Sample records for computer model output

  1. Software Validation via Model Animation

    NASA Technical Reports Server (NTRS)

    Dutle, Aaron M.; Munoz, Cesar A.; Narkawicz, Anthony J.; Butler, Ricky W.

    2015-01-01

    This paper explores a new approach to validating software implementations that have been produced from formally-verified algorithms. Although visual inspection gives some confidence that the implementations faithfully reflect the formal models, it does not provide complete assurance that the software is correct. The proposed approach, which is based on animation of formal specifications, compares the outputs computed by the software implementations on a given suite of input values to the outputs computed by the formal models on the same inputs, and determines if they are equal up to a given tolerance. The approach is illustrated on a prototype air traffic management system that computes simple kinematic trajectories for aircraft. Proofs for the mathematical models of the system's algorithms are carried out in the Prototype Verification System (PVS). The animation tool PVSio is used to evaluate the formal models on a set of randomly generated test cases. Output values computed by PVSio are compared against output values computed by the actual software. This comparison improves the assurance that the translation from formal models to code is faithful and that, for example, floating point errors do not greatly affect correctness and safety properties.

  2. Highly fault-tolerant parallel computation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spielman, D.A.

    We re-introduce the coded model of fault-tolerant computation in which the input and output of a computational device are treated as words in an error-correcting code. A computational device correctly computes a function in the coded model if its input and output, once decoded, are a valid input and output of the function. In the coded model, it is reasonable to hope to simulate all computational devices by devices whose size is greater by a constant factor but which are exponentially reliable even if each of their components can fail with some constant probability. We consider fine-grained parallel computations inmore » which each processor has a constant probability of producing the wrong output at each time step. We show that any parallel computation that runs for time t on w processors can be performed reliably on a faulty machine in the coded model using w log{sup O(l)} w processors and time t log{sup O(l)} w. The failure probability of the computation will be at most t {center_dot} exp(-w{sup 1/4}). The codes used to communicate with our fault-tolerant machines are generalized Reed-Solomon codes and can thus be encoded and decoded in O(n log{sup O(1)} n) sequential time and are independent of the machine they are used to communicate with. We also show how coded computation can be used to self-correct many linear functions in parallel with arbitrarily small overhead.« less

  3. A Spectral Method for Spatial Downscaling

    PubMed Central

    Reich, Brian J.; Chang, Howard H.; Foley, Kristen M.

    2014-01-01

    Summary Complex computer models play a crucial role in air quality research. These models are used to evaluate potential regulatory impacts of emission control strategies and to estimate air quality in areas without monitoring data. For both of these purposes, it is important to calibrate model output with monitoring data to adjust for model biases and improve spatial prediction. In this article, we propose a new spectral method to study and exploit complex relationships between model output and monitoring data. Spectral methods allow us to estimate the relationship between model output and monitoring data separately at different spatial scales, and to use model output for prediction only at the appropriate scales. The proposed method is computationally efficient and can be implemented using standard software. We apply the method to compare Community Multiscale Air Quality (CMAQ) model output with ozone measurements in the United States in July 2005. We find that CMAQ captures large-scale spatial trends, but has low correlation with the monitoring data at small spatial scales. PMID:24965037

  4. The Effect of Nondeterministic Parameters on Shock-Associated Noise Prediction Modeling

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Khavaran, Abbas

    2010-01-01

    Engineering applications for aircraft noise prediction contain models for physical phenomenon that enable solutions to be computed quickly. These models contain parameters that have an uncertainty not accounted for in the solution. To include uncertainty in the solution, nondeterministic computational methods are applied. Using prediction models for supersonic jet broadband shock-associated noise, fixed model parameters are replaced by probability distributions to illustrate one of these methods. The results show the impact of using nondeterministic parameters both on estimating the model output uncertainty and on the model spectral level prediction. In addition, a global sensitivity analysis is used to determine the influence of the model parameters on the output, and to identify the parameters with the least influence on model output.

  5. A one-model approach based on relaxed combinations of inputs for evaluating input congestion in DEA

    NASA Astrophysics Data System (ADS)

    Khodabakhshi, Mohammad

    2009-08-01

    This paper provides a one-model approach of input congestion based on input relaxation model developed in data envelopment analysis (e.g. [G.R. Jahanshahloo, M. Khodabakhshi, Suitable combination of inputs for improving outputs in DEA with determining input congestion -- Considering textile industry of China, Applied Mathematics and Computation (1) (2004) 263-273; G.R. Jahanshahloo, M. Khodabakhshi, Determining assurance interval for non-Archimedean ele improving outputs model in DEA, Applied Mathematics and Computation 151 (2) (2004) 501-506; M. Khodabakhshi, A super-efficiency model based on improved outputs in data envelopment analysis, Applied Mathematics and Computation 184 (2) (2007) 695-703; M. Khodabakhshi, M. Asgharian, An input relaxation measure of efficiency in stochastic data analysis, Applied Mathematical Modelling 33 (2009) 2010-2023]. This approach reduces solving three problems with the two-model approach introduced in the first of the above-mentioned reference to two problems which is certainly important from computational point of view. The model is applied to a set of data extracted from ISI database to estimate input congestion of 12 Canadian business schools.

  6. Verifiable fault tolerance in measurement-based quantum computation

    NASA Astrophysics Data System (ADS)

    Fujii, Keisuke; Hayashi, Masahito

    2017-09-01

    Quantum systems, in general, cannot be simulated efficiently by a classical computer, and hence are useful for solving certain mathematical problems and simulating quantum many-body systems. This also implies, unfortunately, that verification of the output of the quantum systems is not so trivial, since predicting the output is exponentially hard. As another problem, the quantum system is very delicate for noise and thus needs an error correction. Here, we propose a framework for verification of the output of fault-tolerant quantum computation in a measurement-based model. In contrast to existing analyses on fault tolerance, we do not assume any noise model on the resource state, but an arbitrary resource state is tested by using only single-qubit measurements to verify whether or not the output of measurement-based quantum computation on it is correct. Verifiability is equipped by a constant time repetition of the original measurement-based quantum computation in appropriate measurement bases. Since full characterization of quantum noise is exponentially hard for large-scale quantum computing systems, our framework provides an efficient way to practically verify the experimental quantum error correction.

  7. Data-Based Predictive Control with Multirate Prediction Step

    NASA Technical Reports Server (NTRS)

    Barlow, Jonathan S.

    2010-01-01

    Data-based predictive control is an emerging control method that stems from Model Predictive Control (MPC). MPC computes current control action based on a prediction of the system output a number of time steps into the future and is generally derived from a known model of the system. Data-based predictive control has the advantage of deriving predictive models and controller gains from input-output data. Thus, a controller can be designed from the outputs of complex simulation code or a physical system where no explicit model exists. If the output data happens to be corrupted by periodic disturbances, the designed controller will also have the built-in ability to reject these disturbances without the need to know them. When data-based predictive control is implemented online, it becomes a version of adaptive control. One challenge of MPC is computational requirements increasing with prediction horizon length. This paper develops a closed-loop dynamic output feedback controller that minimizes a multi-step-ahead receding-horizon cost function with multirate prediction step. One result is a reduced influence of prediction horizon and the number of system outputs on the computational requirements of the controller. Another result is an emphasis on portions of the prediction window that are sampled more frequently. A third result is the ability to include more outputs in the feedback path than in the cost function.

  8. Evaluation of concentrated space solar arrays using computer modeling. [for spacecraft propulsion and power supplies

    NASA Technical Reports Server (NTRS)

    Rockey, D. E.

    1979-01-01

    A general approach is developed for predicting the power output of a concentrator enhanced photovoltaic space array. A ray trace routine determines the concentrator intensity arriving at each solar cell. An iterative calculation determines the cell's operating temperature since cell temperature and cell efficiency are functions of one another. The end result of the iterative calculation is that the individual cell's power output is determined as a function of temperature and intensity. Circuit output is predicted by combining the individual cell outputs using the single diode model of a solar cell. Concentrated array characteristics such as uniformity of intensity and operating temperature at various points across the array are examined using computer modeling techniques. An illustrative example is given showing how the output of an array can be enhanced using solar concentration techniques.

  9. Computing the modal mass from the state space model in combined experimental-operational modal analysis

    NASA Astrophysics Data System (ADS)

    Cara, Javier

    2016-05-01

    Modal parameters comprise natural frequencies, damping ratios, modal vectors and modal masses. In a theoretic framework, these parameters are the basis for the solution of vibration problems using the theory of modal superposition. In practice, they can be computed from input-output vibration data: the usual procedure is to estimate a mathematical model from the data and then to compute the modal parameters from the estimated model. The most popular models for input-output data are based on the frequency response function, but in recent years the state space model in the time domain has become popular among researchers and practitioners of modal analysis with experimental data. In this work, the equations to compute the modal parameters from the state space model when input and output data are available (like in combined experimental-operational modal analysis) are derived in detail using invariants of the state space model: the equations needed to compute natural frequencies, damping ratios and modal vectors are well known in the operational modal analysis framework, but the equation needed to compute the modal masses has not generated much interest in technical literature. These equations are applied to both a numerical simulation and an experimental study in the last part of the work.

  10. Development of a Distributed Parallel Computing Framework to Facilitate Regional/Global Gridded Crop Modeling with Various Scenarios

    NASA Astrophysics Data System (ADS)

    Jang, W.; Engda, T. A.; Neff, J. C.; Herrick, J.

    2017-12-01

    Many crop models are increasingly used to evaluate crop yields at regional and global scales. However, implementation of these models across large areas using fine-scale grids is limited by computational time requirements. In order to facilitate global gridded crop modeling with various scenarios (i.e., different crop, management schedule, fertilizer, and irrigation) using the Environmental Policy Integrated Climate (EPIC) model, we developed a distributed parallel computing framework in Python. Our local desktop with 14 cores (28 threads) was used to test the distributed parallel computing framework in Iringa, Tanzania which has 406,839 grid cells. High-resolution soil data, SoilGrids (250 x 250 m), and climate data, AgMERRA (0.25 x 0.25 deg) were also used as input data for the gridded EPIC model. The framework includes a master file for parallel computing, input database, input data formatters, EPIC model execution, and output analyzers. Through the master file for parallel computing, the user-defined number of threads of CPU divides the EPIC simulation into jobs. Then, Using EPIC input data formatters, the raw database is formatted for EPIC input data and the formatted data moves into EPIC simulation jobs. Then, 28 EPIC jobs run simultaneously and only interesting results files are parsed and moved into output analyzers. We applied various scenarios with seven different slopes and twenty-four fertilizer ranges. Parallelized input generators create different scenarios as a list for distributed parallel computing. After all simulations are completed, parallelized output analyzers are used to analyze all outputs according to the different scenarios. This saves significant computing time and resources, making it possible to conduct gridded modeling at regional to global scales with high-resolution data. For example, serial processing for the Iringa test case would require 113 hours, while using the framework developed in this study requires only approximately 6 hours, a nearly 95% reduction in computing time.

  11. "One-Stop Shopping" for Ocean Remote-Sensing and Model Data

    NASA Technical Reports Server (NTRS)

    Li, P. Peggy; Vu, Quoc; Chao, Yi; Li, Zhi-Jin; Choi, Jei-Kook

    2006-01-01

    OurOcean Portal 2.0 (http:// ourocean.jpl.nasa.gov) is a software system designed to enable users to easily gain access to ocean observation data, both remote-sensing and in-situ, configure and run an Ocean Model with observation data assimilated on a remote computer, and visualize both the observation data and the model outputs. At present, the observation data and models focus on the California coastal regions and Prince William Sound in Alaska. This system can be used to perform both real-time and retrospective analyses of remote-sensing data and model outputs. OurOcean Portal 2.0 incorporates state-of-the-art information technologies (IT) such as MySQL database, Java Web Server (Apache/Tomcat), Live Access Server (LAS), interactive graphics with Java Applet at the Client site and MatLab/GMT at the server site, and distributed computing. OurOcean currently serves over 20 real-time or historical ocean data products. The data are served in pre-generated plots or their native data format. For some of the datasets, users can choose different plotting parameters and produce customized graphics. OurOcean also serves 3D Ocean Model outputs generated by ROMS (Regional Ocean Model System) using LAS. The Live Access Server (LAS) software, developed by the Pacific Marine Environmental Laboratory (PMEL) of the National Oceanic and Atmospheric Administration (NOAA), is a configurable Web-server program designed to provide flexible access to geo-referenced scientific data. The model output can be views as plots in horizontal slices, depth profiles or time sequences, or can be downloaded as raw data in different data formats, such as NetCDF, ASCII, Binary, etc. The interactive visualization is provided by graphic software, Ferret, also developed by PMEL. In addition, OurOcean allows users with minimal computing resources to configure and run an Ocean Model with data assimilation on a remote computer. Users may select the forcing input, the data to be assimilated, the simulation period, and the output variables and submit the model to run on a backend parallel computer. When the run is complete, the output will be added to the LAS server for

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ritchie, L.T.; Johnson, J.D.; Blond, R.M.

    The CRAC2 computer code is a revision of the Calculation of Reactor Accident Consequences computer code, CRAC, developed for the Reactor Safety Study. The CRAC2 computer code incorporates significant modeling improvements in the areas of weather sequence sampling and emergency response, and refinements to the plume rise, atmospheric dispersion, and wet deposition models. New output capabilities have also been added. This guide is to facilitate the informed and intelligent use of CRAC2. It includes descriptions of the input data, the output results, the file structures, control information, and five sample problems.

  13. Top-down methodology for human factors research

    NASA Technical Reports Server (NTRS)

    Sibert, J.

    1983-01-01

    User computer interaction as a conversation is discussed. The design of user interfaces which depends on viewing communications between a user and the computer as a conversion is presented. This conversation includes inputs to the computer (outputs from the user), outputs from the computer (inputs to the user), and the sequencing in both time and space of those outputs and inputs. The conversation is viewed from the user's side of the conversation. Two languages are modeled: the one with which the user communicates with the computer and the language where communication flows from the computer to the user. Both languages exist on three levels; the semantic, syntactic and lexical. It is suggested that natural languages can also be considered in these terms.

  14. Light extraction in planar light-emitting diode with nonuniform current injection: model and simulation.

    PubMed

    Khmyrova, Irina; Watanabe, Norikazu; Kholopova, Julia; Kovalchuk, Anatoly; Shapoval, Sergei

    2014-07-20

    We develop an analytical and numerical model for performing simulation of light extraction through the planar output interface of the light-emitting diodes (LEDs) with nonuniform current injection. Spatial nonuniformity of injected current is a peculiar feature of the LEDs in which top metal electrode is patterned as a mesh in order to enhance the output power of light extracted through the top surface. Basic features of the model are the bi-plane computation domain, related to other areas of numerical grid (NG) cells in these two planes, representation of light-generating layer by an ensemble of point light sources, numerical "collection" of light photons from the area limited by acceptance circle and adjustment of NG-cell areas in the computation procedure by the angle-tuned aperture function. The developed model and procedure are used to simulate spatial distributions of the output optical power as well as the total output power at different mesh pitches. The proposed model and simulation strategy can be very efficient in evaluation of the output optical performance of LEDs with periodical or symmetrical configuration of the electrodes.

  15. Approximate Optimal Control as a Model for Motor Learning

    ERIC Educational Resources Information Center

    Berthier, Neil E.; Rosenstein, Michael T.; Barto, Andrew G.

    2005-01-01

    Current models of psychological development rely heavily on connectionist models that use supervised learning. These models adapt network weights when the network output does not match the target outputs computed by some agent. The authors present a model of motor learning in which the child uses exploration to discover appropriate ways of…

  16. Using multi-criteria analysis of simulation models to understand complex biological systems

    Treesearch

    Maureen C. Kennedy; E. David Ford

    2011-01-01

    Scientists frequently use computer-simulation models to help solve complex biological problems. Typically, such models are highly integrated, they produce multiple outputs, and standard methods of model analysis are ill suited for evaluating them. We show how multi-criteria optimization with Pareto optimality allows for model outputs to be compared to multiple system...

  17. Development and analysis of a finite element model to simulate pulmonary emphysema in CT imaging.

    PubMed

    Diciotti, Stefano; Nobis, Alessandro; Ciulli, Stefano; Landini, Nicholas; Mascalchi, Mario; Sverzellati, Nicola; Innocenti, Bernardo

    2015-01-01

    In CT imaging, pulmonary emphysema appears as lung regions with Low-Attenuation Areas (LAA). In this study we propose a finite element (FE) model of lung parenchyma, based on a 2-D grid of beam elements, which simulates pulmonary emphysema related to smoking in CT imaging. Simulated LAA images were generated through space sampling of the model output. We employed two measurements of emphysema extent: Relative Area (RA) and the exponent D of the cumulative distribution function of LAA clusters size. The model has been used to compare RA and D computed on the simulated LAA images with those computed on the models output. Different mesh element sizes and various model parameters, simulating different physiological/pathological conditions, have been considered and analyzed. A proper mesh element size has been determined as the best trade-off between reliable results and reasonable computational cost. Both RA and D computed on simulated LAA images were underestimated with respect to those calculated on the models output. Such underestimations were larger for RA (≈ -44 ÷ -26%) as compared to those for D (≈ -16 ÷ -2%). Our FE model could be useful to generate standard test images and to design realistic physical phantoms of LAA images for the assessment of the accuracy of descriptors for quantifying emphysema in CT imaging.

  18. MIMO system identification using frequency response data

    NASA Technical Reports Server (NTRS)

    Medina, Enrique A.; Irwin, R. D.; Mitchell, Jerrel R.; Bukley, Angelia P.

    1992-01-01

    A solution to the problem of obtaining a multi-input, multi-output statespace model of a system from its individual input/output frequency responses is presented. The Residue Identification Algorithm (RID) identifies the system poles from a transfer function model of the determinant of the frequency response data matrix. Next, the residue matrices of the modes are computed guaranteeing that each input/output frequency response is fitted in the least squares sense. Finally, a realization of the system is computed. Results of the application of RID to experimental frequency responses of a large space structure ground test facility are presented and compared to those obtained via the Eigensystem Realization Algorithm.

  19. Computation of output feedback gains for linear stochastic systems using the Zangwill-Powell method

    NASA Technical Reports Server (NTRS)

    Kaufman, H.

    1977-01-01

    Because conventional optimal linear regulator theory results in a controller which requires the capability of measuring and/or estimating the entire state vector, it is of interest to consider procedures for computing controls which are restricted to be linear feedback functions of a lower dimensional output vector and which take into account the presence of measurement noise and process uncertainty. To this effect a stochastic linear model has been developed that accounts for process parameter and initial uncertainty, measurement noise, and a restricted number of measurable outputs. Optimization with respect to the corresponding output feedback gains was then performed for both finite and infinite time performance indices without gradient computation by using Zangwill's modification of a procedure originally proposed by Powell.

  20. User assessment of smoke-dispersion models for wildland biomass burning.

    Treesearch

    Steve Breyfogle; Sue A. Ferguson

    1996-01-01

    Several smoke-dispersion models, which currently are available for modeling smoke from biomass burns, were evaluated for ease of use, availability of input data, and output data format. The input and output components of all models are listed, and differences in model physics are discussed. Each model was installed and run on a personal computer with a simple-case...

  1. An autonomous molecular computer for logical control of gene expression.

    PubMed

    Benenson, Yaakov; Gil, Binyamin; Ben-Dor, Uri; Adar, Rivka; Shapiro, Ehud

    2004-05-27

    Early biomolecular computer research focused on laboratory-scale, human-operated computers for complex computational problems. Recently, simple molecular-scale autonomous programmable computers were demonstrated allowing both input and output information to be in molecular form. Such computers, using biological molecules as input data and biologically active molecules as outputs, could produce a system for 'logical' control of biological processes. Here we describe an autonomous biomolecular computer that, at least in vitro, logically analyses the levels of messenger RNA species, and in response produces a molecule capable of affecting levels of gene expression. The computer operates at a concentration of close to a trillion computers per microlitre and consists of three programmable modules: a computation module, that is, a stochastic molecular automaton; an input module, by which specific mRNA levels or point mutations regulate software molecule concentrations, and hence automaton transition probabilities; and an output module, capable of controlled release of a short single-stranded DNA molecule. This approach might be applied in vivo to biochemical sensing, genetic engineering and even medical diagnosis and treatment. As a proof of principle we programmed the computer to identify and analyse mRNA of disease-related genes associated with models of small-cell lung cancer and prostate cancer, and to produce a single-stranded DNA molecule modelled after an anticancer drug.

  2. A spectral method for spatial downscaling | Science Inventory ...

    EPA Pesticide Factsheets

    Complex computer models play a crucial role in air quality research. These models are used to evaluate potential regulatory impacts of emission control strategies and to estimate air quality in areas without monitoring data. For both of these purposes, it is important to calibrate model output with monitoring data to adjust for model biases and improve spatial prediction. In this paper, we propose a new spectral method to study and exploit complex relationships between model output and monitoring data. Spectral methods allow us to estimate the relationship between model output and monitoring data separately at different spatial scales, and to use model output for prediction only at the appropriate scales. The proposed method is computationally efficient and can be implemented using standard software. We apply the method to compare Community Multiscale Air Quality (CMAQ) model output with ozone measurements in the United States in July, 2005. We find that CMAQ captures large-scale spatial trends, but has low correlation with the monitoring data at small spatial scales. The National Exposure Research Laboratory′s (NERL′s)Atmospheric Modeling Division (AMAD) conducts research in support of EPA′s mission to protect human health and the environment. AMAD′s research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the Nation′s air quality and for assessing ch

  3. System capacity and economic modeling computer tool for satellite mobile communications systems

    NASA Technical Reports Server (NTRS)

    Wiedeman, Robert A.; Wen, Doong; Mccracken, Albert G.

    1988-01-01

    A unique computer modeling tool that combines an engineering tool with a financial analysis program is described. The resulting combination yields a flexible economic model that can predict the cost effectiveness of various mobile systems. Cost modeling is necessary in order to ascertain if a given system with a finite satellite resource is capable of supporting itself financially and to determine what services can be supported. Personal computer techniques using Lotus 123 are used for the model in order to provide as universal an application as possible such that the model can be used and modified to fit many situations and conditions. The output of the engineering portion of the model consists of a channel capacity analysis and link calculations for several qualities of service using up to 16 types of earth terminal configurations. The outputs of the financial model are a revenue analysis, an income statement, and a cost model validation section.

  4. Calculating distributed glacier mass balance for the Swiss Alps from RCM output: Development and testing of downscaling and validation methods

    NASA Astrophysics Data System (ADS)

    Machguth, H.; Paul, F.; Kotlarski, S.; Hoelzle, M.

    2009-04-01

    Climate model output has been applied in several studies on glacier mass balance calculation. Hereby, computation of mass balance has mostly been performed at the native resolution of the climate model output or data from individual cells were selected and statistically downscaled. Little attention has been given to the issue of downscaling entire fields of climate model output to a resolution fine enough to compute glacier mass balance in rugged high-mountain terrain. In this study we explore the use of gridded output from a regional climate model (RCM) to drive a distributed mass balance model for the perimeter of the Swiss Alps and the time frame 1979-2003. Our focus lies on the development and testing of downscaling and validation methods. The mass balance model runs at daily steps and 100 m spatial resolution while the RCM REMO provides daily grids (approx. 18 km resolution) of dynamically downscaled re-analysis data. Interpolation techniques and sub-grid parametrizations are combined to bridge the gap in spatial resolution and to obtain daily input fields of air temperature, global radiation and precipitation. The meteorological input fields are compared to measurements at 14 high-elevation weather stations. Computed mass balances are compared to various sets of direct measurements, including stake readings and mass balances for entire glaciers. The validation procedure is performed separately for annual, winter and summer balances. Time series of mass balances for entire glaciers obtained from the model run agree well with observed time series. On the one hand, summer melt measured at stakes on several glaciers is well reproduced by the model, on the other hand, observed accumulation is either over- or underestimated. It is shown that these shifts are systematic and correlated to regional biases in the meteorological input fields. We conclude that the gap in spatial resolution is not a large drawback, while biases in RCM output are a major limitation to model performance. The development and testing of methods to reduce regionally variable biases in entire fields of RCM output should be a focus of pursuing studies.

  5. Directional output distance functions: endogenous directions based on exogenous normalization constraints

    USDA-ARS?s Scientific Manuscript database

    In this paper we develop a model for computing directional output distance functions with endogenously determined direction vectors. We show how this model is related to the slacks-based directional distance function introduced by Fare and Grosskopf and show how to use the slacks-based function to e...

  6. Computer models and output, Spartan REM: Appendix B

    NASA Technical Reports Server (NTRS)

    Marlowe, D. S.; West, E. J.

    1984-01-01

    A computer model of the Spartan Release Engagement Mechanism (REM) is presented in a series of numerical charts and engineering drawings. A crack growth analysis code is used to predict the fracture mechanics of critical components.

  7. Low Boom Configuration Analysis with FUN3D Adjoint Simulation Framework

    NASA Technical Reports Server (NTRS)

    Park, Michael A.

    2011-01-01

    Off-body pressure, forces, and moments for the Gulfstream Low Boom Model are computed with a Reynolds Averaged Navier Stokes solver coupled with the Spalart-Allmaras (SA) turbulence model. This is the first application of viscous output-based adaptation to reduce estimated discretization errors in off-body pressure for a wing body configuration. The output adaptation approach is compared to an a priori grid adaptation technique designed to resolve the signature on the centerline by stretching and aligning the grid to the freestream Mach angle. The output-based approach produced good predictions of centerline and off-centerline measurements. Eddy viscosity predicted by the SA turbulence model increased significantly with grid adaptation. Computed lift as a function of drag compares well with wind tunnel measurements for positive lift, but predicted lift, drag, and pitching moment as a function of angle of attack has significant differences from the measured data. The sensitivity of longitudinal forces and moment to grid refinement is much smaller than the differences between the computed and measured data.

  8. An autonomous molecular computer for logical control of gene expression

    PubMed Central

    Benenson, Yaakov; Gil, Binyamin; Ben-Dor, Uri; Adar, Rivka; Shapiro, Ehud

    2013-01-01

    Early biomolecular computer research focused on laboratory-scale, human-operated computers for complex computational problems1–7. Recently, simple molecular-scale autonomous programmable computers were demonstrated8–15 allowing both input and output information to be in molecular form. Such computers, using biological molecules as input data and biologically active molecules as outputs, could produce a system for ‘logical’ control of biological processes. Here we describe an autonomous biomolecular computer that, at least in vitro, logically analyses the levels of messenger RNA species, and in response produces a molecule capable of affecting levels of gene expression. The computer operates at a concentration of close to a trillion computers per microlitre and consists of three programmable modules: a computation module, that is, a stochastic molecular automaton12–17; an input module, by which specific mRNA levels or point mutations regulate software molecule concentrations, and hence automaton transition probabilities; and an output module, capable of controlled release of a short single-stranded DNA molecule. This approach might be applied in vivo to biochemical sensing, genetic engineering and even medical diagnosis and treatment. As a proof of principle we programmed the computer to identify and analyse mRNA of disease-related genes18–22 associated with models of small-cell lung cancer and prostate cancer, and to produce a single-stranded DNA molecule modelled after an anticancer drug. PMID:15116117

  9. Reliable results from stochastic simulation models

    Treesearch

    Donald L., Jr. Gochenour; Leonard R. Johnson

    1973-01-01

    Development of a computer simulation model is usually done without fully considering how long the model should run (e.g. computer time) before the results are reliable. However construction of confidence intervals (CI) about critical output parameters from the simulation model makes it possible to determine the point where model results are reliable. If the results are...

  10. COMPUTATIONAL METHODS FOR SENSITIVITY AND UNCERTAINTY ANALYSIS FOR ENVIRONMENTAL AND BIOLOGICAL MODELS

    EPA Science Inventory

    This work introduces a computationally efficient alternative method for uncertainty propagation, the Stochastic Response Surface Method (SRSM). The SRSM approximates uncertainties in model outputs through a series expansion in normal random variables (polynomial chaos expansion)...

  11. Digital computer simulation of inductor-energy-storage dc-to-dc converters with closed-loop regulators

    NASA Technical Reports Server (NTRS)

    Ohri, A. K.; Owen, H. A.; Wilson, T. G.; Rodriguez, G. E.

    1974-01-01

    The simulation of converter-controller combinations by means of a flexible digital computer program which produces output to a graphic display is discussed. The procedure is an alternative to mathematical analysis of converter systems. The types of computer programming involved in the simulation are described. Schematic diagrams, state equations, and output equations are displayed for four basic forms of inductor-energy-storage dc to dc converters. Mathematical models are developed to show the relationship of the parameters.

  12. Interval Predictor Models for Data with Measurement Uncertainty

    NASA Technical Reports Server (NTRS)

    Lacerda, Marcio J.; Crespo, Luis G.

    2017-01-01

    An interval predictor model (IPM) is a computational model that predicts the range of an output variable given input-output data. This paper proposes strategies for constructing IPMs based on semidefinite programming and sum of squares (SOS). The models are optimal in the sense that they yield an interval valued function of minimal spread containing all the observations. Two different scenarios are considered. The first one is applicable to situations where the data is measured precisely whereas the second one is applicable to data subject to known biases and measurement error. In the latter case, the IPMs are designed to fully contain regions in the input-output space where the data is expected to fall. Moreover, we propose a strategy for reducing the computational cost associated with generating IPMs as well as means to simulate them. Numerical examples illustrate the usage and performance of the proposed formulations.

  13. Computation of output feedback gains for linear stochastic systems using the Zangnill-Powell Method

    NASA Technical Reports Server (NTRS)

    Kaufman, H.

    1975-01-01

    Because conventional optimal linear regulator theory results in a controller which requires the capability of measuring and/or estimating the entire state vector, it is of interest to consider procedures for computing controls which are restricted to be linear feedback functions of a lower dimensional output vector and which take into account the presence of measurement noise and process uncertainty. To this effect a stochastic linear model has been developed that accounts for process parameter and initial uncertainty, measurement noise, and a restricted number of measurable outputs. Optimization with respect to the corresponding output feedback gains was then performed for both finite and infinite time performance indices without gradient computation by using Zangwill's modification of a procedure originally proposed by Powell. Results using a seventh order process show the proposed procedures to be very effective.

  14. Study of electrode slice forming of bicycle dynamo hub power connector

    NASA Astrophysics Data System (ADS)

    Chen, Dyi-Cheng; Jao, Chih-Hsuan

    2013-12-01

    Taiwan's bicycle industry has been an international reputation as bicycle kingdom, but the problem in the world makes global warming green energy rise, the development of electrode slice of hub dynamo and power output connector to bring new hope to bike industry. In this study connector power output to gather public opinion related to patent, basis of collected documents as basis for design, structural components in least drawn to power output with simple connector. Power output of this study objectives connector hope at least cost, structure strongest, highest efficiency in output performance characteristics such as use of computer-aided drawing software Solid works to establish power output connector parts of 3D model, the overall portfolio should be considered part types including assembly ideas, weather resistance, water resistance, corrosion resistance to vibration and power flow stability. Moreover the 3D model import computer-aided finite element analysis software simulation of expected the power output of the connector parts manufacturing process. A series of simulation analyses, in which the variables relied on first stage and second stage forming, were run to examine the effective stress, effective strain, press speed, and die radial load distribution when forming electrode slice of bicycle dynamo hub.

  15. Convective - TTU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosovic, Branko

    This dataset includes large-eddy simulation (LES) output from a convective atmospheric boundary layer (ABL) simulation of observations at the SWIFT tower near Lubbock, Texas on July 4, 2012. The dataset was used to assess the LES models for simulation of canonical convective ABL. The dataset can be used for comparison with other LES and computational fluid dynamics model outputs.

  16. LANL - Convective - TTU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosovic, Branko

    This dataset includes large-eddy simulation (LES) output from a convective atmospheric boundary layer (ABL) simulation of observations at the SWIFT tower near Lubbock, Texas on July 4, 2012. The dataset was used to assess the LES models for simulation of canonical convective ABL. The dataset can be used for comparison with other LES and computational fluid dynamics model outputs.

  17. LANL - Neutral - TTU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosovic, Branko

    This dataset includes large-eddy simulation (LES) output from a neutrally stratified atmospheric boundary layer (ABL) simulation of observations at the SWIFT tower near Lubbock, Texas on Aug. 17, 2012. The dataset was used to assess LES models for simulation of canonical neutral ABL. The dataset can be used for comparison with other LES and computational fluid dynamics model outputs.

  18. Computer model for economic study of unbleached kraft paperboard production

    Treesearch

    Peter J. Ince

    1984-01-01

    Unbleached kraft paperboard is produced from wood fiber in an industrial papermaking process. A highly specific and detailed model of the process is presented. The model is also presented as a working computer program. A user of the computer program will provide data on physical parameters of the process and on prices of material inputs and outputs. The program is then...

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrell, Kathryn, E-mail: kfarrell@ices.utexas.edu; Oden, J. Tinsley, E-mail: oden@ices.utexas.edu; Faghihi, Danial, E-mail: danial@ices.utexas.edu

    A general adaptive modeling algorithm for selection and validation of coarse-grained models of atomistic systems is presented. A Bayesian framework is developed to address uncertainties in parameters, data, and model selection. Algorithms for computing output sensitivities to parameter variances, model evidence and posterior model plausibilities for given data, and for computing what are referred to as Occam Categories in reference to a rough measure of model simplicity, make up components of the overall approach. Computational results are provided for representative applications.

  20. A method for diagnosing surface parameters using geostationary satellite imagery and a boundary-layer model. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Polansky, A. C.

    1982-01-01

    A method for diagnosing surface parameters on a regional scale via geosynchronous satellite imagery is presented. Moisture availability, thermal inertia, atmospheric heat flux, and total evaporation are determined from three infrared images obtained from the Geostationary Operational Environmental Satellite (GOES). Three GOES images (early morning, midafternoon, and night) are obtained from computer tape. Two temperature-difference images are then created. The boundary-layer model is run, and its output is inverted via cubic regression equations. The satellite imagery is efficiently converted into output-variable fields. All computations are executed on a PDP 11/34 minicomputer. Output fields can be produced within one hour of the availability of aligned satellite subimages of a target area.

  1. Factors Affecting Utilization of Information Output of Computer-Based Modeling Procedures in Local Government Organizations.

    ERIC Educational Resources Information Center

    Komsky, Susan

    Fiscal Impact Budgeting Systems (FIBS) are sophisticated computer based modeling procedures used in local government organizations, whose results, however, are often overlooked or ignored by decision makers. A study attempted to discover the reasons for this situation by focusing on four factors: potential usefulness, faith in computers,…

  2. A Digital Computer Simulation of Cardiovascular and Renal Physiology.

    ERIC Educational Resources Information Center

    Tidball, Charles S.

    1979-01-01

    Presents the physiological MACPEE, one of a family of digital computer simulations used in Canada and Great Britain. A general description of the model is provided, along with a sample of computer output format, options for making interventions, advanced capabilities, an evaluation, and technical information for running a MAC model. (MA)

  3. User's guide for a large signal computer model of the helical traveling wave tube

    NASA Technical Reports Server (NTRS)

    Palmer, Raymond W.

    1992-01-01

    The use is described of a successful large-signal, two-dimensional (axisymmetric), deformable disk computer model of the helical traveling wave tube amplifier, an extensively revised and operationally simplified version. We also discuss program input and output and the auxiliary files necessary for operation. Included is a sample problem and its input data and output results. Interested parties may now obtain from the author the FORTRAN source code, auxiliary files, and sample input data on a standard floppy diskette, the contents of which are described herein.

  4. Gaussian functional regression for output prediction: Model assimilation and experimental design

    NASA Astrophysics Data System (ADS)

    Nguyen, N. C.; Peraire, J.

    2016-03-01

    In this paper, we introduce a Gaussian functional regression (GFR) technique that integrates multi-fidelity models with model reduction to efficiently predict the input-output relationship of a high-fidelity model. The GFR method combines the high-fidelity model with a low-fidelity model to provide an estimate of the output of the high-fidelity model in the form of a posterior distribution that can characterize uncertainty in the prediction. A reduced basis approximation is constructed upon the low-fidelity model and incorporated into the GFR method to yield an inexpensive posterior distribution of the output estimate. As this posterior distribution depends crucially on a set of training inputs at which the high-fidelity models are simulated, we develop a greedy sampling algorithm to select the training inputs. Our approach results in an output prediction model that inherits the fidelity of the high-fidelity model and has the computational complexity of the reduced basis approximation. Numerical results are presented to demonstrate the proposed approach.

  5. A computer program to trace seismic ray distribution in complex two-dimensional geological models

    USGS Publications Warehouse

    Yacoub, Nazieh K.; Scott, James H.

    1970-01-01

    A computer program has been developed to trace seismic rays and their amplitudes and energies through complex two-dimensional geological models, for which boundaries between elastic units are defined by a series of digitized X-, Y-coordinate values. Input data for the program includes problem identification, control parameters, model coordinates and elastic parameter for the elastic units. The program evaluates the partitioning of ray amplitude and energy at elastic boundaries, computes the total travel time, total travel distance and other parameters for rays arising at the earth's surface. Instructions are given for punching program control cards and data cards, and for arranging input card decks. An example of printer output for a simple problem is presented. The program is written in FORTRAN IV language. The listing of the program is shown in the Appendix, with an example output from a CDC-6600 computer.

  6. Wind Farm Flow Modeling using an Input-Output Reduced-Order Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annoni, Jennifer; Gebraad, Pieter; Seiler, Peter

    Wind turbines in a wind farm operate individually to maximize their own power regardless of the impact of aerodynamic interactions on neighboring turbines. There is the potential to increase power and reduce overall structural loads by properly coordinating turbines. To perform control design and analysis, a model needs to be of low computational cost, but retains the necessary dynamics seen in high-fidelity models. The objective of this work is to obtain a reduced-order model that represents the full-order flow computed using a high-fidelity model. A variety of methods, including proper orthogonal decomposition and dynamic mode decomposition, can be used tomore » extract the dominant flow structures and obtain a reduced-order model. In this paper, we combine proper orthogonal decomposition with a system identification technique to produce an input-output reduced-order model. This technique is used to construct a reduced-order model of the flow within a two-turbine array computed using a large-eddy simulation.« less

  7. A model and variance reduction method for computing statistical outputs of stochastic elliptic partial differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vidal-Codina, F., E-mail: fvidal@mit.edu; Nguyen, N.C., E-mail: cuongng@mit.edu; Giles, M.B., E-mail: mike.giles@maths.ox.ac.uk

    We present a model and variance reduction method for the fast and reliable computation of statistical outputs of stochastic elliptic partial differential equations. Our method consists of three main ingredients: (1) the hybridizable discontinuous Galerkin (HDG) discretization of elliptic partial differential equations (PDEs), which allows us to obtain high-order accurate solutions of the governing PDE; (2) the reduced basis method for a new HDG discretization of the underlying PDE to enable real-time solution of the parameterized PDE in the presence of stochastic parameters; and (3) a multilevel variance reduction method that exploits the statistical correlation among the different reduced basismore » approximations and the high-fidelity HDG discretization to accelerate the convergence of the Monte Carlo simulations. The multilevel variance reduction method provides efficient computation of the statistical outputs by shifting most of the computational burden from the high-fidelity HDG approximation to the reduced basis approximations. Furthermore, we develop a posteriori error estimates for our approximations of the statistical outputs. Based on these error estimates, we propose an algorithm for optimally choosing both the dimensions of the reduced basis approximations and the sizes of Monte Carlo samples to achieve a given error tolerance. We provide numerical examples to demonstrate the performance of the proposed method.« less

  8. 44 CFR 65.7 - Floodway revisions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IDENTIFICATION AND... described below: (i) The floodway analysis must be performed using the hydraulic computer model used to... output data from the original and modified computer models must be submitted. (5) Delineation of the...

  9. 44 CFR 65.7 - Floodway revisions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IDENTIFICATION AND... described below: (i) The floodway analysis must be performed using the hydraulic computer model used to... output data from the original and modified computer models must be submitted. (5) Delineation of the...

  10. 44 CFR 65.7 - Floodway revisions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IDENTIFICATION AND... described below: (i) The floodway analysis must be performed using the hydraulic computer model used to... output data from the original and modified computer models must be submitted. (5) Delineation of the...

  11. 44 CFR 65.7 - Floodway revisions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IDENTIFICATION AND... described below: (i) The floodway analysis must be performed using the hydraulic computer model used to... output data from the original and modified computer models must be submitted. (5) Delineation of the...

  12. 44 CFR 65.7 - Floodway revisions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IDENTIFICATION AND... described below: (i) The floodway analysis must be performed using the hydraulic computer model used to... output data from the original and modified computer models must be submitted. (5) Delineation of the...

  13. NREL - SOWFA - Neutral - TTU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosovic, Branko

    This dataset includes large-eddy simulation (LES) output from a neutrally stratified atmospheric boundary layer (ABL) simulation of observations at the SWIFT tower near Lubbock, Texas on Aug. 17, 2012. The dataset was used to assess LES models for simulation of canonical neutral ABL. The dataset can be used for comparison with other LES and computational fluid dynamics model outputs.

  14. PNNL - WRF-LES - Convective - TTU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosovic, Branko

    This dataset includes large-eddy simulation (LES) output from a convective atmospheric boundary layer (ABL) simulation of observations at the SWIFT tower near Lubbock, Texas on July 4, 2012. The dataset was used to assess the LES models for simulation of canonical convective ABL. The dataset can be used for comparison with other LES and computational fluid dynamics model outputs.

  15. ANL - WRF-LES - Convective - TTU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosovic, Branko

    This dataset includes large-eddy simulation (LES) output from a convective atmospheric boundary layer (ABL) simulation of observations at the SWIFT tower near Lubbock, Texas on July 4, 2012. The dataset was used to assess the LES models for simulation of canonical convective ABL. The dataset can be used for comparison with other LES and computational fluid dynamics model outputs.

  16. LLNL - WRF-LES - Neutral - TTU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosovic, Branko

    This dataset includes large-eddy simulation (LES) output from a neutrally stratified atmospheric boundary layer (ABL) simulation of observations at the SWIFT tower near Lubbock, Texas on Aug. 17, 2012. The dataset was used to assess LES models for simulation of canonical neutral ABL. The dataset can be used for comparison with other LES and computational fluid dynamics model outputs.

  17. ANL - WRF-LES - Neutral - TTU

    DOE Data Explorer

    Kosovic, Branko

    2018-06-20

    This dataset includes large-eddy simulation (LES) output from a neutrally stratified atmospheric boundary layer (ABL) simulation of observations at the SWIFT tower near Lubbock, Texas on Aug. 17, 2012. The dataset was used to assess LES models for simulation of canonical neutral ABL. The dataset can be used for comparison with other LES and computational fluid dynamics model outputs.

  18. LANL - WRF-LES - Neutral - TTU

    DOE Data Explorer

    Kosovic, Branko

    2018-06-20

    This dataset includes large-eddy simulation (LES) output from a neutrally stratified atmospheric boundary layer (ABL) simulation of observations at the SWIFT tower near Lubbock, Texas on Aug. 17, 2012. The dataset was used to assess LES models for simulation of canonical neutral ABL. The dataset can be used for comparison with other LES and computational fluid dynamics model outputs.

  19. LANL - WRF-LES - Convective - TTU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosovic, Branko

    This dataset includes large-eddy simulation (LES) output from a convective atmospheric boundary layer (ABL) simulation of observations at the SWIFT tower near Lubbock, Texas on July 4, 2012. The dataset was used to assess the LES models for simulation of canonical convective ABL. The dataset can be used for comparison with other LES and computational fluid dynamics model outputs.

  20. A Hierarchical multi-input and output Bi-GRU Model for Sentiment Analysis on Customer Reviews

    NASA Astrophysics Data System (ADS)

    Zhang, Liujie; Zhou, Yanquan; Duan, Xiuyu; Chen, Ruiqi

    2018-03-01

    Multi-label sentiment classification on customer reviews is a practical challenging task in Natural Language Processing. In this paper, we propose a hierarchical multi-input and output model based bi-directional recurrent neural network, which both considers the semantic and lexical information of emotional expression. Our model applies two independent Bi-GRU layer to generate part of speech and sentence representation. Then the lexical information is considered via attention over output of softmax activation on part of speech representation. In addition, we combine probability of auxiliary labels as feature with hidden layer to capturing crucial correlation between output labels. The experimental result shows that our model is computationally efficient and achieves breakthrough improvements on customer reviews dataset.

  1. Development of an Interactive Computer-Based Learning Strategy to Assist in Teaching Water Quality Modelling

    ERIC Educational Resources Information Center

    Zigic, Sasha; Lemckert, Charles J.

    2007-01-01

    The following paper presents a computer-based learning strategy to assist in introducing and teaching water quality modelling to undergraduate civil engineering students. As part of the learning strategy, an interactive computer-based instructional (CBI) aid was specifically developed to assist students to set up, run and analyse the output from a…

  2. The River Basin Model: Computer Output. Water Pollution Control Research Series.

    ERIC Educational Resources Information Center

    Envirometrics, Inc., Washington, DC.

    This research report is part of the Water Pollution Control Research Series which describes the results and progress in the control and abatement of pollution in our nation's waters. The River Basin Model described is a computer-assisted decision-making tool in which a number of computer programs simulate major processes related to water use that…

  3. Identification procedure for epistemic uncertainties using inverse fuzzy arithmetic

    NASA Astrophysics Data System (ADS)

    Haag, T.; Herrmann, J.; Hanss, M.

    2010-10-01

    For the mathematical representation of systems with epistemic uncertainties, arising, for example, from simplifications in the modeling procedure, models with fuzzy-valued parameters prove to be a suitable and promising approach. In practice, however, the determination of these parameters turns out to be a non-trivial problem. The identification procedure to appropriately update these parameters on the basis of a reference output (measurement or output of an advanced model) requires the solution of an inverse problem. Against this background, an inverse method for the computation of the fuzzy-valued parameters of a model with epistemic uncertainties is presented. This method stands out due to the fact that it only uses feedforward simulations of the model, based on the transformation method of fuzzy arithmetic, along with the reference output. An inversion of the system equations is not necessary. The advancement of the method presented in this paper consists of the identification of multiple input parameters based on a single reference output or measurement. An optimization is used to solve the resulting underdetermined problems by minimizing the uncertainty of the identified parameters. Regions where the identification procedure is reliable are determined by the computation of a feasibility criterion which is also based on the output data of the transformation method only. For a frequency response function of a mechanical system, this criterion allows a restriction of the identification process to some special range of frequency where its solution can be guaranteed. Finally, the practicability of the method is demonstrated by covering the measured output of a fluid-filled piping system by the corresponding uncertain FE model in a conservative way.

  4. State-Space System Realization with Input- and Output-Data Correlation

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan

    1997-01-01

    This paper introduces a general version of the information matrix consisting of the autocorrelation and cross-correlation matrices of the shifted input and output data. Based on the concept of data correlation, a new system realization algorithm is developed to create a model directly from input and output data. The algorithm starts by computing a special type of correlation matrix derived from the information matrix. The special correlation matrix provides information on the system-observability matrix and the state-vector correlation. A system model is then developed from the observability matrix in conjunction with other algebraic manipulations. This approach leads to several different algorithms for computing system matrices for use in representing the system model. The relationship of the new algorithms with other realization algorithms in the time and frequency domains is established with matrix factorization of the information matrix. Several examples are given to illustrate the validity and usefulness of these new algorithms.

  5. Computer Program To Transliterate Into Arabic

    NASA Technical Reports Server (NTRS)

    Stephan, E.

    1986-01-01

    Conceptual program for TRS-80, Model 12 (or equivalent) computer transliterates from English letters of computer keyboard to Arabic characters in output of associated printer. Program automatically changes character sequence from left-to-right of English to right-to-left of Arabic.

  6. Simulated and measured neutron/gamma light output distribution for poly-energetic neutron/gamma sources

    NASA Astrophysics Data System (ADS)

    Hosseini, S. A.; Zangian, M.; Aghabozorgi, S.

    2018-03-01

    In the present paper, the light output distribution due to poly-energetic neutron/gamma (neutron or gamma) source was calculated using the developed MCNPX-ESUT-PE (MCNPX-Energy engineering of Sharif University of Technology-Poly Energetic version) computational code. The simulation of light output distribution includes the modeling of the particle transport, the calculation of scintillation photons induced by charged particles, simulation of the scintillation photon transport and considering the light resolution obtained from the experiment. The developed computational code is able to simulate the light output distribution due to any neutron/gamma source. In the experimental step of the present study, the neutron-gamma discrimination based on the light output distribution was performed using the zero crossing method. As a case study, 241Am-9Be source was considered and the simulated and measured neutron/gamma light output distributions were compared. There is an acceptable agreement between the discriminated neutron/gamma light output distributions obtained from the simulation and experiment.

  7. Additional and revised thermochemical data and computer code for WATEQ2: a computerized chemical model for trace and major element speciation and mineral equilibria of natural waters

    USGS Publications Warehouse

    Ball, James W.; Nordstrom, D. Kirk; Jenne, Everett A.

    1980-01-01

    A computerized chemical model, WATEQ2, has resulted from extensive additions to and revision of the WATEQ model of Truesdell and Jones (Truesdell, A. H., and Jones, B. F., 1974, WATEQ, a computer program for calculating chemical equilibria of natural waters: J. Res. U. S. Geol, Survey, v. 2, p. 233-274). The model building effort has necessitated searching the literature and selecting thermochemical data pertinent to the reactions added to the model. This supplementary report manes available the details of the reactions added to the model together with the selected thermochemical data and their sources. Also listed are details of program operation and a brief description of the output of the model. Appendices-contain a glossary of identifiers used in the PL/1 computer code, the complete PL/1 listing, and sample output from three water analyses used as test cases.

  8. Thermal and optical performance of encapsulation systems for flat-plate photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Minning, C. P.; Coakley, J. F.; Perrygo, C. M.; Garcia, A., III; Cuddihy, E. F.

    1981-01-01

    The electrical power output from a photovoltaic module is strongly influenced by the thermal and optical characteristics of the module encapsulation system. Described are the methodology and computer model for performing fast and accurate thermal and optical evaluations of different encapsulation systems. The computer model is used to evaluate cell temperature, solar energy transmittance through the encapsulation system, and electric power output for operation in a terrestrial environment. Extensive results are presented for both superstrate-module and substrate-module design schemes which include different types of silicon cell materials, pottants, and antireflection coatings.

  9. Surrogates for numerical simulations; optimization of eddy-promoter heat exchangers

    NASA Technical Reports Server (NTRS)

    Patera, Anthony T.; Patera, Anthony

    1993-01-01

    Although the advent of fast and inexpensive parallel computers has rendered numerous previously intractable calculations feasible, many numerical simulations remain too resource-intensive to be directly inserted in engineering optimization efforts. An attractive alternative to direct insertion considers models for computational systems: the expensive simulation is evoked only to construct and validate a simplified, input-output model; this simplified input-output model then serves as a simulation surrogate in subsequent engineering optimization studies. A simple 'Bayesian-validated' statistical framework for the construction, validation, and purposive application of static computer simulation surrogates is presented. As an example, dissipation-transport optimization of laminar-flow eddy-promoter heat exchangers are considered: parallel spectral element Navier-Stokes calculations serve to construct and validate surrogates for the flowrate and Nusselt number; these surrogates then represent the originating Navier-Stokes equations in the ensuing design process.

  10. An analytical procedure and automated computer code used to design model nozzles which meet MSFC base pressure similarity parameter criteria. [space shuttle

    NASA Technical Reports Server (NTRS)

    Sulyma, P. R.

    1980-01-01

    Fundamental equations and similarity definition and application are described as well as the computational steps of a computer program developed to design model nozzles for wind tunnel tests conducted to define power-on aerodynamic characteristics of the space shuttle over a range of ascent trajectory conditions. The computer code capabilities, a user's guide for the model nozzle design program, and the output format are examined. A program listing is included.

  11. Robust Real-Time Wide-Area Differential GPS Navigation

    NASA Technical Reports Server (NTRS)

    Yunck, Thomas P. (Inventor); Bertiger, William I. (Inventor); Lichten, Stephen M. (Inventor); Mannucci, Anthony J. (Inventor); Muellerschoen, Ronald J. (Inventor); Wu, Sien-Chong (Inventor)

    1998-01-01

    The present invention provides a method and a device for providing superior differential GPS positioning data. The system includes a group of GPS receiving ground stations covering a wide area of the Earth's surface. Unlike other differential GPS systems wherein the known position of each ground station is used to geometrically compute an ephemeris for each GPS satellite. the present system utilizes real-time computation of satellite orbits based on GPS data received from fixed ground stations through a Kalman-type filter/smoother whose output adjusts a real-time orbital model. ne orbital model produces and outputs orbital corrections allowing satellite ephemerides to be known with considerable greater accuracy than from die GPS system broadcasts. The modeled orbits are propagated ahead in time and differenced with actual pseudorange data to compute clock offsets at rapid intervals to compensate for SA clock dither. The orbital and dock calculations are based on dual frequency GPS data which allow computation of estimated signal delay at each ionospheric point. These delay data are used in real-time to construct and update an ionospheric shell map of total electron content which is output as part of the orbital correction data. thereby allowing single frequency users to estimate ionospheric delay with an accuracy approaching that of dual frequency users.

  12. The benefits of 3D modelling and animation in medical teaching.

    PubMed

    Vernon, Tim; Peckham, Daniel

    2002-12-01

    Three-dimensional models created using materials such as wax, bronze and ivory, have been used in the teaching of medicine for many centuries. Today, computer technology allows medical illustrators to create virtual three-dimensional medical models. This paper considers the benefits of using still and animated output from computer-generated models in the teaching of medicine, and examines how three-dimensional models are made.

  13. Computer modeling and simulation of human movement. Applications in sport and rehabilitation.

    PubMed

    Neptune, R R

    2000-05-01

    Computer modeling and simulation of human movement plays an increasingly important role in sport and rehabilitation, with applications ranging from sport equipment design to understanding pathologic gait. The complex dynamic interactions within the musculoskeletal and neuromuscular systems make analyzing human movement with existing experimental techniques difficult but computer modeling and simulation allows for the identification of these complex interactions and causal relationships between input and output variables. This article provides an overview of computer modeling and simulation and presents an example application in the field of rehabilitation.

  14. User guide for MODPATH version 6 - A particle-tracking model for MODFLOW

    USGS Publications Warehouse

    Pollock, David W.

    2012-01-01

    MODPATH is a particle-tracking post-processing model that computes three-dimensional flow paths using output from groundwater flow simulations based on MODFLOW, the U.S. Geological Survey (USGS) finite-difference groundwater flow model. This report documents MODPATH version 6. Previous versions were documented in USGS Open-File Reports 89-381 and 94-464. The program uses a semianalytical particle-tracking scheme that allows an analytical expression of a particle's flow path to be obtained within each finite-difference grid cell. A particle's path is computed by tracking the particle from one cell to the next until it reaches a boundary, an internal sink/source, or satisfies another termination criterion. Data input to MODPATH consists of a combination of MODFLOW input data files, MODFLOW head and flow output files, and other input files specific to MODPATH. Output from MODPATH consists of several output files, including a number of particle coordinate output files intended to serve as input data for other programs that process, analyze, and display the results in various ways. MODPATH is written in FORTRAN and can be compiled by any FORTRAN compiler that fully supports FORTRAN-2003 or by most commercially available FORTRAN-95 compilers that support the major FORTRAN-2003 language extensions.

  15. A neural network based computational model to predict the output power of different types of photovoltaic cells.

    PubMed

    Xiao, WenBo; Nazario, Gina; Wu, HuaMing; Zhang, HuaMing; Cheng, Feng

    2017-01-01

    In this article, we introduced an artificial neural network (ANN) based computational model to predict the output power of three types of photovoltaic cells, mono-crystalline (mono-), multi-crystalline (multi-), and amorphous (amor-) crystalline. The prediction results are very close to the experimental data, and were also influenced by numbers of hidden neurons. The order of the solar generation power output influenced by the external conditions from smallest to biggest is: multi-, mono-, and amor- crystalline silicon cells. In addition, the dependences of power prediction on the number of hidden neurons were studied. For multi- and amorphous crystalline cell, three or four hidden layer units resulted in the high correlation coefficient and low MSEs. For mono-crystalline cell, the best results were achieved at the hidden layer unit of 8.

  16. Rhetorical Consequences of the Computer Society: Expert Systems and Human Communication.

    ERIC Educational Resources Information Center

    Skopec, Eric Wm.

    Expert systems are computer programs that solve selected problems by modelling domain-specific behaviors of human experts. These computer programs typically consist of an input/output system that feeds data into the computer and retrieves advice, an inference system using the reasoning and heuristic processes of human experts, and a knowledge…

  17. A Bayesian framework for adaptive selection, calibration, and validation of coarse-grained models of atomistic systems

    NASA Astrophysics Data System (ADS)

    Farrell, Kathryn; Oden, J. Tinsley; Faghihi, Danial

    2015-08-01

    A general adaptive modeling algorithm for selection and validation of coarse-grained models of atomistic systems is presented. A Bayesian framework is developed to address uncertainties in parameters, data, and model selection. Algorithms for computing output sensitivities to parameter variances, model evidence and posterior model plausibilities for given data, and for computing what are referred to as Occam Categories in reference to a rough measure of model simplicity, make up components of the overall approach. Computational results are provided for representative applications.

  18. Laboratory modeling and analysis of aircraft-lightning interactions

    NASA Technical Reports Server (NTRS)

    Turner, C. D.; Trost, T. F.

    1982-01-01

    Modeling studies of the interaction of a delta wing aircraft with direct lightning strikes were carried out using an approximate scale model of an F-106B. The model, which is three feet in length, is subjected to direct injection of fast current pulses supplied by wires, which simulate the lightning channel and are attached at various locations on the model. Measurements are made of the resulting transient electromagnetic fields using time derivative sensors. The sensor outputs are sampled and digitized by computer. The noise level is reduced by averaging the sensor output from ten input pulses at each sample time. Computer analysis of the measured fields includes Fourier transformation and the computation of transfer functions for the model. Prony analysis is also used to determine the natural frequencies of the model. Comparisons of model natural frequencies extracted by Prony analysis with those for in flight direct strike data usually show lower damping in the in flight case. This is indicative of either a lightning channel with a higher impedance than the wires on the model, only one attachment point, or short streamers instead of a long channel.

  19. Main control computer security model of closed network systems protection against cyber attacks

    NASA Astrophysics Data System (ADS)

    Seymen, Bilal

    2014-06-01

    The model that brings the data input/output under control in closed network systems, that maintains the system securely, and that controls the flow of information through the Main Control Computer which also brings the network traffic under control against cyber-attacks. The network, which can be controlled single-handedly thanks to the system designed to enable the network users to make data entry into the system or to extract data from the system securely, intends to minimize the security gaps. Moreover, data input/output record can be kept by means of the user account assigned for each user, and it is also possible to carry out retroactive tracking, if requested. Because the measures that need to be taken for each computer on the network regarding cyber security, do require high cost; it has been intended to provide a cost-effective working environment with this model, only if the Main Control Computer has the updated hardware.

  20. Improved first-order uncertainty method for water-quality modeling

    USGS Publications Warehouse

    Melching, C.S.; Anmangandla, S.

    1992-01-01

    Uncertainties are unavoidable in water-quality modeling and subsequent management decisions. Monte Carlo simulation and first-order uncertainty analysis (involving linearization at central values of the uncertain variables) have been frequently used to estimate probability distributions for water-quality model output due to their simplicity. Each method has its drawbacks: Monte Carlo simulation's is mainly computational time; and first-order analysis are mainly questions of accuracy and representativeness, especially for nonlinear systems and extreme conditions. An improved (advanced) first-order method is presented, where the linearization point varies to match the output level whose exceedance probability is sought. The advanced first-order method is tested on the Streeter-Phelps equation to estimate the probability distribution of critical dissolved-oxygen deficit and critical dissolved oxygen using two hypothetical examples from the literature. The advanced first-order method provides a close approximation of the exceedance probability for the Streeter-Phelps model output estimated by Monte Carlo simulation using less computer time - by two orders of magnitude - regardless of the probability distributions assumed for the uncertain model parameters.

  1. A Methodology for Model Comparison Using the Theater Simulation of Airbase Resources and All Mobile Tactical Air Force Models

    DTIC Science & Technology

    1992-09-01

    ease with which a model is employed, may depend on several factors, among them the users’ past experience in modeling, preferences for menu driven...partially on our knowledge of important logistics factors, partially on the past work of Diener (12), and partially on the assumption that comparison of...flexibility in output report selection. The minimum output was used in each instance 74 to conserve computer storage and to minimize the consumption of paper

  2. Assessment of Effectiveness of Geologic Isolation Systems. Variable thickness transient ground-water flow model. Volume 2. Users' manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reisenauer, A.E.

