussing equivalent form of the considered problem, we derive some necessary and sufficient conditions for the matrix [Formula: see text] is a solution of the considered problem. Based on the idea of the alternating variable minimization with multiplier method, we propose two iterative methods to compute the solution of the considered problem, and analyze the global convergence results of the proposed algorithms. Numerical results illustrate the proposed methods are more effective than the existing two methods proposed in Peng et al. (Appl Math Comput 160:763-777, 2005) and Peng (Int J Comput Math 87: 1820-1830, 2010).
Computers-in-the-Curriculum Workshop.
ERIC Educational Resources Information Center
Casella, Vicki
1987-01-01
Computer software to build skills and encourage family computer time over the summer are recommended for teachers to send home to parents. Programs include games based on classic adventure stories, a shopping mall game to encourage math skills, and keyboarding programs. (MT)
Reflections from the Computer Equity Training Project.
ERIC Educational Resources Information Center
Sanders, Jo Shuchat
This paper addresses girls' patterns of computer avoidance at the middle school and other grade levels. It reviews the evidence for a gender gap in computer use in several areas: in school, at home, in computer camps, in computer magazines, and in computer-related jobs. It compares the computer equity issue to math avoidance, and cites the middle…
NASA Technical Reports Server (NTRS)
Glaese, John R.; Tobbe, Patrick A.
1986-01-01
The Space Station Mechanism Test Bed consists of a hydraulically driven, computer controlled six degree of freedom (DOF) motion system with which docking, berthing, and other mechanisms can be evaluated. Measured contact forces and moments are provided to the simulation host computer to enable representation of orbital contact dynamics. This report describes the development of a generalized math model which represents the relative motion between two rigid orbiting vehicles. The model allows motion in six DOF for each body, with no vehicle size limitation. The rotational and translational equations of motion are derived. The method used to transform the forces and moments from the sensor location to the vehicles' centers of mass is also explained. Two math models of docking mechanisms, a simple translational spring and the Remote Manipulator System end effector, are presented along with simulation results. The translational spring model is used in an attempt to verify the simulation with compensated hardware in the loop results.
Attentional bias in math anxiety
Rubinsten, Orly; Eidlin, Hili; Wohl, Hadas; Akibli, Orly
2015-01-01
Cognitive theory from the field of general anxiety suggests that the tendency to display attentional bias toward negative information results in anxiety. Accordingly, the current study aims to investigate whether attentional bias is involved in math anxiety (MA) as well (i.e., a persistent negative reaction to math). Twenty seven participants (14 with high levels of MA and 13 with low levels of MA) were presented with a novel computerized numerical version of the well established dot probe task. One of six types of prime stimuli, either math related or typically neutral, was presented on one side of a computer screen. The prime was preceded by a probe (either one or two asterisks) that appeared in either the prime or the opposite location. Participants had to discriminate probe identity (one or two asterisks). Math anxious individuals reacted faster when the probe was at the location of the numerical related stimuli. This suggests the existence of attentional bias in MA. That is, for math anxious individuals, the cognitive system selectively favored the processing of emotionally negative information (i.e., math related words). These findings suggest that attentional bias is linked to unduly intense MA symptoms. PMID:26528208
Using computers to overcome math-phobia in an introductory course in musical acoustics
NASA Astrophysics Data System (ADS)
Piacsek, Andrew A.
2002-11-01
In recent years, the desktop computer has acquired the signal processing and visualization capabilities once obtained only with expensive specialized equipment. With the appropriate A/D card and software, a PC can behave like an oscilloscope, a real-time signal analyzer, a function generator, and a synthesizer, with both audio and visual outputs. In addition, the computer can be used to visualize specific wave behavior, such as superposition and standing waves, refraction, dispersion, etc. These capabilities make the computer an invaluable tool to teach basic acoustic principles to students with very poor math skills. In this paper I describe my approach to teaching the introductory-level Physics of Musical Sound at Central Washington University, in which very few science students enroll. Emphasis is placed on how vizualization with computers can help students appreciate and apply quantitative methods for analyzing sound.
Visual Form Perception Can Be a Cognitive Correlate of Lower Level Math Categories for Teenagers.
Cui, Jiaxin; Zhang, Yiyun; Cheng, Dazhi; Li, Dawei; Zhou, Xinlin
2017-01-01
Numerous studies have assessed the cognitive correlates of performance in mathematics, but little research has been conducted to systematically examine the relations between visual perception as the starting point of visuospatial processing and typical mathematical performance. In the current study, we recruited 223 seventh graders to perform a visual form perception task (figure matching), numerosity comparison, digit comparison, exact computation, approximate computation, and curriculum-based mathematical achievement tests. Results showed that, after controlling for gender, age, and five general cognitive processes (choice reaction time, visual tracing, mental rotation, spatial working memory, and non-verbal matrices reasoning), visual form perception had unique contributions to numerosity comparison, digit comparison, and exact computation, but had no significant relation with approximate computation or curriculum-based mathematical achievement. These results suggest that visual form perception is an important independent cognitive correlate of lower level math categories, including the approximate number system, digit comparison, and exact computation.
Making the Math/Science Connection.
ERIC Educational Resources Information Center
Sherman, Laurel Galbraith
1989-01-01
Suggestions are made for activities that combine the teaching of math and science. Math concepts include: graphing, estimating, measurement, statistics, geometry, and logic. Science topics include: plant reproduction, solar system, forces, longitude and latitude, Earth's magnetic field, nutrition, and heat. (IAH)
ERIC Educational Resources Information Center
Spann, Mary Beth
This book contains 18 reproducible Math Storymats which can be a refreshing addition to any early elementary math program. Each storymat is accompanied by two separate read-aloud story selections that guide children in using plastic disk-shaped markers to interact with the mats in specific and open-ended ways. Together the mats and the…
ERIC Educational Resources Information Center
Mead, Tim; Scibora, Lesley
2016-01-01
The purpose of the study was to determine if standardized math test scores improve by administering different types of exercise during math instruction. Three sixth grade classes were assessed on the Measures of Academic Progress (MAP) and the Minnesota Comprehensive Assessment (MCA) standardized math tests during the 2012 and 2013 academic year.…
Curriculum Boosters. Social Studies, Math, Language Arts.
ERIC Educational Resources Information Center
Reissman, Rose; And Others
1994-01-01
Presents three curriculum boosting activities for elementary classes. A social studies activity builds bridges to other cultures via literature. A math activity teaches students about percentages using baseball card statistics. A language arts activity helps students learn to appreciate the language of Shakespeare. A student page presents a…
Interaction with an Edu-Game: A Detailed Analysis of Student Emotions and Judges' Perceptions
ERIC Educational Resources Information Center
Conati, Cristina; Gutica, Mirela
2016-01-01
We present the results of a study that explored the emotions experienced by students during interaction with an educational game for math (Heroes of Math Island). Starting from emotion frameworks in affective computing and education, we considered a larger set of emotions than in related research. For emotion labeling, we started from a standard…
ERIC Educational Resources Information Center
Gottfried, Michael; Bozick, Robert
2012-01-01
Academic math and science courses have been long shown to increase learning and educational attainment, but are they sufficient on their own to prepare youth for the challenges and rigor of the STEM workforce? Or, are there distinctive benefits to complementing these traditional academic courses with applied ones? Answers to these questions are…
ERIC Educational Resources Information Center
Erkfritz-Gay, Karyn N.
2009-01-01
Past research has documented that the effectiveness of three different math strategies delivered to students via one-on-one instruction (i.e., cover-copy-compare (CCC); e.g., Skinner, Turco, Beatty, & Rasavage, 1989, traditional drill and practice (TDP); e.g., Cybriwsky & Schuster, 1990, and constant time delay (CTD); Kulik, 1994). This study…
Software Reviews. Programs Worth a Second Look.
ERIC Educational Resources Information Center
Schneider, Roxanne; Eiser, Leslie
1989-01-01
Reviewed are three computer software packages for use in middle/high school classrooms. Included are "MacWrite II," a word-processing program for MacIntosh computers; "Super Story Tree," a word-processing program for Apple and IBM computers; and "Math Blaster Mystery," for IBM, Apple, and Tandy computers. (CW)
Gender and Computers: Two Surveys of Computer-Related Attitudes.
ERIC Educational Resources Information Center
Wilder, Gita; And Others
1985-01-01
Describes two surveys used to (1) determine sex differences in attitudes toward computers and video games among schoolchildren and the relationship of these attitudes to attitudes about science, math, and writing; and (2) sex differences in attitudes toward computing among a select group of highly motivated college freshmen. (SA)
Math Attitudes of Computer Education and Instructional Technology Students
ERIC Educational Resources Information Center
Tekerek, Mehmet; Yeniterzi, Betul; Ercan, Orhan
2011-01-01
Computer Education and Instructional Technology (CEIT) Departments train computer teachers to fill gap of computer instructor in all grades of schools in Turkey. Additionally graduates can also work as instructional technologist or software developer. The curriculum of CEIT departments includes mathematics courses. The aim of this study is to…
Instructors' use of technology in post-secondary undergraduate mathematics teaching: a local study
NASA Astrophysics Data System (ADS)
Jesso, A. T.; Kondratieva, M. F.
2016-02-01
In this study, instructors of undergraduate mathematics from post-secondary institutions in Newfoundland were surveyed (N = 13) and interviewed (N = 8) about their use of, experiences with, and views on, technologically assisted teaching. It was found that the majority of them regularly use technologies for organizational and communication purposes. However, the use of math-specific technology such as computer algebra systems, or dynamic geometry software for instructional, exploratory, and creative activities with students takes place mostly on an individual basis, only occasionally, and is very much topic specific. This was even the case for those instructors who use technology proficiently in their research. The data also suggested that familiarity with and discussions of examples of technology implementation in teaching at regular and field-oriented professional development seminars within mathematics departments could potentially increase the use of math-specific technology by instructors.
Motor-Enriched Learning Activities Can Improve Mathematical Performance in Preadolescent Children.
Beck, Mikkel M; Lind, Rune R; Geertsen, Svend S; Ritz, Christian; Lundbye-Jensen, Jesper; Wienecke, Jacob
2016-01-01
Objective: An emerging field of research indicates that physical activity can benefit cognitive functions and academic achievements in children. However, less is known about how academic achievements can benefit from specific types of motor activities (e.g., fine and gross) integrated into learning activities. Thus, the aim of this study was to investigate whether fine or gross motor activity integrated into math lessons (i.e., motor-enrichment) could improve children's mathematical performance. Methods: A 6-week within school cluster-randomized intervention study investigated the effects of motor-enriched mathematical teaching in Danish preadolescent children ( n = 165, age = 7.5 ± 0.02 years). Three groups were included: a control group (CON), which received non-motor enriched conventional mathematical teaching, a fine motor math group (FMM) and a gross motor math group (GMM), which received mathematical teaching enriched with fine and gross motor activity, respectively. The children were tested before (T0), immediately after (T1) and 8 weeks after the intervention (T2). A standardized mathematical test (50 tasks) was used to evaluate mathematical performance. Furthermore, it was investigated whether motor-enriched math was accompanied by different effects in low and normal math performers. Additionally, the study investigated the potential contribution of cognitive functions and motor skills on mathematical performance. Results: All groups improved their mathematical performance from T0 to T1. However, from T0 to T1, the improvement was significantly greater in GMM compared to FMM (1.87 ± 0.71 correct answers) ( p = 0.02). At T2 no significant differences in mathematical performance were observed. A subgroup analysis revealed that normal math-performers benefitted from GMM compared to both CON 1.78 ± 0.73 correct answers ( p = 0.04) and FMM 2.14 ± 0.72 correct answers ( p = 0.008). These effects were not observed in low math-performers. The effects were partly accounted for by visuo-spatial short-term memory and gross motor skills. Conclusion: The study demonstrates that motor enriched learning activities can improve mathematical performance. In normal math performers GMM led to larger improvements than FMM and CON. This was not the case for the low math performers. Future studies should further elucidate the neurophysiological mechanisms underlying the observed behavioral effects.
Motor-Enriched Learning Activities Can Improve Mathematical Performance in Preadolescent Children
Beck, Mikkel M.; Lind, Rune R.; Geertsen, Svend S.; Ritz, Christian; Lundbye-Jensen, Jesper; Wienecke, Jacob
2016-01-01
Objective: An emerging field of research indicates that physical activity can benefit cognitive functions and academic achievements in children. However, less is known about how academic achievements can benefit from specific types of motor activities (e.g., fine and gross) integrated into learning activities. Thus, the aim of this study was to investigate whether fine or gross motor activity integrated into math lessons (i.e., motor-enrichment) could improve children's mathematical performance. Methods: A 6-week within school cluster-randomized intervention study investigated the effects of motor-enriched mathematical teaching in Danish preadolescent children (n = 165, age = 7.5 ± 0.02 years). Three groups were included: a control group (CON), which received non-motor enriched conventional mathematical teaching, a fine motor math group (FMM) and a gross motor math group (GMM), which received mathematical teaching enriched with fine and gross motor activity, respectively. The children were tested before (T0), immediately after (T1) and 8 weeks after the intervention (T2). A standardized mathematical test (50 tasks) was used to evaluate mathematical performance. Furthermore, it was investigated whether motor-enriched math was accompanied by different effects in low and normal math performers. Additionally, the study investigated the potential contribution of cognitive functions and motor skills on mathematical performance. Results: All groups improved their mathematical performance from T0 to T1. However, from T0 to T1, the improvement was significantly greater in GMM compared to FMM (1.87 ± 0.71 correct answers) (p = 0.02). At T2 no significant differences in mathematical performance were observed. A subgroup analysis revealed that normal math-performers benefitted from GMM compared to both CON 1.78 ± 0.73 correct answers (p = 0.04) and FMM 2.14 ± 0.72 correct answers (p = 0.008). These effects were not observed in low math-performers. The effects were partly accounted for by visuo-spatial short-term memory and gross motor skills. Conclusion: The study demonstrates that motor enriched learning activities can improve mathematical performance. In normal math performers GMM led to larger improvements than FMM and CON. This was not the case for the low math performers. Future studies should further elucidate the neurophysiological mechanisms underlying the observed behavioral effects. PMID:28066215
ERIC Educational Resources Information Center
Rowan-Kenyon, Heather T.; Swan, Amy K.; Creager, Marie F.
2012-01-01
The authors examined the central hypothesis that students' early perceptions of support and sense of engagement in math classes and math activities strongly influence the broadening or narrowing of their math interest. The focus was on the first wave of qualitative data collected from 5th-, 7th-, and 9th-grade students during the 2007-2008…
Grizenko, Natalie; Cai, Emmy; Jolicoeur, Claude; Ter-Stepanian, Mariam; Joober, Ridha
2013-11-01
Examine the short-term (acute) effects of methylphenidate (MPH) on math performance in children with attention-deficit hyperactivity disorder (ADHD) and what factors predict improvement in math performance. One hundred ninety-eight children with ADHD participated in a double-blind, placebo-controlled, randomized crossover MPH trial. Math response to MPH was determined through administration of math problems adjusted to their academic level during the Restricted Academic Situation Scale (RASS). Student t tests were conducted to assess change in math performance with psychostimulants. Correlation between change on the RASS and change on the math performance was also examined. Linear regression was performed to determine predictor variables. Children with ADHD improved significantly in their math with MPH (P < 0.001). The degree of improvement on the RASS (which evaluates motor activity and orientation to task) and on math performance on MPH was highly correlated. A child's age at baseline and Wechsler Individual Achievement Test (WIAT)-Numerical Operations standard scores at baseline accounted for 15% of variances for acute math improvement. MPH improves acute math performance in children with ADHD. Younger children with lower math scores (as assessed by the WIAT) improved most on math scores when given psychostimulants. NCT00483106.
ERIC Educational Resources Information Center
Swope, Darcy M.
2008-01-01
Times change in education, and the recent focus on math enrichment has led to the development of new ideas that integrated math with art. This article describes a "hands-on" activity where the concept of fractions is made more "real" to first-grade students. (Contains 1 online resource.)
Desco, Manuel; Navas-Sanchez, Francisco J; Sanchez-González, Javier; Reig, Santiago; Robles, Olalla; Franco, Carolina; Guzmán-De-Villoria, Juan A; García-Barreno, Pedro; Arango, Celso
2011-07-01
The main goal of this study was to investigate the neural substrates of fluid reasoning and visuospatial working memory in adolescents with precocious mathematical ability. The study population comprised two groups of adolescents: 13 math-gifted adolescents and 14 controls with average mathematical skills. Patterns of activation specific to reasoning tasks in math-gifted subjects were examined using functional magnetic resonance images acquired while the subjects were performing Raven's Advanced Progressive Matrices (RAPM) and the Tower of London (TOL) tasks. During the tasks, both groups showed significant activations in the frontoparietal network. In the math-gifted group, clusters of activation were always bilateral and more regions were recruited, especially in the right hemisphere. In the TOL task, math-gifted adolescents showed significant hyper-activations relative to controls in the precuneus, superior occipital lobe (BA 19), and medial temporal lobe (BA 39). The maximum differences between the groups were detected during RAPM tasks at the highest level of difficulty, where math-gifted subjects showed significant activations relative to controls in the right inferior parietal lobule (BA 40), anterior cingulated gyrus (BA 32), and frontal (BA 9, and BA 6) areas. Our results support the hypothesis that greater ability for complex mathematical reasoning may be related to more bilateral patterns of activation and that increased activation in the parietal and frontal regions of math-gifted adolescents is associated with enhanced skills in visuospatial processing and logical reasoning. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Stevens, Stacy Mckimm
There has been much research to suggest that a single-sex college experience for female undergraduate students can increase self-confidence and leadership ability during the college years and beyond. The results of previous studies also suggest that these students achieve in the workforce and enter graduate school at higher rates than their female peers graduating from coeducational institutions. However, some researchers have questioned these findings, suggesting that it is the selectivity level of the colleges rather than the comprised gender of the students that causes these differences. The purpose of this study was to justify the continuation of single-sex educational opportunities for females at the post-secondary level by examining the effects that college selectivity, college type, and time have on the rate of undergraduate females pursuing majors in non-traditional fields. The study examined the percentage of physical science, life science, math and computer science, and social science degrees conferred upon females graduating from women's colleges from 1985-2001, as compared to those at comparable coeducational colleges. Sampling for this study consisted of 42 liberal arts women's (n = 21) and coeducational (n = 21) colleges. Variables included the type of college, the selectivity level of the college, and the effect of time on the percentage of female graduates. Doubly multivariate repeated measures analysis of variance testing revealed significant main effects for college selectivity on social science graduates, and time on both life science and math and computer science graduates. Significant interaction was also found between the college type and time on social science graduates, as well as the college type, selectivity level, and time on math and computer science graduates. Implications of the results and suggestions for further research are discussed.
Tutoring math platform accessible for visually impaired people.
Maćkowski, Michał Sebastian; Brzoza, Piotr Franciszek; Spinczyk, Dominik Roland
2018-04-01
There are many problems with teaching and assessing impaired students in higher education, especially in technical science, where the knowledge is represented mostly by structural information like: math formulae, charts, graphs, etc. Developing e-learning platform for distance education solves this problem only partially due to the lack of accessibility for the blind. The proposed method is based on the decomposition of the typical mathematical exercise into a sequence of elementary sub-exercises. This allows for interactive resolving of math exercises and assessment of the correctness of exercise solutions at every stage. The presented methods were prepared and evaluated by visually impaired people and students. The article presents the accessible interactive tutoring platform for math teaching and assessment, and experience in exploring it. The results of conducted research confirm good understanding of math formulae described according to elaborated rules. Regardless of the level of complexity of the math formulae the level of math formulae understanding is higher for alternative structural description. The proposed solution enables alternative descriptions of math formulae. Based on the research results, the tool for computer-aided interactive learning of mathematics adapted to the needs of the blind has been designed, implemented and deployed as a platform for on-site and online and distance learning. The designed solution can be very helpful in overcoming many barriers that occur while teaching impaired students. Copyright © 2017 Elsevier Ltd. All rights reserved.
77 FR 12823 - Advanced Scientific Computing Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-02
... Exascale ARRA projects--Magellan final report, Advanced Networking update Status from Computer Science COV Early Career technical talks Summary of Applied Math and Computer Science Workshops ASCR's new SBIR..., Office of Science. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the...
Computational Skills for Biology Students
ERIC Educational Resources Information Center
Gross, Louis J.
2008-01-01
This interview with Distinguished Science Award recipient Louis J. Gross highlights essential computational skills for modern biology, including: (1) teaching concepts listed in the Math & Bio 2010 report; (2) illustrating to students that jobs today require quantitative skills; and (3) resources and materials that focus on computational skills.
Effects of everyday romantic goal pursuit on women's attitudes toward math and science.
Park, Lora E; Young, Ariana F; Troisi, Jordan D; Pinkus, Rebecca T
2011-09-01
The present research examined the impact of everyday romantic goal strivings on women's attitudes toward science, technology, engineering, and math (STEM). It was hypothesized that women may distance themselves from STEM when the goal to be romantically desirable is activated because pursuing intelligence goals in masculine domains (i.e., STEM) conflicts with pursuing romantic goals associated with traditional romantic scripts and gender norms. Consistent with hypotheses, women, but not men, who viewed images (Study 1) or overheard conversations (Studies 2a-2b) related to romantic goals reported less positive attitudes toward STEM and less preference for majoring in math/science compared to other disciplines. On days when women pursued romantic goals, the more romantic activities they engaged in and the more desirable they felt, but the fewer math activities they engaged in. Furthermore, women's previous day romantic goal strivings predicted feeling more desirable but being less invested in math on the following day (Study 3).
Not Just Numbers: Creating a Partnership Climate to Improve Math Proficiency in Schools
Sheldon, Steven B.; Epstein, Joyce L.; Galindo, Claudia L.
2009-01-01
Although we know that family involvement is associated with stronger math performance, little is known about what educators are doing to effectively involve families and community members, and whether this measurably improves math achievement at their schools. This study used data from 39 schools to assess the effects of family and community involvement activities on school levels of math achievement. The study found that better implementation of math-related practices of family and community involvement predicted stronger support from parents for schools’ partnership programs, which, in turn, helped estimate the percentage of students scoring proficient on math achievement tests. PMID:20200592
Computer Anxiety: Relationship to Math Anxiety and Holland Types.
ERIC Educational Resources Information Center
Bellando, Jayne; Winer, Jane L.
Although the number of computers in the school system is increasing, many schools are not using computers to their capacity. One reason for this may be computer anxiety on the part of the teacher. A review of the computer anxiety literature reveals little information on the subject, and findings from previous studies suggest that basic controlled…
ERIC Educational Resources Information Center
Foster, M. E.; Anthony, J. L.; Clements, D. H.; Sarama, J.; Williams, J. M.
2016-01-01
Children from low-income and ethnic minority backgrounds have demonstrated substantially lower levels of math achievement than their middle class majority peers for decades. The present study addressed two research questions: (1) when used as a supplement to typical classroom instruction and in isolation from the larger curriculum, does Building…
NASA Astrophysics Data System (ADS)
Durrani, Matin
2008-07-01
A new postgraduate centre for maths and computer science is set to open in the Nigerian capital of Abuja this month as part of an ambitious plan to find the "next Einstein" in Africa. The centre will provide advanced training to graduate students from across Africa in maths and related fields. It will seek to attract the best young African scientists and nurture their talents as problem-solvers and teachers.
