ERIC Educational Resources Information Center
Northwest Regional Educational Lab., Portland, OR.
This is the student guide in a set of five computer-oriented environmental/energy education units. Contents of this guide present: (1) the three gasoline consumption-reducing options for which attitudes are to be explored; (2) exercises; and (3) appendices including an energy attitudes survey. (MR)
ERIC Educational Resources Information Center
Northwest Regional Educational Lab., Portland, OR.
This is the teacher's guide to accompany the student guide which together comprise one of five computer-oriented environmental/energy education units. This unit is concerned with the attitude of people toward gasoline shortages and different steps the government could take to reduce gasoline consumption. Through the exercises, part of which make…
NASA Astrophysics Data System (ADS)
Goldberg, Niels; Ospald, Felix; Schneider, Matti
2017-10-01
In this article we introduce a fiber orientation-adapted integration scheme for Tucker's orientation averaging procedure applied to non-linear material laws, based on angular central Gaussian fiber orientation distributions. This method is stable w.r.t. fiber orientations degenerating into planar states and enables the construction of orthotropic hyperelastic energies for truly orthotropic fiber orientation states. We establish a reference scenario for fitting the Tucker average of a transversely isotropic hyperelastic energy, corresponding to a uni-directional fiber orientation, to microstructural simulations, obtained by FFT-based computational homogenization of neo-Hookean constituents. We carefully discuss ideas for accelerating the identification process, leading to a tremendous speed-up compared to a naive approach. The resulting hyperelastic material map turns out to be surprisingly accurate, simple to integrate in commercial finite element codes and fast in its execution. We demonstrate the capabilities of the extracted model by a finite element analysis of a fiber reinforced chain link.
Preferred orientation of albumin adsorption on a hydrophilic surface from molecular simulation.
Hsu, Hao-Jen; Sheu, Sheh-Yi; Tsay, Ruey-Yug
2008-12-01
In general, non-specific protein adsorption follows a two-step procedure, i.e. first adsorption onto a surface in native form, and a subsequent conformational change on the surface. In order to predict the subsequent conformational change, it is important to determine the preferred orientation of an adsorbed protein in the first step of the adsorption. In this work, a method based on finding the global minimum of the interaction potential energy of an adsorbed protein has been developed to delineate the preferred orientations for the adsorption of human serum albumin (HSA) on a model surface with a hydrophilic self-assembled monolayer (SAM). For computational efficiency, solvation effects were greatly simplified by only including the dampening of electrostatic effects while neglecting contributions due to the competition of water molecules for the functional groups on the surface. A contour map obtained by systematic rotation of a molecule in conjunction with perpendicular motion to the surface gives the minimum interaction energy of the adsorbed molecule at various adsorption orientations. Simulation results show that for an -OH terminated SAM surface, a "back-on" orientation of HSA is the preferred orientation. The projection area of this adsorption orientation corresponds with the "triangular-side-on" adsorption of a heart shaped HSA molecule. The method proposed herein is able to provide results which are consistent with those predicted by Monte Carlo (MC) simulations with a substantially less computing cost. The high computing efficiency of the current method makes it possible to be implemented as a design tool for the control of protein adsorption on surfaces; however, before this can be fully realized, these methods must be further developed to enable interaction free energy to be calculated in place of potential energy, along with a more realistic representation of solvation effects.
Grain Boundary Plane Orientation Fundamental Zones and Structure-Property Relationships
Homer, Eric R.; Patala, Srikanth; Priedeman, Jonathan L.
2015-01-01
Grain boundary plane orientation is a profoundly important determinant of character in polycrystalline materials that is not well understood. This work demonstrates how boundary plane orientation fundamental zones, which capture the natural crystallographic symmetries of a grain boundary, can be used to establish structure-property relationships. Using the fundamental zone representation, trends in computed energy, excess volume at the grain boundary, and temperature-dependent mobility naturally emerge and show a strong dependence on the boundary plane orientation. Analysis of common misorientation axes even suggests broader trends of grain boundary energy as a function of misorientation angle and plane orientation. Due to the strong structure-property relationships that naturally emerge from this work, boundary plane fundamental zones are expected to simplify analysis of both computational and experimental data. This standardized representation has the potential to significantly accelerate research in the topologically complex and vast five-dimensional phase space of grain boundaries. PMID:26498715
Grain boundary plane orientation fundamental zones and structure-property relationships
DOE Office of Scientific and Technical Information (OSTI.GOV)
Homer, Eric R.; Patala, Srikanth; Priedeman, Jonathan L.
2015-10-26
Grain boundary plane orientation is a profoundly important determinant of character in polycrystalline materials that is not well understood. This work demonstrates how boundary plane orientation fundamental zones, which capture the natural crystallographic symmetries of a grain boundary, can be used to establish structure-property relationships. Using the fundamental zone representation, trends in computed energy, excess volume at the grain boundary, and temperature-dependent mobility naturally emerge and show a strong dependence on the boundary plane orientation. Analysis of common misorientation axes even suggests broader trends of grain boundary energy as a function of misorientation angle and plane orientation. Due to themore » strong structure-property relationships that naturally emerge from this work, boundary plane fundamental zones are expected to simplify analysis of both computational and experimental data. This standardized representation has the potential to significantly accelerate research in the topologically complex and vast five-dimensional phase space of grain boundaries.« less
ERIC Educational Resources Information Center
Northwest Regional Educational Lab., Portland, OR.
This is the teacher's guide to accompany the student guide which together comprise one of five computer-oriented environmental/energy education units. This unit is organized around a computerized data base of information related to global energy use. The data is organized on a country-by-country basis for the 83 largest countries in the world. For…
ERIC Educational Resources Information Center
Northwest Regional Educational Lab., Portland, OR.
This is the student guide in a set of five computer-oriented environmental/energy education units. Contents of this guide are: (1) Introduction to the unit; (2) The "EARTH" program; (3) Exercises; and (4) Sources of information on the energy crisis. This guide supplements a simulation which allows students to analyze different aspects of…
Cloudbus Toolkit for Market-Oriented Cloud Computing
NASA Astrophysics Data System (ADS)
Buyya, Rajkumar; Pandey, Suraj; Vecchiola, Christian
This keynote paper: (1) presents the 21st century vision of computing and identifies various IT paradigms promising to deliver computing as a utility; (2) defines the architecture for creating market-oriented Clouds and computing atmosphere by leveraging technologies such as virtual machines; (3) provides thoughts on market-based resource management strategies that encompass both customer-driven service management and computational risk management to sustain SLA-oriented resource allocation; (4) presents the work carried out as part of our new Cloud Computing initiative, called Cloudbus: (i) Aneka, a Platform as a Service software system containing SDK (Software Development Kit) for construction of Cloud applications and deployment on private or public Clouds, in addition to supporting market-oriented resource management; (ii) internetworking of Clouds for dynamic creation of federated computing environments for scaling of elastic applications; (iii) creation of 3rd party Cloud brokering services for building content delivery networks and e-Science applications and their deployment on capabilities of IaaS providers such as Amazon along with Grid mashups; (iv) CloudSim supporting modelling and simulation of Clouds for performance studies; (v) Energy Efficient Resource Allocation Mechanisms and Techniques for creation and management of Green Clouds; and (vi) pathways for future research.
Opportunities for Computational Discovery in Basic Energy Sciences
NASA Astrophysics Data System (ADS)
Pederson, Mark
2011-03-01
An overview of the broad-ranging support of computational physics and computational science within the Department of Energy Office of Science will be provided. Computation as the third branch of physics is supported by all six offices (Advanced Scientific Computing, Basic Energy, Biological and Environmental, Fusion Energy, High-Energy Physics, and Nuclear Physics). Support focuses on hardware, software and applications. Most opportunities within the fields of~condensed-matter physics, chemical-physics and materials sciences are supported by the Officeof Basic Energy Science (BES) or through partnerships between BES and the Office for Advanced Scientific Computing. Activities include radiation sciences, catalysis, combustion, materials in extreme environments, energy-storage materials, light-harvesting and photovoltaics, solid-state lighting and superconductivity.~ A summary of two recent reports by the computational materials and chemical communities on the role of computation during the next decade will be provided. ~In addition to materials and chemistry challenges specific to energy sciences, issues identified~include a focus on the role of the domain scientist in integrating, expanding and sustaining applications-oriented capabilities on evolving high-performance computing platforms and on the role of computation in accelerating the development of innovative technologies. ~~
New Ro-Vibrational Kinetic Energy Operators using Polyspherical Coordinates for Polyatomic Molecules
NASA Technical Reports Server (NTRS)
Schwenke, David W.; Kwak, Dochan (Technical Monitor)
2002-01-01
We illustrate how one can easily derive kinetic energy operators for polyatomic molecules using polyspherical coordinates with very general choices for z-axis embeddings arid angles used to specify relative orientations of internal vectors. Computer algebra is not required.
Theoretical basis of the DOE-2 building energy use analysis program
NASA Astrophysics Data System (ADS)
Curtis, R. B.
1981-04-01
A user-oriented, public domain, computer program was developed that will enable architects and engineers to perform design and retrofit studies of the energy-use of buildings under realistic weather conditions. The DOE-2.1A has been named by the US DOE as the standard evaluation technique for the Congressionally mandated building energy performance standards (BEPS). A number of program design decisions were made that determine the breadth of applicability of DOE-2.1. Such design decisions are intrinsic to all building energy use analysis computer programs and determine the types of buildings or the kind of HVAC systems that can be modeled. In particular, the weighting factor method used in DOE-2 has both advantages and disadvantages relative to other computer programs.