    1979-12-01

    A system of computer codes to aid in the preparation and evaluation of ground-water model input, as well as in the computer codes and auxillary programs developed and adapted for use in modeling major ground-water aquifers is described. The ground-water model is interactive, rather than a batch-type model. Interactive models have been demonstrated to be superior to batch in the ground-water field. For example, looking through reams of numerical lists can be avoided with the much superior graphical output forms or summary type numerical output. The system of computer codes permits the flexibility to develop rapidly the model-required data filesmore » from engineering data and geologic maps, as well as efficiently manipulating the voluminous data generated. Central to these codes is the Ground-water Model, which given the boundary value problem, produces either the steady-state or transient time plane solutions. A sizeable part of the codes available provide rapid evaluation of the results. Besides contouring the new water potentials, the model allows graphical review of streamlines of flow, travel times, and detailed comparisons of surfaces or points at designated wells. Use of the graphics scopes provide immediate, but temporary displays which can be used for evaluation of input and output and which can be reproduced easily on hard copy devices, such as a line printer, Calcomp plotter and image photographs.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitarka, Arben

    GEN_SRF_4 is a computer program for generation kinematic earthquake rupture models for use in ground motion modeling and simulations of earthquakes. The output is an ascii SRF formatted file containing kinematic rupture parameters.

  4. Evaluation of simulated ocean carbon in the CMIP5 earth system models

    NASA Astrophysics Data System (ADS)

    Orr, James; Brockmann, Patrick; Seferian, Roland; Servonnat, Jérôme; Bopp, Laurent

    2013-04-01

    We maintain a centralized model output archive containing output from the previous generation of Earth System Models (ESMs), 7 models used in the IPCC AR4 assessment. Output is in a common format located on a centralized server and is publicly available through a web interface. Through the same interface, LSCE/IPSL has also made available output from the Coupled Model Intercomparison Project (CMIP5), the foundation for the ongoing IPCC AR5 assessment. The latter includes ocean biogeochemical fields from more than 13 ESMs. Modeling partners across 3 EU projects refer to the combined AR4-AR5 archive and comparison as OCMIP5, building on previous phases of OCMIP (Ocean Carbon Cycle Intercomparison Project) and making a clear link to IPCC AR5 (CMIP5). While now focusing on assessing the latest generation of results (AR5, CMIP5), this effort is also able to put them in context (AR4). For model comparison and evaluation, we have also stored computed derived variables (e.g., those needed to assess ocean acidification) and key fields regridded to a common 1°x1° grid, thus complementing the standard CMIP5 archive. The combined AR4-AR5 output (OCMIP5) has been used to compute standard quantitative metrics, both global and regional, and those have been synthesized with summary diagrams. In addition, for key biogeochemical fields we have deconvolved spatiotemporal components of the mean square error in order to constrain which models go wrong where. Here we will detail results from these evaluations which have exploited gridded climatological data. The archive, interface, and centralized evaluation provide a solid technical foundation, upon which collaboration and communication is being broadened in the ocean biogeochemical modeling community. Ultimately we aim to encourage wider use of the OCMIP5 archive.

  5. UFO - The Universal FEYNRULES Output

    NASA Astrophysics Data System (ADS)

    Degrande, Céline; Duhr, Claude; Fuks, Benjamin; Grellscheid, David; Mattelaer, Olivier; Reiter, Thomas

    2012-06-01

    We present a new model format for automatized matrix-element generators, the so-called Universal FEYNRULES Output (UFO). The format is universal in the sense that it features compatibility with more than one single generator and is designed to be flexible, modular and agnostic of any assumption such as the number of particles or the color and Lorentz structures appearing in the interaction vertices. Unlike other model formats where text files need to be parsed, the information on the model is encoded into a PYTHON module that can easily be linked to other computer codes. We then describe an interface for the MATHEMATICA package FEYNRULES that allows for an automatic output of models in the UFO format.

  6. Annotated Computer Output for Illustrative Examples of Clustering Using the Mixture Method and Two Comparable Methods from SAS.

    DTIC Science & Technology

    1987-06-26

    BUREAU OF STANDAR-S1963-A Nw BOM -ILE COPY -. 4eo .?3sa.9"-,,A WIN* MAT HEMATICAL SCIENCES _*INSTITUTE AD-A184 687 DTICS!ELECTE ANNOTATED COMPUTER OUTPUT...intoduction to the use of mixture models in clustering. Cornell University Biometrics Unit Technical Report BU-920-M and Mathematical Sciences Institute...mixture method and two comparable methods from SAS. Cornell University Biometrics Unit Technical Report BU-921-M and Mathematical Sciences Institute

  7. An analytical approach to thermal modeling of Bridgman type crystal growth: One dimensional analysis. Computer program users manual

    NASA Technical Reports Server (NTRS)

    Cothran, E. K.

    1982-01-01

    The computer program written in support of one dimensional analytical approach to thermal modeling of Bridgman type crystal growth is presented. The program listing and flow charts are included, along with the complete thermal model. Sample problems include detailed comments on input and output to aid the first time user.

  8. System level analysis and control of manufacturing process variation

    DOEpatents

    Hamada, Michael S.; Martz, Harry F.; Eleswarpu, Jay K.; Preissler, Michael J.

    2005-05-31

    A computer-implemented method is implemented for determining the variability of a manufacturing system having a plurality of subsystems. Each subsystem of the plurality of subsystems is characterized by signal factors, noise factors, control factors, and an output response, all having mean and variance values. Response models are then fitted to each subsystem to determine unknown coefficients for use in the response models that characterize the relationship between the signal factors, noise factors, control factors, and the corresponding output response having mean and variance values that are related to the signal factors, noise factors, and control factors. The response models for each subsystem are coupled to model the output of the manufacturing system as a whole. The coefficients of the fitted response models are randomly varied to propagate variances through the plurality of subsystems and values of signal factors and control factors are found to optimize the output of the manufacturing system to meet a specified criterion.

  9. Reduced state feedback gain computation. [optimization and control theory for aircraft control

    NASA Technical Reports Server (NTRS)

    Kaufman, H.

    1976-01-01

    Because application of conventional optimal linear regulator theory to flight controller design requires the capability of measuring and/or estimating the entire state vector, it is of interest to consider procedures for computing controls which are restricted to be linear feedback functions of a lower dimensional output vector and which take into account the presence of measurement noise and process uncertainty. Therefore, a stochastic linear model that was developed is presented which accounts for aircraft parameter and initial uncertainty, measurement noise, turbulence, pilot command and a restricted number of measurable outputs. Optimization with respect to the corresponding output feedback gains was performed for both finite and infinite time performance indices without gradient computation by using Zangwill's modification of a procedure originally proposed by Powell. Results using a seventh order process show the proposed procedures to be very effective.

  10. Hardware based redundant multi-threading inside a GPU for improved reliability

    DOEpatents

    Sridharan, Vilas; Gurumurthi, Sudhanva

    2015-05-05

    A system and method for verifying computation output using computer hardware are provided. Instances of computation are generated and processed on hardware-based processors. As instances of computation are processed, each instance of computation receives a load accessible to other instances of computation. Instances of output are generated by processing the instances of computation. The instances of output are verified against each other in a hardware based processor to ensure accuracy of the output.

  11. MIMS for TRIM

    EPA Pesticide Factsheets

    MIMS supports complex computational studies that use multiple interrelated models / programs, such as the modules within TRIM. MIMS is used by TRIM to run various models in sequence, while sharing input and output files.

  12. A computer program for simulating geohydrologic systems in three dimensions

    USGS Publications Warehouse

    Posson, D.R.; Hearne, G.A.; Tracy, J.V.; Frenzel, P.F.

    1980-01-01

    This document is directed toward individuals who wish to use a computer program to simulate ground-water flow in three dimensions. The strongly implicit procedure (SIP) numerical method is used to solve the set of simultaneous equations. New data processing techniques and program input and output options are emphasized. The quifer system to be modeled may be heterogeneous and anisotropic, and may include both artesian and water-table conditions. Systems which consist of well defined alternating layers of highly permeable and poorly permeable material may be represented by a sequence of equations for two dimensional flow in each of the highly permeable units. Boundaries where head or flux is user-specified may be irregularly shaped. The program also allows the user to represent streams as limited-source boundaries when the streamflow is small in relation to the hydraulic stress on the system. The data-processing techniques relating to ' cube ' input and output, to swapping of layers, to restarting of simulation, to free-format NAMELIST input, to the details of each sub-routine 's logic, and to the overlay program structure are discussed. The program is capable of processing large models that might overflow computer memories with conventional programs. Detailed instructions for selecting program options, for initializing the data arrays, for defining ' cube ' output lists and maps, and for plotting hydrographs of calculated and observed heads and/or drawdowns are provided. Output may be restricted to those nodes of particular interest, thereby reducing the volumes of printout for modelers, which may be critical when working at remote terminals. ' Cube ' input commands allow the modeler to set aquifer parameters and initialize the model with very few input records. Appendixes provide instructions to compile the program, definitions and cross-references for program variables, summary of the FLECS structured FORTRAN programming language, listings of the FLECS and FORTRAN source code, and samples of input and output for example simulations. (USGS)

  13. Stochastic simulation of human pulmonary blood flow and transit time frequency distribution based on anatomic and elasticity data.

    PubMed

    Huang, Wei; Shi, Jun; Yen, R T

    2012-12-01

    The objective of our study was to develop a computing program for computing the transit time frequency distributions of red blood cell in human pulmonary circulation, based on our anatomic and elasticity data of blood vessels in human lung. A stochastic simulation model was introduced to simulate blood flow in human pulmonary circulation. In the stochastic simulation model, the connectivity data of pulmonary blood vessels in human lung was converted into a probability matrix. Based on this model, the transit time of red blood cell in human pulmonary circulation and the output blood pressure were studied. Additionally, the stochastic simulation model can be used to predict the changes of blood flow in human pulmonary circulation with the advantage of the lower computing cost and the higher flexibility. In conclusion, a stochastic simulation approach was introduced to simulate the blood flow in the hierarchical structure of a pulmonary circulation system, and to calculate the transit time distributions and the blood pressure outputs.

  14. Validation of the thermal challenge problem using Bayesian Belief Networks.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McFarland, John; Swiler, Laura Painton

    The thermal challenge problem has been developed at Sandia National Laboratories as a testbed for demonstrating various types of validation approaches and prediction methods. This report discusses one particular methodology to assess the validity of a computational model given experimental data. This methodology is based on Bayesian Belief Networks (BBNs) and can incorporate uncertainty in experimental measurements, in physical quantities, and model uncertainties. The approach uses the prior and posterior distributions of model output to compute a validation metric based on Bayesian hypothesis testing (a Bayes' factor). This report discusses various aspects of the BBN, specifically in the context ofmore » the thermal challenge problem. A BBN is developed for a given set of experimental data in a particular experimental configuration. The development of the BBN and the method for ''solving'' the BBN to develop the posterior distribution of model output through Monte Carlo Markov Chain sampling is discussed in detail. The use of the BBN to compute a Bayes' factor is demonstrated.« less

  15. Laser/lidar analysis and testing

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.

    1994-01-01

    Section 1 of this report details development of a model of the output pulse frequency spectrum of a pulsed transversely excited (TE) CO2 laser. In order to limit the computation time required, the model was designed around a generic laser pulse shape model. The use of such a procedure allows many possible laser configurations to be examined. The output pulse shape is combined with the calculated frequency chirp to produce the electric field of the output pulse which is then computationally mixed with a local oscillator field to produce the heterodyne beat signal that would fall on a detector. The power spectral density of this heterodyne signal is then calculated. Section 2 reports on a visit to the LAWS laser contractors to measure the performance of the laser breadboards. The intention was to acquire data using a digital oscilloscope so that it could be analyzed. Section 3 reports on a model developed to assess the power requirements of a 5J LAWS instrument on a Spot MKII platform in a polar orbit. The performance was assessed for three different latitude dependent sampling strategies.

  16. Computer input and output files associated with ground-water-flow simulations of the Albuquerque Basin, central New Mexico, 1901-94, with projections to 2020; (supplement one to U.S. Geological Survey Water-resources investigations report 94-4251)

    USGS Publications Warehouse

    Kernodle, J.M.

    1996-01-01

    This report presents the computer input files required to run the three-dimensional ground-water-flow model of the Albuquerque Basin, central New Mexico, documented in Kernodle and others (Kernodle, J.M., McAda, D.P., and Thorn, C.R., 1995, Simulation of ground-water flow in the Albuquerque Basin, central New Mexico, 1901-1994, with projections to 2020: U.S. Geological Survey Water-Resources Investigations Report 94-4251, 114 p.). Output files resulting from the computer simulations are included for reference.

  17. Input-output model for MACCS nuclear accident impacts estimation¹

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Outkin, Alexander V.; Bixler, Nathan E.; Vargas, Vanessa N

    Since the original economic model for MACCS was developed, better quality economic data (as well as the tools to gather and process it) and better computational capabilities have become available. The update of the economic impacts component of the MACCS legacy model will provide improved estimates of business disruptions through the use of Input-Output based economic impact estimation. This paper presents an updated MACCS model, bases on Input-Output methodology, in which economic impacts are calculated using the Regional Economic Accounting analysis tool (REAcct) created at Sandia National Laboratories. This new GDP-based model allows quick and consistent estimation of gross domesticmore » product (GDP) losses due to nuclear power plant accidents. This paper outlines the steps taken to combine the REAcct Input-Output-based model with the MACCS code, describes the GDP loss calculation, and discusses the parameters and modeling assumptions necessary for the estimation of long-term effects of nuclear power plant accidents.« less

  18. Surrogate modelling for the prediction of spatial fields based on simultaneous dimensionality reduction of high-dimensional input/output spaces.

    PubMed

    Crevillén-García, D

    2018-04-01

    Time-consuming numerical simulators for solving groundwater flow and dissolution models of physico-chemical processes in deep aquifers normally require some of the model inputs to be defined in high-dimensional spaces in order to return realistic results. Sometimes, the outputs of interest are spatial fields leading to high-dimensional output spaces. Although Gaussian process emulation has been satisfactorily used for computing faithful and inexpensive approximations of complex simulators, these have been mostly applied to problems defined in low-dimensional input spaces. In this paper, we propose a method for simultaneously reducing the dimensionality of very high-dimensional input and output spaces in Gaussian process emulators for stochastic partial differential equation models while retaining the qualitative features of the original models. This allows us to build a surrogate model for the prediction of spatial fields in such time-consuming simulators. We apply the methodology to a model of convection and dissolution processes occurring during carbon capture and storage.

  19. DRI Model of the U.S. Economy -- Model Documentation

    EIA Publications

    1993-01-01

    Provides documentation on Data Resources, Inc., DRI Model of the U.S. Economy and the DRI Personal Computer Input/Output Model. It also describes the theoretical basis, structure and functions of both DRI models; and contains brief descriptions of the models and their equations.

  20. Dispersion in Spherical Water Drops.

    ERIC Educational Resources Information Center

    Eliason, John C., Jr.

    1989-01-01

    Discusses a laboratory exercise simulating the paths of light rays through spherical water drops by applying principles of ray optics and geometry. Describes four parts: determining the output angles, computer simulation, explorations, model testing, and solutions. Provides a computer program and some diagrams. (YP)

  1. Feature-based data assimilation in geophysics

    NASA Astrophysics Data System (ADS)

    Morzfeld, Matthias; Adams, Jesse; Lunderman, Spencer; Orozco, Rafael

    2018-05-01

    Many applications in science require that computational models and data be combined. In a Bayesian framework, this is usually done by defining likelihoods based on the mismatch of model outputs and data. However, matching model outputs and data in this way can be unnecessary or impossible. For example, using large amounts of steady state data is unnecessary because these data are redundant. It is numerically difficult to assimilate data in chaotic systems. It is often impossible to assimilate data of a complex system into a low-dimensional model. As a specific example, consider a low-dimensional stochastic model for the dipole of the Earth's magnetic field, while other field components are ignored in the model. The above issues can be addressed by selecting features of the data, and defining likelihoods based on the features, rather than by the usual mismatch of model output and data. Our goal is to contribute to a fundamental understanding of such a feature-based approach that allows us to assimilate selected aspects of data into models. We also explain how the feature-based approach can be interpreted as a method for reducing an effective dimension and derive new noise models, based on perturbed observations, that lead to computationally efficient solutions. Numerical implementations of our ideas are illustrated in four examples.

  2. Allan deviation computations of a linear frequency synthesizer system using frequency domain techniques

    NASA Technical Reports Server (NTRS)

    Wu, Andy

    1995-01-01

    Allan Deviation computations of linear frequency synthesizer systems have been reported previously using real-time simulations. Even though it takes less time compared with the actual measurement, it is still very time consuming to compute the Allan Deviation for long sample times with the desired confidence level. Also noises, such as flicker phase noise and flicker frequency noise, can not be simulated precisely. The use of frequency domain techniques can overcome these drawbacks. In this paper the system error model of a fictitious linear frequency synthesizer is developed and its performance using a Cesium (Cs) atomic frequency standard (AFS) as a reference is evaluated using frequency domain techniques. For a linear timing system, the power spectral density at the system output can be computed with known system transfer functions and known power spectral densities from the input noise sources. The resulting power spectral density can then be used to compute the Allan Variance at the system output. Sensitivities of the Allan Variance at the system output to each of its independent input noises are obtained, and they are valuable for design trade-off and trouble-shooting.

  3. Computer program for design analysis of radial-inflow turbines

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.

    1976-01-01

    A computer program written in FORTRAN that may be used for the design analysis of radial-inflow turbines was documented. The following information is included: loss model (estimation of losses), the analysis equations, a description of the input and output data, the FORTRAN program listing and list of variables, and sample cases. The input design requirements include the power, mass flow rate, inlet temperature and pressure, and rotational speed. The program output data includes various diameters, efficiencies, temperatures, pressures, velocities, and flow angles for the appropriate calculation stations. The design variables include the stator-exit angle, rotor radius ratios, and rotor-exit tangential velocity distribution. The losses are determined by an internal loss model.

  4. TWINTAN: A program for transonic wall interference assessment in two-dimensional wind tunnels

    NASA Technical Reports Server (NTRS)

    Kemp, W. B., Jr.

    1980-01-01

    A method for assessing the wall interference in transonic two dimensional wind tunnel test was developed and implemented in a computer program. The method involves three successive solutions of the transonic small disturbance potential equation to define the wind tunnel flow, the perturbation attriburable to the model, and the equivalent free air flow around the model. Input includes pressure distributions on the model and along the top and bottom tunnel walls which are used as boundary conditions for the wind tunnel flow. The wall induced perturbation fields is determined as the difference between the perturbation in the tunnel flow solution and the perturbation attributable to the model. The methodology used in the program is described and detailed descriptions of the computer program input and output are presented. Input and output for a sample case are given.

  5. Bayesian model calibration of computational models in velocimetry diagnosed dynamic compression experiments.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Justin; Hund, Lauren

    2017-02-01

    Dynamic compression experiments are being performed on complicated materials using increasingly complex drivers. The data produced in these experiments are beginning to reach a regime where traditional analysis techniques break down; requiring the solution of an inverse problem. A common measurement in dynamic experiments is an interface velocity as a function of time, and often this functional output can be simulated using a hydrodynamics code. Bayesian model calibration is a statistical framework to estimate inputs into a computational model in the presence of multiple uncertainties, making it well suited to measurements of this type. In this article, we apply Bayesianmore » model calibration to high pressure (250 GPa) ramp compression measurements in tantalum. We address several issues speci c to this calibration including the functional nature of the output as well as parameter and model discrepancy identi ability. Speci cally, we propose scaling the likelihood function by an e ective sample size rather than modeling the autocorrelation function to accommodate the functional output and propose sensitivity analyses using the notion of `modularization' to assess the impact of experiment-speci c nuisance input parameters on estimates of material properties. We conclude that the proposed Bayesian model calibration procedure results in simple, fast, and valid inferences on the equation of state parameters for tantalum.« less

  6. Emulation for probabilistic weather forecasting

    NASA Astrophysics Data System (ADS)

    Cornford, Dan; Barillec, Remi

    2010-05-01

    Numerical weather prediction models are typically very expensive to run due to their complexity and resolution. Characterising the sensitivity of the model to its initial condition and/or to its parameters requires numerous runs of the model, which is impractical for all but the simplest models. To produce probabilistic forecasts requires knowledge of the distribution of the model outputs, given the distribution over the inputs, where the inputs include the initial conditions, boundary conditions and model parameters. Such uncertainty analysis for complex weather prediction models seems a long way off, given current computing power, with ensembles providing only a partial answer. One possible way forward that we develop in this work is the use of statistical emulators. Emulators provide an efficient statistical approximation to the model (or simulator) while quantifying the uncertainty introduced. In the emulator framework, a Gaussian process is fitted to the simulator response as a function of the simulator inputs using some training data. The emulator is essentially an interpolator of the simulator output and the response in unobserved areas is dictated by the choice of covariance structure and parameters in the Gaussian process. Suitable parameters are inferred from the data in a maximum likelihood, or Bayesian framework. Once trained, the emulator allows operations such as sensitivity analysis or uncertainty analysis to be performed at a much lower computational cost. The efficiency of emulators can be further improved by exploiting the redundancy in the simulator output through appropriate dimension reduction techniques. We demonstrate this using both Principal Component Analysis on the model output and a new reduced-rank emulator in which an optimal linear projection operator is estimated jointly with other parameters, in the context of simple low order models, such as the Lorenz 40D system. We present the application of emulators to probabilistic weather forecasting, where the construction of the emulator training set replaces the traditional ensemble model runs. Thus the actual forecast distributions are computed using the emulator conditioned on the ‘ensemble runs' which are chosen to explore the plausible input space using relatively crude experimental design methods. One benefit here is that the ensemble does not need to be a sample from the true distribution of the input space, rather it should cover that input space in some sense. The probabilistic forecasts are computed using Monte Carlo methods sampling from the input distribution and using the emulator to produce the output distribution. Finally we discuss the limitations of this approach and briefly mention how we might use similar methods to learn the model error within a framework that incorporates a data assimilation like aspect, using emulators and learning complex model error representations. We suggest future directions for research in the area that will be necessary to apply the method to more realistic numerical weather prediction models.

  7. High-frequency output characteristics of AlGaAs/GaAs heterojunction bipolar transistors for large-signal applications

    NASA Astrophysics Data System (ADS)

    Chen, J.; Gao, G. B.; Ünlü, M. S.; Morkoç, H.

    1991-11-01

    High-frequency ic- vce output characteristics of bipolar transistors, derived from calculated device cutoff frequencies, are reported. The generation of high-frequency output characteristics from device design specifications represents a novel bridge between microwave circuit design and device design: the microwave performance of simulated device structures can be analyzed, or tailored transistor device structures can be designed to fit specific circuit applications. The details of our compact transistor model are presented, highlighting the high-current base-widening (Kirk) effect. The derivation of the output characteristics from the modeled cutoff frequencies are then presented, and the computed characteristics of an AlGaAs/GaAs heterojunction bipolar transistor operating at 10 GHz are analyzed. Applying the derived output characteristics to microwave circuit design, we examine large-signal class A and class B amplification.

  8. Controller design via structural reduced modeling by FETM

    NASA Technical Reports Server (NTRS)

    Yousuff, A.

    1986-01-01

    The Finite Element - Transfer Matrix (FETM) method has been developed to reduce the computations involved in analysis of structures. This widely accepted method, however, has certain limitations, and does not directly produce reduced models for control design. To overcome these shortcomings, a modification of FETM method has been developed. The modified FETM method easily produces reduced models that are tailored toward subsequent control design. Other features of this method are its ability to: (1) extract open loop frequencies and mode shapes with less computations, (2) overcome limitations of the original FETM method, and (3) simplify the procedures for output feedback, constrained compensation, and decentralized control. This semi annual report presents the development of the modified FETM, and through an example, illustrates its applicability to an output feedback and a decentralized control design.

  9. Statistical Emulation of Climate Model Projections Based on Precomputed GCM Runs*

    DOE PAGES

    Castruccio, Stefano; McInerney, David J.; Stein, Michael L.; ...

    2014-02-24

    The authors describe a new approach for emulating the output of a fully coupled climate model under arbitrary forcing scenarios that is based on a small set of precomputed runs from the model. Temperature and precipitation are expressed as simple functions of the past trajectory of atmospheric CO 2 concentrations, and a statistical model is fit using a limited set of training runs. The approach is demonstrated to be a useful and computationally efficient alternative to pattern scaling and captures the nonlinear evolution of spatial patterns of climate anomalies inherent in transient climates. The approach does as well as patternmore » scaling in all circumstances and substantially better in many; it is not computationally demanding; and, once the statistical model is fit, it produces emulated climate output effectively instantaneously. In conclusion, it may therefore find wide application in climate impacts assessments and other policy analyses requiring rapid climate projections.« less

  10. An Asynchronous Recurrent Network of Cellular Automaton-Based Neurons and Its Reproduction of Spiking Neural Network Activities.

    PubMed

    Matsubara, Takashi; Torikai, Hiroyuki

    2016-04-01

    Modeling and implementation approaches for the reproduction of input-output relationships in biological nervous tissues contribute to the development of engineering and clinical applications. However, because of high nonlinearity, the traditional modeling and implementation approaches encounter difficulties in terms of generalization ability (i.e., performance when reproducing an unknown data set) and computational resources (i.e., computation time and circuit elements). To overcome these difficulties, asynchronous cellular automaton-based neuron (ACAN) models, which are described as special kinds of cellular automata that can be implemented as small asynchronous sequential logic circuits have been proposed. This paper presents a novel type of such ACAN and a theoretical analysis of its excitability. This paper also presents a novel network of such neurons, which can mimic input-output relationships of biological and nonlinear ordinary differential equation model neural networks. Numerical analyses confirm that the presented network has a higher generalization ability than other major modeling and implementation approaches. In addition, Field-Programmable Gate Array-implementations confirm that the presented network requires lower computational resources.

  11. Modifications of the U.S. Geological Survey modular, finite-difference, ground-water flow model to read and write geographic information system files

    USGS Publications Warehouse

    Orzol, Leonard L.; McGrath, Timothy S.

    1992-01-01

    This report documents modifications to the U.S. Geological Survey modular, three-dimensional, finite-difference, ground-water flow model, commonly called MODFLOW, so that it can read and write files used by a geographic information system (GIS). The modified model program is called MODFLOWARC. Simulation programs such as MODFLOW generally require large amounts of input data and produce large amounts of output data. Viewing data graphically, generating head contours, and creating or editing model data arrays such as hydraulic conductivity are examples of tasks that currently are performed either by the use of independent software packages or by tedious manual editing, manipulating, and transferring data. Programs such as GIS programs are commonly used to facilitate preparation of the model input data and analyze model output data; however, auxiliary programs are frequently required to translate data between programs. Data translations are required when different programs use different data formats. Thus, the user might use GIS techniques to create model input data, run a translation program to convert input data into a format compatible with the ground-water flow model, run the model, run a translation program to convert the model output into the correct format for GIS, and use GIS to display and analyze this output. MODFLOWARC, avoids the two translation steps and transfers data directly to and from the ground-water-flow model. This report documents the design and use of MODFLOWARC and includes instructions for data input/output of the Basic, Block-centered flow, River, Recharge, Well, Drain, Evapotranspiration, General-head boundary, and Streamflow-routing packages. The modification to MODFLOW and the Streamflow-Routing package was minimized. Flow charts and computer-program code describe the modifications to the original computer codes for each of these packages. Appendix A contains a discussion on the operation of MODFLOWARC using a sample problem.

  12. SCI model structure determination program (OSR) user's guide. [optimal subset regression

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The computer program, OSR (Optimal Subset Regression) which estimates models for rotorcraft body and rotor force and moment coefficients is described. The technique used is based on the subset regression algorithm. Given time histories of aerodynamic coefficients, aerodynamic variables, and control inputs, the program computes correlation between various time histories. The model structure determination is based on these correlations. Inputs and outputs of the program are given.

  13. User's manual for master: Modeling of aerodynamic surfaces by 3-dimensional explicit representation. [input to three dimensional computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Gibson, S. G.

    1983-01-01

    A system of computer programs was developed to model general three dimensional surfaces. Surfaces are modeled as sets of parametric bicubic patches. There are also capabilities to transform coordinates, to compute mesh/surface intersection normals, and to format input data for a transonic potential flow analysis. A graphical display of surface models and intersection normals is available. There are additional capabilities to regulate point spacing on input curves and to compute surface/surface intersection curves. Input and output data formats are described; detailed suggestions are given for user input. Instructions for execution are given, and examples are shown.

  14. Parallel computing for automated model calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, John S.; Danielson, Gary R.; Schulz, Douglas A.

    2002-07-29

    Natural resources model calibration is a significant burden on computing and staff resources in modeling efforts. Most assessments must consider multiple calibration objectives (for example magnitude and timing of stream flow peak). An automated calibration process that allows real time updating of data/models, allowing scientists to focus effort on improving models is needed. We are in the process of building a fully featured multi objective calibration tool capable of processing multiple models cheaply and efficiently using null cycle computing. Our parallel processing and calibration software routines have been generically, but our focus has been on natural resources model calibration. Somore » far, the natural resources models have been friendly to parallel calibration efforts in that they require no inter-process communication, only need a small amount of input data and only output a small amount of statistical information for each calibration run. A typical auto calibration run might involve running a model 10,000 times with a variety of input parameters and summary statistical output. In the past model calibration has been done against individual models for each data set. The individual model runs are relatively fast, ranging from seconds to minutes. The process was run on a single computer using a simple iterative process. We have completed two Auto Calibration prototypes and are currently designing a more feature rich tool. Our prototypes have focused on running the calibration in a distributed computing cross platform environment. They allow incorporation of?smart? calibration parameter generation (using artificial intelligence processing techniques). Null cycle computing similar to SETI@Home has also been a focus of our efforts. This paper details the design of the latest prototype and discusses our plans for the next revision of the software.« less

  15. System identification using Nuclear Norm & Tabu Search optimization

    NASA Astrophysics Data System (ADS)

    Ahmed, Asif A.; Schoen, Marco P.; Bosworth, Ken W.

    2018-01-01

    In recent years, subspace System Identification (SI) algorithms have seen increased research, stemming from advanced minimization methods being applied to the Nuclear Norm (NN) approach in system identification. These minimization algorithms are based on hard computing methodologies. To the authors’ knowledge, as of now, there has been no work reported that utilizes soft computing algorithms to address the minimization problem within the nuclear norm SI framework. A linear, time-invariant, discrete time system is used in this work as the basic model for characterizing a dynamical system to be identified. The main objective is to extract a mathematical model from collected experimental input-output data. Hankel matrices are constructed from experimental data, and the extended observability matrix is employed to define an estimated output of the system. This estimated output and the actual - measured - output are utilized to construct a minimization problem. An embedded rank measure assures minimum state realization outcomes. Current NN-SI algorithms employ hard computing algorithms for minimization. In this work, we propose a simple Tabu Search (TS) algorithm for minimization. TS algorithm based SI is compared with the iterative Alternating Direction Method of Multipliers (ADMM) line search optimization based NN-SI. For comparison, several different benchmark system identification problems are solved by both approaches. Results show improved performance of the proposed SI-TS algorithm compared to the NN-SI ADMM algorithm.

  16. Predicting the synaptic information efficacy in cortical layer 5 pyramidal neurons using a minimal integrate-and-fire model.

    PubMed

    London, Michael; Larkum, Matthew E; Häusser, Michael

    2008-11-01

    Synaptic information efficacy (SIE) is a statistical measure to quantify the efficacy of a synapse. It measures how much information is gained, on the average, about the output spike train of a postsynaptic neuron if the input spike train is known. It is a particularly appropriate measure for assessing the input-output relationship of neurons receiving dynamic stimuli. Here, we compare the SIE of simulated synaptic inputs measured experimentally in layer 5 cortical pyramidal neurons in vitro with the SIE computed from a minimal model constructed to fit the recorded data. We show that even with a simple model that is far from perfect in predicting the precise timing of the output spikes of the real neuron, the SIE can still be accurately predicted. This arises from the ability of the model to predict output spikes influenced by the input more accurately than those driven by the background current. This indicates that in this context, some spikes may be more important than others. Lastly we demonstrate another aspect where using mutual information could be beneficial in evaluating the quality of a model, by measuring the mutual information between the model's output and the neuron's output. The SIE, thus, could be a useful tool for assessing the quality of models of single neurons in preserving input-output relationship, a property that becomes crucial when we start connecting these reduced models to construct complex realistic neuronal networks.

  17. A Heat Pipe Coupled Planar Thermionic Converter: Performance Characterization, Nondestructive Testing, and Evaluation.

    DTIC Science & Technology

    1992-03-15

    Pipes, Computer Modelling, Nondestructive Testing. Tomography , Planar Converter, Cesium Reservoir 19. ABSTRACT (Continue on reverse if necessary and...Investigation ........................ 32 4.3 Computed Tomography ................................ 33 4.4 X-Ray Radiography...25 3.4 LEOS generated output data for Mo-Re converter ................ 26 4.1 Distance along converter imaged by the computed tomography

  18. Perl-speaks-NONMEM (PsN)--a Perl module for NONMEM related programming.

    PubMed

    Lindbom, Lars; Ribbing, Jakob; Jonsson, E Niclas

    2004-08-01

    The NONMEM program is the most widely used nonlinear regression software in population pharmacokinetic/pharmacodynamic (PK/PD) analyses. In this article we describe a programming library, Perl-speaks-NONMEM (PsN), intended for programmers that aim at using the computational capability of NONMEM in external applications. The library is object oriented and written in the programming language Perl. The classes of the library are built around NONMEM's data, model and output files. The specification of the NONMEM model is easily set or changed through the model and data file classes while the output from a model fit is accessed through the output file class. The classes have methods that help the programmer perform common repetitive tasks, e.g. summarising the output from a NONMEM run, setting the initial estimates of a model based on a previous run or truncating values over a certain threshold in the data file. PsN creates a basis for the development of high-level software using NONMEM as the regression tool.

  19. Shot-by-shot Spectrum Model for Rod-pinch, Pulsed Radiography Machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, William Monford

    A simplified model of bremsstrahlung production is developed for determining the x-ray spectrum output of a rod-pinch radiography machine, on a shot-by-shot basis, using the measured voltage, V(t), and current, I(t). The motivation for this model is the need for an agile means of providing shot-by-shot spectrum prediction, from a laptop or desktop computer, for quantitative radiographic analysis. Simplifying assumptions are discussed, and the model is applied to the Cygnus rod-pinch machine. Output is compared to wedge transmission data for a series of radiographs from shots with identical target objects. Resulting model enables variation of parameters in real time, thusmore » allowing for rapid optimization of the model across many shots. “Goodness of fit” is compared with output from LSP Particle-In-Cell code, as well as the Monte Carlo Neutron Propagation with Xrays (“MCNPX”) model codes, and is shown to provide an excellent predictive representation of the spectral output of the Cygnus machine. In conclusion, improvements to the model, specifically for application to other geometries, are discussed.« less

  20. Shot-by-shot Spectrum Model for Rod-pinch, Pulsed Radiography Machines

    DOE PAGES

    Wood, William Monford

    2018-02-07

    A simplified model of bremsstrahlung production is developed for determining the x-ray spectrum output of a rod-pinch radiography machine, on a shot-by-shot basis, using the measured voltage, V(t), and current, I(t). The motivation for this model is the need for an agile means of providing shot-by-shot spectrum prediction, from a laptop or desktop computer, for quantitative radiographic analysis. Simplifying assumptions are discussed, and the model is applied to the Cygnus rod-pinch machine. Output is compared to wedge transmission data for a series of radiographs from shots with identical target objects. Resulting model enables variation of parameters in real time, thusmore » allowing for rapid optimization of the model across many shots. “Goodness of fit” is compared with output from LSP Particle-In-Cell code, as well as the Monte Carlo Neutron Propagation with Xrays (“MCNPX”) model codes, and is shown to provide an excellent predictive representation of the spectral output of the Cygnus machine. In conclusion, improvements to the model, specifically for application to other geometries, are discussed.« less

  1. Shot-by-shot spectrum model for rod-pinch, pulsed radiography machines

    NASA Astrophysics Data System (ADS)

    Wood, Wm M.

    2018-02-01

    A simplified model of bremsstrahlung production is developed for determining the x-ray spectrum output of a rod-pinch radiography machine, on a shot-by-shot basis, using the measured voltage, V(t), and current, I(t). The motivation for this model is the need for an agile means of providing shot-by-shot spectrum prediction, from a laptop or desktop computer, for quantitative radiographic analysis. Simplifying assumptions are discussed, and the model is applied to the Cygnus rod-pinch machine. Output is compared to wedge transmission data for a series of radiographs from shots with identical target objects. Resulting model enables variation of parameters in real time, thus allowing for rapid optimization of the model across many shots. "Goodness of fit" is compared with output from LSP Particle-In-Cell code, as well as the Monte Carlo Neutron Propagation with Xrays ("MCNPX") model codes, and is shown to provide an excellent predictive representation of the spectral output of the Cygnus machine. Improvements to the model, specifically for application to other geometries, are discussed.

  2. Power combining in an array of microwave power rectifiers

    NASA Technical Reports Server (NTRS)

    Gutmann, R. J.; Borrego, J. M.

    1979-01-01

    This work analyzes the resultant efficiency degradation when identical rectifiers operate at different RF power levels as caused by the power beam taper. Both a closed-form analytical circuit model and a detailed computer-simulation model are used to obtain the output dc load line of the rectifier. The efficiency degradation is nearly identical with series and parallel combining, and the closed-form analytical model provides results which are similar to the detailed computer-simulation model.

  3. Automatic speech recognition and training for severely dysarthric users of assistive technology: the STARDUST project.

    PubMed

    Parker, Mark; Cunningham, Stuart; Enderby, Pam; Hawley, Mark; Green, Phil

    2006-01-01

    The STARDUST project developed robust computer speech recognizers for use by eight people with severe dysarthria and concomitant physical disability to access assistive technologies. Independent computer speech recognizers trained with normal speech are of limited functional use by those with severe dysarthria due to limited and inconsistent proximity to "normal" articulatory patterns. Severe dysarthric output may also be characterized by a small mass of distinguishable phonetic tokens making the acoustic differentiation of target words difficult. Speaker dependent computer speech recognition using Hidden Markov Models was achieved by the identification of robust phonetic elements within the individual speaker output patterns. A new system of speech training using computer generated visual and auditory feedback reduced the inconsistent production of key phonetic tokens over time.

  4. Life and reliability models for helicopter transmissions

    NASA Technical Reports Server (NTRS)

    Savage, M.; Knorr, R. J.; Coy, J. J.

    1982-01-01

    Computer models of life and reliability are presented for planetary gear trains with a fixed ring gear, input applied to the sun gear, and output taken from the planet arm. For this transmission the input and output shafts are co-axial and the input and output torques are assumed to be coaxial with these shafts. Thrust and side loading are neglected. The reliability model is based on the Weibull distributions of the individual reliabilities of the in transmission components. The system model is also a Weibull distribution. The load versus life model for the system is a power relationship as the models for the individual components. The load-life exponent and basic dynamic capacity are developed as functions of the components capacities. The models are used to compare three and four planet, 150 kW (200 hp), 5:1 reduction transmissions with 1500 rpm input speed to illustrate their use.

  5. TWINTN4: A program for transonic four-wall interference assessment in two-dimensional wind tunnels

    NASA Technical Reports Server (NTRS)

    Kemp, W. B., Jr.

    1984-01-01

    A method for assessing the wall interference in transonic two-dimensional wind tunnel tests including the effects of the tunnel sidewall boundary layer was developed and implemented in a computer program named TWINTN4. The method involves three successive solutions of the transonic small disturbance potential equation to define the wind tunnel flow, the equivalent free air flow around the model, and the perturbation attributable to the model. Required input includes pressure distributions on the model and along the top and bottom tunnel walls which are used as boundary conditions for the wind tunnel flow. The wall-induced perturbation field is determined as the difference between the perturbation in the tunnel flow solution and the perturbation attributable to the model. The methodology used in the program is described and detailed descriptions of the computer program input and output are presented. Input and output for a sample case are given.

  6. A FAST BAYESIAN METHOD FOR UPDATING AND FORECASTING HOURLY OZONE LEVELS

    EPA Science Inventory

    A Bayesian hierarchical space-time model is proposed by combining information from real-time ambient AIRNow air monitoring data, and output from a computer simulation model known as the Community Multi-scale Air Quality (Eta-CMAQ) forecast model. A model validation analysis shows...

  7. Analytical modeling of operating characteristics of premixing-prevaporizing fuel-air mixing passages. Volume 2: User's manual

    NASA Technical Reports Server (NTRS)

    Anderson, O. L.; Chiappetta, L. M.; Edwards, D. E.; Mcvey, J. B.

    1982-01-01

    A user's manual describing the operation of three computer codes (ADD code, PTRAK code, and VAPDIF code) is presented. The general features of the computer codes, the input/output formats, run streams, and sample input cases are described.

  8. Energy: Economic activity and energy demand; link to energy flow. Example: France

    NASA Astrophysics Data System (ADS)

    1980-10-01

    The data derived from the EXPLOR and EPOM, Energy Flow Optimization Model are described. The core of the EXPLOR model is a circular system of relations involving consumer's demand, producer's outputs, and market prices. The solution of this system of relations is obtained by successive iterations; the final output is a coherent system of economic accounts. The computer program for this transition is described. The work conducted by comparing different energy demand models is summarized. The procedure is illustrated by a numerical projection to 1980 and 1985 using the existing version of the EXPLOR France model.

  9. Development of digital phantoms based on a finite element model to simulate low-attenuation areas in CT imaging for pulmonary emphysema quantification.

    PubMed

    Diciotti, Stefano; Nobis, Alessandro; Ciulli, Stefano; Landini, Nicholas; Mascalchi, Mario; Sverzellati, Nicola; Innocenti, Bernardo

    2017-09-01

    To develop an innovative finite element (FE) model of lung parenchyma which simulates pulmonary emphysema on CT imaging. The model is aimed to generate a set of digital phantoms of low-attenuation areas (LAA) images with different grades of emphysema severity. Four individual parameter configurations simulating different grades of emphysema severity were utilized to generate 40 FE models using ten randomizations for each setting. We compared two measures of emphysema severity (relative area (RA) and the exponent D of the cumulative distribution function of LAA clusters size) between the simulated LAA images and those computed directly on the models output (considered as reference). The LAA images obtained from our model output can simulate CT-LAA images in subjects with different grades of emphysema severity. Both RA and D computed on simulated LAA images were underestimated as compared to those calculated on the models output, suggesting that measurements in CT imaging may not be accurate in the assessment of real emphysema extent. Our model is able to mimic the cluster size distribution of LAA on CT imaging of subjects with pulmonary emphysema. The model could be useful to generate standard test images and to design physical phantoms of LAA images for the assessment of the accuracy of indexes for the radiologic quantitation of emphysema.

  10. Thermomechanical conditions and stresses on the friction stir welding tool

    NASA Astrophysics Data System (ADS)

    Atthipalli, Gowtam

    Friction stir welding has been commercially used as a joining process for aluminum and other soft materials. However, the use of this process in joining of hard alloys is still developing primarily because of the lack of cost effective, long lasting tools. Here I have developed numerical models to understand the thermo mechanical conditions experienced by the FSW tool and to improve its reusability. A heat transfer and visco-plastic flow model is used to calculate the torque, and traverse force on the tool during FSW. The computed values of torque and traverse force are validated using the experimental results for FSW of AA7075, AA2524, AA6061 and Ti-6Al-4V alloys. The computed torque components are used to determine the optimum tool shoulder diameter based on the maximum use of torque and maximum grip of the tool on the plasticized workpiece material. The estimation of the optimum tool shoulder diameter for FSW of AA6061 and AA7075 was verified with experimental results. The computed values of traverse force and torque are used to calculate the maximum shear stress on the tool pin to determine the load bearing ability of the tool pin. The load bearing ability calculations are used to explain the failure of H13 steel tool during welding of AA7075 and commercially pure tungsten during welding of L80 steel. Artificial neural network (ANN) models are developed to predict the important FSW output parameters as function of selected input parameters. These ANN consider tool shoulder radius, pin radius, pin length, welding velocity, tool rotational speed and axial pressure as input parameters. The total torque, sliding torque, sticking torque, peak temperature, traverse force, maximum shear stress and bending stress are considered as the output for ANN models. These output parameters are selected since they define the thermomechanical conditions around the tool during FSW. The developed ANN models are used to understand the effect of various input parameters on the total torque and traverse force during FSW of AA7075 and 1018 mild steel. The ANN models are also used to determine tool safety factor for wide range of input parameters. A numerical model is developed to calculate the strain and strain rates along the streamlines during FSW. The strain and strain rate values are calculated for FSW of AA2524. Three simplified models are also developed for quick estimation of output parameters such as material velocity field, torque and peak temperature. The material velocity fields are computed by adopting an analytical method of calculating velocities for flow of non-compressible fluid between two discs where one is rotating and other is stationary. The peak temperature is estimated based on a non-dimensional correlation with dimensionless heat input. The dimensionless heat input is computed using known welding parameters and material properties. The torque is computed using an analytical function based on shear strength of the workpiece material. These simplified models are shown to be able to predict these output parameters successfully.

  11. Modelling of Cosmic Molecular Masers: Introduction to a Computation Cookbook

    NASA Astrophysics Data System (ADS)

    Sobolev, Andrej M.; Gray, Malcolm D.

    2012-07-01

    Numerical modeling of molecular masers is necessary in order to understand their nature and diagnostic capabilities. Model construction requires elaboration of a basic description which allows computation, that is a definition of the parameter space and basic physical relations. Usually, this requires additional thorough studies that can consist of the following stages/parts: relevant molecular spectroscopy and collisional rate coefficients; conditions in and around the masing region (that part of space where population inversion is realized); geometry and size of the masing region (including the question of whether maser spots are discrete clumps or line-of-sight correlations in a much bigger region) and propagation of maser radiation. Output of the maser computer modeling can have the following forms: exploration of parameter space (where do inversions appear in particular maser transitions and their combinations, which parameter values describe a `typical' source, and so on); modeling of individual sources (line flux ratios, spectra, images and their variability); analysis of the pumping mechanism; predictions (new maser transitions, correlations in variability of different maser transitions, and the like). Described schemes (constituents and hierarchy) of the model input and output are based mainly on the experience of the authors and make no claim to be dogmatic.

  12. Toward an in-situ analytics and diagnostics framework for earth system models

    NASA Astrophysics Data System (ADS)

    Anantharaj, Valentine; Wolf, Matthew; Rasch, Philip; Klasky, Scott; Williams, Dean; Jacob, Rob; Ma, Po-Lun; Kuo, Kwo-Sen

    2017-04-01

    The development roadmaps for many earth system models (ESM) aim for a globally cloud-resolving model targeting the pre-exascale and exascale systems of the future. The ESMs will also incorporate more complex physics, chemistry and biology - thereby vastly increasing the fidelity of the information content simulated by the model. We will then be faced with an unprecedented volume of simulation output that would need to be processed and analyzed concurrently in order to derive the valuable scientific results. We are already at this threshold with our current generation of ESMs at higher resolution simulations. Currently, the nominal I/O throughput in the Community Earth System Model (CESM) via Parallel IO (PIO) library is around 100 MB/s. If we look at the high frequency I/O requirements, it would require an additional 1 GB / simulated hour, translating to roughly 4 mins wallclock / simulated-day => 24.33 wallclock hours / simulated-model-year => 1,752,000 core-hours of charge per simulated-model-year on the Titan supercomputer at the Oak Ridge Leadership Computing Facility. There is also a pending need for 3X more volume of simulation output . Meanwhile, many ESMs use instrument simulators to run forward models to compare model simulations against satellite and ground-based instruments, such as radars and radiometers. The CFMIP Observation Simulator Package (COSP) is used in CESM as well as the Accelerated Climate Model for Energy (ACME), one of the ESMs specifically targeting current and emerging leadership-class computing platforms These simulators can be computationally expensive, accounting for as much as 30% of the computational cost. Hence the data are often written to output files that are then used for offline calculations. Again, the I/O bottleneck becomes a limitation. Detection and attribution studies also use large volume of data for pattern recognition and feature extraction to analyze weather and climate phenomenon such as tropical cyclones, atmospheric rivers, blizzards, etc. It is evident that ESMs need an in-situ framework to decouple the diagnostics and analytics from the prognostics and physics computations of the models so that the diagnostic computations could be performed concurrently without limiting model throughput. We are designing a science-driven online analytics framework for earth system models. Our approach is to adopt several data workflow technologies, such as the Adaptable IO System (ADIOS), being developed under the U.S. Exascale Computing Project (ECP) and integrate these to allow for extreme performance IO, in situ workflow integration, science-driven analytics and visualization all in a easy to use computational framework. This will allow science teams to write data 100-1000 times faster and seamlessly move from post processing the output for validation and verification purposes to performing these calculations in situ. We can easily and knowledgeably envision a near-term future where earth system models like ACME and CESM will have to address not only the challenges of the volume of data but also need to consider the velocity of the data. The earth system model of the future in the exascale era, as they incorporate more complex physics at higher resolutions, will be able to analyze more simulation content without having to compromise targeted model throughput.

  13. First-Order-hold interpolation digital-to-analog converter with application to aircraft simulation

    NASA Technical Reports Server (NTRS)

    Cleveland, W. B.

    1976-01-01

    Those who design piloted aircraft simulations must contend with the finite size and speed of the available digital computer and the requirement for simulation reality. With a fixed computational plant, the more complex the model, the more computing cycle time is required. While increasing the cycle time may not degrade the fidelity of the simulated aircraft dynamics, the larger steps in the pilot cue feedback variables (such as the visual scene cues), may be disconcerting to the pilot. The first-order-hold interpolation (FOHI) digital-to-analog converter (DAC) is presented as a device which offers smooth output, regardless of cycle time. The Laplace transforms of these three conversion types are developed and their frequency response characteristics and output smoothness are compared. The FOHI DAC exhibits a pure one-cycle delay. Whenever the FOHI DAC input comes from a second-order (or higher) system, a simple computer software technique can be used to compensate for the DAC phase lag. When so compensated, the FOHI DAC has (1) an output signal that is very smooth, (2) a flat frequency response in frequency ranges of interest, and (3) no phase error. When the input comes from a first-order system, software compensation may cause the FOHI DAC to perform as an FOHE DAC, which, although its output is not as smooth as that of the FOHI DAC, has a smoother output than that of the ZOH DAC.

  14. Data Reduction Functions for the Langley 14- by 22-Foot Subsonic Tunnel

    NASA Technical Reports Server (NTRS)

    Boney, Andy D.

    2014-01-01

    The Langley 14- by 22-Foot Subsonic Tunnel's data reduction software utilizes six major functions to compute the acquired data. These functions calculate engineering units, tunnel parameters, flowmeters, jet exhaust measurements, balance loads/model attitudes, and model /wall pressures. The input (required) variables, the output (computed) variables, and the equations and/or subfunction(s) associated with each major function are discussed.

  15. Users manual and modeling improvements for axial turbine design and performance computer code TD2-2

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.

    1992-01-01

    Computer code TD2 computes design point velocity diagrams and performance for multistage, multishaft, cooled or uncooled, axial flow turbines. This streamline analysis code was recently modified to upgrade modeling related to turbine cooling and to the internal loss correlation. These modifications are presented in this report along with descriptions of the code's expanded input and output. This report serves as the users manual for the upgraded code, which is named TD2-2.

  16. Computation of the intensities of parametric holographic scattering patterns in photorefractive crystals.

    PubMed

    Schwalenberg, Simon

    2005-06-01

    The present work represents a first attempt to perform computations of output intensity distributions for different parametric holographic scattering patterns. Based on the model for parametric four-wave mixing processes in photorefractive crystals and taking into account realistic material properties, we present computed images of selected scattering patterns. We compare these calculated light distributions to the corresponding experimental observations. Our analysis is especially devoted to dark scattering patterns as they make high demands on the underlying model.

  17. Approximate Bayesian Computation by Subset Simulation using hierarchical state-space models

    NASA Astrophysics Data System (ADS)

    Vakilzadeh, Majid K.; Huang, Yong; Beck, James L.; Abrahamsson, Thomas

    2017-02-01

    A new multi-level Markov Chain Monte Carlo algorithm for Approximate Bayesian Computation, ABC-SubSim, has recently appeared that exploits the Subset Simulation method for efficient rare-event simulation. ABC-SubSim adaptively creates a nested decreasing sequence of data-approximating regions in the output space that correspond to increasingly closer approximations of the observed output vector in this output space. At each level, multiple samples of the model parameter vector are generated by a component-wise Metropolis algorithm so that the predicted output corresponding to each parameter value falls in the current data-approximating region. Theoretically, if continued to the limit, the sequence of data-approximating regions would converge on to the observed output vector and the approximate posterior distributions, which are conditional on the data-approximation region, would become exact, but this is not practically feasible. In this paper we study the performance of the ABC-SubSim algorithm for Bayesian updating of the parameters of dynamical systems using a general hierarchical state-space model. We note that the ABC methodology gives an approximate posterior distribution that actually corresponds to an exact posterior where a uniformly distributed combined measurement and modeling error is added. We also note that ABC algorithms have a problem with learning the uncertain error variances in a stochastic state-space model and so we treat them as nuisance parameters and analytically integrate them out of the posterior distribution. In addition, the statistical efficiency of the original ABC-SubSim algorithm is improved by developing a novel strategy to regulate the proposal variance for the component-wise Metropolis algorithm at each level. We demonstrate that Self-regulated ABC-SubSim is well suited for Bayesian system identification by first applying it successfully to model updating of a two degree-of-freedom linear structure for three cases: globally, locally and un-identifiable model classes, and then to model updating of a two degree-of-freedom nonlinear structure with Duffing nonlinearities in its interstory force-deflection relationship.

  18. Logic models to predict continuous outputs based on binary inputs with an application to personalized cancer therapy.

    PubMed

    Knijnenburg, Theo A; Klau, Gunnar W; Iorio, Francesco; Garnett, Mathew J; McDermott, Ultan; Shmulevich, Ilya; Wessels, Lodewyk F A

    2016-11-23

    Mining large datasets using machine learning approaches often leads to models that are hard to interpret and not amenable to the generation of hypotheses that can be experimentally tested. We present 'Logic Optimization for Binary Input to Continuous Output' (LOBICO), a computational approach that infers small and easily interpretable logic models of binary input features that explain a continuous output variable. Applying LOBICO to a large cancer cell line panel, we find that logic combinations of multiple mutations are more predictive of drug response than single gene predictors. Importantly, we show that the use of the continuous information leads to robust and more accurate logic models. LOBICO implements the ability to uncover logic models around predefined operating points in terms of sensitivity and specificity. As such, it represents an important step towards practical application of interpretable logic models.

  19. Reduced order models for assessing CO 2 impacts in shallow unconfined aquifers

    DOE PAGES

    Keating, Elizabeth H.; Harp, Dylan H.; Dai, Zhenxue; ...

    2016-01-28

    Risk assessment studies of potential CO 2 sequestration projects consider many factors, including the possibility of brine and/or CO 2 leakage from the storage reservoir. Detailed multiphase reactive transport simulations have been developed to predict the impact of such leaks on shallow groundwater quality; however, these simulations are computationally expensive and thus difficult to directly embed in a probabilistic risk assessment analysis. Here we present a process for developing computationally fast reduced-order models which emulate key features of the more detailed reactive transport simulations. A large ensemble of simulations that take into account uncertainty in aquifer characteristics and CO 2/brinemore » leakage scenarios were performed. Twelve simulation outputs of interest were used to develop response surfaces (RSs) using a MARS (multivariate adaptive regression splines) algorithm (Milborrow, 2015). A key part of this study is to compare different measures of ROM accuracy. We then show that for some computed outputs, MARS performs very well in matching the simulation data. The capability of the RS to predict simulation outputs for parameter combinations not used in RS development was tested using cross-validation. Again, for some outputs, these results were quite good. For other outputs, however, the method performs relatively poorly. Performance was best for predicting the volume of depressed-pH-plumes, and was relatively poor for predicting organic and trace metal plume volumes. We believe several factors, including the non-linearity of the problem, complexity of the geochemistry, and granularity in the simulation results, contribute to this varied performance. The reduced order models were developed principally to be used in probabilistic performance analysis where a large range of scenarios are considered and ensemble performance is calculated. We demonstrate that they effectively predict the ensemble behavior. But, the performance of the RSs is much less accurate when used to predict time-varying outputs from a single simulation. If an analysis requires only a small number of scenarios to be investigated, computationally expensive physics-based simulations would likely provide more reliable results. Finally, if the aggregate behavior of a large number of realizations is the focus, as will be the case in probabilistic quantitative risk assessment, the methodology presented here is relatively robust.« less

  20. Applied Computational Electromagnetics Society Journal. Volume 7, Number 1, Summer 1992

    DTIC Science & Technology

    1992-01-01

    previously-solved computational problem in electrical engineering, physics, or related fields of study. The technical activities promoted by this...in solution technique or in data input/output; identification of new applica- tions for electromagnetics modeling codes and techniques; integration of...papers will represent the computational electromagnetics aspects of research in electrical engineering, physics, or related disciplines. However, papers

  1. Modeling Biodegradation and Reactive Transport: Analytical and Numerical Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Y; Glascoe, L

    The computational modeling of the biodegradation of contaminated groundwater systems accounting for biochemical reactions coupled to contaminant transport is a valuable tool for both the field engineer/planner with limited computational resources and the expert computational researcher less constrained by time and computer power. There exists several analytical and numerical computer models that have been and are being developed to cover the practical needs put forth by users to fulfill this spectrum of computational demands. Generally, analytical models provide rapid and convenient screening tools running on very limited computational power, while numerical models can provide more detailed information with consequent requirementsmore » of greater computational time and effort. While these analytical and numerical computer models can provide accurate and adequate information to produce defensible remediation strategies, decisions based on inadequate modeling output or on over-analysis can have costly and risky consequences. In this chapter we consider both analytical and numerical modeling approaches to biodegradation and reactive transport. Both approaches are discussed and analyzed in terms of achieving bioremediation goals, recognizing that there is always a tradeoff between computational cost and the resolution of simulated systems.« less

  2. Community Coordinated Modeling Center Support of Science Needs for Integrated Data Environment

    NASA Technical Reports Server (NTRS)

    Kuznetsova, M. M.; Hesse, M.; Rastatter, L.; Maddox, M.

    2007-01-01

    Space science models are essential component of integrated data environment. Space science models are indispensable tools to facilitate effective use of wide variety of distributed scientific sources and to place multi-point local measurements into global context. The Community Coordinated Modeling Center (CCMC) hosts a set of state-of-the- art space science models ranging from the solar atmosphere to the Earth's upper atmosphere. The majority of models residing at CCMC are comprehensive computationally intensive physics-based models. To allow the models to be driven by data relevant to particular events, the CCMC developed an online data file generation tool that automatically downloads data from data providers and transforms them to required format. CCMC provides a tailored web-based visualization interface for the model output, as well as the capability to download simulations output in portable standard format with comprehensive metadata and user-friendly model output analysis library of routines that can be called from any C supporting language. CCMC is developing data interpolation tools that enable to present model output in the same format as observations. CCMC invite community comments and suggestions to better address science needs for the integrated data environment.

  3. Observer-Based Discrete-Time Nonnegative Edge Synchronization of Networked Systems.

    PubMed

    Su, Housheng; Wu, Han; Chen, Xia

    2017-10-01

    This paper studies the multi-input and multi-output discrete-time nonnegative edge synchronization of networked systems based on neighbors' output information. The communication relationship among the edges of networked systems is modeled by well-known line graph. Two observer-based edge synchronization algorithms are designed, for which some necessary and sufficient synchronization conditions are derived. Moreover, some computable sufficient synchronization conditions are obtained, in which the feedback matrix and the observer matrix are computed by solving the linear programming problems. We finally design several simulation examples to demonstrate the validity of the given nonnegative edge synchronization algorithms.

  4. A probabilistic method for constructing wave time-series at inshore locations using model scenarios

    USGS Publications Warehouse

    Long, Joseph W.; Plant, Nathaniel G.; Dalyander, P. Soupy; Thompson, David M.

    2014-01-01

    Continuous time-series of wave characteristics (height, period, and direction) are constructed using a base set of model scenarios and simple probabilistic methods. This approach utilizes an archive of computationally intensive, highly spatially resolved numerical wave model output to develop time-series of historical or future wave conditions without performing additional, continuous numerical simulations. The archive of model output contains wave simulations from a set of model scenarios derived from an offshore wave climatology. Time-series of wave height, period, direction, and associated uncertainties are constructed at locations included in the numerical model domain. The confidence limits are derived using statistical variability of oceanographic parameters contained in the wave model scenarios. The method was applied to a region in the northern Gulf of Mexico and assessed using wave observations at 12 m and 30 m water depths. Prediction skill for significant wave height is 0.58 and 0.67 at the 12 m and 30 m locations, respectively, with similar performance for wave period and direction. The skill of this simplified, probabilistic time-series construction method is comparable to existing large-scale, high-fidelity operational wave models but provides higher spatial resolution output at low computational expense. The constructed time-series can be developed to support a variety of applications including climate studies and other situations where a comprehensive survey of wave impacts on the coastal area is of interest.

  5. Teaching Pulmonary Gas Exchange Physiology Using Computer Modeling

    ERIC Educational Resources Information Center

    Kapitan, Kent S.