ERIC Educational Resources Information Center
Jayanthi, Madhavi; Gersten, Russell; Taylor, Mary Jo; Smolkowski, Keith; Dimino, Joseph
2017-01-01
Contemporary state math standards emphasize that students must demonstrate an understanding of the mathematical ideas underlying the computations that have typically been the core of the elementary school math curriculum. The standards have put an increased emphasis on the study of fractions in upper elementary grades, which are the years during…
ERIC Educational Resources Information Center
van der Ven, Sanne H. G.; Klaiber, Jonathan D.; van der Maas, Han L. J.
2017-01-01
Writing down spoken number words (transcoding) is an ability that is predictive of math performance and related to working memory ability. We analysed these relationships in a large sample of over 25,000 children, from kindergarten to the end of primary school, who solved transcoding items with a computer adaptive system. Furthermore, we…
ERIC Educational Resources Information Center
Roblyer, M. D., Ed.
Current issues in educational uses for microcomputers are addressed in this collection of 139 abstracts of papers in which computer literacy and practical applications dominate. Topics discussed include factors related to computer use in the classroom, e.g., computer lab utilization; teaching geometry, science, math, and English via…
Computer Games for the Math Achievement of Diverse Students
ERIC Educational Resources Information Center
Kim, Sunha; Chang, Mido
2010-01-01
Although computer games as a way to improve students' learning have received attention by many educational researchers, no consensus has been reached on the effects of computer games on student achievement. Moreover, there is lack of empirical research on differential effects of computer games on diverse learners. In response, this study…
ERIC Educational Resources Information Center
Clarke, Jacqueline, Ed.
1999-01-01
Presents hand-on, standards-based activities in language arts, math, science, and social studies, including a daily almanac; bookmark buddies; word palettes; bowling for numbers; math thought teasers; plant puzzles; fingerprint fun; a travel bureau; and an end-of-the-year bulletin board of people involved in interesting activities. Reproducible…
Childcare Quality and Preschoolers' Math Development
ERIC Educational Resources Information Center
Choi, Ji Young; Dobbs-Oates, Jennifer
2014-01-01
This study examined the associations between four types of childcare quality (i.e. teacher-child closeness, frequency of math-related activities, and teacher education and experience) and preschoolers' residualised gain in math over the course of six months. Additionally, potential interactions between teacher-child closeness and other indicators…
Lavender fragrance cleansing gel effects on relaxation.
Field, Tiffany; Diego, Miguel; Hernandez-Reif, Maria; Cisneros, Wendy; Feijo, Larissa; Vera, Yanexy; Gil, Karla; Grina, Diana; Claire He, Qing
2005-02-01
Alertness, mood, and math computations were assessed in 11 healthy adults who sniffed a cosmetic cleansing gel with lavender floral blend aroma, developed to be relaxing using Mood Mapping. EEG patterns and heart rate were also recorded before, during, and after the aroma session. The lavender fragrance blend had a significant transient effect of improving mood, making people feel more relaxed, and performing the math computation faster. The self-report and physiological data are consistent with relaxation profiles during other sensory stimuli such as massage and music, as reported in the literature. The data suggest that a specific cosmetic fragrance can have a significant role in enhancing relaxation.
A micro-computer-based system to compute magnetic variation
NASA Technical Reports Server (NTRS)
Kaul, Rajan
1987-01-01
A mathematical model of magnetic variation in the continental United States was implemented in the Ohio University Loran-C receiver. The model is based on a least squares fit of a polynomial function. The implementation on the microprocessor based Loran-C receiver is possible with the help of a math chip which performs 32 bit floating point mathematical operations. A Peripheral Interface Adapter is used to communicate between the 6502 based microcomputer and the 9511 math chip. The implementation provides magnetic variation data to the pilot as a function of latitude and longitude. The model and the real time implementation in the receiver are described.
Resistance Distances and Kirchhoff Index in Generalised Join Graphs
NASA Astrophysics Data System (ADS)
Chen, Haiyan
2017-03-01
The resistance distance between any two vertices of a connected graph is defined as the effective resistance between them in the electrical network constructed from the graph by replacing each edge with a unit resistor. The Kirchhoff index of a graph is defined as the sum of all the resistance distances between any pair of vertices of the graph. Let G=H[G1, G2, …, Gk ] be the generalised join graph of G1, G2, …, Gk determined by H. In this paper, we first give formulae for resistance distances and Kirchhoff index of G in terms of parameters of
Computer Algebra Systems in Undergraduate Instruction.
ERIC Educational Resources Information Center
Small, Don; And Others
1986-01-01
Computer algebra systems (such as MACSYMA and muMath) can carry out many of the operations of calculus, linear algebra, and differential equations. Use of them with sketching graphs of rational functions and with other topics is discussed. (MNS)
Haist, Frank; Wazny, Jarnet H; Toomarian, Elizabeth; Adamo, Maha
2015-02-01
A central question in cognitive and educational neuroscience is whether brain operations supporting nonlinguistic intuitive number sense (numerosity) predict individual acquisition and academic achievement for symbolic or "formal" math knowledge. Here, we conducted a developmental functional magnetic resonance imaging (MRI) study of nonsymbolic numerosity task performance in 44 participants including 14 school age children (6-12 years old), 14 adolescents (13-17 years old), and 16 adults and compared a brain activity measure of numerosity precision to scores from the Woodcock-Johnson III Broad Math index of math academic achievement. Accuracy and reaction time from the numerosity task did not reliably predict formal math achievement. We found a significant positive developmental trend for improved numerosity precision in the parietal cortex and intraparietal sulcus specifically. Controlling for age and overall cognitive ability, we found a reliable positive relationship between individual math achievement scores and parietal lobe activity only in children. In addition, children showed robust positive relationships between math achievement and numerosity precision within ventral stream processing areas bilaterally. The pattern of results suggests a dynamic developmental trajectory for visual discrimination strategies that predict the acquisition of formal math knowledge. In adults, the efficiency of visual discrimination marked by numerosity acuity in ventral occipital-temporal cortex and hippocampus differentiated individuals with better or worse formal math achievement, respectively. Overall, these results suggest that two different brain systems for nonsymbolic numerosity acuity may contribute to individual differences in math achievement and that the contribution of these systems differs across development. © 2014 Wiley Periodicals, Inc.
Haist, Frank; Wazny, Jarnet H.; Toomarian, Elizabeth; Adamo, Maha
2015-01-01
A central question in cognitive and educational neuroscience is whether brain operations supporting non-linguistic intuitive number sense (numerosity) predict individual acquisition and academic achievement for symbolic or “formal” math knowledge. Here, we conducted a developmental functional MRI study of nonsymbolic numerosity task performance in 44 participants including 14 school age children (6–12 years-old), 14 adolescents (13–17 years-old), and 16 adults and compared a brain activity measure of numerosity precision to scores from the Woodcock-Johnson III Broad Math index of math academic achievement. Accuracy and reaction time from the numerosity task did not reliably predict formal math achievement. We found a significant positive developmental trend for improved numerosity precision in the parietal cortex and intraparietal sulcus (IPS) specifically. Controlling for age and overall cognitive ability, we found a reliable positive relationship between individual math achievement scores and parietal lobe activity only in children. In addition, children showed robust positive relationships between math achievement and numerosity precision within ventral stream processing areas bilaterally. The pattern of results suggests a dynamic developmental trajectory for visual discrimination strategies that predict the acquisition of formal math knowledge. In adults, the efficiency of visual discrimination marked by numerosity acuity in ventral occipital-temporal cortex and hippocampus differentiated individuals with better or worse formal math achievement, respectively. Overall, these results suggest that two different brain systems for nonsymbolic numerosity acuity may contribute to individual differences in math achievement and that the contribution of these systems differs across development. PMID:25327879
Powell, Sarah R; Fuchs, Lynn S; Fuchs, Douglas; Cirino, Paul T; Fletcher, Jack M
2009-01-01
The purpose of this study was to assess the efficacy of fact retrieval tutoring as a function of math difficulty (MD) subtype, that is, whether students have MD alone (MD-only) or have concurrent difficulty with math and reading (MDRD). Third graders (n = 139) at two sites were randomly assigned, blocking by site and MD subtype, to four tutoring conditions: fact retrieval practice, conceptual fact retrieval instruction with practice, procedural computation/estimation instruction, and control (no tutoring). Tutoring occurred for 45 sessions over 15weeks for 15-25 minutes per session. Results provided evidence of an interaction between tutoring condition and MD subtype status for assessment of fact retrieval. For MD-only students, students in both fact retrieval conditions achieved comparably and outperformed MD-only students in the control group as well as those in the procedural computation/estimation instruction group. By contrast, for MDRD students, there were no significant differences among intervention conditions.
Powell, Sarah R.; Fuchs, Lynn S.; Fuchs, Douglas; Cirino, Paul T.; Fletcher, Jack M.
2009-01-01
The purpose of this study was to assess the efficacy of fact retrieval tutoring as a function of math difficulty (MD) subtype, that is, whether students have MD alone (MD-only) or have concurrent difficulty with math and reading (MDRD). Third graders (n = 139) at two sites were randomly assigned, blocking by site and MD subtype, to four tutoring conditions: fact retrieval practice, conceptual fact retrieval instruction with practice, procedural computation/estimation instruction, and control (no tutoring). Tutoring occurred for 45 sessions over 15weeks for 15–25 minutes per session. Results provided evidence of an interaction between tutoring condition and MD subtype status for assessment of fact retrieval. For MD-only students, students in both fact retrieval conditions achieved comparably and outperformed MD-only students in the control group as well as those in the procedural computation/estimation instruction group. By contrast, for MDRD students, there were no significant differences among intervention conditions. PMID:19448840
Teachers’ ability in using math learning media
NASA Astrophysics Data System (ADS)
Masniladevi; Prahmana, R. C. I.; Helsa, Y.; Dalais, M.
2017-12-01
The studies aim to enhance teachers’ knowledge and skill in making math instructional media, develop math instructional media, train and assist the use of instructional media in learning math in the classroom. The method used in the activities adopted the pattern of preventive implementation, planning stage, program implementation, observation and evaluation and reflection. The research results show that the evaluation of teachers’ ability is still in average category. The result required more intensive training.
78 FR 48472 - Notice of Entering into a Compact with Georgia
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-08
... assessments. The project consists of three activities, which were targeted to specifically improve math and... approximately 23,400 math, science, information and communications technology, and English teachers in grades 7... approximately six national assessments focused on math and science, and the development of a system of classroom...
75 FR 69135 - Agency Information Collection Activities: Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-10
...: Title of Collection: Evaluation of the National Science Foundation's Math and Science Partnership (MSP...- year clearance for an evaluation of the Math and Science Partnership (MSP) program. The MSP program is..., especially disciplinary faculty in math, sciences, and engineering, with that of K-12 communities in order to...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-19
... of Math Professional Development AGENCY: Institute of Education Sciences (IES), Department of... to this notice will be considered public records. Title of Collection: Impact Evaluation of Math... of math professional development (PD). The study will provide important information about the...
Math and Mind Mapping: Origami Construction
ERIC Educational Resources Information Center
Sze, Susan
2005-01-01
Students with or without disabilities often experience difficulties with abstract math concepts. This paper is intended to help solve the mystery of math concepts through origami construction, a hands-on activity. Students are involved in constructing and deconstructing concepts by folding and unfolding a piece of paper which eventually leads to a…
Elementary School Students' Spoken Activities and Their Responses in Math Learning by Peer-Tutoring
ERIC Educational Resources Information Center
Baiduri
2017-01-01
Students' activities in the learning process are very important to indicate the quality of learning process. One of which is spoken activity. This study was intended to analyze the elementary school students' spoken activities and their responses in joining Math learning process by peer-tutoring. Descriptive qualitative design was piloted by means…
Math Thinking Motivators. A Good Apple Math Activity Book for Grades 2-7.
ERIC Educational Resources Information Center
Bernstein, Bob
In this booklet are 43 mathematical games and activities to stimulate creative thinking in grades 2-7. The goal of teaching divergent thinking is stressed, as well as the need to encourage positive self-image, motivation, and creativity. For each activity, the mathematical skills addressed in the activity are listed; topics span the elementary…
ERIC Educational Resources Information Center
Berryman, Sue E.
This paper describes trends in and causes of minority and female representation among holders of advanced science and math degrees. The minority groups studied are Blacks, Hispanic Americans, American Indians, and Asian Americans, all of whom are compared with Whites. The degrees looked at include those in math, the computer sciences, physical…
Study of Gender Differences in Performance at the U.S. Naval Academy and U.S. Coast Guard Academy
2005-06-01
teacher preparation. By using both qualitative and quantitative methods for pre-service teachers, Kelly concludes that most teachers could not identify...Engineering MATH/SCIENCE Marine and Environmental Sciences Math and Computer Science Operations Research SOCIAL SCIENCE Government...Tabachnik and Findell, 2001). Correlational research is often a good precursor to answering other questions by empirical methods . Correlations measure the
Visual Form Perception Can Be a Cognitive Correlate of Lower Level Math Categories for Teenagers
Cui, Jiaxin; Zhang, Yiyun; Cheng, Dazhi; Li, Dawei; Zhou, Xinlin
2017-01-01
Numerous studies have assessed the cognitive correlates of performance in mathematics, but little research has been conducted to systematically examine the relations between visual perception as the starting point of visuospatial processing and typical mathematical performance. In the current study, we recruited 223 seventh graders to perform a visual form perception task (figure matching), numerosity comparison, digit comparison, exact computation, approximate computation, and curriculum-based mathematical achievement tests. Results showed that, after controlling for gender, age, and five general cognitive processes (choice reaction time, visual tracing, mental rotation, spatial working memory, and non-verbal matrices reasoning), visual form perception had unique contributions to numerosity comparison, digit comparison, and exact computation, but had no significant relation with approximate computation or curriculum-based mathematical achievement. These results suggest that visual form perception is an important independent cognitive correlate of lower level math categories, including the approximate number system, digit comparison, and exact computation. PMID:28824513
Child, Amanda E; Cirino, Paul T; Fletcher, Jack M; Willcutt, Erik G; Fuchs, Lynn S
2018-05-01
Disorders of reading, math, and attention frequently co-occur in children. However, it is not yet clear which cognitive factors contribute to comorbidities among multiple disorders and which uniquely relate to one, especially because they have rarely been studied as a triad. Thus, the present study considers how reading, math, and attention relate to phonological awareness, numerosity, working memory, and processing speed, all implicated as either unique or shared correlates of these disorders. In response to findings that the attributes of all three disorders exist on a continuum rather than representing qualitatively different groups, this study employed a dimensional approach. Furthermore, we used both timed and untimed academic variables in addition to attention and activity level variables. The results supported the role of working memory and phonological awareness in the overlap among reading, math, and attention, with a limited role of processing speed. Numerosity was related to the comorbidity between math and attention. The results from timed variables and activity level were similar to those from untimed and attention variables, although activity level was less strongly related to cognitive and academic/attention variables. These findings have implications for understanding cognitive deficits that contribute to comorbid reading disability, math disability, and/or attention-deficit/hyperactivity disorder.
Math Thinkercises. A Good Apple Math Activity Book for Students. Grades 4-8.
ERIC Educational Resources Information Center
Daniel, Becky
This booklet designed for students in grades 4-8 provides 52 activities, including puzzles and problems. Activities range from simple to complex, giving learners practice in finding patterns, numeration, permutation, and problem solving. Calculators should be available, and students should be encouraged to discuss solutions with classmates,…
The Deubiquitylase MATH-33 Controls DAF-16 Stability and Function in Metabolism and Longevity
Heimbucher, Thomas; Liu, Zheng; Bossard, Carine; McCloskey, Richard; Carrano, Andrea C.; Riedel, Christian G.; Tanasa, Bogdan; Klammt, Christian; Fonslow, Bryan R.; Riera, Celine E.; Lillemeier, Bjorn F.; Kemphues, Kenneth; Yates, John R.; O'Shea, Clodagh; Hunter, Tony; Dillin, Andrew
2015-01-01
SUMMARY One of the major determinants of aging in organisms ranging from worms to man are FOXO family transcription factors, which are downstream effectors of Insulin/IGF-1 signaling (IIS). The molecular mechanisms that actively promote DAF16/FOXO stability and function are unknown. Here we identify the deubiquitylating enzyme MATH-33 as an essential DAF-16 regulator in IIS, which stabilizes active DAF-16 protein levels and, as a consequence, influences DAF-16 functions, such as metabolism, stress response and longevity in C. elegans. MATH-33 associates with DAF-16 in cellulo and in vitro. MATH-33 functions as a deubiquitylase by actively removing ubiquitin moieties from DAF-16, thus counteracting the action of the RLE-1 E3-ubiquitin ligase. Our findings support a model in which MATH-33 promotes DAF-16 stability in response to decreased IIS by directly modulating its ubiquitylation state, suggesting that regulated oscillations in the stability of DAF-16 protein play an integral role in controlling processes such as metabolism and longevity. PMID:26154057
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-04
... Upward Bound Math Science Annual Performance Report AGENCY: Office of Postsecondary Education (OPE... Upward Bound Math Science Annual Performance Report. OMB Control Number: 1840-NEW. Type of Review: New... Upward Bound (UB) and Upward Bound Math and Science (UBMS) Programs. The Department is requesting a new...
Astra's Magic Math. Teacher's Manual, Manipulatives, and Student Worksheets.
ERIC Educational Resources Information Center
Brown, Judith; And Others
Astra's Magic Math is a beginning multi-sensory program that attempts to teach basic math skills through 22 sequentially developed self-contained units designed to combine manipulation, writing, and language activities. The units are first introduced to the large group to stimulate interest and develop concepts through oral language. Children then…
ERIC Educational Resources Information Center
Hansen, Michael; Gonzalez, Thomas
2014-01-01
Science, technology, engineering and math (STEM) advocates commonly emphasize an interdisciplinary, authentic, project-based, and technology-based approach to learning, though the strength of prior research varies. This study examines the association between a range of classroom activities and academic performance gains in math and science. Using…
Preservice Teachers' Observations of Children's Learning during Family Math Night
ERIC Educational Resources Information Center
Kurz, Terri L.; Kokic, Ivana Batarelo
2011-01-01
Family math night can easily be implemented into mathematics methodology courses providing an opportunity for field-based learning. Preservice teachers were asked to develop and implement an inquiry-based activity at a family math night event held at a local school with personnel, elementary children and their parents in attendance. This action…
Applied Math. Course Materials: Math 111, 112, 113. Seattle Tech Prep Applied Academics Project.
ERIC Educational Resources Information Center
South Seattle Community Coll., Washington.
This publication contains materials for three courses in Applied Math in the Applied Academics program at South Seattle Community College. It begins with the article, "Community College Applied Academics: The State of the Art?" (George B. Neff), which describes the characteristics, model, courses, and coordination activity that make up…
Helping Your Child Learn Math: Math Tips for Parents
ERIC Educational Resources Information Center
Nebraska Department of Education, 2010
2010-01-01
This paper presents tips, activities, resources, and games that parents can use to help their children become more proficient in math. Some helpful tips offered are: (1) Be positive; (2) Play family games; (3) Avoid stereotypes; (4) Choose gifts that develop problem solving skills; (5) Expand your children's horizons; (6) Buy or borrow library…
NASA Astrophysics Data System (ADS)
Virnoche, Mary E.
Little longitudinal or follow-up data is available on the impact of Expanding Your Horizons (EYH) conferences. The purpose of the conferences is to encourage girls to take more math and science in high school by exposing them to hands-on activities and role models in math and science professions. This paper is based on 2005 and 2006 one-to-one and small-group interview data from 22 high school girls who attended an EYH conference during their middle school years. The data suggests that EYH strengthens girls' persistence in math and science pathways. Most girls came to the conferences already interested in math and science and at the urging of parents or teachers. Most felt empowered through the shared experience with hundreds of other girls and women, and relayed detailed and enthusiastic descriptions of hands-on activities. Many of the girls also drew connections between EYH and their course-taking actions and career goals. This paper highlights examples of these experiences and makes recommendations for future math and science early pipeline diversity work.
The existence of almost periodic solutions of certain perturbation systems
NASA Astrophysics Data System (ADS)
Xia, Yonghui; Lin, Muren; Cao, Jinde
2005-10-01
Certain almost periodic perturbation systems are considered in this paper. By using the roughness theory of exponential dichotomies and the contraction mapping principle, some sufficient conditions are obtained for the existence and uniqueness of almost periodic solution of the above systems. Our results generalize those in [J.K. Hale, Ordinary Differential Equations, Krieger, Huntington, 1980; C. He, Existence of almost periodic solutions of perturbation systems, Ann. Differential Equations 9 (1992) 173-181; M. Lin, The existence of almost periodic solution and bounded solution of perturbation systems, Acta Math. Sinica 22A (2002) 61-70 (in Chinese); W.A. Coppel, Almost periodic properties of ordinary differential equations, Ann. Math. Pura Appl. 76 (1967) 27-50; A.M. Fink, Almost Periodic Differential Equations, Lecture Notes in Math., vol. 377, Springer-Verlag, New York, 1974; Y. Xia, F. Chen, A. Chen, J. Cao, Existence and global attractivity of an almost periodic ecological model, Appl. Math. Comput. 157 (2004) 449-475].
ERIC Educational Resources Information Center
Kimble-Ellis, Sonya
Puzzles, games, and activities provide perfect opportunities for students to work in groups, interact, communicate with each other, and discuss strategies. The activities, games, and puzzles contained in this book are designed to help students learn mathematics in a fun yet challenging way. The activities are designed to encourage students to…
NASA Technical Reports Server (NTRS)
1996-01-01
The NASA Lewis Research Center's Information Infrastructure Technology and Applications for Kindergarten to 12th Grade (IITA K-12) Program is designed to introduce into school systems computing and communications technology that benefits math and science studies. By incorporating this technology into K-12 curriculums, we hope to increase the proficiency and interest in math and science subjects by K-12 students so that they continue to study technical subjects after their high school careers are over.
Computer Courseware Evaluations. January, 1983 to May, 1985. A Series of Reports.
ERIC Educational Resources Information Center
Alberta Dept. of Education, Edmonton. Curriculum Branch Clearinghouse.
Fourth in a series, this cumulative report reviews Apple computer courseware and some IBM courseware (Business and Math sections) authorized by Alberta Education from January 1983 through May 1985. It provides detailed evaluations of 168 authorized titles in business education (17), computer literacy (12), early childhood education (8), language…
ERIC Educational Resources Information Center
Alberta Dept. of Education, Edmonton.