Mládek, Arnošt; Banáš, Pavel; Jurečka, Petr; Otyepka, Michal; Zgarbová, Marie; Šponer, Jiří
2014-01-14
Sugar-phosphate backbone is an electronically complex molecular segment imparting RNA molecules high flexibility and architectonic heterogeneity necessary for their biological functions. The structural variability of RNA molecules is amplified by the presence of the 2'-hydroxyl group, capable of forming multitude of intra- and intermolecular interactions. Bioinformatics studies based on X-ray structure database revealed that RNA backbone samples at least 46 substates known as rotameric families. The present study provides a comprehensive analysis of RNA backbone conformational preferences and 2'-hydroxyl group orientations. First, we create a benchmark database of estimated CCSD(T)/CBS relative energies of all rotameric families and test performance of dispersion-corrected DFT-D3 methods and molecular mechanics in vacuum and in continuum solvent. The performance of the DFT-D3 methods is in general quite satisfactory. The B-LYP-D3 method provides the best trade-off between accuracy and computational demands. B3-LYP-D3 slightly outperforms the new PW6B95-D3 and MPW1B95-D3 and is the second most accurate density functional of the study. The best agreement with CCSD(T)/CBS is provided by DSD-B-LYP-D3 double-hybrid functional, although its large-scale applications may be limited by high computational costs. Molecular mechanics does not reproduce the fine energy differences between the RNA backbone substates. We also demonstrate that the differences in the magnitude of the hyperconjugation effect do not correlate with the energy ranking of the backbone conformations. Further, we investigated the 2'-hydroxyl group orientation preferences. For all families, we conducted a QM and MM hydroxyl group rigid scan in gas phase and solvent. We then carried out set of explicit solvent MD simulations of folded RNAs and analyze 2'-hydroxyl group orientations of different backbone families in MD. The solvent energy profiles determined primarily by the sugar pucker match well with the distribution data derived from the simulations. The QM and MM energy profiles predict the same 2'-hydroxyl group orientation preferences. Finally, we demonstrate that the high energy of unfavorable and rarely sampled 2'-hydroxyl group orientations can be attributed to clashes between occupied orbitals.
Quantification of Energy Release in Composite Structures
NASA Technical Reports Server (NTRS)
Minnetyan, Levon
2003-01-01
Energy release rate is usually suggested as a quantifier for assessing structural damage tolerance. Computational prediction of energy release rate is based on composite mechanics with micro-stress level damage assessment, finite element structural analysis and damage progression tracking modules. This report examines several issues associated with energy release rates in composite structures as follows: Chapter I demonstrates computational simulation of an adhesively bonded composite joint and validates the computed energy release rates by comparison with acoustic emission signals in the overall sense. Chapter II investigates the effect of crack plane orientation with respect to fiber direction on the energy release rates. Chapter III quantifies the effects of contiguous constraint plies on the residual stiffness of a 90 ply subjected to transverse tensile fractures. Chapter IV compares ICAN and ICAN/JAVA solutions of composites. Chapter V examines the effects of composite structural geometry and boundary conditions on damage progression characteristics.
Quantification of Energy Release in Composite Structures
NASA Technical Reports Server (NTRS)
Minnetyan, Levon; Chamis, Christos C. (Technical Monitor)
2003-01-01
Energy release rate is usually suggested as a quantifier for assessing structural damage tolerance. Computational prediction of energy release rate is based on composite mechanics with micro-stress level damage assessment, finite element structural analysis and damage progression tracking modules. This report examines several issues associated with energy release rates in composite structures as follows: Chapter I demonstrates computational simulation of an adhesively bonded composite joint and validates the computed energy release rates by comparison with acoustic emission signals in the overall sense. Chapter II investigates the effect of crack plane orientation with respect to fiber direction on the energy release rates. Chapter III quantifies the effects of contiguous constraint plies on the residual stiffness of a 90 deg ply subjected to transverse tensile fractures. Chapter IV compares ICAN and ICAN/JAVA solutions of composites. Chapter V examines the effects of composite structural geometry and boundary conditions on damage progression characteristics.
Attenuation of thermal neutrons by an imperfect single crystal
NASA Astrophysics Data System (ADS)
Naguib, K.; Adib, M.
1996-06-01
A semi-empirical formula is given which allows one to calculate the total thermal cross section of an imperfect single crystal as a function of crystal constants, temperature and neutron energy E, in the energy range between 3 meV and 10 eV. The formula also includes the contribution of the parasitic Bragg scattering to the total cross section that takes into account the crystal mosaic spread value and its orientation with respect to the neutron beam direction. A computer program (ISCANF) was developed to calculate the total attenuation of neutrons using the proposed formula. The ISCANF program was applied to investigate the neutron attenuation through a copper single crystal. The calculated values of the neutron transmission through the imperfect copper single crystal were fitted to the measured ones in the energy range 3 - 40 meV at different crystal orientations. The result of fitting shows that use of the computer program ISCANF allows one to predict the behaviour of the total cross section of an imperfect copper single crystal for the whole energy range.
Proceedings of the third annual Nevada energy forum and exposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1984-01-01
This book presents the papers given at a forum on energy conservation. The papers include subjects on the following topics: third party financing; heat recovery and indirect evaporative cooling; computer literacy; practical power factor survey methodology; the measured energy performance of buildings; casino cogeneration; employees and energy conservation; daylighting; infrared heating; peak shaving and cogeneration. These subjects were orientated toward the management, purchasing and engineering professions and coincided with the forum goal of promoting energy conservation literacy.
Langley, Keith; Anderson, Stephen J
2010-08-06
To represent the local orientation and energy of a 1-D image signal, many models of early visual processing employ bandpass quadrature filters, formed by combining the original signal with its Hilbert transform. However, representations capable of estimating an image signal's 2-D phase have been largely ignored. Here, we consider 2-D phase representations using a method based upon the Riesz transform. For spatial images there exist two Riesz transformed signals and one original signal from which orientation, phase and energy may be represented as a vector in 3-D signal space. We show that these image properties may be represented by a Singular Value Decomposition (SVD) of the higher-order derivatives of the original and the Riesz transformed signals. We further show that the expected responses of even and odd symmetric filters from the Riesz transform may be represented by a single signal autocorrelation function, which is beneficial in simplifying Bayesian computations for spatial orientation. Importantly, the Riesz transform allows one to weight linearly across orientation using both symmetric and asymmetric filters to account for some perceptual phase distortions observed in image signals - notably one's perception of edge structure within plaid patterns whose component gratings are either equal or unequal in contrast. Finally, exploiting the benefits that arise from the Riesz definition of local energy as a scalar quantity, we demonstrate the utility of Riesz signal representations in estimating the spatial orientation of second-order image signals. We conclude that the Riesz transform may be employed as a general tool for 2-D visual pattern recognition by its virtue of representing phase, orientation and energy as orthogonal signal quantities.
Lazaridis, Themis; Leveritt, John M; PeBenito, Leo
2014-09-01
The energetic cost of burying charged groups in the hydrophobic core of lipid bilayers has been controversial, with simulations giving higher estimates than certain experiments. Implicit membrane approaches are usually deemed too simplistic for this problem. Here we challenge this view. The free energy of transfer of amino acid side chains from water to the membrane center predicted by IMM1 is reasonably close to all-atom free energy calculations. The shape of the free energy profile, however, for the charged side chains needs to be modified to reflect the all-atom simulation findings (IMM1-LF). Membrane thinning is treated by combining simulations at different membrane widths with an estimate of membrane deformation free energy from elasticity theory. This approach is first tested on the voltage sensor and the isolated S4 helix of potassium channels. The voltage sensor is stably inserted in a transmembrane orientation for both the original and the modified model. The transmembrane orientation of the isolated S4 helix is unstable in the original model, but a stable local minimum in IMM1-LF, slightly higher in energy than the interfacial orientation. Peptide translocation is addressed by mapping the effective energy of the peptide as a function of vertical position and tilt angle, which allows identification of minimum energy pathways and transition states. The barriers computed for the S4 helix and other experimentally studied peptides are low enough for an observable rate. Thus, computational results and experimental studies on the membrane burial of peptide charged groups appear to be consistent. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova. Copyright © 2014 Elsevier B.V. All rights reserved.
ASR4: A computer code for fitting and processing 4-gage anelastic strain recovery data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warpinski, N.R.
A computer code for analyzing four-gage Anelastic Strain Recovery (ASR) data has been modified for use on a personal computer. This code fits the viscoelastic model of Warpinski and Teufel to measured ASR data, calculates the stress orientation directly, and computes stress magnitudes if sufficient input data are available. The code also calculates the stress orientation using strain-rosette equations, and its calculates stress magnitudes using Blanton's approach, assuming sufficient input data are available. The program is written in FORTRAN, compiled with Ryan-McFarland Version 2.4. Graphics use PLOT88 software by Plotworks, Inc., but the graphics software must be obtained by themore » user because of licensing restrictions. A version without graphics can also be run. This code is available through the National Energy Software Center (NESC), operated by Argonne National Laboratory. 5 refs., 3 figs.« less
Atomistic calculations of interface elastic properties in noncoherent metallic bilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mi Changwen; Jun, Sukky; Kouris, Demitris A.
2008-02-15
The paper describes theoretical and computational studies associated with the interface elastic properties of noncoherent metallic bicrystals. Analytical forms of interface energy, interface stresses, and interface elastic constants are derived in terms of interatomic potential functions. Embedded-atom method potentials are then incorporated into the model to compute these excess thermodynamics variables, using energy minimization in a parallel computing environment. The proposed model is validated by calculating surface thermodynamic variables and comparing them with preexisting data. Next, the interface elastic properties of several fcc-fcc bicrystals are computed. The excess energies and stresses of interfaces are smaller than those on free surfacesmore » of the same crystal orientations. In addition, no negative values of interface stresses are observed. Current results can be applied to various heterogeneous materials where interfaces assume a prominent role in the systems' mechanical behavior.« less
Incorporation of the TIP4P water model into a continuum solvent for computing solvation free energy
NASA Astrophysics Data System (ADS)
Yang, Pei-Kun
2014-10-01
The continuum solvent model is one of the commonly used strategies to compute solvation free energy especially for large-scale conformational transitions such as protein folding or to calculate the binding affinity of protein-protein/ligand interactions. However, the dielectric polarization for computing solvation free energy from the continuum solvent is different than that obtained from molecular dynamic simulations. To mimic the dielectric polarization surrounding a solute in molecular dynamic simulations, the first-shell water molecules was modeled using a charge distribution of TIP4P in a hard sphere; the time-averaged charge distribution from the first-shell water molecules were estimated based on the coordination number of the solute, and the orientation distribution of the first-shell waters and the intermediate water molecules were treated as that of a bulk solvent. Based on this strategy, an equation describing the solvation free energy of ions was derived.
ERIC Educational Resources Information Center
School Science Review, 1986
1986-01-01
Describes activities, games, experiments, demonstrations, and computer-oriented exercises in all science areas. Topics include energy flow through a marine ecosystem, using 2,4-dichlorophenoxyethanoic acid to demonstrate translocation in plants, use of the dichotomous key, use of leaf yeasts to monitor atmospheric pollution, and others. (JN)
RF induced energy for partially implanted catheters: a computational study
Lucano, Elena; Liberti, Micaela; Lloyd, Tom; Apollonio, Francesca; Wedan, Steve; Kainz, Wolfgang; Angelone, Leonardo M.