    2008-01-01

    Students often have difficulty understanding the relationship of O[subscript 2] consumption, CO[subscript 2] production, cardiac output, and distribution of ventilation-perfusion ratios in the lung to the final arterial blood gas composition. To overcome this difficulty, I have developed an interactive computer simulation of pulmonary gas exchange…

  6. Toward Scientific Numerical Modeling

    NASA Technical Reports Server (NTRS)

    Kleb, Bil

    2007-01-01

    Ultimately, scientific numerical models need quantified output uncertainties so that modeling can evolve to better match reality. Documenting model input uncertainties and verifying that numerical models are translated into code correctly, however, are necessary first steps toward that goal. Without known input parameter uncertainties, model sensitivities are all one can determine, and without code verification, output uncertainties are simply not reliable. To address these two shortcomings, two proposals are offered: (1) an unobtrusive mechanism to document input parameter uncertainties in situ and (2) an adaptation of the Scientific Method to numerical model development and deployment. Because these two steps require changes in the computational simulation community to bear fruit, they are presented in terms of the Beckhard-Harris-Gleicher change model.

  7. Assessing first-order emulator inference for physical parameters in nonlinear mechanistic models

    USGS Publications Warehouse

    Hooten, Mevin B.; Leeds, William B.; Fiechter, Jerome; Wikle, Christopher K.

    2011-01-01

    We present an approach for estimating physical parameters in nonlinear models that relies on an approximation to the mechanistic model itself for computational efficiency. The proposed methodology is validated and applied in two different modeling scenarios: (a) Simulation and (b) lower trophic level ocean ecosystem model. The approach we develop relies on the ability to predict right singular vectors (resulting from a decomposition of computer model experimental output) based on the computer model input and an experimental set of parameters. Critically, we model the right singular vectors in terms of the model parameters via a nonlinear statistical model. Specifically, we focus our attention on first-order models of these right singular vectors rather than the second-order (covariance) structure.

  8. Distributed computing system with dual independent communications paths between computers and employing split tokens

    NASA Technical Reports Server (NTRS)

    Rasmussen, Robert D. (Inventor); Manning, Robert M. (Inventor); Lewis, Blair F. (Inventor); Bolotin, Gary S. (Inventor); Ward, Richard S. (Inventor)

    1990-01-01

    This is a distributed computing system providing flexible fault tolerance; ease of software design and concurrency specification; and dynamic balance of the loads. The system comprises a plurality of computers each having a first input/output interface and a second input/output interface for interfacing to communications networks each second input/output interface including a bypass for bypassing the associated computer. A global communications network interconnects the first input/output interfaces for providing each computer the ability to broadcast messages simultaneously to the remainder of the computers. A meshwork communications network interconnects the second input/output interfaces providing each computer with the ability to establish a communications link with another of the computers bypassing the remainder of computers. Each computer is controlled by a resident copy of a common operating system. Communications between respective ones of computers is by means of split tokens each having a moving first portion which is sent from computer to computer and a resident second portion which is disposed in the memory of at least one of computer and wherein the location of the second portion is part of the first portion. The split tokens represent both functions to be executed by the computers and data to be employed in the execution of the functions. The first input/output interfaces each include logic for detecting a collision between messages and for terminating the broadcasting of a message whereby collisions between messages are detected and avoided.

  9. Analysis and compensation of an aircraft simulator control loading system with compliant linkage. [using hydraulic equipment

    NASA Technical Reports Server (NTRS)

    Johnson, P. R.; Bardusch, R. E.

    1974-01-01

    A hydraulic control loading system for aircraft simulation was analyzed to find the causes of undesirable low frequency oscillations and loading effects in the output. The hypothesis of mechanical compliance in the control linkage was substantiated by comparing the behavior of a mathematical model of the system with previously obtained experimental data. A compensation scheme based on the minimum integral of the squared difference between desired and actual output was shown to be effective in reducing the undesirable output effects. The structure of the proposed compensation was computed by use of a dynamic programing algorithm and a linear state space model of the fixed elements in the system.

  10. The future of climate science analysis in a coming era of exascale computing

    NASA Astrophysics Data System (ADS)

    Bates, S. C.; Strand, G.

    2013-12-01

    Projections of Community Earth System Model (CESM) output based on the growth of data archived over 2000-2012 at all of our computing sites (NCAR, NERSC, ORNL) show that we can expect to reach 1,000 PB (1 EB) sometime in the next decade or so. The current paradigms of using site-based archival systems to hold these data that are then accessed via portals or gateways, downloading the data to a local system, and then processing/analyzing the data will be irretrievably broken before then. From a climate modeling perspective, the expertise involved in making climate models themselves efficient on HPC systems will need to be applied to the data as well - providing fast parallel analysis tools co-resident in memory with the data, because the disk I/O bandwidth simply will not keep up with the expected arrival of exaflop systems. The ability of scientists, analysts, stakeholders and others to use climate model output to turn these data into understanding and knowledge will require significant advances in the current typical analysis tools and packages to enable these processes for these vast volumes of data. Allowing data users to enact their own analyses on model output is virtually a requirement as well - climate modelers cannot anticipate all the possibilities for analysis that users may want to do. In addition, the expertise of data scientists, and their knowledge of the model output and their knowledge of best practices in data management (metadata, curation, provenance and so on) will need to be rewarded and exploited to gain the most understanding possible from these volumes of data. In response to growing data size, demand, and future projections, the CESM output has undergone a structure evolution and the data management plan has been reevaluated and updated. The major evolution of the CESM data structure is presented here, along with the CESM experience and role within the CMIP3/CMIP5.

  11. Steady-state bumpless transfer under controller uncertainty using the state/output feedback topology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, K.; Lee, A.H.; Bentsman, J.

    2006-01-15

    Linear quadratic (LQ) bumpless transfer design introduced recently by Turner and Walker gives a very convenient and straightforward computational procedure for the steady-state bumpless transfer operator synthesis. It is, however, found to be incapable of providing convergence of the output of the offline controller to that of the online controller in several industrial applications, producing bumps in the plant output in the wake of controller transfer. An examination of this phenomenon reveals that the applications in question are characterized by a significant mismatch, further referred to as controller uncertainty, between the dynamics of the implemented controllers and their models usedmore » in the transfer operator computation. To address this problem, while retaining the convenience of the Turner and Walker design, a novel state/output feedback bumpless transfer topology is introduced that employs the nominal state of the offline controller and, through the use of an additional controller/model mismatch compensator, also the offline controller output. A corresponding steady-state bumpless transfer design procedure along with the supporting theory is developed for a large class of systems. Due to these features, it is demonstrated to solve a long-standing problem of high-quality steady-state bumpless transfer from the industry standard low-order nonlinear multiloop PID-based controllers to the modern multiinput-multioutput (MIMO) robust controllers in the megawatt/throttle pressure control of a typical coal-fired boiler/turbine unit.« less

  12. Finding identifiable parameter combinations in nonlinear ODE models and the rational reparameterization of their input-output equations.

    PubMed

    Meshkat, Nicolette; Anderson, Chris; Distefano, Joseph J

    2011-09-01

    When examining the structural identifiability properties of dynamic system models, some parameters can take on an infinite number of values and yet yield identical input-output data. These parameters and the model are then said to be unidentifiable. Finding identifiable combinations of parameters with which to reparameterize the model provides a means for quantitatively analyzing the model and computing solutions in terms of the combinations. In this paper, we revisit and explore the properties of an algorithm for finding identifiable parameter combinations using Gröbner Bases and prove useful theoretical properties of these parameter combinations. We prove a set of M algebraically independent identifiable parameter combinations can be found using this algorithm and that there exists a unique rational reparameterization of the input-output equations over these parameter combinations. We also demonstrate application of the procedure to a nonlinear biomodel. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Available pressure amplitude of linear compressor based on phasor triangle model

    NASA Astrophysics Data System (ADS)

    Duan, C. X.; Jiang, X.; Zhi, X. Q.; You, X. K.; Qiu, L. M.

    2017-12-01

    The linear compressor for cryocoolers possess the advantages of long-life operation, high efficiency, low vibration and compact structure. It is significant to study the match mechanisms between the compressor and the cold finger, which determines the working efficiency of the cryocooler. However, the output characteristics of linear compressor are complicated since it is affected by many interacting parameters. The existing matching methods are simplified and mainly focus on the compressor efficiency and output acoustic power, while neglecting the important output parameter of pressure amplitude. In this study, a phasor triangle model basing on analyzing the forces of the piston is proposed. It can be used to predict not only the output acoustic power, the efficiency, but also the pressure amplitude of the linear compressor. Calculated results agree well with the measurement results of the experiment. By this phasor triangle model, the theoretical maximum output pressure amplitude of the linear compressor can be calculated simply based on a known charging pressure and operating frequency. Compared with the mechanical and electrical model of the linear compressor, the new model can provide an intuitionistic understanding on the match mechanism with faster computational process. The model can also explain the experimental phenomenon of the proportional relationship between the output pressure amplitude and the piston displacement in experiments. By further model analysis, such phenomenon is confirmed as an expression of the unmatched design of the compressor. The phasor triangle model may provide an alternative method for the compressor design and matching with the cold finger.

  14. Computational and Statistical Models: A Comparison for Policy Modeling of Childhood Obesity

    NASA Astrophysics Data System (ADS)

    Mabry, Patricia L.; Hammond, Ross; Ip, Edward Hak-Sing; Huang, Terry T.-K.

    As systems science methodologies have begun to emerge as a set of innovative approaches to address complex problems in behavioral, social science, and public health research, some apparent conflicts with traditional statistical methodologies for public health have arisen. Computational modeling is an approach set in context that integrates diverse sources of data to test the plausibility of working hypotheses and to elicit novel ones. Statistical models are reductionist approaches geared towards proving the null hypothesis. While these two approaches may seem contrary to each other, we propose that they are in fact complementary and can be used jointly to advance solutions to complex problems. Outputs from statistical models can be fed into computational models, and outputs from computational models can lead to further empirical data collection and statistical models. Together, this presents an iterative process that refines the models and contributes to a greater understanding of the problem and its potential solutions. The purpose of this panel is to foster communication and understanding between statistical and computational modelers. Our goal is to shed light on the differences between the approaches and convey what kinds of research inquiries each one is best for addressing and how they can serve complementary (and synergistic) roles in the research process, to mutual benefit. For each approach the panel will cover the relevant "assumptions" and how the differences in what is assumed can foster misunderstandings. The interpretations of the results from each approach will be compared and contrasted and the limitations for each approach will be delineated. We will use illustrative examples from CompMod, the Comparative Modeling Network for Childhood Obesity Policy. The panel will also incorporate interactive discussions with the audience on the issues raised here.

  15. A Spiking Neural Network Model of the Lateral Geniculate Nucleus on the SpiNNaker Machine

    PubMed Central

    Sen-Bhattacharya, Basabdatta; Serrano-Gotarredona, Teresa; Balassa, Lorinc; Bhattacharya, Akash; Stokes, Alan B.; Rowley, Andrew; Sugiarto, Indar; Furber, Steve

    2017-01-01

    We present a spiking neural network model of the thalamic Lateral Geniculate Nucleus (LGN) developed on SpiNNaker, which is a state-of-the-art digital neuromorphic hardware built with very-low-power ARM processors. The parallel, event-based data processing in SpiNNaker makes it viable for building massively parallel neuro-computational frameworks. The LGN model has 140 neurons representing a “basic building block” for larger modular architectures. The motivation of this work is to simulate biologically plausible LGN dynamics on SpiNNaker. Synaptic layout of the model is consistent with biology. The model response is validated with existing literature reporting entrainment in steady state visually evoked potentials (SSVEP)—brain oscillations corresponding to periodic visual stimuli recorded via electroencephalography (EEG). Periodic stimulus to the model is provided by: a synthetic spike-train with inter-spike-intervals in the range 10–50 Hz at a resolution of 1 Hz; and spike-train output from a state-of-the-art electronic retina subjected to a light emitting diode flashing at 10, 20, and 40 Hz, simulating real-world visual stimulus to the model. The resolution of simulation is 0.1 ms to ensure solution accuracy for the underlying differential equations defining Izhikevichs neuron model. Under this constraint, 1 s of model simulation time is executed in 10 s real time on SpiNNaker; this is because simulations on SpiNNaker work in real time for time-steps dt ⩾ 1 ms. The model output shows entrainment with both sets of input and contains harmonic components of the fundamental frequency. However, suppressing the feed-forward inhibition in the circuit produces subharmonics within the gamma band (>30 Hz) implying a reduced information transmission fidelity. These model predictions agree with recent lumped-parameter computational model-based predictions, using conventional computers. Scalability of the framework is demonstrated by a multi-node architecture consisting of three “nodes,” where each node is the “basic building block” LGN model. This 420 neuron model is tested with synthetic periodic stimulus at 10 Hz to all the nodes. The model output is the average of the outputs from all nodes, and conforms to the above-mentioned predictions of each node. Power consumption for model simulation on SpiNNaker is ≪1 W. PMID:28848380

  16. A Spiking Neural Network Model of the Lateral Geniculate Nucleus on the SpiNNaker Machine.

    PubMed

    Sen-Bhattacharya, Basabdatta; Serrano-Gotarredona, Teresa; Balassa, Lorinc; Bhattacharya, Akash; Stokes, Alan B; Rowley, Andrew; Sugiarto, Indar; Furber, Steve

    2017-01-01

    We present a spiking neural network model of the thalamic Lateral Geniculate Nucleus (LGN) developed on SpiNNaker, which is a state-of-the-art digital neuromorphic hardware built with very-low-power ARM processors. The parallel, event-based data processing in SpiNNaker makes it viable for building massively parallel neuro-computational frameworks. The LGN model has 140 neurons representing a "basic building block" for larger modular architectures. The motivation of this work is to simulate biologically plausible LGN dynamics on SpiNNaker. Synaptic layout of the model is consistent with biology. The model response is validated with existing literature reporting entrainment in steady state visually evoked potentials (SSVEP)-brain oscillations corresponding to periodic visual stimuli recorded via electroencephalography (EEG). Periodic stimulus to the model is provided by: a synthetic spike-train with inter-spike-intervals in the range 10-50 Hz at a resolution of 1 Hz; and spike-train output from a state-of-the-art electronic retina subjected to a light emitting diode flashing at 10, 20, and 40 Hz, simulating real-world visual stimulus to the model. The resolution of simulation is 0.1 ms to ensure solution accuracy for the underlying differential equations defining Izhikevichs neuron model. Under this constraint, 1 s of model simulation time is executed in 10 s real time on SpiNNaker; this is because simulations on SpiNNaker work in real time for time-steps dt ⩾ 1 ms. The model output shows entrainment with both sets of input and contains harmonic components of the fundamental frequency. However, suppressing the feed-forward inhibition in the circuit produces subharmonics within the gamma band (>30 Hz) implying a reduced information transmission fidelity. These model predictions agree with recent lumped-parameter computational model-based predictions, using conventional computers. Scalability of the framework is demonstrated by a multi-node architecture consisting of three "nodes," where each node is the "basic building block" LGN model. This 420 neuron model is tested with synthetic periodic stimulus at 10 Hz to all the nodes. The model output is the average of the outputs from all nodes, and conforms to the above-mentioned predictions of each node. Power consumption for model simulation on SpiNNaker is ≪1 W.

  17. Computer Modeling of High-Intensity Cs-Sputter Ion Sources

    NASA Astrophysics Data System (ADS)

    Brown, T. A.; Roberts, M. L.; Southon, J. R.

    The grid-point mesh program NEDLab has been used to computer model the interior of the high-intensity Cs-sputter source used in routine operations at the Center for Accelerator Mass Spectrometry (CAMS), with the goal of improving negative ion output. NEDLab has several features that are important to realistic modeling of such sources. First, space-charge effects are incorporated in the calculations through an automated ion-trajectories/Poissonelectric-fields successive-iteration process. Second, space charge distributions can be averaged over successive iterations to suppress model instabilities. Third, space charge constraints on ion emission from surfaces can be incorporate under Child's Law based algorithms. Fourth, the energy of ions emitted from a surface can be randomly chosen from within a thermal energy distribution. And finally, ions can be emitted from a surface at randomized angles The results of our modeling effort indicate that significant modification of the interior geometry of the source will double Cs+ ion production from our spherical ionizer and produce a significant increase in negative ion output from the source.

  18. Computational simulation of passive leg-raising effects on hemodynamics during cardiopulmonary resuscitation.

    PubMed

    Shin, Dong Ah; Park, Jiheum; Lee, Jung Chan; Shin, Sang Do; Kim, Hee Chan

    2017-03-01

    The passive leg-raising (PLR) maneuver has been used for patients with circulatory failure to improve hemodynamic responsiveness by increasing cardiac output, which should also be beneficial and may exert synergetic effects during cardiopulmonary resuscitation (CPR). However, the impact of the PLR maneuver on CPR remains unclear due to difficulties in monitoring cardiac output in real-time during CPR and a lack of clinical evidence. We developed a computational model that couples hemodynamic behavior during standard CPR and the PLR maneuver, and simulated the model by applying different angles of leg raising from 0° to 90° and compression rates from 80/min to 160/min. The simulation results showed that the PLR maneuver during CPR significantly improves cardiac output (CO), systemic perfusion pressure (SPP) and coronary perfusion pressure (CPP) by ∼40-65% particularly under the recommended range of compression rates between 100/min and 120/min with 45° of leg raise, compared to standard CPR. However, such effects start to wane with further leg lifts, indicating the existence of an optimal angle of leg raise for each person to achieve the best hemodynamic responses. We developed a CPR-PLR model and demonstrated the effects of PLR on hemodynamics by investigating changes in CO, SPP, and CPP under different compression rates and angles of leg raising. Our computational model will facilitate study of PLR effects during CPR and the development of an advanced model combined with circulatory disorders, which will be a valuable asset for further studies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. System for computer controlled shifting of an automatic transmission

    DOEpatents

    Patil, Prabhakar B.

    1989-01-01

    In an automotive vehicle having an automatic transmission that driveably connects a power source to the driving wheels, a method to control the application of hydraulic pressure to a clutch, whose engagement produces an upshift and whose disengagement produces a downshift, the speed of the power source, and the output torque of the transmission. The transmission output shaft torque and the power source speed are the controlled variables. The commanded power source torque and commanded hydraulic pressure supplied to the clutch are the control variables. A mathematical model is formulated that describes the kinematics and dynamics of the powertrain before, during and after a gear shift. The model represents the operating characteristics of each component and the structural arrangement of the components within the transmission being controlled. Next, a close loop feedback control is developed to determine the proper control law or compensation strategy to achieve an acceptably smooth gear ratio change, one in which the output torque disturbance is kept to a minimum and the duration of the shift is minimized. Then a computer algorithm simulating the shift dynamics employing the mathematical model is used to study the effects of changes in the values of the parameters established from a closed loop control of the clutch hydraulic and the power source torque on the shift quality. This computer simulation is used also to establish possible shift control strategies. The shift strategies determine from the prior step are reduced to an algorithm executed by a computer to control the operation of the power source and the transmission.

  20. Closed loop computer control for an automatic transmission

    DOEpatents

    Patil, Prabhakar B.

    1989-01-01

    In an automotive vehicle having an automatic transmission that driveably connects a power source to the driving wheels, a method to control the application of hydraulic pressure to a clutch, whose engagement produces an upshift and whose disengagement produces a downshift, the speed of the power source, and the output torque of the transmission. The transmission output shaft torque and the power source speed are the controlled variables. The commanded power source torque and commanded hydraulic pressure supplied to the clutch are the control variables. A mathematical model is formulated that describes the kinematics and dynamics of the powertrain before, during and after a gear shift. The model represents the operating characteristics of each component and the structural arrangement of the components within the transmission being controlled. Next, a close loop feedback control is developed to determine the proper control law or compensation strategy to achieve an acceptably smooth gear ratio change, one in which the output torque disturbance is kept to a minimum and the duration of the shift is minimized. Then a computer algorithm simulating the shift dynamics employing the mathematical model is used to study the effects of changes in the values of the parameters established from a closed loop control of the clutch hydraulic and the power source torque on the shift quality. This computer simulation is used also to establish possible shift control strategies. The shift strategies determined from the prior step are reduced to an algorithm executed by a computer to control the operation of the power source and the transmission.

  1. Experimental studies of a prototype model of the multilevel 6KW-power inverter at supply by 12 accumulators

    NASA Astrophysics Data System (ADS)

    Taissariyeva, K.; Issembergenov, N.; Dzhobalaeva, G.; Usembaeva, S.

    2016-09-01

    The given paper considers the multilevel 6 kW-power transistor inverter at supply by 12 accumulators for transformation of solar battery energy to the electric power. At the output of the multilevel transistor inverter, it is possible to receive voltage close to a sinusoidal form. The main objective of this inverter is transformation of solar energy to the electric power of industrial frequency. The analysis of the received output curves of voltage on harmonicity has been carried out. In this paper it is set forth the developed scheme of the multilevel transistor inverter (DC-to-ac converter) which allows receiving at the output the voltage close to sinusoidal form, as well as to regulation of the output voltage level. In the paper, the results of computer modeling and experimental studies are presented.

  2. Spartan Release Engagement Mechanism (REM) stress and fracture analysis

    NASA Technical Reports Server (NTRS)

    Marlowe, D. S.; West, E. J.

    1984-01-01

    The revised stress and fracture analysis of the Spartan REM hardware for current load conditions and mass properties is presented. The stress analysis was performed using a NASTRAN math model of the Spartan REM adapter, base, and payload. Appendix A contains the material properties, loads, and stress analysis of the hardware. The computer output and model description are in Appendix B. Factors of safety used in the stress analysis were 1.4 on tested items and 2.0 on all other items. Fracture analysis of the items considered fracture critical was accomplished using the MSFC Crack Growth Analysis code. Loads and stresses were obtaind from the stress analysis. The fracture analysis notes are located in Appendix A and the computer output in Appendix B. All items analyzed met design and fracture criteria.

  3. User's guide to the western spruce budworm modeling system

    Treesearch

    Nicholas L. Crookston; J. J. Colbert; Paul W. Thomas; Katharine A. Sheehan; William P. Kemp

    1990-01-01

    The Budworm Modeling System is a set of four computer programs: The Budworm Dynamics Model, the Prognosis-Budworm Dynamics Model, the Prognosis-Budworm Damage Model, and the Parallel Processing-Budworm Dynamics Model. Input to the first three programs and the output produced are described in this guide. A guide to the fourth program will be published separately....

  4. Single-server blind quantum computation with quantum circuit model

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqian; Weng, Jian; Li, Xiaochun; Luo, Weiqi; Tan, Xiaoqing; Song, Tingting

    2018-06-01

    Blind quantum computation (BQC) enables the client, who has few quantum technologies, to delegate her quantum computation to a server, who has strong quantum computabilities and learns nothing about the client's quantum inputs, outputs and algorithms. In this article, we propose a single-server BQC protocol with quantum circuit model by replacing any quantum gate with the combination of rotation operators. The trap quantum circuits are introduced, together with the combination of rotation operators, such that the server is unknown about quantum algorithms. The client only needs to perform operations X and Z, while the server honestly performs rotation operators.

  5. A Bayesian Approach to Evaluating Consistency between Climate Model Output and Observations

    NASA Astrophysics Data System (ADS)

    Braverman, A. J.; Cressie, N.; Teixeira, J.

    2010-12-01

    Like other scientific and engineering problems that involve physical modeling of complex systems, climate models can be evaluated and diagnosed by comparing their output to observations of similar quantities. Though the global remote sensing data record is relatively short by climate research standards, these data offer opportunities to evaluate model predictions in new ways. For example, remote sensing data are spatially and temporally dense enough to provide distributional information that goes beyond simple moments to allow quantification of temporal and spatial dependence structures. In this talk, we propose a new method for exploiting these rich data sets using a Bayesian paradigm. For a collection of climate models, we calculate posterior probabilities its members best represent the physical system each seeks to reproduce. The posterior probability is based on the likelihood that a chosen summary statistic, computed from observations, would be obtained when the model's output is considered as a realization from a stochastic process. By exploring how posterior probabilities change with different statistics, we may paint a more quantitative and complete picture of the strengths and weaknesses of the models relative to the observations. We demonstrate our method using model output from the CMIP archive, and observations from NASA's Atmospheric Infrared Sounder.

  6. Modeling of processes of formation of the images in optical-electronic systems

    NASA Astrophysics Data System (ADS)

    Grudin, B. N.; Plotnikov, V. S.; Fischenko, V. K.

    2001-08-01

    The digital model of the multicomponent coherent optical system with arbitrary layout of optical elements (lasers, lenses, phototransparencies with recording of the function of transmission of a specimens or filters, photoregistrars), constructed with usage of fast algorithms is considered. The model is realized as the program for personal computers in operational systems Windows 95, 98 and Windows NT. At simulation, for example, coherent system consisting of twenty elementary optical cascades a relative error in the output image as a rule does not exceed 0.25% when N >= 256 (N x N - the number of discrete samples on the image), and time of calculation of the output image on a computer (Pentium-2, 300 MHz) for N = 512 does not exceed one minute. The program of simulation of coherent optical systems will be utilized in scientific researches and at tutoring the students of Far East State University.

  7. Intrinsic two-dimensional features as textons

    NASA Technical Reports Server (NTRS)

    Barth, E.; Zetzsche, C.; Rentschler, I.

    1998-01-01

    We suggest that intrinsic two-dimensional (i2D) features, computationally defined as the outputs of nonlinear operators that model the activity of end-stopped neurons, play a role in preattentive texture discrimination. We first show that for discriminable textures with identical power spectra the predictions of traditional models depend on the type of nonlinearity and fail for energy measures. We then argue that the concept of intrinsic dimensionality, and the existence of end-stopped neurons, can help us to understand the role of the nonlinearities. Furthermore, we show examples in which models without strong i2D selectivity fail to predict the correct ranking order of perceptual segregation. Our arguments regarding the importance of i2D features resemble the arguments of Julesz and co-workers regarding textons such as terminators and crossings. However, we provide a computational framework that identifies textons with the outputs of nonlinear operators that are selective to i2D features.

  8. The structure and timescales of heat perception in larval zebrafish.

    PubMed

    Haesemeyer, Martin; Robson, Drew N; Li, Jennifer M; Schier, Alexander F; Engert, Florian

    2015-11-25

    Avoiding temperatures outside the physiological range is critical for animal survival, but how temperature dynamics are transformed into behavioral output is largely not understood. Here, we used an infrared laser to challenge freely swimming larval zebrafish with "white-noise" heat stimuli and built quantitative models relating external sensory information and internal state to behavioral output. These models revealed that larval zebrafish integrate temperature information over a time-window of 400 ms preceding a swimbout and that swimming is suppressed right after the end of a bout. Our results suggest that larval zebrafish compute both an integral and a derivative across heat in time to guide their next movement. Our models put important constraints on the type of computations that occur in the nervous system and reveal principles of how somatosensory temperature information is processed to guide behavioral decisions such as sensitivity to both absolute levels and changes in stimulation.

  9. Space-Time Fusion Under Error in Computer Model Output: An Application to Modeling Air Quality

    EPA Science Inventory

    In the last two decades a considerable amount of research effort has been devoted to modeling air quality with public health objectives. These objectives include regulatory activities such as setting standards along with assessing the relationship between exposure to air pollutan...

  10. Theoretical studies of solar lasers and converters

    NASA Technical Reports Server (NTRS)

    Heinbockel, John H.

    1990-01-01

    The research described consisted of developing and refining the continuous flow laser model program including the creation of a working model. The mathematical development of a two pass amplifier for an iodine laser is summarized. A computer program for the amplifier's simulation is included with output from the simulation model.

  11. ASSESSING A COMPUTER MODEL FOR PREDICTING HUMAN EXPOSURE TO PM2.5

    EPA Science Inventory

    This paper compares outputs of a model for predicting PM2.5 exposure with experimental data obtained from exposure studies of selected subpopulations. The exposure model is built on a WWW platform called pCNEM, "A PC Version of pNEM." Exposure models created by pCNEM are sim...

  12. Reversibility and stability of information processing systems

    NASA Technical Reports Server (NTRS)

    Zurek, W. H.

    1984-01-01

    Classical and quantum models of dynamically reversible computers are considered. Instabilities in the evolution of the classical 'billiard ball computer' are analyzed and shown to result in a one-bit increase of entropy per step of computation. 'Quantum spin computers', on the other hand, are not only microscopically, but also operationally reversible. Readoff of the output of quantum computation is shown not to interfere with this reversibility. Dissipation, while avoidable in principle, can be used in practice along with redundancy to prevent errors.

  13. In-Flight Pitot-Static Calibration

    NASA Technical Reports Server (NTRS)

    Foster, John V. (Inventor); Cunningham, Kevin (Inventor)

    2016-01-01

    A GPS-based pitot-static calibration system uses global output-error optimization. High data rate measurements of static and total pressure, ambient air conditions, and GPS-based ground speed measurements are used to compute pitot-static pressure errors over a range of airspeed. System identification methods rapidly compute optimal pressure error models with defined confidence intervals.

  14. User's guide to the SEPHIS computer code for calculating the Thorex solvent extraction system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, S.B.; Rainey, R.H.

    1979-05-01

    The SEPHIS computer program was developed to simulate the countercurrent solvent extraction process. The code has now been adapted to model the Acid Thorex flow sheet. This report represents a practical user's guide to SEPHIS - Thorex containing a program description, user information, program listing, and sample input and output.

  15. Quantification of downscaled precipitation uncertainties via Bayesian inference

    NASA Astrophysics Data System (ADS)

    Nury, A. H.; Sharma, A.; Marshall, L. A.

    2017-12-01

    Prediction of precipitation from global climate model (GCM) outputs remains critical to decision-making in water-stressed regions. In this regard, downscaling of GCM output has been a useful tool for analysing future hydro-climatological states. Several downscaling approaches have been developed for precipitation downscaling, including those using dynamical or statistical downscaling methods. Frequently, outputs from dynamical downscaling are not readily transferable across regions for significant methodical and computational difficulties. Statistical downscaling approaches provide a flexible and efficient alternative, providing hydro-climatological outputs across multiple temporal and spatial scales in many locations. However these approaches are subject to significant uncertainty, arising due to uncertainty in the downscaled model parameters and in the use of different reanalysis products for inferring appropriate model parameters. Consequently, these will affect the performance of simulation in catchment scale. This study develops a Bayesian framework for modelling downscaled daily precipitation from GCM outputs. This study aims to introduce uncertainties in downscaling evaluating reanalysis datasets against observational rainfall data over Australia. In this research a consistent technique for quantifying downscaling uncertainties by means of Bayesian downscaling frame work has been proposed. The results suggest that there are differences in downscaled precipitation occurrences and extremes.

  16. Computer code for off-design performance analysis of radial-inflow turbines with rotor blade sweep

    NASA Technical Reports Server (NTRS)

    Meitner, P. L.; Glassman, A. J.

    1983-01-01

    The analysis procedure of an existing computer program was extended to include rotor blade sweep, to model the flow more accurately at the rotor exit, and to provide more detail to the loss model. The modeling changes are described and all analysis equations and procedures are presented. Program input and output are described and are illustrated by an example problem. Results obtained from this program and from a previous program are compared with experimental data.

  17. User's guide for a computer program to analyze the LRC 16 ft transonic dynamics tunnel cable mount system

    NASA Technical Reports Server (NTRS)

    Barbero, P.; Chin, J.

    1973-01-01

    The theoretical derivation of the set of equations is discussed which is applicable to modeling the dynamic characteristics of aeroelastically-scaled models flown on the two-cable mount system in a 16 ft transonic dynamics tunnel. The computer program provided for the analysis is also described. The program calculates model trim conditions as well as 3 DOF longitudinal and lateral/directional dynamic conditions for various flying cable and snubber cable configurations. Sample input and output are included.

  18. ICAN/PART: Particulate composite analyzer, user's manual and verification studies

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Murthy, Pappu L. N.; Mital, Subodh K.

    1996-01-01

    A methodology for predicting the equivalent properties and constituent microstresses for particulate matrix composites, based on the micromechanics approach, is developed. These equations are integrated into a computer code developed to predict the equivalent properties and microstresses of fiber reinforced polymer matrix composites to form a new computer code, ICAN/PART. Details of the flowchart, input and output for ICAN/PART are described, along with examples of the input and output. Only the differences between ICAN/PART and the original ICAN code are described in detail, and the user is assumed to be familiar with the structure and usage of the original ICAN code. Detailed verification studies, utilizing dim dimensional finite element and boundary element analyses, are conducted in order to verify that the micromechanics methodology accurately models the mechanics of particulate matrix composites. ne equivalent properties computed by ICAN/PART fall within bounds established by the finite element and boundary element results. Furthermore, constituent microstresses computed by ICAN/PART agree in average sense with results computed using the finite element method. The verification studies indicate that the micromechanics programmed into ICAN/PART do indeed accurately model the mechanics of particulate matrix composites.

  19. Computer Output Microfilm and Library Catalogs.

    ERIC Educational Resources Information Center

    Meyer, Richard W.

    Early computers dealt with mathematical and scientific problems requiring very little input and not much output, therefore high speed printing devices were not required. Today with increased variety of use, high speed printing is necessary and Computer Output Microfilm (COM) devices have been created to meet this need. This indirect process can…

  20. Application of technology developed for flight simulation at NASA. Langley Research Center

    NASA Technical Reports Server (NTRS)

    Cleveland, Jeff I., II

    1991-01-01

    In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations including mathematical model computation and data input/output to the simulators must be deterministic and be completed in as short a time as possible. Personnel at NASA's Langley Research Center are currently developing the use of supercomputers for simulation mathematical model computation for real-time simulation. This, coupled with the use of an open systems software architecture, will advance the state-of-the-art in real-time flight simulation.

  1. Computer simulation of space station computer steered high gain antenna

    NASA Technical Reports Server (NTRS)

    Beach, S. W.

    1973-01-01

    The mathematical modeling and programming of a complete simulation program for a space station computer-steered high gain antenna are described. The program provides for reading input data cards, numerically integrating up to 50 first order differential equations, and monitoring up to 48 variables on printed output and on plots. The program system consists of a high gain antenna, an antenna gimbal control system, an on board computer, and the environment in which all are to operate.

  2. Computer Programs For Automated Welding System

    NASA Technical Reports Server (NTRS)

    Agapakis, John E.

    1993-01-01

    Computer programs developed for use in controlling automated welding system described in MFS-28578. Together with control computer, computer input and output devices and control sensors and actuators, provide flexible capability for planning and implementation of schemes for automated welding of specific workpieces. Developed according to macro- and task-level programming schemes, which increases productivity and consistency by reducing amount of "teaching" of system by technician. System provides for three-dimensional mathematical modeling of workpieces, work cells, robots, and positioners.

  3. TLIFE: a Program for Spur, Helical and Spiral Bevel Transmission Life and Reliability Modeling

    NASA Technical Reports Server (NTRS)

    Savage, M.; Prasanna, M. G.; Rubadeux, K. L.

    1994-01-01

    This report describes a computer program, 'TLIFE', which models the service life of a transmission. The program is written in ANSI standard Fortran 77 and has an executable size of about 157 K bytes for use on a personal computer running DOS. It can also be compiled and executed in UNIX. The computer program can analyze any one of eleven unit transmissions either singly or in a series combination of up to twenty-five unit transmissions. Metric or English unit calculations are performed with the same routines using consistent input data and a units flag. Primary outputs are the dynamic capacity of the transmission and the mean lives of the transmission and of the sum of its components. The program uses a modular approach to separate the load analyses from the system life calculations. The program and its input and output data files are described herein. Three examples illustrate its use. A development of the theory behind the analysis in the program is included after the examples.

  4. A Kirchhoff approach to seismic modeling and prestack depth migration

    NASA Astrophysics Data System (ADS)

    Liu, Zhen-Yue

    1993-05-01

    The Kirchhoff integral provides a robust method for implementing seismic modeling and prestack depth migration, which can handle lateral velocity variation and turning waves. With a little extra computation cost, the Kirchoff-type migration can obtain multiple outputs that have the same phase but different amplitudes, compared with that of other migration methods. The ratio of these amplitudes is helpful in computing some quantities such as reflection angle. I develop a seismic modeling and prestack depth migration method based on the Kirchhoff integral, that handles both laterally variant velocity and a dip beyond 90 degrees. The method uses a finite-difference algorithm to calculate travel times and WKBJ amplitudes for the Kirchhoff integral. Compared to ray-tracing algorithms, the finite-difference algorithm gives an efficient implementation and single-valued quantities (first arrivals) on output. In my finite difference algorithm, the upwind scheme is used to calculate travel times, and the Crank-Nicolson scheme is used to calculate amplitudes. Moreover, interpolation is applied to save computation cost. The modeling and migration algorithms require a smooth velocity function. I develop a velocity-smoothing technique based on damped least-squares to aid in obtaining a successful migration.

  5. User's Guide for Monthly Vector Wind Profile Model

    NASA Technical Reports Server (NTRS)

    Adelfang, S. I.

    1999-01-01

    The background, theoretical concepts, and methodology for construction of vector wind profiles based on a statistical model are presented. The derived monthly vector wind profiles are to be applied by the launch vehicle design community for establishing realistic estimates of critical vehicle design parameter dispersions related to wind profile dispersions. During initial studies a number of months are used to establish the model profiles that produce the largest monthly dispersions of ascent vehicle aerodynamic load indicators. The largest monthly dispersions for wind, which occur during the winter high-wind months, are used for establishing the design reference dispersions for the aerodynamic load indicators. This document includes a description of the computational process for the vector wind model including specification of input data, parameter settings, and output data formats. Sample output data listings are provided to aid the user in the verification of test output.

  6. Set covering algorithm, a subprogram of the scheduling algorithm for mission planning and logistic evaluation

    NASA Technical Reports Server (NTRS)

    Chang, H.

    1976-01-01

    A computer program using Lemke, Salkin and Spielberg's Set Covering Algorithm (SCA) to optimize a traffic model problem in the Scheduling Algorithm for Mission Planning and Logistics Evaluation (SAMPLE) was documented. SCA forms a submodule of SAMPLE and provides for input and output, subroutines, and an interactive feature for performing the optimization and arranging the results in a readily understandable form for output.

  7. SIPT: a seismic refraction inverse modeling program for timeshare terminal computer systems

    USGS Publications Warehouse

    Scott, James Henry

    1977-01-01

    SIPB is an interactive Fortran computer program that was developed for use with a timeshare computer system with program control information submitted from a remote terminal, and output data displayed on the terminal or printed on a line printer. The program is an upgraded version of FSIPI (Scott, Tibbetts, and Burdick, 1972) with several major improvements in addition to .its adaptation to timeshare operation. The most significant improvement was made in the procedure for handling data from in-line offset shotpoints beyond the end shotpoints of the geophone spread. The changes and improvements are described, user's instructions are outlined, examples of input and output data for a test problem are presented, and the Fortran program is listed in this report. An upgraded batch-mode program, SIPB, is available for users who do not have a timeshare computer system available (Scott, 1977).

  8. SIPB: a seismic refraction inverse modeling program for batch computer systems

    USGS Publications Warehouse

    Scott, James Henry

    1977-01-01

    SIPB is an interactive Fortran computer program that was developed for use with a timeshare computer system with program control information submitted from a remote terminal, and output data displayed on the terminal or printed on a line printer. The program is an upgraded version of FSIPI (Scott, Tibbetts, and Burdick, 1972) with several major improvements in addition to .its adaptation to timeshare operation. The most significant improvement was made in the procedure for handling data from in-line offset shotpoints beyond the end shotpoints of the geophone spread. The changes and improvements are described, user's instructions are outlined, examples of input and output data for a test problem are presented, and the Fortran program is listed in this report. An upgraded batch-mode program, SIPB, is available for users who do not have a timeshare computer system available (Scott, 1977).

  9. Surrogate modeling of deformable joint contact using artificial neural networks.

    PubMed

    Eskinazi, Ilan; Fregly, Benjamin J

    2015-09-01

    Deformable joint contact models can be used to estimate loading conditions for cartilage-cartilage, implant-implant, human-orthotic, and foot-ground interactions. However, contact evaluations are often so expensive computationally that they can be prohibitive for simulations or optimizations requiring thousands or even millions of contact evaluations. To overcome this limitation, we developed a novel surrogate contact modeling method based on artificial neural networks (ANNs). The method uses special sampling techniques to gather input-output data points from an original (slow) contact model in multiple domains of input space, where each domain represents a different physical situation likely to be encountered. For each contact force and torque output by the original contact model, a multi-layer feed-forward ANN is defined, trained, and incorporated into a surrogate contact model. As an evaluation problem, we created an ANN-based surrogate contact model of an artificial tibiofemoral joint using over 75,000 evaluations of a fine-grid elastic foundation (EF) contact model. The surrogate contact model computed contact forces and torques about 1000 times faster than a less accurate coarse grid EF contact model. Furthermore, the surrogate contact model was seven times more accurate than the coarse grid EF contact model within the input domain of a walking motion. For larger input domains, the surrogate contact model showed the expected trend of increasing error with increasing domain size. In addition, the surrogate contact model was able to identify out-of-contact situations with high accuracy. Computational contact models created using our proposed ANN approach may remove an important computational bottleneck from musculoskeletal simulations or optimizations incorporating deformable joint contact models. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  10. Surrogate Modeling of Deformable Joint Contact using Artificial Neural Networks

    PubMed Central

    Eskinazi, Ilan; Fregly, Benjamin J.

    2016-01-01

    Deformable joint contact models can be used to estimate loading conditions for cartilage-cartilage, implant-implant, human-orthotic, and foot-ground interactions. However, contact evaluations are often so expensive computationally that they can be prohibitive for simulations or optimizations requiring thousands or even millions of contact evaluations. To overcome this limitation, we developed a novel surrogate contact modeling method based on artificial neural networks (ANNs). The method uses special sampling techniques to gather input-output data points from an original (slow) contact model in multiple domains of input space, where each domain represents a different physical situation likely to be encountered. For each contact force and torque output by the original contact model, a multi-layer feed-forward ANN is defined, trained, and incorporated into a surrogate contact model. As an evaluation problem, we created an ANN-based surrogate contact model of an artificial tibiofemoral joint using over 75,000 evaluations of a fine-grid elastic foundation (EF) contact model. The surrogate contact model computed contact forces and torques about 1000 times faster than a less accurate coarse grid EF contact model. Furthermore, the surrogate contact model was seven times more accurate than the coarse grid EF contact model within the input domain of a walking motion. For larger input domains, the surrogate contact model showed the expected trend of increasing error with increasing domain size. In addition, the surrogate contact model was able to identify out-of-contact situations with high accuracy. Computational contact models created using our proposed ANN approach may remove an important computational bottleneck from musculoskeletal simulations or optimizations incorporating deformable joint contact models. PMID:26220591

  11. Arc program documentation

    NASA Technical Reports Server (NTRS)

    Mcmillan, J. D.

    1976-01-01

    A description of the input and output files and the data control cards for the altimeter residual computation (ARC) computer program is given. The program acts as the final altimeter preprocessor before the data is reformatted for external users. It calculates all parameters necessary for the computation of the altimeter observation residuals and the sea surface height. Mathematical models used for calculating tropospheric refraction, geoid height, tide height, ephemeris, and orbit geometry are described.

  12. Wind Farm Layout Optimization through a Crossover-Elitist Evolutionary Algorithm performed over a High Performing Analytical Wake Model

    NASA Astrophysics Data System (ADS)

    Kirchner-Bossi, Nicolas; Porté-Agel, Fernando

    2017-04-01

    Wind turbine wakes can significantly disrupt the performance of further downstream turbines in a wind farm, thus seriously limiting the overall wind farm power output. Such effect makes the layout design of a wind farm to play a crucial role on the whole performance of the project. An accurate definition of the wake interactions added to a computationally compromised layout optimization strategy can result in an efficient resource when addressing the problem. This work presents a novel soft-computing approach to optimize the wind farm layout by minimizing the overall wake effects that the installed turbines exert on one another. An evolutionary algorithm with an elitist sub-optimization crossover routine and an unconstrained (continuous) turbine positioning set up is developed and tested over an 80-turbine offshore wind farm over the North Sea off Denmark (Horns Rev I). Within every generation of the evolution, the wind power output (cost function) is computed through a recently developed and validated analytical wake model with a Gaussian profile velocity deficit [1], which has shown to outperform the traditionally employed wake models through different LES simulations and wind tunnel experiments. Two schemes with slightly different perimeter constraint conditions (full or partial) are tested. Results show, compared to the baseline, gridded layout, a wind power output increase between 5.5% and 7.7%. In addition, it is observed that the electric cable length at the facilities is reduced by up to 21%. [1] Bastankhah, Majid, and Fernando Porté-Agel. "A new analytical model for wind-turbine wakes." Renewable Energy 70 (2014): 116-123.

  13. Hierarchical multi-scale approach to validation and uncertainty quantification of hyper-spectral image modeling

    NASA Astrophysics Data System (ADS)

    Engel, Dave W.; Reichardt, Thomas A.; Kulp, Thomas J.; Graff, David L.; Thompson, Sandra E.

    2016-05-01

    Validating predictive models and quantifying uncertainties inherent in the modeling process is a critical component of the HARD Solids Venture program [1]. Our current research focuses on validating physics-based models predicting the optical properties of solid materials for arbitrary surface morphologies and characterizing the uncertainties in these models. We employ a systematic and hierarchical approach by designing physical experiments and comparing the experimental results with the outputs of computational predictive models. We illustrate this approach through an example comparing a micro-scale forward model to an idealized solid-material system and then propagating the results through a system model to the sensor level. Our efforts should enhance detection reliability of the hyper-spectral imaging technique and the confidence in model utilization and model outputs by users and stakeholders.

  14. Volterra representation enables modeling of complex synaptic nonlinear dynamics in large-scale simulations.

    PubMed

    Hu, Eric Y; Bouteiller, Jean-Marie C; Song, Dong; Baudry, Michel; Berger, Theodore W

    2015-01-01

    Chemical synapses are comprised of a wide collection of intricate signaling pathways involving complex dynamics. These mechanisms are often reduced to simple spikes or exponential representations in order to enable computer simulations at higher spatial levels of complexity. However, these representations cannot capture important nonlinear dynamics found in synaptic transmission. Here, we propose an input-output (IO) synapse model capable of generating complex nonlinear dynamics while maintaining low computational complexity. This IO synapse model is an extension of a detailed mechanistic glutamatergic synapse model capable of capturing the input-output relationships of the mechanistic model using the Volterra functional power series. We demonstrate that the IO synapse model is able to successfully track the nonlinear dynamics of the synapse up to the third order with high accuracy. We also evaluate the accuracy of the IO synapse model at different input frequencies and compared its performance with that of kinetic models in compartmental neuron models. Our results demonstrate that the IO synapse model is capable of efficiently replicating complex nonlinear dynamics that were represented in the original mechanistic model and provide a method to replicate complex and diverse synaptic transmission within neuron network simulations.

  15. Volterra representation enables modeling of complex synaptic nonlinear dynamics in large-scale simulations

    PubMed Central

    Hu, Eric Y.; Bouteiller, Jean-Marie C.; Song, Dong; Baudry, Michel; Berger, Theodore W.

    2015-01-01

    Chemical synapses are comprised of a wide collection of intricate signaling pathways involving complex dynamics. These mechanisms are often reduced to simple spikes or exponential representations in order to enable computer simulations at higher spatial levels of complexity. However, these representations cannot capture important nonlinear dynamics found in synaptic transmission. Here, we propose an input-output (IO) synapse model capable of generating complex nonlinear dynamics while maintaining low computational complexity. This IO synapse model is an extension of a detailed mechanistic glutamatergic synapse model capable of capturing the input-output relationships of the mechanistic model using the Volterra functional power series. We demonstrate that the IO synapse model is able to successfully track the nonlinear dynamics of the synapse up to the third order with high accuracy. We also evaluate the accuracy of the IO synapse model at different input frequencies and compared its performance with that of kinetic models in compartmental neuron models. Our results demonstrate that the IO synapse model is capable of efficiently replicating complex nonlinear dynamics that were represented in the original mechanistic model and provide a method to replicate complex and diverse synaptic transmission within neuron network simulations. PMID:26441622

  16. When What You See Isn’t What You Get: How Viewshed Analysis is Impacted by Digital Surface Model (DSM) Resolution

    EPA Science Inventory

    A key factor for improving models of ecosystem benefits is the availability of high quality spatial data. High resolution LIDAR data are now commonly available and can be used to produce more accurate model outputs. However, increased resolution leads to higher computer resource...

  17. ZIMOD: A Simple Computer Model of the Zimbabwean Economy.

    ERIC Educational Resources Information Center

    Knox, Jon; And Others

    1988-01-01

    This paper describes a rationale for the construction and use of a simple consistency model of the Zimbabwean economy that incorporates an input-output matrix. The model is designed to investigate alternative industrial strategies and their consequences for the balance of payments, consumption, and overall gross domestic product growth for a…

  18. The Description and Validation of a Computationally-Efficient CH4-CO-OH (ECCOH) Module for 3D Model Applications

    NASA Technical Reports Server (NTRS)

    Elshorbany, Yasin F.; Duncan, Bryan N.; Strode, Sarah A.; Wang, James S.; Kouatchou, Jules

    2015-01-01

    We present the Efficient CH4-CO-OH Module (ECCOH) that allows for the simulation of the methane, carbon monoxide and hydroxyl radical (CH4-CO-OH cycle, within a chemistry climate model, carbon cycle model, or earth system model. The computational efficiency of the module allows many multi-decadal, sensitivity simulations of the CH4-CO-OH cycle, which primarily determines the global tropospheric oxidizing capacity. This capability is important for capturing the nonlinear feedbacks of the CH4-CO-OH system and understanding the perturbations to relatively long-lived methane and the concomitant impacts on climate. We implemented the ECCOH module into the NASA GEOS-5 Atmospheric Global Circulation Model (AGCM), performed multiple sensitivity simulations of the CH4-CO-OH system over two decades, and evaluated the model output with surface and satellite datasets of methane and CO. The favorable comparison of output from the ECCOH module (as configured in the GEOS-5 AGCM) with observations demonstrates the fidelity of the module for use in scientific research.

  19. The Description and Validation of a Computationally-Efficient CH4-CO-OH (ECCOHv1.01) Chemistry Module for 3D Model Applications

    NASA Technical Reports Server (NTRS)

    Elshorbany, Yasin F.; Duncan, Bryan N.; Strode, Sarah A.; Wang, James S.; Kouatchou, Jules

    2016-01-01

    We present the Efficient CH4-CO-OH (ECCOH) chemistry module that allows for the simulation of the methane, carbon monoxide, and hydroxyl radical (CH4-CO- OH) system, within a chemistry climate model, carbon cycle model, or Earth system model. The computational efficiency of the module allows many multi-decadal sensitivity simulations of the CH4-CO-OH system, which primarily determines the global atmospheric oxidizing capacity. This capability is important for capturing the nonlinear feedbacks of the CH4-CO-OH system and understanding the perturbations to methane, CO, and OH, and the concomitant impacts on climate. We implemented the ECCOH chemistry module in the NASA GEOS-5 atmospheric global circulation model (AGCM), performed multiple sensitivity simulations of the CH4-CO-OH system over 2 decades, and evaluated the model output with surface and satellite data sets of methane and CO. The favorable comparison of output from the ECCOH chemistry module (as configured in the GEOS- 5 AGCM) with observations demonstrates the fidelity of the module for use in scientific research.

  20. Nonlinear Modeling of Causal Interrelationships in Neuronal Ensembles

    PubMed Central

    Zanos, Theodoros P.; Courellis, Spiros H.; Berger, Theodore W.; Hampson, Robert E.; Deadwyler, Sam A.; Marmarelis, Vasilis Z.

    2009-01-01

    The increasing availability of multiunit recordings gives new urgency to the need for effective analysis of “multidimensional” time-series data that are derived from the recorded activity of neuronal ensembles in the form of multiple sequences of action potentials—treated mathematically as point-processes and computationally as spike-trains. Whether in conditions of spontaneous activity or under conditions of external stimulation, the objective is the identification and quantification of possible causal links among the neurons generating the observed binary signals. A multiple-input/multiple-output (MIMO) modeling methodology is presented that can be used to quantify the neuronal dynamics of causal interrelationships in neuronal ensembles using spike-train data recorded from individual neurons. These causal interrelationships are modeled as transformations of spike-trains recorded from a set of neurons designated as the “inputs” into spike-trains recorded from another set of neurons designated as the “outputs.” The MIMO model is composed of a set of multiinput/single-output (MISO) modules, one for each output. Each module is the cascade of a MISO Volterra model and a threshold operator generating the output spikes. The Laguerre expansion approach is used to estimate the Volterra kernels of each MISO module from the respective input–output data using the least-squares method. The predictive performance of the model is evaluated with the use of the receiver operating characteristic (ROC) curve, from which the optimum threshold is also selected. The Mann–Whitney statistic is used to select the significant inputs for each output by examining the statistical significance of improvements in the predictive accuracy of the model when the respective inputs is included. Illustrative examples are presented for a simulated system and for an actual application using multiunit data recordings from the hippocampus of a behaving rat. PMID:18701382

  1. Flight instrument and telemetry response and its inversion

    NASA Technical Reports Server (NTRS)

    Weinberger, M. R.

    1971-01-01

    Mathematical models of rate gyros, servo accelerometers, pressure transducers, and telemetry systems were derived and their parameters were obtained from laboratory tests. Analog computer simulations were used extensively for verification of the validity for fast and large input signals. An optimal inversion method was derived to reconstruct input signals from noisy output signals and a computer program was prepared.

  2. SOCRATES, a Computer-Based Instructional System in Theory and Research. Technical Report.

    ERIC Educational Resources Information Center

    Stolurow, Lawrence M.

    The paper describes a cybernetic computer-based instructional system, SOCRATES, the teaching model which led to its development, and some of the research accomplished with it. The acronym, SOCRATES, is System for Organizing Content to Review and Teach Educational Subject. It consists of a group of student input-output (I/O) stations wired to a…

  3. An Introduction To PC-TRIM.

    Treesearch

    John R. Mills

    1989-01-01

    The timber resource inventory model (TRIM) has been adapted to run on person al computers. The personal computer version of TRIM (PC-TRIM) is more widely used than its mainframe parent. Errors that existed in previous versions of TRIM have been corrected. Information is presented to help users with program input and output management in the DOS environment, to...

  4. The application of Global Sensitivity Analysis to quantify the dominant input factors for hydraulic model simulations

    NASA Astrophysics Data System (ADS)

    Savage, James; Pianosi, Francesca; Bates, Paul; Freer, Jim; Wagener, Thorsten

    2015-04-01

    Predicting flood inundation extents using hydraulic models is subject to a number of critical uncertainties. For a specific event, these uncertainties are known to have a large influence on model outputs and any subsequent analyses made by risk managers. Hydraulic modellers often approach such problems by applying uncertainty analysis techniques such as the Generalised Likelihood Uncertainty Estimation (GLUE) methodology. However, these methods do not allow one to attribute which source of uncertainty has the most influence on the various model outputs that inform flood risk decision making. Another issue facing modellers is the amount of computational resource that is available to spend on modelling flood inundations that are 'fit for purpose' to the modelling objectives. Therefore a balance needs to be struck between computation time, realism and spatial resolution, and effectively characterising the uncertainty spread of predictions (for example from boundary conditions and model parameterisations). However, it is not fully understood how much of an impact each factor has on model performance, for example how much influence changing the spatial resolution of a model has on inundation predictions in comparison to other uncertainties inherent in the modelling process. Furthermore, when resampling fine scale topographic data in the form of a Digital Elevation Model (DEM) to coarser resolutions, there are a number of possible coarser DEMs that can be produced. Deciding which DEM is then chosen to represent the surface elevations in the model could also influence model performance. In this study we model a flood event using the hydraulic model LISFLOOD-FP and apply Sobol' Sensitivity Analysis to estimate which input factor, among the uncertainty in model boundary conditions, uncertain model parameters, the spatial resolution of the DEM and the choice of resampled DEM, have the most influence on a range of model outputs. These outputs include whole domain maximum inundation indicators and flood wave travel time in addition to temporally and spatially variable indicators. This enables us to assess whether the sensitivity of the model to various input factors is stationary in both time and space. Furthermore, competing models are assessed against observations of water depths from a historical flood event. Consequently we are able to determine which of the input factors has the most influence on model performance. Initial findings suggest the sensitivity of the model to different input factors varies depending on the type of model output assessed and at what stage during the flood hydrograph the model output is assessed. We have also found that initial decisions regarding the characterisation of the input factors, for example defining the upper and lower bounds of the parameter sample space, can be significant in influencing the implied sensitivities.

  5. Recruitment of Foreigners in the Market for Computer Scientists in the United States

    PubMed Central

    Bound, John; Braga, Breno; Golden, Joseph M.

    2016-01-01

    We present and calibrate a dynamic model that characterizes the labor market for computer scientists. In our model, firms can recruit computer scientists from recently graduated college students, from STEM workers working in other occupations or from a pool of foreign talent. Counterfactual simulations suggest that wages for computer scientists would have been 2.8–3.8% higher, and the number of Americans employed as computers scientists would have been 7.0–13.6% higher in 2004 if firms could not hire more foreigners than they could in 1994. In contrast, total CS employment would have been 3.8–9.0% lower, and consequently output smaller. PMID:27170827

  6. Structural identifiability analysis of a cardiovascular system model.

    PubMed

    Pironet, Antoine; Dauby, Pierre C; Chase, J Geoffrey; Docherty, Paul D; Revie, James A; Desaive, Thomas

    2016-05-01

    The six-chamber cardiovascular system model of Burkhoff and Tyberg has been used in several theoretical and experimental studies. However, this cardiovascular system model (and others derived from it) are not identifiable from any output set. In this work, two such cases of structural non-identifiability are first presented. These cases occur when the model output set only contains a single type of information (pressure or volume). A specific output set is thus chosen, mixing pressure and volume information and containing only a limited number of clinically available measurements. Then, by manipulating the model equations involving these outputs, it is demonstrated that the six-chamber cardiovascular system model is structurally globally identifiable. A further simplification is made, assuming known cardiac valve resistances. Because of the poor practical identifiability of these four parameters, this assumption is usual. Under this hypothesis, the six-chamber cardiovascular system model is structurally identifiable from an even smaller dataset. As a consequence, parameter values computed from limited but well-chosen datasets are theoretically unique. This means that the parameter identification procedure can safely be performed on the model from such a well-chosen dataset. Thus, the model may be considered suitable for use in diagnosis. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  7. Statistical Surrogate Modeling of Atmospheric Dispersion Events Using Bayesian Adaptive Splines

    NASA Astrophysics Data System (ADS)

    Francom, D.; Sansó, B.; Bulaevskaya, V.; Lucas, D. D.

    2016-12-01

    Uncertainty in the inputs of complex computer models, including atmospheric dispersion and transport codes, is often assessed via statistical surrogate models. Surrogate models are computationally efficient statistical approximations of expensive computer models that enable uncertainty analysis. We introduce Bayesian adaptive spline methods for producing surrogate models that capture the major spatiotemporal patterns of the parent model, while satisfying all the necessities of flexibility, accuracy and computational feasibility. We present novel methodological and computational approaches motivated by a controlled atmospheric tracer release experiment conducted at the Diablo Canyon nuclear power plant in California. Traditional methods for building statistical surrogate models often do not scale well to experiments with large amounts of data. Our approach is well suited to experiments involving large numbers of model inputs, large numbers of simulations, and functional output for each simulation. Our approach allows us to perform global sensitivity analysis with ease. We also present an approach to calibration of simulators using field data.

  8. Cosmic logic: a computational model

    NASA Astrophysics Data System (ADS)

    Vanchurin, Vitaly

    2016-02-01

    We initiate a formal study of logical inferences in context of the measure problem in cosmology or what we call cosmic logic. We describe a simple computational model of cosmic logic suitable for analysis of, for example, discretized cosmological systems. The construction is based on a particular model of computation, developed by Alan Turing, with cosmic observers (CO), cosmic measures (CM) and cosmic symmetries (CS) described by Turing machines. CO machines always start with a blank tape and CM machines take CO's Turing number (also known as description number or Gödel number) as input and output the corresponding probability. Similarly, CS machines take CO's Turing number as input, but output either one if the CO machines are in the same equivalence class or zero otherwise. We argue that CS machines are more fundamental than CM machines and, thus, should be used as building blocks in constructing CM machines. We prove the non-computability of a CS machine which discriminates between two classes of CO machines: mortal that halts in finite time and immortal that runs forever. In context of eternal inflation this result implies that it is impossible to construct CM machines to compute probabilities on the set of all CO machines using cut-off prescriptions. The cut-off measures can still be used if the set is reduced to include only machines which halt after a finite and predetermined number of steps.

  9. KRISSY: user's guide to modeling three-dimensional wind flow in complex terrain

    Treesearch

    Michael A. Fosberg; Michael L. Sestak

    1986-01-01

    KRISSY is a computer model for generating three-dimensional wind flows in complex terrain from data that were not or perhaps cannot be collected. The model is written in FORTRAN IV This guide describes data requirements, modeling, and output from an applications viewpoint rather than that of programming or theoretical modeling. KRISSY is designed to minimize...