This report reviews Apple computer courseware in business education, library skills, mathematics, science, special education, and word processing based on the curricular requirements of Alberta, Canada. It provides detailed evaluations of 23 authorized titles in business education (2), mathematics (20), and science (1); 3 of the math titles are…
Computer-Aided College Algebra: Learning Components that Students Find Beneficial
ERIC Educational Resources Information Center
Aichele, Douglas B.; Francisco, Cynthia; Utley, Juliana; Wescoatt, Benjamin
2011-01-01
A mixed-method study was conducted during the Fall 2008 semester to better understand the experiences of students participating in computer-aided instruction of College Algebra using the software MyMathLab. The learning environment included a computer learning system for the majority of the instruction, a support system via focus groups (weekly…
ERIC Educational Resources Information Center
Ke, Fengfeng
2008-01-01
This article reports findings on a study of educational computer games used within various classroom situations. Employing an across-stage, mixed method model, the study examined whether educational computer games, in comparison to traditional paper-and-pencil drills, would be more effective in facilitating comprehensive math learning outcomes,…
Drill Sergeant or Math Teacher: Teacher Socialization and Computer Advertisements.
ERIC Educational Resources Information Center
Gribble, Mary; And Others
This paper addresses the question of teacher socialization through contrived images, i.e., the influence of advertising as part of an educational and socialization process. It examines ways in which computer advertisements directed towards teachers influence their perceptions of how computers can and should be used, and how the same advertisements…
The Use of Computers in the Math Classroom.
ERIC Educational Resources Information Center
Blass, Barbara; And Others
In an effort to increase faculty use and knowledge of computers, Oakland Community College (OCC), in Michigan, developed a Summer Technology Institute (STI), and a Computer Technology Grants (CTG) project beginning in 1989. The STI involved 3-day forums during summers 1989, 1990, and 1991 to expose faculty to hardware and software applications.…
Using E-mail in a Math/Computer Core Course.
ERIC Educational Resources Information Center
Gurwitz, Chaya
This paper notes the advantages of using e-mail in computer literacy classes, and discusses the results of incorporating an e-mail assignment in the "Introduction to Mathematical Reasoning and Computer Programming" core course at Brooklyn College (New York). The assignment consisted of several steps. The students first read and responded…
Wilkey, Eric D; Barone, Jordan C; Mazzocco, Michèle M M; Vogel, Stephan E; Price, Gavin R
2017-10-01
Nonsymbolic numerical comparison task performance (whereby a participant judges which of two groups of objects is numerically larger) is thought to index the efficiency of neural systems supporting numerical magnitude perception, and performance on such tasks has been related to individual differences in math competency. However, a growing body of research suggests task performance is heavily influenced by visual parameters of the stimuli (e.g. surface area and dot size of object sets) such that the correlation with math is driven by performance on trials in which number is incongruent with visual cues. Almost nothing is currently known about whether the neural correlates of nonsymbolic magnitude comparison are also affected by visual congruency. To investigate this issue, we used functional magnetic resonance imaging (fMRI) to analyze neural activity during a nonsymbolic comparison task as a function of visual congruency in a sample of typically developing high school students (n = 36). Further, we investigated the relation to math competency as measured by the preliminary scholastic aptitude test (PSAT) in 10th grade. Our results indicate that neural activity was modulated by the ratio of the dot sets being compared in brain regions previously shown to exhibit an effect of ratio (i.e. left anterior cingulate, left precentral gyrus, left intraparietal sulcus, and right superior parietal lobe) when calculated from the average of congruent and incongruent trials, as it is in most studies, and that the effect of ratio within those regions did not differ as a function of congruency condition. However, there were significant differences in other regions in overall task-related activation, as opposed to the neural ratio effect, when congruent and incongruent conditions were contrasted at the whole-brain level. Math competency negatively correlated with ratio-dependent neural response in the left insula across congruency conditions and showed distinct correlations when split across conditions. There was a positive correlation between math competency in the right supramarginal gyrus during congruent trials and a negative correlation in the left angular gyrus during incongruent trials. Together, these findings support the idea that performance on the nonsymbolic comparison task relates to math competency and ratio-dependent neural activity does not differ by congruency condition. With regards to math competency, congruent and incongruent trials showed distinct relations between math competency and individual differences in ratio-dependent neural activity. Copyright © 2017 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Spanish Curricula Development Center, Miami Beach, FL.
Instructional and assessment activities for unit seven of a science/math strand for Spanish-speaking students in grade three focus on the extended community. Activities support four spiraling questions on the elements, wants and needs, change occurrence, and results of change. For each activity, the focus, objective, and materials needed are…
ERIC Educational Resources Information Center
Whittaker, Jessica Vick; Kinzie, Mable B.; Williford, Amanda; DeCoster, Jamie
2016-01-01
Research Findings: This study examined the impact of MyTeachingPartner-Math/Science, a system of math and science curricula and professional development, on the quality of teachers' interactions with children in their classrooms. Schools were randomly assigned to 1 of 2 intervention conditions (Basic: curricula providing within-activity, embedded…
Poems for Math Practice: With 80 Skill-Building Activities
ERIC Educational Resources Information Center
Reynolds, Laureen
2006-01-01
Aimed at students who love math as well as those who dread it, this book adds another dimension to the abstract nature of numbers. Using words and pictures, teachers can help children make the connection between mathematics and their everyday routines and observations. This book includes: (1) 20 illustrated poems; (2) math practice with sorting,…
Putting Math Into Family Life: What's Possible for Working Parents?
ERIC Educational Resources Information Center
Kliman, Marlene; Mokros, Jan; Parkes, Alana
A set of parent-child math activities designed to help busy, working parents do math with their children as part of everyday situations such as cleaning up and making dinner included basic steps, variations, and information on working with children were developed for families with elementary grades children aged approximately 5 to 11 and…
ERIC Educational Resources Information Center
Kariuki, Patrick; Gentry, Christi
2010-01-01
The purpose of this study was to examine the effects of Accelerated Math utilization on students' grade equivalency scores. Twelve students for both experimental and control groups were randomly selected from 37 students enrolled in math in grades four through six. The experimental group consisted of the students who actively participated in…
Bars, Lines, & Pies: A Graphing Skills Program. Expect the Unexpected with Math[R
ERIC Educational Resources Information Center
Actuarial Foundation, 2013
2013-01-01
"Bars, Lines, & Pies" is a dynamic math program designed to build graphing skills in students, while also showing them the relevance of math in their lives. Developed by The Actuarial Foundation along with Scholastic, the graphing lessons and activities involve engaging, real-world examples about the environment and recycling. In these lessons,…
Negotiating the Essential Tension of Teacher Communities in a Statewide Math Teachers' Circle
ERIC Educational Resources Information Center
Peck, Frederick A.; Erickson, David; Feliciano-Semidei, Ricela; Renga, Ian P.; Roscoe, Matt; Wu, Ke
2017-01-01
Math Teachers' Circles (MTCs) bring math teachers and university mathematicians together to engage in collaborative mathematical activity. Currently there are over 110 MTCs across 40 states. A key claim is that MTCs are "communities of practice." However, to date there has been no research to substantiate this claim. In this paper, we…
Using Math With Maple Sugaring.
ERIC Educational Resources Information Center
Christenson, Gary
1984-01-01
Suggest several math activities using the simple technique of tapping a sugar maple tree for sap. Information and activities presented are useful in tapping one or two trees on school property, helping students who tap trees at home, or leading a field trip to a nearby maple sugaring site. (ERB)
ERIC Educational Resources Information Center
Kern, Richard
1985-01-01
A computer-based interactive system for diagnosing academic and school behavior problems is described. Elements include criterion-referenced testing, an instructional management system, and a behavior evaluation tool developed by the author. (JW)
Motivated Forgetting in Early Mathematics: A Proof-of-Concept Study
Ramirez, Gerardo
2017-01-01
Educators assume that students are motivated to retain what they are taught. Yet, students commonly report that they forget most of what they learn, especially in mathematics. In the current study I ask whether students may be motivated to forget mathematics because of academic experiences threaten the self-perceptions they are committed to maintaining. Using a large dataset of 1st and 2nd grade children (N = 812), I hypothesize that math anxiety creates negative experiences in the classroom that threaten children’s positive math self-perceptions, which in turn spurs a motivation to forget mathematics. I argue that this motivation to forget is activated during the winter break, which in turn reduces the extent to which children grow in achievement across the school year. Children were assessed for math self-perceptions, math anxiety and math achievement in the fall before going into winter break. During the spring, children’s math achievement was measured once again. A math achievement growth score was devised from a regression model of fall math achievement predicting spring achievement. Results show that children with higher math self-perceptions showed reduced growth in math achievement across the school year as a function of math anxiety. Children with lower math interest self-perceptions did not show this relationship. Results serve as a proof-of-concept for a scientific account of motivated forgetting within the context of education. PMID:29255439
Motivated Forgetting in Early Mathematics: A Proof-of-Concept Study.
Ramirez, Gerardo
2017-01-01
Educators assume that students are motivated to retain what they are taught. Yet, students commonly report that they forget most of what they learn, especially in mathematics. In the current study I ask whether students may be motivated to forget mathematics because of academic experiences threaten the self-perceptions they are committed to maintaining. Using a large dataset of 1st and 2nd grade children ( N = 812), I hypothesize that math anxiety creates negative experiences in the classroom that threaten children's positive math self-perceptions, which in turn spurs a motivation to forget mathematics. I argue that this motivation to forget is activated during the winter break, which in turn reduces the extent to which children grow in achievement across the school year. Children were assessed for math self-perceptions, math anxiety and math achievement in the fall before going into winter break. During the spring, children's math achievement was measured once again. A math achievement growth score was devised from a regression model of fall math achievement predicting spring achievement. Results show that children with higher math self-perceptions showed reduced growth in math achievement across the school year as a function of math anxiety. Children with lower math interest self-perceptions did not show this relationship. Results serve as a proof-of-concept for a scientific account of motivated forgetting within the context of education.
ERIC Educational Resources Information Center
Greenes, Carole; Ginsburg, Herbert P.; Balfanz, Robert
2004-01-01
"Big Math for Little Kids," a comprehensive program for 4- and 5-year-olds, develops and expands on the mathematics that children know and are capable of doing. The program uses activities and stories to develop ideas about number, shape, pattern, logical reasoning, measurement, operations on numbers, and space. The activities introduce the…
It All Adds Up: Learning Early Math through Play and Games
ERIC Educational Resources Information Center
Ramani, Geetha B.; Eason, Sarah H.
2015-01-01
Playing and learning mathematics do not have to be mutually exclusive activities, especially in kindergarten. Play and games can give young children opportunities to learn and develop foundational math skills that are aligned with Common Core standards for mathematics through age-appropriate, fun, and engaging activities.
ERIC Educational Resources Information Center
Eubanks-Turner, Christina; Hajj, Najat
2015-01-01
In this article, Christina Eubanks-Turner and Najat Hajj describe a planning process that they used to create a fun-filled eighth-grade math activity that focused on parade planning. The activity was designed to enhance and supplement the eighth-grade algebra curriculum on linear equations and functions, help students use mathematical habits of…
Semantic-Aware Components and Services of ActiveMath
ERIC Educational Resources Information Center
Melis, Erica; Goguadze, Giorgi; Homik, Martin; Libbrecht, Paul; Ullrich, Carsten; Winterstein, Stefan
2006-01-01
ActiveMath is a complex web-based adaptive learning environment with a number of components and interactive learning tools. The basis for handling semantics of learning content is provided by its semantic (mathematics) content markup, which is additionally annotated with educational metadata. Several components, tools and external services can…
Teaching Math. Extending Problem Solving.
ERIC Educational Resources Information Center
May, Lola
1996-01-01
Describes four teaching activities to help children extend math problem-solving skills by using their own questions. Activities involve using a chart and symbols to develop equations adding up to 12, going on an imaginary shopping trip, using shapes to represent dollar amounts, using the date on a penny to engage in various mathematical…
A Finite Difference Approximation for a Coupled System of Nonlinear Size-Structured Populations
2000-01-01
are available. For a classical Lotka - Volterra competition model which is represented by a system of N di erential equations, conditions on the growth...Methods Appl. Sci., 9 (1999), 1379-1391. [5] S. Ahmed, Extinction of Species in Nonautonomous Lotka - Volterra Systems, Proc. Amer. Math. Soc., 127 (1999...Walter DeGruyter, Berlin, 1995. [7] S. Ahmed and F. Montes de Oca, Extinction in Nonautonomous T -periodic Lotka - Volterra System, Appl. Math. Comput
Asymptotics of quantum weighted Hurwitz numbers
NASA Astrophysics Data System (ADS)
Harnad, J.; Ortmann, Janosch
2018-06-01
This work concerns both the semiclassical and zero temperature asymptotics of quantum weighted double Hurwitz numbers. The partition function for quantum weighted double Hurwitz numbers can be interpreted in terms of the energy distribution of a quantum Bose gas with vanishing fugacity. We compute the leading semiclassical term of the partition function for three versions of the quantum weighted Hurwitz numbers, as well as lower order semiclassical corrections. The classical limit is shown to reproduce the simple single and double Hurwitz numbers studied by Okounkov and Pandharipande (2000 Math. Res. Lett. 7 447–53, 2000 Lett. Math. Phys. 53 59–74). The KP-Toda τ-function that serves as generating function for the quantum Hurwitz numbers is shown to have the τ-function of Okounkov and Pandharipande (2000 Math. Res. Lett. 7 447–53, 2000 Lett. Math. Phys. 53 59–74) as its leading term in the classical limit, and, with suitable scaling, the same holds for the partition function, the weights and expectations of Hurwitz numbers. We also compute the zero temperature limit of the partition function and quantum weighted Hurwitz numbers. The KP or Toda τ-function serving as generating function for the quantum Hurwitz numbers are shown to give the one for Belyi curves in the zero temperature limit and, with suitable scaling, the same holds true for the partition function, the weights and the expectations of Hurwitz numbers.
Bounds for Asian basket options
NASA Astrophysics Data System (ADS)
Deelstra, Griselda; Diallo, Ibrahima; Vanmaele, Michèle
2008-09-01
In this paper we propose pricing bounds for European-style discrete arithmetic Asian basket options in a Black and Scholes framework. We start from methods used for basket options and Asian options. First, we use the general approach for deriving upper and lower bounds for stop-loss premia of sums of non-independent random variables as in Kaas et al. [Upper and lower bounds for sums of random variables, Insurance Math. Econom. 27 (2000) 151-168] or Dhaene et al. [The concept of comonotonicity in actuarial science and finance: theory, Insurance Math. Econom. 31(1) (2002) 3-33]. We generalize the methods in Deelstra et al. [Pricing of arithmetic basket options by conditioning, Insurance Math. Econom. 34 (2004) 55-57] and Vanmaele et al. [Bounds for the price of discrete sampled arithmetic Asian options, J. Comput. Appl. Math. 185(1) (2006) 51-90]. Afterwards we show how to derive an analytical closed-form expression for a lower bound in the non-comonotonic case. Finally, we derive upper bounds for Asian basket options by applying techniques as in Thompson [Fast narrow bounds on the value of Asian options, Working Paper, University of Cambridge, 1999] and Lord [Partially exact and bounded approximations for arithmetic Asian options, J. Comput. Finance 10 (2) (2006) 1-52]. Numerical results are included and on the basis of our numerical tests, we explain which method we recommend depending on moneyness and time-to-maturity.
Multiple social identities and stereotype threat: imbalance, accessibility, and working memory.
Rydell, Robert J; McConnell, Allen R; Beilock, Sian L
2009-05-01
In 4 experiments, the authors showed that concurrently making positive and negative self-relevant stereotypes available about performance in the same ability domain can eliminate stereotype threat effects. Replicating past work, the authors demonstrated that introducing negative stereotypes about women's math performance activated participants' female social identity and hurt their math performance (i.e., stereotype threat) by reducing working memory. Moving beyond past work, it was also demonstrated that concomitantly presenting a positive self-relevant stereotype (e.g., college students are good at math) increased the relative accessibility of females' college student identity and inhibited their gender identity, eliminating attendant working memory deficits and contingent math performance decrements. Furthermore, subtle manipulations in questions presented in the demographic section of a math test eliminated stereotype threat effects that result from women reporting their gender before completing the test. This work identifies the motivated processes through which people's social identities became active in situations in which self-relevant stereotypes about a stigmatized group membership and a nonstigmatized group membership were available. In addition, it demonstrates the downstream consequences of this pattern of activation on working memory and performance. Copyright (c) 2009 APA, all rights reserved.
GaAs Substrates for High-Power Diode Lasers
NASA Astrophysics Data System (ADS)
Mueller, Georg; Berwian, Patrick; Buhrig, Eberhard; Weinert, Berndt
GaAs substrate crystals with low dislocation density (Etch-Pit Density (EPD) < 500,^-2) and Si-doping ( ~10^18,^-3) are required for the epitaxial production of high-power diode-lasers. Large-size wafers (= 3 mathrm{in} -> >=3,) are needed for reducing the manufacturing costs. These requirements can be fulfilled by the Vertical Bridgman (VB) and Vertical Gradient Freeze (VGF) techniques. For that purpose we have developed proper VB/VGF furnaces and optimized the thermal as well as the physico-chemical process conditions. This was strongly supported by extensive numerical process simulation. The modeling of the VGF furnaces and processes was made by using a new computer code called CrysVUN++, which was recently developed in the Crystal Growth Laboratory in Erlangen.GaAs crystals with diameters of 2 and 3in were grown in pyrolytic Boron Nitride (pBN) crucibles having a small-diameter seed section and a conical part. Boric oxide was used to fully encapsulate the crystal and the melt. An initial silicon content in the GaAs melt of c (melt) = 3 x10^19,^-3 has to be used in order to achieve a carrier concentration of n = (0.8- 2) x10^18,^-3, which is the substrate specification of the device manufacturer of the diode-laser. The EPD could be reduced to values between 500,^-2 and 50,^-2 with a Si-doping level of 8 x10^17 to 1 x10^18,^-3. Even the 3in wafers have rather large dislocation-free areas. The lowest EPDs ( <100,^-2) are achieved for long seed wells of the crucible.
The Role of Crop Systems Simulation in Agriculture and Environment
USDA-ARS?s Scientific Manuscript database
Over the past 30 to 40 years, simulation of crop systems has advanced from a neophyte science with inadequate computing power into a robust and increasingly accepted science supported by improved software, languages, development tools, and computer capabilities. Crop system simulators contain mathe...
Precision Learning Assessment: An Alternative to Traditional Assessment Techniques.
ERIC Educational Resources Information Center
Caltagirone, Paul J.; Glover, Christopher E.
1985-01-01
A continuous and curriculum-based assessment method, Precision Learning Assessment (PLA), which integrates precision teaching and norm-referenced techniques, was applied to a math computation curriculum for 214 third graders. The resulting districtwide learning curves defining average annual progress through the computation curriculum provided…
ERIC Educational Resources Information Center
Seo, You-Jin; Woo, Honguk
2010-01-01
Critical user interface design features of computer-assisted instruction programs in mathematics for students with learning disabilities and corresponding implementation guidelines were identified in this study. Based on the identified features and guidelines, a multimedia computer-assisted instruction program, "Math Explorer", which delivers…
A Year in the Life: Two Seventh Grade Teachers Implement One-to-One Computing
ERIC Educational Resources Information Center
Garthwait, Abigail; Weller, Herman G.
2005-01-01
Maine was the first state to put laptops in the hands of an entire grade of students. This interpretive case study of two middle school science-math teachers was driven by the general question: Given ubiquitous computing, how do teachers use computers in constructing curriculum and delivering instruction? Specifically, the researchers sought to…
Computer Science in High School Graduation Requirements. ECS Education Trends (Updated)
ERIC Educational Resources Information Center
Zinth, Jennifer
2016-01-01
Allowing high school students to fulfill a math or science high school graduation requirement via a computer science credit may encourage more student to pursue computer science coursework. This Education Trends report is an update to the original report released in April 2015 and explores state policies that allow or require districts to apply…
Software Accelerates Computing Time for Complex Math
NASA Technical Reports Server (NTRS)
2014-01-01
Ames Research Center awarded Newark, Delaware-based EM Photonics Inc. SBIR funding to utilize graphic processing unit (GPU) technology- traditionally used for computer video games-to develop high-computing software called CULA. The software gives users the ability to run complex algorithms on personal computers with greater speed. As a result of the NASA collaboration, the number of employees at the company has increased 10 percent.
ERIC Educational Resources Information Center
Colmayer, Ciro
1991-01-01
Attempts to show that the use of computers in the classroom should not be limited to the teaching of math but that the language classroom is an even more appropriate place for the introduction and use of computers. (CFM)
Asymptotics of a Class of Solutions to the Cylindrical Toda Equations
NASA Astrophysics Data System (ADS)
Tracy, Craig A.; Widom, Harold
The small t asymptotics of a class of solutions to the 2D cylindrical Toda equations is computed. The solutions, , have the representation
ERIC Educational Resources Information Center
Kuhlmann, Jim
1986-01-01
This activity for grades 6-12 is designed to promote an increased interest in mathematics and its study. Directions for the game "Math Trivia" are given, with questions ready for cards and additional questions listed. (MNS)
See the Math behind the Medicine
ERIC Educational Resources Information Center
Saunders, Marnie M.
2010-01-01
To promote math and science, this author designed an activity to show students that biomedical fields are within their reach. The activity has three distinct goals: (1) To introduce the field of biomedical engineering to students and encourage them in these career pursuits; (2) To give them hands-on experience conducting a biomechanical test; and…
ERIC Educational Resources Information Center
Prusaczyk, Jennifer; Baker, Paul J.
2011-01-01
This article describes how Southern Illinois University-Carbondale (SIUC) partnered with twelve rural schools with high percentages of students in poverty. SIUC provided faculty development activities featuring the adoption of Cognitively Guided Instruction, combined with activities to increase math content and to reduce math anxiety for groups of…
ERIC Educational Resources Information Center
Operations Research Society of America, Arlington, VA.
Continuing the theme of the school as a community, the teacher's guide to the science/math strand of unit five presents both instructional and assessment activities for kits 17-20. Focus, materials and objective for each activity are in Spanish and English; teacher instructions are in Spanish only. In kit 17 the science activities deal with the…
ERIC Educational Resources Information Center
Aksoy, Tevfik; Link, Charles R.
2000-01-01
Uses panel estimation techniques to estimate econometric models of mathematics achievement determinants for a nationally representative sample of high-school students. Extra time spent on math homework increases test scores; an extra hour of TV viewing negatively affects scores. Longer math periods also help. (Contains 56 references.) (MLH)
The Relationship between Cognitive Reserve and Math Abilities.
Arcara, Giorgio; Mondini, Sara; Bisso, Alice; Palmer, Katie; Meneghello, Francesca; Semenza, Carlo
2017-01-01
Cognitive Reserve is the capital of knowledge and experiences that an individual acquires over their life-span. Cognitive Reserve is strictly related to Brain Reserve, which is the ability of the brain to cope with damage. These two concepts could explain many phenomena such as the modality of onset in dementia or the different degree of impairment in cognitive abilities in aging. The aim of this study is to verify the effect of Cognitive Reserve, as measured by a questionnaire, on a variety of numerical abilities (number comprehension, reading and writing numbers, rules and principles, mental calculations and written calculations), in a group of healthy older people (aged 65-98 years). Sixty older individuals were interviewed with the Cognitive Reserve Index questionnaire (CRIq), and assessed with the Numerical Activities of Daily Living battery (NADL), which included formal tasks on math abilities, an informal test on math, one interview with the participant, and one interview with a relative on the perceived math abilities. We also took into account the years of education, as another proxy for Cognitive Reserve. In the multiple regression analyses on all formal tests, CRIq scores did not significantly predict math performance. Other variables, i.e., years of education and Mini-Mental State Examination score, accounted better for math performance on NADL. Only a subsection of CRIq, CRIq-Working-activity, was found to predict performance on a NADL subtest assessing informal use of math in daily life. These results show that education might better explain abstract math functions in late life than other aspects related to Cognitive Reserve, such as lifestyle or occupational attainment.