2018-01-01
Magnetic Resonance Imaging (MRI) is a radiological imaging technique widely used in clinical practice. MRI has been proposed to guide the catheters for interventional procedures, such as cardiac ablation. However, there are risks associated with this procedure, such as RF-induced heating of tissue near the catheters. The aim of this study is to develop a quantitative RF-safety method for patients with partially implanted leads at 64 MHz. RF-induced heating is related to the electric field incident along the catheter, which in turns depends on several variables, including the position of the RF feeding sources and the orientation of the polarization, which are however often unknown. This study evaluates the electric field profile along the lead trajectory using simulations with an anatomical human model landmarked at the heart. The energy absorbed in the volume near the tip of ageneric partially implanted lead was computed for all source positions and field orientation. The results showed that varying source positions and field orientation may result in changes of up to 18% for the E-field magnitude and up to 60% for the 10g-averaged specific absorption rate (SAR) in the volume surrounding the tip of the lead. PMID:28268553
Wierzbicki, Andrzej; Dalal, Pranav; Cheatham, Thomas E.; Knickelbein, Jared E.; Haymet, A. D. J.; Madura, Jeffry D.
2007-01-01
Antifreeze proteins (AFPs) protect many plants and organisms from freezing in low temperatures. Of the different AFPs, the most studied AFP Type I from winter flounder is used in the current computational studies to gain molecular insight into its adsorption at the ice/water interface. Employing molecular dynamics simulations, we calculate the free energy difference between the hydrophilic and hydrophobic faces of the protein interacting with ice. Furthermore, we identify three properties of Type I “antifreeze” proteins that discriminate among these two orientations of the protein at the ice/water interface. The three properties are: the “surface area” of the protein; a measure of the interaction of the protein with neighboring water molecules as determined by the number of hydrogen bond count, for example; and the side-chain orientation angles of the threonine residues. All three discriminants are consistent with our free energy results, which clearly show that the hydrophilic protein face orientations toward the ice/water interface, as hypothesized from experimental and ice/vacuum simulations, are incorrect and support the hypothesis that the hydrophobic face is oriented toward the ice/water interface. The adsorption free energy is calculated to be 2–3 kJ/mol. PMID:17526572
Solid liquid interfacial free energies of benzene
NASA Astrophysics Data System (ADS)
Azreg-Aı¨nou, M.
2007-02-01
In this work we determine for the range of melting temperatures 284.6⩽T⩽306.7 K, corresponding to equilibrium pressures 20.6⩽P⩽102.9 MPa, the benzene solid-liquid interfacial free energy by a cognitive approach including theoretical and experimental physics, mathematics, computer algebra (MATLAB), and some results from molecular dynamics computer simulations. From a theoretical and mathematical points of view, we deal with the elaboration of an analytical expression for the internal energy derived from a unified solid-liquid-vapor equation of state and with the elaboration of an existing statistical model for the entropy drop of the melt near the solid-liquid interface. From an experimental point of view, we will use our results obtained in collaboration with colleagues concerning the supercooled liquid benzene. Of particular interest for this work is the existing center-of-mass radial distribution function of benzene at 298 K obtained by computer simulation. Crystal-orientation-independent and minimum interfacial free energies are calculated and shown to increase slightly with the above temperatures. Both crystal-orientation-independent and minimum free energies agree with existing calculations and with rare existing experimental data. Taking into account the fact that the extent of supercooling is generally admitted as a constant, we determine the limits of supercooling by which we explore the behavior of the critical nucleus radius which is shown to decrease in terms of the above temperatures. The radius of the, and the number of molecules per, critical nucleus are shown to assume the average values of 20.2 A˚ and 175 with standard deviations of 0.16 Å and 4.5, respectively.
A computational procedure for multibody systems including flexible beam dynamics
NASA Technical Reports Server (NTRS)
Downer, J. D.; Park, K. C.; Chiou, J. C.
1990-01-01
A computational procedure suitable for the solution of equations of motions for flexible multibody systems has been developed. The flexible beams are modeled using a fully nonlinear theory which accounts for both finite rotations and large deformations. The present formulation incorporates physical measures of conjugate Cauchy stress and covariant strain increments. As a consequence, the beam model can easily be interfaced with real-time strain measurements and feedback control systems. A distinct feature of the present work is the computational preservation of total energy for undamped systems; this is obtained via an objective strain increment/stress update procedure combined with an energy-conserving time integration algorithm which contains an accurate update of angular orientations. The procedure is demonstrated via several example problems.
P-S & S-P Elastic Wave Conversions from Linear Arrays of Oriented Microcracks
NASA Astrophysics Data System (ADS)
Jiang, L.; Modiriasari, A.; Bobet, A.; Pyrak-Nolte, L. J.
2017-12-01
Natural and induced processes can produce oriented mechanical discontinuities such as en echelon cracks, fractures and faults. Previous research has shown that compressional to shear (P-S) wave conversions occur at normal incidence to a fracture because of cross-coupling fracture compliances (Nakagawa et al., 2000). Here, experiments and computer simulation are presented to demonstrate the link among cross-coupling stiffness, microcrack orientation and energy partitioning among P, S, and P-S/S-P waves. A FormLabs 2 3D printer was used to fabricate 7 samples (50 mm x 50 mm x 100 mm) with linear arrays of microcracks oriented at 0, 15, 30, 45, 60, 75, and 900 with a print resolution of 0.025 mm. The microcracks were elliptical in cross-sections (2 mm long by 1 mm wide), through the 50 mm thickness of sample, and spaced 3 mm (center-to-center for adjacent cracks). A 25 mm length of each sample contained no microcracks to act as a reference material. Broadband transducers (0.2-1.5 MHz) were used to transmit and receive P and polarized S wave signals that were propagated at normal incidence to the linear array of microcracks. P-wave amplitude increased, while S-wave amplitude remained relatively constant, as the microcrack orientation increased from 0o to 90o. At normal incidence, P-S and S-P wave conversions emerged and increased in amplitude as the crack inclination increased from 00 to 450. From 450 to 900, the amplitude of these converted modes decreased. Between negative and positive crack angles, the P-to-S and S-to-P waves were 1800 phase reversed. The observed energy partitioning matched the computed compliances obtained from numerical simulations with ABAQUS. The cross-coupling compliance for cracks inclined at 450 was found to be the smallest magnitude. 3D printing enabled the study of microstructural effects on macro-scale wave measurements. Information on the orientation of microcracks or even en echelon fractures and faults is contained in P-S conversions even at normal incidence. Acknowledgment: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program under Award Number (DE-FG02-09ER16022) and by the National Science Foundation, Geomechanics and Geotechnical Systems Program (award No. CMMI-1162082).
A Learning Framework for Control-Oriented Modeling of Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubio-Herrero, Javier; Chandan, Vikas; Siegel, Charles M.
Buildings consume a significant amount of energy worldwide. Several building optimization and control use cases require models of energy consumption which are control oriented, have high predictive capability, imposes minimal data pre-processing requirements, and have the ability to be adapted continuously to account for changing conditions as new data becomes available. Data driven modeling techniques, that have been investigated so far, while promising in the context of buildings, have been unable to simultaneously satisfy all the requirements mentioned above. In this context, deep learning techniques such as Recurrent Neural Networks (RNNs) hold promise, empowered by advanced computational capabilities and bigmore » data opportunities. In this paper, we propose a deep learning based methodology for the development of control oriented models for building energy management and test in on data from a real building. Results show that the proposed methodology outperforms other data driven modeling techniques significantly. We perform a detailed analysis of the proposed methodology along dimensions such as topology, sensitivity, and downsampling. Lastly, we conclude by envisioning a building analytics suite empowered by the proposed deep framework, that can drive several use cases related to building energy management.« less
Solute rotational dynamics at the water liquid/vapor interface.
Benjamin, Ilan
2007-11-28
The rotational dynamics of a number of diatomic molecules adsorbed at different locations at the interface between water and its own vapors are studied using classical molecular dynamics computer simulations. Both equilibrium orientational and energy correlations and nonequilibrium orientational and energy relaxation correlations are calculated. By varying the dipole moment of the molecule and its location, and by comparing the results with those in bulk water, the effects of dielectric and mechanical frictions on reorientation dynamics and on rotational energy relaxation can be studied. It is shown that for nonpolar and weekly polar solutes, the equilibrium orientational relaxation is much slower in the bulk than at the interface. As the solute becomes more polar, the rotation slows down and the surface and bulk dynamics become similar. The energy relaxation (both equilibrium and nonequilibrium) has the opposite trend with the solute dipole (larger dipoles relax faster), but here again the bulk and surface results converge as the solute dipole is increased. It is shown that these behaviors correlate with the peak value of the solvent-solute radial distribution function, which demonstrates the importance of the first hydration shell structure in determining the rotational dynamics and dependence of these dynamics on the solute dipole and location.
Wang, Jing-Bo; Ma, Jian-Yi; Li, Xiang-Yuan
2010-01-07
In this work, a new procedure has been developed in order to realize the self-consistent-reaction field computation for interfacial molecules. Based on the extension of the dielectric polarizable continuum model, the quantum-continuum calculations for interfacial molecules have been carried out. This work presents an investigation into how the molecular structure influences the adsorbate-solvent interaction and consequently alters the orientation angle at the air/water interface. Taking both electrostatic and non-electrostatic energies into account, we investigate the orientation behavior of three interfacial molecules, 2,6-dimethyl-4-hydroxy-benzonitrile, 3,5-dimethyl-4-hydroxy-benzonitrile and p-cyanophenol, at the air/water interface. The results show that the hydrophilic hydroxyl groups in 2,6-dimethyl-4-hydroxy-benzonitrile and in p-cyanophenol point from the air to the water side, but the hydroxyl group in 3,5-dimethyl-4-hydroxy-benzonitrile takes the opposite direction. Our detailed analysis reveals that the opposite orientation of 3,5-dimethyl-4-hydroxy-benzonitrile results mainly from the cavitation energy. The different orientations of the hydrophilic hydroxyl group indicate the competition of electrostatic and cavitation energies. The theoretical prediction gives a satisfied explanation of the most recent sum frequency generation measurement for these molecules at the interface.