  10. Mars approach for global sensitivity analysis of differential equation models with applications to dynamics of influenza infection.

    PubMed

    Lee, Yeonok; Wu, Hulin

    2012-01-01

    Differential equation models are widely used for the study of natural phenomena in many fields. The study usually involves unknown factors such as initial conditions and/or parameters. It is important to investigate the impact of unknown factors (parameters and initial conditions) on model outputs in order to better understand the system the model represents. Apportioning the uncertainty (variation) of output variables of a model according to the input factors is referred to as sensitivity analysis. In this paper, we focus on the global sensitivity analysis of ordinary differential equation (ODE) models over a time period using the multivariate adaptive regression spline (MARS) as a meta model based on the concept of the variance of conditional expectation (VCE). We suggest to evaluate the VCE analytically using the MARS model structure of univariate tensor-product functions which is more computationally efficient. Our simulation studies show that the MARS model approach performs very well and helps to significantly reduce the computational cost. We present an application example of sensitivity analysis of ODE models for influenza infection to further illustrate the usefulness of the proposed method.

  11. Computer simulations of neural mechanisms explaining upper and lower limb excitatory neural coupling

    PubMed Central

    2010-01-01

    Background When humans perform rhythmic upper and lower limb locomotor-like movements, there is an excitatory effect of upper limb exertion on lower limb muscle recruitment. To investigate potential neural mechanisms for this behavioral observation, we developed computer simulations modeling interlimb neural pathways among central pattern generators. We hypothesized that enhancement of muscle recruitment from interlimb spinal mechanisms was not sufficient to explain muscle enhancement levels observed in experimental data. Methods We used Matsuoka oscillators for the central pattern generators (CPG) and determined parameters that enhanced amplitudes of rhythmic steady state bursts. Potential mechanisms for output enhancement were excitatory and inhibitory sensory feedback gains, excitatory and inhibitory interlimb coupling gains, and coupling geometry. We first simulated the simplest case, a single CPG, and then expanded the model to have two CPGs and lastly four CPGs. In the two and four CPG models, the lower limb CPGs did not receive supraspinal input such that the only mechanisms available for enhancing output were interlimb coupling gains and sensory feedback gains. Results In a two-CPG model with inhibitory sensory feedback gains, only excitatory gains of ipsilateral flexor-extensor/extensor-flexor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 26%. In a two-CPG model with excitatory sensory feedback gains, excitatory gains of contralateral flexor-flexor/extensor-extensor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 100%. However, within a given excitatory sensory feedback gain, enhancement due to excitatory interlimb gains could only reach levels up to 20%. Interconnecting four CPGs to have ipsilateral flexor-extensor/extensor-flexor coupling, contralateral flexor-flexor/extensor-extensor coupling, and bilateral flexor-extensor/extensor-flexor coupling could enhance motor output up to 32%. Enhancement observed in experimental data exceeded 32%. Enhancement within this symmetrical four-CPG neural architecture was more sensitive to relatively small interlimb coupling gains. Excitatory sensory feedback gains could produce greater output amplitudes, but larger gains were required for entrainment compared to inhibitory sensory feedback gains. Conclusions Based on these simulations, symmetrical interlimb coupling can account for much, but not all of the excitatory neural coupling between upper and lower limbs during rhythmic locomotor-like movements. PMID:21143960

  12. Documentation of a Regional Aquifer Simulation Model RAQSIM, and a description of support programs applied in the Twin Platte - Middle Republican Study Area, Nebraska

    USGS Publications Warehouse

    Cady, R.E.; Peckenpaugh, J.M.

    1985-01-01

    RAQSIM, a generalized flow model of a groundwater system using finite-element methods, is documented to explain how it works and to demonstrate that it gives valid results. Three support programs that are used to compute recharge and discharge data required as input to RAQSIM are described. RAQSIM was developed to solve transient, two-dimensional, regional groundwater flow problems with isotropic or anisotropic conductance. The model can also simulate radially-symmetric flow to a well and steady-state flow. The mathematical basis, program structure, data input and output procedures, organization of data sets, and program features and options of RAQSIM are discussed. An example , containing listings of data and results and illustrating RAQSIM 's capabilities, is discussed in detail. Two test problems also are discussed comparing RAQSIM 's results with analytical procedures. The first support program described, the PET Program, uses solar radiation and other climatic data in the Jensen-Haise method to compute potential evapotranspiration. The second support program, the Soil-Water Program, uses output from the PET Program, soil characteristics, and the ratio of potential to actual evapotranspiration for each crop to compute infiltration, storage, and removal of water from the soil zone. The third program, the Recharge-Discharge Program, uses output from the Soil-Water Program together with other data to compute recharge and discharge from the groundwater flow system. For each support program, a program listing and examples of the data and results for the Twin Platte-Middle Republican study are provided. In addition, a brief discussion on how each program operates and on procedures for running and modifying these programs are presented. (Author 's abstract)

  13. Optimal fixed-finite-dimensional compensator for Burgers' equation with unbounded input/output operators

    NASA Technical Reports Server (NTRS)

    Burns, John A.; Marrekchi, Hamadi

    1993-01-01

    The problem of using reduced order dynamic compensators to control a class of nonlinear parabolic distributed parameter systems was considered. Concentration was on a system with unbounded input and output operators governed by Burgers' equation. A linearized model was used to compute low-order-finite-dimensional control laws by minimizing certain energy functionals. Then these laws were applied to the nonlinear model. Standard approaches to this problem employ model/controller reduction techniques in conjunction with linear quadratic Gaussian (LQG) theory. The approach used is based on the finite dimensional Bernstein/Hyland optimal projection theory which yields a fixed-finite-order controller.

  14. Programmer/Analyst Guide for the Army Unit Resiliency Analysis (AURA) computer Simulation Model. Volume 1. AURA Methodology

    DTIC Science & Technology

    1990-10-01

    involving a heavy artillery barrage, the impact point output alone could consume upwards of 10,000 pages of computer paper. For this reason, AURA provides...but pervasive factor: the asset allocation model must be compatible with the mathematical behavior of the input data. Thus, for example, if assets are...described as expendable during repair or decontamination activities, it must have HOMELINKS which appear in the consuming repair SUBCHAINs

  15. Computer code for charge-exchange plasma propagation

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.; Kaufman, H. R.

    1981-01-01

    The propagation of the charge-exchange plasma from an electrostatic ion thruster is crucial in determining the interaction of that plasma with the associated spacecraft. A model that describes this plasma and its propagation is described, together with a computer code based on this model. The structure and calling sequence of the code, named PLASIM, is described. An explanation of the program's input and output is included, together with samples of both. The code is written in ASNI Standard FORTRAN.

  16. Low-cost data analysis systems for processing multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Whitely, S. L.

    1976-01-01

    The basic hardware and software requirements are described for four low cost analysis systems for computer generated land use maps. The data analysis systems consist of an image display system, a small digital computer, and an output recording device. Software is described together with some of the display and recording devices, and typical costs are cited. Computer requirements are given, and two approaches are described for converting black-white film and electrostatic printer output to inexpensive color output products. Examples of output products are shown.

  17. Systems and methods for predicting materials properties

    DOEpatents

    Ceder, Gerbrand; Fischer, Chris; Tibbetts, Kevin; Morgan, Dane; Curtarolo, Stefano

    2007-11-06

    Systems and methods for predicting features of materials of interest. Reference data are analyzed to deduce relationships between the input data sets and output data sets. Reference data includes measured values and/or computed values. The deduced relationships can be specified as equations, correspondences, and/or algorithmic processes that produce appropriate output data when suitable input data is used. In some instances, the output data set is a subset of the input data set, and computational results may be refined by optionally iterating the computational procedure. To deduce features of a new material of interest, a computed or measured input property of the material is provided to an equation, correspondence, or algorithmic procedure previously deduced, and an output is obtained. In some instances, the output is iteratively refined. In some instances, new features deduced for the material of interest are added to a database of input and output data for known materials.

  18. Emulation: A fast stochastic Bayesian method to eliminate model space

    NASA Astrophysics Data System (ADS)

    Roberts, Alan; Hobbs, Richard; Goldstein, Michael

    2010-05-01

    Joint inversion of large 3D datasets has been the goal of geophysicists ever since the datasets first started to be produced. There are two broad approaches to this kind of problem, traditional deterministic inversion schemes and more recently developed Bayesian search methods, such as MCMC (Markov Chain Monte Carlo). However, using both these kinds of schemes has proved prohibitively expensive, both in computing power and time cost, due to the normally very large model space which needs to be searched using forward model simulators which take considerable time to run. At the heart of strategies aimed at accomplishing this kind of inversion is the question of how to reliably and practicably reduce the size of the model space in which the inversion is to be carried out. Here we present a practical Bayesian method, known as emulation, which can address this issue. Emulation is a Bayesian technique used with considerable success in a number of technical fields, such as in astronomy, where the evolution of the universe has been modelled using this technique, and in the petroleum industry where history matching is carried out of hydrocarbon reservoirs. The method of emulation involves building a fast-to-compute uncertainty-calibrated approximation to a forward model simulator. We do this by modelling the output data from a number of forward simulator runs by a computationally cheap function, and then fitting the coefficients defining this function to the model parameters. By calibrating the error of the emulator output with respect to the full simulator output, we can use this to screen out large areas of model space which contain only implausible models. For example, starting with what may be considered a geologically reasonable prior model space of 10000 models, using the emulator we can quickly show that only models which lie within 10% of that model space actually produce output data which is plausibly similar in character to an observed dataset. We can thus much more tightly constrain the input model space for a deterministic inversion or MCMC method. By using this technique jointly on several datasets (specifically seismic, gravity, and magnetotelluric (MT) describing the same region), we can include in our modelling uncertainties in the data measurements, the relationships between the various physical parameters involved, as well as the model representation uncertainty, and at the same time further reduce the range of plausible models to several percent of the original model space. Being stochastic in nature, the output posterior parameter distributions also allow our understanding of/beliefs about a geological region can be objectively updated, with full assessment of uncertainties, and so the emulator is also an inversion-type tool in it's own right, with the advantage (as with any Bayesian method) that our uncertainties from all sources (both data and model) can be fully evaluated.

  19. Parametric and non-parametric modeling of short-term synaptic plasticity. Part I: computational study

    PubMed Central

    Marmarelis, Vasilis Z.; Berger, Theodore W.

    2009-01-01

    Parametric and non-parametric modeling methods are combined to study the short-term plasticity (STP) of synapses in the central nervous system (CNS). The nonlinear dynamics of STP are modeled by means: (1) previously proposed parametric models based on mechanistic hypotheses and/or specific dynamical processes, and (2) non-parametric models (in the form of Volterra kernels) that transforms the presynaptic signals into postsynaptic signals. In order to synergistically use the two approaches, we estimate the Volterra kernels of the parametric models of STP for four types of synapses using synthetic broadband input–output data. Results show that the non-parametric models accurately and efficiently replicate the input–output transformations of the parametric models. Volterra kernels provide a general and quantitative representation of the STP. PMID:18506609

  20. Nonlinear predictive control of a boiler-turbine unit: A state-space approach with successive on-line model linearisation and quadratic optimisation.

    PubMed

    Ławryńczuk, Maciej

    2017-03-01

    This paper details development of a Model Predictive Control (MPC) algorithm for a boiler-turbine unit, which is a nonlinear multiple-input multiple-output process. The control objective is to follow set-point changes imposed on two state (output) variables and to satisfy constraints imposed on three inputs and one output. In order to obtain a computationally efficient control scheme, the state-space model is successively linearised on-line for the current operating point and used for prediction. In consequence, the future control policy is easily calculated from a quadratic optimisation problem. For state estimation the extended Kalman filter is used. It is demonstrated that the MPC strategy based on constant linear models does not work satisfactorily for the boiler-turbine unit whereas the discussed algorithm with on-line successive model linearisation gives practically the same trajectories as the truly nonlinear MPC controller with nonlinear optimisation repeated at each sampling instant. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Investigating Anomalies in the Output Generated by the Weather Research and Forecasting (WRF) Model

    NASA Astrophysics Data System (ADS)

    Decicco, Nicholas; Trout, Joseph; Manson, J. Russell; Rios, Manny; King, David

    2015-04-01

    The Weather Research and Forecasting (WRF) model is an advanced mesoscale numerical weather prediction (NWP) model comprised of two numerical cores, the Numerical Mesoscale Modeling (NMM) core, and the Advanced Research WRF (ARW) core. An investigation was done to determine the source of erroneous output generated by the NMM core. In particular were the appearance of zero values at regularly spaced grid cells in output fields and the NMM core's evident (mis)use of static geographic information at a resolution lower than the nesting level for which the core is performing computation. A brief discussion of the high-level modular architecture of the model is presented as well as methods utilized to identify the cause of these problems. Presented here are the initial results from a research grant, ``A Pilot Project to Investigate Wake Vortex Patterns and Weather Patterns at the Atlantic City Airport by the Richard Stockton College of NJ and the FAA''.

  2. Smad Signaling Dynamics: Insights from a Parsimonious Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiley, H. S.; Shankaran, Harish

    2008-09-09

    The molecular mechanisms that transmit information from cell surface receptors to the nucleus are exceedingly complex; thus, much effort has been expended in developing computational models to understand these processes. A recent study on modeling the nuclear-cytoplasmic shuttling of Smad2-Smad4 complexes in response to transforming growth factor β (TGF-β) receptor activation has provided substantial insight into how this signaling network translates the degree of TGF-β receptor activation (input) into the amount of nuclear Smad2-Smad4 complexes (output). The study addressed this question by combining a simple, mechanistic model with targeted experiments, an approach that proved particularly powerful for exploring the fundamentalmore » properties of a complex signaling network. The mathematical model revealed that Smad nuclear-cytoplasmic dynamics enables a proportional, but time-delayed coupling between the input and the output. As a result, the output can faithfully track gradual changes in the input, while the rapid input fluctuations that constitute signaling noise are dampened out.« less

  3. Solid rocket booster thermal radiation model. Volume 2: User's manual

    NASA Technical Reports Server (NTRS)

    Lee, A. L.

    1976-01-01

    A user's manual was prepared for the computer program of a solid rocket booster (SRB) thermal radiation model. The following information was included: (1) structure of the program, (2) input information required, (3) examples of input cards and output printout, (4) program characteristics, and (5) program listing.

  4. Extending Landauer's bound from bit erasure to arbitrary computation

    NASA Astrophysics Data System (ADS)

    Wolpert, David

    The minimal thermodynamic work required to erase a bit, known as Landauer's bound, has been extensively investigated both theoretically and experimentally. However, when viewed as a computation that maps inputs to outputs, bit erasure has a very special property: the output does not depend on the input. Existing analyses of thermodynamics of bit erasure implicitly exploit this property, and thus cannot be directly extended to analyze the computation of arbitrary input-output maps. Here we show how to extend these earlier analyses of bit erasure to analyze the thermodynamics of arbitrary computations. Doing this establishes a formal connection between the thermodynamics of computers and much of theoretical computer science. We use this extension to analyze the thermodynamics of the canonical ``general purpose computer'' considered in computer science theory: a universal Turing machine (UTM). We consider a UTM which maps input programs to output strings, where inputs are drawn from an ensemble of random binary sequences, and prove: i) The minimal work needed by a UTM to run some particular input program X and produce output Y is the Kolmogorov complexity of Y minus the log of the ``algorithmic probability'' of Y. This minimal amount of thermodynamic work has a finite upper bound, which is independent of the output Y, depending only on the details of the UTM. ii) The expected work needed by a UTM to compute some given output Y is infinite. As a corollary, the overall expected work to run a UTM is infinite. iii) The expected work needed by an arbitrary Turing machine T (not necessarily universal) to compute some given output Y can either be infinite or finite, depending on Y and the details of T. To derive these results we must combine ideas from nonequilibrium statistical physics with fundamental results from computer science, such as Levin's coding theorem and other theorems about universal computation. I would like to ackowledge the Santa Fe Institute, Grant No. TWCF0079/AB47 from the Templeton World Charity Foundation, Grant No. FQXi-RHl3-1349 from the FQXi foundation, and Grant No. CHE-1648973 from the U.S. National Science Foundation.

  5. Case studies of simulation models of recreation use

    Treesearch

    David N. Cole

    2005-01-01

    Computer simulation models can be usefully applied to many different outdoor recreation situations. Model outputs can also be used for a wide variety of planning and management purposes. The intent of this chapter is to use a collection of 12 case studies to illustrate how simulation models have been used in a wide range of recreation situations and for diverse...

  6. A space transportation system operations model

    NASA Technical Reports Server (NTRS)

    Morris, W. Douglas; White, Nancy H.

    1987-01-01

    Presented is a description of a computer program which permits assessment of the operational support requirements of space transportation systems functioning in both a ground- and space-based environment. The scenario depicted provides for the delivery of payloads from Earth to a space station and beyond using upper stages based at the station. Model results are scenario dependent and rely on the input definitions of delivery requirements, task times, and available resources. Output is in terms of flight rate capabilities, resource requirements, and facility utilization. A general program description, program listing, input requirements, and sample output are included.

  7. Solid rocket booster performance evaluation model. Volume 2: Users manual

    NASA Technical Reports Server (NTRS)

    1974-01-01

    This users manual for the solid rocket booster performance evaluation model (SRB-II) contains descriptions of the model, the program options, the required program inputs, the program output format and the program error messages. SRB-II is written in FORTRAN and is operational on both the IBM 370/155 and the MSFC UNIVAC 1108 computers.

  8. Bootstrap Prediction Intervals in Non-Parametric Regression with Applications to Anomaly Detection

    NASA Technical Reports Server (NTRS)

    Kumar, Sricharan; Srivistava, Ashok N.

    2012-01-01

    Prediction intervals provide a measure of the probable interval in which the outputs of a regression model can be expected to occur. Subsequently, these prediction intervals can be used to determine if the observed output is anomalous or not, conditioned on the input. In this paper, a procedure for determining prediction intervals for outputs of nonparametric regression models using bootstrap methods is proposed. Bootstrap methods allow for a non-parametric approach to computing prediction intervals with no specific assumptions about the sampling distribution of the noise or the data. The asymptotic fidelity of the proposed prediction intervals is theoretically proved. Subsequently, the validity of the bootstrap based prediction intervals is illustrated via simulations. Finally, the bootstrap prediction intervals are applied to the problem of anomaly detection on aviation data.

  9. User's manual for a computer program for simulating intensively managed allowable cut.

    Treesearch

    Robert W. Sassaman; Ed Holt; Karl Bergsvik

    1972-01-01

    Detailed operating instructions are described for SIMAC, a computerized forest simulation model which calculates the allowable cut assuming volume regulation for forests with intensively managed stands. A sample problem illustrates the required inputs and expected output. SIMAC is written in FORTRAN IV and runs on a CDC 6400 computer with a SCOPE 3.3 operating system....

  10. catcher: A Software Program to Detect Answer Copying in Multiple-Choice Tests Based on Nominal Response Model

    ERIC Educational Resources Information Center

    Kalender, Ilker

    2012-01-01

    catcher is a software program designed to compute the [omega] index, a common statistical index for the identification of collusions (cheating) among examinees taking an educational or psychological test. It requires (a) responses and (b) ability estimations of individuals, and (c) item parameters to make computations and outputs the results of…

  11. Quantum Vertex Model for Reversible Classical Computing

    NASA Astrophysics Data System (ADS)

    Chamon, Claudio; Mucciolo, Eduardo; Ruckenstein, Andrei; Yang, Zhicheng

    We present a planar vertex model that encodes the result of a universal reversible classical computation in its ground state. The approach involves Boolean variables (spins) placed on links of a two-dimensional lattice, with vertices representing logic gates. Large short-ranged interactions between at most two spins implement the operation of each gate. The lattice is anisotropic with one direction corresponding to computational time, and with transverse boundaries storing the computation's input and output. The model displays no finite temperature phase transitions, including no glass transitions, independent of circuit. The computational complexity is encoded in the scaling of the relaxation rate into the ground state with the system size. We use thermal annealing and a novel and more efficient heuristic \\x9Dannealing with learning to study various computational problems. To explore faster relaxation routes, we construct an explicit mapping of the vertex model into the Chimera architecture of the D-Wave machine, initiating a novel approach to reversible classical computation based on quantum annealing.

  12. A controls engineering approach for analyzing airplane input-output characteristics

    NASA Technical Reports Server (NTRS)

    Arbuckle, P. Douglas

    1991-01-01

    An engineering approach for analyzing airplane control and output characteristics is presented. State-space matrix equations describing the linear perturbation dynamics are transformed from physical coordinates into scaled coordinates. The scaling is accomplished by applying various transformations to the system to employ prior engineering knowledge of the airplane physics. Two different analysis techniques are then explained. Modal analysis techniques calculate the influence of each system input on each fundamental mode of motion and the distribution of each mode among the system outputs. The optimal steady state response technique computes the blending of steady state control inputs that optimize the steady state response of selected system outputs. Analysis of an example airplane model is presented to demonstrate the described engineering approach.

  13. Hierarchical Multi-Scale Approach To Validation and Uncertainty Quantification of Hyper-Spectral Image Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engel, David W.; Reichardt, Thomas A.; Kulp, Thomas J.

    Validating predictive models and quantifying uncertainties inherent in the modeling process is a critical component of the HARD Solids Venture program [1]. Our current research focuses on validating physics-based models predicting the optical properties of solid materials for arbitrary surface morphologies and characterizing the uncertainties in these models. We employ a systematic and hierarchical approach by designing physical experiments and comparing the experimental results with the outputs of computational predictive models. We illustrate this approach through an example comparing a micro-scale forward model to an idealized solid-material system and then propagating the results through a system model to the sensormore » level. Our efforts should enhance detection reliability of the hyper-spectral imaging technique and the confidence in model utilization and model outputs by users and stakeholders.« less

  14. Computational Modeling of Pathophysiologic Responses to Exercise in Fontan Patients

    PubMed Central

    Kung, Ethan; Perry, James C.; Davis, Christopher; Migliavacca, Francesco; Pennati, Giancarlo; Giardini, Alessandro; Hsia, Tain-Yen; Marsden, Alison

    2014-01-01

    Reduced exercise capacity is nearly universal among Fontan patients. Although many factors have emerged as possible contributors, the degree to which each impacts the overall hemodynamics is largely unknown. Computational modeling provides a means to test hypotheses of causes of exercise intolerance via precisely controlled virtual experiments and measurements. We quantified the physiological impacts of commonly encountered, clinically relevant dysfunctions introduced to the exercising Fontan system via a previously developed lumped-parameter model of Fontan exercise. Elevated pulmonary arterial pressure was observed in all cases of dysfunction, correlated with lowered cardiac output, and often mediated by elevated atrial pressure. Pulmonary vascular resistance was not the most significant factor affecting exercise performance as measured by cardiac output. In the absence of other dysfunctions, atrioventricular valve insufficiency alone had significant physiological impact, especially under exercise demands. The impact of isolated dysfunctions can be linearly summed to approximate the combined impact of several dysfunctions occurring in the same system. A single dominant cause of exercise intolerance was not identified, though several hypothesized dysfunctions each led to variable decreases in performance. Computational predictions of performance improvement associated with various interventions should be weighed against procedural risks and potential complications, contributing to improvements in routine patient management protocol. PMID:25260878

  15. Recent Advances in Immersive Visualization of Ocean Data: Virtual Reality Through the Web on Your Laptop Computer

    NASA Astrophysics Data System (ADS)

    Hermann, A. J.; Moore, C.; Soreide, N. N.

    2002-12-01

    Ocean circulation is irrefutably three dimensional, and powerful new measurement technologies and numerical models promise to expand our three-dimensional knowledge of the dynamics further each year. Yet, most ocean data and model output is still viewed using two-dimensional maps. Immersive visualization techniques allow the investigator to view their data as a three dimensional world of surfaces and vectors which evolves through time. The experience is not unlike holding a part of the ocean basin in one's hand, turning and examining it from different angles. While immersive, three dimensional visualization has been possible for at least a decade, the technology was until recently inaccessible (both physically and financially) for most researchers. It is not yet fully appreciated by practicing oceanographers how new, inexpensive computing hardware and software (e.g. graphics cards and controllers designed for the huge PC gaming market) can be employed for immersive, three dimensional, color visualization of their increasingly huge datasets and model output. In fact, the latest developments allow immersive visualization through web servers, giving scientists the ability to "fly through" three-dimensional data stored half a world away. Here we explore what additional insight is gained through immersive visualization, describe how scientists of very modest means can easily avail themselves of the latest technology, and demonstrate its implementation on a web server for Pacific Ocean model output.

  16. Grid-coordinate generation program

    USGS Publications Warehouse

    Cosner, Oliver J.; Horwich, Esther

    1974-01-01

    This program description of the grid-coordinate generation program is written for computer users who are familiar with digital aquifer models. The program computes the coordinates for a variable grid -used in the 'Pinder Model' (a finite-difference aquifer simulator), for input to the CalComp GPCP (general purpose contouring program). The program adjusts the y-value by a user-supplied constant in order to transpose the origin of the model grid from the upper left-hand corner to the lower left-hand corner of the grid. The user has the options of, (1.) choosing the boundaries of the plot; (2.) adjusting the z-values (altitudes) by a constant; (3.) deleting superfluous z-values and (4.) subtracting the simulated surfaces from each other to obtain the decline. Output of this program includes the fixed format CNTL data cards and the other data cards required for input to GPCP. The output from GPCP then is used to produce a potentiometric map or a decline map by means of the CalComp plotter.

  17. SCI Identification (SCIDNT) program user's guide. [maximum likelihood method for linear rotorcraft models

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The computer program Linear SCIDNT which evaluates rotorcraft stability and control coefficients from flight or wind tunnel test data is described. It implements the maximum likelihood method to maximize the likelihood function of the parameters based on measured input/output time histories. Linear SCIDNT may be applied to systems modeled by linear constant-coefficient differential equations. This restriction in scope allows the application of several analytical results which simplify the computation and improve its efficiency over the general nonlinear case.

  18. PLASIM: A computer code for simulating charge exchange plasma propagation

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.; Deininger, W. D.; Winder, D. R.; Kaufman, H. R.

    1982-01-01

    The propagation of the charge exchange plasma for an electrostatic ion thruster is crucial in determining the interaction of that plasma with the associated spacecraft. A model that describes this plasma and its propagation is described, together with a computer code based on this model. The structure and calling sequence of the code, named PLASIM, is described. An explanation of the program's input and output is included, together with samples of both. The code is written in ANSI Standard FORTRAN.

  19. The user's guide to STEMS (Stand and Tree Evaluation and Modeling System).

    Treesearch

    David M. Belcher

    1981-01-01

    Presents the structure of STEMS, a computer program for projecting growth of individual trees within the Lake States Region, and discusses its input, processing, major subsystems, and output. Includes an example projection.

  20. A simplified computer program for the prediction of the linear stability behavior of liquid propellant combustors

    NASA Technical Reports Server (NTRS)

    Mitchell, C. E.; Eckert, K.

    1979-01-01

    A program for predicting the linear stability of liquid propellant rocket engines is presented. The underlying model assumptions and analytical steps necessary for understanding the program and its input and output are also given. The rocket engine is modeled as a right circular cylinder with an injector with a concentrated combustion zone, a nozzle, finite mean flow, and an acoustic admittance, or the sensitive time lag theory. The resulting partial differential equations are combined into two governing integral equations by the use of the Green's function method. These equations are solved using a successive approximation technique for the small amplitude (linear) case. The computational method used as well as the various user options available are discussed. Finally, a flow diagram, sample input and output for a typical application and a complete program listing for program MODULE are presented.

  1. An on-line equivalent system identification scheme for adaptive control. Ph.D. Thesis - Stanford Univ.

    NASA Technical Reports Server (NTRS)

    Sliwa, S. M.

    1984-01-01

    A prime obstacle to the widespread use of adaptive control is the degradation of performance and possible instability resulting from the presence of unmodeled dynamics. The approach taken is to explicitly include the unstructured model uncertainty in the output error identification algorithm. The order of the compensator is successively increased by including identified modes. During this model building stage, heuristic rules are used to test for convergence prior to designing compensators. Additionally, the recursive identification algorithm as extended to multi-input, multi-output systems. Enhancements were also made to reduce the computational burden of an algorithm for obtaining minimal state space realizations from the inexact, multivariate transfer functions which result from the identification process. A number of potential adaptive control applications for this approach are illustrated using computer simulations. Results indicated that when speed of adaptation and plant stability are not critical, the proposed schemes converge to enhance system performance.

  2. Balancing the stochastic description of uncertainties as a function of hydrologic model complexity

    NASA Astrophysics Data System (ADS)

    Del Giudice, D.; Reichert, P.; Albert, C.; Kalcic, M.; Logsdon Muenich, R.; Scavia, D.; Bosch, N. S.; Michalak, A. M.

    2016-12-01

    Uncertainty analysis is becoming an important component of forecasting water and pollutant fluxes in urban and rural environments. Properly accounting for errors in the modeling process can help to robustly assess the uncertainties associated with the inputs (e.g. precipitation) and outputs (e.g. runoff) of hydrological models. In recent years we have investigated several Bayesian methods to infer the parameters of a mechanistic hydrological model along with those of the stochastic error component. The latter describes the uncertainties of model outputs and possibly inputs. We have adapted our framework to a variety of applications, ranging from predicting floods in small stormwater systems to nutrient loads in large agricultural watersheds. Given practical constraints, we discuss how in general the number of quantities to infer probabilistically varies inversely with the complexity of the mechanistic model. Most often, when evaluating a hydrological model of intermediate complexity, we can infer the parameters of the model as well as of the output error model. Describing the output errors as a first order autoregressive process can realistically capture the "downstream" effect of inaccurate inputs and structure. With simpler runoff models we can additionally quantify input uncertainty by using a stochastic rainfall process. For complex hydrologic transport models, instead, we show that keeping model parameters fixed and just estimating time-dependent output uncertainties could be a viable option. The common goal across all these applications is to create time-dependent prediction intervals which are both reliable (cover the nominal amount of validation data) and precise (are as narrow as possible). In conclusion, we recommend focusing both on the choice of the hydrological model and of the probabilistic error description. The latter can include output uncertainty only, if the model is computationally-expensive, or, with simpler models, it can separately account for different sources of errors like in the inputs and the structure of the model.

  3. An Open-Source Toolbox for Surrogate Modeling of Joint Contact Mechanics

    PubMed Central

    Eskinazi, Ilan

    2016-01-01

    Goal Incorporation of elastic joint contact models into simulations of human movement could facilitate studying the interactions between muscles, ligaments, and bones. Unfortunately, elastic joint contact models are often too expensive computationally to be used within iterative simulation frameworks. This limitation can be overcome by using fast and accurate surrogate contact models that fit or interpolate input-output data sampled from existing elastic contact models. However, construction of surrogate contact models remains an arduous task. The aim of this paper is to introduce an open-source program called Surrogate Contact Modeling Toolbox (SCMT) that facilitates surrogate contact model creation, evaluation, and use. Methods SCMT interacts with the third party software FEBio to perform elastic contact analyses of finite element models and uses Matlab to train neural networks that fit the input-output contact data. SCMT features sample point generation for multiple domains, automated sampling, sample point filtering, and surrogate model training and testing. Results An overview of the software is presented along with two example applications. The first example demonstrates creation of surrogate contact models of artificial tibiofemoral and patellofemoral joints and evaluates their computational speed and accuracy, while the second demonstrates the use of surrogate contact models in a forward dynamic simulation of an open-chain leg extension-flexion motion. Conclusion SCMT facilitates the creation of computationally fast and accurate surrogate contact models. Additionally, it serves as a bridge between FEBio and OpenSim musculoskeletal modeling software. Significance Researchers may now create and deploy surrogate models of elastic joint contact with minimal effort. PMID:26186761

  4. Uncertainty and variability in computational and mathematical models of cardiac physiology.

    PubMed

    Mirams, Gary R; Pathmanathan, Pras; Gray, Richard A; Challenor, Peter; Clayton, Richard H

    2016-12-01

    Mathematical and computational models of cardiac physiology have been an integral component of cardiac electrophysiology since its inception, and are collectively known as the Cardiac Physiome. We identify and classify the numerous sources of variability and uncertainty in model formulation, parameters and other inputs that arise from both natural variation in experimental data and lack of knowledge. The impact of uncertainty on the outputs of Cardiac Physiome models is not well understood, and this limits their utility as clinical tools. We argue that incorporating variability and uncertainty should be a high priority for the future of the Cardiac Physiome. We suggest investigating the adoption of approaches developed in other areas of science and engineering while recognising unique challenges for the Cardiac Physiome; it is likely that novel methods will be necessary that require engagement with the mathematics and statistics community. The Cardiac Physiome effort is one of the most mature and successful applications of mathematical and computational modelling for describing and advancing the understanding of physiology. After five decades of development, physiological cardiac models are poised to realise the promise of translational research via clinical applications such as drug development and patient-specific approaches as well as ablation, cardiac resynchronisation and contractility modulation therapies. For models to be included as a vital component of the decision process in safety-critical applications, rigorous assessment of model credibility will be required. This White Paper describes one aspect of this process by identifying and classifying sources of variability and uncertainty in models as well as their implications for the application and development of cardiac models. We stress the need to understand and quantify the sources of variability and uncertainty in model inputs, and the impact of model structure and complexity and their consequences for predictive model outputs. We propose that the future of the Cardiac Physiome should include a probabilistic approach to quantify the relationship of variability and uncertainty of model inputs and outputs. © 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  5. NASA/MSFC multilayer diffusion models and computer program for operational prediction of toxic fuel hazards

    NASA Technical Reports Server (NTRS)

    Dumbauld, R. K.; Bjorklund, J. R.; Bowers, J. F.

    1973-01-01

    The NASA/MSFC multilayer diffusion models are discribed which are used in applying meteorological information to the estimation of toxic fuel hazards resulting from the launch of rocket vehicle and from accidental cold spills and leaks of toxic fuels. Background information, definitions of terms, description of the multilayer concept are presented along with formulas for determining the buoyant rise of hot exhaust clouds or plumes from conflagrations, and descriptions of the multilayer diffusion models. A brief description of the computer program is given, and sample problems and their solutions are included. Derivations of the cloud rise formulas, users instructions, and computer program output lists are also included.

  6. Bayesian History Matching of Complex Infectious Disease Models Using Emulation: A Tutorial and a Case Study on HIV in Uganda

    PubMed Central

    Andrianakis, Ioannis; Vernon, Ian R.; McCreesh, Nicky; McKinley, Trevelyan J.; Oakley, Jeremy E.; Nsubuga, Rebecca N.; Goldstein, Michael; White, Richard G.

    2015-01-01

    Advances in scientific computing have allowed the development of complex models that are being routinely applied to problems in disease epidemiology, public health and decision making. The utility of these models depends in part on how well they can reproduce empirical data. However, fitting such models to real world data is greatly hindered both by large numbers of input and output parameters, and by long run times, such that many modelling studies lack a formal calibration methodology. We present a novel method that has the potential to improve the calibration of complex infectious disease models (hereafter called simulators). We present this in the form of a tutorial and a case study where we history match a dynamic, event-driven, individual-based stochastic HIV simulator, using extensive demographic, behavioural and epidemiological data available from Uganda. The tutorial describes history matching and emulation. History matching is an iterative procedure that reduces the simulator's input space by identifying and discarding areas that are unlikely to provide a good match to the empirical data. History matching relies on the computational efficiency of a Bayesian representation of the simulator, known as an emulator. Emulators mimic the simulator's behaviour, but are often several orders of magnitude faster to evaluate. In the case study, we use a 22 input simulator, fitting its 18 outputs simultaneously. After 9 iterations of history matching, a non-implausible region of the simulator input space was identified that was times smaller than the original input space. Simulator evaluations made within this region were found to have a 65% probability of fitting all 18 outputs. History matching and emulation are useful additions to the toolbox of infectious disease modellers. Further research is required to explicitly address the stochastic nature of the simulator as well as to account for correlations between outputs. PMID:25569850

  7. A Scalable Cloud Library Empowering Big Data Management, Diagnosis, and Visualization of Cloud-Resolving Models

    NASA Astrophysics Data System (ADS)

    Zhou, S.; Tao, W. K.; Li, X.; Matsui, T.; Sun, X. H.; Yang, X.

    2015-12-01

    A cloud-resolving model (CRM) is an atmospheric numerical model that can numerically resolve clouds and cloud systems at 0.25~5km horizontal grid spacings. The main advantage of the CRM is that it can allow explicit interactive processes between microphysics, radiation, turbulence, surface, and aerosols without subgrid cloud fraction, overlapping and convective parameterization. Because of their fine resolution and complex physical processes, it is challenging for the CRM community to i) visualize/inter-compare CRM simulations, ii) diagnose key processes for cloud-precipitation formation and intensity, and iii) evaluate against NASA's field campaign data and L1/L2 satellite data products due to large data volume (~10TB) and complexity of CRM's physical processes. We have been building the Super Cloud Library (SCL) upon a Hadoop framework, capable of CRM database management, distribution, visualization, subsetting, and evaluation in a scalable way. The current SCL capability includes (1) A SCL data model enables various CRM simulation outputs in NetCDF, including the NASA-Unified Weather Research and Forecasting (NU-WRF) and Goddard Cumulus Ensemble (GCE) model, to be accessed and processed by Hadoop, (2) A parallel NetCDF-to-CSV converter supports NU-WRF and GCE model outputs, (3) A technique visualizes Hadoop-resident data with IDL, (4) A technique subsets Hadoop-resident data, compliant to the SCL data model, with HIVE or Impala via HUE's Web interface, (5) A prototype enables a Hadoop MapReduce application to dynamically access and process data residing in a parallel file system, PVFS2 or CephFS, where high performance computing (HPC) simulation outputs such as NU-WRF's and GCE's are located. We are testing Apache Spark to speed up SCL data processing and analysis.With the SCL capabilities, SCL users can conduct large-domain on-demand tasks without downloading voluminous CRM datasets and various observations from NASA Field Campaigns and Satellite data to a local computer, and inter-compare CRM output and data with GCE and NU-WRF.

  8. MODFLOW 2000 Head Uncertainty, a First-Order Second Moment Method

    USGS Publications Warehouse

    Glasgow, H.S.; Fortney, M.D.; Lee, J.; Graettinger, A.J.; Reeves, H.W.

    2003-01-01

    A computationally efficient method to estimate the variance and covariance in piezometric head results computed through MODFLOW 2000 using a first-order second moment (FOSM) approach is presented. This methodology employs a first-order Taylor series expansion to combine model sensitivity with uncertainty in geologic data. MODFLOW 2000 is used to calculate both the ground water head and the sensitivity of head to changes in input data. From a limited number of samples, geologic data are extrapolated and their associated uncertainties are computed through a conditional probability calculation. Combining the spatially related sensitivity and input uncertainty produces the variance-covariance matrix, the diagonal of which is used to yield the standard deviation in MODFLOW 2000 head. The variance in piezometric head can be used for calibrating the model, estimating confidence intervals, directing exploration, and evaluating the reliability of a design. A case study illustrates the approach, where aquifer transmissivity is the spatially related uncertain geologic input data. The FOSM methodology is shown to be applicable for calculating output uncertainty for (1) spatially related input and output data, and (2) multiple input parameters (transmissivity and recharge).

  9. Consistency of Cluster Analysis for Cognitive Diagnosis: The Reduced Reparameterized Unified Model and the General Diagnostic Model.

    PubMed

    Chiu, Chia-Yi; Köhn, Hans-Friedrich

    2016-09-01

    The asymptotic classification theory of cognitive diagnosis (ACTCD) provided the theoretical foundation for using clustering methods that do not rely on a parametric statistical model for assigning examinees to proficiency classes. Like general diagnostic classification models, clustering methods can be useful in situations where the true diagnostic classification model (DCM) underlying the data is unknown and possibly misspecified, or the items of a test conform to a mix of multiple DCMs. Clustering methods can also be an option when fitting advanced and complex DCMs encounters computational difficulties. These can range from the use of excessive CPU times to plain computational infeasibility. However, the propositions of the ACTCD have only been proven for the Deterministic Input Noisy Output "AND" gate (DINA) model and the Deterministic Input Noisy Output "OR" gate (DINO) model. For other DCMs, there does not exist a theoretical justification to use clustering for assigning examinees to proficiency classes. But if clustering is to be used legitimately, then the ACTCD must cover a larger number of DCMs than just the DINA model and the DINO model. Thus, the purpose of this article is to prove the theoretical propositions of the ACTCD for two other important DCMs, the Reduced Reparameterized Unified Model and the General Diagnostic Model.

  10. A Blueprint for Demonstrating Quantum Supremacy with Superconducting Qubits

    NASA Technical Reports Server (NTRS)

    Kechedzhi, Kostyantyn

    2018-01-01

    Long coherence times and high fidelity control recently achieved in scalable superconducting circuits paved the way for the growing number of experimental studies of many-qubit quantum coherent phenomena in these devices. Albeit full implementation of quantum error correction and fault tolerant quantum computation remains a challenge the near term pre-error correction devices could allow new fundamental experiments despite inevitable accumulation of errors. One such open question foundational for quantum computing is achieving the so called quantum supremacy, an experimental demonstration of a computational task that takes polynomial time on the quantum computer whereas the best classical algorithm would require exponential time and/or resources. It is possible to formulate such a task for a quantum computer consisting of less than a 100 qubits. The computational task we consider is to provide approximate samples from a non-trivial quantum distribution. This is a generalization for the case of superconducting circuits of ideas behind boson sampling protocol for quantum optics introduced by Arkhipov and Aaronson. In this presentation we discuss a proof-of-principle demonstration of such a sampling task on a 9-qubit chain of superconducting gmon qubits developed by Google. We discuss theoretical analysis of the driven evolution of the device resulting in output approximating samples from a uniform distribution in the Hilbert space, a quantum chaotic state. We analyze quantum chaotic characteristics of the output of the circuit and the time required to generate a sufficiently complex quantum distribution. We demonstrate that the classical simulation of the sampling output requires exponential resources by connecting the task of calculating the output amplitudes to the sign problem of the Quantum Monte Carlo method. We also discuss the detailed theoretical modeling required to achieve high fidelity control and calibration of the multi-qubit unitary evolution in the device. We use a novel cross-entropy statistical metric as a figure of merit to verify the output and calibrate the device controls. Finally, we demonstrate the statistics of the wave function amplitudes generated on the 9-gmon chain and verify the quantum chaotic nature of the generated quantum distribution. This verifies the implementation of the quantum supremacy protocol.

  11. The economic impact of public resource supply constraints in northeast Oregon.

    Treesearch

    Edward C Waters; David W. Holland; Richard W. Haynes

    1977-01-01

    Traditional, fixed-price (input-output) economic models provide a useful framework for conceptualizing links in a regional economy. Apparent shortcomings in these models, however, can severely restrict our ability to deduce valid prescriptions for public policy and economic development. A more efficient approach using regional computable general equilibrium (CGE)...

  12. Applications products of aviation forecast models

    NASA Technical Reports Server (NTRS)

    Garthner, John P.

    1988-01-01

    A service called the Optimum Path Aircraft Routing System (OPARS) supplies products based on output data from the Naval Oceanographic Global Atmospheric Prediction System (NOGAPS), a model run on a Cyber-205 computer. Temperatures and winds are extracted from the surface to 100 mb, approximately 55,000 ft. Forecast winds are available in six-hour time steps.

  13. User's Guide to the Stand Prognosis Model

    Treesearch

    William R. Wykoff; Nicholas L. Crookston; Albert R. Stage

    1982-01-01

    The Stand Prognosis Model is a computer program that projects the development of forest stands in the Northern Rocky Mountains. Thinning options allow for simulation of a variety of management strategies. Input consists of a stand inventory, including sample tree records, and a set of option selection instructions. Output includes data normally found in stand, stock,...

  14. Modeling and validation of single-chamber microbial fuel cell cathode biofilm growth and response to oxidant gas composition

    NASA Astrophysics Data System (ADS)

    Ou, Shiqi; Zhao, Yi; Aaron, Douglas S.; Regan, John M.; Mench, Matthew M.

    2016-10-01

    This work describes experiments and computational simulations to analyze single-chamber, air-cathode microbial fuel cell (MFC) performance and cathodic limitations in terms of current generation, power output, mass transport, biomass competition, and biofilm growth. Steady-state and transient cathode models were developed and experimentally validated. Two cathode gas mixtures were used to explore oxygen transport in the cathode: the MFCs exposed to a helium-oxygen mixture (heliox) produced higher current and power output than the group of MFCs exposed to air or a nitrogen-oxygen mixture (nitrox), indicating a dependence on gas-phase transport in the cathode. Multi-substance transport, biological reactions, and electrochemical reactions in a multi-layer and multi-biomass cathode biofilm were also simulated in a transient model. The transient model described biofilm growth over 15 days while providing insight into mass transport and cathodic dissolved species concentration profiles during biofilm growth. Simulation results predict that the dissolved oxygen content and diffusion in the cathode are key parameters affecting the power output of the air-cathode MFC system, with greater oxygen content in the cathode resulting in increased power output and fully-matured biomass.

  15. Modeling and validation of single-chamber microbial fuel cell cathode biofilm growth and response to oxidant gas composition

    DOE PAGES

    Ou, Shiqi; Zhao, Yi; Aaron, Douglas S.; ...

    2016-08-15

    This work describes experiments and computational simulations to analyze single-chamber, air-cathode microbial fuel cell (MFC) performance and cathodic limitations in terms of current generation, power output, mass transport, biomass competition, and biofilm growth. Steady-state and transient cathode models were developed and experimentally validated. Two cathode gas mixtures were used to explore oxygen transport in the cathode: the MFCs exposed to a helium-oxygen mixture (heliox) produced higher current and power output than the group of MFCs exposed to air or a nitrogen-oxygen mixture (nitrox), indicating a dependence on gas-phase transport in the cathode. Multi-substance transport, biological reactions, and electrochemical reactions inmore » a multi-layer and multi-biomass cathode biofilm were also simulated in a transient model. The transient model described biofilm growth over 15 days while providing insight into mass transport and cathodic dissolved species concentration profiles during biofilm growth. Lastly, simulation results predict that the dissolved oxygen content and diffusion in the cathode are key parameters affecting the power output of the air-cathode MFC system, with greater oxygen content in the cathode resulting in increased power output and fully-matured biomass.« less

  16. A computational model-based validation of Guyton's analysis of cardiac output and venous return curves

    NASA Technical Reports Server (NTRS)

    Mukkamala, R.; Cohen, R. J.; Mark, R. G.

    2002-01-01

    Guyton developed a popular approach for understanding the factors responsible for cardiac output (CO) regulation in which 1) the heart-lung unit and systemic circulation are independently characterized via CO and venous return (VR) curves, and 2) average CO and right atrial pressure (RAP) of the intact circulation are predicted by graphically intersecting the curves. However, this approach is virtually impossible to verify experimentally. We theoretically evaluated the approach with respect to a nonlinear, computational model of the pulsatile heart and circulation. We developed two sets of open circulation models to generate CO and VR curves, differing by the manner in which average RAP was varied. One set applied constant RAPs, while the other set applied pulsatile RAPs. Accurate prediction of intact, average CO and RAP was achieved only by intersecting the CO and VR curves generated with pulsatile RAPs because of the pulsatility and nonlinearity (e.g., systemic venous collapse) of the intact model. The CO and VR curves generated with pulsatile RAPs were also practically independent. This theoretical study therefore supports the validity of Guyton's graphical analysis.

  17. Fast computation of derivative based sensitivities of PSHA models via algorithmic differentiation

    NASA Astrophysics Data System (ADS)

    Leövey, Hernan; Molkenthin, Christian; Scherbaum, Frank; Griewank, Andreas; Kuehn, Nicolas; Stafford, Peter

    2015-04-01

    Probabilistic seismic hazard analysis (PSHA) is the preferred tool for estimation of potential ground-shaking hazard due to future earthquakes at a site of interest. A modern PSHA represents a complex framework which combines different models with possible many inputs. Sensitivity analysis is a valuable tool for quantifying changes of a model output as inputs are perturbed, identifying critical input parameters and obtaining insight in the model behavior. Differential sensitivity analysis relies on calculating first-order partial derivatives of the model output with respect to its inputs. Moreover, derivative based global sensitivity measures (Sobol' & Kucherenko '09) can be practically used to detect non-essential inputs of the models, thus restricting the focus of attention to a possible much smaller set of inputs. Nevertheless, obtaining first-order partial derivatives of complex models with traditional approaches can be very challenging, and usually increases the computation complexity linearly with the number of inputs appearing in the models. In this study we show how Algorithmic Differentiation (AD) tools can be used in a complex framework such as PSHA to successfully estimate derivative based sensitivities, as is the case in various other domains such as meteorology or aerodynamics, without no significant increase in the computation complexity required for the original computations. First we demonstrate the feasibility of the AD methodology by comparing AD derived sensitivities to analytically derived sensitivities for a basic case of PSHA using a simple ground-motion prediction equation. In a second step, we derive sensitivities via AD for a more complex PSHA study using a ground motion attenuation relation based on a stochastic method to simulate strong motion. The presented approach is general enough to accommodate more advanced PSHA studies of higher complexity.

  18. Evaluation of MM5 model resolution when applied to prediction of national fire danger rating indexes

    Treesearch

    Jeanne L. Hoadley; Miriam L. Rorig; Larry Bradshaw; Sue A. Ferguson; Kenneth J. Westrick; Scott L. Goodrick; Paul Werth

    2006-01-01

    Weather predictions from the MM5 mesoscale model were used to compute gridded predictions of National Fire Danger Rating System (NFDRS) indexes. The model output was applied to a case study of the 2000 fire season in Northern Idaho and Western Montana to simulate an extreme event. To determine the preferred resolution for automating NFD RS predictions, model...

  19. DET/MPS - The GSFC Energy Balance Programs

    NASA Technical Reports Server (NTRS)

    Jagielski, J. M.

    1994-01-01

    Direct Energy Transfer (DET) and MultiMission Spacecraft Modular Power System (MPS) computer programs perform mathematical modeling and simulation to aid in design and analysis of DET and MPS spacecraft power system performance in order to determine energy balance of subsystem. DET spacecraft power system feeds output of solar photovoltaic array and nickel cadmium batteries directly to spacecraft bus. MPS system, Standard Power Regulator Unit (SPRU) utilized to operate array at array's peak power point. DET and MPS perform minute-by-minute simulation of performance of power system. Results of simulation focus mainly on output of solar array and characteristics of batteries. Both packages limited in terms of orbital mechanics, they have sufficient capability to calculate data on eclipses and performance of arrays for circular or near-circular orbits. DET and MPS written in FORTRAN-77 with some VAX FORTRAN-type extensions. Both available in three versions: GSC-13374, for DEC VAX-series computers running VMS. GSC-13443, for UNIX-based computers. GSC-13444, for Apple Macintosh computers.

  20. Failure Bounding And Sensitivity Analysis Applied To Monte Carlo Entry, Descent, And Landing Simulations

    NASA Technical Reports Server (NTRS)

    Gaebler, John A.; Tolson, Robert H.

    2010-01-01

    In the study of entry, descent, and landing, Monte Carlo sampling methods are often employed to study the uncertainty in the designed trajectory. The large number of uncertain inputs and outputs, coupled with complicated non-linear models, can make interpretation of the results difficult. Three methods that provide statistical insights are applied to an entry, descent, and landing simulation. The advantages and disadvantages of each method are discussed in terms of the insights gained versus the computational cost. The first method investigated was failure domain bounding which aims to reduce the computational cost of assessing the failure probability. Next a variance-based sensitivity analysis was studied for the ability to identify which input variable uncertainty has the greatest impact on the uncertainty of an output. Finally, probabilistic sensitivity analysis is used to calculate certain sensitivities at a reduced computational cost. These methods produce valuable information that identifies critical mission parameters and needs for new technology, but generally at a significant computational cost.

  1. Fast Query-Optimized Kernel-Machine Classification

    NASA Technical Reports Server (NTRS)

    Mazzoni, Dominic; DeCoste, Dennis

    2004-01-01

    A recently developed algorithm performs kernel-machine classification via incremental approximate nearest support vectors. The algorithm implements support-vector machines (SVMs) at speeds 10 to 100 times those attainable by use of conventional SVM algorithms. The algorithm offers potential benefits for classification of images, recognition of speech, recognition of handwriting, and diverse other applications in which there are requirements to discern patterns in large sets of data. SVMs constitute a subset of kernel machines (KMs), which have become popular as models for machine learning and, more specifically, for automated classification of input data on the basis of labeled training data. While similar in many ways to k-nearest-neighbors (k-NN) models and artificial neural networks (ANNs), SVMs tend to be more accurate. Using representations that scale only linearly in the numbers of training examples, while exploring nonlinear (kernelized) feature spaces that are exponentially larger than the original input dimensionality, KMs elegantly and practically overcome the classic curse of dimensionality. However, the price that one must pay for the power of KMs is that query-time complexity scales linearly with the number of training examples, making KMs often orders of magnitude more computationally expensive than are ANNs, decision trees, and other popular machine learning alternatives. The present algorithm treats an SVM classifier as a special form of a k-NN. The algorithm is based partly on an empirical observation that one can often achieve the same classification as that of an exact KM by using only small fraction of the nearest support vectors (SVs) of a query. The exact KM output is a weighted sum over the kernel values between the query and the SVs. In this algorithm, the KM output is approximated with a k-NN classifier, the output of which is a weighted sum only over the kernel values involving k selected SVs. Before query time, there are gathered statistics about how misleading the output of the k-NN model can be, relative to the outputs of the exact KM for a representative set of examples, for each possible k from 1 to the total number of SVs. From these statistics, there are derived upper and lower thresholds for each step k. These thresholds identify output levels for which the particular variant of the k-NN model already leans so strongly positively or negatively that a reversal in sign is unlikely, given the weaker SV neighbors still remaining. At query time, the partial output of each query is incrementally updated, stopping as soon as it exceeds the predetermined statistical thresholds of the current step. For an easy query, stopping can occur as early as step k = 1. For more difficult queries, stopping might not occur until nearly all SVs are touched. A key empirical observation is that this approach can tolerate very approximate nearest-neighbor orderings. In experiments, SVs and queries were projected to a subspace comprising the top few principal- component dimensions and neighbor orderings were computed in that subspace. This approach ensured that the overhead of the nearest-neighbor computations was insignificant, relative to that of the exact KM computation.

  2. Identification and modeling of the electrohydraulic systems of the main gun of a main battle tank

    NASA Astrophysics Data System (ADS)

    Campos, Luiz C. A.; Menegaldo, Luciano L.

    2012-11-01

    The black-box mathematical models of the electrohydraulic systems responsible for driving the two degrees of freedom (elevation and azimuth) of the main gun of a main battle tank (MBT) were identified. Such systems respond to gunner's inputs while acquiring and tracking targets. Identification experiments were designed to collect simultaneous data from two inertial measurement units (IMU) installed at the gunner's handle (input) and at the center of rotation of the turret (output), for the identification of the azimuth system. For the elevation system, IMUs were installed at the gunner's handle (input) and at the breech of the gun (output). Linear accelerations and angular rates were collected for both input and output. Several black-box model architectures were investigated. As a result, nonlinear autoregressive with exogenous variables (NARX) second order model and nonlinear finite impulse response (NFIR) fourth order model, demonstrate to best fit the experimental data, with low computational costs. The derived models are being employed in a broader research, aiming to reproduce such systems in a laboratory virtual main gun simulator.

  3. Emulation and Sobol' sensitivity analysis of an atmospheric dispersion model applied to the Fukushima nuclear accident

    NASA Astrophysics Data System (ADS)

    Girard, Sylvain; Mallet, Vivien; Korsakissok, Irène; Mathieu, Anne

    2016-04-01

    Simulations of the atmospheric dispersion of radionuclides involve large uncertainties originating from the limited knowledge of meteorological input data, composition, amount and timing of emissions, and some model parameters. The estimation of these uncertainties is an essential complement to modeling for decision making in case of an accidental release. We have studied the relative influence of a set of uncertain inputs on several outputs from the Eulerian model Polyphemus/Polair3D on the Fukushima case. We chose to use the variance-based sensitivity analysis method of Sobol'. This method requires a large number of model evaluations which was not achievable directly due to the high computational cost of Polyphemus/Polair3D. To circumvent this issue, we built a mathematical approximation of the model using Gaussian process emulation. We observed that aggregated outputs are mainly driven by the amount of emitted radionuclides, while local outputs are mostly sensitive to wind perturbations. The release height is notably influential, but only in the vicinity of the source. Finally, averaging either spatially or temporally tends to cancel out interactions between uncertain inputs.

  4. Comparison of Computational-Model and Experimental-Example Trained Neural Networks for Processing Speckled Fringe Patterns

    NASA Technical Reports Server (NTRS)

    Decker, A. J.; Fite, E. B.; Thorp, S. A.; Mehmed, O.

    1998-01-01

    The responses of artificial neural networks to experimental and model-generated inputs are compared for detection of damage in twisted fan blades using electronic holography. The training-set inputs, for this work, are experimentally generated characteristic patterns of the vibrating blades. The outputs are damage-flag indicators or second derivatives of the sensitivity-vector-projected displacement vectors from a finite element model. Artificial neural networks have been trained in the past with computational-model-generated training sets. This approach avoids the difficult inverse calculations traditionally used to compare interference fringes with the models. But the high modeling standards are hard to achieve, even with fan-blade finite-element models.

  5. Comparison of Computational, Model and Experimental, Example Trained Neural Networks for Processing Speckled Fringe Patterns

    NASA Technical Reports Server (NTRS)

    Decker, A. J.; Fite, E. B.; Thorp, S. A.; Mehmed, O.

    1998-01-01

    The responses of artificial neural networks to experimental and model-generated inputs are compared for detection of damage in twisted fan blades using electronic holography. The training-set inputs, for this work, are experimentally generated characteristic patterns of the vibrating blades. The outputs are damage-flag indicators or second derivatives of the sensitivity-vector-projected displacement vectors from a finite element model. Artificial neural networks have been trained in the past with computational-model- generated training sets. This approach avoids the difficult inverse calculations traditionally used to compare interference fringes with the models. But the high modeling standards are hard to achieve, even with fan-blade finite-element models.

  6. Transient Stability Output Margin Estimation Based on Energy Function Method

    NASA Astrophysics Data System (ADS)

    Miwa, Natsuki; Tanaka, Kazuyuki

    In this paper, a new method of estimating critical generation margin (CGM) in power systems is proposed from the viewpoint of transient stability diagnostic. The proposed method has the capability to directly compute the stability limit output for a given contingency based on transient energy function method (TEF). Since CGM can be directly obtained by the limit output using estimated P-θ curves and is easy to understand, it is more useful rather than conventional critical clearing time (CCT) of energy function method. The proposed method can also estimate CGM as its negative value that means unstable in present load profile, then negative CGM can be directly utilized as generator output restriction. The proposed method is verified its accuracy and fast solution ability by applying to simple 3-machine model and IEEJ EAST10-machine standard model. Furthermore the useful application to severity ranking of transient stability for a lot of contingency cases is discussed by using CGM.

  7. Computer input and output files associated with ground-water-flow simulations of the Albuquerque Basin, central New Mexico, 1901-95, with projections to 2020; (supplement three to U.S. Geological Survey Water-resources investigations report 94-4251)

    USGS Publications Warehouse

    Kernodle, J.M.

    1996-01-01

    This report presents the computer input files required to run the three-dimensional ground-water-flow model of the Albuquerque Basin, central New Mexico, documented in Kernodle and others (Kernodle, J.M., McAda, D.P., and Thorn, C.R., 1995, Simulation of ground-water flow in the Albuquerque Basin, central New Mexico, 1901-1994, with projections to 2020: U.S. Geological Survey Water-Resources Investigations Report 94-4251, 114 p.) and revised by Kernodle (Kernodle, J.M., 1998, Simulation of ground-water flow in the Albuquerque Basin, 1901-95, with projections to 2020 (supplement two to U.S. Geological Survey Water-Resources Investigations Report 94-4251): U.S. Geological Survey Open-File Report 96-209, 54 p.). Output files resulting from the computer simulations are included for reference.

  8. Computer code for preliminary sizing analysis of axial-flow turbines

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.

    1992-01-01

    This mean diameter flow analysis uses a stage average velocity diagram as the basis for the computational efficiency. Input design requirements include power or pressure ratio, flow rate, temperature, pressure, and rotative speed. Turbine designs are generated for any specified number of stages and for any of three types of velocity diagrams (symmetrical, zero exit swirl, or impulse) or for any specified stage swirl split. Exit turning vanes can be included in the design. The program output includes inlet and exit annulus dimensions, exit temperature and pressure, total and static efficiencies, flow angles, and last stage absolute and relative Mach numbers. An analysis is presented along with a description of the computer program input and output with sample cases. The analysis and code presented herein are modifications of those described in NASA-TN-D-6702. These modifications improve modeling rigor and extend code applicability.

  9. Boolean Modeling of Neural Systems with Point-Process Inputs and Outputs. Part I: Theory and Simulations

    PubMed Central

    Marmarelis, Vasilis Z.; Zanos, Theodoros P.; Berger, Theodore W.