The Relationship between Cognitive Reserve and Math Abilities
Arcara, Giorgio; Mondini, Sara; Bisso, Alice; Palmer, Katie; Meneghello, Francesca; Semenza, Carlo
2017-01-01
Cognitive Reserve is the capital of knowledge and experiences that an individual acquires over their life-span. Cognitive Reserve is strictly related to Brain Reserve, which is the ability of the brain to cope with damage. These two concepts could explain many phenomena such as the modality of onset in dementia or the different degree of impairment in cognitive abilities in aging. The aim of this study is to verify the effect of Cognitive Reserve, as measured by a questionnaire, on a variety of numerical abilities (number comprehension, reading and writing numbers, rules and principles, mental calculations and written calculations), in a group of healthy older people (aged 65–98 years). Sixty older individuals were interviewed with the Cognitive Reserve Index questionnaire (CRIq), and assessed with the Numerical Activities of Daily Living battery (NADL), which included formal tasks on math abilities, an informal test on math, one interview with the participant, and one interview with a relative on the perceived math abilities. We also took into account the years of education, as another proxy for Cognitive Reserve. In the multiple regression analyses on all formal tests, CRIq scores did not significantly predict math performance. Other variables, i.e., years of education and Mini-Mental State Examination score, accounted better for math performance on NADL. Only a subsection of CRIq, CRIq-Working-activity, was found to predict performance on a NADL subtest assessing informal use of math in daily life. These results show that education might better explain abstract math functions in late life than other aspects related to Cognitive Reserve, such as lifestyle or occupational attainment. PMID:29311910
HECWRC, Flood Flow Frequency Analysis Computer Program 723-X6-L7550
1989-02-14
AGENCY NAME AND ADDRESS, ORDER NO., ETC. (1 NTS sells, leave blank) 11. PRICE INFORMA-ION Price includes documentation: Price code: DO1 $50.00 12 ...required is 256 K. Math coprocessor (8087/80287/80387) is highly recommended but not required. 16. DATA FILE TECHNICAL DESCRIPTION The software is...disk drive (360 KB or 1.2 MB). A 10 MB or larger hard disk is recommended. Math coprocessor (8087/80287/80387) is highly recommended but not renuired
NASA Technical Reports Server (NTRS)
Kandelman, A.; Nelson, D. J.
1977-01-01
Simplified mathematical model simulates large hydraulic systems on either analog or digital computers. Models of pumps, servoactuators, reservoirs, accumulators, and valves are connected generating systems containing six hundred elements.
Prediction and Stability of Mathematics Skill and Difficulty
Martin, Rebecca B.; Cirino, Paul T.; Barnes, Marcia A.; Ewing-Cobbs, Linda; Fuchs, Lynn S.; Stuebing, Karla K.; Fletcher, Jack M.
2016-01-01
The present study evaluated the stability of math learning difficulties over a 2-year period and investigated several factors that might influence this stability (categorical vs. continuous change, liberal vs. conservative cut point, broad vs. specific math assessment); the prediction of math performance over time and by performance level was also evaluated. Participants were 144 students initially identified as having a math difficulty (MD) or no learning difficulty according to low achievement criteria in the spring of Grade 3 or Grade 4. Students were reassessed 2 years later. For both measure types, a similar proportion of students changed whether assessed categorically or continuously. However, categorical change was heavily dependent on distance from the cut point and so more common for MD, who started closer to the cut point; reliable change index change was more similar across groups. There were few differences with regard to severity level of MD on continuous metrics or in terms of prediction. Final math performance on a broad computation measure was predicted by behavioral inattention and working memory while considering initial performance; for a specific fluency measure, working memory was not uniquely related, and behavioral inattention more variably related to final performance, again while considering initial performance. PMID:22392890
Prediction and stability of mathematics skill and difficulty.
Martin, Rebecca B; Cirino, Paul T; Barnes, Marcia A; Ewing-Cobbs, Linda; Fuchs, Lynn S; Stuebing, Karla K; Fletcher, Jack M
2013-01-01
The present study evaluated the stability of math learning difficulties over a 2-year period and investigated several factors that might influence this stability (categorical vs. continuous change, liberal vs. conservative cut point, broad vs. specific math assessment); the prediction of math performance over time and by performance level was also evaluated. Participants were 144 students initially identified as having a math difficulty (MD) or no learning difficulty according to low achievement criteria in the spring of Grade 3 or Grade 4. Students were reassessed 2 years later. For both measure types, a similar proportion of students changed whether assessed categorically or continuously. However, categorical change was heavily dependent on distance from the cut point and so more common for MD, who started closer to the cut point; reliable change index change was more similar across groups. There were few differences with regard to severity level of MD on continuous metrics or in terms of prediction. Final math performance on a broad computation measure was predicted by behavioral inattention and working memory while considering initial performance; for a specific fluency measure, working memory was not uniquely related, and behavioral inattention more variably related to final performance, again while considering initial performance.
41 CFR 109-50.202 - Definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... DISPOSAL AUTHORITIES 50.2-Math and Science Equipment Gift Program § 109-50.202 Definitions. As used in this... improving math and science curricula or activities for elementary and secondary school education, or for the...
41 CFR 109-50.202 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... DISPOSAL AUTHORITIES 50.2-Math and Science Equipment Gift Program § 109-50.202 Definitions. As used in this... improving math and science curricula or activities for elementary and secondary school education, or for the...
41 CFR 109-50.202 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... DISPOSAL AUTHORITIES 50.2-Math and Science Equipment Gift Program § 109-50.202 Definitions. As used in this... improving math and science curricula or activities for elementary and secondary school education, or for the...
41 CFR 109-50.202 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... DISPOSAL AUTHORITIES 50.2-Math and Science Equipment Gift Program § 109-50.202 Definitions. As used in this... improving math and science curricula or activities for elementary and secondary school education, or for the...
41 CFR 109-50.202 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... DISPOSAL AUTHORITIES 50.2-Math and Science Equipment Gift Program § 109-50.202 Definitions. As used in this... improving math and science curricula or activities for elementary and secondary school education, or for the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nasseh, Bizhan
Ball State University (BSU) was the recipient of a U.S. Department of Energy award to develop educational games teaching science and math. The Science Media Program will merge Ball State University’s nationally recognized capabilities in education, technology, and communication to develop new, interactive, game-based media for the teaching and learning of science and scientific principles for K-12 students. BSU established a team of educators, researchers, scientists, animators, designers, technology specialists, and hired a professional media developer company (Outside Source Design) from Indianapolis. After six months discussions and assessments the project team selected the following 8 games in Math, Physics, Chemistry,more » and Biology, 2 from each discipline. The assembled teams were innovative and unique. This new model of development and production included a process that integrated all needed knowledge and expertise for the development of high quality science and math games for K-12 students. This new model has potential to be used by others for the development of the educational games. The uniqueness of the model is to integrate domain experts’ knowledge with researchers/quality control group, and combine a professional development team from the game development company with the academic game development team from Computer Science and Art departments at Ball State University. The developed games went through feasibility tests with selected students for improvement before use in the research activities.« less
ERIC Educational Resources Information Center
Khan, Misbah Mahmood; Reed, Jonathan
2011-01-01
Games Based Learning needs to be linked to good learning theory to become an important educational intervention. This study examines the effectiveness of a collection of computer games called Neurogames®. Neurogames are a group of computer games aimed at improving reading and basic maths and are designed using neuropsychological theory. The…
ERIC Educational Resources Information Center
Ke, Fengfeng; Im, Tami
2014-01-01
This case study examined team-based computer-game design efforts by children with diverse abilities to explore the nature of their collective design actions and cognitive processes. Ten teams of middle-school children, with a high percentage of minority students, participated in a 6-weeks, computer-assisted math-game-design program. Essential…
Integration of CAI into a Freshmen Liberal Arts Math Course in the Community College.
ERIC Educational Resources Information Center
McCall, Michael B.; Holton, Jean L.
1982-01-01
Discusses four computer-assisted-instruction programs used in a college-level mathematics course to introduce computer literacy and improve mathematical skills. The BASIC programs include polynomial functions, trigonometric functions, matrix algebra, and differential calculus. Each program discusses mathematics theory and introduces programming…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quirk, W.J.; Canada, J.; de Vore, L.
1994-04-01
This issue highlights the Lawrence Livermore National Laboratory`s 1993 accomplishments in our mission areas and core programs: economic competitiveness, national security, energy, the environment, lasers, biology and biotechnology, engineering, physics, chemistry, materials science, computers and computing, and science and math education. Secondary topics include: nonproliferation, arms control, international security, environmental remediation, and waste management.
Artificial Intelligence and the Education of the Learning Disabled.
ERIC Educational Resources Information Center
Halpern, Noemi
1984-01-01
Computer logic is advised for teaching learning disabled children because the computer reduces complicated problems to series of subproblems, then combines solutions of subproblems to solve the initial problem. Seven examples for using the technique are given, including solving verbal math problems. Encourages teachers to learn computer…
Computer-Aided Advisement Language at the University of South Carolina.
ERIC Educational Resources Information Center
Bays, Carter
1984-01-01
A passive computer application using student course transcripts to group and arrange specific degree requirements to produce an advising worksheet is described, and the language used by a math department for this purpose is outlined. A sample advisement form resulting from the program is reproduced. (MSE)
Girls and Computer Technology: Barrier or Key?
ERIC Educational Resources Information Center
Gipson, Joella
1997-01-01
Discusses the disparity in numbers of girls and boys taking math, science, and computer classes in elementary and secondary schools, and examines steps being taken to better prepare girls, especially minority girls, for an increasingly technical society. A program in Michigan is described that involved a school and business partnership. (LRW)
Effective pedagogies for teaching math to nursing students: a literature review.
Hunter Revell, Susan M; McCurry, Mary K
2013-11-01
Improving mathematical competency and problem-solving skills in undergraduate nursing students has been an enduring challenge for nurse educators. A number of teaching strategies have been used to address this problem with varying degrees of success. This paper discusses a literature review which examined undergraduate nursing student challenges to learning math, methods used to teach math and problem-solving skills, and the use of innovative pedagogies for teaching. The literature was searched using the Cumulative Index of Nursing and Allied Health Literature and Education Resource Information Center databases. Key search terms included: math*, nurs*, nursing student, calculation, technology, medication administration, challenges, problem-solving, personal response system, clickers, computer and multi-media. Studies included in the review were published in English from 1990 to 2011. Results support four major themes which include: student challenges to learning, traditional pedagogies, curriculum strategies, and technology and integrative methods as pedagogy. The review concludes that there is a need for more innovative pedagogical strategies for teaching math to student nurses. Nurse educators in particular play a central role in helping students learn the conceptual basis, as well as practical hands-on methods, to problem solving and math competency. It is recommended that an integrated approach inclusive of technology will benefit students through better performance, increased understanding, and improved student satisfaction. Copyright © 2012 Elsevier Ltd. All rights reserved.
Rydell, Robert J; Van Loo, Katie J; Boucher, Kathryn L
2014-03-01
Stereotype threat research shows that women's math performance can be reduced by activating gender-based math stereotypes. Models of stereotype threat assert that threat reduces cognitive functioning, thereby accounting for its negative effects. This work provides a more detailed understanding of the cognitive processes through which stereotype threat leads women to underperform at math and to take risks, by examining which basic executive functions (inhibition, shifting, and updating) account for these outcomes. In Experiments 1 and 2, women under threat showed reduced inhibition, reduced updating, and reduced math performance compared with women in a control condition (or men); however, only updating accounted for women's poor math performance under threat. In Experiment 3, only updating accounted for stereotype threat's effect on women's math performance, whereas only inhibition accounted for the effect of threat on risk-taking, suggesting that distinct executive functions can account for different stereotype threat-related outcomes.
77 FR 38336 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-27
... of Collection: Monitoring for the National Science Foundation's Math and Science Partnership (MSP... evaluation of the Math and Science Partnership (MSP) program. The goals for the program are to (1) Ensure...
77 FR 65908 - Agency Information Collection Activities: Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-31
...: Monitoring for the National Science Foundation's Math and Science Partnership (MSP) Program. OMB Control No... instruments to be used in the evaluation of the Math and Science Partnership (MSP) program. The goals for the...
ERIC Educational Resources Information Center
Presser, Ashley Lewis; Vahey, Philip; Dominguez, Ximena
2015-01-01
This paper describes findings from a blocked randomized design (BRD) field study conducted to examine the "Next Generation Preschool Math" (NGPM) program's implementation in preschool classrooms and promise in improving young children's mathematic learning. NGPM integrates traditional preschool activities with developmentally appropriate…
Active Learning in a Math for Liberal Arts Classroom
ERIC Educational Resources Information Center
Lenz, Laurie
2015-01-01
Inquiry-based learning is a topic of growing interest in the mathematical community. Much of the focus has been on using these methods in calculus and higher-level classes. This article describes the design and implementation of a set of inquiry-based learning activities in a Math for Liberal Arts course at a small, private, Catholic college.…
Active Learning Institute: Energizing Science and Math Education. A Compilation of Lesson Plans.
ERIC Educational Resources Information Center
Cuyahoga Community Coll. - East, Cleveland, OH.
The middle school and high school lessons featured in this collection were crafted by science and math teachers who participated in a week-long seminar sponsored by the Eisenhower Professional Development Program administered by the Ohio Board of Regents. The lessons showcase a variety of active learning strategies from using hands-on, low-tech…
SCDC Spanish Curricula Units. Science/Math, Unit 10, Grade 3, Teacher's Guide.
ERIC Educational Resources Information Center
Spanish Curricula Development Center, Miami Beach, FL.
Unit 10 of a Spanish science/math curriculum for grade three, composed of kits 37-40, has as its theme "communities around the world". The unit's teacher's guide contains both learning and assessment activities, with the focus, objective, and materials needed for each activity listed. Specific attention is placed on four spiraling questions…
ERIC Educational Resources Information Center
Zumoff, Nancy; Schaufele, Christopher
This final report and appended conference proceedings describe activities of the Earth Math project, a 3-year effort at Kennesaw State University (Georgia) to broaden and disseminate the concept of Earth Algebra to precalculus and mathematics education courses. Major outcomes of the project were the draft of a precalculus textbook now being…
ERIC Educational Resources Information Center
Carter, Carolyn S.; Cohen, Sara; Keyes, Marian; Kusimo, Patricia S.; Lunsford, Crystal
This guide contains hands-on mathematics activities to connect middle-school students to the traditional knowledge of their grandparents and elders. Because girls often lose interest in math at the middle-school level, and because women in some communities (especially in rural areas) are seldom involved in work with an obvious math basis, the…
A Short Note on the Scaling Function Constant Problem in the Two-Dimensional Ising Model
NASA Astrophysics Data System (ADS)
Bothner, Thomas
2018-02-01
We provide a simple derivation of the constant factor in the short-distance asymptotics of the tau-function associated with the 2-point function of the two-dimensional Ising model. This factor was first computed by Tracy (Commun Math Phys 142:297-311, 1991) via an exponential series expansion of the correlation function. Further simplifications in the analysis are due to Tracy and Widom (Commun Math Phys 190:697-721, 1998) using Fredholm determinant representations of the correlation function and Wiener-Hopf approximation results for the underlying resolvent operator. Our method relies on an action integral representation of the tau-function and asymptotic results for the underlying Painlevé-III transcendent from McCoy et al. (J Math Phys 18:1058-1092, 1977).
78 FR 56871 - Advanced Scientific Computing Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-16
... Germantown Update on Exascale Update from Exascale technical approaches subcommittee Facilities update Report from Applied Math Committee of Visitors Exascale technical talks Public Comment (10-minute rule) Public...
ERIC Educational Resources Information Center
Wofford, Jennifer
2009-01-01
Computing is anticipated to have an increasingly expansive impact on the sciences overall, becoming the third, crucial component of a "golden triangle" that includes mathematics and experimental and theoretical science. However, even more true with computing than with math and science, we are not preparing our students for this new reality. It is…
SCDC Spanish Curricula Units. Science/Math Strand, Unit 4, Grade Two, Teacher's Guide.
ERIC Educational Resources Information Center
Spanish Curricula Development Center, Miami Beach, FL.
The teacher's guide for unit four of a Spanish science/math strand for second graders contains instructional and assessment activities for kits 13-16. Each designed for a two- to three-week teaching period, the kits' activities are geared toward guiding the child to discover correct answers through methods provided and, by putting materials in his…
SCDC Spanish Curricula Units. Science/Math Strand, Unit 9, Grade 3, Teacher's Guide.
ERIC Educational Resources Information Center
Spanish Curricula Development Center, Miami Beach, FL.
Instructional and assessment activities in science and math for third graders are presented in this teacher's guide to unit nine. Focus, objectives and materials for each activity are in English and Spanish, while teacher instructions are only in Spanish. The unit's theme is "the nation as a community"; related to the theme are the four spiraling…
Mathematical models for space shuttle ground systems
NASA Technical Reports Server (NTRS)
Tory, E. G.
1985-01-01
Math models are a series of algorithms, comprised of algebraic equations and Boolean Logic. At Kennedy Space Center, math models for the Space Shuttle Systems are performed utilizing the Honeywell 66/80 digital computers, Modcomp II/45 Minicomputers and special purpose hardware simulators (MicroComputers). The Shuttle Ground Operations Simulator operating system provides the language formats, subroutines, queueing schemes, execution modes and support software to write, maintain and execute the models. The ground systems presented consist primarily of the Liquid Oxygen and Liquid Hydrogen Cryogenic Propellant Systems, as well as liquid oxygen External Tank Gaseous Oxygen Vent Hood/Arm and the Vehicle Assembly Building (VAB) High Bay Cells. The purpose of math modeling is to simulate the ground hardware systems and to provide an environment for testing in a benign mode. This capability allows the engineers to check out application software for loading and launching the vehicle, and to verify the Checkout, Control, & Monitor Subsystem within the Launch Processing System. It is also used to train operators and to predict system response and status in various configurations (normal operations, emergency and contingent operations), including untried configurations or those too dangerous to try under real conditions, i.e., failure modes.
Computer Mathematical Tools: Practical Experience of Learning to Use Them
ERIC Educational Resources Information Center
Semenikhina, Elena; Drushlyak, Marina
2014-01-01
The article contains general information about the use of specialized mathematics software in the preparation of math teachers. The authors indicate the reasons to study the mathematics software. In particular, they analyze the possibility of presenting basic mathematical courses using mathematical computer tools from both a teacher and a student,…
ERIC Educational Resources Information Center
Rich, Sara E. House; Duhon, Gary J.; Reynolds, James
2017-01-01
Computers have become an important piece of technology in classrooms for implementing academic interventions. Often, students' responses to these interventions are used to help make important educational decisions. Therefore, it is important to consider the effect of these interventions across multiple contexts. For example, previous research has…
Motivating Maths? Digital Games and Mathematical Learning
ERIC Educational Resources Information Center
Scanlon, Margaret; Buckingham, David; Burn, Andrew
2005-01-01
It is often claimed that computers have the potential to engage and motivate children in ways that conventional classroom teaching does not. Children are assumed to have a natural aptitude and enthusiasm for computers; and the Internet is seen to make learning automatically more interesting and exciting. Over the last few years educational…
Computer Assisted Vocational Math. Written for TRS-80, Model I, Level II, 16K.
ERIC Educational Resources Information Center
Daly, Judith; And Others
This computer-assisted curriculum is intended to be used to enhance a vocational mathematics/applied mathematics course. A total of 32 packets were produced to increase the basic mathematics skills of students in the following vocational programs: automotive trades, beauty culture, building trades, climate control, electrical trades,…
Characteristics of the Navy Laboratory Warfare Center Technical Workforce
2013-09-29
Mathematics and Information Science (M&IS) Actuarial Science 1510 Computer Science 1550 Gen. Math & Statistics 1501 Mathematics 1520 Operations...Admin. Network Systems & Data Communication Analysts Actuaries Mathematicians Operations Research Analyst Statisticians Social Science (SS...workforce was sub-divided into six broad occupational groups: Life Science , Physical Science , Engineering, Mathematics, Computer Science and Information
ERIC Educational Resources Information Center
Erdogan, Ahmet
2010-01-01
Based on Social Cognitive Carier Theory (SCCT) (Lent, Brown, & Hackett, 1994, 2002), this study tested the effects of mathematics teacher candidates' self-efficacy in, outcome expectations from, and interest in CAME on their intentions to integrate Computer-Assisted Mathematics Education (CAME). While mathematics teacher candidates' outcome…
ERIC Educational Resources Information Center
Cassidy, Jack
1991-01-01
Presents suggestions for teaching math word problems to elementary students. The strategies take into consideration differences between reading in math and reading in other areas. A problem-prediction game and four self-checking activities are included along with a magic password challenge. (SM)
ERIC Educational Resources Information Center
Batt, Russell H., Ed.
1990-01-01
Described is how spreadsheet and problem solver microcomputer programs may assist students in performing mathematical calculations. Discussed is the application of the equation solver "MathCAD" to various areas in the undergraduate curriculum. (KR)
ERIC Educational Resources Information Center
Flaherty, John, Jr.; Sobolew-Shubin, Alexandria; Heredia, Alberto; Chen-Gaddini, Min; Klarin, Becca; Finkelstein, Neal D.
2014-01-01
Math in Common® (MiC) is a five-year initiative that supports a formal network of 10 California school districts as they implement the Common Core State Standards in mathematics (CCSS-M) across grades K-8. As the MiC initiative moves into its second year, one of the central activities that each of the districts is undergoing to support CCSS…
Computational Fluid Dynamics at ICMA (Institute for Computational Mathematics and Applications)
1988-10-18
PERSONAL. AUTHOR(S) Charles A. Hall and Thomas A. Porsching 13a. TYPE OF REPORT 13b. TIME COVERED 114. DATE OF REPORT (YearMOth, De ) 1. PAGE COUNT...of ten ICtA (Institute for Computational Mathe- matics and Applications) personnel, relating to the general area of computational fluid mechanics...questions raised in the previous subsection. Our previous work in this area concentrated on a study of the differential geometric aspects of the prob- lem
ERIC Educational Resources Information Center
Harvard Univ., Cambridge, MA. Graduate School of Education.