Amber Plug-In for Protein Shop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliva, Ricardo
2004-05-10
The Amber Plug-in for ProteinShop has two main components: an AmberEngine library to compute the protein energy models, and a module to solve the energy minimization problem using an optimization algorithm in the OPTI-+ library. Together, these components allow the visualization of the protein folding process in ProteinShop. AmberEngine is a object-oriented library to compute molecular energies based on the Amber model. The main class is called ProteinEnergy. Its main interface methods are (1) "init" to initialize internal variables needed to compute the energy. (2) "eval" to evaluate the total energy given a vector of coordinates. Additional methods allow themore » user to evaluate the individual components of the energy model (bond, angle, dihedral, non-bonded-1-4, and non-bonded energies) and to obtain the energy of each individual atom. The Amber Engine library source code includes examples and test routines that illustrate the use of the library in stand alone programs. The energy minimization module uses the AmberEngine library and the nonlinear optimization library OPT++. OPT++ is open source software available under the GNU Lesser General Public License. The minimization module currently makes use of the LBFGS optimization algorithm in OPT++ to perform the energy minimization. Future releases may give the user a choice of other algorithms available in OPT++.« less
Philippe, A M; Baravian, C; Bezuglyy, V; Angilella, J R; Meneau, F; Bihannic, I; Michot, L J
2013-04-30
In the present study, we investigate the evolution with shear of the viscosity of aqueous suspensions of size-selected natural swelling clay minerals for volume fractions extending from isotropic liquids to weak nematic gels. Such suspensions are strongly shear-thinning, a feature that is systematically observed for suspensions of nonspherical particles and that is linked to their orientational properties. We then combined our rheological measurements with small-angle X-ray scattering experiments that, after appropriate treatment, provide the orientational field of the particles. Whatever the clay nature, particle size, and volume fraction, this orientational field was shown to depend only on a nondimensional Péclet number (Pe) defined for one isolated particle as the ratio between hydrodynamic energy and Brownian thermal energy. The measured orientational fields were then directly compared to those obtained for infinitely thin disks through a numerical computation of the Fokker-Plank equation. Even in cases where multiple hydrodynamic interactions dominate, qualitative agreement between both orientational fields is observed, especially at high Péclet number. We have then used an effective approach to assess the viscosity of these suspensions through the definition of an effective volume fraction. Using such an approach, we have been able to transform the relationship between viscosity and volume fraction (ηr = f(φ)) into a relationship that links viscosity with both flow and volume fraction (ηr = f(φ, Pe)).
NASA Astrophysics Data System (ADS)
Allen, Brian; Travesset, Alex
2004-03-01
Dislocations and disclinations play a fundamental role in the properties of two dimensional crystals. In this talk, it will be shown that a general computational framework can be developed by combining previous work of Seung and Nelson* and modern advances in objected oriented design. This allows separating the problem into independent classes such as: geometry (sphere, plane, torus..), lattice (triangular, square, etc..), type of defect (dislocation, disclinations, etc..), boundary conditions, type of order (crystalline, hexatic) or energy functional. As applications, the ground state of crystals in several geometries will be discussed. Experimental examples with colloidal particles will be shown. *S. Seung and D. Nelson, Phys. Rev. A 38, 1005 (1988)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-09-01
COMPLEAT takes its name, as an acronym, from Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies. It is an electric utility planning model designed for use principally by publicly owned electric utilities and agencies serving such utilities. As a model, COMPLEAT is significantly more full-featured and complex than called out in APPA's original plan and proposal to DOE. The additional complexity grew out of a series of discussions early in the development schedule, in which it became clear to APPA staff and advisors that the simplicity characterizing the original plan, while highly desirable in terms of utility applications, wasmore » not achievable if practical utility problems were to be addressed. The project teams settled on Energy 20/20, an existing model developed by Dr. George Backus of Policy Assessment Associates, as the best candidate for the kinds of modifications and extensions that would be required. The remainder of the project effort was devoted to designing specific input data files, output files, and user screens and to writing and testing the compute programs that would properly implement the desired features around Energy 20/20 as a core program. This report presents in outline form, the features and user interface of COMPLEAT.« less
Liquid-liquid transition in ST2 water
NASA Astrophysics Data System (ADS)
Liu, Yang; Palmer, Jeremy C.; Panagiotopoulos, Athanassios Z.; Debenedetti, Pablo G.
2012-12-01
We use the weighted histogram analysis method [S. Kumar, D. Bouzida, R. H. Swendsen, P. A. Kollman, and J. M. Rosenberg, J. Comput. Chem. 13, 1011 (1992), 10.1002/jcc.540130812] to calculate the free energy surface of the ST2 model of water as a function of density and bond-orientational order. We perform our calculations at deeply supercooled conditions (T = 228.6 K, P = 2.2 kbar; T = 235 K, P = 2.2 kbar) and focus our attention on the region of bond-orientational order that is relevant to disordered phases. We find a first-order transition between a low-density liquid (LDL, ρ ≈ 0.9 g/cc) and a high-density liquid (HDL, ρ ≈ 1.15 g/cc), confirming our earlier sampling of the free energy surface of this model as a function of density [Y. Liu, A. Z. Panagiotopoulos, and P. G. Debenedetti, J. Chem. Phys. 131, 104508 (2009), 10.1063/1.3229892]. We demonstrate the disappearance of the LDL basin at high pressure and of the HDL basin at low pressure, in agreement with independent simulations of the system's equation of state. Consistency between directly computed and reweighted free energies, as well as between free energy surfaces computed using different thermodynamic starting conditions, confirms proper equilibrium sampling. Diffusion and structural relaxation calculations demonstrate that equilibration of the LDL phase, which exhibits slow dynamics, is attained in the course of the simulations. Repeated flipping between the LDL and HDL phases in the course of long molecular dynamics runs provides further evidence of a phase transition. We use the Ewald summation with vacuum boundary conditions to calculate long-ranged Coulombic interactions and show that conducting boundary conditions lead to unphysical behavior at low temperatures.
Online SVT Commissioning and Monitoring using a Service-Oriented Architecture Framework
NASA Astrophysics Data System (ADS)
Ruger, Justin; Gotra, Yuri; Weygand, Dennis; Ziegler, Veronique; Heddle, David; Gore, David
2014-03-01
Silicon Vertex Tracker detectors are devices used in high energy experiments for precision measurement of charged tracks close to the collision point. Early detection of faulty hardware is essential and therefore code development of monitoring and commissioning software is essential. The computing framework for the CLAS12 experiment at Jefferson Lab is a service-oriented architecture that allows efficient data-flow from one service to another through loose coupling. I will present the strategy and development of services for the CLAS12 Silicon Tracker data monitoring and commissioning within this framework, as well as preliminary results using test data.
A study of space shuttle energy management, approach and landing analysis
NASA Technical Reports Server (NTRS)
Morth, R.
1973-01-01
The steering system of the space shuttle vehicle is presented for the several hundred miles of flight preceding landing. The guidance scheme is characterized by a spiral turn to dissipate excess potential energy (altitude) prior to a standard straight-in final approach. In addition, the system features pilot oriented control, drag brakes, phugoid damping, and a navigational capacity founded upon an inertial measurement unit and an on-board computer. Analytic formulas are used to calculate, represent, and insure the workability of the system's specifications
NASA Astrophysics Data System (ADS)
Rallapalli, Arjun
A RET network consists of a network of photo-active molecules called chromophores that can participate in inter-molecular energy transfer called resonance energy transfer (RET). RET networks are used in a variety of applications including cryptographic devices, storage systems, light harvesting complexes, biological sensors, and molecular rulers. In this dissertation, we focus on creating a RET device called closed-diffusive exciton valve (C-DEV) in which the input to output transfer function is controlled by an external energy source, similar to a semiconductor transistor like the MOSFET. Due to their biocompatibility, molecular devices like the C-DEVs can be used to introduce computing power in biological, organic, and aqueous environments such as living cells. Furthermore, the underlying physics in RET devices are stochastic in nature, making them suitable for stochastic computing in which true random distribution generation is critical. In order to determine a valid configuration of chromophores for the C-DEV, we developed a systematic process based on user-guided design space pruning techniques and built-in simulation tools. We show that our C-DEV is 15x better than C-DEVs designed using ad hoc methods that rely on limited data from prior experiments. We also show ways in which the C-DEV can be improved further and how different varieties of C-DEVs can be combined to form more complex logic circuits. Moreover, the systematic design process can be used to search for valid chromophore network configurations for a variety of RET applications. We also describe a feasibility study for a technique used to control the orientation of chromophores attached to DNA. Being able to control the orientation can expand the design space for RET networks because it provides another parameter to tune their collective behavior. While results showed limited control over orientation, the analysis required the development of a mathematical model that can be used to determine the distribution of dipoles in a given sample of chromophore constructs. The model can be used to evaluate the feasibility of other potential orientation control techniques.
Zhao, Zhiqiang; Chen, Jun; Zhang, Zhaojun; Zhang, Dong H; Wang, Xiao-Gang; Carrington, Tucker; Gatti, Fabien
2018-02-21
Quantum mechanical calculations of ro-vibrational energies of CH 4 , CHD 3 , CH 3 D, and CH 3 F were made with two different numerical approaches. Both use polyspherical coordinates. The computed energy levels agree, confirming the accuracy of the methods. In the first approach, for all the molecules, the coordinates are defined using three Radau vectors for the CH 3 subsystem and a Jacobi vector between the remaining atom and the centre of mass of CH 3 . Euler angles specifying the orientation of a frame attached to CH 3 with respect to a frame attached to the Jacobi vector are used as vibrational coordinates. A direct product potential-optimized discrete variable vibrational basis is used to build a Hamiltonian matrix. Ro-vibrational energies are computed using a re-started Arnoldi eigensolver. In the second approach, the coordinates are the spherical coordinates associated with four Radau vectors or three Radau vectors and a Jacobi vector, and the frame is an Eckart frame. Vibrational basis functions are products of contracted stretch and bend functions, and eigenvalues are computed with the Lanczos algorithm. For CH 4 , CHD 3 , and CH 3 D, we report the first J > 0 energy levels computed on the Wang-Carrington potential energy surface [X.-G. Wang and T. Carrington, J. Chem. Phys. 141(15), 154106 (2014)]. For CH 3 F, the potential energy surface of Zhao et al. [J. Chem. Phys. 144, 204302 (2016)] was used. All the results are in good agreement with experimental data.