    2010-01-01

    This paper presents a new modeling approach for neural systems with point-process (spike) inputs and outputs that utilizes Boolean operators (i.e. modulo 2 multiplication and addition that correspond to the logical AND and OR operations respectively, as well as the AND_NOT logical operation representing inhibitory effects). The form of the employed mathematical models is akin to a “Boolean-Volterra” model that contains the product terms of all relevant input lags in a hierarchical order, where terms of order higher than first represent nonlinear interactions among the various lagged values of each input point-process or among lagged values of various inputs (if multiple inputs exist) as they reflect on the output. The coefficients of this Boolean-Volterra model are also binary variables that indicate the presence or absence of the respective term in each specific model/system. Simulations are used to explore the properties of such models and the feasibility of their accurate estimation from short data-records in the presence of noise (i.e. spurious spikes). The results demonstrate the feasibility of obtaining reliable estimates of such models, with excitatory and inhibitory terms, in the presence of considerable noise (spurious spikes) in the outputs and/or the inputs in a computationally efficient manner. A pilot application of this approach to an actual neural system is presented in the companion paper (Part II). PMID:19517238

  10. Proposal for Microwave Boson Sampling.

    PubMed

    Peropadre, Borja; Guerreschi, Gian Giacomo; Huh, Joonsuk; Aspuru-Guzik, Alán

    2016-09-30

    Boson sampling, the task of sampling the probability distribution of photons at the output of a photonic network, is believed to be hard for any classical device. Unlike other models of quantum computation that require thousands of qubits to outperform classical computers, boson sampling requires only a handful of single photons. However, a scalable implementation of boson sampling is missing. Here, we show how superconducting circuits provide such platform. Our proposal differs radically from traditional quantum-optical implementations: rather than injecting photons in waveguides, making them pass through optical elements like phase shifters and beam splitters, and finally detecting their output mode, we prepare the required multiphoton input state in a superconducting resonator array, control its dynamics via tunable and dispersive interactions, and measure it with nondemolition techniques.

  11. High temperature composite analyzer (HITCAN) user's manual, version 1.0

    NASA Technical Reports Server (NTRS)

    Lackney, J. J.; Singhal, S. N.; Murthy, P. L. N.; Gotsis, P.

    1993-01-01

    This manual describes 'how-to-use' the computer code, HITCAN (HIgh Temperature Composite ANalyzer). HITCAN is a general purpose computer program for predicting nonlinear global structural and local stress-strain response of arbitrarily oriented, multilayered high temperature metal matrix composite structures. This code combines composite mechanics and laminate theory with an internal data base for material properties of the constituents (matrix, fiber and interphase). The thermo-mechanical properties of the constituents are considered to be nonlinearly dependent on several parameters including temperature, stress and stress rate. The computation procedure for the analysis of the composite structures uses the finite element method. HITCAN is written in FORTRAN 77 computer language and at present has been configured and executed on the NASA Lewis Research Center CRAY XMP and YMP computers. This manual describes HlTCAN's capabilities and limitations followed by input/execution/output descriptions and example problems. The input is described in detail including (1) geometry modeling, (2) types of finite elements, (3) types of analysis, (4) material data, (5) types of loading, (6) boundary conditions, (7) output control, (8) program options, and (9) data bank.

  12. Simulation of human decision making

    DOEpatents

    Forsythe, J Chris [Sandia Park, NM; Speed, Ann E [Albuquerque, NM; Jordan, Sabina E [Albuquerque, NM; Xavier, Patrick G [Albuquerque, NM

    2008-05-06

    A method for computer emulation of human decision making defines a plurality of concepts related to a domain and a plurality of situations related to the domain, where each situation is a combination of at least two of the concepts. Each concept and situation is represented in the computer as an oscillator output, and each situation and concept oscillator output is distinguishable from all other oscillator outputs. Information is input to the computer representative of detected concepts, and the computer compares the detected concepts with the stored situations to determine if a situation has occurred.

  13. Inversion-based propofol dosing for intravenous induction of hypnosis

    NASA Astrophysics Data System (ADS)

    Padula, F.; Ionescu, C.; Latronico, N.; Paltenghi, M.; Visioli, A.; Vivacqua, G.

    2016-10-01

    In this paper we propose an inversion-based methodology for the computation of a feedforward action for the propofol intravenous administration during the induction of hypnosis in general anesthesia. In particular, the typical initial bolus is substituted with a command signal that is obtained by predefining a desired output and by applying an input-output inversion procedure. The robustness of the method has been tested by considering a set of patients with different model parameters, which is representative of a large population.

  14. GUI for Computational Simulation of a Propellant Mixer

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Richter, Hanz; Barbieri, Enrique; Granger, Jamie

    2005-01-01

    Control Panel is a computer program that generates a graphical user interface (GUI) for computational simulation of a rocket-test-stand propellant mixer in which gaseous hydrogen (GH2) is injected into flowing liquid hydrogen (LH2) to obtain a combined flow having desired thermodynamic properties. The GUI is used in conjunction with software that models the mixer as a system having three inputs (the positions of the GH2 and LH2 inlet valves and an outlet valve) and three outputs (the pressure inside the mixer and the outlet flow temperature and flow rate). The user can specify valve characteristics and thermodynamic properties of the input fluids via userfriendly dialog boxes. The user can enter temporally varying input values or temporally varying desired output values. The GUI provides (1) a set-point calculator function for determining fixed valve positions that yield desired output values and (2) simulation functions that predict the response of the mixer to variations in the properties of the LH2 and GH2 and manual- or feedback-control variations in valve positions. The GUI enables scheduling of a sequence of operations that includes switching from manual to feedback control when a certain event occurs.

  15. Beyond standard model calculations with Sherpa

    DOE PAGES

    Höche, Stefan; Kuttimalai, Silvan; Schumann, Steffen; ...

    2015-03-24

    We present a fully automated framework as part of the Sherpa event generator for the computation of tree-level cross sections in beyond Standard Model scenarios, making use of model information given in the Universal FeynRules Output format. Elementary vertices are implemented into C++ code automatically and provided to the matrix-element generator Comix at runtime. Widths and branching ratios for unstable particles are computed from the same building blocks. The corresponding decays are simulated with spin correlations. Parton showers, QED radiation and hadronization are added by Sherpa, providing a full simulation of arbitrary BSM processes at the hadron level.

  16. Beyond standard model calculations with Sherpa.

    PubMed

    Höche, Stefan; Kuttimalai, Silvan; Schumann, Steffen; Siegert, Frank

    We present a fully automated framework as part of the Sherpa event generator for the computation of tree-level cross sections in Beyond Standard Model scenarios, making use of model information given in the Universal FeynRules Output format. Elementary vertices are implemented into C++ code automatically and provided to the matrix-element generator Comix at runtime. Widths and branching ratios for unstable particles are computed from the same building blocks. The corresponding decays are simulated with spin correlations. Parton showers, QED radiation and hadronization are added by Sherpa, providing a full simulation of arbitrary BSM processes at the hadron level.

  17. LocalMove: computing on-lattice fits for biopolymers

    PubMed Central

    Ponty, Y.; Istrate, R.; Porcelli, E.; Clote, P.

    2008-01-01

    Given an input Protein Data Bank file (PDB) for a protein or RNA molecule, LocalMove is a web server that determines an on-lattice representation for the input biomolecule. The web server implements a Markov Chain Monte-Carlo algorithm with simulated annealing to compute an approximate fit for either the coarse-grain model or backbone model on either the cubic or face-centered cubic lattice. LocalMove returns a PDB file as output, as well as dynamic movie of 3D images of intermediate conformations during the computation. The LocalMove server is publicly available at http://bioinformatics.bc.edu/clotelab/localmove/. PMID:18556754

  18. Multi-Fidelity Uncertainty Propagation for Cardiovascular Modeling

    NASA Astrophysics Data System (ADS)

    Fleeter, Casey; Geraci, Gianluca; Schiavazzi, Daniele; Kahn, Andrew; Marsden, Alison

    2017-11-01

    Hemodynamic models are successfully employed in the diagnosis and treatment of cardiovascular disease with increasing frequency. However, their widespread adoption is hindered by our inability to account for uncertainty stemming from multiple sources, including boundary conditions, vessel material properties, and model geometry. In this study, we propose a stochastic framework which leverages three cardiovascular model fidelities: 3D, 1D and 0D models. 3D models are generated from patient-specific medical imaging (CT and MRI) of aortic and coronary anatomies using the SimVascular open-source platform, with fluid structure interaction simulations and Windkessel boundary conditions. 1D models consist of a simplified geometry automatically extracted from the 3D model, while 0D models are obtained from equivalent circuit representations of blood flow in deformable vessels. Multi-level and multi-fidelity estimators from Sandia's open-source DAKOTA toolkit are leveraged to reduce the variance in our estimated output quantities of interest while maintaining a reasonable computational cost. The performance of these estimators in terms of computational cost reductions is investigated for a variety of output quantities of interest, including global and local hemodynamic indicators. Sandia National Labs is a multimission laboratory managed and operated by NTESS, LLC, for the U.S. DOE under contract DE-NA0003525. Funding for this project provided by NIH-NIBIB R01 EB018302.

  19. Multiple piezo-patch energy harvesters integrated to a thin plate with AC-DC conversion: analytical modeling and numerical validation

    NASA Astrophysics Data System (ADS)

    Aghakhani, Amirreza; Basdogan, Ipek; Erturk, Alper

    2016-04-01

    Plate-like components are widely used in numerous automotive, marine, and aerospace applications where they can be employed as host structures for vibration based energy harvesting. Piezoelectric patch harvesters can be easily attached to these structures to convert the vibrational energy to the electrical energy. Power output investigations of these harvesters require accurate models for energy harvesting performance evaluation and optimization. Equivalent circuit modeling of the cantilever-based vibration energy harvesters for estimation of electrical response has been proposed in recent years. However, equivalent circuit formulation and analytical modeling of multiple piezo-patch energy harvesters integrated to thin plates including nonlinear circuits has not been studied. In this study, equivalent circuit model of multiple parallel piezoelectric patch harvesters together with a resistive load is built in electronic circuit simulation software SPICE and voltage frequency response functions (FRFs) are validated using the analytical distributedparameter model. Analytical formulation of the piezoelectric patches in parallel configuration for the DC voltage output is derived while the patches are connected to a standard AC-DC circuit. The analytic model is based on the equivalent load impedance approach for piezoelectric capacitance and AC-DC circuit elements. The analytic results are validated numerically via SPICE simulations. Finally, DC power outputs of the harvesters are computed and compared with the peak power amplitudes in the AC output case.

  20. Modelling the human immunodeficiency virus (HIV) epidemic: A review of the substance and role of models in South Africa

    PubMed Central

    2018-01-01

    We review key mathematical models of the South African human immunodeficiency virus (HIV) epidemic from the early 1990s onwards. In our descriptions, we sometimes differentiate between the concepts of a model world and its mathematical or computational implementation. The model world is the conceptual realm in which we explicitly declare the rules – usually some simplification of ‘real world’ processes as we understand them. Computing details of informative scenarios in these model worlds is a task requiring specialist knowledge, but all other aspects of the modelling process, from describing the model world to identifying the scenarios and interpreting model outputs, should be understandable to anyone with an interest in the epidemic. PMID:29568647

  1. GAPPARD: a computationally efficient method of approximating gap-scale disturbance in vegetation models

    NASA Astrophysics Data System (ADS)

    Scherstjanoi, M.; Kaplan, J. O.; Thürig, E.; Lischke, H.

    2013-09-01

    Models of vegetation dynamics that are designed for application at spatial scales larger than individual forest gaps suffer from several limitations. Typically, either a population average approximation is used that results in unrealistic tree allometry and forest stand structure, or models have a high computational demand because they need to simulate both a series of age-based cohorts and a number of replicate patches to account for stochastic gap-scale disturbances. The detail required by the latter method increases the number of calculations by two to three orders of magnitude compared to the less realistic population average approach. In an effort to increase the efficiency of dynamic vegetation models without sacrificing realism, we developed a new method for simulating stand-replacing disturbances that is both accurate and faster than approaches that use replicate patches. The GAPPARD (approximating GAP model results with a Probabilistic Approach to account for stand Replacing Disturbances) method works by postprocessing the output of deterministic, undisturbed simulations of a cohort-based vegetation model by deriving the distribution of patch ages at any point in time on the basis of a disturbance probability. With this distribution, the expected value of any output variable can be calculated from the output values of the deterministic undisturbed run at the time corresponding to the patch age. To account for temporal changes in model forcing (e.g., as a result of climate change), GAPPARD performs a series of deterministic simulations and interpolates between the results in the postprocessing step. We integrated the GAPPARD method in the vegetation model LPJ-GUESS, and evaluated it in a series of simulations along an altitudinal transect of an inner-Alpine valley. We obtained results very similar to the output of the original LPJ-GUESS model that uses 100 replicate patches, but simulation time was reduced by approximately the factor 10. Our new method is therefore highly suited for rapidly approximating LPJ-GUESS results, and provides the opportunity for future studies over large spatial domains, allows easier parameterization of tree species, faster identification of areas of interesting simulation results, and comparisons with large-scale datasets and results of other forest models.

  2. A parallel computational model for GATE simulations.

    PubMed

    Rannou, F R; Vega-Acevedo, N; El Bitar, Z

    2013-12-01

    GATE/Geant4 Monte Carlo simulations are computationally demanding applications, requiring thousands of processor hours to produce realistic results. The classical strategy of distributing the simulation of individual events does not apply efficiently for Positron Emission Tomography (PET) experiments, because it requires a centralized coincidence processing and large communication overheads. We propose a parallel computational model for GATE that handles event generation and coincidence processing in a simple and efficient way by decentralizing event generation and processing but maintaining a centralized event and time coordinator. The model is implemented with the inclusion of a new set of factory classes that can run the same executable in sequential or parallel mode. A Mann-Whitney test shows that the output produced by this parallel model in terms of number of tallies is equivalent (but not equal) to its sequential counterpart. Computational performance evaluation shows that the software is scalable and well balanced. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Model input and output files for the simulation of time of arrival of landfill leachate at the water table, Municipal Solid Waste Landfill Facility, U.S. Army Air Defense Artillery Center and Fort Bliss, El Paso County, Texas

    USGS Publications Warehouse

    Abeyta, Cynthia G.; Frenzel, Peter F.

    1999-01-01

    This report contains listings of model input and output files for the simulation of the time of arrival of landfill leachate at the water table from the Municipal Solid Waste Landfill Facility (MSWLF), about 10 miles northeast of downtown El Paso, Texas. This simulation was done by the U.S. Geological Survey in cooperation with the U.S. Department of the Army, U.S. Army Air Defense Artillery Center and Fort Bliss, El Paso, Texas. The U.S. Environmental Protection Agency-developed Hydrologic Evaluation of Landfill Performance (HELP) and Multimedia Exposure Assessment (MULTIMED) computer models were used to simulate the production of leachate by a landfill and transport of landfill leachate to the water table. Model input data files used with and output files generated by the HELP and MULTIMED models are provided in ASCII format on a 3.5-inch 1.44-megabyte IBM-PC compatible floppy disk.

  4. Uncertainty importance analysis using parametric moment ratio functions.

    PubMed

    Wei, Pengfei; Lu, Zhenzhou; Song, Jingwen

    2014-02-01

    This article presents a new importance analysis framework, called parametric moment ratio function, for measuring the reduction of model output uncertainty when the distribution parameters of inputs are changed, and the emphasis is put on the mean and variance ratio functions with respect to the variances of model inputs. The proposed concepts efficiently guide the analyst to achieve a targeted reduction on the model output mean and variance by operating on the variances of model inputs. The unbiased and progressive unbiased Monte Carlo estimators are also derived for the parametric mean and variance ratio functions, respectively. Only a set of samples is needed for implementing the proposed importance analysis by the proposed estimators, thus the computational cost is free of input dimensionality. An analytical test example with highly nonlinear behavior is introduced for illustrating the engineering significance of the proposed importance analysis technique and verifying the efficiency and convergence of the derived Monte Carlo estimators. Finally, the moment ratio function is applied to a planar 10-bar structure for achieving a targeted 50% reduction of the model output variance. © 2013 Society for Risk Analysis.

  5. Stochastic process approximation for recursive estimation with guaranteed bound on the error covariance

    NASA Technical Reports Server (NTRS)

    Menga, G.

    1975-01-01

    An approach, is proposed for the design of approximate, fixed order, discrete time realizations of stochastic processes from the output covariance over a finite time interval, was proposed. No restrictive assumptions are imposed on the process; it can be nonstationary and lead to a high dimension realization. Classes of fixed order models are defined, having the joint covariance matrix of the combined vector of the outputs in the interval of definition greater or equal than the process covariance; (the difference matrix is nonnegative definite). The design is achieved by minimizing, in one of those classes, a measure of the approximation between the model and the process evaluated by the trace of the difference of the respective covariance matrices. Models belonging to these classes have the notable property that, under the same measurement system and estimator structure, the output estimation error covariance matrix computed on the model is an upper bound of the corresponding covariance on the real process. An application of the approach is illustrated by the modeling of random meteorological wind profiles from the statistical analysis of historical data.

  6. Variation in the Mississippi River Plume from Data Synthesis of Model Outputs and MODIS Imagery

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, C.; Kolker, A.; Chu, P. Y.

    2017-12-01

    Understanding the Mississippi River (MR) plume's interaction with the open ocean is crucial for understanding many processes in the Gulf of Mexico. Though the Mississippi River and its delta and plume have been studied extensively, recent archives of model products and satellite imagery have allowed us to highlight patterns in plume behavior over the last two decades through large scale data synthesis. Using 8 years of USGS discharge data and Landsat imagery, we identified the spatial extent, geographic patterns, depth, and freshwater concentration of the MR plume across seasons and years. Using 20 years of HYCOM (HYbrid Coordinate Ocean Model) analysis and reanalysis model output, and several years of NGOFS FVCOM model outputs, we mapped the minimum and maximum spatial area of the MR plume, and its varied extent east and west. From the synthesis and analysis of these data, the statistical probability of the MR plume's spatial area and geographical extent were computed. Measurements of the MR plume and its response to river discharge may predict future behavior and provide a path forward to understanding MR plume influence on nearby ecosystems.

  7. Dynamic visual attention: motion direction versus motion magnitude

    NASA Astrophysics Data System (ADS)

    Bur, A.; Wurtz, P.; Müri, R. M.; Hügli, H.

    2008-02-01

    Defined as an attentive process in the context of visual sequences, dynamic visual attention refers to the selection of the most informative parts of video sequence. This paper investigates the contribution of motion in dynamic visual attention, and specifically compares computer models designed with the motion component expressed either as the speed magnitude or as the speed vector. Several computer models, including static features (color, intensity and orientation) and motion features (magnitude and vector) are considered. Qualitative and quantitative evaluations are performed by comparing the computer model output with human saliency maps obtained experimentally from eye movement recordings. The model suitability is evaluated in various situations (synthetic and real sequences, acquired with fixed and moving camera perspective), showing advantages and inconveniences of each method as well as preferred domain of application.

  8. Uncertainty propagation of p-boxes using sparse polynomial chaos expansions

    NASA Astrophysics Data System (ADS)

    Schöbi, Roland; Sudret, Bruno

    2017-06-01

    In modern engineering, physical processes are modelled and analysed using advanced computer simulations, such as finite element models. Furthermore, concepts of reliability analysis and robust design are becoming popular, hence, making efficient quantification and propagation of uncertainties an important aspect. In this context, a typical workflow includes the characterization of the uncertainty in the input variables. In this paper, input variables are modelled by probability-boxes (p-boxes), accounting for both aleatory and epistemic uncertainty. The propagation of p-boxes leads to p-boxes of the output of the computational model. A two-level meta-modelling approach is proposed using non-intrusive sparse polynomial chaos expansions to surrogate the exact computational model and, hence, to facilitate the uncertainty quantification analysis. The capabilities of the proposed approach are illustrated through applications using a benchmark analytical function and two realistic engineering problem settings. They show that the proposed two-level approach allows for an accurate estimation of the statistics of the response quantity of interest using a small number of evaluations of the exact computational model. This is crucial in cases where the computational costs are dominated by the runs of high-fidelity computational models.

  9. Uncertainty propagation of p-boxes using sparse polynomial chaos expansions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schöbi, Roland, E-mail: schoebi@ibk.baug.ethz.ch; Sudret, Bruno, E-mail: sudret@ibk.baug.ethz.ch

    2017-06-15

    In modern engineering, physical processes are modelled and analysed using advanced computer simulations, such as finite element models. Furthermore, concepts of reliability analysis and robust design are becoming popular, hence, making efficient quantification and propagation of uncertainties an important aspect. In this context, a typical workflow includes the characterization of the uncertainty in the input variables. In this paper, input variables are modelled by probability-boxes (p-boxes), accounting for both aleatory and epistemic uncertainty. The propagation of p-boxes leads to p-boxes of the output of the computational model. A two-level meta-modelling approach is proposed using non-intrusive sparse polynomial chaos expansions tomore » surrogate the exact computational model and, hence, to facilitate the uncertainty quantification analysis. The capabilities of the proposed approach are illustrated through applications using a benchmark analytical function and two realistic engineering problem settings. They show that the proposed two-level approach allows for an accurate estimation of the statistics of the response quantity of interest using a small number of evaluations of the exact computational model. This is crucial in cases where the computational costs are dominated by the runs of high-fidelity computational models.« less

  10. Assessing the convergence of LHS Monte Carlo simulations of wastewater treatment models.

    PubMed

    Benedetti, Lorenzo; Claeys, Filip; Nopens, Ingmar; Vanrolleghem, Peter A

    2011-01-01

    Monte Carlo (MC) simulation appears to be the only currently adopted tool to estimate global sensitivities and uncertainties in wastewater treatment modelling. Such models are highly complex, dynamic and non-linear, requiring long computation times, especially in the scope of MC simulation, due to the large number of simulations usually required. However, no stopping rule to decide on the number of simulations required to achieve a given confidence in the MC simulation results has been adopted so far in the field. In this work, a pragmatic method is proposed to minimize the computation time by using a combination of several criteria. It makes no use of prior knowledge about the model, is very simple, intuitive and can be automated: all convenient features in engineering applications. A case study is used to show an application of the method, and the results indicate that the required number of simulations strongly depends on the model output(s) selected, and on the type and desired accuracy of the analysis conducted. Hence, no prior indication is available regarding the necessary number of MC simulations, but the proposed method is capable of dealing with these variations and stopping the calculations after convergence is reached.

  11. Observations in the Computer Room: L2 Output and Learner Behaviour

    ERIC Educational Resources Information Center

    Leahy, Christine

    2004-01-01

    This article draws on second language theory, particularly output theory as defined by Swain (1995), in order to conceptualise observations made in a computer-assisted language learning setting. It investigates second language output and learner behaviour within an electronic role-play setting, based on a subject-specific problem solving task and…

  12. Space-Shuttle Emulator Software

    NASA Technical Reports Server (NTRS)

    Arnold, Scott; Askew, Bill; Barry, Matthew R.; Leigh, Agnes; Mermelstein, Scott; Owens, James; Payne, Dan; Pemble, Jim; Sollinger, John; Thompson, Hiram; hide

    2007-01-01

    A package of software has been developed to execute a raw binary image of the space shuttle flight software for simulation of the computational effects of operation of space shuttle avionics. This software can be run on inexpensive computer workstations. Heretofore, it was necessary to use real flight computers to perform such tests and simulations. The package includes a program that emulates the space shuttle orbiter general- purpose computer [consisting of a central processing unit (CPU), input/output processor (IOP), master sequence controller, and buscontrol elements]; an emulator of the orbiter display electronics unit and models of the associated cathode-ray tubes, keyboards, and switch controls; computational models of the data-bus network; computational models of the multiplexer-demultiplexer components; an emulation of the pulse-code modulation master unit; an emulation of the payload data interleaver; a model of the master timing unit; a model of the mass memory unit; and a software component that ensures compatibility of telemetry and command services between the simulated space shuttle avionics and a mission control center. The software package is portable to several host platforms.

  13. Input guide for computer programs to generate thermodynamic data for air and Freon CF4

    NASA Technical Reports Server (NTRS)

    Tevepaugh, J. A.; Penny, M. M.; Baker, L. R., Jr.

    1975-01-01

    FORTRAN computer programs were developed to calculate the thermodynamic properties of Freon 14 and air for isentropic expansion from given plenum conditions. Thermodynamic properties for air are calculated with equations derived from the Beattie-Bridgeman nonstandard equation of state and, for Freon 14, with equations derived from the Redlich-Quang nonstandard equation of state. These two gases are used in scale model testing of model rocket nozzle flow fields which requires simulation of the prototype plume shape with a cold flow test approach. Utility of the computer programs for use in analytical prediction of flow fields is enhanced by arranging card or tape output of the data in a format compatible with a method-of-characteristics computer program.

  14. Computing Reliabilities Of Ceramic Components Subject To Fracture

    NASA Technical Reports Server (NTRS)

    Nemeth, N. N.; Gyekenyesi, J. P.; Manderscheid, J. M.

    1992-01-01

    CARES calculates fast-fracture reliability or failure probability of macroscopically isotropic ceramic components. Program uses results from commercial structural-analysis program (MSC/NASTRAN or ANSYS) to evaluate reliability of component in presence of inherent surface- and/or volume-type flaws. Computes measure of reliability by use of finite-element mathematical model applicable to multiple materials in sense model made function of statistical characterizations of many ceramic materials. Reliability analysis uses element stress, temperature, area, and volume outputs, obtained from two-dimensional shell and three-dimensional solid isoparametric or axisymmetric finite elements. Written in FORTRAN 77.

  15. Lognormal Approximations of Fault Tree Uncertainty Distributions.

    PubMed

    El-Shanawany, Ashraf Ben; Ardron, Keith H; Walker, Simon P

    2018-01-26

    Fault trees are used in reliability modeling to create logical models of fault combinations that can lead to undesirable events. The output of a fault tree analysis (the top event probability) is expressed in terms of the failure probabilities of basic events that are input to the model. Typically, the basic event probabilities are not known exactly, but are modeled as probability distributions: therefore, the top event probability is also represented as an uncertainty distribution. Monte Carlo methods are generally used for evaluating the uncertainty distribution, but such calculations are computationally intensive and do not readily reveal the dominant contributors to the uncertainty. In this article, a closed-form approximation for the fault tree top event uncertainty distribution is developed, which is applicable when the uncertainties in the basic events of the model are lognormally distributed. The results of the approximate method are compared with results from two sampling-based methods: namely, the Monte Carlo method and the Wilks method based on order statistics. It is shown that the closed-form expression can provide a reasonable approximation to results obtained by Monte Carlo sampling, without incurring the computational expense. The Wilks method is found to be a useful means of providing an upper bound for the percentiles of the uncertainty distribution while being computationally inexpensive compared with full Monte Carlo sampling. The lognormal approximation method and Wilks's method appear attractive, practical alternatives for the evaluation of uncertainty in the output of fault trees and similar multilinear models. © 2018 Society for Risk Analysis.

  16. High Performance Computing Assets for Ocean Acoustics Research

    DTIC Science & Technology

    2016-11-18

    independently on processing units with access to a typically available amount of memory, say 16 or 32 gigabytes. Our models require each processor to...allow results to be obtained with limited amounts of memory available to individual processing units (with no time frame for successful completion...put into use. One file server computer to store simulation output has also been purchased. The first workstation has 28 CPU cores, dual- thread , (56

  17. User's manual for a parameter identification technique. [with options for model simulation for fixed input forcing functions and identification from wind tunnel and flight measurements

    NASA Technical Reports Server (NTRS)

    Kanning, G.

    1975-01-01

    A digital computer program written in FORTRAN is presented that implements the system identification theory for deterministic systems using input-output measurements. The user supplies programs simulating the mathematical model of the physical plant whose parameters are to be identified. The user may choose any one of three options. The first option allows for a complete model simulation for fixed input forcing functions. The second option identifies up to 36 parameters of the model from wind tunnel or flight measurements. The third option performs a sensitivity analysis for up to 36 parameters. The use of each option is illustrated with an example using input-output measurements for a helicopter rotor tested in a wind tunnel.

  18. Output Devices, Computation, and the Future of Mathematical Crafts.

    ERIC Educational Resources Information Center

    Eisenberg, Michael

    2002-01-01

    The advent of powerful, affordable output devices offers the potential for a vastly expanded landscape of computationally-enriched mathematical craft activities in education. Craft activities have both intellectual and emotional affordances that are relatively lacking in "traditional" computer-based education. Describes three software applications…

  19. Orbital Maneuvering Engine Feed System Coupled Stability Investigation, Computer User's Manual

    NASA Technical Reports Server (NTRS)

    Schuman, M. D.; Fertig, K. W.; Hunting, J. K.; Kahn, D. R.

    1975-01-01

    An operating manual for the feed system coupled stability model was given, in partial fulfillment of a program designed to develop, verify, and document a digital computer model that can be used to analyze and predict engine/feed system coupled instabilities in pressure-fed storable propellant propulsion systems over a frequency range of 10 to 1,000 Hz. The first section describes the analytical approach to modelling the feed system hydrodynamics, combustion dynamics, chamber dynamics, and overall engineering model structure, and presents the governing equations in each of the technical areas. This is followed by the program user's guide, which is a complete description of the structure and operation of the computerized model. Last, appendices provide an alphabetized FORTRAN symbol table, detailed program logic diagrams, computer code listings, and sample case input and output data listings.

  20. A Simple Model of the Pulmonary Circulation for Hemodynamic Study and Examination.

    ERIC Educational Resources Information Center

    Gaar, Kermit A., Jr.

    1983-01-01

    Describes a computer program allowing students to study such circulatory variables as venus return, cardiac output, mean circulatory filling pressure, resistance to venous return, and equilibrium point. Documentation for this Applesoft program (or diskette) is available from author. (JM)

  1. The N-BOD2 user's and programmer's manual

    NASA Technical Reports Server (NTRS)

    Frisch, H. P.

    1978-01-01

    A general purpose digital computer program was developed and designed to aid in the analysis of spacecraft attitude dynamics. The program provides the analyst with the capability of automatically deriving and numerically solving the equations of motion of any system that can be modeled as a topological tree of coupled rigid bodies, flexible bodies, point masses, and symmetrical momentum wheels. Two modes of output are available. The composite system equations of motion may be outputted on a line printer in a symbolic form that may be easily translated into common vector-dyadic notation, or the composite system equations of motion may be solved numerically and any desirable set of system state variables outputted as a function of time.

  2. WMT: The CSDMS Web Modeling Tool

    NASA Astrophysics Data System (ADS)

    Piper, M.; Hutton, E. W. H.; Overeem, I.; Syvitski, J. P.

    2015-12-01

    The Community Surface Dynamics Modeling System (CSDMS) has a mission to enable model use and development for research in earth surface processes. CSDMS strives to expand the use of quantitative modeling techniques, promotes best practices in coding, and advocates for the use of open-source software. To streamline and standardize access to models, CSDMS has developed the Web Modeling Tool (WMT), a RESTful web application with a client-side graphical interface and a server-side database and API that allows users to build coupled surface dynamics models in a web browser on a personal computer or a mobile device, and run them in a high-performance computing (HPC) environment. With WMT, users can: Design a model from a set of components Edit component parameters Save models to a web-accessible server Share saved models with the community Submit runs to an HPC system Download simulation results The WMT client is an Ajax application written in Java with GWT, which allows developers to employ object-oriented design principles and development tools such as Ant, Eclipse and JUnit. For deployment on the web, the GWT compiler translates Java code to optimized and obfuscated JavaScript. The WMT client is supported on Firefox, Chrome, Safari, and Internet Explorer. The WMT server, written in Python and SQLite, is a layered system, with each layer exposing a web service API: wmt-db: database of component, model, and simulation metadata and output wmt-api: configure and connect components wmt-exe: launch simulations on remote execution servers The database server provides, as JSON-encoded messages, the metadata for users to couple model components, including descriptions of component exchange items, uses and provides ports, and input parameters. Execution servers are network-accessible computational resources, ranging from HPC systems to desktop computers, containing the CSDMS software stack for running a simulation. Once a simulation completes, its output, in NetCDF, is packaged and uploaded to a data server where it is stored and from which a user can download it as a single compressed archive file.

  3. We get the algorithms of our ground truths: Designing referential databases in digital image processing

    PubMed Central

    Jaton, Florian

    2017-01-01

    This article documents the practical efforts of a group of scientists designing an image-processing algorithm for saliency detection. By following the actors of this computer science project, the article shows that the problems often considered to be the starting points of computational models are in fact provisional results of time-consuming, collective and highly material processes that engage habits, desires, skills and values. In the project being studied, problematization processes lead to the constitution of referential databases called ‘ground truths’ that enable both the effective shaping of algorithms and the evaluation of their performances. Working as important common touchstones for research communities in image processing, the ground truths are inherited from prior problematization processes and may be imparted to subsequent ones. The ethnographic results of this study suggest two complementary analytical perspectives on algorithms: (1) an ‘axiomatic’ perspective that understands algorithms as sets of instructions designed to solve given problems computationally in the best possible way, and (2) a ‘problem-oriented’ perspective that understands algorithms as sets of instructions designed to computationally retrieve outputs designed and designated during specific problematization processes. If the axiomatic perspective on algorithms puts the emphasis on the numerical transformations of inputs into outputs, the problem-oriented perspective puts the emphasis on the definition of both inputs and outputs. PMID:28950802

  4. The NASA Marshall engineering thermosphere model

    NASA Technical Reports Server (NTRS)

    Hickey, Michael Philip

    1988-01-01

    Described is the NASA Marshall Engineering Thermosphere (MET) Model, which is a modified version of the MFSC/J70 Orbital Atmospheric Density Model as currently used in the J70MM program at MSFC. The modifications to the MFSC/J70 model required for the MET model are described, graphical and numerical examples of the models are included, as is a listing of the MET model computer program. Major differences between the numerical output from the MET model and the MFSC/J70 model are discussed.

  5. Computational Design of DNA-Binding Proteins.

    PubMed

    Thyme, Summer; Song, Yifan

    2016-01-01

    Predicting the outcome of engineered and naturally occurring sequence perturbations to protein-DNA interfaces requires accurate computational modeling technologies. It has been well established that computational design to accommodate small numbers of DNA target site substitutions is possible. This chapter details the basic method of design used in the Rosetta macromolecular modeling program that has been successfully used to modulate the specificity of DNA-binding proteins. More recently, combining computational design and directed evolution has become a common approach for increasing the success rate of protein engineering projects. The power of such high-throughput screening depends on computational methods producing multiple potential solutions. Therefore, this chapter describes several protocols for increasing the diversity of designed output. Lastly, we describe an approach for building comparative models of protein-DNA complexes in order to utilize information from homologous sequences. These models can be used to explore how nature modulates specificity of protein-DNA interfaces and potentially can even be used as starting templates for further engineering.

  6. Multiscale approach including microfibril scale to assess elastic constants of cortical bone based on neural network computation and homogenization method.

    PubMed

    Barkaoui, Abdelwahed; Chamekh, Abdessalem; Merzouki, Tarek; Hambli, Ridha; Mkaddem, Ali

    2014-03-01

    The complexity and heterogeneity of bone tissue require a multiscale modeling to understand its mechanical behavior and its remodeling mechanisms. In this paper, a novel multiscale hierarchical approach including microfibril scale based on hybrid neural network (NN) computation and homogenization equations was developed to link nanoscopic and macroscopic scales to estimate the elastic properties of human cortical bone. The multiscale model is divided into three main phases: (i) in step 0, the elastic constants of collagen-water and mineral-water composites are calculated by averaging the upper and lower Hill bounds; (ii) in step 1, the elastic properties of the collagen microfibril are computed using a trained NN simulation. Finite element calculation is performed at nanoscopic levels to provide a database to train an in-house NN program; and (iii) in steps 2-10 from fibril to continuum cortical bone tissue, homogenization equations are used to perform the computation at the higher scales. The NN outputs (elastic properties of the microfibril) are used as inputs for the homogenization computation to determine the properties of mineralized collagen fibril. The mechanical and geometrical properties of bone constituents (mineral, collagen, and cross-links) as well as the porosity were taken in consideration. This paper aims to predict analytically the effective elastic constants of cortical bone by modeling its elastic response at these different scales, ranging from the nanostructural to mesostructural levels. Our findings of the lowest scale's output were well integrated with the other higher levels and serve as inputs for the next higher scale modeling. Good agreement was obtained between our predicted results and literature data. Copyright © 2013 John Wiley & Sons, Ltd.

  7. INDOS: conversational computer codes to implement ICRP-10-10A models for estimation of internal radiation dose to man

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Killough, G.G.; Rohwer, P.S.

    1974-03-01

    INDOS1, INDOS2, and INDOS3 (the INDOS codes) are conversational FORTRAN IV programs, implemented for use in time-sharing mode on the ORNL PDP-10 System. These codes use ICRP10-10A models to estimate the radiation dose to an organ of the body of Reference Man resulting from the ingestion or inhalation of any one of various radionuclides. Two patterns of intake are simulated: intakes at discrete times and continuous intake at a constant rate. The IND0S codes provide tabular output of dose rate and dose vs time, graphical output of dose vs time, and punched-card output of organ burden and dose vs time.more » The models of internal dose calculation are discussed and instructions for the use of the INDOS codes are provided. The INDOS codes are available from the Radiation Shielding Information Center, Oak Ridge National Laboratory, P. O. Box X, Oak Ridge, Tennessee 37830. (auth)« less

  8. Stochastic Modeling and Generation of Partially Polarized or Partially Coherent Electromagnetic Waves

    NASA Technical Reports Server (NTRS)

    Davis, Brynmor; Kim, Edward; Piepmeier, Jeffrey; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    Many new Earth remote-sensing instruments are embracing both the advantages and added complexity that result from interferometric or fully polarimetric operation. To increase instrument understanding and functionality a model of the signals these instruments measure is presented. A stochastic model is used as it recognizes the non-deterministic nature of any real-world measurements while also providing a tractable mathematical framework. A stationary, Gaussian-distributed model structure is proposed. Temporal and spectral correlation measures provide a statistical description of the physical properties of coherence and polarization-state. From this relationship the model is mathematically defined. The model is shown to be unique for any set of physical parameters. A method of realizing the model (necessary for applications such as synthetic calibration-signal generation) is given and computer simulation results are presented. The signals are constructed using the output of a multi-input multi-output linear filter system, driven with white noise.

  9. Wireless, relative-motion computer input device

    DOEpatents

    Holzrichter, John F.; Rosenbury, Erwin T.

    2004-05-18

    The present invention provides a system for controlling a computer display in a workspace using an input unit/output unit. A train of EM waves are sent out to flood the workspace. EM waves are reflected from the input unit/output unit. A relative distance moved information signal is created using the EM waves that are reflected from the input unit/output unit. Algorithms are used to convert the relative distance moved information signal to a display signal. The computer display is controlled in response to the display signal.

  10. REVEAL: An Extensible Reduced Order Model Builder for Simulation and Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Khushbu; Sharma, Poorva; Ma, Jinliang

    2013-04-30

    Many science domains need to build computationally efficient and accurate representations of high fidelity, computationally expensive simulations. These computationally efficient versions are known as reduced-order models. This paper presents the design and implementation of a novel reduced-order model (ROM) builder, the REVEAL toolset. This toolset generates ROMs based on science- and engineering-domain specific simulations executed on high performance computing (HPC) platforms. The toolset encompasses a range of sampling and regression methods that can be used to generate a ROM, automatically quantifies the ROM accuracy, and provides support for an iterative approach to improve ROM accuracy. REVEAL is designed to bemore » extensible in order to utilize the core functionality with any simulator that has published input and output formats. It also defines programmatic interfaces to include new sampling and regression techniques so that users can ‘mix and match’ mathematical techniques to best suit the characteristics of their model. In this paper, we describe the architecture of REVEAL and demonstrate its usage with a computational fluid dynamics model used in carbon capture.« less

  11. LANDMARK-BASED SPEECH RECOGNITION: REPORT OF THE 2004 JOHNS HOPKINS SUMMER WORKSHOP.

    PubMed

    Hasegawa-Johnson, Mark; Baker, James; Borys, Sarah; Chen, Ken; Coogan, Emily; Greenberg, Steven; Juneja, Amit; Kirchhoff, Katrin; Livescu, Karen; Mohan, Srividya; Muller, Jennifer; Sonmez, Kemal; Wang, Tianyu

    2005-01-01

    Three research prototype speech recognition systems are described, all of which use recently developed methods from artificial intelligence (specifically support vector machines, dynamic Bayesian networks, and maximum entropy classification) in order to implement, in the form of an automatic speech recognizer, current theories of human speech perception and phonology (specifically landmark-based speech perception, nonlinear phonology, and articulatory phonology). All three systems begin with a high-dimensional multiframe acoustic-to-distinctive feature transformation, implemented using support vector machines trained to detect and classify acoustic phonetic landmarks. Distinctive feature probabilities estimated by the support vector machines are then integrated using one of three pronunciation models: a dynamic programming algorithm that assumes canonical pronunciation of each word, a dynamic Bayesian network implementation of articulatory phonology, or a discriminative pronunciation model trained using the methods of maximum entropy classification. Log probability scores computed by these models are then combined, using log-linear combination, with other word scores available in the lattice output of a first-pass recognizer, and the resulting combination score is used to compute a second-pass speech recognition output.

  12. Space shuttle propulsion estimation development verification, volume 1

    NASA Technical Reports Server (NTRS)

    Rogers, Robert M.

    1989-01-01

    The results of the Propulsion Estimation Development Verification are summarized. A computer program developed under a previous contract (NAS8-35324) was modified to include improved models for the Solid Rocket Booster (SRB) internal ballistics, the Space Shuttle Main Engine (SSME) power coefficient model, the vehicle dynamics using quaternions, and an improved Kalman filter algorithm based on the U-D factorized algorithm. As additional output, the estimated propulsion performances, for each device are computed with the associated 1-sigma bounds. The outputs of the estimation program are provided in graphical plots. An additional effort was expended to examine the use of the estimation approach to evaluate single engine test data. In addition to the propulsion estimation program PFILTER, a program was developed to produce a best estimate of trajectory (BET). The program LFILTER, also uses the U-D factorized algorithm form of the Kalman filter as in the propulsion estimation program PFILTER. The necessary definitions and equations explaining the Kalman filtering approach for the PFILTER program, the models used for this application for dynamics and measurements, program description, and program operation are presented.

  13. Spectroscopic analysis and control

    DOEpatents

    Tate; , James D.; Reed, Christopher J.; Domke, Christopher H.; Le, Linh; Seasholtz, Mary Beth; Weber, Andy; Lipp, Charles

    2017-04-18

    Apparatus for spectroscopic analysis which includes a tunable diode laser spectrometer having a digital output signal and a digital computer for receiving the digital output signal from the spectrometer, the digital computer programmed to process the digital output signal using a multivariate regression algorithm. In addition, a spectroscopic method of analysis using such apparatus. Finally, a method for controlling an ethylene cracker hydrogenator.

  14. An improved swarm optimization for parameter estimation and biological model selection.

    PubMed

    Abdullah, Afnizanfaizal; Deris, Safaai; Mohamad, Mohd Saberi; Anwar, Sohail

    2013-01-01

    One of the key aspects of computational systems biology is the investigation on the dynamic biological processes within cells. Computational models are often required to elucidate the mechanisms and principles driving the processes because of the nonlinearity and complexity. The models usually incorporate a set of parameters that signify the physical properties of the actual biological systems. In most cases, these parameters are estimated by fitting the model outputs with the corresponding experimental data. However, this is a challenging task because the available experimental data are frequently noisy and incomplete. In this paper, a new hybrid optimization method is proposed to estimate these parameters from the noisy and incomplete experimental data. The proposed method, called Swarm-based Chemical Reaction Optimization, integrates the evolutionary searching strategy employed by the Chemical Reaction Optimization, into the neighbouring searching strategy of the Firefly Algorithm method. The effectiveness of the method was evaluated using a simulated nonlinear model and two biological models: synthetic transcriptional oscillators, and extracellular protease production models. The results showed that the accuracy and computational speed of the proposed method were better than the existing Differential Evolution, Firefly Algorithm and Chemical Reaction Optimization methods. The reliability of the estimated parameters was statistically validated, which suggests that the model outputs produced by these parameters were valid even when noisy and incomplete experimental data were used. Additionally, Akaike Information Criterion was employed to evaluate the model selection, which highlighted the capability of the proposed method in choosing a plausible model based on the experimental data. In conclusion, this paper presents the effectiveness of the proposed method for parameter estimation and model selection problems using noisy and incomplete experimental data. This study is hoped to provide a new insight in developing more accurate and reliable biological models based on limited and low quality experimental data.

  15. Frequency modulation television analysis: Distortion analysis

    NASA Technical Reports Server (NTRS)

    Hodge, W. H.; Wong, W. H.

    1973-01-01

    Computer simulation is used to calculate the time-domain waveform of standard T-pulse-and-bar test signal distorted in passing through an FM television system. The simulator includes flat or preemphasized systems and requires specification of the RF predetection filter characteristics. The predetection filters are modeled with frequency-symmetric Chebyshev (0.1-db ripple) and Butterworth filters. The computer was used to calculate distorted output signals for sixty-four different specified systems, and the output waveforms are plotted for all sixty-four. Comparison of the plotted graphs indicates that a Chebyshev predetection filter of four poles causes slightly more signal distortion than a corresponding Butterworth filter and the signal distortion increases as the number of poles increases. An increase in the peak deviation also increases signal distortion. Distortion also increases with the addition of preemphasis.

  16. Greenland Regional and Ice Sheet-wide Geometry Sensitivity to Boundary and Initial conditions

    NASA Astrophysics Data System (ADS)

    Logan, L. C.; Narayanan, S. H. K.; Greve, R.; Heimbach, P.

    2017-12-01

    Ice sheet and glacier model outputs require inputs from uncertainly known initial and boundary conditions, and other parameters. Conservation and constitutive equations formalize the relationship between model inputs and outputs, and the sensitivity of model-derived quantities of interest (e.g., ice sheet volume above floatation) to model variables can be obtained via the adjoint model of an ice sheet. We show how one particular ice sheet model, SICOPOLIS (SImulation COde for POLythermal Ice Sheets), depends on these inputs through comprehensive adjoint-based sensitivity analyses. SICOPOLIS discretizes the shallow-ice and shallow-shelf approximations for ice flow, and is well-suited for paleo-studies of Greenland and Antarctica, among other computational domains. The adjoint model of SICOPOLIS was developed via algorithmic differentiation, facilitated by the source transformation tool OpenAD (developed at Argonne National Lab). While model sensitivity to various inputs can be computed by costly methods involving input perturbation simulations, the time-dependent adjoint model of SICOPOLIS delivers model sensitivities to initial and boundary conditions throughout time at lower cost. Here, we explore both the sensitivities of the Greenland Ice Sheet's entire and regional volumes to: initial ice thickness, precipitation, basal sliding, and geothermal flux over the Holocene epoch. Sensitivity studies such as described here are now accessible to the modeling community, based on the latest version of SICOPOLIS that has been adapted for OpenAD to generate correct and efficient adjoint code.

  17. A Large Scale Computer Terminal Output Controller.

    ERIC Educational Resources Information Center

    Tucker, Paul Thomas

    This paper describes the design and implementation of a large scale computer terminal output controller which supervises the transfer of information from a Control Data 6400 Computer to a PLATO IV data network. It discusses the cost considerations leading to the selection of educational television channels rather than telephone lines for…

  18. Approaches and Tools Used to Teach the Computer Input/Output Subsystem: A Survey

    ERIC Educational Resources Information Center

    Larraza-Mendiluze, Edurne; Garay-Vitoria, Nestor

    2015-01-01

    This paper surveys how the computer input/output (I/O) subsystem is taught in introductory undergraduate courses. It is important to study the educational process of the computer I/O subsystem because, in the curricula recommendations, it is considered a core topic in the area of knowledge of computer architecture and organization (CAO). It is…

  19. Equivalent ZF precoding scheme for downlink indoor MU-MIMO VLC systems

    NASA Astrophysics Data System (ADS)

    Fan, YangYu; Zhao, Qiong; Kang, BoChao; Deng, LiJun

    2018-01-01

    In indoor visible light communication (VLC) systems, the channels of photo detectors (PDs) at one user are highly correlated, which determines the choice of spatial diversity model for individual users. In a spatial diversity model, the signals received by PDs belonging to one user carry the same information, and can be combined directly. Based on the above, we propose an equivalent zero-forcing (ZF) precoding scheme for multiple-user multiple-input single-output (MU-MIMO) VLC systems by transforming an indoor MU-MIMO VLC system into an indoor multiple-user multiple-input single-output (MU-MISO) VLC system through simply processing. The power constraints of light emitting diodes (LEDs) are also taken into account. Comprehensive computer simulations in three scenarios indicate that our scheme can not only reduce the computational complexity, but also guarantee the system performance. Furthermore, the proposed scheme does not require noise information in the calculating of the precoding weights, and has no restrictions on the numbers of APs and PDs.

  20. Evaluation Applied to Reliability Analysis of Reconfigurable, Highly Reliable, Fault-Tolerant, Computing Systems for Avionics

    NASA Technical Reports Server (NTRS)

    Migneault, G. E.

    1979-01-01

    Emulation techniques are proposed as a solution to a difficulty arising in the analysis of the reliability of highly reliable computer systems for future commercial aircraft. The difficulty, viz., the lack of credible precision in reliability estimates obtained by analytical modeling techniques are established. The difficulty is shown to be an unavoidable consequence of: (1) a high reliability requirement so demanding as to make system evaluation by use testing infeasible, (2) a complex system design technique, fault tolerance, (3) system reliability dominated by errors due to flaws in the system definition, and (4) elaborate analytical modeling techniques whose precision outputs are quite sensitive to errors of approximation in their input data. The technique of emulation is described, indicating how its input is a simple description of the logical structure of a system and its output is the consequent behavior. The use of emulation techniques is discussed for pseudo-testing systems to evaluate bounds on the parameter values needed for the analytical techniques.

  1. Vibration control of building structures using self-organizing and self-learning neural networks

    NASA Astrophysics Data System (ADS)

    Madan, Alok

    2005-11-01

    Past research in artificial intelligence establishes that artificial neural networks (ANN) are effective and efficient computational processors for performing a variety of tasks including pattern recognition, classification, associative recall, combinatorial problem solving, adaptive control, multi-sensor data fusion, noise filtering and data compression, modelling and forecasting. The paper presents a potentially feasible approach for training ANN in active control of earthquake-induced vibrations in building structures without the aid of teacher signals (i.e. target control forces). A counter-propagation neural network is trained to output the control forces that are required to reduce the structural vibrations in the absence of any feedback on the correctness of the output control forces (i.e. without any information on the errors in output activations of the network). The present study shows that, in principle, the counter-propagation network (CPN) can learn from the control environment to compute the required control forces without the supervision of a teacher (unsupervised learning). Simulated case studies are presented to demonstrate the feasibility of implementing the unsupervised learning approach in ANN for effective vibration control of structures under the influence of earthquake ground motions. The proposed learning methodology obviates the need for developing a mathematical model of structural dynamics or training a separate neural network to emulate the structural response for implementation in practice.

  2. InMAP: A model for air pollution interventions

    DOE PAGES

    Tessum, Christopher W.; Hill, Jason D.; Marshall, Julian D.; ...

    2017-04-19

    Mechanistic air pollution modeling is essential in air quality management, yet the extensive expertise and computational resources required to run most models prevent their use in many situations where their results would be useful. We present InMAP (Intervention Model for Air Pollution), which offers an alternative to comprehensive air quality models for estimating the air pollution health impacts of emission reductions and other potential interventions. InMAP estimates annual-average changes in primary and secondary fine particle (PM2.5) concentrations—the air pollution outcome generally causing the largest monetized health damages–attributable to annual changes in precursor emissions. InMAP leverages pre-processed physical and chemical informationmore » from the output of a state-of-the-science chemical transport model and a variable spatial resolution computational grid to perform simulations that are several orders of magnitude less computationally intensive than comprehensive model simulations. In comparisons we run, InMAP recreates comprehensive model predictions of changes in total PM2.5 concentrations with population-weighted mean fractional bias (MFB) of -17% and population-weighted R2 = 0.90. Although InMAP is not specifically designed to reproduce total observed concentrations, it is able to do so within published air quality model performance criteria for total PM2.5. Potential uses of InMAP include studying exposure, health, and environmental justice impacts of potential shifts in emissions for annual-average PM2.5. InMAP can be trained to run for any spatial and temporal domain given the availability of appropriate simulation output from a comprehensive model. The InMAP model source code and input data are freely available online under an open-source license.« less

  3. InMAP: A model for air pollution interventions

    PubMed Central

    Hill, Jason D.; Marshall, Julian D.

    2017-01-01

    Mechanistic air pollution modeling is essential in air quality management, yet the extensive expertise and computational resources required to run most models prevent their use in many situations where their results would be useful. Here, we present InMAP (Intervention Model for Air Pollution), which offers an alternative to comprehensive air quality models for estimating the air pollution health impacts of emission reductions and other potential interventions. InMAP estimates annual-average changes in primary and secondary fine particle (PM2.5) concentrations—the air pollution outcome generally causing the largest monetized health damages–attributable to annual changes in precursor emissions. InMAP leverages pre-processed physical and chemical information from the output of a state-of-the-science chemical transport model and a variable spatial resolution computational grid to perform simulations that are several orders of magnitude less computationally intensive than comprehensive model simulations. In comparisons run here, InMAP recreates comprehensive model predictions of changes in total PM2.5 concentrations with population-weighted mean fractional bias (MFB) of −17% and population-weighted R2 = 0.90. Although InMAP is not specifically designed to reproduce total observed concentrations, it is able to do so within published air quality model performance criteria for total PM2.5. Potential uses of InMAP include studying exposure, health, and environmental justice impacts of potential shifts in emissions for annual-average PM2.5. InMAP can be trained to run for any spatial and temporal domain given the availability of appropriate simulation output from a comprehensive model. The InMAP model source code and input data are freely available online under an open-source license. PMID:28423049

  4. InMAP: A model for air pollution interventions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tessum, Christopher W.; Hill, Jason D.; Marshall, Julian D.

    Mechanistic air pollution modeling is essential in air quality management, yet the extensive expertise and computational resources required to run most models prevent their use in many situations where their results would be useful. We present InMAP (Intervention Model for Air Pollution), which offers an alternative to comprehensive air quality models for estimating the air pollution health impacts of emission reductions and other potential interventions. InMAP estimates annual-average changes in primary and secondary fine particle (PM2.5) concentrations—the air pollution outcome generally causing the largest monetized health damages–attributable to annual changes in precursor emissions. InMAP leverages pre-processed physical and chemical informationmore » from the output of a state-of-the-science chemical transport model and a variable spatial resolution computational grid to perform simulations that are several orders of magnitude less computationally intensive than comprehensive model simulations. In comparisons we run, InMAP recreates comprehensive model predictions of changes in total PM2.5 concentrations with population-weighted mean fractional bias (MFB) of -17% and population-weighted R2 = 0.90. Although InMAP is not specifically designed to reproduce total observed concentrations, it is able to do so within published air quality model performance criteria for total PM2.5. Potential uses of InMAP include studying exposure, health, and environmental justice impacts of potential shifts in emissions for annual-average PM2.5. InMAP can be trained to run for any spatial and temporal domain given the availability of appropriate simulation output from a comprehensive model. The InMAP model source code and input data are freely available online under an open-source license.« less

  5. Studying an Eulerian Computer Model on Different High-performance Computer Platforms and Some Applications

    NASA Astrophysics Data System (ADS)

    Georgiev, K.; Zlatev, Z.

    2010-11-01

    The Danish Eulerian Model (DEM) is an Eulerian model for studying the transport of air pollutants on large scale. Originally, the model was developed at the National Environmental Research Institute of Denmark. The model computational domain covers Europe and some neighbour parts belong to the Atlantic Ocean, Asia and Africa. If DEM model is to be applied by using fine grids, then its discretization leads to a huge computational problem. This implies that such a model as DEM must be run only on high-performance computer architectures. The implementation and tuning of such a complex large-scale model on each different computer is a non-trivial task. Here, some comparison results of running of this model on different kind of vector (CRAY C92A, Fujitsu, etc.), parallel computers with distributed memory (IBM SP, CRAY T3E, Beowulf clusters, Macintosh G4 clusters, etc.), parallel computers with shared memory (SGI Origin, SUN, etc.) and parallel computers with two levels of parallelism (IBM SMP, IBM BlueGene/P, clusters of multiprocessor nodes, etc.) will be presented. The main idea in the parallel version of DEM is domain partitioning approach. Discussions according to the effective use of the cache and hierarchical memories of the modern computers as well as the performance, speed-ups and efficiency achieved will be done. The parallel code of DEM, created by using MPI standard library, appears to be highly portable and shows good efficiency and scalability on different kind of vector and parallel computers. Some important applications of the computer model output are presented in short.

  6. Processing Device for High-Speed Execution of an Xrisc Computer Program

    NASA Technical Reports Server (NTRS)

    Ng, Tak-Kwong (Inventor); Mills, Carl S. (Inventor)

    2016-01-01

    A processing device for high-speed execution of a computer program is provided. A memory module may store one or more computer programs. A sequencer may select one of the computer programs and controls execution of the selected program. A register module may store intermediate values associated with a current calculation set, a set of output values associated with a previous calculation set, and a set of input values associated with a subsequent calculation set. An external interface may receive the set of input values from a computing device and provides the set of output values to the computing device. A computation interface may provide a set of operands for computation during processing of the current calculation set. The set of input values are loaded into the register and the set of output values are unloaded from the register in parallel with processing of the current calculation set.

  7. Deep Learning: A Primer for Radiologists.

    PubMed

    Chartrand, Gabriel; Cheng, Phillip M; Vorontsov, Eugene; Drozdzal, Michal; Turcotte, Simon; Pal, Christopher J; Kadoury, Samuel; Tang, An

    2017-01-01

    Deep learning is a class of machine learning methods that are gaining success and attracting interest in many domains, including computer vision, speech recognition, natural language processing, and playing games. Deep learning methods produce a mapping from raw inputs to desired outputs (eg, image classes). Unlike traditional machine learning methods, which require hand-engineered feature extraction from inputs, deep learning methods learn these features directly from data. With the advent of large datasets and increased computing power, these methods can produce models with exceptional performance. These models are multilayer artificial neural networks, loosely inspired by biologic neural systems. Weighted connections between nodes (neurons) in the network are iteratively adjusted based on example pairs of inputs and target outputs by back-propagating a corrective error signal through the network. For computer vision tasks, convolutional neural networks (CNNs) have proven to be effective. Recently, several clinical applications of CNNs have been proposed and studied in radiology for classification, detection, and segmentation tasks. This article reviews the key concepts of deep learning for clinical radiologists, discusses technical requirements, describes emerging applications in clinical radiology, and outlines limitations and future directions in this field. Radiologists should become familiar with the principles and potential applications of deep learning in medical imaging. © RSNA, 2017.

  8. Experimental and computational analysis of a large protein network that controls fat storage reveals the design principles of a signaling network.

    PubMed

    Al-Anzi, Bader; Arpp, Patrick; Gerges, Sherif; Ormerod, Christopher; Olsman, Noah; Zinn, Kai

    2015-05-01

    An approach combining genetic, proteomic, computational, and physiological analysis was used to define a protein network that regulates fat storage in budding yeast (Saccharomyces cerevisiae). A computational analysis of this network shows that it is not scale-free, and is best approximated by the Watts-Strogatz model, which generates "small-world" networks with high clustering and short path lengths. The network is also modular, containing energy level sensing proteins that connect to four output processes: autophagy, fatty acid synthesis, mRNA processing, and MAP kinase signaling. The importance of each protein to network function is dependent on its Katz centrality score, which is related both to the protein's position within a module and to the module's relationship to the network as a whole. The network is also divisible into subnetworks that span modular boundaries and regulate different aspects of fat metabolism. We used a combination of genetics and pharmacology to simultaneously block output from multiple network nodes. The phenotypic results of this blockage define patterns of communication among distant network nodes, and these patterns are consistent with the Watts-Strogatz model.