This unit is intended to teach estimation skills in such a way as to be relevant and useful to students as they apply them in various problem-solving activities. The teaching activities feature the earth, exploration into space, and the other worlds in the solar system. The teacher's guide contains four modules. Module I suggests the use of…
ERIC Educational Resources Information Center
Neuville, Emmanuelle; Croizet, Jean-Claude
2007-01-01
Can the salience of gender identity affect the math performance of 7-8 year old girls? Third-grade girls and boys were required to solve arithmetical problems of varied difficulty. Prior to the test, one half of the participants had their gender identity activated. Results showed that activation of gender identity affected girls' performance but…
ERIC Educational Resources Information Center
Sonnenschein, Susan; Sun, Shuyan
2017-01-01
Despite the growing body of research on parents' beliefs and practices, relatively little is known about the relations between parents' knowledge of children's development, home-based activities, and children's early reading and math skills. This study used data from the Early Childhood Longitudinal Study-Birth Cohort to examine the differences in…
Odic, Darko; Lisboa, Juan Valle; Eisinger, Robert; Olivera, Magdalena Gonzalez; Maiche, Alejandro; Halberda, Justin
2016-01-01
What is the relationship between our intuitive sense of number (e.g., when estimating how many marbles are in a jar), and our intuitive sense of other quantities, including time (e.g., when estimating how long it has been since we last ate breakfast)? Recent work in cognitive, developmental, comparative psychology, and computational neuroscience has suggested that our representations of approximate number, time, and spatial extent are fundamentally linked and constitute a "generalized magnitude system". But, the shared behavioral and neural signatures between number, time, and space may alternatively be due to similar encoding and decision-making processes, rather than due to shared domain-general representations. In this study, we investigate the relationship between approximate number and time in a large sample of 6-8 year-old children in Uruguay by examining how individual differences in the precision of number and time estimation correlate with school mathematics performance. Over four testing days, each child completed an approximate number discrimination task, an approximate time discrimination task, a digit span task, and a large battery of symbolic math tests. We replicate previous reports showing that symbolic math abilities correlate with approximate number precision and extend those findings by showing that math abilities also correlate with approximate time precision. But, contrary to approximate number and time sharing common representations, we find that each of these dimensions uniquely correlates with formal math: approximate number correlates more strongly with formal math compared to time and continues to correlate with math even when precision in time and individual differences in working memory are controlled for. These results suggest that there are important differences in the mental representations of approximate number and approximate time and further clarify the relationship between quantity representations and mathematics. Copyright © 2015 Elsevier B.V. All rights reserved.
Hands-On Astrophysics: Variable Stars in Math, Science, and Computer Education
NASA Astrophysics Data System (ADS)
Mattei, J. A.; Percy, J. R.
1999-12-01
Hands-On Astrophysics (HOA): Variable Stars in Math, Science, and Computer Education, is a project recently developed by the American Association of Variable Star Observers (AAVSO) with funds from the National Science Foundation. HOA uses the unique methods and the international database of the AAVSO to develop and integrate students' math and science skills through variable star observation and analysis. It can provide an understanding of basic astronomy concepts, as well as interdisciplinary connections. Most of all, it motivates the user by exposing them to the excitement of doing real science with real data. Project materials include: a database of 600,000 variable star observations; VSTAR (a data plotting and analysis program), and other user friendly software; 31 slides and 14 prints of five constellations; 45 variable star finder charts; an instructional videotape in three 15-minute segments; and a 560-page student's and teacher's manual. These materials support the National Standards for Science and Math education by directly involving the students in the scientific process. Hands-On Astrophysics is designed to be flexible. It is organized so that it can be used at many levels, in many contexts: for classroom use from high school to college level, or for individual projects. In addition, communication and support can be found through the AAVSO home page on the World Wide Web: http://www.aavso.org. The HOA materials can be ordered through this web site or from the AAVSO, 25 Birch Street Cambridge, MA 02138, USA. We gratefully acknowledge the education grant ESI-9154091 from the National Science Foundation which funded the development of this project.
Effect of Computer-Aided Instruction on Attitude and Achievement of Fifth Grade Math Students
ERIC Educational Resources Information Center
Shoemaker, Traci L.
2013-01-01
The purpose of this quasi-experimental non-equivalent control group study was to test theories of constructivism and motivation, along with research-based teaching practices of differentiating instruction and instructing within a child's Zone of Proximal Development, in measuring the effect of computer-aided instruction on fifth grade students'…
ERIC Educational Resources Information Center
Bruce-Simmons, Christine
2013-01-01
This study examined the impact of computer-assisted instruction on the mathematics performance of underachieving fifth-grade students in a rural school district in South Carolina. The instructional technology program ([IF) is South Carolina's response to addressing the needs of its young, struggling math students. The 449 fifth-grade students in…
Math modeling and computer mechanization for real time simulation of rotary-wing aircraft
NASA Technical Reports Server (NTRS)
Howe, R. M.
1979-01-01
Mathematical modeling and computer mechanization for real time simulation of rotary wing aircraft is discussed. Error analysis in the digital simulation of dynamic systems, such as rotary wing aircraft is described. The method for digital simulation of nonlinearities with discontinuities, such as exist in typical flight control systems and rotor blade hinges, is discussed.
Flight Training for a Pilot Program.
ERIC Educational Resources Information Center
Gunter, Mary
1995-01-01
A computer-based curriculum program called Computers Helping Instruction and Learning Development (Project CHILD) has been tested in 82 classrooms in 10 elementary schools in Okaloosa County, Florida. As part of a sixth-grade follow-up study, students in Project CHILD had a B average in math and language arts versus a C average for students in a…
Comparing Computer Adaptive and Curriculum-Based Measures of Math in Progress Monitoring
ERIC Educational Resources Information Center
Shapiro, Edward S.; Dennis, Minyi Shih; Fu, Qiong
2015-01-01
The purpose of the study was to compare the use of a Computer Adaptive Test and Curriculum-Based Measurement in the assessment of mathematics. This study also investigated the degree to which slope or rate of change predicted student outcomes on the annual state assessment of mathematics above and beyond scores of single point screening…
ERIC Educational Resources Information Center
Moore, Kimberly
2018-01-01
Minecraft is an open world survival computer game that was originally created in Sweden in 2011 and later purchased by Microsoft® in 2014. It is among the most popular computer games with students of all ages because it gives players a sense of ownership and opportunities for creative exploration. The game has three unique features: (1) no clear…
ADCIS Conference Proceedings (27th, New Orleans, Louisiana, February 3-6, 1986).
ERIC Educational Resources Information Center
Association for the Development of Computer-based Instructional Systems.
The 52 papers in this volume, which represent recent research and applications in the field of computer-based instruction, are grouped under 10 general topic areas: (1) computer-based training; (2) elementary, secondary, junior college, and math education; (3) health; (4) home economics; (5) implementation; (6) mini-microcomputers; (7) PILOT; (8)…
How Much Does the 24 Game Increase the Recall of Arithmetic Facts?
ERIC Educational Resources Information Center
Eley, Jonquille
2009-01-01
Sixth grade students come to MS 331 with strong mathematics backgrounds from elementary school. Nevertheless, students often come with a dearth of skills when performing basic math computations. The focus of this study is to investigate the use of the 24 Game in quickening the ability of sixth graders to perform basic computations. The game…
Computer simulation studies in fluid and calcium regulation and orthostatic intolerance
NASA Technical Reports Server (NTRS)
1985-01-01
The systems analysis approach to physiological research uses mathematical models and computer simulation. Major areas of concern during prolonged space flight discussed include fluid and blood volume regulation; cardiovascular response during shuttle reentry; countermeasures for orthostatic intolerance; and calcium regulation and bone atrophy. Potential contributions of physiologic math models to future flight experiments are examined.
Knowledge Construction in Computer Science and Engineering When Learning through Making
ERIC Educational Resources Information Center
Charlton, Patricia; Avramides, Katerina
2016-01-01
This paper focuses on a design based research study about STEM (Science, Technology, Engineering and Maths) learning by making through collaboration and production. This study examines learning by making by students to explore STEM using a constructionist approach with a particular focus on computer science and engineering. The use of IoT as a…
Cognitive Computer Tools in the Teaching and Learning of Undergraduate Calculus
ERIC Educational Resources Information Center
Borchelt, Nathan
2007-01-01
The purpose of this study was to explore the use of a cognitive computer tool by undergraduate calculus students as they worked cooperatively on mathematical tasks. Specific attention was given to levels of cognitive demand in which the students were engaged as they completed in-class labs with the assistance of MathCAD. Participants were assigned…
How Do the Different Types of Computer Use Affect Math Achievement?
ERIC Educational Resources Information Center
Flores, Raymond; Inan, Fethi; Lin, Zhangxi
2013-01-01
In this study, the National Educational Longitudinal Study (ELS:2002) dataset was used and a predictive data mining technique, decision tree analysis, was implemented in order to examine which factors, in conjunction to computer use, can be used to predict high or low probability of success in high school mathematics. Specifically, this study…
Girls Build Excitement for Math from Scratch
ERIC Educational Resources Information Center
Amador, Julie M.; Soule, Terence
2015-01-01
By 2020, five of the top ten in-demand jobs in the United States will be in information technology (Moeller 2012). Companies across the nation are seeking a new type of employee: one who is computer savvy and who is familiar with computer coding, data, mathematics, and augmented reality (Leber 2013). Recent reports indicate that, although students…
Isaacson, M D; Srinivasan, S; Lloyd, L L
2010-01-01
MathSpeak is a set of rules for non speaking of mathematical expressions. These rules have been incorporated into a computerised module that translates printed mathematics into the non-ambiguous MathSpeak form for synthetic speech rendering. Differences between individual utterances produced with the translator module are difficult to discern because of insufficient pausing between utterances; hence, the purpose of this study was to develop an algorithm for improving the synthetic speech rendering of MathSpeak. To improve synthetic speech renderings, an algorithm for inserting pauses was developed based upon recordings of middle and high school math teachers speaking mathematic expressions. Efficacy testing of this algorithm was conducted with college students without disabilities and high school/college students with visual impairments. Parameters measured included reception accuracy, short-term memory retention, MathSpeak processing capacity and various rankings concerning the quality of synthetic speech renderings. All parameters measured showed statistically significant improvements when the algorithm was used. The algorithm improves the quality and information processing capacity of synthetic speech renderings of MathSpeak. This increases the capacity of individuals with print disabilities to perform mathematical activities and to successfully fulfill science, technology, engineering and mathematics academic and career objectives.
ERIC Educational Resources Information Center
Pike, Lisa; Rentsch, Jeremy
2017-01-01
This math activity focuses on experimental design while connecting math with life science. It is important that the science and engineering practices (SEPs) are not taught as a separate "unit" but integrated within the curriculum wherever possible. The focus is on experimental design to teach animal behavior. Students predict and test…
ERIC Educational Resources Information Center
Rustling, Ruth; And Others
This manual offers detailed guidelines for parent group trainers who conduct workshops on problem solving, math, and science for parents of young children. In addition, discussion starters, a list of hands-on activities, directions for drawing and using a poster, and learning activities for children are described. Counting books are briefly…
Does It Matter Whether One Takes a Test on an iPad or a Desktop Computer?
ERIC Educational Resources Information Center
Ling, Guangming
2016-01-01
To investigate possible iPad related mode effect, we tested 403 8th graders in Indiana, Maryland, and New Jersey under three mode conditions through random assignment: a desktop computer, an iPad alone, and an iPad with an external keyboard. All students had used an iPad or computer for six months or longer. The 2-hour test included reading, math,…
On a class of Newton-like methods for solving nonlinear equations
NASA Astrophysics Data System (ADS)
Argyros, Ioannis K.
2009-06-01
We provide a semilocal convergence analysis for a certain class of Newton-like methods considered also in [I.K. Argyros, A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space, J. Math. Anal. Appl. 298 (2004) 374-397; I.K. Argyros, Computational theory of iterative methods, in: C.K. Chui, L. Wuytack (Eds.), Series: Studies in Computational Mathematics, vol. 15, Elsevier Publ. Co, New York, USA, 2007; J.E. Dennis, Toward a unified convergence theory for Newton-like methods, in: L.B. Rall (Ed.), Nonlinear Functional Analysis and Applications, Academic Press, New York, 1971], in order to approximate a locally unique solution of an equation in a Banach space. Using a combination of Lipschitz and center-Lipschitz conditions, instead of only Lipschitz conditions [F.A. Potra, Sharp error bounds for a class of Newton-like methods, Libertas Math. 5 (1985) 71-84], we provide an analysis with the following advantages over the work in [F.A. Potra, Sharp error bounds for a class of Newton-like methods, Libertas Math. 5 (1985) 71-84] which improved the works in [W.E. Bosarge, P.L. Falb, A multipoint method of third order, J. Optimiz. Theory Appl. 4 (1969) 156-166; W.E. Bosarge, P.L. Falb, Infinite dimensional multipoint methods and the solution of two point boundary value problems, Numer. Math. 14 (1970) 264-286; J.E. Dennis, On the Kantorovich hypothesis for Newton's method, SIAM J. Numer. Anal. 6 (3) (1969) 493-507; J.E. Dennis, Toward a unified convergence theory for Newton-like methods, in: L.B. Rall (Ed.), Nonlinear Functional Analysis and Applications, Academic Press, New York, 1971; H.J. Kornstaedt, Ein allgemeiner Konvergenzstaz fü r verschä rfte Newton-Verfahrem, in: ISNM, vol. 28, Birkhaü ser Verlag, Basel and Stuttgart, 1975, pp. 53-69; P. Laasonen, Ein überquadratisch konvergenter iterativer algorithmus, Ann. Acad. Sci. Fenn. Ser I 450 (1969) 1-10; F.A. Potra, On a modified secant method, L'analyse numérique et la theorie de l'approximation 8 (2) (1979) 203-214; F.A. Potra, An application of the induction method of V. Pták to the study of Regula Falsi, Aplikace Matematiky 26 (1981) 111-120; F.A. Potra, On the convergence of a class of Newton-like methods, in: Iterative Solution of Nonlinear Systems of Equations, in: Lecture Notes in Mathematics, vol. 953, Springer-Verlag, New York, 1982; F.A. Potra, V. Pták, Nondiscrete induction and double step secant method, Math. Scand. 46 (1980) 236-250; F.A. Potra, V. Pták, On a class of modified Newton processes, Numer. Funct. Anal. Optim. 2 (1) (1980) 107-120; F.A. Potra, Sharp error bounds for a class of Newton-like methods, Libertas Math. 5 (1985) 71-84; J.W. Schmidt, Untere Fehlerschranken für Regula-Falsi Verfahren, Period. Math. Hungar. 9 (3) (1978) 241-247; J.W. Schmidt, H. Schwetlick, Ableitungsfreie Verfhren mit höherer Konvergenzgeschwindifkeit, Computing 3 (1968) 215-226; J.F. Traub, Iterative Methods for the Solution of Equations, Prentice Hall, Englewood Cliffs, New Jersey, 1964; M.A. Wolfe, Extended iterative methods for the solution of operator equations, Numer. Math. 31 (1978) 153-174]: larger convergence domain and weaker sufficient convergence conditions. Numerical examples further validating the results are also provided.
Math Wonders to Inspire Teachers and Students.
ERIC Educational Resources Information Center
Posamentier, Alfred S.
This book offers ideas to enrich instruction and help teachers explore the intrinsic beauty of math. Through dozens of examples from arithmetic, algebra, geometry, and probability, the symmetries, patterns, processes, paradoxes, and surprises that have facilitated generations of great thinkers are revealed. Activities include: (1) The Beauty in…
It's Great to Be Doing Maths! Engaging Primary Students in a Lunchtime Club
ERIC Educational Resources Information Center
Prescott, Anne; Pressick-Kilborn, Kimberley
2015-01-01
In this article it can be seen how primary school students, pre-service and in-service teachers can all benefit from the experience of participating in a lunchtime maths club. A range of activities suitable for an extracurricular club is included.
NASA Astrophysics Data System (ADS)
Henderson, Jean Foster
The purpose of this study was to assess the effect of classroom restructuring involving computer laboratories on student achievement and student attitudes toward computers and computer courses. The effects of the targeted student attributes of gender, previous programming experience, math background, and learning style were also examined. The open lab-based class structure consisted of a traditional lecture class with a separate, unscheduled lab component in which lab assignments were completed outside of class; the closed lab-based class structure integrated a lab component within the lecture class so that half the class was reserved for lecture and half the class was reserved for students to complete lab assignments by working cooperatively with each other and under the supervision and guidance of the instructor. The sample consisted of 71 students enrolled in four intact classes of Computer Science I during the fall and spring semesters of the 2006--2007 school year at two southern universities: two classes were held in the fall (one at each university) and two classes were held in the spring (one at each university). A counterbalanced repeated measures design was used in which all students experienced both class structures for half of each semester. The order of control and treatment was rotated among the four classes. All students received the same amount of class and instructor time. A multivariate analysis of variance (MANOVA) via a multiple regression strategy was used to test the study's hypotheses. Although the overall MANOVA model was statistically significant, independent follow-up univariate analyses relative to each dependent measure found that the only significant research factor was math background: Students whose mathematics background was at the level of Calculus I or higher had significantly higher student achievement than students whose mathematics background was less than Calculus I. The results suggest that classroom structures that incorporate an open laboratory setting are just as effective on student achievement and attitudes as classroom structures that incorporate a closed laboratory setting. The results also suggest that math background is a strong predictor of student achievement in CS 1.
Positive solutions of fractional integral equations by the technique of measure of noncompactness.
Nashine, Hemant Kumar; Arab, Reza; Agarwal, Ravi P; De la Sen, Manuel
2017-01-01
In the present study, we work on the problem of the existence of positive solutions of fractional integral equations by means of measures of noncompactness in association with Darbo's fixed point theorem. To achieve the goal, we first establish new fixed point theorems using a new contractive condition of the measure of noncompactness in Banach spaces. By doing this we generalize Darbo's fixed point theorem along with some recent results of (Aghajani et al. (J. Comput. Appl. Math. 260:67-77, 2014)), (Aghajani et al. (Bull. Belg. Math. Soc. Simon Stevin 20(2):345-358, 2013)), (Arab (Mediterr. J. Math. 13(2):759-773, 2016)), (Banaś et al. (Dyn. Syst. Appl. 18:251-264, 2009)), and (Samadi et al. (Abstr. Appl. Anal. 2014:852324, 2014)). We also derive corresponding coupled fixed point results. Finally, we give an illustrative example to verify the effectiveness and applicability of our results.
A Temperature-Dependent Phase-Field Model for Phase Separation and Damage
NASA Astrophysics Data System (ADS)
Heinemann, Christian; Kraus, Christiane; Rocca, Elisabetta; Rossi, Riccarda
2017-07-01
In this paper we study a model for phase separation and damage in thermoviscoelastic materials. The main novelty of the paper consists in the fact that, in contrast with previous works in the literature concerning phase separation and damage processes in elastic media, in our model we encompass thermal processes, nonlinearly coupled with the damage, concentration and displacement evolutions. More particularly, we prove the existence of "entropic weak solutions", resorting to a solvability concept first introduced in Feireisl (Comput Math Appl 53:461-490, 2007) in the framework of Fourier-Navier-Stokes systems and then recently employed in Feireisl et al. (Math Methods Appl Sci 32:1345-1369, 2009) and Rocca and Rossi (Math Models Methods Appl Sci 24:1265-1341, 2014) for the study of PDE systems for phase transition and damage. Our global-in-time existence result is obtained by passing to the limit in a carefully devised time-discretization scheme.
RFI Math Model programs for predicting intermodulation interference
NASA Technical Reports Server (NTRS)
Stafford, J. M.
1974-01-01
Receivers operating on a space vehicle or an aircraft having many on-board transmitters are subject to intermodulation interference from mixing in the transmitting antenna systems, the external environment, or the receiver front-ends. This paper presents the techniques utilized in RFI Math Model computer programs that were developed to aid in the prevention of interference by predicting problem areas prior to occurrence. Frequencies and amplitudes of possible intermodulation products generated in the external environment are calculated and compared to receiver sensitivities. Intermodulation products generated in receivers are evaluated to determine the adequacy of preselector ejection.
Computation of convex bounds for present value functions with random payments
NASA Astrophysics Data System (ADS)
Ahcan, Ales; Darkiewicz, Grzegorz; Goovaerts, Marc; Hoedemakers, Tom
2006-02-01
In this contribution we study the distribution of the present value function of a series of random payments in a stochastic financial environment. Such distributions occur naturally in a wide range of applications within fields of insurance and finance. We obtain accurate approximations by developing upper and lower bounds in the convex-order sense for present value functions. Technically speaking, our methodology is an extension of the results of Dhaene et al. [Insur. Math. Econom. 31(1) (2002) 3-33, Insur. Math. Econom. 31(2) (2002) 133-161] to the case of scalar products of mutually independent random vectors.
Mathematical modeling of high and low temperature heat pipes
NASA Technical Reports Server (NTRS)
Chi, S. W.
1971-01-01
Following a review of heat and mass transfer theory relevant to heat pipe performance, math models are developed for calculating heat-transfer limitations of high-temperature heat pipes and heat-transfer limitations and temperature gradient of low temperature heat pipes. Calculated results are compared with the available experimental data from various sources to increase confidence in the present math models. Complete listings of two computer programs for high- and low-temperature heat pipes respectively are included. These programs enable the performance to be predicted of heat pipes with wrapped-screen, rectangular-groove, or screen-covered rectangular-groove wick.
Correlation of AH-1G airframe test data with a NASTRAN mathematical model
NASA Technical Reports Server (NTRS)
Cronkhite, J. D.; Berry, V. L.
1976-01-01
Test data was provided for evaluating a mathematical vibration model of the Bell AH-1G helicopter airframe. The math model was developed and analyzed using the NASTRAN structural analysis computer program. Data from static and dynamic tests were used for comparison with the math model. Static tests of the fuselage and tailboom were conducted to verify the stiffness representation of the NASTRAN model. Dynamic test data were obtained from shake tests of the airframe and were used to evaluate the NASTRAN model for representing the low frequency (below 30 Hz) vibration response of the airframe.
Efficient development and processing of thermal math models of very large space truss structures
NASA Technical Reports Server (NTRS)
Warren, Andrew H.; Arelt, Joseph E.; Lalicata, Anthony L.
1993-01-01
As the spacecraft moves along the orbit, the truss members are subjected to direct and reflected solar, albedo and planetary infra-red (IR) heating rates, as well as IR heating and shadowing from other spacecraft components. This is a transient process with continuously changing heating loads and the shadowing effects. The resulting nonuniform temperature distribution may cause nonuniform thermal expansion, deflection and stress in the truss elements, truss warping and thermal distortions. There are three challenges in the thermal-structural analysis of the large truss structures. The first is the development of the thermal and structural math models, the second - model processing, and the third - the data transfer between the models. All three tasks require considerable time and computer resources to be done because of a very large number of components involved. To address these challenges a series of techniques of automated thermal math modeling and efficient processing of very large space truss structures were developed. In the process the finite element and finite difference methods are interfaced. A very substantial reduction of the quantity of computations was achieved while assuring a desired accuracy of the results. The techniques are illustrated on the thermal analysis of a segment of the Space Station main truss.