NASA Astrophysics Data System (ADS)
Zhao, Zhiqiang; Chen, Jun; Zhang, Zhaojun; Zhang, Dong H.; Wang, Xiao-Gang; Carrington, Tucker; Gatti, Fabien
2018-02-01
Quantum mechanical calculations of ro-vibrational energies of CH4, CHD3, CH3D, and CH3F were made with two different numerical approaches. Both use polyspherical coordinates. The computed energy levels agree, confirming the accuracy of the methods. In the first approach, for all the molecules, the coordinates are defined using three Radau vectors for the CH3 subsystem and a Jacobi vector between the remaining atom and the centre of mass of CH3. Euler angles specifying the orientation of a frame attached to CH3 with respect to a frame attached to the Jacobi vector are used as vibrational coordinates. A direct product potential-optimized discrete variable vibrational basis is used to build a Hamiltonian matrix. Ro-vibrational energies are computed using a re-started Arnoldi eigensolver. In the second approach, the coordinates are the spherical coordinates associated with four Radau vectors or three Radau vectors and a Jacobi vector, and the frame is an Eckart frame. Vibrational basis functions are products of contracted stretch and bend functions, and eigenvalues are computed with the Lanczos algorithm. For CH4, CHD3, and CH3D, we report the first J > 0 energy levels computed on the Wang-Carrington potential energy surface [X.-G. Wang and T. Carrington, J. Chem. Phys. 141(15), 154106 (2014)]. For CH3F, the potential energy surface of Zhao et al. [J. Chem. Phys. 144, 204302 (2016)] was used. All the results are in good agreement with experimental data.
Incident Energy Focused Design and Validation for the Floating Potential Probe
NASA Technical Reports Server (NTRS)
Fincannon, James
2002-01-01
Utilizing the spacecraft shadowing and incident energy analysis capabilities of the NASA Glenn Research Center Power and Propulsion Office's SPACE System Power Analysis for Capability Evaluation) computer code, this paper documents the analyses for various International Space Station (ISS) Floating Potential Probe (EPP) preliminary design options. These options include various solar panel orientations and configurations as well as deployment locations on the ISS. The incident energy for the final selected option is characterized. A good correlation between the predicted data and on-orbit operational telemetry is demonstrated. Minor deviations are postulated to be induced by degradation or sensor drift.
Lettieri, S.; Zuckerman, D.M.
2011-01-01
Typically, the most time consuming part of any atomistic molecular simulation is due to the repeated calculation of distances, energies and forces between pairs of atoms. However, many molecules contain nearly rigid multi-atom groups such as rings and other conjugated moieties, whose rigidity can be exploited to significantly speed up computations. The availability of GB-scale random-access memory (RAM) offers the possibility of tabulation (pre-calculation) of distance and orientation-dependent interactions among such rigid molecular bodies. Here, we perform an investigation of this energy tabulation approach for a fluid of atomistic – but rigid – benzene molecules at standard temperature and density. In particular, using O(1) GB of RAM, we construct an energy look-up table which encompasses the full range of allowed relative positions and orientations between a pair of whole molecules. We obtain a hardware-dependent speed-up of a factor of 24-50 as compared to an ordinary (“exact”) Monte Carlo simulation and find excellent agreement between energetic and structural properties. Second, we examine the somewhat reduced fidelity of results obtained using energy tables based on much less memory use. Third, the energy table serves as a convenient platform to explore potential energy smoothing techniques, akin to coarse-graining. Simulations with smoothed tables exhibit near atomistic accuracy while increasing diffusivity. The combined speed-up in sampling from tabulation and smoothing exceeds a factor of 100. For future applications greater speed-ups can be expected for larger rigid groups, such as those found in biomolecules. PMID:22120971
Spaar, Alexander; Helms, Volkhard
2005-07-01
Over the past years Brownian dynamics (BD) simulations have been proven to be a suitable tool for the analysis of protein-protein association. The computed rates and relative trends for protein mutants and different ionic strength are generally in good agreement with experimental results, e.g. see ref 1. By design, BD simulations correspond to an intensive sampling over energetically favorable states, rather than to a systematic sampling over all possible states which is feasible only at rather low resolution. On the example of barnase and barstar, a well characterized model system of electrostatically steered diffusional encounter, we report here the computation of the 6-dimensional free energy landscape for the encounter process of two proteins by a novel, careful analysis of the trajectories from BD simulations. The aim of these studies was the clarification of the encounter state. Along the trajectories, the individual positions and orientations of one protein (relative to the other) are recorded and stored in so-called occupancy maps. Since the number of simulated trajectories is sufficiently high, these occupancy maps can be interpreted as a probability distribution which allows the calculation of the entropy landscape by the use of a locally defined entropy function. Additionally, the configuration dependent electrostatic and desolvation energies are recorded in separate maps. The free energy landscape of protein-protein encounter is finally obtained by summing the energy and entropy contributions. In the free energy profile along the reaction path, which is defined as the path along the minima in the free energy landscape, a minimum shows up suggesting this to be used as the definition of the encounter state. This minimum describes a state of reduced diffusion velocity where the electrostatic attraction is compensated by the repulsion due to the unfavorable desolvation of the charged residues and the entropy loss due to the increasing restriction of the motional freedom. In the simulations the orientational degrees of freedom at the encounter state are found to be less restricted than the translational degrees of freedom. Therefore, the orientational alignment of the two binding partners seems to take place beyond this free energy minimum. The free energy profiles along the reaction pathway are compared for different ionic strength and temperature. This novel analysis technique facilitates mechanistic interpretation of protein-protein encounter pathways which should be useful for interpretation of experimental results as well.
Assigning Main Orientation to an EOH Descriptor on Multispectral Images.
Li, Yong; Shi, Xiang; Wei, Lijun; Zou, Junwei; Chen, Fang
2015-07-01
This paper proposes an approach to compute an EOH (edge-oriented histogram) descriptor with main orientation. EOH has a better matching ability than SIFT (scale-invariant feature transform) on multispectral images, but does not assign a main orientation to keypoints. Alternatively, it tends to assign the same main orientation to every keypoint, e.g., zero degrees. This limits EOH to matching keypoints between images of translation misalignment only. Observing this limitation, we propose assigning to keypoints the main orientation that is computed with PIIFD (partial intensity invariant feature descriptor). In the proposed method, SIFT keypoints are detected from images as the extrema of difference of Gaussians, and every keypoint is assigned to the main orientation computed with PIIFD. Then, EOH is computed for every keypoint with respect to its main orientation. In addition, an implementation variant is proposed for fast computation of the EOH descriptor. Experimental results show that the proposed approach performs more robustly than the original EOH on image pairs that have a rotation misalignment.
A Practice-Oriented Bifurcation Analysis for Pulse Energy Converters: A Stability Margin
NASA Astrophysics Data System (ADS)
Kolokolov, Yury; Monovskaya, Anna
The popularity of systems of pulse energy conversion (PEC-systems) for practical applications is due to the heightened efficiency of energy conversion processes with comparatively simple realizations. Nevertheless, a PEC-system represents a nonlinear object with a variable structure, and the bifurcation analysis remains the basic tool to describe PEC dynamics evolution. The paper is devoted to the discussion on whether the scientific viewpoint on the natural nonlinear dynamics evolution can be involved in practical applications. We focus on the problems connected with stability boundaries of an operating regime. The results of both small-signal analysis and computational bifurcation analysis are considered in the parametrical space in comparison with the results of the experimental identification of the zonal heterogeneity of the operating process. This allows to propose an adapted stability margin as a sufficiently safe distance before the point after which the operating process begins to lose the stability. Such stability margin can extend the permissible operating domain in the parametrical space at the expense of using cause-and-effect relations in the context of natural regularities of nonlinear dynamics. Reasoning and discussion are based on the experimental and computational results for a synchronous buck converter with a pulse-width modulation. The presented results can be useful, first of all, for PEC-systems with significant variation of equivalent inductance and/or capacity. We believe that the discussion supports a viewpoint by which the contemporary methods of the computational and experimental bifurcation analyses possess both analytical abilities and experimental techniques for promising solutions which could be practice-oriented for PEC-systems.
Pneumafil casing blower through moving reference frame (MRF) - A CFD simulation
NASA Astrophysics Data System (ADS)
Manivel, R.; Vijayanandh, R.; Babin, T.; Sriram, G.
2018-05-01
In this analysis work, the ring frame of Pneumafil casing blower of the textile mills with a power rating of 5 kW have been simulated using Computational Fluid Dynamics (CFD) code. The CFD analysis of the blower is carried out in Ansys Workbench 16.2 with Fluent using MRF solver settings. The simulation settings and boundary conditions are based on literature study and field data acquired. The main objective of this work is to reduce the energy consumption of the blower. The flow analysis indicated that the power consumption is influenced by the deflector plate orientation and deflector plate strip situated at the outlet casing of the blower. The energy losses occurred in the blower is due to the recirculation zones formed around the deflector plate strip. The deflector plate orientation is changed and optimized to reduce the energy consumption. The proposed optimized model is based on the simulation results which had relatively lesser power consumption than the existing and other cases. The energy losses in the Pneumafil casing blower are reduced through CFD analysis.
Modeling the Flow of Rarefied Gases at NASA
NASA Technical Reports Server (NTRS)
Forrest E. Lumpkin, III
2012-01-01
At modest temperatures, the thermal energy of atmospheric diatomic gases such as nitrogen is primarily distributed between only translational and rotational energy modes. Furthermore, these energy modes are fully excited such that the specific heat at constant volume is well approximated by the simple expression C(sub v) = 5/2 R. As a result, classical mechanics provides a suitable approximation at such temperatures of the true quantum mechanical behavior of the inter-molecular collisions of such molecules. Using classical mechanics, the transfer of energy between rotational and translation energy modes is studied. The approach of Lordi and Mates is adopted to compute the trajectories and time dependent rotational orientations and energies during the collision of two non-polar diatomic molecules. A Monte-Carlo analysis is performed collecting data from the results of many such simulations in order to estimate the rotational relaxation time. A Graphical Processing Unit (GPU) is employed to improve the performance of the Monte-Carlo analysis. A comparison of the performance of the GPU implementation to an implementation on traditional computer architecture is made. Effects of the assumed inter-molecular potential on the relaxation time are studied. The seminar will also present highlights of computational analyses performed at NASA Johnson Space Center of heat transfer in rarefied gases.
SHARPEN-systematic hierarchical algorithms for rotamers and proteins on an extended network.
Loksha, Ilya V; Maiolo, James R; Hong, Cheng W; Ng, Albert; Snow, Christopher D
2009-04-30
Algorithms for discrete optimization of proteins play a central role in recent advances in protein structure prediction and design. We wish to improve the resources available for computational biologists to rapidly prototype such algorithms and to easily scale these algorithms to many processors. To that end, we describe the implementation and use of two new open source resources, citing potential benefits over existing software. We discuss CHOMP, a new object-oriented library for macromolecular optimization, and SHARPEN, a framework for scaling CHOMP scripts to many computers. These tools allow users to develop new algorithms for a variety of applications including protein repacking, protein-protein docking, loop rebuilding, or homology model remediation. Particular care was taken to allow modular energy function design; protein conformations may currently be scored using either the OPLSaa molecular mechanical energy function or an all-atom semiempirical energy function employed by Rosetta. (c) 2009 Wiley Periodicals, Inc.