  9. State estimation of spatio-temporal phenomena

    NASA Astrophysics Data System (ADS)

    Yu, Dan

    This dissertation addresses the state estimation problem of spatio-temporal phenomena which can be modeled by partial differential equations (PDEs), such as pollutant dispersion in the atmosphere. After discretizing the PDE, the dynamical system has a large number of degrees of freedom (DOF). State estimation using Kalman Filter (KF) is computationally intractable, and hence, a reduced order model (ROM) needs to be constructed first. Moreover, the nonlinear terms, external disturbances or unknown boundary conditions can be modeled as unknown inputs, which leads to an unknown input filtering problem. Furthermore, the performance of KF could be improved by placing sensors at feasible locations. Therefore, the sensor scheduling problem to place multiple mobile sensors is of interest. The first part of the dissertation focuses on model reduction for large scale systems with a large number of inputs/outputs. A commonly used model reduction algorithm, the balanced proper orthogonal decomposition (BPOD) algorithm, is not computationally tractable for large systems with a large number of inputs/outputs. Inspired by the BPOD and randomized algorithms, we propose a randomized proper orthogonal decomposition (RPOD) algorithm and a computationally optimal RPOD (RPOD*) algorithm, which construct an ROM to capture the input-output behaviour of the full order model, while reducing the computational cost of BPOD by orders of magnitude. It is demonstrated that the proposed RPOD* algorithm could construct the ROM in real-time, and the performance of the proposed algorithms on different advection-diffusion equations. Next, we consider the state estimation problem of linear discrete-time systems with unknown inputs which can be treated as a wide-sense stationary process with rational power spectral density, while no other prior information needs to be known. We propose an autoregressive (AR) model based unknown input realization technique which allows us to recover the input statistics from the output data by solving an appropriate least squares problem, then fit an AR model to the recovered input statistics and construct an innovations model of the unknown inputs using the eigensystem realization algorithm. The proposed algorithm outperforms the augmented two-stage Kalman Filter (ASKF) and the unbiased minimum-variance (UMV) algorithm are shown in several examples. Finally, we propose a framework to place multiple mobile sensors to optimize the long-term performance of KF in the estimation of the state of a PDE. The major challenges are that placing multiple sensors is an NP-hard problem, and the optimization problem is non-convex in general. In this dissertation, first, we construct an ROM using RPOD* algorithm, and then reduce the feasible sensor locations into a subset using the ROM. The Information Space Receding Horizon Control (I-RHC) approach and a modified Monte Carlo Tree Search (MCTS) approach are applied to solve the sensor scheduling problem using the subset. Various applications have been provided to demonstrate the performance of the proposed approach.

  10. RTM user's guide

    NASA Technical Reports Server (NTRS)

    Claus, Steven J.; Loos, Alfred C.

    1989-01-01

    RTM is a FORTRAN '77 computer code which simulates the infiltration of textile reinforcements and the kinetics of thermosetting polymer resin systems. The computer code is based on the process simulation model developed by the author. The compaction of dry, woven textile composites is simulated to describe the increase in fiber volume fraction with increasing compaction pressure. Infiltration is assumed to follow D'Arcy's law for Newtonian viscous fluids. The chemical changes which occur in the resin during processing are simulated with a thermo-kinetics model. The computer code is discussed on the basis of the required input data, output files and some comments on how to interpret the results. An example problem is solved and a complete listing is included.

  11. Study of cryogenic propellant systems for loading the space shuttle

    NASA Technical Reports Server (NTRS)

    Voth, R. O.; Steward, W. G.; Hall, W. J.

    1974-01-01

    Computer programs were written to model the liquid oxygen loading system for the space shuttle. The programs allow selection of input data through graphic displays which schematically depict the part of the system being modeled. The computed output is also displayed in the form of graphs and printed messages. Any one of six computation options may be selected. The first four of these pertain to thermal stresses, pressure surges, cooldown times, flow rates and pressures during cooldown. Options five and six deal with possible water hammer effects due to closing of valves, steady flow and transient response to changes in operating conditions after cooldown. Procedures are given for operation of the graphic display unit and minicomputer.

  12. Atmospheric Gravitational Torque Variations Based on Various Gravity Fields

    NASA Technical Reports Server (NTRS)

    Sanchez, Braulio V.; Rowlands, David; Smith, David E. (Technical Monitor)

    2001-01-01

    Advancements in the study of the Earth's variable rate of rotation and the motion of its rotation axis have given impetus to the analysis of the torques between the atmosphere, oceans and solid Earth. The output from global general circulation models of the atmosphere (pressure, surface stress) is being used as input to the torque computations. Gravitational torque between the atmosphere, oceans and solid Earth is an important component of the torque budget. Computation of the gravitational torque involves the adoption of a gravitational model from a wide variety available. The purpose of this investigation is to ascertain to what extent this choice might influence the results of gravitational torque computations.

  13. Logic models to predict continuous outputs based on binary inputs with an application to personalized cancer therapy

    PubMed Central

    Knijnenburg, Theo A.; Klau, Gunnar W.; Iorio, Francesco; Garnett, Mathew J.; McDermott, Ultan; Shmulevich, Ilya; Wessels, Lodewyk F. A.

    2016-01-01

    Mining large datasets using machine learning approaches often leads to models that are hard to interpret and not amenable to the generation of hypotheses that can be experimentally tested. We present ‘Logic Optimization for Binary Input to Continuous Output’ (LOBICO), a computational approach that infers small and easily interpretable logic models of binary input features that explain a continuous output variable. Applying LOBICO to a large cancer cell line panel, we find that logic combinations of multiple mutations are more predictive of drug response than single gene predictors. Importantly, we show that the use of the continuous information leads to robust and more accurate logic models. LOBICO implements the ability to uncover logic models around predefined operating points in terms of sensitivity and specificity. As such, it represents an important step towards practical application of interpretable logic models. PMID:27876821

  14. Human performance cognitive-behavioral modeling: a benefit for occupational safety.

    PubMed

    Gore, Brian F

    2002-01-01

    Human Performance Modeling (HPM) is a computer-aided job analysis software methodology used to generate predictions of complex human-automation integration and system flow patterns with the goal of improving operator and system safety. The use of HPM tools has recently been increasing due to reductions in computational cost, augmentations in the tools' fidelity, and usefulness in the generated output. An examination of an Air Man-machine Integration Design and Analysis System (Air MIDAS) model evaluating complex human-automation integration currently underway at NASA Ames Research Center will highlight the importance to occupational safety of considering both cognitive and physical aspects of performance when researching human error.

  15. Human performance cognitive-behavioral modeling: a benefit for occupational safety

    NASA Technical Reports Server (NTRS)

    Gore, Brian F.

    2002-01-01

    Human Performance Modeling (HPM) is a computer-aided job analysis software methodology used to generate predictions of complex human-automation integration and system flow patterns with the goal of improving operator and system safety. The use of HPM tools has recently been increasing due to reductions in computational cost, augmentations in the tools' fidelity, and usefulness in the generated output. An examination of an Air Man-machine Integration Design and Analysis System (Air MIDAS) model evaluating complex human-automation integration currently underway at NASA Ames Research Center will highlight the importance to occupational safety of considering both cognitive and physical aspects of performance when researching human error.

  16. Computational Design of Materials: Planetary Entry to Electric Aircraft and Beyond

    NASA Technical Reports Server (NTRS)

    Thompson, Alexander; Lawson, John W.

    2014-01-01

    NASA's projects and missions push the bounds of what is possible. To support the agency's work, materials development must stay on the cutting edge in order to keep pace. Today, researchers at NASA Ames Research Center perform multiscale modeling to aid the development of new materials and provide insight into existing ones. Multiscale modeling enables researchers to determine micro- and macroscale properties by connecting computational methods ranging from the atomic level (density functional theory, molecular dynamics) to the macroscale (finite element method). The output of one level is passed on as input to the next level, creating a powerful predictive model.

  17. COED Transactions, Vol. X, No. 7 & 8, July/August 1978. Bridging Theory and Reality: Analog Simulation as an Aid to Heuristic Understanding.

    ERIC Educational Resources Information Center

    Marcovitz, Alan B., Ed.

    A particularly difficult area for many engineering students is the approximate nature of the relation between models and physical systems. This is notably true when the models consist of differential equations. An approach applied to this problem has been to use analog computers to assist in portraying the output of a model as it is progressively…

  18. Numerical considerations in the development and implementation of constitutive models

    NASA Technical Reports Server (NTRS)

    Haisler, W. E.; Imbrie, P. K.

    1985-01-01

    Several unified constitutive models were tested in uniaxial form by specifying input strain histories and comparing output stress histories. The purpose of the tests was to evaluate several time integration methods with regard to accuracy, stability, and computational economy. The sensitivity of the models to slight changes in input constants was also investigated. Results are presented for In100 at 1350 F and Hastelloy-X at 1800 F.

  19. Comparison of two stochastic techniques for reliable urban runoff prediction by modeling systematic errors

    NASA Astrophysics Data System (ADS)

    Del Giudice, Dario; Löwe, Roland; Madsen, Henrik; Mikkelsen, Peter Steen; Rieckermann, Jörg

    2015-07-01

    In urban rainfall-runoff, commonly applied statistical techniques for uncertainty quantification mostly ignore systematic output errors originating from simplified models and erroneous inputs. Consequently, the resulting predictive uncertainty is often unreliable. Our objective is to present two approaches which use stochastic processes to describe systematic deviations and to discuss their advantages and drawbacks for urban drainage modeling. The two methodologies are an external bias description (EBD) and an internal noise description (IND, also known as stochastic gray-box modeling). They emerge from different fields and have not yet been compared in environmental modeling. To compare the two approaches, we develop a unifying terminology, evaluate them theoretically, and apply them to conceptual rainfall-runoff modeling in the same drainage system. Our results show that both approaches can provide probabilistic predictions of wastewater discharge in a similarly reliable way, both for periods ranging from a few hours up to more than 1 week ahead of time. The EBD produces more accurate predictions on long horizons but relies on computationally heavy MCMC routines for parameter inferences. These properties make it more suitable for off-line applications. The IND can help in diagnosing the causes of output errors and is computationally inexpensive. It produces best results on short forecast horizons that are typical for online applications.

  20. Large-area sheet task advanced dendritic web growth development

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Hopkins, R. H.; Meier, D.; Schruben, J.

    1982-01-01

    The computer code for calculating web temperature distribution was expanded to provide a graphics output in addition to numerical and punch card output. The new code was used to examine various modifications of the J419 configuration and, on the basis of the results, a new growth geometry was designed. Additionally, several mathematically defined temperature profiles were evaluated for the effects of the free boundary (growth front) on the thermal stress generation. Experimental growth runs were made with modified J419 configurations to complement the modeling work. A modified J435 configuration was evaluated.

  1. Thermospheric dynamics - A system theory approach

    NASA Technical Reports Server (NTRS)

    Codrescu, M.; Forbes, J. M.; Roble, R. G.

    1990-01-01

    A system theory approach to thermospheric modeling is developed, based upon a linearization method which is capable of preserving nonlinear features of a dynamical system. The method is tested using a large, nonlinear, time-varying system, namely the thermospheric general circulation model (TGCM) of the National Center for Atmospheric Research. In the linearized version an equivalent system, defined for one of the desired TGCM output variables, is characterized by a set of response functions that is constructed from corresponding quasi-steady state and unit sample response functions. The linearized version of the system runs on a personal computer and produces an approximation of the desired TGCM output field height profile at a given geographic location.

  2. Climate Science's Globally Distributed Infrastructure

    NASA Astrophysics Data System (ADS)

    Williams, D. N.

    2016-12-01

    The Earth System Grid Federation (ESGF) is primarily funded by the Department of Energy's (DOE's) Office of Science (the Office of Biological and Environmental Research [BER] Climate Data Informatics Program and the Office of Advanced Scientific Computing Research Next Generation Network for Science Program), the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA), and the National Science Foundation (NSF), the European Infrastructure for the European Network for Earth System Modeling (IS-ENES), and the Australian National University (ANU). Support also comes from other U.S. federal and international agencies. The federation works across multiple worldwide data centers and spans seven international network organizations to provide users with the ability to access, analyze, and visualize data using a globally federated collection of networks, computers, and software. Its architecture employs a series of geographically distributed peer nodes that are independently administered and united by common federation protocols and application programming interfaces (APIs). The full ESGF infrastructure has now been adopted by multiple Earth science projects and allows access to petabytes of geophysical data, including the Coupled Model Intercomparison Project (CMIP; output used by the Intergovernmental Panel on Climate Change assessment reports), multiple model intercomparison projects (MIPs; endorsed by the World Climate Research Programme [WCRP]), and the Accelerated Climate Modeling for Energy (ACME; ESGF is included in the overarching ACME workflow process to store model output). ESGF is a successful example of integration of disparate open-source technologies into a cohesive functional system that serves the needs the global climate science community. Data served by ESGF includes not only model output but also observational data from satellites and instruments, reanalysis, and generated images.

  3. Journal and Wave Bearing Impedance Calculation Software

    NASA Technical Reports Server (NTRS)

    Hanford, Amanda; Campbell, Robert

    2012-01-01

    The wave bearing software suite is a MALTA application that computes bearing properties for user-specified wave bearing conditions, as well as plain journal bearings. Wave bearings are fluid film journal bearings with multi-lobed wave patterns around the circumference of the bearing surface. In this software suite, the dynamic coefficients are outputted in a way for easy implementation in a finite element model used in rotor dynamics analysis. The software has a graphical user interface (GUI) for inputting bearing geometry parameters, and uses MATLAB s structure interface for ease of interpreting data. This innovation was developed to provide the stiffness and damping components of wave bearing impedances. The computational method for computing bearing coefficients was originally designed for plain journal bearings and tilting pad bearings. Modifications to include a wave bearing profile consisted of changing the film thickness profile given by an equation, and writing an algorithm to locate the integration limits for each fluid region. Careful consideration was needed to implement the correct integration limits while computing the dynamic coefficients, depending on the form of the input/output variables specified in the algorithm.

  4. Integration of artificial intelligence methods and life cycle assessment to predict energy output and environmental impacts of paddy production.

    PubMed

    Nabavi-Pelesaraei, Ashkan; Rafiee, Shahin; Mohtasebi, Seyed Saeid; Hosseinzadeh-Bandbafha, Homa; Chau, Kwok-Wing

    2018-08-01

    Prediction of agricultural energy output and environmental impacts play important role in energy management and conservation of environment as it can help us to evaluate agricultural energy efficiency, conduct crops production system commissioning, and detect and diagnose faults of crop production system. Agricultural energy output and environmental impacts can be readily predicted by artificial intelligence (AI), owing to the ease of use and adaptability to seek optimal solutions in a rapid manner as well as the use of historical data to predict future agricultural energy use pattern under constraints. This paper conducts energy output and environmental impact prediction of paddy production in Guilan province, Iran based on two AI methods, artificial neural networks (ANNs), and adaptive neuro fuzzy inference system (ANFIS). The amounts of energy input and output are 51,585.61MJkg -1 and 66,112.94MJkg -1 , respectively, in paddy production. Life Cycle Assessment (LCA) is used to evaluate environmental impacts of paddy production. Results show that, in paddy production, in-farm emission is a hotspot in global warming, acidification and eutrophication impact categories. ANN model with 12-6-8-1 structure is selected as the best one for predicting energy output. The correlation coefficient (R) varies from 0.524 to 0.999 in training for energy input and environmental impacts in ANN models. ANFIS model is developed based on a hybrid learning algorithm, with R for predicting output energy being 0.860 and, for environmental impacts, varying from 0.944 to 0.997. Results indicate that the multi-level ANFIS is a useful tool to managers for large-scale planning in forecasting energy output and environmental indices of agricultural production systems owing to its higher speed of computation processes compared to ANN model, despite ANN's higher accuracy. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Sensitivity analysis of a short distance atmospheric dispersion model applied to the Fukushima disaster

    NASA Astrophysics Data System (ADS)

    Périllat, Raphaël; Girard, Sylvain; Korsakissok, Irène; Mallet, Vinien

    2015-04-01

    In a previous study, the sensitivity of a long distance model was analyzed on the Fukushima Daiichi disaster case with the Morris screening method. It showed that a few variables, such as horizontal diffusion coefficient or clouds thickness, have a weak influence on most of the chosen outputs. The purpose of the present study is to apply a similar methodology on the IRSN's operational short distance atmospheric dispersion model, called pX. Atmospheric dispersion models are very useful in case of accidental releases of pollutant to minimize the population exposure during the accident and to obtain an accurate assessment of short and long term environmental and sanitary impact. Long range models are mostly used for consequences assessment while short range models are more adapted to the early phases of the crisis and are used to make prognosis. The Morris screening method was used to estimate the sensitivity of a set of outputs and to rank the inputs by their influences. The input ranking is highly dependent on the considered output, but a few variables seem to have a weak influence on most of them. This first step revealed that interactions and non-linearity are much more pronounced with the short range model than with the long range one. Afterward, the Sobol screening method was used to obtain more quantitative results on the same set of outputs. Using this method was possible for the short range model because it is far less computationally demanding than the long range model. The study also confronts two parameterizations, Doury's and Pasquill's models, to contrast their behavior. The Doury's model seems to excessively inflate the influence of some inputs compared to the Pasquill's model, such as the altitude of emission and the air stability which do not have the same role in the two models. The outputs of the long range model were dominated by only a few inputs. On the contrary, in this study the influence is shared more evenly between the inputs.

  6. From samples to populations in retinex models

    NASA Astrophysics Data System (ADS)

    Gianini, Gabriele

    2017-05-01

    Some spatial color algorithms, such as Brownian Milano retinex (MI-retinex) and random spray retinex (RSR), are based on sampling. In Brownian MI-retinex, memoryless random walks (MRWs) explore the neighborhood of a pixel and are then used to compute its output. Considering the relative redundancy and inefficiency of MRW exploration, the algorithm RSR replaced the walks by samples of points (the sprays). Recent works point to the fact that a mapping from the sampling formulation to the probabilistic formulation of the corresponding sampling process can offer useful insights into the models, at the same time featuring intrinsically noise-free outputs. The paper continues the development of this concept and shows that the population-based versions of RSR and Brownian MI-retinex can be used to obtain analytical expressions for the outputs of some test images. The comparison of the two analytic expressions from RSR and from Brownian MI-retinex demonstrates not only that the two outputs are, in general, different but also that they depend in a qualitatively different way upon the features of the image.

  7. Non-fragile observer-based output feedback control for polytopic uncertain system under distributed model predictive control approach

    NASA Astrophysics Data System (ADS)

    Zhu, Kaiqun; Song, Yan; Zhang, Sunjie; Zhong, Zhaozhun

    2017-07-01

    In this paper, a non-fragile observer-based output feedback control problem for the polytopic uncertain system under distributed model predictive control (MPC) approach is discussed. By decomposing the global system into some subsystems, the computation complexity is reduced, so it follows that the online designing time can be saved.Moreover, an observer-based output feedback control algorithm is proposed in the framework of distributed MPC to deal with the difficulties in obtaining the states measurements. In this way, the presented observer-based output-feedback MPC strategy is more flexible and applicable in practice than the traditional state-feedback one. What is more, the non-fragility of the controller has been taken into consideration in favour of increasing the robustness of the polytopic uncertain system. After that, a sufficient stability criterion is presented by using Lyapunov-like functional approach, meanwhile, the corresponding control law and the upper bound of the quadratic cost function are derived by solving an optimisation subject to convex constraints. Finally, some simulation examples are employed to show the effectiveness of the method.

  8. Uncertainty quantification of Antarctic contribution to sea-level rise using the fast Elementary Thermomechanical Ice Sheet (f.ETISh) model

    NASA Astrophysics Data System (ADS)

    Bulthuis, Kevin; Arnst, Maarten; Pattyn, Frank; Favier, Lionel

    2017-04-01

    Uncertainties in sea-level rise projections are mostly due to uncertainties in Antarctic ice-sheet predictions (IPCC AR5 report, 2013), because key parameters related to the current state of the Antarctic ice sheet (e.g. sub-ice-shelf melting) and future climate forcing are poorly constrained. Here, we propose to improve the predictions of Antarctic ice-sheet behaviour using new uncertainty quantification methods. As opposed to ensemble modelling (Bindschadler et al., 2013) which provides a rather limited view on input and output dispersion, new stochastic methods (Le Maître and Knio, 2010) can provide deeper insight into the impact of uncertainties on complex system behaviour. Such stochastic methods usually begin with deducing a probabilistic description of input parameter uncertainties from the available data. Then, the impact of these input parameter uncertainties on output quantities is assessed by estimating the probability distribution of the outputs by means of uncertainty propagation methods such as Monte Carlo methods or stochastic expansion methods. The use of such uncertainty propagation methods in glaciology may be computationally costly because of the high computational complexity of ice-sheet models. This challenge emphasises the importance of developing reliable and computationally efficient ice-sheet models such as the f.ETISh ice-sheet model (Pattyn, 2015), a new fast thermomechanical coupled ice sheet/ice shelf model capable of handling complex and critical processes such as the marine ice-sheet instability mechanism. Here, we apply these methods to investigate the role of uncertainties in sub-ice-shelf melting, calving rates and climate projections in assessing Antarctic contribution to sea-level rise for the next centuries using the f.ETISh model. We detail the methods and show results that provide nominal values and uncertainty bounds for future sea-level rise as a reflection of the impact of the input parameter uncertainties under consideration, as well as a ranking of the input parameter uncertainties in the order of the significance of their contribution to uncertainty in future sea-level rise. In addition, we discuss how limitations posed by the available information (poorly constrained data) pose challenges that motivate our current research.

  9. Channel Model Optimization with Reflection Residual Component for Indoor MIMO-VLC System

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Li, Tengfei; Liu, Huanlin; Li, Yichao

    2017-12-01

    A fast channel modeling method is studied to solve the problem of reflection channel gain for multiple input multiple output-visible light communications (MIMO-VLC) in the paper. For reducing the computational complexity when associating with the reflection times, no more than 3 reflections are taken into consideration in VLC. We think that higher order reflection link consists of corresponding many times line of sight link and firstly present reflection residual component to characterize higher reflection (more than 2 reflections). We perform computer simulation results for point-to-point channel impulse response, receiving optical power and receiving signal to noise ratio. Based on theoretical analysis and simulation results, the proposed method can effectively reduce the computational complexity of higher order reflection in channel modeling.

  10. Runway exit designs for capacity improvement demonstrations. Phase 2: Computer model development

    NASA Technical Reports Server (NTRS)

    Trani, A. A.; Hobeika, A. G.; Kim, B. J.; Nunna, V.; Zhong, C.

    1992-01-01

    The development is described of a computer simulation/optimization model to: (1) estimate the optimal locations of existing and proposed runway turnoffs; and (2) estimate the geometric design requirements associated with newly developed high speed turnoffs. The model described, named REDIM 2.0, represents a stand alone application to be used by airport planners, designers, and researchers alike to estimate optimal turnoff locations. The main procedures are described in detail which are implemented in the software package and possible applications are illustrated when using 6 major runway scenarios. The main output of the computer program is the estimation of the weighted average runway occupancy time for a user defined aircraft population. Also, the location and geometric characteristics of each turnoff are provided to the user.

  11. Use of medium-range numerical weather prediction model output to produce forecasts of streamflow

    USGS Publications Warehouse

    Clark, M.P.; Hay, L.E.

    2004-01-01

    This paper examines an archive containing over 40 years of 8-day atmospheric forecasts over the contiguous United States from the NCEP reanalysis project to assess the possibilities for using medium-range numerical weather prediction model output for predictions of streamflow. This analysis shows the biases in the NCEP forecasts to be quite extreme. In many regions, systematic precipitation biases exceed 100% of the mean, with temperature biases exceeding 3??C. In some locations, biases are even higher. The accuracy of NCEP precipitation and 2-m maximum temperature forecasts is computed by interpolating the NCEP model output for each forecast day to the location of each station in the NWS cooperative network and computing the correlation with station observations. Results show that the accuracy of the NCEP forecasts is rather low in many areas of the country. Most apparent is the generally low skill in precipitation forecasts (particularly in July) and low skill in temperature forecasts in the western United States, the eastern seaboard, and the southern tier of states. These results outline a clear need for additional processing of the NCEP Medium-Range Forecast Model (MRF) output before it is used for hydrologic predictions. Techniques of model output statistics (MOS) are used in this paper to downscale the NCEP forecasts to station locations. Forecasted atmospheric variables (e.g., total column precipitable water, 2-m air temperature) are used as predictors in a forward screening multiple linear regression model to improve forecasts of precipitation and temperature for stations in the National Weather Service cooperative network. This procedure effectively removes all systematic biases in the raw NCEP precipitation and temperature forecasts. MOS guidance also results in substantial improvements in the accuracy of maximum and minimum temperature forecasts throughout the country. For precipitation, forecast improvements were less impressive. MOS guidance increases he accuracy of precipitation forecasts over the northeastern United States, but overall, the accuracy of MOS-based precipitation forecasts is slightly lower than the raw NCEP forecasts. Four basins in the United States were chosen as case studies to evaluate the value of MRF output for predictions of streamflow. Streamflow forecasts using MRF output were generated for one rainfall-dominated basin (Alapaha River at Statenville, Georgia) and three snowmelt-dominated basins (Animas River at Durango, Colorado: East Fork of the Carson River near Gardnerville, Nevada: and Cle Elum River near Roslyn, Washington). Hydrologic model output forced with measured-station data were used as "truth" to focus attention on the hydrologic effects of errors in the MRF forecasts. Eight-day streamflow forecasts produced using the MOS-corrected MRF output as input (MOS) were compared with those produced using the climatic Ensemble Streamflow Prediction (ESP) technique. MOS-based streamflow forecasts showed increased skill in the snowmelt-dominated river basins, where daily variations in streamflow are strongly forced by temperature. In contrast, the skill of MOS forecasts in the rainfall-dominated basin (the Alapaha River) were equivalent to the skill of the ESP forecasts. Further improvements in streamflow forecasts require more accurate local-scale forecasts of precipitation and temperature, more accurate specification of basin initial conditions, and more accurate model simulations of streamflow. ?? 2004 American Meteorological Society.

  12. Plans and Example Results for the 2nd AIAA Aeroelastic Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Chwalowski, Pawel; Schuster, David M.; Raveh, Daniella; Jirasek, Adam; Dalenbring, Mats

    2015-01-01

    This paper summarizes the plans for the second AIAA Aeroelastic Prediction Workshop. The workshop is designed to assess the state-of-the-art of computational methods for predicting unsteady flow fields and aeroelastic response. The goals are to provide an impartial forum to evaluate the effectiveness of existing computer codes and modeling techniques, and to identify computational and experimental areas needing additional research and development. This paper provides guidelines and instructions for participants including the computational aerodynamic model, the structural dynamic properties, the experimental comparison data and the expected output data from simulations. The Benchmark Supercritical Wing (BSCW) has been chosen as the configuration for this workshop. The analyses to be performed will include aeroelastic flutter solutions of the wing mounted on a pitch-and-plunge apparatus.

  13. Impossibility of Classically Simulating One-Clean-Qubit Model with Multiplicative Error

    NASA Astrophysics Data System (ADS)

    Fujii, Keisuke; Kobayashi, Hirotada; Morimae, Tomoyuki; Nishimura, Harumichi; Tamate, Shuhei; Tani, Seiichiro

    2018-05-01

    The one-clean-qubit model (or the deterministic quantum computation with one quantum bit model) is a restricted model of quantum computing where all but a single input qubits are maximally mixed. It is known that the probability distribution of measurement results on three output qubits of the one-clean-qubit model cannot be classically efficiently sampled within a constant multiplicative error unless the polynomial-time hierarchy collapses to the third level [T. Morimae, K. Fujii, and J. F. Fitzsimons, Phys. Rev. Lett. 112, 130502 (2014), 10.1103/PhysRevLett.112.130502]. It was open whether we can keep the no-go result while reducing the number of output qubits from three to one. Here, we solve the open problem affirmatively. We also show that the third-level collapse of the polynomial-time hierarchy can be strengthened to the second-level one. The strengthening of the collapse level from the third to the second also holds for other subuniversal models such as the instantaneous quantum polynomial model [M. Bremner, R. Jozsa, and D. J. Shepherd, Proc. R. Soc. A 467, 459 (2011), 10.1098/rspa.2010.0301] and the boson sampling model [S. Aaronson and A. Arkhipov, STOC 2011, p. 333]. We additionally study the classical simulatability of the one-clean-qubit model with further restrictions on the circuit depth or the gate types.

  14. Model-Free Primitive-Based Iterative Learning Control Approach to Trajectory Tracking of MIMO Systems With Experimental Validation.

    PubMed

    Radac, Mircea-Bogdan; Precup, Radu-Emil; Petriu, Emil M

    2015-11-01

    This paper proposes a novel model-free trajectory tracking of multiple-input multiple-output (MIMO) systems by the combination of iterative learning control (ILC) and primitives. The optimal trajectory tracking solution is obtained in terms of previously learned solutions to simple tasks called primitives. The library of primitives that are stored in memory consists of pairs of reference input/controlled output signals. The reference input primitives are optimized in a model-free ILC framework without using knowledge of the controlled process. The guaranteed convergence of the learning scheme is built upon a model-free virtual reference feedback tuning design of the feedback decoupling controller. Each new complex trajectory to be tracked is decomposed into the output primitives regarded as basis functions. The optimal reference input for the control system to track the desired trajectory is next recomposed from the reference input primitives. This is advantageous because the optimal reference input is computed straightforward without the need to learn from repeated executions of the tracking task. In addition, the optimization problem specific to trajectory tracking of square MIMO systems is decomposed in a set of optimization problems assigned to each separate single-input single-output control channel that ensures a convenient model-free decoupling. The new model-free primitive-based ILC approach is capable of planning, reasoning, and learning. A case study dealing with the model-free control tuning for a nonlinear aerodynamic system is included to validate the new approach. The experimental results are given.

  15. Quantum supremacy in constant-time measurement-based computation: A unified architecture for sampling and verification

    NASA Astrophysics Data System (ADS)

    Miller, Jacob; Sanders, Stephen; Miyake, Akimasa

    2017-12-01

    While quantum speed-up in solving certain decision problems by a fault-tolerant universal quantum computer has been promised, a timely research interest includes how far one can reduce the resource requirement to demonstrate a provable advantage in quantum devices without demanding quantum error correction, which is crucial for prolonging the coherence time of qubits. We propose a model device made of locally interacting multiple qubits, designed such that simultaneous single-qubit measurements on it can output probability distributions whose average-case sampling is classically intractable, under similar assumptions as the sampling of noninteracting bosons and instantaneous quantum circuits. Notably, in contrast to these previous unitary-based realizations, our measurement-based implementation has two distinctive features. (i) Our implementation involves no adaptation of measurement bases, leading output probability distributions to be generated in constant time, independent of the system size. Thus, it could be implemented in principle without quantum error correction. (ii) Verifying the classical intractability of our sampling is done by changing the Pauli measurement bases only at certain output qubits. Our usage of random commuting quantum circuits in place of computationally universal circuits allows a unique unification of sampling and verification, so they require the same physical resource requirements in contrast to the more demanding verification protocols seen elsewhere in the literature.

  16. RESTSIM: A Simulation Model That Highlights Decision Making under Conditions of Uncertainty.

    ERIC Educational Resources Information Center

    Zinkhan, George M.; Taylor, James R.

    1983-01-01

    Describes RESTSIM, an interactive computer simulation program for graduate and upper-level undergraduate management, marketing, and retailing courses, which introduces naive users to simulation as a decision support technique, and provides a vehicle for studying various statistical procedures for evaluating simulation output. (MBR)

  17. Calculating far-field radiated sound pressure levels from NASTRAN output

    NASA Technical Reports Server (NTRS)

    Lipman, R. R.

    1986-01-01

    FAFRAP is a computer program which calculates far field radiated sound pressure levels from quantities computed by a NASTRAN direct frequency response analysis of an arbitrarily shaped structure. Fluid loading on the structure can be computed directly by NASTRAN or an added-mass approximation to fluid loading on the structure can be used. Output from FAFRAP includes tables of radiated sound pressure levels and several types of graphic output. FAFRAP results for monopole and dipole sources compare closely with an explicit calculation of the radiated sound pressure level for those sources.

  18. Adaptive voting computer system

    NASA Technical Reports Server (NTRS)

    Koczela, L. J.; Wilgus, D. S. (Inventor)

    1974-01-01

    A computer system is reported that uses adaptive voting to tolerate failures and operates in a fail-operational, fail-safe manner. Each of four computers is individually connected to one of four external input/output (I/O) busses which interface with external subsystems. Each computer is connected to receive input data and commands from the other three computers and to furnish output data commands to the other three computers. An adaptive control apparatus including a voter-comparator-switch (VCS) is provided for each computer to receive signals from each of the computers and permits adaptive voting among the computers to permit the fail-operational, fail-safe operation.

  19. MAVIS III -- A Windows 95/NT Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardwick, M.F.

    1997-12-01

    MAVIS (Modeling and Analysis of Explosive Valve Interactions) is a computer program that simulates operation of explosively actuated valve. MAVIS was originally written in Fortran in the mid 1970`s and was primarily run on the Sandia Vax computers in use through the early 1990`s. During the mid to late 1980`s MAVIS was upgraded to include the effects of plastic deformation and it became MAVIS II. When the Vax computers were retired, the Gas Transfer System (GTS) Development Department ported the code to the Macintosh and PC platforms, where it ran as a simple console application. All graphical output was lostmore » during these ports. GTS code developers recently completed an upgrade that provides a Windows 95/NT MAVIS application and restores all of the original graphical output. This upgrade is called MAVIS III version 1.0. This report serves both as a user`s manual for MAVIS III v 1.0 and as a general software development reference.« less

  20. A micro-hydrology computation ordering algorithm

    NASA Astrophysics Data System (ADS)

    Croley, Thomas E.

    1980-11-01

    Discrete-distributed-parameter models are essential for watershed modelling where practical consideration of spatial variations in watershed properties and inputs is desired. Such modelling is necessary for analysis of detailed hydrologic impacts from management strategies and land-use effects. Trade-offs between model validity and model complexity exist in resolution of the watershed. Once these are determined, the watershed is then broken into sub-areas which each have essentially spatially-uniform properties. Lumped-parameter (micro-hydrology) models are applied to these sub-areas and their outputs are combined through the use of a computation ordering technique, as illustrated by many discrete-distributed-parameter hydrology models. Manual ordering of these computations requires fore-thought, and is tedious, error prone, sometimes storage intensive and least adaptable to changes in watershed resolution. A programmable algorithm for ordering micro-hydrology computations is presented that enables automatic ordering of computations within the computer via an easily understood and easily implemented "node" definition, numbering and coding scheme. This scheme and the algorithm are detailed in logic flow-charts and an example application is presented. Extensions and modifications of the algorithm are easily made for complex geometries or differing microhydrology models. The algorithm is shown to be superior to manual ordering techniques and has potential use in high-resolution studies.

  1. Multiscale Methods for Accurate, Efficient, and Scale-Aware Models of the Earth System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldhaber, Steve; Holland, Marika

    The major goal of this project was to contribute improvements to the infrastructure of an Earth System Model in order to support research in the Multiscale Methods for Accurate, Efficient, and Scale-Aware models of the Earth System project. In support of this, the NCAR team accomplished two main tasks: improving input/output performance of the model and improving atmospheric model simulation quality. Improvement of the performance and scalability of data input and diagnostic output within the model required a new infrastructure which can efficiently handle the unstructured grids common in multiscale simulations. This allows for a more computationally efficient model, enablingmore » more years of Earth System simulation. The quality of the model simulations was improved by reducing grid-point noise in the spectral element version of the Community Atmosphere Model (CAM-SE). This was achieved by running the physics of the model using grid-cell data on a finite-volume grid.« less

  2. Bridges Dynamic Parameters Identification Based On Experimental and Numerical Method Comparison in Regard with Traffic Seismicity

    NASA Astrophysics Data System (ADS)

    Krkošková, Katarína; Papán, Daniel; Papánová, Zuzana

    2017-10-01

    The technical seismicity negatively affects the environment, buildings and structures. Technical seismicity means seismic shakes caused by force impulse, random process and unnatural origin. The vibration influence on buildings is evaluated in the Eurocode 8 in Slovak Republic, however, the Slovak Technical Standard STN 73 0036 includes solution of the technical seismicity. This standard also classes bridges into the group of structures that are significant in light of the technical seismicity - the group “U”. Using the case studies analysis by FEM simulation and comparison is necessary because of brief norm evaluation of this issue. In this article, determinate dynamic parameters by experimental measuring and numerical method on two real bridges are compared. First bridge, (D201 - 00) is Scaffold Bridge on the road I/11 leading to the city of Čadca and is situated in the city of Žilina. It is eleven - span concrete road bridge. The railway is the obstacle, which this bridge spans. Second bridge (M5973 Brodno) is situated in the part of Žilina City on the road of I/11. It is concrete three - span road bridge built as box girder. The computing part includes 3D computational models of the bridges. First bridge (D201 - 00) was modelled in the software of IDA Nexis as the slab - wall model. The model outputs are natural frequencies and natural vibration modes. Second bridge (M5973 Brodno) was modelled in the software of VisualFEA. The technical seismicity corresponds with the force impulse, which was put into this model. The model outputs are vibration displacements, velocities and accelerations. The aim of the experiments was measuring of the vibration acceleration time record of bridges, and there was need to systematic placement of accelerometers. The vibration acceleration time record is important during the under - bridge train crossing, about the first bridge (D201 - 00) and the vibration acceleration time domain is important during deducing the force impulse under the bridge, about second bridge (M5973 Brodno). The analysis was done in the software of Sigview. About the first bridge (D201 - 00), the analysis output were values of power spectral density adherent to the frequencies values. These frequencies were compared with the natural frequencies values from the computational model whereby the technical seismicity influence on bridge natural frequencies was found out. About the second bridge (M5973 Brodno), the Sigview display of recorded vibration velocity time history was compared with the final vibration velocity time history from the computational model, whereby the results were incidental.

  3. Projected role of advanced computational aerodynamic methods at the Lockheed-Georgia company

    NASA Technical Reports Server (NTRS)

    Lores, M. E.

    1978-01-01

    Experience with advanced computational methods being used at the Lockheed-Georgia Company to aid in the evaluation and design of new and modified aircraft indicates that large and specialized computers will be needed to make advanced three-dimensional viscous aerodynamic computations practical. The Numerical Aerodynamic Simulation Facility should be used to provide a tool for designing better aerospace vehicles while at the same time reducing development costs by performing computations using Navier-Stokes equations solution algorithms and permitting less sophisticated but nevertheless complex calculations to be made efficiently. Configuration definition procedures and data output formats can probably best be defined in cooperation with industry, therefore, the computer should handle many remote terminals efficiently. The capability of transferring data to and from other computers needs to be provided. Because of the significant amount of input and output associated with 3-D viscous flow calculations and because of the exceedingly fast computation speed envisioned for the computer, special attention should be paid to providing rapid, diversified, and efficient input and output.

  4. A method for determining spiral-bevel gear tooth geometry for finite element analysis

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Litvin, Faydor L.

    1991-01-01

    An analytical method was developed to determine gear tooth surface coordinates of face-milled spiral bevel gears. The method uses the basic gear design parameters in conjunction with the kinematical aspects of spiral bevel gear manufacturing machinery. A computer program, SURFACE, was developed. The computer program calculates the surface coordinates and outputs 3-D model data that can be used for finite element analysis. Development of the modeling method and an example case are presented. This analysis method could also find application for gear inspection and near-net-shape gear forging die design.

  5. Analysis of swimming motions.

    NASA Technical Reports Server (NTRS)

    Gallenstein, J.; Huston, R. L.

    1973-01-01

    This paper presents an analysis of swimming motion with specific attention given to the flutter kick, the breast-stroke kick, and the breast stroke. The analysis is completely theoretical. It employs a mathematical model of the human body consisting of frustrums of elliptical cones. Dynamical equations are written for this model including both viscous and inertia forces. These equations are then applied with approximated swimming strokes and solved numerically using a digital computer. The procedure is to specify the input of the swimming motion. The computer solution then provides the output displacement, velocity, and rotation or body roll of the swimmer.

  6. Verification of a VRF Heat Pump Computer Model in EnergyPlus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigusse, Bereket; Raustad, Richard

    2013-06-15

    This paper provides verification results of the EnergyPlus variable refrigerant flow (VRF) heat pump computer model using manufacturer's performance data. The paper provides an overview of the VRF model, presents the verification methodology, and discusses the results. The verification provides quantitative comparison of full and part-load performance to manufacturer's data in cooling-only and heating-only modes of operation. The VRF heat pump computer model uses dual range bi-quadratic performance curves to represent capacity and Energy Input Ratio (EIR) as a function of indoor and outdoor air temperatures, and dual range quadratic performance curves as a function of part-load-ratio for modeling part-loadmore » performance. These performance curves are generated directly from manufacturer's published performance data. The verification compared the simulation output directly to manufacturer's performance data, and found that the dual range equation fit VRF heat pump computer model predicts the manufacturer's performance data very well over a wide range of indoor and outdoor temperatures and part-load conditions. The predicted capacity and electric power deviations are comparbale to equation-fit HVAC computer models commonly used for packaged and split unitary HVAC equipment.« less

  7. Atmospheric numerical modeling resource enhancement and model convective parameterization/scale interaction studies

    NASA Technical Reports Server (NTRS)

    Cushman, Paula P.

    1993-01-01

    Research will be undertaken in this contract in the area of Modeling Resource and Facilities Enhancement to include computer, technical and educational support to NASA investigators to facilitate model implementation, execution and analysis of output; to provide facilities linking USRA and the NASA/EADS Computer System as well as resident work stations in ESAD; and to provide a centralized location for documentation, archival and dissemination of modeling information pertaining to NASA's program. Additional research will be undertaken in the area of Numerical Model Scale Interaction/Convective Parameterization Studies to include implementation of the comparison of cloud and rain systems and convective-scale processes between the model simulations and what was observed; and to incorporate the findings of these and related research findings in at least two refereed journal articles.

  8. Numerical solution of the exact cavity equations of motion for an unstable optical resonator.

    PubMed

    Bowers, M S; Moody, S E

    1990-09-20

    We solve numerically, we believe for the first time, the exact cavity equations of motion for a realistic unstable resonator with a simple gain saturation model. The cavity equations of motion, first formulated by Siegman ["Exact Cavity Equations for Lasers with Large Output Coupling," Appl. Phys. Lett. 36, 412-414 (1980)], and which we term the dynamic coupled modes (DCM) method of solution, solve for the full 3-D time dependent electric field inside the optical cavity by expanding the field in terms of the actual diffractive transverse eigenmodes of the bare (gain free) cavity with time varying coefficients. The spatially varying gain serves to couple the bare cavity transverse modes and to scatter power from mode to mode. We show that the DCM method numerically converges with respect to the number of eigenmodes in the basis set. The intracavity intensity in the numerical example shown reaches a steady state, and this steady state distribution is compared with that computed from the traditional Fox and Li approach using a fast Fourier transform propagation algorithm. The output wavefronts from both methods are quite similar, and the computed output powers agree to within 10%. The usefulness and advantages of using this method for predicting the output of a laser, especially pulsed lasers used for coherent detection, are discussed.

  9. System life and reliability modeling for helicopter transmissions

    NASA Technical Reports Server (NTRS)

    Savage, M.; Brikmanis, C. K.

    1986-01-01

    A computer program which simulates life and reliability of helicopter transmissions is presented. The helicopter transmissions may be composed of spiral bevel gear units and planetary gear units - alone, in series or in parallel. The spiral bevel gear units may have either single or dual input pinions, which are identical. The planetary gear units may be stepped or unstepped and the number of planet gears carried by the planet arm may be varied. The reliability analysis used in the program is based on the Weibull distribution lives of the transmission components. The computer calculates the system lives and dynamic capacities of the transmission components and the transmission. The system life is defined as the life of the component or transmission at an output torque at which the probability of survival is 90 percent. The dynamic capacity of a component or transmission is defined as the output torque which can be applied for one million output shaft cycles for a probability of survival of 90 percent. A complete summary of the life and dynamic capacity results is produced by the program.

  10. Exact sampling hardness of Ising spin models

    NASA Astrophysics Data System (ADS)

    Fefferman, B.; Foss-Feig, M.; Gorshkov, A. V.

    2017-09-01

    We study the complexity of classically sampling from the output distribution of an Ising spin model, which can be implemented naturally in a variety of atomic, molecular, and optical systems. In particular, we construct a specific example of an Ising Hamiltonian that, after time evolution starting from a trivial initial state, produces a particular output configuration with probability very nearly proportional to the square of the permanent of a matrix with arbitrary integer entries. In a similar spirit to boson sampling, the ability to sample classically from the probability distribution induced by time evolution under this Hamiltonian would imply unlikely complexity theoretic consequences, suggesting that the dynamics of such a spin model cannot be efficiently simulated with a classical computer. Physical Ising spin systems capable of achieving problem-size instances (i.e., qubit numbers) large enough so that classical sampling of the output distribution is classically difficult in practice may be achievable in the near future. Unlike boson sampling, our current results only imply hardness of exact classical sampling, leaving open the important question of whether a much stronger approximate-sampling hardness result holds in this context. The latter is most likely necessary to enable a convincing experimental demonstration of quantum supremacy. As referenced in a recent paper [A. Bouland, L. Mancinska, and X. Zhang, in Proceedings of the 31st Conference on Computational Complexity (CCC 2016), Leibniz International Proceedings in Informatics (Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, 2016)], our result completes the sampling hardness classification of two-qubit commuting Hamiltonians.

  11. The influence of computational assumptions on analysing abdominal aortic aneurysm haemodynamics.

    PubMed

    Ene, Florentina; Delassus, Patrick; Morris, Liam

    2014-08-01

    The variation in computational assumptions for analysing abdominal aortic aneurysm haemodynamics can influence the desired output results and computational cost. Such assumptions for abdominal aortic aneurysm modelling include static/transient pressures, steady/transient flows and rigid/compliant walls. Six computational methods and these various assumptions were simulated and compared within a realistic abdominal aortic aneurysm model with and without intraluminal thrombus. A full transient fluid-structure interaction was required to analyse the flow patterns within the compliant abdominal aortic aneurysms models. Rigid wall computational fluid dynamics overestimates the velocity magnitude by as much as 40%-65% and the wall shear stress by 30%-50%. These differences were attributed to the deforming walls which reduced the outlet volumetric flow rate for the transient fluid-structure interaction during the majority of the systolic phase. Static finite element analysis accurately approximates the deformations and von Mises stresses when compared with transient fluid-structure interaction. Simplifying the modelling complexity reduces the computational cost significantly. In conclusion, the deformation and von Mises stress can be approximately found by static finite element analysis, while for compliant models a full transient fluid-structure interaction analysis is required for acquiring the fluid flow phenomenon. © IMechE 2014.

  12. Using uncertainty and sensitivity analyses in socioecological agent-based models to improve their analytical performance and policy relevance.

    PubMed

    Ligmann-Zielinska, Arika; Kramer, Daniel B; Spence Cheruvelil, Kendra; Soranno, Patricia A

    2014-01-01

    Agent-based models (ABMs) have been widely used to study socioecological systems. They are useful for studying such systems because of their ability to incorporate micro-level behaviors among interacting agents, and to understand emergent phenomena due to these interactions. However, ABMs are inherently stochastic and require proper handling of uncertainty. We propose a simulation framework based on quantitative uncertainty and sensitivity analyses to build parsimonious ABMs that serve two purposes: exploration of the outcome space to simulate low-probability but high-consequence events that may have significant policy implications, and explanation of model behavior to describe the system with higher accuracy. The proposed framework is applied to the problem of modeling farmland conservation resulting in land use change. We employ output variance decomposition based on quasi-random sampling of the input space and perform three computational experiments. First, we perform uncertainty analysis to improve model legitimacy, where the distribution of results informs us about the expected value that can be validated against independent data, and provides information on the variance around this mean as well as the extreme results. In our last two computational experiments, we employ sensitivity analysis to produce two simpler versions of the ABM. First, input space is reduced only to inputs that produced the variance of the initial ABM, resulting in a model with output distribution similar to the initial model. Second, we refine the value of the most influential input, producing a model that maintains the mean of the output of initial ABM but with less spread. These simplifications can be used to 1) efficiently explore model outcomes, including outliers that may be important considerations in the design of robust policies, and 2) conduct explanatory analysis that exposes the smallest number of inputs influencing the steady state of the modeled system.

  13. Using Uncertainty and Sensitivity Analyses in Socioecological Agent-Based Models to Improve Their Analytical Performance and Policy Relevance

    PubMed Central

    Ligmann-Zielinska, Arika; Kramer, Daniel B.; Spence Cheruvelil, Kendra; Soranno, Patricia A.

    2014-01-01

    Agent-based models (ABMs) have been widely used to study socioecological systems. They are useful for studying such systems because of their ability to incorporate micro-level behaviors among interacting agents, and to understand emergent phenomena due to these interactions. However, ABMs are inherently stochastic and require proper handling of uncertainty. We propose a simulation framework based on quantitative uncertainty and sensitivity analyses to build parsimonious ABMs that serve two purposes: exploration of the outcome space to simulate low-probability but high-consequence events that may have significant policy implications, and explanation of model behavior to describe the system with higher accuracy. The proposed framework is applied to the problem of modeling farmland conservation resulting in land use change. We employ output variance decomposition based on quasi-random sampling of the input space and perform three computational experiments. First, we perform uncertainty analysis to improve model legitimacy, where the distribution of results informs us about the expected value that can be validated against independent data, and provides information on the variance around this mean as well as the extreme results. In our last two computational experiments, we employ sensitivity analysis to produce two simpler versions of the ABM. First, input space is reduced only to inputs that produced the variance of the initial ABM, resulting in a model with output distribution similar to the initial model. Second, we refine the value of the most influential input, producing a model that maintains the mean of the output of initial ABM but with less spread. These simplifications can be used to 1) efficiently explore model outcomes, including outliers that may be important considerations in the design of robust policies, and 2) conduct explanatory analysis that exposes the smallest number of inputs influencing the steady state of the modeled system. PMID:25340764

  14. Reconstruction of neuronal input through modeling single-neuron dynamics and computations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Qing; Wang, Jiang; Yu, Haitao

    Mathematical models provide a mathematical description of neuron activity, which can better understand and quantify neural computations and corresponding biophysical mechanisms evoked by stimulus. In this paper, based on the output spike train evoked by the acupuncture mechanical stimulus, we present two different levels of models to describe the input-output system to achieve the reconstruction of neuronal input. The reconstruction process is divided into two steps: First, considering the neuronal spiking event as a Gamma stochastic process. The scale parameter and the shape parameter of Gamma process are, respectively, defined as two spiking characteristics, which are estimated by a state-spacemore » method. Then, leaky integrate-and-fire (LIF) model is used to mimic the response system and the estimated spiking characteristics are transformed into two temporal input parameters of LIF model, through two conversion formulas. We test this reconstruction method by three different groups of simulation data. All three groups of estimates reconstruct input parameters with fairly high accuracy. We then use this reconstruction method to estimate the non-measurable acupuncture input parameters. Results show that under three different frequencies of acupuncture stimulus conditions, estimated input parameters have an obvious difference. The higher the frequency of the acupuncture stimulus is, the higher the accuracy of reconstruction is.« less

  15. Reconstruction of neuronal input through modeling single-neuron dynamics and computations

    NASA Astrophysics Data System (ADS)

    Qin, Qing; Wang, Jiang; Yu, Haitao; Deng, Bin; Chan, Wai-lok

    2016-06-01

    Mathematical models provide a mathematical description of neuron activity, which can better understand and quantify neural computations and corresponding biophysical mechanisms evoked by stimulus. In this paper, based on the output spike train evoked by the acupuncture mechanical stimulus, we present two different levels of models to describe the input-output system to achieve the reconstruction of neuronal input. The reconstruction process is divided into two steps: First, considering the neuronal spiking event as a Gamma stochastic process. The scale parameter and the shape parameter of Gamma process are, respectively, defined as two spiking characteristics, which are estimated by a state-space method. Then, leaky integrate-and-fire (LIF) model is used to mimic the response system and the estimated spiking characteristics are transformed into two temporal input parameters of LIF model, through two conversion formulas. We test this reconstruction method by three different groups of simulation data. All three groups of estimates reconstruct input parameters with fairly high accuracy. We then use this reconstruction method to estimate the non-measurable acupuncture input parameters. Results show that under three different frequencies of acupuncture stimulus conditions, estimated input parameters have an obvious difference. The higher the frequency of the acupuncture stimulus is, the higher the accuracy of reconstruction is.

  16. Maintenance Training Simulators Prime Item Development Specification. Model Specification and Handbook.

    DTIC Science & Technology

    1985-04-01

    and equipment whose operation can be verified with a visual or aural check. The sequence of outputs shall be cyclic, with provisions to stop the...private memory. The decision to provide spare, expansion capability, or a combination of both shall be based on life cycle cost (to the best extent...Computational System should be determined in conjunction with a computer expert (if possible). In any event, it is best to postpone completing - this

  17. INDES User's guide multistep input design with nonlinear rotorcraft modeling

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The INDES computer program, a multistep input design program used as part of a data processing technique for rotorcraft systems identification, is described. Flight test inputs base on INDES improve the accuracy of parameter estimates. The input design algorithm, program input, and program output are presented.

  18. Materials Science | NREL

    Science.gov Websites

    sulfide (SnS). The top image represents output from atomic force microscopy for the molecular sections and computations. The image shows modeled electronic density of states (top panel) of the the bandgap of the narrow-gap crystalline semiconductors (left and right sides of the image) when it

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanchurin, Vitaly, E-mail: vvanchur@d.umn.edu

    We initiate a formal study of logical inferences in context of the measure problem in cosmology or what we call cosmic logic. We describe a simple computational model of cosmic logic suitable for analysis of, for example, discretized cosmological systems. The construction is based on a particular model of computation, developed by Alan Turing, with cosmic observers (CO), cosmic measures (CM) and cosmic symmetries (CS) described by Turing machines. CO machines always start with a blank tape and CM machines take CO's Turing number (also known as description number or Gödel number) as input and output the corresponding probability. Similarly,more » CS machines take CO's Turing number as input, but output either one if the CO machines are in the same equivalence class or zero otherwise. We argue that CS machines are more fundamental than CM machines and, thus, should be used as building blocks in constructing CM machines. We prove the non-computability of a CS machine which discriminates between two classes of CO machines: mortal that halts in finite time and immortal that runs forever. In context of eternal inflation this result implies that it is impossible to construct CM machines to compute probabilities on the set of all CO machines using cut-off prescriptions. The cut-off measures can still be used if the set is reduced to include only machines which halt after a finite and predetermined number of steps.« less

  20. Scheduling Algorithm for Mission Planning and Logistics Evaluation (SAMPLE). Volume 1: User's guide

    NASA Technical Reports Server (NTRS)

    Dupnick, E.; Wiggins, D.

    1980-01-01

    An interactive computer program for automatically generating traffic models for the Space Transportation System (STS) is presented. Information concerning run stream construction, input data, and output data is provided. The flow of the interactive data stream is described. Error messages are specified, along with suggestions for remedial action. In addition, formats and parameter definitions for the payload data set (payload model), feasible combination file, and traffic model are documented.

  1. Two-dimensional radiant energy array computers and computing devices

    NASA Technical Reports Server (NTRS)

    Schaefer, D. H.; Strong, J. P., III (Inventor)

    1976-01-01

    Two dimensional digital computers and computer devices operate in parallel on rectangular arrays of digital radiant energy optical signal elements which are arranged in ordered rows and columns. Logic gate devices receive two input arrays and provide an output array having digital states dependent only on the digital states of the signal elements of the two input arrays at corresponding row and column positions. The logic devices include an array of photoconductors responsive to at least one of the input arrays for either selectively accelerating electrons to a phosphor output surface, applying potentials to an electroluminescent output layer, exciting an array of discrete radiant energy sources, or exciting a liquid crystal to influence crystal transparency or reflectivity.

  2. Administrative and Bibliographic Uses of COM (Computer Output Microfilm) in an Academic Library.

    ERIC Educational Resources Information Center

    Gillham, Virginia; Black, John B.

    Computer output microfilm/fiche (COM) combines the speed and laborsaving aspects of computer-based systems with the economy and physical compactness of microforms to provide the medium of the future for library management and information retrieval. The traditional card catalog and printed lists found in every library can be replaced in multiple…

  3. High performance network and channel-based storage

    NASA Technical Reports Server (NTRS)

    Katz, Randy H.

    1991-01-01

    In the traditional mainframe-centered view of a computer system, storage devices are coupled to the system through complex hardware subsystems called input/output (I/O) channels. With the dramatic shift towards workstation-based computing, and its associated client/server model of computation, storage facilities are now found attached to file servers and distributed throughout the network. We discuss the underlying technology trends that are leading to high performance network-based storage, namely advances in networks, storage devices, and I/O controller and server architectures. We review several commercial systems and research prototypes that are leading to a new approach to high performance computing based on network-attached storage.

  4. Multifidelity, Multidisciplinary Design Under Uncertainty with Non-Intrusive Polynomial Chaos

    NASA Technical Reports Server (NTRS)

    West, Thomas K., IV; Gumbert, Clyde

    2017-01-01

    The primary objective of this work is to develop an approach for multifidelity uncertainty quantification and to lay the framework for future design under uncertainty efforts. In this study, multifidelity is used to describe both the fidelity of the modeling of the physical systems, as well as the difference in the uncertainty in each of the models. For computational efficiency, a multifidelity surrogate modeling approach based on non-intrusive polynomial chaos using the point-collocation technique is developed for the treatment of both multifidelity modeling and multifidelity uncertainty modeling. Two stochastic model problems are used to demonstrate the developed methodologies: a transonic airfoil model and multidisciplinary aircraft analysis model. The results of both showed the multifidelity modeling approach was able to predict the output uncertainty predicted by the high-fidelity model as a significant reduction in computational cost.

  5. Prevalence scaling: applications to an intelligent workstation for the diagnosis of breast cancer.

    PubMed

    Horsch, Karla; Giger, Maryellen L; Metz, Charles E

    2008-11-01

    Our goal was to investigate the effects of changes that the prevalence of cancer in a population have on the probability of malignancy (PM) output and an optimal combination of a true-positive fraction (TPF) and a false-positive fraction (FPF) of a mammographic and sonographic automatic classifier for the diagnosis of breast cancer. We investigate how a prevalence-scaling transformation that is used to change the prevalence inherent in the computer estimates of the PM affects the numerical and histographic output of a previously developed multimodality intelligent workstation. Using Bayes' rule and the binormal model, we study how changes in the prevalence of cancer in the diagnostic breast population affect our computer classifiers' optimal operating points, as defined by maximizing the expected utility. Prevalence scaling affects the threshold at which a particular TPF and FPF pair is achieved. Tables giving the thresholds on the scaled PM estimates that result in particular pairs of TPF and FPF are presented. Histograms of PMs scaled to reflect clinically relevant prevalence values differ greatly from histograms of laboratory-designed PMs. The optimal pair (TPF, FPF) of our lower performing mammographic classifier is more sensitive to changes in clinical prevalence than that of our higher performing sonographic classifier. Prevalence scaling can be used to change computer PM output to reflect clinically more appropriate prevalence. Relatively small changes in clinical prevalence can have large effects on the computer classifier's optimal operating point.

  6. The Sylview graphical interface to the SYLVAN STAND STRUCTURE model with examples from southern bottomland hardwood forests

    Treesearch

    David R. Larsen; Ian Scott

    2010-01-01

    In the field of forestry, the output of forest growth models provide a wealth of detailed information that can often be difficult to analyze and perceive due to presentation either as plain text summary tables or static stand visualizations. This paper describes the design and implementation of a cross-platform computer application for dynamic and interactive forest...

  7. Multi-level emulation of a volcanic ash transport and dispersion model to quantify sensitivity to uncertain parameters

    NASA Astrophysics Data System (ADS)

    Harvey, Natalie J.; Huntley, Nathan; Dacre, Helen F.; Goldstein, Michael; Thomson, David; Webster, Helen

    2018-01-01

    Following the disruption to European airspace caused by the eruption of Eyjafjallajökull in 2010 there has been a move towards producing quantitative predictions of volcanic ash concentration using volcanic ash transport and dispersion simulators. However, there is no formal framework for determining the uncertainties of these predictions and performing many simulations using these complex models is computationally expensive. In this paper a Bayesian linear emulation approach is applied to the Numerical Atmospheric-dispersion Modelling Environment (NAME) to better understand the influence of source and internal model parameters on the simulator output. Emulation is a statistical method for predicting the output of a computer simulator at new parameter choices without actually running the simulator. A multi-level emulation approach is applied using two configurations of NAME with different numbers of model particles. Information from many evaluations of the computationally faster configuration is combined with results from relatively few evaluations of the slower, more accurate, configuration. This approach is effective when it is not possible to run the accurate simulator many times and when there is also little prior knowledge about the influence of parameters. The approach is applied to the mean ash column loading in 75 geographical regions on 14 May 2010. Through this analysis it has been found that the parameters that contribute the most to the output uncertainty are initial plume rise height, mass eruption rate, free tropospheric turbulence levels and precipitation threshold for wet deposition. This information can be used to inform future model development and observational campaigns and routine monitoring. The analysis presented here suggests the need for further observational and theoretical research into parameterisation of atmospheric turbulence. Furthermore it can also be used to inform the most important parameter perturbations for a small operational ensemble of simulations. The use of an emulator also identifies the input and internal parameters that do not contribute significantly to simulator uncertainty. Finally, the analysis highlights that the faster, less accurate, configuration of NAME can, on its own, provide useful information for the problem of predicting average column load over large areas.

  8. User's manual for the generalized computer program system. Open-channel flow and sedimentation, TABS-2. Main text

    NASA Astrophysics Data System (ADS)

    Thomas, W. A.; McAnally, W. H., Jr.