NASA Astrophysics Data System (ADS)
Xi, Yakun; Zhang, Cheng
2017-03-01
We show that one can obtain improved L 4 geodesic restriction estimates for eigenfunctions on compact Riemannian surfaces with nonpositive curvature. We achieve this by adapting Sogge's strategy in (Improved critical eigenfunction estimates on manifolds of nonpositive curvature, Preprint). We first combine the improved L 2 restriction estimate of Blair and Sogge (Concerning Toponogov's Theorem and logarithmic improvement of estimates of eigenfunctions, Preprint) and the classical improved {L^∞} estimate of Bérard to obtain an improved weak-type L 4 restriction estimate. We then upgrade this weak estimate to a strong one by using the improved Lorentz space estimate of Bak and Seeger (Math Res Lett 18(4):767-781, 2011). This estimate improves the L 4 restriction estimate of Burq et al. (Duke Math J 138:445-486, 2007) and Hu (Forum Math 6:1021-1052, 2009) by a power of {(log logλ)^{-1}}. Moreover, in the case of compact hyperbolic surfaces, we obtain further improvements in terms of {(logλ)^{-1}} by applying the ideas from (Chen and Sogge, Commun Math Phys 329(3):435-459, 2014) and (Blair and Sogge, Concerning Toponogov's Theorem and logarithmic improvement of estimates of eigenfunctions, Preprint). We are able to compute various constants that appeared in (Chen and Sogge, Commun Math Phys 329(3):435-459, 2014) explicitly, by proving detailed oscillatory integral estimates and lifting calculations to the universal cover H^2.
The Use of Fuzzy Theory in Grading of Students in Math
ERIC Educational Resources Information Center
Bjelica, Momcilo; Rankovic, Dragica
2010-01-01
The development of computer science, statistics and other technological fields, give us more opportunities to improve the process of evaluation of degree of knowledge and achievements in a learning process of our students. More and more we are relying on the computer software to guide us in the grading process. An improved way of grading can help…
Computer Science (CS) Education in Indian Schools: Situation Analysis Using Darmstadt Model
ERIC Educational Resources Information Center
Raman, Raghu; Venkatasubramanian, Smrithi; Achuthan, Krishnashree; Nedungadi, Prema
2015-01-01
Computer science (CS) and its enabling technologies are at the heart of this information age, yet its adoption as a core subject by senior secondary students in Indian schools is low and has not reached critical mass. Though there have been efforts to create core curriculum standards for subjects like Physics, Chemistry, Biology, and Math, CS…
Math Fundamentals: Selected Results from the First National Assessment of Mathematics.
ERIC Educational Resources Information Center
Education Commission of the States, Denver, CO. National Assessment of Educational Progress.
This report, the first of several to be published on the results of the 1972-73 assessment of mathematics, begins with a brief general discussion of the project. The findings with respect to pure computation and computation with translation are then presented in some detail. Data collected from subjects at four age levels (9, 13, 17, and adult)…
ERIC Educational Resources Information Center
Baker, Joseph M.; Moyer-Packenham, Patricia S.; Tucker, Stephen I.; Shumway, Jessica F.; Jordan, Kerry E.; Gillam, Ronald B.
2018-01-01
Functional near-infrared spectroscopy (fNIRS) is an easy to use neuroimaging technique that is portable and maintains a liberal tolerance to movement. As such, fNIRS represents an ideal tool to observe children's neural activity as they engage in real-world classroom activities, such as the interaction with digital math apps on an iPad. Here, we…
ERIC Educational Resources Information Center
Leung, Shuk-kwan S.; Lo, Jane-Jane
2010-01-01
This article features Sweet play math, a "math by the month" activity that involves decorating and making sugar cubes. Teachers may want to substitute straws, paper squares, alphabet blocks, or such commercially made manipulatives as Unifix[R] cubes for the real sweets. Given no allergy concerns, teachers and students alike would enjoy some sweet…
Citizenship: What's Mathematics Have to Do with It?
ERIC Educational Resources Information Center
Cotton, Tony
2016-01-01
British mathematics educator Tony Cotton suggests that teachers use math instruction to help students--who live in an internationally connected world--ponder international events and the global implications of policies in depth. He describes two math-based activities toward that end. First, teachers might guide learners in examining data connected…
Partnership Teaching: Success for All Children Using Math as a Vehicle.
ERIC Educational Resources Information Center
Adeeb, Patty; Bosnick, Janet; Terrell, Sue
1998-01-01
Using a constructivist and multicultural approach, math skills were taught in urban elementary classrooms. Acceptance of self and others, teamwork, problem solving, and critical thinking were emphasized. Game-formatted activities with hand-size wooden basketball goals and race cars were used to teach fractions and metrics. (MMU)
Student Errors in Dynamic Mathematical Environments
ERIC Educational Resources Information Center
Brown, Molly; Bossé, Michael J.; Chandler, Kayla
2016-01-01
This study investigates the nature of student errors in the context of problem solving and Dynamic Math Environments. This led to the development of the Problem Solving Action Identification Framework; this framework captures and defines all activities and errors associated with problem solving in a dynamic math environment. Found are three…
ERIC Educational Resources Information Center
What Works Clearinghouse, 2013
2013-01-01
"Scott Foresman-Addison Wesley Elementary Mathematics" is a core mathematics curriculum for students in prekindergarten through grade 6. The program aims to improve students' understanding of key math concepts through problem-solving instruction, hands-on activities, and math problems that involve reading and writing. The curriculum…
Science, Math, and Technology. K-6 Science Curriculum.
ERIC Educational Resources Information Center
Blueford, J. R.; And Others
Science, Math and Technology is one of the units of a K-6 unified science curriculum program. The unit consists of four organizing sub-themes: (1) science (with activities on observation, comparisons, and the scientific method); (2) technology (examining simple machines, electricity, magnetism, waves and forces); (3) mathematics (addressing skill…
Gender, Lies and Video Games: the Truth about Females and Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klawe, Maria M.
2006-02-22
This talk explores how girls and women differ from boys and men in their uses of and attitudes towards computers and computing. From playing computer games to pursuing computing careers, the participation of females tends to be very low compared to that of males. Why is this? Opinions range from girls wanting to avoid the math and/or the geek image of programming to girls having better things to do with their lives. We discuss research findings on this issue, as well as initiatives designed to increase the participation of females in computing.
Gender, Lies and Video Games: the Truth about Females and Computing
Klawe, Maria M. [Princeton University, Princeton, New Jersey, United States
2017-12-09
This talk explores how girls and women differ from boys and men in their uses of and attitudes towards computers and computing. From playing computer games to pursuing computing careers, the participation of females tends to be very low compared to that of males. Why is this? Opinions range from girls wanting to avoid the math and/or the geek image of programming to girls having better things to do with their lives. We discuss research findings on this issue, as well as initiatives designed to increase the participation of females in computing.
Critical Literacy: Does Advertising Show Gender and Cultural Stereotyping?
ERIC Educational Resources Information Center
Russo, Elizabeth
1996-01-01
The critical literacy component of an adult program developed skills in analyzing media advertising; using math for data analysis, graphing, and computation; interpreting data; and becoming aware of advertising's part in reenforcing gender roles. (SK)
What's New in Software? Computer Programs for Unobtrusive, Informal Evaluation.
ERIC Educational Resources Information Center
Hedley, Carolyn
1985-01-01
Teachers can use microcomputers in informal assessment of learning disabled students' academic achievement, math and science progress, reading comprehension, cognitive processes, motivation and social interaction. Selected software for unobtrusive, informal assessment is listed. (CL)
I-LLINI Partnerships for 21st Century Teachers
NASA Astrophysics Data System (ADS)
Read, K.; Wong, K.; Charlevoix, D. J.; Tomkin, J.; Hug, B.; Williams, M.; Pianfetti, E.
2008-12-01
I-LLINI Partnerships is two-year State funded program to initiate enhance communication between the faculty at University of Illinois and K-12 teachers in the surrounding communities. The program focuses on math and science with a particular emphasis on the use of technology to teaching math and science to middle-school aged children. The Partnership provides participating teachers with a suite of technology including a computer, digital camera, and software, as well as a small stipend. University partners include representatives from the Departments of Mathematics as well as the Department of Atmospheric Sciences and the Department of Geology. The Atmospheric Sciences and Geology faculty have partnered to provide content using an Earth Systems Science approach to presenting content to the teachers. Additionally, teachers provide feedback to university faculty with relation to how they might better prepare future science teachers. Teacher participants are required to attend a series of workshops during the academic year as well as a summer workshop. The first workshop was held June 2008 on the University of Illinois campus. Our poster will highlight the first workshop providing a discussion and photographs of the activities, an analysis of the benefits and challenges - both to the university representatives as well as the teachers and a summary of future changes planned for the 2009 summer workshop. During the second morning of the workshop, the science teachers participated in an EcoBlitz via a field trip to a collect data from a stream near campus. During the EcoBlitz, math teachers attended tutorial sessions on campus on statistical analysis software. The EcoBliz teachers were provided with instruments and equipment necessary to collect data on the weather conditions and water quality of the stream. Instruments included a temperature probe, turbidity sensor, dissolved oxygen sensor and a hand held weather instrument. Data was recorded with Vernier LabQuest data loggers. The participants also took pictures with the digital cameras provided through the partnership. During the afternoon session, water and air data was analyzed using TinkerPlots. The science teachers helped the math teachers understand the process of data collection, the physical environment where data was collected and the limitations of the instruments. The math teachers helped the science teachers to use the TinkerPlots software and find statistical representations of the data. A group discussion ensued with regard to the meaning of various statistical measures such as average and median and what they really mean when using real data. Feedback from the teachers was overwhelmingly positive, in particular the modeling of using science data to understand mathematical concepts. Several teachers planned to borrow the instruments and conduct similar activities in their science and math classrooms. Future work include conduct workshops for the participating teachers throughout the academic year to solicit from in-service teachers how university level science classes can be better tailored to pre-service teacher needs.
ERIC Educational Resources Information Center
Kinnaman, Daniel E.; And Others
1988-01-01
Reviews four educational software packages for Apple, IBM, and Tandy computers. Includes "How the West was One + Three x Four,""Mavis Beacon Teaches Typing,""Math and Me," and "Write On." Reviews list hardware requirements, emphasis, levels, publisher, purchase agreements, and price. Discusses the strengths…
Mathematics, Information, and Life Sciences
2012-03-05
INS • Chip -scale atomic clocks • Ad hoc networks • Polymorphic networks • Agile networks • Laser communications • Frequency-agile RF systems...FY12 BAA Bionavigation (Bio) Neuromorphic Computing (Human) Multi-scale Modeling (Math) Foundations of Information Systems (Info) BRI
ERIC Educational Resources Information Center
Raymond, Allen
2004-01-01
Since 1990, the January issue of "Teaching Pre K-8" has highlighted a school visit by the president of the National Council of Teachers of Mathematics. This article discusses Cathy Seeley's visit to a 6th grade classroom at the J. E. Pearce Middle School in Austin, Texas, where she participated in a math activity from the Connected…
ERIC Educational Resources Information Center
Levert, Brenda
2004-01-01
Each year, students in my seventh- and eighth-grade math classes plan and organize a schoolwide popcorn sale. This activity brings to life mathematical concepts learned in the classroom. By transferring textbook mathematics to a real-world situation, my students learn to value the mathematics being studied and are able to understand how it can…
The Power of Nature. World's Largest Math Event 5.
ERIC Educational Resources Information Center
National Council of Teachers of Mathematics, Inc., Reston, VA.
The theme of the fifth annual World's Largest Math Event (WLME 5) is "The Power of Nature." This theme encourages students to explore natural forces that affect humankind, including phenomena such as hurricanes, earthquakes, and snowstorms, and the mathematics that underlies their study. The 15 activities for WLMES have been grouped into five…
MathsFlip: Flipped Learning. Evaluation Report and Executive Summary
ERIC Educational Resources Information Center
Rudd, Peter; Aguilera, Alaidde Berenice Villaneuva; Elliott, Louise; Chambers, Bette
2017-01-01
The MathsFlip intervention aimed to improve the attainment of pupils in Years 5 and 6. The programme, developed by Shireland Collegiate Academy, used a 'flipped learning' approach involving pupils learning core content online, outside of class time, and then participating in activities in class to reinforce their learning. The programme used an…
Impact of Instructor Teaching Style and Content Course on Mathematics Anxiety of Preservice Teachers
ERIC Educational Resources Information Center
Van der Sandt, Suriza; O'Brien, Steve
2017-01-01
Integrative-STEM methodologies entail integrating multiple disciplines with active design-centric teaching and learning methods. If math anxiety is prevalent, for teachers or students, then both the level of integration and design thinking may be limited. This quantitative study of 160 preservice teachers investigated how math anxiety was impacted…
Designing Tasks for Math Modeling in College Algebra: A Critical Review
ERIC Educational Resources Information Center
Staats, Susan; Robertson, Douglas
2014-01-01
Over the last decade, the pedagogical approach known as mathematical modeling has received increased interest in college algebra classes in the United States. Math modeling assignments ask students to develop their own problem-solving tools to address non-routine, realistic scenarios. The open-ended quality of modeling activities creates dilemmas…
The SingAboutScience.org Database: An Educational Resource for Instructors and Students
ERIC Educational Resources Information Center
Crowther, Gregory J.
2012-01-01
Potential benefits of incorporating music into science and math curricula include enhanced recall of information, counteraction of perceptions that the material is dull or impenetrable, and opportunities for active student engagement and creativity. To help instructors and others find songs suited to their needs, I created the "Math And Science…
Finding a Good Fit: Using MCC in a "Third Space"
ERIC Educational Resources Information Center
Webster, Joan Parker; Wiles, Peter; Civil, Marta; Clark, Stacy
2005-01-01
Math in a Cultural Context (MCC) is based in traditional Yup'ik cultural values and ways of knowing and representing the world, which provide access to math concepts through hands-on exploration and active problem solving. This case illustrates how a novice and outsider teacher successfully implemented MCC in a classroom with predominantly…
Marvels of Math: Fascinating Reads and Awesome Activities.
ERIC Educational Resources Information Center
Haven, Kendall F.
Any topic, math included, becomes more accessible and understandable when human stories are related about the development of the subject. Stories make subjects real and purposeful. They provide a foundation from which students can understand and appreciate mathematics rather than merely memorize a series of rote exercises. This book presents 16…
TechXcite: Discover Engineering--A New STEM Curriculum
ERIC Educational Resources Information Center
Sallee, Jeff; Schmitt-McQuitty, Lynn; Swint, Sherry; Meek, Amanda; Ybarra, Gary; Dalton, Rodger
2015-01-01
TechXcite is an engineering-focused, discovery-based after-school science, technology, engineering, and math (STEM) program. The free curriculum is downloadable from http://techxcite.pratt.duke.edu/ and is comprised of eight Modules, each with four to five 45-minute activities that exercise the science and math learned in school by using…
Student Perceptions of Active Instructional Designs in Four Inner City Adult Education Math Classes
ERIC Educational Resources Information Center
Johnson, LaToya S.
2010-01-01
The focus of this study was to examine the attitudes, experiences, and opinions of adult math students in Adult Basic Education programs. Sixty students participated in the study, by completing observations, questionnaires, and completing the Attitude Towards Mathematics Survey (ATMS). The ATMS survey analyzed four factors. These factors included…
Computational Science and Innovation
NASA Astrophysics Data System (ADS)
Dean, D. J.
2011-09-01
Simulations - utilizing computers to solve complicated science and engineering problems - are a key ingredient of modern science. The U.S. Department of Energy (DOE) is a world leader in the development of high-performance computing (HPC), the development of applied math and algorithms that utilize the full potential of HPC platforms, and the application of computing to science and engineering problems. An interesting general question is whether the DOE can strategically utilize its capability in simulations to advance innovation more broadly. In this article, I will argue that this is certainly possible.
ERIC Educational Resources Information Center
Wahl, Sharon C.
Nursing educators and administrators are concerned about medication errors made by students which jeopardize patient safety. The inability to conceptualize and calculate medication dosages, often related to math anxiety, is implicated in such errors. A computer-assisted instruction (CAI) program is seen as a viable method of allowing students to…
ERIC Educational Resources Information Center
Lang, William Steve; And Others
The effects of the use of computer-enhanced instruction with remedial students were assessed, using 4,293 ninth through twelfth graders--3,308 Black, 957 White, and 28 Other--involved in the Governor's Remediation Initiative (GRI) in Georgia. Data sources included the Comprehensive Tests of Basic Skills (CTBS), a data collection form developed for…
Gender and Computer Education: An Observation of At Risk Girls in Class.
ERIC Educational Resources Information Center
Pikula, Karen
This paper presents results of a 23-day observation of 36 girls in all-girl math and computer classes at a public school's enrichment summer session for at-risk girls. Ages of the students observed ranged from 12 to 18. The students observed came to school with a long history of truancy, from homes where they suffered neglect and abuse. School was…
ERIC Educational Resources Information Center
Bennett, Randy Elliot; Braswell, James; Oranje, Andreas; Sandene, Brent; Kaplan, Bruce; Yan, Fred
2008-01-01
This article describes selected results from the Math Online (MOL) study, one of three field investigations sponsored by the National Center for Education Statistics (NCES) to explore the use of new technology in NAEP. Of particular interest in the MOL study was the comparability of scores from paper- and computer-based tests. A nationally…
Mining EEG with SVM for Understanding Cognitive Underpinnings of Math Problem Solving Strategies
López, Julio
2018-01-01
We have developed a new methodology for examining and extracting patterns from brain electric activity by using data mining and machine learning techniques. Data was collected from experiments focused on the study of cognitive processes that might evoke different specific strategies in the resolution of math problems. A binary classification problem was constructed using correlations and phase synchronization between different electroencephalographic channels as characteristics and, as labels or classes, the math performances of individuals participating in specially designed experiments. The proposed methodology is based on using well-established procedures of feature selection, which were used to determine a suitable brain functional network size related to math problem solving strategies and also to discover the most relevant links in this network without including noisy connections or excluding significant connections. PMID:29670667
Mining EEG with SVM for Understanding Cognitive Underpinnings of Math Problem Solving Strategies.
Bosch, Paul; Herrera, Mauricio; López, Julio; Maldonado, Sebastián
2018-01-01
We have developed a new methodology for examining and extracting patterns from brain electric activity by using data mining and machine learning techniques. Data was collected from experiments focused on the study of cognitive processes that might evoke different specific strategies in the resolution of math problems. A binary classification problem was constructed using correlations and phase synchronization between different electroencephalographic channels as characteristics and, as labels or classes, the math performances of individuals participating in specially designed experiments. The proposed methodology is based on using well-established procedures of feature selection, which were used to determine a suitable brain functional network size related to math problem solving strategies and also to discover the most relevant links in this network without including noisy connections or excluding significant connections.
Santa Fe Alliance for Science: The First Eight Years
NASA Astrophysics Data System (ADS)
Eisenstein, Robert A.
2013-04-01
The Santa Fe Alliance for Science (SFAFS) was founded in May, 2005. SFAFS exists to provide assistance in K-14 math and science education in the greater Santa Fe area. It does this via extensive programs (1) in math and science tutoring at Santa Fe High School, Santa Fe Community College and to a lesser degree at other schools, (2) science fair advising and judging, (3) its ``Santa Fe Science Cafe for Young Thinkers'' series, (4) a program of professional enrichment for K-12 math and science teachers, and (5) a fledging math intervention program in middle school math. Well over 150 STEM professionals, working mostly as volunteers, have contributed since our beginning. Participation by students, parents and teachers has increased dramatically over the years, leading to much more positive views of math and science, especially among elementary school students and teachers. Support from the community and from local school districts has been very strong. I will present a brief status report on SFAFS activities, discuss some of the lessons learned along the way and describe briefly some ideas for the future. More information can be found at the SFAFS website, www.sfafs.org.
Developing a Global Science and Math Education System Based on Real Astronomy Data
NASA Astrophysics Data System (ADS)
Pennypacker, Carlton
2015-03-01
Global Hands-On Universe (GHOU) is an educational system where students use real astronomy data from (largely optical) telescopes to learn fundamental physics, math, astronomy, and technology.GHOU is a good example of a collaborative global education project, where data, software, teacher training methods, curriculum, activities, telescopes, and human resources are developed by many members of GHOU and then shared internationally.Assessments show that in this program students learn more science and math than in conventional classroom teaching, and students change their attitudes towards choosing careers in science and technology.GHOU is an exemplar of appropriate use of computers in the classroom for real data analysis.The International Asteroid Search program of GHOU has helped students discover over 700 asteroids. Half a dozen high schools have named the asteroids they have found after their high school (some from here in Texas!).GHOU has found resonance with many teachers and students around the world, reaching approximately 20,000 global teachers in the International Year of Astronomy in 2009.In addition, activities from French HOU are part of the official French National Curriculum, and exit exam, teacher training syllabus and teacher exit exams. GHOU has found particular enthusiasms in nations with increasing technology basis - for example, GHOU is reaching many teachers in China, Chile, Indonesia, Kenya, Venezuela, with expansion plans for Cuba underway. Some nations, such as Portugal, have reached reasonable fractions of their teachers through GHOU. Workshops are planned in Iran, and HOU colleagues are starting to build a GHOU telescope in Israel. US HOU had trained approximately 1000 teachers in the United States, before the closing of the NSF Teacher Enhancement Section.But as many new large and smaller telescopes come on line - e.g., the Large Synoptic Survey Telescope - the need for GHOU around the world and even the United States will only increase.
ERIC Educational Resources Information Center
Teles, Elizabeth, Ed.; And Others
1990-01-01
Reviewed are two computer software packages for Macintosh microcomputers including "Phase Portraits," an exploratory graphics tool for studying first-order planar systems; and "MacMath," a set of programs for exploring differential equations, linear algebra, and other mathematical topics. Features, ease of use, cost, availability, and hardware…
ERIC Educational Resources Information Center
Science News, 1989
1989-01-01
Presented is a review of important science news stories of 1989 as reported in the pages of "Science News." Topics include anthropology, astronomy, behavior, biology, biomedicine, chemistry, environment, food science, math and computers, paleobiology, physics, science and society, space sciences, and technology. (CW)
NASA Astrophysics Data System (ADS)
Jacobo, A. C.; Collay, R.; Harris, R. N.; de Silva, L.
2011-12-01
We have formed a link between the Increasing Diversity in Earth Sciences (IDES) program with the Science and Math Investigative Learning Experiences (SMILE) program, both at Oregon State University. The IDES mission is to strengthen the understanding of Earth Sciences and their relevance to society among broad and diverse segments of the population and the SMILE mission is to provide science and math enrichment for underrepresented and other educationally underserved students in grades 4-12. Traditionally, underserved schools do not have enough time or resources to spend on science and mathematics. Furthermore, numerous budget cuts in many Oregon school districts have negatively impacted math and science cirriculum. To combat this trend we have designed suitcase lessons in climate change that can be carried to a number of classrooms. These lesson plans are scientifically rich and economically attractive. These lessons are designed to engage students in math and science through climate change presentations, group discussions, and hands-on activities. Over the past year we have familiarized ourselves with the academic ability of sixth and seventh graders through in-class observation in Salem Oregon. One of the suit case lessons we developed focuses on climate change by exploring the plight of polar bears in the face of diminishing sea ice. Our presentation will report the results of this activity.