Ultra-low-energy analog straintronics using multiferroic composites
NASA Astrophysics Data System (ADS)
Roy, Kuntal
2014-03-01
Multiferroic devices, i.e., a magnetostrictive nanomagnet strain-coupled with a piezoelectric layer, are promising as binary switches for ultra-low-energy digital computing in beyond Moore's law era [Roy, K. Appl. Phys. Lett. 103, 173110 (2013), Roy, K. et al. Appl. Phys. Lett. 99, 063108 (2011), Phys. Rev. B 83, 224412 (2011), Scientific Reports (Nature Publishing Group) 3, 3038 (2013), J. Appl. Phys. 112, 023914 (2012)]. We show here that such multiferroic devices, apart from performing digital computation, can be also utilized for analog computing purposes, e.g., voltage amplification, filter etc. The analog computing capability is conceived by considering that magnetization's mean orientation shifts gradually although nanomagnet's potential minima changes abruptly. Using tunneling magnetoresistance (TMR) measurement, a continuous output voltage while varying the input voltage can be produced. Stochastic Landau-Lifshitz-Gilbert (LLG) equation in the presence of room-temperature (300 K) thermal fluctuations is solved to demonstrate the analog computing capability of such multiferroic devices. This work was supported in part by FAME, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA.
Grating Oriented Line-Wise Filtration (GOLF) for Dual-Energy X-ray CT
NASA Astrophysics Data System (ADS)
Xi, Yan; Cong, Wenxiang; Harrison, Daniel; Wang, Ge
2017-12-01
In medical X-ray Computed Tomography (CT), the use of two distinct X-ray source spectra (energies) allows dose-reduction and material discrimination relative to that achieved with only one source spectrum. Existing dual-energy CT methods include source kVp-switching, double-layer detection, dual-source gantry, and two-pass scanning. Each method suffers either from strong spectral correlation or patient-motion artifacts. To simultaneously address these problems, we propose to improve CT data acquisition with the Grating Oriented Line-wise Filtration (GOLF) method, a novel X-ray filter that is placed between the source and patient. GOLF uses a combination of absorption and filtering gratings that are moved relative to each other and in synchronization with the X-ray tube kVp-switching process and/or the detector view-sampling process. Simulation results show that GOLF can improve the spectral performance of kVp-switching to match that of dual-source CT while avoiding patient motion artifacts and dual imaging chains. Although significant flux is absorbed by this pre-patient filter, the proposed GOLF method is a novel path for cost-effectively extracting dual-energy or multi-energy data and reducing radiation dose with or without kVp switching.
Grating Oriented Line-Wise Filtration (GOLF) for Dual-Energy X-ray CT
Xi, Yan; Cong, Wenxiang; Harrison, Daniel
2017-01-01
In medical X-ray Computed Tomography (CT), the use of two distinct X-ray source spectra (energies) allows dose-reduction and material discrimination relative to that achieved with only one source spectrum. Existing dual-energy CT methods include source kVp-switching, double-layer detection, dual-source gantry, and two-pass scanning. Each method suffers either from strong spectral correlation or patient-motion artifacts. To simultaneously address these problems, we propose to improve CT data acquisition with the Grating Oriented Line-wise Filtration (GOLF) method, a novel X-ray filter that is placed between the source and patient. GOLF uses a combination of absorption and filtering gratings that are moved relative to each other and in synchronization with the X-ray tube kVp-switching process and/or the detector view-sampling process. Simulation results show that GOLF can improve the spectral performance of kVp-switching to match that of dual-source CT while avoiding patient motion artifacts and dual imaging chains. Although significant flux is absorbed by this pre-patient filter, the proposed GOLF method is a novel path for cost-effectively extracting dual-energy or multi-energy data and reducing radiation dose with or without kVp switching. PMID:29333113
NASA Astrophysics Data System (ADS)
Berres, A.; Karthik, R.; Nugent, P.; Sorokine, A.; Myers, A.; Pang, H.
2017-12-01
Building an integrated data infrastructure that can meet the needs of a sustainable energy-water resource management requires a robust data management and geovisual analytics platform, capable of cross-domain scientific discovery and knowledge generation. Such a platform can facilitate the investigation of diverse complex research and policy questions for emerging priorities in Energy-Water Nexus (EWN) science areas. Using advanced data analytics, machine learning techniques, multi-dimensional statistical tools, and interactive geovisualization components, such a multi-layered federated platform is being developed, the Energy-Water Nexus Knowledge Discovery Framework (EWN-KDF). This platform utilizes several enterprise-grade software design concepts and standards such as extensible service-oriented architecture, open standard protocols, event-driven programming model, enterprise service bus, and adaptive user interfaces to provide a strategic value to the integrative computational and data infrastructure. EWN-KDF is built on the Compute and Data Environment for Science (CADES) environment in Oak Ridge National Laboratory (ORNL).
NASA Technical Reports Server (NTRS)
Smith, J. H.
1994-01-01
This computer program, SOLINS, was developed to aid engineers and solar system designers in the accurate modeling of the average hourly solar insolation on a surface of arbitrary orientation. The program can be used to study insolation problems specific to residential and commercial applications where the amount of space available for solar collectors is limited by shadowing problems, energy output requirements, and costs. For tandem rack arrays, SOLINS will accommodate the use of augmentation reflectors built into the support structure to increase insolation values at the collector surface. As the use of flat plate solar collectors becomes more prevalent in the building industry, the engineer and designer must have the capability to conduct extensive sensitivity analyses on the orientation and location of solar collectors. SOLINS should prove to be a valuable aid in this area of engineering. SOLINS uses a modified version of the National Bureau of Standards model to calculate the direct, diffuse, and reflected components of total insolation on a tilted surface with a given azimuthal orientation. The model is based on the work of Liu and Jordan with corrections by Kusuda and Ishii to account for early morning and late afternoon errors. The model uses a parametric description of the average day solar climate to generate monthly average day profiles by hour of the insolation level on the collector surface. The model includes accommodation of user specified ground and landscape reflectivities at the collector site. For roof or ground mounted, tilted arrays, SOLINS will calculate insolation including the effects of shadowing and augmentation reflectors. The user provides SOLINS with data describing the array design, array orientation, the month, the solar climate parameter, the ground reflectance, and printout control specifications. For the specified array and environmental conditions, SOLINS outputs the hourly insolation the array will receive during an average day during the month specified, along with the total insolation the collector surface will receive over an average 24-hour period. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 computer with a central memory requirement of approximately 46K of 8 bit bytes. The SOLINS routines were developed in 1979.
Application-oriented offloading in heterogeneous networks for mobile cloud computing
NASA Astrophysics Data System (ADS)
Tseng, Fan-Hsun; Cho, Hsin-Hung; Chang, Kai-Di; Li, Jheng-Cong; Shih, Timothy K.
2018-04-01
Nowadays Internet applications have become more complicated that mobile device needs more computing resources for shorter execution time but it is restricted to limited battery capacity. Mobile cloud computing (MCC) is emerged to tackle the finite resource problem of mobile device. MCC offloads the tasks and jobs of mobile devices to cloud and fog environments by using offloading scheme. It is vital to MCC that which task should be offloaded and how to offload efficiently. In the paper, we formulate the offloading problem between mobile device and cloud data center and propose two algorithms based on application-oriented for minimum execution time, i.e. the Minimum Offloading Time for Mobile device (MOTM) algorithm and the Minimum Execution Time for Cloud data center (METC) algorithm. The MOTM algorithm minimizes offloading time by selecting appropriate offloading links based on application categories. The METC algorithm minimizes execution time in cloud data center by selecting virtual and physical machines with corresponding resource requirements of applications. Simulation results show that the proposed mechanism not only minimizes total execution time for mobile devices but also decreases their energy consumption.
Predicting helix orientation for coiled-coil dimers
Apgar, James R.; Gutwin, Karl N.; Keating, Amy E.
2008-01-01
The alpha-helical coiled coil is a structurally simple protein oligomerization or interaction motif consisting of two or more alpha helices twisted into a supercoiled bundle. Coiled coils can differ in their stoichiometry, helix orientation and axial alignment. Because of the near degeneracy of many of these variants, coiled coils pose a challenge to fold recognition methods for structure prediction. Whereas distinctions between some protein folds can be discriminated on the basis of hydrophobic/polar patterning or secondary structure propensities, the sequence differences that encode important details of coiled-coil structure can be subtle. This is emblematic of a larger problem in the field of protein structure and interaction prediction: that of establishing specificity between closely similar structures. We tested the behavior of different computational models on the problem of recognizing the correct orientation - parallel vs. antiparallel - of pairs of alpha helices that can form a dimeric coiled coil. For each of 131 examples of known structure, we constructed a large number of both parallel and antiparallel structural models and used these to asses the ability of five energy functions to recognize the correct fold. We also developed and tested three sequenced-based approaches that make use of varying degrees of implicit structural information. The best structural methods performed similarly to the best sequence methods, correctly categorizing ∼81% of dimers. Steric compatibility with the fold was important for some coiled coils we investigated. For many examples, the correct orientation was determined by smaller energy differences between parallel and antiparallel structures distributed over many residues and energy components. Prediction methods that used structure but incorporated varying approximations and assumptions showed quite different behaviors when used to investigate energetic contributions to orientation preference. Sequence based methods were sensitive to the choice of residue-pair interactions scored. PMID:18506779
Park, Jun -Sang; Ray, Atish K.; Dawson, Paul R.; ...
2016-05-02
A shrink-fit sample is manufactured with a Ti-8Al-1Mo-1V alloy to introduce a multiaxial residual stress field in the disk of the sample. A set of strain and orientation pole figures are measured at various locations across the disk using synchrotron high-energy X-ray diffraction. Two approaches—the traditional sin 2Ψ method and the bi-scale optimization method—are taken to determine the stresses in the disk based on the measured strain and orientation pole figures, to explore the range of solutions that are possible for the stress field within the disk. While the stress components computed using the sin 2Ψ method and the bi-scalemore » optimization method have similar trends, their magnitudes are significantly different. Lastly, it is suspected that the local texture variation in the material is the cause of this discrepancy.« less
NASA Astrophysics Data System (ADS)
Chaluvadi, Hari; Nixon, Kate; Murray, Andrew; Ning, Chuangang; Colgan, James; Madison, Don
2014-10-01
Experimental and theoretical Triply Differential Cross Sections (TDCS) will be presented for electron-impact ionization of sulfur hexafluoride (SF6) for the molecular orbital 1t1g. M3DW (molecular 3-body distorted wave) results will be compared with experiment for coplanar geometry and for perpendicular plane geometry (a plane which is perpendicular to the incident beam direction). In both cases, the final state electron energies and observation angles are symmetric and the final state electron energies range from 5 eV to 40 eV. It will be shown that there is a large difference between using the OAMO (orientation averaged molecular orbital) approximation and the proper average over all orientations and also that the proper averaged results are in much better agreement with experiment. Work supported by NSF under Grant Number PHY-1068237. Computational work was performed with Institutional resources made available through Los Alamos National Laboratory.