    1985-07-01

    TABS-2 is a generalized numerical modeling system for open-channel flows, sedimentation, and constituent transport. It consists of more than 40 computer programs to perform modeling and related tasks. The major modeling components--RMA-2V, STUDH, and RMA-4--calculate two-dimensional, depth-averaged flows, sedimentation, and dispersive transport, respectively. The other programs in the system perform digitizing, mesh generation, data management, graphical display, output analysis, and model interfacing tasks. Utilities include file management and automatic generation of computer job control instructions. TABS-2 has been applied to a variety of waterways, including rivers, estuaries, bays, and marshes. It is designed for use by engineers and scientists who may not have a rigorous computer background. Use of the various components is described in Appendices A-O. The bound version of the report does not include the appendices. A looseleaf form with Appendices A-O is distributed to system users.

  9. A software to digital image processing to be used in the voxel phantom development.

    PubMed

    Vieira, J W; Lima, F R A

    2009-11-15

    Anthropomorphic models used in computational dosimetry, also denominated phantoms, are based on digital images recorded from scanning of real people by Computed Tomography (CT) or Magnetic Resonance Imaging (MRI). The voxel phantom construction requests computational processing for transformations of image formats, to compact two-dimensional (2-D) images forming of three-dimensional (3-D) matrices, image sampling and quantization, image enhancement, restoration and segmentation, among others. Hardly the researcher of computational dosimetry will find all these available abilities in single software, and almost always this difficulty presents as a result the decrease of the rhythm of his researches or the use, sometimes inadequate, of alternative tools. The need to integrate the several tasks mentioned above to obtain an image that can be used in an exposure computational model motivated the development of the Digital Image Processing (DIP) software, mainly to solve particular problems in Dissertations and Thesis developed by members of the Grupo de Pesquisa em Dosimetria Numérica (GDN/CNPq). Because of this particular objective, the software uses the Portuguese idiom in their implementations and interfaces. This paper presents the second version of the DIP, whose main changes are the more formal organization on menus and menu items, and menu for digital image segmentation. Currently, the DIP contains the menus Fundamentos, Visualizações, Domínio Espacial, Domínio de Frequências, Segmentações and Estudos. Each menu contains items and sub-items with functionalities that, usually, request an image as input and produce an image or an attribute in the output. The DIP reads edits and writes binary files containing the 3-D matrix corresponding to a stack of axial images from a given geometry that can be a human body or other volume of interest. It also can read any type of computational image and to make conversions. When the task involves only an output image, this is saved as a JPEG file in the Windows default; when it involves an image stack, the output binary file is denominated SGI (Simulações Gráficas Interativas (Interactive Graphic Simulations), an acronym already used in other publications of the GDN/CNPq.

  10. An efficient surrogate-based simulation-optimization method for calibrating a regional MODFLOW model

    NASA Astrophysics Data System (ADS)

    Chen, Mingjie; Izady, Azizallah; Abdalla, Osman A.

    2017-01-01

    Simulation-optimization method entails a large number of model simulations, which is computationally intensive or even prohibitive if the model simulation is extremely time-consuming. Statistical models have been examined as a surrogate of the high-fidelity physical model during simulation-optimization process to tackle this problem. Among them, Multivariate Adaptive Regression Splines (MARS), a non-parametric adaptive regression method, is superior in overcoming problems of high-dimensions and discontinuities of the data. Furthermore, the stability and accuracy of MARS model can be improved by bootstrap aggregating methods, namely, bagging. In this paper, Bagging MARS (BMARS) method is integrated to a surrogate-based simulation-optimization framework to calibrate a three-dimensional MODFLOW model, which is developed to simulate the groundwater flow in an arid hardrock-alluvium region in northwestern Oman. The physical MODFLOW model is surrogated by the statistical model developed using BMARS algorithm. The surrogate model, which is fitted and validated using training dataset generated by the physical model, can approximate solutions rapidly. An efficient Sobol' method is employed to calculate global sensitivities of head outputs to input parameters, which are used to analyze their importance for the model outputs spatiotemporally. Only sensitive parameters are included in the calibration process to further improve the computational efficiency. Normalized root mean square error (NRMSE) between measured and simulated heads at observation wells is used as the objective function to be minimized during optimization. The reasonable history match between the simulated and observed heads demonstrated feasibility of this high-efficient calibration framework.

  11. Integration and Exposure of Large Scale Computational Resources Across the Earth System Grid Federation (ESGF)

    NASA Astrophysics Data System (ADS)

    Duffy, D.; Maxwell, T. P.; Doutriaux, C.; Williams, D. N.; Chaudhary, A.; Ames, S.

    2015-12-01

    As the size of remote sensing observations and model output data grows, the volume of the data has become overwhelming, even to many scientific experts. As societies are forced to better understand, mitigate, and adapt to climate changes, the combination of Earth observation data and global climate model projects is crucial to not only scientists but to policy makers, downstream applications, and even the public. Scientific progress on understanding climate is critically dependent on the availability of a reliable infrastructure that promotes data access, management, and provenance. The Earth System Grid Federation (ESGF) has created such an environment for the Intergovernmental Panel on Climate Change (IPCC). ESGF provides a federated global cyber infrastructure for data access and management of model outputs generated for the IPCC Assessment Reports (AR). The current generation of the ESGF federated grid allows consumers of the data to find and download data with limited capabilities for server-side processing. Since the amount of data for future AR is expected to grow dramatically, ESGF is working on integrating server-side analytics throughout the federation. The ESGF Compute Working Team (CWT) has created a Web Processing Service (WPS) Application Programming Interface (API) to enable access scalable computational resources. The API is the exposure point to high performance computing resources across the federation. Specifically, the API allows users to execute simple operations, such as maximum, minimum, average, and anomalies, on ESGF data without having to download the data. These operations are executed at the ESGF data node site with access to large amounts of parallel computing capabilities. This presentation will highlight the WPS API, its capabilities, provide implementation details, and discuss future developments.

  12. Equilibrium Propagation: Bridging the Gap between Energy-Based Models and Backpropagation

    PubMed Central

    Scellier, Benjamin; Bengio, Yoshua

    2017-01-01

    We introduce Equilibrium Propagation, a learning framework for energy-based models. It involves only one kind of neural computation, performed in both the first phase (when the prediction is made) and the second phase of training (after the target or prediction error is revealed). Although this algorithm computes the gradient of an objective function just like Backpropagation, it does not need a special computation or circuit for the second phase, where errors are implicitly propagated. Equilibrium Propagation shares similarities with Contrastive Hebbian Learning and Contrastive Divergence while solving the theoretical issues of both algorithms: our algorithm computes the gradient of a well-defined objective function. Because the objective function is defined in terms of local perturbations, the second phase of Equilibrium Propagation corresponds to only nudging the prediction (fixed point or stationary distribution) toward a configuration that reduces prediction error. In the case of a recurrent multi-layer supervised network, the output units are slightly nudged toward their target in the second phase, and the perturbation introduced at the output layer propagates backward in the hidden layers. We show that the signal “back-propagated” during this second phase corresponds to the propagation of error derivatives and encodes the gradient of the objective function, when the synaptic update corresponds to a standard form of spike-timing dependent plasticity. This work makes it more plausible that a mechanism similar to Backpropagation could be implemented by brains, since leaky integrator neural computation performs both inference and error back-propagation in our model. The only local difference between the two phases is whether synaptic changes are allowed or not. We also show experimentally that multi-layer recurrently connected networks with 1, 2, and 3 hidden layers can be trained by Equilibrium Propagation on the permutation-invariant MNIST task. PMID:28522969

  13. GAPPARD: a computationally efficient method of approximating gap-scale disturbance in vegetation models

    NASA Astrophysics Data System (ADS)

    Scherstjanoi, M.; Kaplan, J. O.; Thürig, E.; Lischke, H.

    2013-02-01

    Models of vegetation dynamics that are designed for application at spatial scales larger than individual forest gaps suffer from several limitations. Typically, either a population average approximation is used that results in unrealistic tree allometry and forest stand structure, or models have a high computational demand because they need to simulate both a series of age-based cohorts and a number of replicate patches to account for stochastic gap-scale disturbances. The detail required by the latter method increases the number of calculations by two to three orders of magnitude compared to the less realistic population average approach. In an effort to increase the efficiency of dynamic vegetation models without sacrificing realism, and to explore patterns of spatial scaling in forests, we developed a new method for simulating stand-replacing disturbances that is both accurate and 10-50x faster than approaches that use replicate patches. The GAPPARD (approximating GAP model results with a Probabilistic Approach to account for stand Replacing Disturbances) method works by postprocessing the output of deterministic, undisturbed simulations of a cohort-based vegetation model by deriving the distribution of patch ages at any point in time on the basis of a disturbance probability. With this distribution, the expected value of any output variable can be calculated from the output values of the deterministic undisturbed run at the time corresponding to the patch age. To account for temporal changes in model forcing, e.g., as a result of climate change, GAPPARD performs a series of deterministic simulations and interpolates between the results in the postprocessing step. We integrated the GAPPARD method in the forest models LPJ-GUESS and TreeM-LPJ, and evaluated these in a series of simulations along an altitudinal transect of an inner-alpine valley. With GAPPARD applied to LPJ-GUESS results were insignificantly different from the output of the original model LPJ-GUESS using 100 replicate patches, but simulation time was reduced by approximately the factor 10. Our new method is therefore highly suited rapidly approximating LPJ-GUESS results, and provides the opportunity for future studies over large spatial domains, allows easier parameterization of tree species, faster identification of areas of interesting simulation results, and comparisons with large-scale datasets and forest models.

  14. Natural Resource Information System. Volume 2: System operating procedures and instructions

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A total computer software system description is provided for the prototype Natural Resource Information System designed to store, process, and display data of maximum usefulness to land management decision making. Program modules are described, as are the computer file design, file updating methods, digitizing process, and paper tape conversion to magnetic tape. Operating instructions for the system, data output, printed output, and graphic output are also discussed.

  15. Blanks: a computer program for analyzing furniture rough-part needs in standard-size blanks

    Treesearch

    Philip A. Araman

    1983-01-01

    A computer program is described that allows a company to determine the number of edge-glued, standard-size blanks required to satisfy its rough-part needs for a given production period. Yield and cost information also is determined by the program. A list of the program inputs, outputs, and uses of outputs is described, and an example analysis with sample output is...

  16. Estimating the Uncertain Mathematical Structure of Hydrological Model via Bayesian Data Assimilation

    NASA Astrophysics Data System (ADS)

    Bulygina, N.; Gupta, H.; O'Donell, G.; Wheater, H.

    2008-12-01

    The structure of hydrological model at macro scale (e.g. watershed) is inherently uncertain due to many factors, including the lack of a robust hydrological theory at the macro scale. In this work, we assume that a suitable conceptual model for the hydrologic system has already been determined - i.e., the system boundaries have been specified, the important state variables and input and output fluxes to be included have been selected, and the major hydrological processes and geometries of their interconnections have been identified. The structural identification problem then is to specify the mathematical form of the relationships between the inputs, state variables and outputs, so that a computational model can be constructed for making simulations and/or predictions of system input-state-output behaviour. We show how Bayesian data assimilation can be used to merge both prior beliefs in the form of pre-assumed model equations with information derived from the data to construct a posterior model. The approach, entitled Bayesian Estimation of Structure (BESt), is used to estimate a hydrological model for a small basin in England, at hourly time scales, conditioned on the assumption of 3-dimensional state - soil moisture storage, fast and slow flow stores - conceptual model structure. Inputs to the system are precipitation and potential evapotranspiration, and outputs are actual evapotranspiration and streamflow discharge. Results show the difference between prior and posterior mathematical structures, as well as provide prediction confidence intervals that reflect three types of uncertainty: due to initial conditions, due to input and due to mathematical structure.

  17. Modeling of an intelligent pressure sensor using functional link artificial neural networks.

    PubMed

    Patra, J C; van den Bos, A

    2000-01-01

    A capacitor pressure sensor (CPS) is modeled for accurate readout of applied pressure using a novel artificial neural network (ANN). The proposed functional link ANN (FLANN) is a computationally efficient nonlinear network and is capable of complex nonlinear mapping between its input and output pattern space. The nonlinearity is introduced into the FLANN by passing the input pattern through a functional expansion unit. Three different polynomials such as, Chebyschev, Legendre and power series have been employed in the FLANN. The FLANN offers computational advantage over a multilayer perceptron (MLP) for similar performance in modeling of the CPS. The prime aim of the present paper is to develop an intelligent model of the CPS involving less computational complexity, so that its implementation can be economical and robust. It is shown that, over a wide temperature variation ranging from -50 to 150 degrees C, the maximum error of estimation of pressure remains within +/- 3%. With the help of computer simulation, the performance of the three types of FLANN models has been compared to that of an MLP based model.

  18. A design framework for teleoperators with kinesthetic feedback

    NASA Technical Reports Server (NTRS)

    Hannaford, Blake

    1989-01-01

    The application of a hybrid two-port model to teleoperators with force and velocity sensing at the master and slave is presented. The interfaces between human operator and master, and between environment and slave, are ports through which the teleoperator is designed to exchange energy between the operator and the environment. By computing or measuring the input-output properties of this two-port network, the hybrid two-port model of an actual or simulated teleoperator system can be obtained. It is shown that the hybrid model (as opposed to other two-port forms) leads to an intuitive representation of ideal teleoperator performace and applies to several teleoperator architectures. Thus measured values of the h matrix or values computed from a simulation can be used to compare performance with th ideal. The frequency-dependent h matrix is computed from a detailed SPICE model of an actual system, and the method is applied to a proposed architecture.

  19. The DART dispersion analysis research tool: A mechanistic model for predicting fission-product-induced swelling of aluminum dispersion fuels. User`s guide for mainframe, workstation, and personal computer applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rest, J.

    1995-08-01

    This report describes the primary physical models that form the basis of the DART mechanistic computer model for calculating fission-product-induced swelling of aluminum dispersion fuels; the calculated results are compared with test data. In addition, DART calculates irradiation-induced changes in the thermal conductivity of the dispersion fuel, as well as fuel restructuring due to aluminum fuel reaction, amorphization, and recrystallization. Input instructions for execution on mainframe, workstation, and personal computers are provided, as is a description of DART output. The theory of fission gas behavior and its effect on fuel swelling is discussed. The behavior of these fission products inmore » both crystalline and amorphous fuel and in the presence of irradiation-induced recrystallization and crystalline-to-amorphous-phase change phenomena is presented, as are models for these irradiation-induced processes.« less

  20. VLSI circuits implementing computational models of neocortical circuits.

    PubMed

    Wijekoon, Jayawan H B; Dudek, Piotr

    2012-09-15

    This paper overviews the design and implementation of three neuromorphic integrated circuits developed for the COLAMN ("Novel Computing Architecture for Cognitive Systems based on the Laminar Microcircuitry of the Neocortex") project. The circuits are implemented in a standard 0.35 μm CMOS technology and include spiking and bursting neuron models, and synapses with short-term (facilitating/depressing) and long-term (STDP and dopamine-modulated STDP) dynamics. They enable execution of complex nonlinear models in accelerated-time, as compared with biology, and with low power consumption. The neural dynamics are implemented using analogue circuit techniques, with digital asynchronous event-based input and output. The circuits provide configurable hardware blocks that can be used to simulate a variety of neural networks. The paper presents experimental results obtained from the fabricated devices, and discusses the advantages and disadvantages of the analogue circuit approach to computational neural modelling. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Grid-based Meteorological and Crisis Applications

    NASA Astrophysics Data System (ADS)

    Hluchy, Ladislav; Bartok, Juraj; Tran, Viet; Lucny, Andrej; Gazak, Martin

    2010-05-01

    We present several applications from domain of meteorology and crisis management we developed and/or plan to develop. Particularly, we present IMS Model Suite - a complex software system designed to address the needs of accurate forecast of weather and hazardous weather phenomena, environmental pollution assessment, prediction of consequences of nuclear accident and radiological emergency. We discuss requirements on computational means and our experiences how to meet them by grid computing. The process of a pollution assessment and prediction of the consequences in case of radiological emergence results in complex data-flows and work-flows among databases, models and simulation tools (geographical databases, meteorological and dispersion models, etc.). A pollution assessment and prediction requires running of 3D meteorological model (4 nests with resolution from 50 km to 1.8 km centered on nuclear power plant site, 38 vertical levels) as well as running of the dispersion model performing the simulation of the release transport and deposition of the pollutant with respect to the numeric weather prediction data, released material description, topography, land use description and user defined simulation scenario. Several post-processing options can be selected according to particular situation (e.g. doses calculation). Another example is a forecasting of fog as one of the meteorological phenomena hazardous to the aviation as well as road traffic. It requires complicated physical model and high resolution meteorological modeling due to its dependence on local conditions (precise topography, shorelines and land use classes). An installed fog modeling system requires a 4 time nested parallelized 3D meteorological model with 1.8 km horizontal resolution and 42 levels vertically (approx. 1 million points in 3D space) to be run four times daily. The 3D model outputs and multitude of local measurements are utilized by SPMD-parallelized 1D fog model run every hour. The fog forecast model is a subject of the parameterization and parameter optimization before its real deployment. The parameter optimization requires tens of evaluations of the parameterized model accuracy and each evaluation of the model parameters requires re-running of the hundreds of meteorological situations collected over the years and comparison of the model output with the observed data. The architecture and inherent heterogeneity of both examples and their computational complexity and their interfaces to other systems and services make them well suited for decomposition into a set of web and grid services. Such decomposition has been performed within several projects we participated or participate in cooperation with academic sphere, namely int.eu.grid (dispersion model deployed as a pilot application to an interactive grid), SEMCO-WS (semantic composition of the web and grid services), DMM (development of a significant meteorological phenomena prediction system based on the data mining), VEGA 2009-2011 and EGEE III. We present useful and practical applications of technologies of high performance computing. The use of grid technology provides access to much higher computation power not only for modeling and simulation, but also for the model parameterization and validation. This results in the model parameters optimization and more accurate simulation outputs. Having taken into account that the simulations are used for the aviation, road traffic and crisis management, even small improvement in accuracy of predictions may result in significant improvement of safety as well as cost reduction. We found grid computing useful for our applications. We are satisfied with this technology and our experience encourages us to extend its use. Within an ongoing project (DMM) we plan to include processing of satellite images which extends our requirement on computation very rapidly. We believe that thanks to grid computing we are able to handle the job almost in real time.

  2. A graph-based computational framework for simulation and optimisation of coupled infrastructure networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jalving, Jordan; Abhyankar, Shrirang; Kim, Kibaek

    Here, we present a computational framework that facilitates the construction, instantiation, and analysis of large-scale optimization and simulation applications of coupled energy networks. The framework integrates the optimization modeling package PLASMO and the simulation package DMNetwork (built around PETSc). These tools use a common graphbased abstraction that enables us to achieve compatibility between data structures and to build applications that use network models of different physical fidelity. We also describe how to embed these tools within complex computational workflows using SWIFT, which is a tool that facilitates parallel execution of multiple simulation runs and management of input and output data.more » We discuss how to use these capabilities to target coupled natural gas and electricity systems.« less

  3. A graph-based computational framework for simulation and optimisation of coupled infrastructure networks

    DOE PAGES

    Jalving, Jordan; Abhyankar, Shrirang; Kim, Kibaek; ...

    2017-04-24

    Here, we present a computational framework that facilitates the construction, instantiation, and analysis of large-scale optimization and simulation applications of coupled energy networks. The framework integrates the optimization modeling package PLASMO and the simulation package DMNetwork (built around PETSc). These tools use a common graphbased abstraction that enables us to achieve compatibility between data structures and to build applications that use network models of different physical fidelity. We also describe how to embed these tools within complex computational workflows using SWIFT, which is a tool that facilitates parallel execution of multiple simulation runs and management of input and output data.more » We discuss how to use these capabilities to target coupled natural gas and electricity systems.« less

  4. Modeling resident error-making patterns in detection of mammographic masses using computer-extracted image features: preliminary experiments

    NASA Astrophysics Data System (ADS)

    Mazurowski, Maciej A.; Zhang, Jing; Lo, Joseph Y.; Kuzmiak, Cherie M.; Ghate, Sujata V.; Yoon, Sora

    2014-03-01

    Providing high quality mammography education to radiology trainees is essential, as good interpretation skills potentially ensure the highest benefit of screening mammography for patients. We have previously proposed a computer-aided education system that utilizes trainee models, which relate human-assessed image characteristics to interpretation error. We proposed that these models be used to identify the most difficult and therefore the most educationally useful cases for each trainee. In this study, as a next step in our research, we propose to build trainee models that utilize features that are automatically extracted from images using computer vision algorithms. To predict error, we used a logistic regression which accepts imaging features as input and returns error as output. Reader data from 3 experts and 3 trainees were used. Receiver operating characteristic analysis was applied to evaluate the proposed trainee models. Our experiments showed that, for three trainees, our models were able to predict error better than chance. This is an important step in the development of adaptive computer-aided education systems since computer-extracted features will allow for faster and more extensive search of imaging databases in order to identify the most educationally beneficial cases.

  5. Intelligent Network Management and Functional Cerebellum Synthesis

    NASA Technical Reports Server (NTRS)

    Loebner, Egon E.

    1989-01-01

    Transdisciplinary modeling of the cerebellum across histology, physiology, and network engineering provides preliminary results at three organization levels: input/output links to central nervous system networks; links between the six neuron populations in the cerebellum; and computation among the neurons of the populations. Older models probably underestimated the importance and role of climbing fiber input which seems to supply write as well as read signals, not just to Purkinje but also to basket and stellate neurons. The well-known mossy fiber-granule cell-Golgi cell system should also respond to inputs originating from climbing fibers. Corticonuclear microcomplexing might be aided by stellate and basket computation and associate processing. Technological and scientific implications of the proposed cerebellum model are discussed.

  6. Dynamic regulation of erythropoiesis: A computer model of general applicability

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1979-01-01

    A mathematical model for the control of erythropoiesis was developed based on the balance between oxygen supply and demand at a renal oxygen detector which controls erythropoietin release and red cell production. Feedback regulation of tissue oxygen tension is accomplished by adjustments of hemoglobin levels resulting from the output of a renal-bone marrow controller. Special consideration was given to the determinants of tissue oxygenation including evaluation of the influence of blood flow, capillary diffusivity, oxygen uptake and oxygen-hemoglobin affinity. A theoretical analysis of the overall control system is presented. Computer simulations of altitude hypoxia, red cell infusion hyperoxia, and homolytic anemia demonstrate validity of the model for general human application in health and disease.

  7. A MacCormack-TVD finite difference method to simulate the mass flow in mountainous terrain with variable computational domain

    NASA Astrophysics Data System (ADS)

    Ouyang, Chaojun; He, Siming; Xu, Qiang; Luo, Yu; Zhang, Wencheng

    2013-03-01

    A two-dimensional mountainous mass flow dynamic procedure solver (Massflow-2D) using the MacCormack-TVD finite difference scheme is proposed. The solver is implemented in Matlab on structured meshes with variable computational domain. To verify the model, a variety of numerical test scenarios, namely, the classical one-dimensional and two-dimensional dam break, the landslide in Hong Kong in 1993 and the Nora debris flow in the Italian Alps in 2000, are executed, and the model outputs are compared with published results. It is established that the model predictions agree well with both the analytical solution as well as the field observations.

  8. A diagnostic interface for the ICOsahedral Non-hydrostatic (ICON) modelling framework based on the Modular Earth Submodel System (MESSy v2.50)

    NASA Astrophysics Data System (ADS)

    Kern, Bastian; Jöckel, Patrick

    2016-10-01

    Numerical climate and weather models have advanced to finer scales, accompanied by large amounts of output data. The model systems hit the input and output (I/O) bottleneck of modern high-performance computing (HPC) systems. We aim to apply diagnostic methods online during the model simulation instead of applying them as a post-processing step to written output data, to reduce the amount of I/O. To include diagnostic tools into the model system, we implemented a standardised, easy-to-use interface based on the Modular Earth Submodel System (MESSy) into the ICOsahedral Non-hydrostatic (ICON) modelling framework. The integration of the diagnostic interface into the model system is briefly described. Furthermore, we present a prototype implementation of an advanced online diagnostic tool for the aggregation of model data onto a user-defined regular coarse grid. This diagnostic tool will be used to reduce the amount of model output in future simulations. Performance tests of the interface and of two different diagnostic tools show, that the interface itself introduces no overhead in form of additional runtime to the model system. The diagnostic tools, however, have significant impact on the model system's runtime. This overhead strongly depends on the characteristics and implementation of the diagnostic tool. A diagnostic tool with high inter-process communication introduces large overhead, whereas the additional runtime of a diagnostic tool without inter-process communication is low. We briefly describe our efforts to reduce the additional runtime from the diagnostic tools, and present a brief analysis of memory consumption. Future work will focus on optimisation of the memory footprint and the I/O operations of the diagnostic interface.

  9. Effectiveness evaluation of STOL transport operations (phase 2). [computer simulation program of commercial short haul aircraft operations

    NASA Technical Reports Server (NTRS)

    Welp, D. W.; Brown, R. A.; Ullman, D. G.; Kuhner, M. B.

    1974-01-01

    A computer simulation program which models a commercial short-haul aircraft operating in the civil air system was developed. The purpose of the program is to evaluate the effect of a given aircraft avionics capability on the ability of the aircraft to perform on-time carrier operations. The program outputs consist primarily of those quantities which can be used to determine direct operating costs. These include: (1) schedule reliability or delays, (2) repairs/replacements, (3) fuel consumption, and (4) cancellations. More comprehensive models of the terminal area environment were added and a simulation of an existing airline operation was conducted to obtain a form of model verification. The capability of the program to provide comparative results (sensitivity analysis) was then demonstrated by modifying the aircraft avionics capability for additional computer simulations.

  10. Human operator identification model and related computer programs

    NASA Technical Reports Server (NTRS)

    Kessler, K. M.; Mohr, J. N.

    1978-01-01

    Four computer programs which provide computational assistance in the analysis of man/machine systems are reported. The programs are: (1) Modified Transfer Function Program (TF); (2) Time Varying Response Program (TVSR); (3) Optimal Simulation Program (TVOPT); and (4) Linear Identification Program (SCIDNT). The TV program converts the time domain state variable system representative to frequency domain transfer function system representation. The TVSR program computes time histories of the input/output responses of the human operator model. The TVOPT program is an optimal simulation program and is similar to TVSR in that it produces time histories of system states associated with an operator in the loop system. The differences between the two programs are presented. The SCIDNT program is an open loop identification code which operates on the simulated data from TVOPT (or TVSR) or real operator data from motion simulators.

  11. Shape Optimization by Bayesian-Validated Computer-Simulation Surrogates

    NASA Technical Reports Server (NTRS)

    Patera, Anthony T.

    1997-01-01

    A nonparametric-validated, surrogate approach to optimization has been applied to the computational optimization of eddy-promoter heat exchangers and to the experimental optimization of a multielement airfoil. In addition to the baseline surrogate framework, a surrogate-Pareto framework has been applied to the two-criteria, eddy-promoter design problem. The Pareto analysis improves the predictability of the surrogate results, preserves generality, and provides a means to rapidly determine design trade-offs. Significant contributions have been made in the geometric description used for the eddy-promoter inclusions as well as to the surrogate framework itself. A level-set based, geometric description has been developed to define the shape of the eddy-promoter inclusions. The level-set technique allows for topology changes (from single-body,eddy-promoter configurations to two-body configurations) without requiring any additional logic. The continuity of the output responses for input variations that cross the boundary between topologies has been demonstrated. Input-output continuity is required for the straightforward application of surrogate techniques in which simplified, interpolative models are fitted through a construction set of data. The surrogate framework developed previously has been extended in a number of ways. First, the formulation for a general, two-output, two-performance metric problem is presented. Surrogates are constructed and validated for the outputs. The performance metrics can be functions of both outputs, as well as explicitly of the inputs, and serve to characterize the design preferences. By segregating the outputs and the performance metrics, an additional level of flexibility is provided to the designer. The validated outputs can be used in future design studies and the error estimates provided by the output validation step still apply, and require no additional appeals to the expensive analysis. Second, a candidate-based a posteriori error analysis capability has been developed which provides probabilistic error estimates on the true performance for a design randomly selected near the surrogate-predicted optimal design.

  12. PROcess Based Diagnostics PROBE

    NASA Technical Reports Server (NTRS)

    Clune, T.; Schmidt, G.; Kuo, K.; Bauer, M.; Oloso, H.

    2013-01-01

    Many of the aspects of the climate system that are of the greatest interest (e.g., the sensitivity of the system to external forcings) are emergent properties that arise via the complex interplay between disparate processes. This is also true for climate models most diagnostics are not a function of an isolated portion of source code, but rather are affected by multiple components and procedures. Thus any model-observation mismatch is hard to attribute to any specific piece of code or imperfection in a specific model assumption. An alternative approach is to identify diagnostics that are more closely tied to specific processes -- implying that if a mismatch is found, it should be much easier to identify and address specific algorithmic choices that will improve the simulation. However, this approach requires looking at model output and observational data in a more sophisticated way than the more traditional production of monthly or annual mean quantities. The data must instead be filtered in time and space for examples of the specific process being targeted.We are developing a data analysis environment called PROcess-Based Explorer (PROBE) that seeks to enable efficient and systematic computation of process-based diagnostics on very large sets of data. In this environment, investigators can define arbitrarily complex filters and then seamlessly perform computations in parallel on the filtered output from their model. The same analysis can be performed on additional related data sets (e.g., reanalyses) thereby enabling routine comparisons between model and observational data. PROBE also incorporates workflow technology to automatically update computed diagnostics for subsequent executions of a model. In this presentation, we will discuss the design and current status of PROBE as well as share results from some preliminary use cases.

  13. Finite element modelling of non-linear magnetic circuits using Cosmic NASTRAN

    NASA Technical Reports Server (NTRS)

    Sheerer, T. J.

    1986-01-01

    The general purpose Finite Element Program COSMIC NASTRAN currently has the ability to model magnetic circuits with constant permeablilities. An approach was developed which, through small modifications to the program, allows modelling of non-linear magnetic devices including soft magnetic materials, permanent magnets and coils. Use of the NASTRAN code resulted in output which can be used for subsequent mechanical analysis using a variation of the same computer model. Test problems were found to produce theoretically verifiable results.

  14. Computing the Local Field Potential (LFP) from Integrate-and-Fire Network Models.

    PubMed

    Mazzoni, Alberto; Lindén, Henrik; Cuntz, Hermann; Lansner, Anders; Panzeri, Stefano; Einevoll, Gaute T

    2015-12-01

    Leaky integrate-and-fire (LIF) network models are commonly used to study how the spiking dynamics of neural networks changes with stimuli, tasks or dynamic network states. However, neurophysiological studies in vivo often rather measure the mass activity of neuronal microcircuits with the local field potential (LFP). Given that LFPs are generated by spatially separated currents across the neuronal membrane, they cannot be computed directly from quantities defined in models of point-like LIF neurons. Here, we explore the best approximation for predicting the LFP based on standard output from point-neuron LIF networks. To search for this best "LFP proxy", we compared LFP predictions from candidate proxies based on LIF network output (e.g, firing rates, membrane potentials, synaptic currents) with "ground-truth" LFP obtained when the LIF network synaptic input currents were injected into an analogous three-dimensional (3D) network model of multi-compartmental neurons with realistic morphology, spatial distributions of somata and synapses. We found that a specific fixed linear combination of the LIF synaptic currents provided an accurate LFP proxy, accounting for most of the variance of the LFP time course observed in the 3D network for all recording locations. This proxy performed well over a broad set of conditions, including substantial variations of the neuronal morphologies. Our results provide a simple formula for estimating the time course of the LFP from LIF network simulations in cases where a single pyramidal population dominates the LFP generation, and thereby facilitate quantitative comparison between computational models and experimental LFP recordings in vivo.

  15. Computing the Local Field Potential (LFP) from Integrate-and-Fire Network Models

    PubMed Central

    Cuntz, Hermann; Lansner, Anders; Panzeri, Stefano; Einevoll, Gaute T.

    2015-01-01

    Leaky integrate-and-fire (LIF) network models are commonly used to study how the spiking dynamics of neural networks changes with stimuli, tasks or dynamic network states. However, neurophysiological studies in vivo often rather measure the mass activity of neuronal microcircuits with the local field potential (LFP). Given that LFPs are generated by spatially separated currents across the neuronal membrane, they cannot be computed directly from quantities defined in models of point-like LIF neurons. Here, we explore the best approximation for predicting the LFP based on standard output from point-neuron LIF networks. To search for this best “LFP proxy”, we compared LFP predictions from candidate proxies based on LIF network output (e.g, firing rates, membrane potentials, synaptic currents) with “ground-truth” LFP obtained when the LIF network synaptic input currents were injected into an analogous three-dimensional (3D) network model of multi-compartmental neurons with realistic morphology, spatial distributions of somata and synapses. We found that a specific fixed linear combination of the LIF synaptic currents provided an accurate LFP proxy, accounting for most of the variance of the LFP time course observed in the 3D network for all recording locations. This proxy performed well over a broad set of conditions, including substantial variations of the neuronal morphologies. Our results provide a simple formula for estimating the time course of the LFP from LIF network simulations in cases where a single pyramidal population dominates the LFP generation, and thereby facilitate quantitative comparison between computational models and experimental LFP recordings in vivo. PMID:26657024

  16. Legato: Personal Computer Software for Analyzing Pressure-Sensitive Paint Data

    NASA Technical Reports Server (NTRS)

    Schairer, Edward T.

    2001-01-01

    'Legato' is personal computer software for analyzing radiometric pressure-sensitive paint (PSP) data. The software is written in the C programming language and executes under Windows 95/98/NT operating systems. It includes all operations normally required to convert pressure-paint image intensities to normalized pressure distributions mapped to physical coordinates of the test article. The program can analyze data from both single- and bi-luminophore paints and provides for both in situ and a priori paint calibration. In addition, there are functions for determining paint calibration coefficients from calibration-chamber data. The software is designed as a self-contained, interactive research tool that requires as input only the bare minimum of information needed to accomplish each function, e.g., images, model geometry, and paint calibration coefficients (for a priori calibration) or pressure-tap data (for in situ calibration). The program includes functions that can be used to generate needed model geometry files for simple model geometries (e.g., airfoils, trapezoidal wings, rotor blades) based on the model planform and airfoil section. All data files except images are in ASCII format and thus are easily created, read, and edited. The program does not use database files. This simplifies setup but makes the program inappropriate for analyzing massive amounts of data from production wind tunnels. Program output consists of Cartesian plots, false-colored real and virtual images, pressure distributions mapped to the surface of the model, assorted ASCII data files, and a text file of tabulated results. Graphical output is displayed on the computer screen and can be saved as publication-quality (PostScript) files.

  17. Theoretical modeling and experimental analysis of solar still integrated with evacuated tubes

    NASA Astrophysics Data System (ADS)

    Panchal, Hitesh; Awasthi, Anuradha

    2017-06-01

    In this present research work, theoretical modeling of single slope, single basin solar still integrated with evacuated tubes has been performed based on energy balance equations. Major variables like water temperature, inner glass cover temperature and distillate output has been computed based on theoretical modeling. The experimental setup has been made from locally available materials and installed at Gujarat Power Engineering and Research Institute, Mehsana, Gujarat, India (23.5880°N, 72.3693°E) with 0.04 m depth during 6 months of time interval. From the series of experiments, it is found considerable increment in average distillate output of a solar still when integrated with evacuated tubes not only during daytime but also from night time. In all experimental cases, the correlation of coefficient (r) and root mean square percentage deviation of theoretical modeling and experimental study found good agreement with 0.97 < r < 0.98 and 10.22 < e < 38.4% respectively.

  18. Mars Global Reference Atmospheric Model (Mars-GRAM 3.34): Programmer's Guide

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; James, Bonnie F.; Johnson, Dale L.

    1996-01-01

    This is a programmer's guide for the Mars Global Reference Atmospheric Model (Mars-GRAM 3.34). Included are a brief history and review of the model since its origin in 1988 and a technical discussion of recent additions and modifications. Examples of how to run both the interactive and batch (subroutine) forms are presented. Instructions are provided on how to customize output of the model for various parameters of the Mars atmosphere. Detailed descriptions are given of the main driver programs, subroutines, and associated computational methods. Lists and descriptions include input, output, and local variables in the programs. These descriptions give a summary of program steps and 'map' of calling relationships among the subroutines. Definitions are provided for the variables passed between subroutines through common lists. Explanations are provided for all diagnostic and progress messages generated during execution of the program. A brief outline of future plans for Mars-GRAM is also presented.

  19. Computing Models of M-type Host Stars and their Panchromatic Spectral Output

    NASA Astrophysics Data System (ADS)

    Linsky, Jeffrey; Tilipman, Dennis; France, Kevin

    2018-06-01

    We have begun a program of computing state-of-the-art model atmospheres from the photospheres to the coronae of M stars that are the host stars of known exoplanets. For each model we are computing the emergent radiation at all wavelengths that are critical for assessingphotochemistry and mass-loss from exoplanet atmospheres. In particular, we are computing the stellar extreme ultraviolet radiation that drives hydrodynamic mass loss from exoplanet atmospheres and is essential for determing whether an exoplanet is habitable. The model atmospheres are computed with the SSRPM radiative transfer/statistical equilibrium code developed by Dr. Juan Fontenla. The code solves for the non-LTE statistical equilibrium populations of 18,538 levels of 52 atomic and ion species and computes the radiation from all species (435,986 spectral lines) and about 20,000,000 spectral lines of 20 diatomic species.The first model computed in this program was for the modestly active M1.5 V star GJ 832 by Fontenla et al. (ApJ 830, 152 (2016)). We will report on a preliminary model for the more active M5 V star GJ 876 and compare this model and its emergent spectrum with GJ 832. In the future, we will compute and intercompare semi-empirical models and spectra for all of the stars observed with the HST MUSCLES Treasury Survey, the Mega-MUSCLES Treasury Survey, and additional stars including Proxima Cen and Trappist-1.This multiyear theory program is supported by a grant from the Space Telescope Science Institute.

  20. On the concept of the interactive information and simulation system for gas dynamics and multiphysics problems

    NASA Astrophysics Data System (ADS)

    Bessonov, O.; Silvestrov, P.

    2017-02-01

    This paper describes the general idea and the first implementation of the Interactive information and simulation system - an integrated environment that combines computational modules for modeling the aerodynamics and aerothermodynamics of re-entry space vehicles with the large collection of different information materials on this topic. The internal organization and the composition of the system are described and illustrated. Examples of the computational and information output are presented. The system has the unified implementation for Windows and Linux operation systems and can be deployed on any modern high-performance personal computer.

  1. HEAP: Heat Energy Analysis Program, a computer model simulating solar receivers. [solving the heat transfer problem

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.

    1979-01-01

    A computer program which can distinguish between different receiver designs, and predict transient performance under variable solar flux, or ambient temperatures, etc. has a basic structure that fits a general heat transfer problem, but with specific features that are custom-made for solar receivers. The code is written in MBASIC computer language. The methodology followed in solving the heat transfer problem is explained. A program flow chart, an explanation of input and output tables, and an example of the simulation of a cavity-type solar receiver are included.

  2. Discrete State Change Model of Manufacturing Quality to Aid Assembly Process Design

    NASA Astrophysics Data System (ADS)

    Koga, Tsuyoshi; Aoyama, Kazuhiro

    This paper proposes a representation model of the quality state change in an assembly process that can be used in a computer-aided process design system. In order to formalize the state change of the manufacturing quality in the assembly process, the functions, operations, and quality changes in the assembly process are represented as a network model that can simulate discrete events. This paper also develops a design method for the assembly process. The design method calculates the space of quality state change and outputs a better assembly process (better operations and better sequences) that can be used to obtain the intended quality state of the final product. A computational redesigning algorithm of the assembly process that considers the manufacturing quality is developed. The proposed method can be used to design an improved manufacturing process by simulating the quality state change. A prototype system for planning an assembly process is implemented and applied to the design of an auto-breaker assembly process. The result of the design example indicates that the proposed assembly process planning method outputs a better manufacturing scenario based on the simulation of the quality state change.

  3. A scaling transformation for classifier output based on likelihood ratio: Applications to a CAD workstation for diagnosis of breast cancer

    PubMed Central

    Horsch, Karla; Pesce, Lorenzo L.; Giger, Maryellen L.; Metz, Charles E.; Jiang, Yulei

    2012-01-01

    Purpose: The authors developed scaling methods that monotonically transform the output of one classifier to the “scale” of another. Such transformations affect the distribution of classifier output while leaving the ROC curve unchanged. In particular, they investigated transformations between radiologists and computer classifiers, with the goal of addressing the problem of comparing and interpreting case-specific values of output from two classifiers. Methods: Using both simulated and radiologists’ rating data of breast imaging cases, the authors investigated a likelihood-ratio-scaling transformation, based on “matching” classifier likelihood ratios. For comparison, three other scaling transformations were investigated that were based on matching classifier true positive fraction, false positive fraction, or cumulative distribution function, respectively. The authors explored modifying the computer output to reflect the scale of the radiologist, as well as modifying the radiologist’s ratings to reflect the scale of the computer. They also evaluated how dataset size affects the transformations. Results: When ROC curves of two classifiers differed substantially, the four transformations were found to be quite different. The likelihood-ratio scaling transformation was found to vary widely from radiologist to radiologist. Similar results were found for the other transformations. Our simulations explored the effect of database sizes on the accuracy of the estimation of our scaling transformations. Conclusions: The likelihood-ratio-scaling transformation that the authors have developed and evaluated was shown to be capable of transforming computer and radiologist outputs to a common scale reliably, thereby allowing the comparison of the computer and radiologist outputs on the basis of a clinically relevant statistic. PMID:22559651

  4. The use of a high resolution model in a private environment.

    NASA Astrophysics Data System (ADS)

    van Dijke, D.; Malda, D.

    2009-09-01

    The commercial organisation MeteoGroup uses high resolution modelling for multiple purposes. MeteoGroup uses the Weather Research and Forecasting Model (WRF®1). WRF is used in the operational environment of several MeteoGroup companies across Europe. It is also used in hindcast studies, for example hurricane tracking, wind climate computation and deriving boundary conditions for air quality models. A special operational service was set up for our tornado chasing team that uses high resolution flexible WRF data to chase for super cells and tornados in the USA during spring. Much effort is put into the development and improvement of the pre- and post-processing of the model. At MeteoGroup the static land-use data has been extended and adjusted to improve temperature and wind forecasts. The system has been modified such that sigma level input data from the global ECMWF model can be used for initialisation. By default only pressure level data could be used. During the spin-up of the model synoptical observations are nudged. A program to adjust possible initialisation errors of several surface parameters in coastal areas has been implemented. We developed an algorithm that computes cloud fractions using multiple direct model output variables. Forecasters prefer to use weather codes for their daily forecasts to detect severe weather. For this usage we developed model weather codes using a variety of direct model output and our own derived variables. 1 WRF® is a registered trademark of the University Corporation for Atmospheric Research (UCAR)

  5. TethysCluster: A comprehensive approach for harnessing cloud resources for hydrologic modeling

    NASA Astrophysics Data System (ADS)

    Nelson, J.; Jones, N.; Ames, D. P.

    2015-12-01

    Advances in water resources modeling are improving the information that can be supplied to support decisions affecting the safety and sustainability of society. However, as water resources models become more sophisticated and data-intensive they require more computational power to run. Purchasing and maintaining the computing facilities needed to support certain modeling tasks has been cost-prohibitive for many organizations. With the advent of the cloud, the computing resources needed to address this challenge are now available and cost-effective, yet there still remains a significant technical barrier to leverage these resources. This barrier inhibits many decision makers and even trained engineers from taking advantage of the best science and tools available. Here we present the Python tools TethysCluster and CondorPy, that have been developed to lower the barrier to model computation in the cloud by providing (1) programmatic access to dynamically scalable computing resources, (2) a batch scheduling system to queue and dispatch the jobs to the computing resources, (3) data management for job inputs and outputs, and (4) the ability to dynamically create, submit, and monitor computing jobs. These Python tools leverage the open source, computing-resource management, and job management software, HTCondor, to offer a flexible and scalable distributed-computing environment. While TethysCluster and CondorPy can be used independently to provision computing resources and perform large modeling tasks, they have also been integrated into Tethys Platform, a development platform for water resources web apps, to enable computing support for modeling workflows and decision-support systems deployed as web apps.

  6. Formalization, equivalence and generalization of basic resonance electrical circuits

    NASA Astrophysics Data System (ADS)

    Penev, Dimitar; Arnaudov, Dimitar; Hinov, Nikolay

    2017-12-01

    In the work are presented basic resonance circuits, which are used in resonance energy converters. The following resonant circuits are considered: serial, serial with parallel load parallel capacitor, parallel and parallel with serial loaded inductance. For the circuits under consideration, expressions are generated for the frequencies of own oscillations and for the equivalence of the active power emitted in the load. Mathematical expressions are graphically constructed and verified using computer simulations. The results obtained are used in the model based design of resonant energy converters with DC or AC output. This guaranteed the output indicators of power electronic devices.

  7. Simple, accurate formula for the average bit error probability of multiple-input multiple-output free-space optical links over negative exponential turbulence channels.

    PubMed

    Peppas, Kostas P; Lazarakis, Fotis; Alexandridis, Antonis; Dangakis, Kostas

    2012-08-01

    In this Letter we investigate the error performance of multiple-input multiple-output free-space optical communication systems employing intensity modulation/direct detection and operating over strong atmospheric turbulence channels. Atmospheric-induced strong turbulence fading is modeled using the negative exponential distribution. For the considered system, an approximate yet accurate analytical expression for the average bit error probability is derived and an efficient method for its numerical evaluation is proposed. Numerically evaluated and computer simulation results are further provided to demonstrate the validity of the proposed mathematical analysis.

  8. A distributed, graphical user interface based, computer control system for atomic physics experiments

    NASA Astrophysics Data System (ADS)

    Keshet, Aviv; Ketterle, Wolfgang

    2013-01-01

    Atomic physics experiments often require a complex sequence of precisely timed computer controlled events. This paper describes a distributed graphical user interface-based control system designed with such experiments in mind, which makes use of off-the-shelf output hardware from National Instruments. The software makes use of a client-server separation between a user interface for sequence design and a set of output hardware servers. Output hardware servers are designed to use standard National Instruments output cards, but the client-server nature should allow this to be extended to other output hardware. Output sequences running on multiple servers and output cards can be synchronized using a shared clock. By using a field programmable gate array-generated variable frequency clock, redundant buffers can be dramatically shortened, and a time resolution of 100 ns achieved over effectively arbitrary sequence lengths.

  9. A distributed, graphical user interface based, computer control system for atomic physics experiments.

    PubMed

    Keshet, Aviv; Ketterle, Wolfgang

    2013-01-01

    Atomic physics experiments often require a complex sequence of precisely timed computer controlled events. This paper describes a distributed graphical user interface-based control system designed with such experiments in mind, which makes use of off-the-shelf output hardware from National Instruments. The software makes use of a client-server separation between a user interface for sequence design and a set of output hardware servers. Output hardware servers are designed to use standard National Instruments output cards, but the client-server nature should allow this to be extended to other output hardware. Output sequences running on multiple servers and output cards can be synchronized using a shared clock. By using a field programmable gate array-generated variable frequency clock, redundant buffers can be dramatically shortened, and a time resolution of 100 ns achieved over effectively arbitrary sequence lengths.

  10. Forecasting hotspots using predictive visual analytics approach

    DOEpatents

    Maciejewski, Ross; Hafen, Ryan; Rudolph, Stephen; Cleveland, William; Ebert, David

    2014-12-30

    A method for forecasting hotspots is provided. The method may include the steps of receiving input data at an input of the computational device, generating a temporal prediction based on the input data, generating a geospatial prediction based on the input data, and generating output data based on the time series and geospatial predictions. The output data may be configured to display at least one user interface at an output of the computational device.

  11. Integrated circuit test-port architecture and method and apparatus of test-port generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teifel, John

    A method and apparatus are provided for generating RTL code for a test-port interface of an integrated circuit. In an embodiment, a test-port table is provided as input data. A computer automatically parses the test-port table into data structures and analyzes it to determine input, output, local, and output-enable port names. The computer generates address-detect and test-enable logic constructed from combinational functions. The computer generates one-hot multiplexer logic for at least some of the output ports. The one-hot multiplexer logic for each port is generated so as to enable the port to toggle between data signals and test signals. Themore » computer then completes the generation of the RTL code.« less

  12. Hybrid reduced order modeling for assembly calculations

    DOE PAGES

    Bang, Youngsuk; Abdel-Khalik, Hany S.; Jessee, Matthew A.; ...

    2015-08-14

    While the accuracy of assembly calculations has greatly improved due to the increase in computer power enabling more refined description of the phase space and use of more sophisticated numerical algorithms, the computational cost continues to increase which limits the full utilization of their effectiveness for routine engineering analysis. Reduced order modeling is a mathematical vehicle that scales down the dimensionality of large-scale numerical problems to enable their repeated executions on small computing environment, often available to end users. This is done by capturing the most dominant underlying relationships between the model's inputs and outputs. Previous works demonstrated the usemore » of the reduced order modeling for a single physics code, such as a radiation transport calculation. This paper extends those works to coupled code systems as currently employed in assembly calculations. Finally, numerical tests are conducted using realistic SCALE assembly models with resonance self-shielding, neutron transport, and nuclides transmutation/depletion models representing the components of the coupled code system.« less

  13. The Peace Game: A Data-Driven Evaluation of a Software-Based Model of the Effects of Modern Conflict on Populations

    DTIC Science & Technology

    2015-09-01

    Most of these early computer games were just digital depictions of a board game. The computers were generally used as a giant calculator that helped...limitless. Digital output of “what happened” allows game players and decision makers to collect and analyze every part of the game without transcription...there was a dispute over voter eligibility. Missiriya nomads , who are loyal to Sudan, spend several months of the year in Abyei grazing their cattle

  14. User's guide to resin infusion simulation program in the FORTRAN language

    NASA Technical Reports Server (NTRS)

    Weideman, Mark H.; Hammond, Vince H.; Loos, Alfred C.

    1992-01-01

    RTMCL is a user friendly computer code which simulates the manufacture of fabric composites by the resin infusion process. The computer code is based on the process simulation model described in reference 1. Included in the user's guide is a detailed step by step description of how to run the program and enter and modify the input data set. Sample input and output files are included along with an explanation of the results. Finally, a complete listing of the program is provided.

  15. Computer model of one-dimensional equilibrium controlled sorption processes

    USGS Publications Warehouse

    Grove, D.B.; Stollenwerk, K.G.

    1984-01-01

    A numerical solution to the one-dimensional solute-transport equation with equilibrium-controlled sorption and a first-order irreversible-rate reaction is presented. The computer code is written in FORTRAN language, with a variety of options for input and output for user ease. Sorption reactions include Langmuir, Freundlich, and ion-exchange, with or without equal valance. General equations describing transport and reaction processes are solved by finite-difference methods, with nonlinearities accounted for by iteration. Complete documentation of the code, with examples, is included. (USGS)

  16. Design and implementation of a telecommunication interface for the TAATM/TCV real-time experiment

    NASA Technical Reports Server (NTRS)

    Nolan, J. D.

    1981-01-01

    The traffic situation display experiment of the terminal configured vehicle (TCV) research program requires a bidirectional data communications tie line between an computer complex. The tie line is used in a real time environment on the CYBER 175 computer by the terminal area air traffic model (TAATM) simulation program. Aircraft position data are processed by TAATM with the resultant output sent to the facility for the generation of air traffic situation displays which are transmitted to a research aircraft.

  17. Gamma Ray Observatory (GRO) dynamics simulator requirements and mathematical specifications, revision 1

    NASA Technical Reports Server (NTRS)

    Harman, R.; Blejer, D.

    1990-01-01

    The requirements and mathematical specifications for the Gamma Ray Observatory (GRO) Dynamics Simulator are presented. The complete simulator system, which consists of the profie subsystem, simulation control and input/output subsystem, truth model subsystem, onboard computer model subsystem, and postprocessor, is described. The simulator will be used to evaluate and test the attitude determination and control models to be used on board GRO under conditions that simulate the expected in-flight environment.

  18. Turbulence simulation mechanization for Space Shuttle Orbiter dynamics and control studies

    NASA Technical Reports Server (NTRS)

    Tatom, F. B.; King, R. L.

    1977-01-01

    The current version of the NASA turbulent simulation model in the form of a digital computer program, TBMOD, is described. The logic of the program is discussed and all inputs and outputs are defined. An alternate method of shear simulation suitable for incorporation into the model is presented. The simulation is based on a von Karman spectrum and the assumption of isotropy. The resulting spectral density functions for the shear model are included.

  19. Automatic detection of echolocation clicks based on a Gabor model of their waveform.

    PubMed

    Madhusudhana, Shyam; Gavrilov, Alexander; Erbe, Christine

    2015-06-01

    Prior research has shown that echolocation clicks of several species of terrestrial and marine fauna can be modelled as Gabor-like functions. Here, a system is proposed for the automatic detection of a variety of such signals. By means of mathematical formulation, it is shown that the output of the Teager-Kaiser Energy Operator (TKEO) applied to Gabor-like signals can be approximated by a Gaussian function. Based on the inferences, a detection algorithm involving the post-processing of the TKEO outputs is presented. The ratio of the outputs of two moving-average filters, a Gaussian and a rectangular filter, is shown to be an effective detection parameter. Detector performance is assessed using synthetic and real (taken from MobySound database) recordings. The detection method is shown to work readily with a variety of echolocation clicks and in various recording scenarios. The system exhibits low computational complexity and operates several times faster than real-time. Performance comparisons are made to other publicly available detectors including pamguard.

  20. Neural network system for purposeful behavior based on foveal visual preprocessor

    NASA Astrophysics Data System (ADS)

    Golovan, Alexander V.; Shevtsova, Natalia A.; Klepatch, Arkadi A.

    1996-10-01

    Biologically plausible model of the system with an adaptive behavior in a priori environment and resistant to impairment has been developed. The system consists of input, learning, and output subsystems. The first subsystems classifies input patterns presented as n-dimensional vectors in accordance with some associative rule. The second one being a neural network determines adaptive responses of the system to input patterns. Arranged neural groups coding possible input patterns and appropriate output responses are formed during learning by means of negative reinforcement. Output subsystem maps a neural network activity into the system behavior in the environment. The system developed has been studied by computer simulation imitating a collision-free motion of a mobile robot. After some learning period the system 'moves' along a road without collisions. It is shown that in spite of impairment of some neural network elements the system functions reliably after relearning. Foveal visual preprocessor model developed earlier has been tested to form a kind of visual input to the system.

  1. A Brain-wide Circuit Model of Heat-Evoked Swimming Behavior in Larval Zebrafish.

    PubMed

    Haesemeyer, Martin; Robson, Drew N; Li, Jennifer M; Schier, Alexander F; Engert, Florian

    2018-05-16

    Thermosensation provides crucial information, but how temperature representation is transformed from sensation to behavior is poorly understood. Here, we report a preparation that allows control of heat delivery to zebrafish larvae while monitoring motor output and imaging whole-brain calcium signals, thereby uncovering algorithmic and computational rules that couple dynamics of heat modulation, neural activity and swimming behavior. This approach identifies a critical step in the transformation of temperature representation between the sensory trigeminal ganglia and the hindbrain: A simple sustained trigeminal stimulus representation is transformed into a representation of absolute temperature as well as temperature changes in the hindbrain that explains the observed motor output. An activity constrained dynamic circuit model captures the most prominent aspects of these sensori-motor transformations and predicts both behavior and neural activity in response to novel heat stimuli. These findings provide the first algorithmic description of heat processing from sensory input to behavioral output. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. WATEQ4F - a personal computer Fortran translation of the geochemical model WATEQ2 with revised data base

    USGS Publications Warehouse

    Ball, J.W.; Nordstrom, D. Kirk; Zachmann, D.W.

    1987-01-01

    A FORTRAN 77 version of the PL/1 computer program for the geochemical model WATEQ2, which computes major and trace element speciation and mineral saturation for natural waters has been developed. The code (WATEQ4F) has been adapted to execute on an IBM PC or compatible microcomputer. Two versions of the code are available, one operating with IBM Professional FORTRAN and an 8087 or 89287 numeric coprocessor, and one which operates without a numeric coprocessor using Microsoft FORTRAN 77. The calculation procedure is identical to WATEQ2, which has been installed on many mainframes and minicomputers. Limited data base revisions include the addition of the following ions: AlHS04(++), BaS04, CaHS04(++), FeHS04(++), NaF, SrC03, and SrHCO3(+). This report provides the reactions and references for the data base revisions, instructions for program operation, and an explanation of the input and output files. Attachments contain sample output from three water analyses used as test cases and the complete FORTRAN source listing. U.S. Geological Survey geochemical simulation program PHREEQE and mass balance program BALANCE also have been adapted to execute on an IBM PC or compatible microcomputer with a numeric coprocessor and the IBM Professional FORTRAN compiler. (Author 's abstract)

  3. CRAC2 model description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ritchie, L.T.; Alpert, D.J.; Burke, R.P.

    1984-03-01

    The CRAC2 computer code is a revised version of CRAC (Calculation of Reactor Accident Consequences) which was developed for the Reactor Safety Study. This document provides an overview of the CRAC2 code and a description of each of the models used. Significant improvements incorporated into CRAC2 include an improved weather sequence sampling technique, a new evacuation model, and new output capabilities. In addition, refinements have been made to the atmospheric transport and deposition model. Details of the modeling differences between CRAC2 and CRAC are emphasized in the model descriptions.

  4. Microcumpter computation of water quality discharges

    USGS Publications Warehouse

    Helsel, Dennis R.

    1983-01-01

    A fully prompted program (SEDQ) has been developed to calculate daily and instantaneous water quality (QW) discharges. It is written in a version of BASIC, and requires inputs of gage heights, discharge rating curve, shifts, and water quality concentration information. Concentration plots may be modified interactively using the display screen. Semi-logarithmic plots of concentration and water quality discharge are output to the display screen, and optionally to plotters. A summary table of data is also output. SEDQ could be a model program for micro and minicomputer systems likely to be in use within the Water Resources Division, USGS, in the near future. The daily discharge-weighted mean concentration is one output from SEDQ. It is defined in this report, differentiated from the currently used mean concentration, and designated the ' equivalent concentration. ' (USGS)

  5. An Advanced simulation Code for Modeling Inductive Output Tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thuc Bui; R. Lawrence Ives

    2012-04-27

    During the Phase I program, CCR completed several major building blocks for a 3D large signal, inductive output tube (IOT) code using modern computer language and programming techniques. These included a 3D, Helmholtz, time-harmonic, field solver with a fully functional graphical user interface (GUI), automeshing and adaptivity. Other building blocks included the improved electrostatic Poisson solver with temporal boundary conditions to provide temporal fields for the time-stepping particle pusher as well as the self electric field caused by time-varying space charge. The magnetostatic field solver was also updated to solve for the self magnetic field caused by time changing currentmore » density in the output cavity gap. The goal function to optimize an IOT cavity was also formulated, and the optimization methodologies were investigated.« less

  6. A computer model of the pediatric circulatory system for testing pediatric assist devices.

    PubMed

    Giridharan, Guruprasad A; Koenig, Steven C; Mitchell, Michael; Gartner, Mark; Pantalos, George M

    2007-01-01

    Lumped parameter computer models of the pediatric circulatory systems for 1- and 4-year-olds were developed to predict hemodynamic responses to mechanical circulatory support devices. Model parameters, including resistance, compliance and volume, were adjusted to match hemodynamic pressure and flow waveforms, pressure-volume loops, percent systole, and heart rate of pediatric patients (n = 6) with normal ventricles. Left ventricular failure was modeled by adjusting the time-varying compliance curve of the left heart to produce aortic pressures and cardiac outputs consistent with those observed clinically. Models of pediatric continuous flow (CF) and pulsatile flow (PF) ventricular assist devices (VAD) and intraaortic balloon pump (IABP) were developed and integrated into the heart failure pediatric circulatory system models. Computer simulations were conducted to predict acute hemodynamic responses to PF and CF VAD operating at 50%, 75% and 100% support and 2.5 and 5 ml IABP operating at 1:1 and 1:2 support modes. The computer model of the pediatric circulation matched the human pediatric hemodynamic waveform morphology to within 90% and cardiac function parameters with 95% accuracy. The computer model predicted PF VAD and IABP restore aortic pressure pulsatility and variation in end-systolic and end-diastolic volume, but diminish with increasing CF VAD support.

  7. Global identifiability of linear compartmental models--a computer algebra algorithm.

    PubMed

    Audoly, S; D'Angiò, L; Saccomani, M P; Cobelli, C

    1998-01-01

    A priori global identifiability deals with the uniqueness of the solution for the unknown parameters of a model and is, thus, a prerequisite for parameter estimation of biological dynamic models. Global identifiability is however difficult to test, since it requires solving a system of algebraic nonlinear equations which increases both in nonlinearity degree and number of terms and unknowns with increasing model order. In this paper, a computer algebra tool, GLOBI (GLOBal Identifiability) is presented, which combines the topological transfer function method with the Buchberger algorithm, to test global identifiability of linear compartmental models. GLOBI allows for the automatic testing of a priori global identifiability of general structure compartmental models from general multi input-multi output experiments. Examples of usage of GLOBI to analyze a priori global identifiability of some complex biological compartmental models are provided.