Have, Mona; Nielsen, Jacob Have; Gejl, Anne Kær; Thomsen Ernst, Martin; Fredens, Kjeld; Støckel, Jan Toftegaard; Wedderkopp, Niels; Domazet, Sidsel Louise; Gudex, Claire; Grøntved, Anders; Kristensen, Peter Lund
2016-04-11
Integration of physical activity (PA) into the classroom may be an effective way of promoting the learning and academic achievement of children at elementary school. This paper describes the research design and methodology of an intervention study examining the effect of classroom-based PA on mathematical achievement, creativity, executive function, body mass index and aerobic fitness. The study was designed as a school-based cluster-randomized controlled trial targeting schoolchildren in 1st grade, and was carried out between August 2012 and June 2013. Eligible schools in two municipalities in the Region of Southern Denmark were invited to participate in the study. After stratification by municipality, twelve schools were randomized to either an intervention group or a control group, comprising a total of 505 children with mean age 7.2 ± 0.3 years. The intervention was a 9-month classroom-based PA program that involved integration of PA into the math lessons delivered by the schools' math teachers. The primary study outcome was change in math achievement, measured by a 45-minute standardized math test. Secondary outcomes were change in executive function (using a modified Eriksen flanker task and the Behavior Rating Inventory of Executive Function (BRIEF) questionnaire filled out by the parents), creativity (using the Torrance Tests of Creative Thinking, TTCT), aerobic fitness (by the Andersen intermittent shuttle-run test) and body mass index. PA during math lessons and total PA (including time spent outside school) were assessed using accelerometry. Math teachers used Short Message Service (SMS)-tracking to report on compliance with the PA intervention and on their motivation for implementing PA in math lessons. Parents used SMS-tracking to register their children's PA behavior in leisure time. The results of this randomized controlled trial are expected to provide schools and policy-makers with significant new insights into the potential of classroom-based PA to improve cognition and academic achievement in children. Clinicaltrials.gov: NCT02488460 (06/29/2015).
Maritime Math Review. The Port of Baltimore Workplace Skills Development Project.
ERIC Educational Resources Information Center
Janiszewski, Kathryn; Permut, Cathy
This set of learning modules was developed during a project to deliver workplace literacy instruction to individuals employed in the more than 50 businesses related to the activities of the Port of Baltimore. It is intended to help employees of port businesses develop basic math skills. The following topics are covered in the individual modules:…
Preparing Graduate Students to Teach Math: Engaging with Activities and Viewing Teaching Models
ERIC Educational Resources Information Center
Mongillo, Maria Boeke
2016-01-01
Teacher self-efficacy is the belief a teacher holds that he or she can make a difference in student achievement, even when the student is difficult or unmotivated (Guskey & Passaro, 1994). It has been linked to positive teacher practices and student outcomes. This mixed methods study of preservice elementary and early childhood math teachers…
Connecting Math Website Evaluation to an Authentic Learning Activity for Teaching Candidates
ERIC Educational Resources Information Center
Ziegenfus, Robert G.; Smith, Michael
2015-01-01
This article will discuss two teacher training functions: One function is to give the teacher candidates practice in evaluating currently available mathematics websites used in grades K-8 for mathematics instruction. The second function is the evaluation of data by teaching candidates of 13 commonly used math sites by middle and elementary…
Working Together: How Teachers Teach and Students Learn in Collaborative Learning Environments
ERIC Educational Resources Information Center
Burns, Mary; Pierson, Elizabeth; Reddy, Shylaja
2014-01-01
Active Learning in Maths and Science (ALMS) was a six-month face-to-face professional development program for middle school maths and science teachers carried out between June and November, 2010 in two Indian states. ALMS's theory of action is grounded in the belief that collaborative learning serves as a "gateway" to learner-centered…
Adding Life to Social Studies, Language Arts, Math and Science.
ERIC Educational Resources Information Center
Dobson, Dorothy Tousley; Archer, Sally
This booklet is designed to use the newspaper in the teaching of social studies, language arts, math, and science. Each of these major areas is divided into several topics. Each topic is defined, followed by a list of activities using newspaper articles or pictures to develop the topic. The seven topics for social studies are sociology;…
Pierce, Kim M; Bolt, Daniel M; Vandell, Deborah Lowe
2010-06-01
This longitudinal study examined associations between three after-school program quality features (positive staff-child relations, available activities, programming flexibility) and child developmental outcomes (reading and math grades, work habits, and social skills with peers) in Grade 2 and then Grade 3. Participants (n = 120 in Grade 2, n = 91 in Grade 3) attended after-school programs more than 4 days per week, on average. Controlling for child and family background factors and children's prior functioning on the developmental outcomes, positive staff-child relations in the programs were positively associated with children's reading grades in both Grades 2 and 3, and math grades in Grade 2. Positive staff-child relations also were positively associated with social skills in Grade 2, for boys only. The availability of a diverse array of age-appropriate activities at the programs was positively associated with children's math grades and classroom work habits in Grade 3. Programming flexibility (child choice of activities) was not associated with child outcomes.
ERIC Educational Resources Information Center
Grandgenett, Neal; And Others
McMillan Magnet Center is located in urban Omaha, Nebraska, and specializes in math, computers, and communications. Once a junior high school, it was converted to a magnet center for seventh and eighth graders in the 1983-84 school year as part of Omaha's voluntary desegregation plan. Now the ethnic makeup of the student population is about 50%…
Contention Bounds for Combinations of Computation Graphs and Network Topologies
2014-08-08
member of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA, and ASPIRE Lab industrial sponsors and affiliates Intel...Google, Nokia, NVIDIA , Oracle, MathWorks and Samsung. Also funded by U.S. DOE Office of Science, Office of Advanced Scientific Computing Research...DARPA Award Number HR0011-12-2- 0016, the Center for Future Architecture Research, a mem- ber of STARnet, a Semiconductor Research Corporation
ERIC Educational Resources Information Center
Online-Offline, 1998
1998-01-01
This theme issue on recreation includes annotated listings of Web sites, CD-ROMs, computer software, videos, books, magazines, and professional resources that deal with recreation for K-8 language arts, art/architecture, music/dance, science, math, social studies, and health/physical education. Sidebars discuss fun and games, recess recreation,…
The Problem-Solving Nemesis: Mindless Manipulation.
ERIC Educational Resources Information Center
Hawkins, Vincent J.
1987-01-01
Indicates that only 21% of respondents (secondary school math teachers) used computer-assisted instruction for tutorial work, physical models to interpret abstract concepts, or real-life application of the arithmetic or algebraic manipulation. Recommends that creative teaching methods be applied to problem solving. (NKA)
76 FR 64330 - Advanced Scientific Computing Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-18
... talks on HPC Reliability, Diffusion on Complex Networks, and Reversible Software Execution Systems Report from Applied Math Workshop on Mathematics for the Analysis, Simulation, and Optimization of Complex Systems Report from ASCR-BES Workshop on Data Challenges from Next Generation Facilities Public...
ERIC Educational Resources Information Center
Sherman, Lee; Paglin, Catherine; Jarrett, Denise; Kneidek, Tony
1998-01-01
Profiles 10 technology-based programs in Montana, Oregon, Washington, Alaska, and Idaho schools that use computers, the Internet, and multimedia to teach math, science, information skills, economics, English, history, and graphic design. Includes teacher comments on hardware, software, costs, the changing role of the teacher, Internet safety, and…
NASA Technical Reports Server (NTRS)
1990-01-01
NASA formally launched Project LASER (Learning About Science, Engineering and Research) in March 1990, a program designed to help teachers improve science and mathematics education and to provide 'hands on' experiences. It featured the first LASER Mobile Teacher Resource Center (MTRC), is designed to reach educators all over the nation. NASA hopes to operate several MTRCs with funds provided by private industry. The mobile unit is a 22-ton tractor-trailer stocked with NASA educational publications and outfitted with six work stations. Each work station, which can accommodate two teachers at a time, has a computer providing access to NASA Spacelink. Each also has video recorders and photocopy/photographic equipment for the teacher's use. MTRC is only one of the five major elements within LASER. The others are: a Space Technology Course, to promote integration of space science studies with traditional courses; the Volunteer Databank, in which NASA employees are encouraged to volunteer as tutors, instructors, etc; Mobile Discovery Laboratories that will carry simple laboratory equipment and computers to provide hands-on activities for students and demonstrations of classroom activities for teachers; and the Public Library Science Program which will present library based science and math programs.
Integration of a CAS/DGS as a CAD system in the mathematics curriculum for architecture students
NASA Astrophysics Data System (ADS)
Falcón, R. M.
2011-09-01
Students of Architecture and Building Engineering Degrees work with Computer Aided Design systems daily in order to design and model architectonic constructions. Since this kind of software is based on the creation and transformation of geometrical objects, it seems to be a useful tool in Maths classes in order to capture the attention of the students. However, users of these systems cannot display the set of formulas and equations which constitute the basis of their studio. Moreover, if they want to represent curves or surfaces starting from its corresponding equations, they have to define specific macros which require the knowledge of some computer language or they have to create a table of points in order to convert a set of nodes into polylines, polysolids or splines. More specific concepts, like, for instance, those related to differential geometry, are not implemented in this kind of software, although they are taught in our Maths classes. In a very similar virtual environment, Computer Algebra and Dynamic Geometry Systems offer the possibility of implementing several concepts which can be found in the usual mathematics curriculum for Building Engineering: curves, surfaces and calculus. Specifically, the use of sliders related to the Euler's angles and the generation of tools which project 3D into 2D, facilitate the design and model of curves and rigid objects in space, by starting from their parametric equations. In this article, we show the experience carried out in an experimental and control group in the context of the Maths classes of the Building Engineering Degree of the University of Seville, where students have created their own building models by understanding and testing the usefulness of the mathematical concepts.
APPLICATION OF NEURAL NETWORK ALGORITHMS FOR BPM LINEARIZATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musson, John C.; Seaton, Chad; Spata, Mike F.
2012-11-01
Stripline BPM sensors contain inherent non-linearities, as a result of field distortions from the pickup elements. Many methods have been devised to facilitate corrections, often employing polynomial fitting. The cost of computation makes real-time correction difficult, particulalry when integer math is utilized. The application of neural-network technology, particularly the multi-layer perceptron algorithm, is proposed as an efficient alternative for electrode linearization. A process of supervised learning is initially used to determine the weighting coefficients, which are subsequently applied to the incoming electrode data. A non-linear layer, known as an activation layer, is responsible for the removal of saturation effects. Implementationmore » of a perceptron in an FPGA-based software-defined radio (SDR) is presented, along with performance comparisons. In addition, efficient calculation of the sigmoidal activation function via the CORDIC algorithm is presented.« less
NASA Technical Reports Server (NTRS)
Hayden, W. L.; Robinson, L. H.
1972-01-01
Spectral analyses of angle-modulated communication systems is studied by: (1) performing a literature survey of candidate power spectrum computational techniques, determining the computational requirements, and formulating a mathematical model satisfying these requirements; (2) implementing the model on UNIVAC 1230 digital computer as the Spectral Analysis Program (SAP); and (3) developing the hardware specifications for a data acquisition system which will acquire an input modulating signal for SAP. The SAP computational technique uses extended fast Fourier transform and represents a generalized approach for simple and complex modulating signals.
On the Money: Math Activities to Build Financial Literacy, Grades 6-8
ERIC Educational Resources Information Center
Bay-Williams, Jennifer M.; Bush, Sarah B.; Peters, Susan A.; McGatha, Maggie B.
2015-01-01
To succeed in college, career, and life, students need to become financially literate. But understanding the basics of a long-term investment or a short-term loan is not enough without the math skills to make financially sound choices. In the already full curriculum of middle schools today, how can teachers find room to include financial literacy?…
SCDC Spanish Curricula Units. Science/Math Strand, Unit 6, Grade 2, Supplement & Ditto Packet.
ERIC Educational Resources Information Center
Spanish Curricula Development Center, Miami Beach, FL.
The supplement and ditto packet to the science-math strand of unit six for second graders features visual materials to help the teacher carry out the instructional and assessment activities for the unit's four kits. Illustrations are provided to help stimulate oral language and conceptual development. Some are designed to be cut out for…
ERIC Educational Resources Information Center
Pennsylvania State Univ., University Park. Div. of Occupational and Vocational Studies.
A project was undertaken to implement the employability, reading, and math skills of disadvantaged students in vocational education. Included in the project were the following activities: (1) field tests, evaluation, and dissemination of a mathematics skills curriculum guide for disadvantaged learners; (2) field tests and revision of guidelines…
Demystify Math, Science, and Technology: Creativity, Innovation, and Problem-Solving
ERIC Educational Resources Information Center
Adams, Dennis; Hamm, Mary
2010-01-01
Technology is viewed as a powerful force both in and out of school and has long been linked with math and science. Although concepts and activities of this book apply to any grade, the primary focus is on the elementary and middle school levels. This book provides principles and practical strategies for promoting creative and innovative work in…
Math Around the World: Grades 5-8. Teachers' Guide. Great Explorations in Math and Science (GEMS).
ERIC Educational Resources Information Center
Braxton, Beverly; And Others
This document is a collection of eight games from four continents. Students use mathematics that is directly relevant to them as they take part in the games. The first five games (NIM, Kalah, Tower of Hanoi, Shongo Networks, and Magic Squares) feature presentation instructions that describe multiple-session classroom activities for grades 5-8.…
Using Assessment Data to Guide Math Course Placement of California Middle School Students
ERIC Educational Resources Information Center
Huang, Chun-Wei; Snipes, Jason; Finkelstein, Neal
2016-01-01
Middle school math placement and progression are topics that are part of an active policy and practice discussion in California and elsewhere. Beginning in the 2008/09 school year, California's State Board of Education recommended that students complete algebra I by the end of grade 8. Between 2003 and 2009 the proportion of grade 8 students…
ERIC Educational Resources Information Center
Kermani, Hengameh; Aldemir, Jale
2015-01-01
The purpose of the present study was to study if purposeful math, science, and technology curriculum projects and activities would support Pre-K children's performance in these subject matter areas. In this study, 58 Pre-K children from 4 Pre-K classrooms in a public Pre-K programme in North Carolina participated. Through a quasi-experimental,…
ERIC Educational Resources Information Center
Illinois State Office of Education, Springfield. Div. of Adult Vocational and Technical Education.
Prepared by classroom teachers for the infusion of career education into existing curriculum, this notebook contains career-related student worksheets in a number of math skills. The activities are suitable for use with a variety of ability levels and learning styles. These worksheets for grades 7 and 8 are divided into seven major mathematics…
Computers for real time flight simulation: A market survey
NASA Technical Reports Server (NTRS)
Bekey, G. A.; Karplus, W. J.
1977-01-01
An extensive computer market survey was made to determine those available systems suitable for current and future flight simulation studies at Ames Research Center. The primary requirement is for the computation of relatively high frequency content (5 Hz) math models representing powered lift flight vehicles. The Rotor Systems Research Aircraft (RSRA) was used as a benchmark vehicle for computation comparison studies. The general nature of helicopter simulations and a description of the benchmark model are presented, and some of the sources of simulation difficulties are examined. A description of various applicable computer architectures is presented, along with detailed discussions of leading candidate systems and comparisons between them.
ERIC Educational Resources Information Center
Journal of Chemical Education, 1988
1988-01-01
Reviews two computer programs: "Molecular Graphics," which allows molecule manipulation in three-dimensional space (requiring IBM PC with 512K, EGA monitor, and math coprocessor); and "Periodic Law," a database which contains up to 20 items of information on each of the first 103 elements (Apple II or IBM PC). (MVL)
Job Skills of the Financial Aid Professional.
ERIC Educational Resources Information Center
Heist, Vali
2002-01-01
Describes the skills practiced by student financial aid professionals which are valued by all employers, including problem solving, human relations, computer programming, teaching/training, information management, money management, business management, and science and math. Also describes how to develop skills outside of the office. (EV)
TEACHING "MATH-LITE" CONSERVATION (BOOK REVIEW OF CONSERVATION BIOLOGY WITH RAMAS ECOLAB)
This book is designed to serve as a laboratory workbook for an undergraduate course in conservation biology, environmental science, or natural resource management. By integrating with RAMAS EcoLab software, the book provides instructors with hands-on computer exercises that can ...
Development of an Aeromedical Scientific Information System for Aviation Safety
2008-01-01
math- ematics, engineering, computer hardware, software , and networking, was assembled to glean the most knowledge from the complicated aeromedical...9, SPlus Enterprise Developer 8, and Insightful Miner version 7. Process flow charts were done with SmartDraw Suite Edition version 7. Static and
ERIC Educational Resources Information Center
Science News, 1990
1990-01-01
This is a review of important science news stories of 1990 as reported in the pages of this journal. Areas covered include anthropology, astronomy, behavior, biology, biomedicine, chemistry, computers and math, earth sciences, environment, food science, materials science, paleobiology, physics, science and society, and space sciences. (CW)
This Rock 'n' Roll Video Teaches Math
ERIC Educational Resources Information Center
Niess, Margaret L.; Walker, Janet M.
2009-01-01
Mathematics is a discipline that has significantly advanced through the use of digital technologies with improved computational, graphical, and symbolic capabilities. Digital videos can be used to present challenging mathematical questions for students. Video clips offer instructional possibilities for moving students from a passive mode of…
Cost-Effectiveness of Four Educational Interventions.
ERIC Educational Resources Information Center
Levin, Henry M.; And Others
This study employs meta-analysis and cost-effectiveness instruments to evaluate and compare cross-age tutoring, computer assistance, class size reductions, and instructional time increases for their utility in improving elementary school reading and math scores. Using intervention effect studies as replication models, researchers first estimate…
Computer-based training for improving mental calculation in third- and fifth-graders.
Caviola, Sara; Gerotto, Giulia; Mammarella, Irene C
2016-11-01
The literature on intervention programs to improve arithmetical abilities is fragmentary and few studies have examined training on the symbolic representation of numbers (i.e. Arabic digits). In the present research, three groups of 3rd- and 5th-grade schoolchildren were given training on mental additions: 76 were assigned to a computer-based strategic training (ST) group, 73 to a process-based training (PBT) group, and 71 to a passive control (PC) group. Before and after the training, the children were given a criterion task involving complex addition problems, a nearest transfer task on complex subtraction problems, two near transfer tasks on math fluency, and a far transfer task on numerical reasoning. Our results showed developmental differences: 3rd-graders benefited more from the ST, with transfer effects on subtraction problems and math fluency, while 5th-graders benefited more from the PBT, improving their response times in the criterion task. Developmental, clinical and educational implications of these findings are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khmelnytskaya, Kira V., E-mail: khmel@uaq.edu.mx; Kravchenko, Vladislav V., E-mail: vkravchenko@math.cinvestav.edu.mx; Torba, Sergii M., E-mail: storba@math.cinvestav.edu.mx
2016-05-15
The time-dependent Maxwell system describing electromagnetic wave propagation in inhomogeneous isotropic media in the one-dimensional case reduces to a Vekua-type equation for bicomplex-valued functions of a hyperbolic variable, see Kravchenko and Ramirez [Adv. Appl. Cliord Algebr. 21(3), 547–559 (2011)]. Using this relation, we solve the problem of the transmission through an inhomogeneous layer of a normally incident electromagnetic time-dependent plane wave. The solution is written in terms of a pair of Darboux-associated transmutation operators [Kravchenko, V. V. and Torba, S. M., J. Phys. A: Math. Theor. 45, 075201 (2012)], and combined with the recent results on their construction [Kravchenko, V.more » V. and Torba, S. M., Complex Anal. Oper. Theory 9, 379-429 (2015); Kravchenko, V. V. and Torba, S. M., J. Comput. Appl. Math. 275, 1–26 (2015)] can be used for efficient computation of the transmitted modulated signals. We develop the corresponding numerical method and illustrate its performance with examples.« less
Abnormal Error Monitoring in Math-Anxious Individuals: Evidence from Error-Related Brain Potentials
Suárez-Pellicioni, Macarena; Núñez-Peña, María Isabel; Colomé, Àngels
2013-01-01
This study used event-related brain potentials to investigate whether math anxiety is related to abnormal error monitoring processing. Seventeen high math-anxious (HMA) and seventeen low math-anxious (LMA) individuals were presented with a numerical and a classical Stroop task. Groups did not differ in terms of trait or state anxiety. We found enhanced error-related negativity (ERN) in the HMA group when subjects committed an error on the numerical Stroop task, but not on the classical Stroop task. Groups did not differ in terms of the correct-related negativity component (CRN), the error positivity component (Pe), classical behavioral measures or post-error measures. The amplitude of the ERN was negatively related to participants’ math anxiety scores, showing a more negative amplitude as the score increased. Moreover, using standardized low resolution electromagnetic tomography (sLORETA) we found greater activation of the insula in errors on a numerical task as compared to errors in a non-numerical task only for the HMA group. The results were interpreted according to the motivational significance theory of the ERN. PMID:24236212
Working memory, worry, and algebraic ability.
Trezise, Kelly; Reeve, Robert A
2014-05-01
Math anxiety (MA)-working memory (WM) relationships have typically been examined in the context of arithmetic problem solving, and little research has examined the relationship in other math domains (e.g., algebra). Moreover, researchers have tended to examine MA/worry separate from math problem solving activities and have used general WM tasks rather than domain-relevant WM measures. Furthermore, it seems to have been assumed that MA affects all areas of math. It is possible, however, that MA is restricted to particular math domains. To examine these issues, the current research assessed claims about the impact on algebraic problem solving of differences in WM and algebraic worry. A sample of 80 14-year-old female students completed algebraic worry, algebraic WM, algebraic problem solving, nonverbal IQ, and general math ability tasks. Latent profile analysis of worry and WM measures identified four performance profiles (subgroups) that differed in worry level and WM capacity. Consistent with expectations, subgroup membership was associated with algebraic problem solving performance: high WM/low worry>moderate WM/low worry=moderate WM/high worry>low WM/high worry. Findings are discussed in terms of the conceptual relationship between emotion and cognition in mathematics and implications for the MA-WM-performance relationship. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zakharova, Natalia; Piskovatsky, Nicolay; Gusev, Anatoly
2014-05-01
Development of Informational-Computational Systems (ICS) for data assimilation procedures is one of multidisciplinary problems. To study and solve these problems one needs to apply modern results from different disciplines and recent developments in: mathematical modeling; theory of adjoint equations and optimal control; inverse problems; numerical methods theory; numerical algebra and scientific computing. The above problems are studied in the Institute of Numerical Mathematics of the Russian Academy of Science (INM RAS) in ICS for personal computers. In this work the results on the Special data base development for ICS "INM RAS - Black Sea" are presented. In the presentation the input information for ICS is discussed, some special data processing procedures are described. In this work the results of forecast using ICS "INM RAS - Black Sea" with operational observation data assimilation are presented. This study was supported by the Russian Foundation for Basic Research (project No 13-01-00753) and by Presidium Program of Russian Academy of Sciences (project P-23 "Black sea as an imitational ocean model"). References 1. V.I. Agoshkov, M.V. Assovskii, S.A. Lebedev, Numerical simulation of Black Sea hydrothermodynamics taking into account tide-forming forces. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, pp. 5-31. 2. E.I. Parmuzin, V.I. Agoshkov, Numerical solution of the variational assimilation problem for sea surface temperature in the model of the Black Sea dynamics. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, pp. 69-94. 3. V.B. Zalesny, N.A. Diansky, V.V. Fomin, S.N. Moshonkin, S.G. Demyshev, Numerical model of the circulation of Black Sea and Sea of Azov. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, pp. 95-111. 4. Agoshkov V.I.,Assovsky M.B., Giniatulin S. V., Zakharova N.B., Kuimov G.V., Parmuzin E.I., Fomin V.V. Informational Computational system of variational assimilation of observation data "INM RAS - Black sea"// Ecological safety of coastal and shelf zones and complex use of shelf resources: Collection of scientific works. Issue 26, Volume 2. - National Academy of Sciences of Ukraine, Marine Hydrophysical Institute, Sebastopol, 2012. Pages 352-360. (In russian)
Smith college secondary math and science outreach program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, J.A.; Clark, C.