Optical air data systems and methods
NASA Technical Reports Server (NTRS)
Caldwell, Loren M. (Inventor); Tang, Shoou-yu (Inventor); O'Brien, Martin (Inventor)
2010-01-01
Systems and methods for sensing air outside a moving aircraft are presented. In one embodiment, a system includes a laser for generating laser energy. The system also includes one or more transceivers for projecting the laser energy as laser radiation to the air. Subsequently, each transceiver receives laser energy as it is backscattered from the air. A computer processes signals from the transceivers to distinguish molecular scattered laser radiation from aerosol scattered laser radiation and determines one or more air parameters based on the scattered laser radiation. Such air parameters may include air speed, air pressure, air temperature and aircraft orientation angle, such as yaw, angle of attack and sideslip.
Optical air data systems and methods
NASA Technical Reports Server (NTRS)
Caldwell, Loren M. (Inventor); O'Brien, Martin J. (Inventor); Weimer, Carl S. (Inventor); Nelson, Loren D. (Inventor)
2008-01-01
Systems and methods for sensing air outside a moving aircraft are presented. In one embodiment, a system includes a laser for generating laser energy. The system also includes one or more transceivers for projecting the laser energy as laser radiation to the air. Subsequently, each transceiver receives laser energy as it is backscattered from the air. A computer processes signals from the transceivers to distinguish molecular scattered laser radiation from aerosol scattered laser radiation and determines one or more air parameters based on the scattered laser radiation. Such air parameters may include air speed, air pressure, air temperature and aircraft orientation angle, such as yaw, angle of attack and sideslip.
Optical air data systems and methods
NASA Technical Reports Server (NTRS)
Caldwell, Loren M. (Inventor); O'Brien, Martin J. (Inventor); Weimer, Carl S. (Inventor); Nelson, Loren D. (Inventor)
2005-01-01
Systems and methods for sensing air outside a moving aircraft are presented. In one embodiment, a system includes a laser for generating laser energy. The system also includes one or more transceivers for projecting the laser energy as laser radiation to the air. Subsequently, each transceiver receives laser energy as it is backscattered from the air. A computer processes signals from the transceivers to distinguish molecular scattered laser radiation from aerosol scattered laser radiation and determines one or more air parameters based on the scattered laser radiation. Such air parameters may include air speed, air pressure, air temperature and aircraft orientation angle, such as yaw, angle of attack and sideslip.
A point particle model of lightly bound skyrmions
NASA Astrophysics Data System (ADS)
Gillard, Mike; Harland, Derek; Kirk, Elliot; Maybee, Ben; Speight, Martin
2017-04-01
A simple model of the dynamics of lightly bound skyrmions is developed in which skyrmions are replaced by point particles, each carrying an internal orientation. The model accounts well for the static energy minimizers of baryon number 1 ≤ B ≤ 8 obtained by numerical simulation of the full field theory. For 9 ≤ B ≤ 23, a large number of static solutions of the point particle model are found, all closely resembling size B subsets of a face centred cubic lattice, with the particle orientations dictated by a simple colouring rule. Rigid body quantization of these solutions is performed, and the spin and isospin of the corresponding ground states extracted. As part of the quantization scheme, an algorithm to compute the symmetry group of an oriented point cloud, and to determine its corresponding Finkelstein-Rubinstein constraints, is devised.
Electrostatic orientation of the electron-transfer complex between plastocyanin and cytochrome c.
Roberts, V A; Freeman, H C; Olson, A J; Tainer, J A; Getzoff, E D
1991-07-15
To understand the specificity and efficiency of protein-protein interactions promoting electron transfer, we evaluated the role of electrostatic forces in precollision orientation by the development of two new methods, computer graphics alignment of protein electrostatic fields and a systematic orientational search of intermolecular electrostatic energies for two proteins at present separation distances. We applied these methods to the plastocyanin/cytochrome c interaction, which is faster than random collision, but too slow for study by molecular dynamics techniques. Significant electrostatic potentials were concentrated on one-fourth (969 A2) of the plastocyanin surface, with the greatest negative potential centered on the Tyr-83 hydroxyl within the acidic patch, and on one-eighth (632 A2) of the cytochrome c surface, with the greatest positive potential centered near the exposed heme edge. Coherent electrostatic fields occurred only over these regions, suggesting that local, rather than global, charge complementarity controls productive recognition. The three energetically favored families of pre-collision orientations all directed the positive region surrounding the heme edge of cytochrome c toward the acidic patch of plastocyanin but differed in heme plane orientation. Analysis of electrostatic fields, electrostatic energies of precollision orientations with 12 and 6 A separation distances, and surface topographies suggested that the favored orientations should converge to productive complexes promoting a single electron-transfer pathway from the cytochrome c heme edge to Tyr-83 of plastocyanin. Direct interactions of the exposed Cu ligand in plastocyanin with the cytochrome c heme edge are not unfavorable sterically or electrostatically but should occur no faster than randomly, indicating that this is not the primary pathway for electron transfer.
Object-oriented numerical computing C++
NASA Technical Reports Server (NTRS)
Vanrosendale, John
1994-01-01
An object oriented language is one allowing users to create a set of related types and then intermix and manipulate values of these related types. This paper discusses object oriented numerical computing using C++.
Arbor, Sage; Marshall, Garland R
2009-02-01
Reverse turns are often recognition sites for protein/protein interactions and, therefore, valuable potential targets for determining recognition motifs in development of potential therapeutics. A virtual combinatorial library of cyclic tetrapeptides (CTPs) was generated and the bonds in the low-energy structures were overlapped with canonical reverse-turn Calpha-Cbeta bonds (Tran et al., J Comput Aided Mol Des 19(8):551-566, 2005) to determine the utility of CTPs as reverse-turn peptidomimetics. All reverse turns in the Protein Data Bank (PDB) with a crystal structures resolution < or = 3.0 A were classified into the same known canonical reverse-turn Calpha-Cbeta bond clusters (Tran et al., J Comput Aided Mol Des 19(8):551-566, 2005). CTP reverse-turn mimics were compiled that mimicked both the relative orientations of three of the four as well as all four Calpha-Cbeta bonds in the reverse turns of the PDB. 54% of reverse turns represented in the PDB had eight or more CTPs structures that mimicked the orientation of all four of the Calpha-Cbeta bonds in the reverse turn.
Computer Literacy Project. A General Orientation in Basic Computer Concepts and Applications.
ERIC Educational Resources Information Center
Murray, David R.
This paper proposes a two-part, basic computer literacy program for university faculty, staff, and students with no prior exposure to computers. The program described would introduce basic computer concepts and computing center service programs and resources; provide fundamental preparation for other computer courses; and orient faculty towards…
2015-01-01
Many commonly used coarse-grained models for proteins are based on simplified interaction sites and consequently may suffer from significant limitations, such as the inability to properly model protein secondary structure without the addition of restraints. Recent work on a benzene fluid (LettieriS.; ZuckermanD. M.J. Comput. Chem.2012, 33, 268−27522120971) suggested an alternative strategy of tabulating and smoothing fully atomistic orientation-dependent interactions among rigid molecules or fragments. Here we report our initial efforts to apply this approach to the polar and covalent interactions intrinsic to polypeptides. We divide proteins into nearly rigid fragments, construct distance and orientation-dependent tables of the atomistic interaction energies between those fragments, and apply potential energy smoothing techniques to those tables. The amount of smoothing can be adjusted to give coarse-grained models that range from the underlying atomistic force field all the way to a bead-like coarse-grained model. For a moderate amount of smoothing, the method is able to preserve about 70–90% of the α-helical structure while providing a factor of 3–10 improvement in sampling per unit computation time (depending on how sampling is measured). For a greater amount of smoothing, multiple folding–unfolding transitions of the peptide were observed, along with a factor of 10–100 improvement in sampling per unit computation time, although the time spent in the unfolded state was increased compared with less smoothed simulations. For a β hairpin, secondary structure is also preserved, albeit for a narrower range of the smoothing parameter and, consequently, for a more modest improvement in sampling. We have also applied the new method in a “resolution exchange” setting, in which each replica runs a Monte Carlo simulation with a different degree of smoothing. We obtain exchange rates that compare favorably to our previous efforts at resolution exchange (LymanE.; ZuckermanD. M.J. Chem. Theory Comput.2006, 2, 656−666). PMID:25400525
Modeling the Proton Radiation Belt With Van Allen Probes Relativistic Electron-Proton Telescope Data
NASA Technical Reports Server (NTRS)
Kanekal, S. G.; Li, X.; Baker, D. N.; Selesnick, R. S.; Hoxie, V. C.
2018-01-01
An empirical model of the proton radiation belt is constructed from data taken during 2013-2017 by the Relativistic Electron-Proton Telescopes on the Van Allen Probes satellites. The model intensity is a function of time, kinetic energy in the range 18-600 megaelectronvolts, equatorial pitch angle, and L shell of proton guiding centers. Data are selected, on the basis of energy deposits in each of the nine silicon detectors, to reduce background caused by hard proton energy spectra at low L. Instrument response functions are computed by Monte Carlo integration, using simulated proton paths through a simplified structural model, to account for energy loss in shielding material for protons outside the nominal field of view. Overlap of energy channels, their wide angular response, and changing satellite orientation require the model dependencies on all three independent variables be determined simultaneously. This is done by least squares minimization with a customized steepest descent algorithm. Model uncertainty accounts for statistical data error and systematic error in the simulated instrument response. A proton energy spectrum is also computed from data taken during the 8 January 2014 solar event, to illustrate methods for the simpler case of an isotropic and homogeneous model distribution. Radiation belt and solar proton results are compared to intensities computed with a simplified, on-axis response that can provide a good approximation under limited circumstances.
Modeling the Proton Radiation Belt With Van Allen Probes Relativistic Electron-Proton Telescope Data
NASA Astrophysics Data System (ADS)
Selesnick, R. S.; Baker, D. N.; Kanekal, S. G.; Hoxie, V. C.; Li, X.