  8. Semi-Markov adjunction to the Computer-Aided Markov Evaluator (CAME)

    NASA Technical Reports Server (NTRS)

    Rosch, Gene; Hutchins, Monica A.; Leong, Frank J.; Babcock, Philip S., IV

    1988-01-01

    The rule-based Computer-Aided Markov Evaluator (CAME) program was expanded in its ability to incorporate the effect of fault-handling processes into the construction of a reliability model. The fault-handling processes are modeled as semi-Markov events and CAME constructs and appropriate semi-Markov model. To solve the model, the program outputs it in a form which can be directly solved with the Semi-Markov Unreliability Range Evaluator (SURE) program. As a means of evaluating the alterations made to the CAME program, the program is used to model the reliability of portions of the Integrated Airframe/Propulsion Control System Architecture (IAPSA 2) reference configuration. The reliability predictions are compared with a previous analysis. The results bear out the feasibility of utilizing CAME to generate appropriate semi-Markov models to model fault-handling processes.

  9. Optimizing Force Deployment and Force Structure for the Rapid Deployment Force

    DTIC Science & Technology

    1984-03-01

    Analysis . . . . .. .. ... ... 97 Experimental Design . . . . . .. .. .. ... 99 IX. Use of a Flexible Response Surface ........ 10.2 Selection of a...setS . ere designe . arun, programming methodology , where the require: s.stem re..r is input and the model optimizes the num=er. :::pe, cargo. an...to obtain new computer outputs" (Ref 38:23). The methodology can be used with any decision model, linear or nonlinear. Experimental Desion Since the

  10. A Computational Model of Torque Generation: Neural, Contractile, Metabolic and Musculoskeletal Components

    PubMed Central

    Callahan, Damien M.; Umberger, Brian R.; Kent-Braun, Jane A.

    2013-01-01

    The pathway of voluntary joint torque production includes motor neuron recruitment and rate-coding, sarcolemmal depolarization and calcium release by the sarcoplasmic reticulum, force generation by motor proteins within skeletal muscle, and force transmission by tendon across the joint. The direct source of energetic support for this process is ATP hydrolysis. It is possible to examine portions of this physiologic pathway using various in vivo and in vitro techniques, but an integrated view of the multiple processes that ultimately impact joint torque remains elusive. To address this gap, we present a comprehensive computational model of the combined neuromuscular and musculoskeletal systems that includes novel components related to intracellular bioenergetics function. Components representing excitatory drive, muscle activation, force generation, metabolic perturbations, and torque production during voluntary human ankle dorsiflexion were constructed, using a combination of experimentally-derived data and literature values. Simulation results were validated by comparison with torque and metabolic data obtained in vivo. The model successfully predicted peak and submaximal voluntary and electrically-elicited torque output, and accurately simulated the metabolic perturbations associated with voluntary contractions. This novel, comprehensive model could be used to better understand impact of global effectors such as age and disease on various components of the neuromuscular system, and ultimately, voluntary torque output. PMID:23405245

  11. Moment-based metrics for global sensitivity analysis of hydrological systems

    NASA Astrophysics Data System (ADS)

    Dell'Oca, Aronne; Riva, Monica; Guadagnini, Alberto

    2017-12-01

    We propose new metrics to assist global sensitivity analysis, GSA, of hydrological and Earth systems. Our approach allows assessing the impact of uncertain parameters on main features of the probability density function, pdf, of a target model output, y. These include the expected value of y, the spread around the mean and the degree of symmetry and tailedness of the pdf of y. Since reliable assessment of higher-order statistical moments can be computationally demanding, we couple our GSA approach with a surrogate model, approximating the full model response at a reduced computational cost. Here, we consider the generalized polynomial chaos expansion (gPCE), other model reduction techniques being fully compatible with our theoretical framework. We demonstrate our approach through three test cases, including an analytical benchmark, a simplified scenario mimicking pumping in a coastal aquifer and a laboratory-scale conservative transport experiment. Our results allow ascertaining which parameters can impact some moments of the model output pdf while being uninfluential to others. We also investigate the error associated with the evaluation of our sensitivity metrics by replacing the original system model through a gPCE. Our results indicate that the construction of a surrogate model with increasing level of accuracy might be required depending on the statistical moment considered in the GSA. The approach is fully compatible with (and can assist the development of) analysis techniques employed in the context of reduction of model complexity, model calibration, design of experiment, uncertainty quantification and risk assessment.

  12. Estimating fire behavior with FIRECAST: user's manual

    Treesearch

    Jack D. Cohen

    1986-01-01

    FIRECAST is a computer program that estimates fire behavior in terms of six fire parameters. Required inputs vary depending on the outputs desired by the fire manager. Fuel model options available to users are these: Northern Forest Fire Laboratory (NFFL), National Fire Danger Rating System (NFDRS), and southern California brushland (SCAL). The program has been...

  13. A computational model for the prediction of jet entrainment in the vicinity of nozzle boattails (The BOAT code)

    NASA Technical Reports Server (NTRS)

    Dash, S. M.; Pergament, H. S.

    1978-01-01

    The basic code structure is discussed, including the overall program flow and a brief description of all subroutines. Instructions on the preparation of input data, definitions of key FORTRAN variables, sample input and output, and a complete listing of the code are presented.

  14. Program documentation. Program description and user information for the hydraulics/auxiliary power unit (HYDRA) computer program. [for the space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Redwine, W. J.

    1979-01-01

    A timeline containing altitude, control surface deflection rates and angles, hinge moment loads, thrust vector control gimbal rates, and main throttle settings is used to derive the model. The timeline is constructed from the output of one or more trajectory simulation programs.

  15. Emulation applied to reliability analysis of reconfigurable, highly reliable, fault-tolerant computing systems

    NASA Technical Reports Server (NTRS)

    Migneault, G. E.

    1979-01-01

    Emulation techniques applied to the analysis of the reliability of highly reliable computer systems for future commercial aircraft are described. The lack of credible precision in reliability estimates obtained by analytical modeling techniques is first established. The difficulty is shown to be an unavoidable consequence of: (1) a high reliability requirement so demanding as to make system evaluation by use testing infeasible; (2) a complex system design technique, fault tolerance; (3) system reliability dominated by errors due to flaws in the system definition; and (4) elaborate analytical modeling techniques whose precision outputs are quite sensitive to errors of approximation in their input data. Next, the technique of emulation is described, indicating how its input is a simple description of the logical structure of a system and its output is the consequent behavior. Use of emulation techniques is discussed for pseudo-testing systems to evaluate bounds on the parameter values needed for the analytical techniques. Finally an illustrative example is presented to demonstrate from actual use the promise of the proposed application of emulation.

  16. Parametric output-only identification of time-varying structures using a kernel recursive extended least squares TARMA approach

    NASA Astrophysics Data System (ADS)

    Ma, Zhi-Sai; Liu, Li; Zhou, Si-Da; Yu, Lei; Naets, Frank; Heylen, Ward; Desmet, Wim

    2018-01-01

    The problem of parametric output-only identification of time-varying structures in a recursive manner is considered. A kernelized time-dependent autoregressive moving average (TARMA) model is proposed by expanding the time-varying model parameters onto the basis set of kernel functions in a reproducing kernel Hilbert space. An exponentially weighted kernel recursive extended least squares TARMA identification scheme is proposed, and a sliding-window technique is subsequently applied to fix the computational complexity for each consecutive update, allowing the method to operate online in time-varying environments. The proposed sliding-window exponentially weighted kernel recursive extended least squares TARMA method is employed for the identification of a laboratory time-varying structure consisting of a simply supported beam and a moving mass sliding on it. The proposed method is comparatively assessed against an existing recursive pseudo-linear regression TARMA method via Monte Carlo experiments and shown to be capable of accurately tracking the time-varying dynamics. Furthermore, the comparisons demonstrate the superior achievable accuracy, lower computational complexity and enhanced online identification capability of the proposed kernel recursive extended least squares TARMA approach.

  17. Revalidation studies of Mark 16 experiments: J70

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.Y.

    1993-10-25

    The MGBS-TGAL combination of the J70 criticality modules was validated for Mark 16 lattices by H. K. Clark as reported in DPST-83-1025. Unfortunately, the records of the calculations reported can not be retrieved and the descriptions of the modeling used are not fully provided in DPST-83-1025. The report does not describe in detail how to model the experiments and how to set up the input. The computer output for the cases reported in the memorandum can not be located in files. The MGBS-TGAL calculations reported in DPST-83-1025 have been independently reperformed to provide retrievable record copies of the calculations, tomore » provide a detailed description and discussion of the methodology used, and to serve as a training exercise for a novice criticality safety engineer. The current results reproduce Clark`s reported results to within about 0.01% or better. A procedure to perform these and similar calculations is given in this report, with explanation of the methodology choices provided. Copies of the computer output have been made via microfiche and will be maintained in APG files.« less

  18. Computational and human observer image quality evaluation of low dose, knowledge-based CT iterative reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eck, Brendan L.; Fahmi, Rachid; Miao, Jun

    2015-10-15

    Purpose: Aims in this study are to (1) develop a computational model observer which reliably tracks the detectability of human observers in low dose computed tomography (CT) images reconstructed with knowledge-based iterative reconstruction (IMR™, Philips Healthcare) and filtered back projection (FBP) across a range of independent variables, (2) use the model to evaluate detectability trends across reconstructions and make predictions of human observer detectability, and (3) perform human observer studies based on model predictions to demonstrate applications of the model in CT imaging. Methods: Detectability (d′) was evaluated in phantom studies across a range of conditions. Images were generated usingmore » a numerical CT simulator. Trained observers performed 4-alternative forced choice (4-AFC) experiments across dose (1.3, 2.7, 4.0 mGy), pin size (4, 6, 8 mm), contrast (0.3%, 0.5%, 1.0%), and reconstruction (FBP, IMR), at fixed display window. A five-channel Laguerre–Gauss channelized Hotelling observer (CHO) was developed with internal noise added to the decision variable and/or to channel outputs, creating six different internal noise models. Semianalytic internal noise computation was tested against Monte Carlo and used to accelerate internal noise parameter optimization. Model parameters were estimated from all experiments at once using maximum likelihood on the probability correct, P{sub C}. Akaike information criterion (AIC) was used to compare models of different orders. The best model was selected according to AIC and used to predict detectability in blended FBP-IMR images, analyze trends in IMR detectability improvements, and predict dose savings with IMR. Predicted dose savings were compared against 4-AFC study results using physical CT phantom images. Results: Detection in IMR was greater than FBP in all tested conditions. The CHO with internal noise proportional to channel output standard deviations, Model-k4, showed the best trade-off between fit and model complexity according to AIC{sub c}. With parameters fixed, the model reasonably predicted detectability of human observers in blended FBP-IMR images. Semianalytic internal noise computation gave results equivalent to Monte Carlo, greatly speeding parameter estimation. Using Model-k4, the authors found an average detectability improvement of 2.7 ± 0.4 times that of FBP. IMR showed greater improvements in detectability with larger signals and relatively consistent improvements across signal contrast and x-ray dose. In the phantom tested, Model-k4 predicted an 82% dose reduction compared to FBP, verified with physical CT scans at 80% reduced dose. Conclusions: IMR improves detectability over FBP and may enable significant dose reductions. A channelized Hotelling observer with internal noise proportional to channel output standard deviation agreed well with human observers across a wide range of variables, even across reconstructions with drastically different image characteristics. Utility of the model observer was demonstrated by predicting the effect of image processing (blending), analyzing detectability improvements with IMR across dose, size, and contrast, and in guiding real CT scan dose reduction experiments. Such a model observer can be applied in optimizing parameters in advanced iterative reconstruction algorithms as well as guiding dose reduction protocols in physical CT experiments.« less

  19. Design Choices for Thermofluid Flow Components and Systems that are Exported as Functional Mockup Units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetter, Michael; Fuchs, Marcus; Nouidui, Thierry

    This paper discusses design decisions for exporting Modelica thermofluid flow components as Functional Mockup Units. The purpose is to provide guidelines that will allow building energy simulation programs and HVAC equipment manufacturers to effectively use FMUs for modeling of HVAC components and systems. We provide an analysis for direct input-output dependencies of such components and discuss how these dependencies can lead to algebraic loops that are formed when connecting thermofluid flow components. Based on this analysis, we provide recommendations that increase the computing efficiency of such components and systems that are formed by connecting multiple components. We explain what codemore » optimizations are lost when providing thermofluid flow components as FMUs rather than Modelica code. We present an implementation of a package for FMU export of such components, explain the rationale for selecting the connector variables of the FMUs and finally provide computing benchmarks for different design choices. It turns out that selecting temperature rather than specific enthalpy as input and output signals does not lead to a measurable increase in computing time, but selecting nine small FMUs rather than a large FMU increases computing time by 70%.« less

  20. Applied Computational Electromagnetics Society Journal, Volume 9, Number 2

    DTIC Science & Technology

    1994-07-01

    input/output standardization; code or technique optimization and error minimization; innovations in solution technique or in data input/output...THE APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL EDITORS 3DITOR-IN-CH•IF/ACES EDITOR-IN-CHIEP/JOURNAL MANAGING EDITOR W. Perry Wheless...Adalbert Konrad and Paul P. Biringer Department of Electrical and Computer Engineering, University of Toronto Toronto, Ontario, CANADA M5S 1A4 Ailiwir

  1. Estimating the average length of hospitalization due to pneumonia: a fuzzy approach.

    PubMed

    Nascimento, L F C; Rizol, P M S R; Peneluppi, A P

    2014-08-29

    Exposure to air pollutants is associated with hospitalizations due to pneumonia in children. We hypothesized the length of hospitalization due to pneumonia may be dependent on air pollutant concentrations. Therefore, we built a computational model using fuzzy logic tools to predict the mean time of hospitalization due to pneumonia in children living in São José dos Campos, SP, Brazil. The model was built with four inputs related to pollutant concentrations and effective temperature, and the output was related to the mean length of hospitalization. Each input had two membership functions and the output had four membership functions, generating 16 rules. The model was validated against real data, and a receiver operating characteristic (ROC) curve was constructed to evaluate model performance. The values predicted by the model were significantly correlated with real data. Sulfur dioxide and particulate matter significantly predicted the mean length of hospitalization in lags 0, 1, and 2. This model can contribute to the care provided to children with pneumonia.

  2. Estimating the average length of hospitalization due to pneumonia: a fuzzy approach.

    PubMed

    Nascimento, L F C; Rizol, P M S R; Peneluppi, A P

    2014-11-01

    Exposure to air pollutants is associated with hospitalizations due to pneumonia in children. We hypothesized the length of hospitalization due to pneumonia may be dependent on air pollutant concentrations. Therefore, we built a computational model using fuzzy logic tools to predict the mean time of hospitalization due to pneumonia in children living in São José dos Campos, SP, Brazil. The model was built with four inputs related to pollutant concentrations and effective temperature, and the output was related to the mean length of hospitalization. Each input had two membership functions and the output had four membership functions, generating 16 rules. The model was validated against real data, and a receiver operating characteristic (ROC) curve was constructed to evaluate model performance. The values predicted by the model were significantly correlated with real data. Sulfur dioxide and particulate matter significantly predicted the mean length of hospitalization in lags 0, 1, and 2. This model can contribute to the care provided to children with pneumonia.

  3. Identification of Linear and Nonlinear Sensory Processing Circuits from Spiking Neuron Data.

    PubMed

    Florescu, Dorian; Coca, Daniel

    2018-03-01

    Inferring mathematical models of sensory processing systems directly from input-output observations, while making the fewest assumptions about the model equations and the types of measurements available, is still a major issue in computational neuroscience. This letter introduces two new approaches for identifying sensory circuit models consisting of linear and nonlinear filters in series with spiking neuron models, based only on the sampled analog input to the filter and the recorded spike train output of the spiking neuron. For an ideal integrate-and-fire neuron model, the first algorithm can identify the spiking neuron parameters as well as the structure and parameters of an arbitrary nonlinear filter connected to it. The second algorithm can identify the parameters of the more general leaky integrate-and-fire spiking neuron model, as well as the parameters of an arbitrary linear filter connected to it. Numerical studies involving simulated and real experimental recordings are used to demonstrate the applicability and evaluate the performance of the proposed algorithms.

  4. Quantitative Decision Support Requires Quantitative User Guidance

    NASA Astrophysics Data System (ADS)

    Smith, L. A.

    2009-12-01

    Is it conceivable that models run on 2007 computer hardware could provide robust and credible probabilistic information for decision support and user guidance at the ZIP code level for sub-daily meteorological events in 2060? In 2090? Retrospectively, how informative would output from today’s models have proven in 2003? or the 1930’s? Consultancies in the United Kingdom, including the Met Office, are offering services to “future-proof” their customers from climate change. How is a US or European based user or policy maker to determine the extent to which exciting new Bayesian methods are relevant here? or when a commercial supplier is vastly overselling the insights of today’s climate science? How are policy makers and academic economists to make the closely related decisions facing them? How can we communicate deep uncertainty in the future at small length-scales without undermining the firm foundation established by climate science regarding global trends? Three distinct aspects of the communication of the uses of climate model output targeting users and policy makers, as well as other specialist adaptation scientists, are discussed. First, a brief scientific evaluation of the length and time scales at which climate model output is likely to become uninformative is provided, including a note on the applicability the latest Bayesian methodology to current state-of-the-art general circulation models output. Second, a critical evaluation of the language often employed in communication of climate model output, a language which accurately states that models are “better”, have “improved” and now “include” and “simulate” relevant meteorological processed, without clearly identifying where the current information is thought to be uninformative and misleads, both for the current climate and as a function of the state of the (each) climate simulation. And thirdly, a general approach for evaluating the relevance of quantitative climate model output for a given problem is presented. Based on climate science, meteorology, and the details of the question in hand, this approach identifies necessary (never sufficient) conditions required for the rational use of climate model output in quantitative decision support tools. Inasmuch as climate forecasting is a problem of extrapolation, there will always be harsh limits on our ability to establish where a model is fit for purpose, this does not, however, limit us from identifying model noise as such, and thereby avoiding some cases of the misapplication and over interpretation of model output. It is suggested that failure to clearly communicate the limits of today’s climate model in providing quantitative decision relevant climate information to today’s users of climate information, would risk the credibility of tomorrow’s climate science and science based policy more generally.

  5. SWB-A modified Thornthwaite-Mather Soil-Water-Balance code for estimating groundwater recharge

    USGS Publications Warehouse

    Westenbroek, S.M.; Kelson, V.A.; Dripps, W.R.; Hunt, R.J.; Bradbury, K.R.

    2010-01-01

    A Soil-Water-Balance (SWB) computer code has been developed to calculate spatial and temporal variations in groundwater recharge. The SWB model calculates recharge by use of commonly available geographic information system (GIS) data layers in combination with tabular climatological data. The code is based on a modified Thornthwaite-Mather soil-water-balance approach, with components of the soil-water balance calculated at a daily timestep. Recharge calculations are made on a rectangular grid of computational elements that may be easily imported into a regional groundwater-flow model. Recharge estimates calculated by the code may be output as daily, monthly, or annual values.

  6. Robust Online Monitoring for Calibration Assessment of Transmitters and Instrumentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramuhalli, Pradeep; Coble, Jamie B.; Shumaker, Brent

    Robust online monitoring (OLM) technologies are expected to enable the extension or elimination of periodic sensor calibration intervals in operating and new reactors. These advances in OLM technologies will improve the safety and reliability of current and planned nuclear power systems through improved accuracy and increased reliability of sensors used to monitor key parameters. In this article, we discuss an overview of research being performed within the Nuclear Energy Enabling Technologies (NEET)/Advanced Sensors and Instrumentation (ASI) program, for the development of OLM algorithms to use sensor outputs and, in combination with other available information, 1) determine whether one or moremore » sensors are out of calibration or failing and 2) replace a failing sensor with reliable, accurate sensor outputs. Algorithm development is focused on the following OLM functions: • Signal validation • Virtual sensing • Sensor response-time assessment These algorithms incorporate, at their base, a Gaussian Process-based uncertainty quantification (UQ) method. Various plant models (using kernel regression, GP, or hierarchical models) may be used to predict sensor responses under various plant conditions. These predicted responses can then be applied in fault detection (sensor output and response time) and in computing the correct value (virtual sensing) of a failing physical sensor. The methods being evaluated in this work can compute confidence levels along with the predicted sensor responses, and as a result, may have the potential for compensating for sensor drift in real-time (online recalibration). Evaluation was conducted using data from multiple sources (laboratory flow loops and plant data). Ongoing research in this project is focused on further evaluation of the algorithms, optimization for accuracy and computational efficiency, and integration into a suite of tools for robust OLM that are applicable to monitoring sensor calibration state in nuclear power plants.« less

  7. Computational techniques for solar wind flows past terrestrial planets: Theory and computer programs

    NASA Technical Reports Server (NTRS)

    Stahara, S. S.; Chaussee, D. S.; Trudinger, B. C.; Spreiter, J. R.

    1977-01-01

    The interaction of the solar wind with terrestrial planets can be predicted using a computer program based on a single fluid, steady, dissipationless, magnetohydrodynamic model to calculate the axisymmetric, supersonic, super-Alfvenic solar wind flow past both magnetic and nonmagnetic planets. The actual calculations are implemented by an assemblage of computer codes organized into one program. These include finite difference codes which determine the gas-dynamic solution, together with a variety of special purpose output codes for determining and automatically plotting both flow field and magnetic field results. Comparisons are made with previous results, and results are presented for a number of solar wind flows. The computational programs developed are documented and are presented in a general user's manual which is included.

  8. Probabilistic power flow using improved Monte Carlo simulation method with correlated wind sources

    NASA Astrophysics Data System (ADS)

    Bie, Pei; Zhang, Buhan; Li, Hang; Deng, Weisi; Wu, Jiasi

    2017-01-01

    Probabilistic Power Flow (PPF) is a very useful tool for power system steady-state analysis. However, the correlation among different random injection power (like wind power) brings great difficulties to calculate PPF. Monte Carlo simulation (MCS) and analytical methods are two commonly used methods to solve PPF. MCS has high accuracy but is very time consuming. Analytical method like cumulants method (CM) has high computing efficiency but the cumulants calculating is not convenient when wind power output does not obey any typical distribution, especially when correlated wind sources are considered. In this paper, an Improved Monte Carlo simulation method (IMCS) is proposed. The joint empirical distribution is applied to model different wind power output. This method combines the advantages of both MCS and analytical method. It not only has high computing efficiency, but also can provide solutions with enough accuracy, which is very suitable for on-line analysis.

  9. The distributed production system of the SuperB project: description and results

    NASA Astrophysics Data System (ADS)

    Brown, D.; Corvo, M.; Di Simone, A.; Fella, A.; Luppi, E.; Paoloni, E.; Stroili, R.; Tomassetti, L.

    2011-12-01

    The SuperB experiment needs large samples of MonteCarlo simulated events in order to finalize the detector design and to estimate the data analysis performances. The requirements are beyond the capabilities of a single computing farm, so a distributed production model capable of exploiting the existing HEP worldwide distributed computing infrastructure is needed. In this paper we describe the set of tools that have been developed to manage the production of the required simulated events. The production of events follows three main phases: distribution of input data files to the remote site Storage Elements (SE); job submission, via SuperB GANGA interface, to all available remote sites; output files transfer to CNAF repository. The job workflow includes procedures for consistency checking, monitoring, data handling and bookkeeping. A replication mechanism allows storing the job output on the local site SE. Results from 2010 official productions are reported.

  10. General-Purpose Serial Interface For Remote Control

    NASA Technical Reports Server (NTRS)

    Busquets, Anthony M.; Gupton, Lawrence E.

    1990-01-01

    Computer controls remote television camera. General-purpose controller developed to serve as interface between host computer and pan/tilt/zoom/focus functions on series of automated video cameras. Interface port based on 8251 programmable communications-interface circuit configured for tristated outputs, and connects controller system to any host computer with RS-232 input/output (I/O) port. Accepts byte-coded data from host, compares them with prestored codes in read-only memory (ROM), and closes or opens appropriate switches. Six output ports control opening and closing of as many as 48 switches. Operator controls remote television camera by speaking commands, in system including general-purpose controller.

  11. Design controls for large order systems

    NASA Technical Reports Server (NTRS)

    Doane, George B., III

    1991-01-01

    The output of this task will be a program plan which will delineate how MSFC will support and implement its portion of the Inter-Center Computational Controls Program Plan. Another output will be the results of looking at various multibody/multidegree of freedom computer programs in various environments.

  12. An Improved Swarm Optimization for Parameter Estimation and Biological Model Selection

    PubMed Central

    Abdullah, Afnizanfaizal; Deris, Safaai; Mohamad, Mohd Saberi; Anwar, Sohail

    2013-01-01

    One of the key aspects of computational systems biology is the investigation on the dynamic biological processes within cells. Computational models are often required to elucidate the mechanisms and principles driving the processes because of the nonlinearity and complexity. The models usually incorporate a set of parameters that signify the physical properties of the actual biological systems. In most cases, these parameters are estimated by fitting the model outputs with the corresponding experimental data. However, this is a challenging task because the available experimental data are frequently noisy and incomplete. In this paper, a new hybrid optimization method is proposed to estimate these parameters from the noisy and incomplete experimental data. The proposed method, called Swarm-based Chemical Reaction Optimization, integrates the evolutionary searching strategy employed by the Chemical Reaction Optimization, into the neighbouring searching strategy of the Firefly Algorithm method. The effectiveness of the method was evaluated using a simulated nonlinear model and two biological models: synthetic transcriptional oscillators, and extracellular protease production models. The results showed that the accuracy and computational speed of the proposed method were better than the existing Differential Evolution, Firefly Algorithm and Chemical Reaction Optimization methods. The reliability of the estimated parameters was statistically validated, which suggests that the model outputs produced by these parameters were valid even when noisy and incomplete experimental data were used. Additionally, Akaike Information Criterion was employed to evaluate the model selection, which highlighted the capability of the proposed method in choosing a plausible model based on the experimental data. In conclusion, this paper presents the effectiveness of the proposed method for parameter estimation and model selection problems using noisy and incomplete experimental data. This study is hoped to provide a new insight in developing more accurate and reliable biological models based on limited and low quality experimental data. PMID:23593445

  13. User manual for two simple postscript output FORTRAN plotting routines

    NASA Technical Reports Server (NTRS)

    Nguyen, T. X.

    1991-01-01

    Graphics is one of the important tools in engineering analysis and design. However, plotting routines that generate output on high quality laser printers normally come in graphics packages, which tend to be expensive and system dependent. These factors become important for small computer systems or desktop computers, especially when only some form of a simple plotting routine is sufficient. With the Postscript language becoming popular, there are more and more Postscript laser printers now available. Simple, versatile, low cost plotting routines that can generate output on high quality laser printers are needed and standard FORTRAN language plotting routines using output in Postscript language seems logical. The purpose here is to explain two simple FORTRAN plotting routines that generate output in Postscript language.

  14. Fitting neuron models to spike trains.

    PubMed

    Rossant, Cyrille; Goodman, Dan F M; Fontaine, Bertrand; Platkiewicz, Jonathan; Magnusson, Anna K; Brette, Romain

    2011-01-01

    Computational modeling is increasingly used to understand the function of neural circuits in systems neuroscience. These studies require models of individual neurons with realistic input-output properties. Recently, it was found that spiking models can accurately predict the precisely timed spike trains produced by cortical neurons in response to somatically injected currents, if properly fitted. This requires fitting techniques that are efficient and flexible enough to easily test different candidate models. We present a generic solution, based on the Brian simulator (a neural network simulator in Python), which allows the user to define and fit arbitrary neuron models to electrophysiological recordings. It relies on vectorization and parallel computing techniques to achieve efficiency. We demonstrate its use on neural recordings in the barrel cortex and in the auditory brainstem, and confirm that simple adaptive spiking models can accurately predict the response of cortical neurons. Finally, we show how a complex multicompartmental model can be reduced to a simple effective spiking model.

  15. Regression-based reduced-order models to predict transient thermal output for enhanced geothermal systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mudunuru, Maruti Kumar; Karra, Satish; Harp, Dylan Robert

    Reduced-order modeling is a promising approach, as many phenomena can be described by a few parameters/mechanisms. An advantage and attractive aspect of a reduced-order model is that it is computational inexpensive to evaluate when compared to running a high-fidelity numerical simulation. A reduced-order model takes couple of seconds to run on a laptop while a high-fidelity simulation may take couple of hours to run on a high-performance computing cluster. The goal of this paper is to assess the utility of regression-based reduced-order models (ROMs) developed from high-fidelity numerical simulations for predicting transient thermal power output for an enhanced geothermal reservoirmore » while explicitly accounting for uncertainties in the subsurface system and site-specific details. Numerical simulations are performed based on equally spaced values in the specified range of model parameters. Key sensitive parameters are then identified from these simulations, which are fracture zone permeability, well/skin factor, bottom hole pressure, and injection flow rate. We found the fracture zone permeability to be the most sensitive parameter. The fracture zone permeability along with time, are used to build regression-based ROMs for the thermal power output. The ROMs are trained and validated using detailed physics-based numerical simulations. Finally, predictions from the ROMs are then compared with field data. We propose three different ROMs with different levels of model parsimony, each describing key and essential features of the power production curves. The coefficients in the proposed regression-based ROMs are developed by minimizing a non-linear least-squares misfit function using the Levenberg–Marquardt algorithm. The misfit function is based on the difference between numerical simulation data and reduced-order model. ROM-1 is constructed based on polynomials up to fourth order. ROM-1 is able to accurately reproduce the power output of numerical simulations for low values of permeabilities and certain features of the field-scale data. ROM-2 is a model with more analytical functions consisting of polynomials up to order eight, exponential functions and smooth approximations of Heaviside functions, and accurately describes the field-data. At higher permeabilities, ROM-2 reproduces numerical results better than ROM-1, however, there is a considerable deviation from numerical results at low fracture zone permeabilities. ROM-3 consists of polynomials up to order ten, and is developed by taking the best aspects of ROM-1 and ROM-2. ROM-1 is relatively parsimonious than ROM-2 and ROM-3, while ROM-2 overfits the data. ROM-3 on the other hand, provides a middle ground for model parsimony. Based on R 2-values for training, validation, and prediction data sets we found that ROM-3 is better model than ROM-2 and ROM-1. For predicting thermal drawdown in EGS applications, where high fracture zone permeabilities (typically greater than 10 –15 m 2) are desired, ROM-2 and ROM-3 outperform ROM-1. As per computational time, all the ROMs are 10 4 times faster when compared to running a high-fidelity numerical simulation. In conclusion, this makes the proposed regression-based ROMs attractive for real-time EGS applications because they are fast and provide reasonably good predictions for thermal power output.« less

  16. Regression-based reduced-order models to predict transient thermal output for enhanced geothermal systems

    DOE PAGES

    Mudunuru, Maruti Kumar; Karra, Satish; Harp, Dylan Robert; ...

    2017-07-10

    Reduced-order modeling is a promising approach, as many phenomena can be described by a few parameters/mechanisms. An advantage and attractive aspect of a reduced-order model is that it is computational inexpensive to evaluate when compared to running a high-fidelity numerical simulation. A reduced-order model takes couple of seconds to run on a laptop while a high-fidelity simulation may take couple of hours to run on a high-performance computing cluster. The goal of this paper is to assess the utility of regression-based reduced-order models (ROMs) developed from high-fidelity numerical simulations for predicting transient thermal power output for an enhanced geothermal reservoirmore » while explicitly accounting for uncertainties in the subsurface system and site-specific details. Numerical simulations are performed based on equally spaced values in the specified range of model parameters. Key sensitive parameters are then identified from these simulations, which are fracture zone permeability, well/skin factor, bottom hole pressure, and injection flow rate. We found the fracture zone permeability to be the most sensitive parameter. The fracture zone permeability along with time, are used to build regression-based ROMs for the thermal power output. The ROMs are trained and validated using detailed physics-based numerical simulations. Finally, predictions from the ROMs are then compared with field data. We propose three different ROMs with different levels of model parsimony, each describing key and essential features of the power production curves. The coefficients in the proposed regression-based ROMs are developed by minimizing a non-linear least-squares misfit function using the Levenberg–Marquardt algorithm. The misfit function is based on the difference between numerical simulation data and reduced-order model. ROM-1 is constructed based on polynomials up to fourth order. ROM-1 is able to accurately reproduce the power output of numerical simulations for low values of permeabilities and certain features of the field-scale data. ROM-2 is a model with more analytical functions consisting of polynomials up to order eight, exponential functions and smooth approximations of Heaviside functions, and accurately describes the field-data. At higher permeabilities, ROM-2 reproduces numerical results better than ROM-1, however, there is a considerable deviation from numerical results at low fracture zone permeabilities. ROM-3 consists of polynomials up to order ten, and is developed by taking the best aspects of ROM-1 and ROM-2. ROM-1 is relatively parsimonious than ROM-2 and ROM-3, while ROM-2 overfits the data. ROM-3 on the other hand, provides a middle ground for model parsimony. Based on R 2-values for training, validation, and prediction data sets we found that ROM-3 is better model than ROM-2 and ROM-1. For predicting thermal drawdown in EGS applications, where high fracture zone permeabilities (typically greater than 10 –15 m 2) are desired, ROM-2 and ROM-3 outperform ROM-1. As per computational time, all the ROMs are 10 4 times faster when compared to running a high-fidelity numerical simulation. In conclusion, this makes the proposed regression-based ROMs attractive for real-time EGS applications because they are fast and provide reasonably good predictions for thermal power output.« less

  17. Aeroelastic Model Structure Computation for Envelope Expansion

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.

    2007-01-01

    Structure detection is a procedure for selecting a subset of candidate terms, from a full model description, that best describes the observed output. This is a necessary procedure to compute an efficient system description which may afford greater insight into the functionality of the system or a simpler controller design. Structure computation as a tool for black-box modelling may be of critical importance in the development of robust, parsimonious models for the flight-test community. Moreover, this approach may lead to efficient strategies for rapid envelope expansion which may save significant development time and costs. In this study, a least absolute shrinkage and selection operator (LASSO) technique is investigated for computing efficient model descriptions of nonlinear aeroelastic systems. The LASSO minimises the residual sum of squares by the addition of an l(sub 1) penalty term on the parameter vector of the traditional 2 minimisation problem. Its use for structure detection is a natural extension of this constrained minimisation approach to pseudolinear regression problems which produces some model parameters that are exactly zero and, therefore, yields a parsimonious system description. Applicability of this technique for model structure computation for the F/A-18 Active Aeroelastic Wing using flight test data is shown for several flight conditions (Mach numbers) by identifying a parsimonious system description with a high percent fit for cross-validated data.

  18. Statistical surrogate models for prediction of high-consequence climate change.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constantine, Paul; Field, Richard V., Jr.; Boslough, Mark Bruce Elrick

    2011-09-01

    In safety engineering, performance metrics are defined using probabilistic risk assessments focused on the low-probability, high-consequence tail of the distribution of possible events, as opposed to best estimates based on central tendencies. We frame the climate change problem and its associated risks in a similar manner. To properly explore the tails of the distribution requires extensive sampling, which is not possible with existing coupled atmospheric models due to the high computational cost of each simulation. We therefore propose the use of specialized statistical surrogate models (SSMs) for the purpose of exploring the probability law of various climate variables of interest.more » A SSM is different than a deterministic surrogate model in that it represents each climate variable of interest as a space/time random field. The SSM can be calibrated to available spatial and temporal data from existing climate databases, e.g., the Program for Climate Model Diagnosis and Intercomparison (PCMDI), or to a collection of outputs from a General Circulation Model (GCM), e.g., the Community Earth System Model (CESM) and its predecessors. Because of its reduced size and complexity, the realization of a large number of independent model outputs from a SSM becomes computationally straightforward, so that quantifying the risk associated with low-probability, high-consequence climate events becomes feasible. A Bayesian framework is developed to provide quantitative measures of confidence, via Bayesian credible intervals, in the use of the proposed approach to assess these risks.« less

  19. The GPRIME approach to finite element modeling

    NASA Technical Reports Server (NTRS)

    Wallace, D. R.; Mckee, J. H.; Hurwitz, M. M.

    1983-01-01

    GPRIME, an interactive modeling system, runs on the CDC 6000 computers and the DEC VAX 11/780 minicomputer. This system includes three components: (1) GPRIME, a user friendly geometric language and a processor to translate that language into geometric entities, (2) GGEN, an interactive data generator for 2-D models; and (3) SOLIDGEN, a 3-D solid modeling program. Each component has a computer user interface of an extensive command set. All of these programs make use of a comprehensive B-spline mathematics subroutine library, which can be used for a wide variety of interpolation problems and other geometric calculations. Many other user aids, such as automatic saving of the geometric and finite element data bases and hidden line removal, are available. This interactive finite element modeling capability can produce a complete finite element model, producing an output file of grid and element data.

  20. Structured Problem Solving and the Basic Graphic Methods within a Total Quality Leadership Setting: Case Study

    DTIC Science & Technology

    1992-02-01

    develop,, and maintains computer programs for the Department of the Navy. It provides life cycle support for over 50 computer programs installed at over...the computer programs . Table 4 presents a list of possible product or output measures of functionality for ACDS Block 0 programs . Examples of output...were identified as important "causes" of process performance. Functionality of the computer programs was the result or "effect" of the combination of

  1. How the cerebellum may monitor sensory information for spatial representation

    PubMed Central

    Rondi-Reig, Laure; Paradis, Anne-Lise; Lefort, Julie M.; Babayan, Benedicte M.; Tobin, Christine

    2014-01-01

    The cerebellum has already been shown to participate in the navigation function. We propose here that this structure is involved in maintaining a sense of direction and location during self-motion by monitoring sensory information and interacting with navigation circuits to update the mental representation of space. To better understand the processing performed by the cerebellum in the navigation function, we have reviewed: the anatomical pathways that convey self-motion information to the cerebellum; the computational algorithm(s) thought to be performed by the cerebellum from these multi-source inputs; the cerebellar outputs directed toward navigation circuits and the influence of self-motion information on space-modulated cells receiving cerebellar outputs. This review highlights that the cerebellum is adequately wired to combine the diversity of sensory signals to be monitored during self-motion and fuel the navigation circuits. The direct anatomical projections of the cerebellum toward the head-direction cell system and the parietal cortex make those structures possible relays of the cerebellum influence on the hippocampal spatial map. We describe computational models of the cerebellar function showing that the cerebellum can filter out the components of the sensory signals that are predictable, and provides a novelty output. We finally speculate that this novelty output is taken into account by the navigation structures, which implement an update over time of position and stabilize perception during navigation. PMID:25408638

  2. Nemo: an evolutionary and population genetics programming framework.

    PubMed

    Guillaume, Frédéric; Rougemont, Jacques

    2006-10-15

    Nemo is an individual-based, genetically explicit and stochastic population computer program for the simulation of population genetics and life-history trait evolution in a metapopulation context. It comes as both a C++ programming framework and an executable program file. Its object-oriented programming design gives it the flexibility and extensibility needed to implement a large variety of forward-time evolutionary models. It provides developers with abstract models allowing them to implement their own life-history traits and life-cycle events. Nemo offers a large panel of population models, from the Island model to lattice models with demographic or environmental stochasticity and a variety of already implemented traits (deleterious mutations, neutral markers and more), life-cycle events (mating, dispersal, aging, selection, etc.) and output operators for saving data and statistics. It runs on all major computer platforms including parallel computing environments. The source code, binaries and documentation are available under the GNU General Public License at http://nemo2.sourceforge.net.

  3. Computer model to simulate testing at the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.; Owens, Lewis R., Jr.; Wahls, Richard A.; Hannon, Judith A.

    1995-01-01

    A computer model has been developed to simulate the processes involved in the operation of the National Transonic Facility (NTF), a large cryogenic wind tunnel at the Langley Research Center. The simulation was verified by comparing the simulated results with previously acquired data from three experimental wind tunnel test programs in the NTF. The comparisons suggest that the computer model simulates reasonably well the processes that determine the liquid nitrogen (LN2) consumption, electrical consumption, fan-on time, and the test time required to complete a test plan at the NTF. From these limited comparisons, it appears that the results from the simulation model are generally within about 10 percent of the actual NTF test results. The use of actual data acquisition times in the simulation produced better estimates of the LN2 usage, as expected. Additional comparisons are needed to refine the model constants. The model will typically produce optimistic results since the times and rates included in the model are typically the optimum values. Any deviation from the optimum values will lead to longer times or increased LN2 and electrical consumption for the proposed test plan. Computer code operating instructions and listings of sample input and output files have been included.

  4. GROSS- GAMMA RAY OBSERVATORY ATTITUDE DYNAMICS SIMULATOR

    NASA Technical Reports Server (NTRS)

    Garrick, J.

    1994-01-01

    The Gamma Ray Observatory (GRO) spacecraft will constitute a major advance in gamma ray astronomy by offering the first opportunity for comprehensive observations in the range of 0.1 to 30,000 megaelectronvolts (MeV). The Gamma Ray Observatory Attitude Dynamics Simulator, GROSS, is designed to simulate this mission. The GRO Dynamics Simulator consists of three separate programs: the Standalone Profile Program; the Simulator Program, which contains the Simulation Control Input/Output (SCIO) Subsystem, the Truth Model (TM) Subsystem, and the Onboard Computer (OBC) Subsystem; and the Postprocessor Program. The Standalone Profile Program models the environment of the spacecraft and generates a profile data set for use by the simulator. This data set contains items such as individual external torques; GRO spacecraft, Tracking and Data Relay Satellite (TDRS), and solar and lunar ephemerides; and star data. The Standalone Profile Program is run before a simulation. The SCIO subsystem is the executive driver for the simulator. It accepts user input, initializes parameters, controls simulation, and generates output data files and simulation status display. The TM subsystem models the spacecraft dynamics, sensors, and actuators. It accepts ephemerides, star data, and environmental torques from the Standalone Profile Program. With these and actuator commands from the OBC subsystem, the TM subsystem propagates the current state of the spacecraft and generates sensor data for use by the OBC and SCIO subsystems. The OBC subsystem uses sensor data from the TM subsystem, a Kalman filter (for attitude determination), and control laws to compute actuator commands to the TM subsystem. The OBC subsystem also provides output data to the SCIO subsystem for output to the analysts. The Postprocessor Program is run after simulation is completed. It generates printer and CRT plots and tabular reports of the simulated data at the direction of the user. GROSS is written in FORTRAN 77 and ASSEMBLER and has been implemented on a VAX 11/780 under VMS 4.5. It has a virtual memory requirement of 255k. GROSS was developed in 1986.

  5. Developing a non-point source P loss indicator in R and its parameter uncertainty assessment using GLUE: a case study in northern China.

    PubMed

    Su, Jingjun; Du, Xinzhong; Li, Xuyong

    2018-05-16

    Uncertainty analysis is an important prerequisite for model application. However, the existing phosphorus (P) loss indexes or indicators were rarely evaluated. This study applied generalized likelihood uncertainty estimation (GLUE) method to assess the uncertainty of parameters and modeling outputs of a non-point source (NPS) P indicator constructed in R language. And the influences of subjective choices of likelihood formulation and acceptability threshold of GLUE on model outputs were also detected. The results indicated the following. (1) Parameters RegR 2 , RegSDR 2 , PlossDP fer , PlossDP man , DPDR, and DPR were highly sensitive to overall TP simulation and their value ranges could be reduced by GLUE. (2) Nash efficiency likelihood (L 1 ) seemed to present better ability in accentuating high likelihood value simulations than the exponential function (L 2 ) did. (3) The combined likelihood integrating the criteria of multiple outputs acted better than single likelihood in model uncertainty assessment in terms of reducing the uncertainty band widths and assuring the fitting goodness of whole model outputs. (4) A value of 0.55 appeared to be a modest choice of threshold value to balance the interests between high modeling efficiency and high bracketing efficiency. Results of this study could provide (1) an option to conduct NPS modeling under one single computer platform, (2) important references to the parameter setting for NPS model development in similar regions, (3) useful suggestions for the application of GLUE method in studies with different emphases according to research interests, and (4) important insights into the watershed P management in similar regions.

  6. UCODE, a computer code for universal inverse modeling

    USGS Publications Warehouse

    Poeter, E.P.; Hill, M.C.

    1999-01-01

    This article presents the US Geological Survey computer program UCODE, which was developed in collaboration with the US Army Corps of Engineers Waterways Experiment Station and the International Ground Water Modeling Center of the Colorado School of Mines. UCODE performs inverse modeling, posed as a parameter-estimation problem, using nonlinear regression. Any application model or set of models can be used; the only requirement is that they have numerical (ASCII or text only) input and output files and that the numbers in these files have sufficient significant digits. Application models can include preprocessors and postprocessors as well as models related to the processes of interest (physical, chemical and so on), making UCODE extremely powerful for model calibration. Estimated parameters can be defined flexibly with user-specified functions. Observations to be matched in the regression can be any quantity for which a simulated equivalent value can be produced, thus simulated equivalent values are calculated using values that appear in the application model output files and can be manipulated with additive and multiplicative functions, if necessary. Prior, or direct, information on estimated parameters also can be included in the regression. The nonlinear regression problem is solved by minimizing a weighted least-squares objective function with respect to the parameter values using a modified Gauss-Newton method. Sensitivities needed for the method are calculated approximately by forward or central differences and problems and solutions related to this approximation are discussed. Statistics are calculated and printed for use in (1) diagnosing inadequate data or identifying parameters that probably cannot be estimated with the available data, (2) evaluating estimated parameter values, (3) evaluating the model representation of the actual processes and (4) quantifying the uncertainty of model simulated values. UCODE is intended for use on any computer operating system: it consists of algorithms programmed in perl, a freeware language designed for text manipulation and Fortran90, which efficiently performs numerical calculations.

  7. Toward integration of in vivo molecular computing devices: successes and challenges

    PubMed Central

    Hayat, Sikander; Hinze, Thomas

    2008-01-01

    The computing power unleashed by biomolecule based massively parallel computational units has been the focus of many interdisciplinary studies that couple state of the art ideas from mathematical logic, theoretical computer science, bioengineering, and nanotechnology to fulfill some computational task. The output can influence, for instance, release of a drug at a specific target, gene expression, cell population, or be a purely mathematical entity. Analysis of the results of several studies has led to the emergence of a general set of rules concerning the implementation and optimization of in vivo computational units. Taking two recent studies on in vivo computing as examples, we discuss the impact of mathematical modeling and simulation in the field of synthetic biology and on in vivo computing. The impact of the emergence of gene regulatory networks and the potential of proteins acting as “circuit wires” on the problem of interconnecting molecular computing device subunits is also highlighted. PMID:19404433

  8. Scientific workflow and support for high resolution global climate modeling at the Oak Ridge Leadership Computing Facility

    NASA Astrophysics Data System (ADS)

    Anantharaj, V.; Mayer, B.; Wang, F.; Hack, J.; McKenna, D.; Hartman-Baker, R.

    2012-04-01

    The Oak Ridge Leadership Computing Facility (OLCF) facilitates the execution of computational experiments that require tens of millions of CPU hours (typically using thousands of processors simultaneously) while generating hundreds of terabytes of data. A set of ultra high resolution climate experiments in progress, using the Community Earth System Model (CESM), will produce over 35,000 files, ranging in sizes from 21 MB to 110 GB each. The execution of the experiments will require nearly 70 Million CPU hours on the Jaguar and Titan supercomputers at OLCF. The total volume of the output from these climate modeling experiments will be in excess of 300 TB. This model output must then be archived, analyzed, distributed to the project partners in a timely manner, and also made available more broadly. Meeting this challenge would require efficient movement of the data, staging the simulation output to a large and fast file system that provides high volume access to other computational systems used to analyze the data and synthesize results. This file system also needs to be accessible via high speed networks to an archival system that can provide long term reliable storage. Ideally this archival system is itself directly available to other systems that can be used to host services making the data and analysis available to the participants in the distributed research project and to the broader climate community. The various resources available at the OLCF now support this workflow. The available systems include the new Jaguar Cray XK6 2.63 petaflops (estimated) supercomputer, the 10 PB Spider center-wide parallel file system, the Lens/EVEREST analysis and visualization system, the HPSS archival storage system, the Earth System Grid (ESG), and the ORNL Climate Data Server (CDS). The ESG features federated services, search & discovery, extensive data handling capabilities, deep storage access, and Live Access Server (LAS) integration. The scientific workflow enabled on these systems, and developed as part of the Ultra-High Resolution Climate Modeling Project, allows users of OLCF resources to efficiently share simulated data, often multi-terabyte in volume, as well as the results from the modeling experiments and various synthesized products derived from these simulations. The final objective in the exercise is to ensure that the simulation results and the enhanced understanding will serve the needs of a diverse group of stakeholders across the world, including our research partners in U.S. Department of Energy laboratories & universities, domain scientists, students (K-12 as well as higher education), resource managers, decision makers, and the general public.

  9. Simulation of a master-slave event set processor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comfort, J.C.

    1984-03-01

    Event set manipulation may consume a considerable amount of the computation time spent in performing a discrete-event simulation. One way of minimizing this time is to allow event set processing to proceed in parallel with the remainder of the simulation computation. The paper describes a multiprocessor simulation computer, in which all non-event set processing is performed by the principal processor (called the host). Event set processing is coordinated by a front end processor (the master) and actually performed by several other functionally identical processors (the slaves). A trace-driven simulation program modeling this system was constructed, and was run with tracemore » output taken from two different simulation programs. Output from this simulation suggests that a significant reduction in run time may be realized by this approach. Sensitivity analysis was performed on the significant parameters to the system (number of slave processors, relative processor speeds, and interprocessor communication times). A comparison between actual and simulation run times for a one-processor system was used to assist in the validation of the simulation. 7 references.« less

  10. Paracousti-UQ: A Stochastic 3-D Acoustic Wave Propagation Algorithm.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preston, Leiph

    Acoustic full waveform algorithms, such as Paracousti, provide deterministic solutions in complex, 3-D variable environments. In reality, environmental and source characteristics are often only known in a statistical sense. Thus, to fully characterize the expected sound levels within an environment, this uncertainty in environmental and source factors should be incorporated into the acoustic simulations. Performing Monte Carlo (MC) simulations is one method of assessing this uncertainty, but it can quickly become computationally intractable for realistic problems. An alternative method, using the technique of stochastic partial differential equations (SPDE), allows computation of the statistical properties of output signals at a fractionmore » of the computational cost of MC. Paracousti-UQ solves the SPDE system of 3-D acoustic wave propagation equations and provides estimates of the uncertainty of the output simulated wave field (e.g., amplitudes, waveforms) based on estimated probability distributions of the input medium and source parameters. This report describes the derivation of the stochastic partial differential equations, their implementation, and comparison of Paracousti-UQ results with MC simulations using simple models.« less

  11. A Pervasive Parallel Processing Framework for Data Visualization and Analysis at Extreme Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Kwan-Liu

    Most of today’s visualization libraries and applications are based off of what is known today as the visualization pipeline. In the visualization pipeline model, algorithms are encapsulated as “filtering” components with inputs and outputs. These components can be combined by connecting the outputs of one filter to the inputs of another filter. The visualization pipeline model is popular because it provides a convenient abstraction that allows users to combine algorithms in powerful ways. Unfortunately, the visualization pipeline cannot run effectively on exascale computers. Experts agree that the exascale machine will comprise processors that contain many cores. Furthermore, physical limitations willmore » prevent data movement in and out of the chip (that is, between main memory and the processing cores) from keeping pace with improvements in overall compute performance. To use these processors to their fullest capability, it is essential to carefully consider memory access. This is where the visualization pipeline fails. Each filtering component in the visualization library is expected to take a data set in its entirety, perform some computation across all of the elements, and output the complete results. The process of iterating over all elements must be repeated in each filter, which is one of the worst possible ways to traverse memory when trying to maximize the number of executions per memory access. This project investigates a new type of visualization framework that exhibits a pervasive parallelism necessary to run on exascale machines. Our framework achieves this by defining algorithms in terms of functors, which are localized, stateless operations. Functors can be composited in much the same way as filters in the visualization pipeline. But, functors’ design allows them to be concurrently running on massive amounts of lightweight threads. Only with such fine-grained parallelism can we hope to fill the billions of threads we expect will be necessary for efficient computation on an exascale computer. This project concludes with a functional prototype containing pervasively parallel algorithms that perform demonstratively well on many-core processors. These algorithms are fundamental for performing data analysis and visualization at extreme scale.« less

  12. Simulation of Laboratory Tests of Steel Arch Support

    NASA Astrophysics Data System (ADS)

    Horyl, Petr; Šňupárek, Richard; Maršálek, Pavel; Pacześniowski, Krzysztof

    2017-03-01

    The total load-bearing capacity of steel arch yielding roadways supports is among their most important characteristics. These values can be obtained in two ways: experimental measurements in a specialized laboratory or computer modelling by FEM. Experimental measurements are significantly more expensive and more time-consuming. However, for proper tuning, a computer model is very valuable and can provide the necessary verification by experiment. In the cooperating workplaces of GIG Katowice, VSB-Technical University of Ostrava and the Institute of Geonics ASCR this verification was successful. The present article discusses the conditions and results of this verification for static problems. The output is a tuned computer model, which may be used for other calculations to obtain the load-bearing capacity of other types of steel arch supports. Changes in other parameters such as the material properties of steel, size torques, friction coefficient values etc. can be determined relatively quickly by changing the properties of the investigated steel arch supports.

  13. Sparse distributed memory and related models

    NASA Technical Reports Server (NTRS)

    Kanerva, Pentti

    1992-01-01

    Described here is sparse distributed memory (SDM) as a neural-net associative memory. It is characterized by two weight matrices and by a large internal dimension - the number of hidden units is much larger than the number of input or output units. The first matrix, A, is fixed and possibly random, and the second matrix, C, is modifiable. The SDM is compared and contrasted to (1) computer memory, (2) correlation-matrix memory, (3) feet-forward artificial neural network, (4) cortex of the cerebellum, (5) Marr and Albus models of the cerebellum, and (6) Albus' cerebellar model arithmetic computer (CMAC). Several variations of the basic SDM design are discussed: the selected-coordinate and hyperplane designs of Jaeckel, the pseudorandom associative neural memory of Hassoun, and SDM with real-valued input variables by Prager and Fallside. SDM research conducted mainly at the Research Institute for Advanced Computer Science (RIACS) in 1986-1991 is highlighted.

  14. Identification of quasi-steady compressor characteristics from transient data

    NASA Technical Reports Server (NTRS)

    Nunes, K. B.; Rock, S. M.

    1984-01-01

    The principal goal was to demonstrate that nonlinear compressor map parameters, which govern an in-stall response, can be identified from test data using parameter identification techniques. The tasks included developing and then applying an identification procedure to data generated by NASA LeRC on a hybrid computer. Two levels of model detail were employed. First was a lumped compressor rig model; second was a simplified turbofan model. The main outputs are the tools and procedures generated to accomplish the identification.

  15. Projected Applications of a "Weather in a Box" Computing System at the NASA Short-Term Prediction Research and Transition (SPoRT) Center

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Molthan, Andrew; Zavodsky, Bradley T.; Case, Jonathan L.; LaFontaine, Frank J.; Srikishen, Jayanthi

    2010-01-01

    The NASA Short-term Prediction Research and Transition Center (SPoRT)'s new "Weather in a Box" resources will provide weather research and forecast modeling capabilities for real-time application. Model output will provide additional forecast guidance and research into the impacts of new NASA satellite data sets and software capabilities. By combining several research tools and satellite products, SPoRT can generate model guidance that is strongly influenced by unique NASA contributions.

  16. Programming the Navier-Stokes computer: An abstract machine model and a visual editor

    NASA Technical Reports Server (NTRS)

    Middleton, David; Crockett, Tom; Tomboulian, Sherry

    1988-01-01

    The Navier-Stokes computer is a parallel computer designed to solve Computational Fluid Dynamics problems. Each processor contains several floating point units which can be configured under program control to implement a vector pipeline with several inputs and outputs. Since the development of an effective compiler for this computer appears to be very difficult, machine level programming seems necessary and support tools for this process have been studied. These support tools are organized into a graphical program editor. A programming process is described by which appropriate computations may be efficiently implemented on the Navier-Stokes computer. The graphical editor would support this programming process, verifying various programmer choices for correctness and deducing values such as pipeline delays and network configurations. Step by step details are provided and demonstrated with two example programs.

  17. Rotorcraft Noise Model

    NASA Technical Reports Server (NTRS)

    Lucas, Michael J.; Marcolini, Michael A.

    1997-01-01

    The Rotorcraft Noise Model (RNM) is an aircraft noise impact modeling computer program being developed for NASA-Langley Research Center which calculates sound levels at receiver positions either on a uniform grid or at specific defined locations. The basic computational model calculates a variety of metria. Acoustic properties of the noise source are defined by two sets of sound pressure hemispheres, each hemisphere being centered on a noise source of the aircraft. One set of sound hemispheres provides the broadband data in the form of one-third octave band sound levels. The other set of sound hemispheres provides narrowband data in the form of pure-tone sound pressure levels and phase. Noise contours on the ground are output graphically or in tabular format, and are suitable for inclusion in Environmental Impact Statements or Environmental Assessments.

  18. A Reward-Maximizing Spiking Neuron as a Bounded Rational Decision Maker.

    PubMed

    Leibfried, Felix; Braun, Daniel A

    2015-08-01

    Rate distortion theory describes how to communicate relevant information most efficiently over a channel with limited capacity. One of the many applications of rate distortion theory is bounded rational decision making, where decision makers are modeled as information channels that transform sensory input into motor output under the constraint that their channel capacity is limited. Such a bounded rational decision maker can be thought to optimize an objective function that trades off the decision maker's utility or cumulative reward against the information processing cost measured by the mutual information between sensory input and motor output. In this study, we interpret a spiking neuron as a bounded rational decision maker that aims to maximize its expected reward under the computational constraint that the mutual information between the neuron's input and output is upper bounded. This abstract computational constraint translates into a penalization of the deviation between the neuron's instantaneous and average firing behavior. We derive a synaptic weight update rule for such a rate distortion optimizing neuron and show in simulations that the neuron efficiently extracts reward-relevant information from the input by trading off its synaptic strengths against the collected reward.

  19. Forecasting of Storm Surge Floods Using ADCIRC and Optimized DEMs

    NASA Technical Reports Server (NTRS)

    Valenti, Elizabeth; Fitzpatrick, Patrick

    2005-01-01

    Increasing the accuracy of storm surge flood forecasts is essential for improving preparedness for hurricanes and other severe storms and, in particular, for optimizing evacuation scenarios. An interactive database, developed by WorldWinds, Inc., contains atlases of storm surge flood levels for the Louisiana/Mississippi gulf coast region. These atlases were developed to improve forecasting of flooding along the coastline and estuaries and in adjacent inland areas. Storm surge heights depend on a complex interaction of several factors, including: storm size, central minimum pressure, forward speed of motion, bottom topography near the point of landfall, astronomical tides, and most importantly, maximum wind speed. The information in the atlases was generated in over 100 computational simulations, partly by use of a parallel-processing version of the ADvanced CIRCulation (ADCIRC) model. ADCIRC is a nonlinear computational model of hydrodynamics, developed by the U.S. Army Corps of Engineers and the US Navy, as a family of two- and three-dimensional finite element based codes. It affords a capability for simulating tidal circulation and storm surge propagation over very large computational domains, while simultaneously providing high-resolution output in areas of complex shoreline and bathymetry. The ADCIRC finite-element grid for this project covered the Gulf of Mexico and contiguous basins, extending into the deep Atlantic Ocean with progressively higher resolution approaching the study area. The advantage of using ADCIRC over other storm surge models, such as SLOSH, is that input conditions can include all or part of wind stress, tides, wave stress, and river discharge, which serve to make the model output more accurate.

  20. Combined Uncertainty and A-Posteriori Error Bound Estimates for General CFD Calculations: Theory and Software Implementation

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.

    2014-01-01

    This workshop presentation discusses the design and implementation of numerical methods for the quantification of statistical uncertainty, including a-posteriori error bounds, for output quantities computed using CFD methods. Hydrodynamic realizations often contain numerical error arising from finite-dimensional approximation (e.g. numerical methods using grids, basis functions, particles) and statistical uncertainty arising from incomplete information and/or statistical characterization of model parameters and random fields. The first task at hand is to derive formal error bounds for statistics given realizations containing finite-dimensional numerical error [1]. The error in computed output statistics contains contributions from both realization error and the error resulting from the calculation of statistics integrals using a numerical method. A second task is to devise computable a-posteriori error bounds by numerically approximating all terms arising in the error bound estimates. For the same reason that CFD calculations including error bounds but omitting uncertainty modeling are only of limited value, CFD calculations including uncertainty modeling but omitting error bounds are only of limited value. To gain maximum value from CFD calculations, a general software package for uncertainty quantification with quantified error bounds has been developed at NASA. The package provides implementations for a suite of numerical methods used in uncertainty quantification: Dense tensorization basis methods [3] and a subscale recovery variant [1] for non-smooth data, Sparse tensorization methods[2] utilizing node-nested hierarchies, Sampling methods[4] for high-dimensional random variable spaces.

Top