1994-12-31
The Smith College Secondary Math and Science Outreach Program works collaboratively with front-line educators to encourage young women students of all abilities, especially underrepresented and underserved minorities, to continue studying math and science throughout high school. The program includes three main components: (1) Twenty-five to thirty teams of math/science teachers and guidance counselors participate in a year-long program which begins with a three-day Current Students/Future Scientists and Engineering Workshop. This event includes a keynote address, presentations and workshops by successful women in science and engineering, and hands-on laboratory sessions. Each participant receives a stipend and free room and board. Returningmore » to their schools, the teacher-counselor teams implement ongoing plans designed to counteract gender bias in the sciences and to alert female students to the broad range of math, science, and engineering career choices open to them. A follow-up session in the spring allows the teams to present and discuss their year-long activities. (2) TRI-ON, a day of science for 120 ninth- and tenth- grade girls from schools with a large underserved and underrepresented population, is held in early spring. Girls discover the excitement of laboratory investigation and interact with female college science and math majors. (3) Teaching Internships, initiated in 1991, involve ten to fifteen Smith College math and science majors in teaching in public schools. The teaching interns experience the rewards and challenges of classroom teaching, and they also serve as role models for younger students.« less
Necka, Elizabeth A.; Sokolowski, H. Moriah; Lyons, Ian M.
2015-01-01
Recent work has demonstrated that math anxiety is more than just the product of poor math skills. Psychosocial factors may play a key role in understanding what it means to be math anxious, and hence may aid in attempts to sever the link between math anxiety and poor math performance. One such factor may be the extent to which individuals integrate math into their sense of self. We adapted a well-established measure of this degree of integration (i.e., self-other overlap) to assess individuals’ self-math overlap. This non-verbal single-item measure showed that identifying oneself with math (having higher self-math overlap) was strongly associated with lower math anxiety (r = -0.610). We also expected that having higher self-math overlap would leave one especially susceptible to the threat of poor math performance to the self. We identified two competing hypotheses regarding how this plays out in terms of math anxiety. Those higher in self-math overlap might be more likely to worry about poor math performance, exacerbating the negative relation between math anxiety and math ability. Alternatively, those higher in self-math overlap might exhibit self-serving biases regarding their math ability, which would instead predict a decoupling of the relation between their perceived and actual math ability, and in turn the relation between their math ability and math anxiety. Results clearly favored the latter hypothesis: those higher in self-math overlap exhibited almost no relation between math anxiety and math ability, whereas those lower in self-math overlap showed a strong negative relation between math anxiety and math ability. This was partially explained by greater self-serving biases among those higher in self-math overlap. In sum, these results reveal that the degree to which one integrates math into one’s self – self-math overlap – may provide insight into how the pernicious negative relation between math anxiety and math ability may be ameliorated. PMID:26528210
Necka, Elizabeth A; Sokolowski, H Moriah; Lyons, Ian M
2015-01-01
Recent work has demonstrated that math anxiety is more than just the product of poor math skills. Psychosocial factors may play a key role in understanding what it means to be math anxious, and hence may aid in attempts to sever the link between math anxiety and poor math performance. One such factor may be the extent to which individuals integrate math into their sense of self. We adapted a well-established measure of this degree of integration (i.e., self-other overlap) to assess individuals' self-math overlap. This non-verbal single-item measure showed that identifying oneself with math (having higher self-math overlap) was strongly associated with lower math anxiety (r = -0.610). We also expected that having higher self-math overlap would leave one especially susceptible to the threat of poor math performance to the self. We identified two competing hypotheses regarding how this plays out in terms of math anxiety. Those higher in self-math overlap might be more likely to worry about poor math performance, exacerbating the negative relation between math anxiety and math ability. Alternatively, those higher in self-math overlap might exhibit self-serving biases regarding their math ability, which would instead predict a decoupling of the relation between their perceived and actual math ability, and in turn the relation between their math ability and math anxiety. Results clearly favored the latter hypothesis: those higher in self-math overlap exhibited almost no relation between math anxiety and math ability, whereas those lower in self-math overlap showed a strong negative relation between math anxiety and math ability. This was partially explained by greater self-serving biases among those higher in self-math overlap. In sum, these results reveal that the degree to which one integrates math into one's self - self-math overlap - may provide insight into how the pernicious negative relation between math anxiety and math ability may be ameliorated.
Refractive Thinking Profile In Solving Mathematical Problem Reviewed from Students Math Capability
NASA Astrophysics Data System (ADS)
Maslukha, M.; Lukito, A.; Ekawati, R.
2018-01-01
Refraction is a mental activity experienced by a person to make a decision through reflective thinking and critical thinking. Differences in mathematical capability have an influence on the difference of student’s refractive thinking processes in solving math problems. This descriptive research aims to generate a picture of refractive thinking of students in solving mathematical problems in terms of students’ math skill. Subjects in this study consisted of three students, namely students with high, medium, and low math skills based on mathematics capability test. Data collection methods used are test-based methods and interviews. After collected data is analyzed through three stages that are, condensing and displaying data, data display, and drawing and verifying conclusion. Results showed refractive thinking profiles of three subjects is different. This difference occurs at the planning and execution stage of the problem. This difference is influenced by mathematical capability and experience of each subject.
Statistical Inferences from the Topology of Complex Networks
2016-10-04
stable, does not lose any information, has continuous and discrete versions, and obeys a strong law of large numbers and a central limit theorem. The...paper (with J.A. Scott) “Categorification of persistent homology” [7] in the journal Discrete and Computational Geome- try and the paper “Metrics for...Generalized Persistence Modules” (with J.A. Scott and V. de Silva) in the journal Foundations of Computational Math - ematics [5]. These papers develop
Numerical computation of orbits and rigorous verification of existence of snapback repellers.
Peng, Chen-Chang
2007-03-01
In this paper we show how analysis from numerical computation of orbits can be applied to prove the existence of snapback repellers in discrete dynamical systems. That is, we present a computer-assisted method to prove the existence of a snapback repeller of a specific map. The existence of a snapback repeller of a dynamical system implies that it has chaotic behavior [F. R. Marotto, J. Math. Anal. Appl. 63, 199 (1978)]. The method is applied to the logistic map and the discrete predator-prey system.
Legendre modified moments for Euler's constant
NASA Astrophysics Data System (ADS)
Prévost, Marc
2008-10-01
Polynomial moments are often used for the computation of Gauss quadrature to stabilize the numerical calculation of the orthogonal polynomials, see [W. Gautschi, Computational aspects of orthogonal polynomials, in: P. Nevai (Ed.), Orthogonal Polynomials-Theory and Practice, NATO ASI Series, Series C: Mathematical and Physical Sciences, vol. 294. Kluwer, Dordrecht, 1990, pp. 181-216 [6]; W. Gautschi, On the sensitivity of orthogonal polynomials to perturbations in the moments, Numer. Math. 48(4) (1986) 369-382 [5]; W. Gautschi, On generating orthogonal polynomials, SIAM J. Sci. Statist. Comput. 3(3) (1982) 289-317 [4
Lahr, J.C.
1998-01-01
The apparatus consists of a heavy object that is dragged steadily with an elastic cord. Although pulled with a constant velocity, the heavy object repeatedly slides and then stops. A small vibration sensor, attached to a computer display, graphically monitors this intermittent motion. 2 This intermittent sliding motion mimics the intermittent fault slippage that characterizes the earthquake fault zones. In tectonically active regions, the Earth's outer brittle shell, which is about 50 km thick, is slowly deformed elastically along active faults. As the deformation increases, stress also increases, until fault slippage releases the stored elastic energy. This process is called elastic rebound. Detailed instructions are given for assembly and construction of this demonstration. Included are suggested sources for the vibration sensor (geophone) and the computer interface. Exclusive of the personal computer, the total cost is between $125 and $150. I gave a talk at the Geological Society of America's Cordilleran Section Centennial meeting on June 2, 1999. The slides show how this table-top demonstration can be used to help meet many of the K-12 teaching goals described in Benchmarks for Science Literacy (American Association for the Advancement of Science, 1993).
In Their Own Words: Dealing with Dyslexia | NIH MedlinePlus the Magazine
... occurs in people of all backgrounds and intellectual levels. People with dyslexia can be very bright. They are often capable or even gifted in areas such as art, computer science, design, drama, electronics, math, mechanics, music, physics, sales, and sports. Some of ...
The Sky's the Limit in Math-Related Careers.
ERIC Educational Resources Information Center
Askew, Judy
This booklet introduces readers--particularly women--to some jobs that use mathematical training, in laboratories, computer centers, universities, insurance companies, and government offices. Based on information from women working in mathematics-related fields, it is designed to help women consider various career choices. Sections focus on…
ERIC Educational Resources Information Center
Liu, Dennis
2010-01-01
Biology is well suited for mathematical description, from the perfect geometry of viruses, to equations that describe the flux of ions across cellular membranes, to computationally intensive models for protein folding. For this short Web review, however, the author focuses on how mathematics helps biologists sort, evaluate, and draw conclusions…
ERIC Educational Resources Information Center
Yang, Euphony F. Y.; Chang, Ben; Cheng, Hercy N. H.; Chan, Tak-Wai
2016-01-01
This study examined how to foster pupils' mathematical communication abilities by using tablet PCs. Students were encouraged to generate math creations (including mathematical representation, solution, and solution explanation of word problems) as their teaching materials and reciprocally tutor classmates to increase opportunities for mathematical…
Perceived Experiences with Sexism among Adolescent Girls
ERIC Educational Resources Information Center
Leaper, Campbell; Brown, Christia Spears
2008-01-01
This study investigated predictors of adolescent girls' experiences with sexism and feminism. Girls (N = 600; M = 15.1 years, range = 12-18), of varied socioeconomic and ethnic backgrounds, completed surveys of personal experiences with sexual harassment, academic sexism (regarding science, math, and computer technology), and athletics. Most girls…
12 Math Rules That Expire in the Middle Grades
ERIC Educational Resources Information Center
Karp, Karen S.; Bush, Sarah B.; Dougherty, Barbara J.
2015-01-01
Many rules taught in mathematics classrooms "expire" when students develop knowledge that is more sophisticated, such as using new number systems. For example, in elementary grades, students are sometimes taught that "addition makes bigger" or "subtraction makes smaller" when learning to compute with whole numbers,…
IQ and Neuropsychological Predictors of Academic Achievement
ERIC Educational Resources Information Center
Mayes, Susan Dickerson; Calhoun, Susan L.; Bixler, Edward O.; Zimmerman, Dennis N.
2009-01-01
Word reading and math computation scores were predicted from Wechsler Abbreviated Scale of Intelligence Full Scale IQ, 10 neuropsychological tests, and parent attention deficit hyperactivity disorder (ADHD) ratings in 214 general population elementary school children. IQ was the best single predictor of achievement. In addition, Digit Span…
Teaching Mathematics Using Steplets
ERIC Educational Resources Information Center
Bringslid, Odd; Norstein, Anne
2008-01-01
This article evaluates online mathematical content used for teaching mathematics in engineering classes and in distance education for teacher training students. In the EU projects Xmath and dMath online computer algebra modules (Steplets) for undergraduate students assembled in the Xmath eBook have been designed. Two questionnaires, a compulsory…
Number Talks Build Numerical Reasoning
ERIC Educational Resources Information Center
Parrish, Sherry D.
2011-01-01
"Classroom number talks," five- to fifteen-minute conversations around purposefully crafted computation problems, are a productive tool that can be incorporated into classroom instruction to combine the essential processes and habits of mind of doing math. During number talks, students are asked to communicate their thinking when presenting and…
Educating in Place: Mathematics and Technology
ERIC Educational Resources Information Center
Klein, Robert
2007-01-01
Mathematics education discourse routinely promotes the idea that mathematics is everywhere. That mathematics is everywhere seems a reasonable implication of "We all use math everyday." Modern technology, mostly in the form of computational devices and control systems, is often cited as evidence of the omnipresence of mathematics.…
ERIC Educational Resources Information Center
Kercood, Suneeta; Grskovic, Janice A.
2010-01-01
Two exploratory studies assessed the effects of an intervention on the math problem solving of students with Attention Deficit Hyperactivity Disorder (ADHD). In the first study, students were assessed on a visual task in a high stimulation classroom analog setting with and without the use of a fine motor activity. Results showed that the fine…
ERIC Educational Resources Information Center
Spanish Curricula Development Center, Miami Beach, FL.
Built around a theme of communities in the nation, this teacher's guide for unit eight of a science/math strand for Spanish-speaking children in grade three contains both learning and assessment activities. This unit addresses what the elements are, how needs and wants are satisfied, how change occurs, and what the results of change are. The guide…
Intergenerational Effects of Parents' Math Anxiety on Children's Math Achievement and Anxiety.
Maloney, Erin A; Ramirez, Gerardo; Gunderson, Elizabeth A; Levine, Susan C; Beilock, Sian L
2015-09-01
A large field study of children in first and second grade explored how parents' anxiety about math relates to their children's math achievement. The goal of the study was to better understand why some students perform worse in math than others. We tested whether parents' math anxiety predicts their children's math achievement across the school year. We found that when parents are more math anxious, their children learn significantly less math over the school year and have more math anxiety by the school year's end-but only if math-anxious parents report providing frequent help with math homework. Notably, when parents reported helping with math homework less often, children's math achievement and attitudes were not related to parents' math anxiety. Parents' math anxiety did not predict children's reading achievement, which suggests that the effects of parents' math anxiety are specific to children's math achievement. These findings provide evidence of a mechanism for intergenerational transmission of low math achievement and high math anxiety. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Lawton, B.; Hemenway, M. K.; Mendez, B.; Odenwald, S.
2013-04-01
Among NASA's major education goals is the training of students in the Science, Technology, Engineering, and Math (STEM) disciplines. The use of real data, from some of the most sophisticated observatories in the world, provides formal educators the opportunity to teach their students real-world applications of the STEM subjects. Combining real space science data with lessons aimed at meeting state and national education standards provides a memorable educational experience that students can build upon throughout their academic careers. Many of our colleagues have adopted the use of real data in their education and public outreach (EPO) programs. There are challenges in creating resources using real data for classroom use that include, but are not limited to, accessibility to computers/Internet and proper instruction. Understanding and sharing these difficulties and best practices with the larger EPO community is critical to the development of future resources. In this session, we highlight three examples of how NASA data is being utilized in the classroom: the Galaxies and Cosmos Explorer Tool (GCET) that utilizes real Hubble Space Telescope data; the computer image-analysis resources utilized by the NASA WISE infrared mission; and the space science derived math applications from SpaceMath@NASA featuring the Chandra and Kepler space telescopes. Challenges and successes are highlighted for these projects. We also facilitate small-group discussions that focus on additional benefits and challenges of using real data in the formal education environment. The report-outs from those discussions are given here.
Moore, R. Davis; Drollette, Eric S.; Scudder, Mark R.; Bharij, Aashiv; Hillman, Charles H.
2014-01-01
The current study investigated the influence of cardiorespiratory fitness on arithmetic cognition in forty 9–10 year old children. Measures included a standardized mathematics achievement test to assess conceptual and computational knowledge, self-reported strategy selection, and an experimental arithmetic verification task (including small and large addition problems), which afforded the measurement of event-related brain potentials (ERPs). No differences in math achievement were observed as a function of fitness level, but all children performed better on math concepts relative to math computation. Higher fit children reported using retrieval more often to solve large arithmetic problems, relative to lower fit children. During the arithmetic verification task, higher fit children exhibited superior performance for large problems, as evidenced by greater d' scores, while all children exhibited decreased accuracy and longer reaction time for large relative to small problems, and incorrect relative to correct solutions. On the electrophysiological level, modulations of early (P1, N170) and late ERP components (P3, N400) were observed as a function of problem size and solution correctness. Higher fit children exhibited selective modulations for N170, P3, and N400 amplitude relative to lower fit children, suggesting that fitness influences symbolic encoding, attentional resource allocation and semantic processing during arithmetic tasks. The current study contributes to the fitness-cognition literature by demonstrating that the benefits of cardiorespiratory fitness extend to arithmetic cognition, which has important implications for the educational environment and the context of learning. PMID:24829556
Parent-child math anxiety and math-gender stereotypes predict adolescents' math education outcomes
Casad, Bettina J.; Hale, Patricia; Wachs, Faye L.
2015-01-01
Two studies examined social determinants of adolescents' math anxiety including parents' own math anxiety and children's endorsement of math-gender stereotypes. In Study 1, parent-child dyads were surveyed and the interaction between parent and child math anxiety was examined, with an eye to same- and other-gender dyads. Results indicate that parent's math anxiety interacts with daughters' and sons' anxiety to predict math self-efficacy, GPA, behavioral intentions, math attitudes, and math devaluing. Parents with lower math anxiety showed a positive relationship to children's math outcomes when children also had lower anxiety. The strongest relationships were found with same-gender dyads, particularly Mother-Daughter dyads. Study 2 showed that endorsement of math-gender stereotypes predicts math anxiety (and not vice versa) for performance beliefs and outcomes (self-efficacy and GPA). Further, math anxiety fully mediated the relationship between gender stereotypes and math self-efficacy for girls and boys, and for boys with GPA. These findings address gaps in the literature on the role of parents' math anxiety in the effects of children's math anxiety and math anxiety as a mechanism affecting performance. Results have implications for interventions on parents' math anxiety and dispelling gender stereotypes in math classrooms. PMID:26579000
Parent-child math anxiety and math-gender stereotypes predict adolescents' math education outcomes.
Casad, Bettina J; Hale, Patricia; Wachs, Faye L
2015-01-01
Two studies examined social determinants of adolescents' math anxiety including parents' own math anxiety and children's endorsement of math-gender stereotypes. In Study 1, parent-child dyads were surveyed and the interaction between parent and child math anxiety was examined, with an eye to same- and other-gender dyads. Results indicate that parent's math anxiety interacts with daughters' and sons' anxiety to predict math self-efficacy, GPA, behavioral intentions, math attitudes, and math devaluing. Parents with lower math anxiety showed a positive relationship to children's math outcomes when children also had lower anxiety. The strongest relationships were found with same-gender dyads, particularly Mother-Daughter dyads. Study 2 showed that endorsement of math-gender stereotypes predicts math anxiety (and not vice versa) for performance beliefs and outcomes (self-efficacy and GPA). Further, math anxiety fully mediated the relationship between gender stereotypes and math self-efficacy for girls and boys, and for boys with GPA. These findings address gaps in the literature on the role of parents' math anxiety in the effects of children's math anxiety and math anxiety as a mechanism affecting performance. Results have implications for interventions on parents' math anxiety and dispelling gender stereotypes in math classrooms.
Teaching Computational Thinking: Deciding to Take Small Steps in a Curriculum
NASA Astrophysics Data System (ADS)
Madoff, R. D.; Putkonen, J.
2016-12-01
While computational thinking and reasoning are not necessarily the same as computer programming, programs such as MATLAB can provide the medium through which the logical and computational thinking at the foundation of science can be taught, learned, and experienced. And while math and computer anxiety are often discussed as critical obstacles to students' progress in their geoscience curriculum, it is here suggested that an unfamiliarity with the computational and logical reasoning is what poses a first stumbling block, in addition to the hurdle of expending the effort to learn how to translate a computational problem into the appropriate computer syntax in order to achieve the intended results. Because computational thinking is so vital for all fields, there is a need to initiate many and to build support in the curriculum for it. This presentation focuses on elements to bring into the teaching of computational thinking that are intended as additions to learning MATLAB programming as a basic tool. Such elements include: highlighting a key concept, discussing a basic geoscience problem where the concept would show up, having the student draw or outline a sketch of what they think an operation needs to do in order to perform a desired result, and then finding the relevant syntax to work with. This iterative pedagogy simulates what someone with more experience in programming does, so it discloses the thinking process in the black box of a result. Intended as only a very early stage introduction, advanced applications would need to be developed as students go through an academic program. The objective would be to expose and introduce computational thinking to majors and non-majors and to alleviate some of the math and computer anxiety so that students would choose to advance on with programming or modeling, whether it is built into a 4-year curriculum or not.
Neurofunctional Differences Associated with Arithmetic Processing in Turner Syndrome
Kesler, Shelli R.; Menon, Vinod; Reiss, Allan L.
2011-01-01
Turner syndrome (TS) is a neurogenetic disorder characterized by the absence of one X chromosome in a phenotypic female. Individuals with TS are at risk for impairments in mathematics. We investigated the neural mechanisms underlying arithmetic processing in TS. Fifteen subjects with TS and 15 age-matched typically developing controls were scanned using functional MRI while they performed easy (two-operand) and difficult (three-operand) versions of an arithmetic processing task. Both groups activated fronto-parietal regions involved in arithmetic processing during the math tasks. Compared with controls, the TS group recruited additional neural resources in frontal and parietal regions during the easier, two-operand math task. During the more difficult three-operand task, individuals with TS demonstrated significantly less activation in frontal, parietal and subcortical regions than controls. However, the TS group’s performance on both math tasks was comparable to controls. Individuals with TS demonstrate activation differences in fronto-parietal areas during arithmetic tasks compared with controls. They must recruit additional brain regions during a relatively easy task and demonstrate a potentially inefficient response to increased task difficulty compared with controls. PMID:16135780
Bolt, Daniel M.; Vandell, Deborah Lowe
2010-01-01
This longitudinal study examined associations between three after-school program quality features (positive staff–child relations, available activities, programming flexibility) and child developmental outcomes (reading and math grades, work habits, and social skills with peers) in Grade 2 and then Grade 3. Participants (n = 120 in Grade 2, n = 91 in Grade 3) attended after-school programs more than 4 days per week, on average. Controlling for child and family background factors and children’s prior functioning on the developmental outcomes, positive staff–child relations in the programs were positively associated with children’s reading grades in both Grades 2 and 3, and math grades in Grade 2. Positive staff–child relations also were positively associated with social skills in Grade 2, for boys only. The availability of a diverse array of age-appropriate activities at the programs was positively associated with children’s math grades and classroom work habits in Grade 3. Programming flexibility (child choice of activities) was not associated with child outcomes. PMID:20336364