2018-01-01
An empirical model of the proton radiation belt is constructed from data taken during 2013-2017 by the Relativistic Electron-Proton Telescopes on the Van Allen Probes satellites. The model intensity is a function of time, kinetic energy in the range 18-600 MeV, equatorial pitch angle, and L shell of proton guiding centers. Data are selected, on the basis of energy deposits in each of the nine silicon detectors, to reduce background caused by hard proton energy spectra at low L. Instrument response functions are computed by Monte Carlo integration, using simulated proton paths through a simplified structural model, to account for energy loss in shielding material for protons outside the nominal field of view. Overlap of energy channels, their wide angular response, and changing satellite orientation require the model dependencies on all three independent variables be determined simultaneously. This is done by least squares minimization with a customized steepest descent algorithm. Model uncertainty accounts for statistical data error and systematic error in the simulated instrument response. A proton energy spectrum is also computed from data taken during the 8 January 2014 solar event, to illustrate methods for the simpler case of an isotropic and homogeneous model distribution. Radiation belt and solar proton results are compared to intensities computed with a simplified, on-axis response that can provide a good approximation under limited circumstances.
Non-Boolean computing with nanomagnets for computer vision applications
NASA Astrophysics Data System (ADS)
Bhanja, Sanjukta; Karunaratne, D. K.; Panchumarthy, Ravi; Rajaram, Srinath; Sarkar, Sudeep
2016-02-01
The field of nanomagnetism has recently attracted tremendous attention as it can potentially deliver low-power, high-speed and dense non-volatile memories. It is now possible to engineer the size, shape, spacing, orientation and composition of sub-100 nm magnetic structures. This has spurred the exploration of nanomagnets for unconventional computing paradigms. Here, we harness the energy-minimization nature of nanomagnetic systems to solve the quadratic optimization problems that arise in computer vision applications, which are computationally expensive. By exploiting the magnetization states of nanomagnetic disks as state representations of a vortex and single domain, we develop a magnetic Hamiltonian and implement it in a magnetic system that can identify the salient features of a given image with more than 85% true positive rate. These results show the potential of this alternative computing method to develop a magnetic coprocessor that might solve complex problems in fewer clock cycles than traditional processors.
Flexible ligand docking using a genetic algorithm
NASA Astrophysics Data System (ADS)
Oshiro, C. M.; Kuntz, I. D.; Dixon, J. Scott
1995-04-01
Two computational techniques have been developed to explore the orientational and conformational space of a flexible ligand within an enzyme. Both methods use the Genetic Algorithm (GA) to generate conformationally flexible ligands in conjunction with algorithms from the DOCK suite of programs to characterize the receptor site. The methods are applied to three enzyme-ligand complexes: dihydrofolate reductase-methotrexate, thymidylate synthase-phenolpthalein and HIV protease-thioketal haloperidol. Conformations and orientations close to the crystallographically determined structures are obtained, as well as alternative structures with low energy. The potential for the GA method to screen a database of compounds is also examined. A collection of ligands is evaluated simultaneously, rather than docking the ligands individually into the enzyme.
Shifting forest value orientations in the United States, 1980-2001: A computer content analysis
David N. Bengston; Trevor J. Webb; David P. Fan
2004-01-01
This paper examines three forest value orientations - clusters of interrelated values and basic beliefs about forests - that emerged from an analysis of the public discourse about forest planning, management, and policy in the United States. The value orientations include anthropocentric, biocentric, and moral/spiritual/aesthetic orientations toward forests. Computer...
10 CFR 434.511 - Orientation and shape.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Orientation and shape. 434.511 Section 434.511 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.511 Orientation and shape. 511.1 The...
10 CFR 434.511 - Orientation and shape.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Orientation and shape. 434.511 Section 434.511 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.511 Orientation and shape. 511.1The...
10 CFR 434.511 - Orientation and shape.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Orientation and shape. 434.511 Section 434.511 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.511 Orientation and shape. 511.1The...
10 CFR 434.511 - Orientation and shape.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Orientation and shape. 434.511 Section 434.511 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.511 Orientation and shape. 511.1The...
Bibliography. Computer-Oriented Projects, 1987.
ERIC Educational Resources Information Center
Smith, Richard L., Comp.
1988-01-01
Provides an annotated list of references on computer-oriented projects. Includes information on computers; hands-on versus simulations; games; instruction; students' attitudes and learning styles; artificial intelligence; tutoring; and application of spreadsheets. (RT)
Parallel and Portable Monte Carlo Particle Transport
NASA Astrophysics Data System (ADS)
Lee, S. R.; Cummings, J. C.; Nolen, S. D.; Keen, N. D.
1997-08-01
We have developed a multi-group, Monte Carlo neutron transport code in C++ using object-oriented methods and the Parallel Object-Oriented Methods and Applications (POOMA) class library. This transport code, called MC++, currently computes k and α eigenvalues of the neutron transport equation on a rectilinear computational mesh. It is portable to and runs in parallel on a wide variety of platforms, including MPPs, clustered SMPs, and individual workstations. It contains appropriate classes and abstractions for particle transport and, through the use of POOMA, for portable parallelism. Current capabilities are discussed, along with physics and performance results for several test problems on a variety of hardware, including all three Accelerated Strategic Computing Initiative (ASCI) platforms. Current parallel performance indicates the ability to compute α-eigenvalues in seconds or minutes rather than days or weeks. Current and future work on the implementation of a general transport physics framework (TPF) is also described. This TPF employs modern C++ programming techniques to provide simplified user interfaces, generic STL-style programming, and compile-time performance optimization. Physics capabilities of the TPF will be extended to include continuous energy treatments, implicit Monte Carlo algorithms, and a variety of convergence acceleration techniques such as importance combing.
Wang, Xiao-Gang; Carrington, Tucker
2017-03-14
In this paper, we present new ideas for computing rovibrational energy levels of molecules composed of two components and apply them to H 2 O-Cl - . When both components are themselves molecules, Euler angles that specify their orientation with respect to an axis system attached to the inter-monomer vector are used as vibrational coordinates. For H 2 O-Cl - , there is only one set of Euler angles. Using Euler angles as intermolecular vibrational coordinates is advantageous because in many cases coupling between them and coordinates that describe the shape of the monomers is unimportant. The monomers are not assumed to be rigid. In the most efficient calculation, vibrational wavefunctions of the monomers are used as contracted basis functions. Energy levels are calculated using the Lanczos algorithm.
NASA Astrophysics Data System (ADS)
Wang, Xiao-Gang; Carrington, Tucker
2017-03-01
In this paper, we present new ideas for computing rovibrational energy levels of molecules composed of two components and apply them to H2O-Cl-. When both components are themselves molecules, Euler angles that specify their orientation with respect to an axis system attached to the inter-monomer vector are used as vibrational coordinates. For H2O-Cl-, there is only one set of Euler angles. Using Euler angles as intermolecular vibrational coordinates is advantageous because in many cases coupling between them and coordinates that describe the shape of the monomers is unimportant. The monomers are not assumed to be rigid. In the most efficient calculation, vibrational wavefunctions of the monomers are used as contracted basis functions. Energy levels are calculated using the Lanczos algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, B.
The Energy Research program may be on the verge of abdicating an important role it has traditionally played in the development and use of state-of-the-art computer systems. The lack of easy access to Class VI systems coupled to the easy availability of local, user-friendly systems is conspiring to drive many investigators away from forefront research in computational science and in the use of state-of-the-art computers for more discipline-oriented problem solving. The survey conducted under the auspices of this contract clearly demonstrates a significant suppressed demand for actual Class VI hours totaling the full capacity of one such system. The currentmore » usage is about a factor of 15 below this level. There is also a need for about 50% more capacity in the current mini/midi availability. Meeting the needs of the ER community for this level of computing power and capacity is most probably best achieved through the establishment of a central Class VI capability at some site linked through a nationwide network to the various ER laboratories and universities and interfaced with the local user-friendly systems at those remote sites.« less
Specificity of V1-V2 Orientation Networks in the Primate Visual Cortex
Roe, Anna W.; Ts'o, Daniel Y.
2015-01-01
The computation of texture and shape involves integration of features of various orientations. Orientation networks within V1 tend to involve cells which share similar orientation selectivity. However, emergent properties in V2 require the integration of multiple orientations. We now show that, unlike interactions within V1, V1-V2 orientation interactions are much less synchronized and are not necessarily orientation dependent. We find V1-V2 orientation networks are of two types: a more tightly synchronized, orientation-preserving network and a less synchronized orientation-diverse network. We suggest that such diversity of V1-V2 interactions underlies the spatial and functional integration required for computation of higher order contour and shape in V2. PMID:26314798
The computational worm: spatial orientation and its neuronal basis in C. elegans.
Lockery, Shawn R
2011-10-01
Spatial orientation behaviors in animals are fundamental for survival but poorly understood at the neuronal level. The nematode Caenorhabditis elegans orients to a wide range of stimuli and has a numerically small and well-described nervous system making it advantageous for investigating the mechanisms of spatial orientation. Recent work by the C. elegans research community has identified essential computational elements of the neural circuits underlying two orientation strategies that operate in five different sensory modalities. Analysis of these circuits reveals novel motifs including simple circuits for computing temporal derivatives of sensory input and for integrating sensory input with behavioral state to generate adaptive behavior. These motifs constitute hypotheses concerning the identity and functionality of circuits controlling spatial orientation in higher organisms. Copyright © 2011 Elsevier Ltd. All rights reserved.
Mesoscale Science with High Energy X-ray Diffraction Microscopy at the Advanced Photon Source
NASA Astrophysics Data System (ADS)
Suter, Robert
2014-03-01
Spatially resolved diffraction of monochromatic high energy (> 50 keV) x-rays is used to map microstructural quantities inside of bulk polycrystalline materials. The non-destructive nature of High Energy Diffraction Microscopy (HEDM) measurements allows tracking of responses as samples undergo thermo-mechanical or other treatments. Volumes of the order of a cubic millimeter are probed with micron scale spatial resolution. Data sets allow direct comparisons to computational models of responses that frequently involve long-ranged, multi-grain interactions; such direct comparisons have only become possible with the development of HEDM and other high energy x-ray methods. Near-field measurements map the crystallographic orientation field within and between grains using a computational reconstruction method that simulates the experimental geometry and matches orientations in micron sized volume elements to experimental data containing projected grain images in large numbers of Bragg peaks. Far-field measurements yield elastic strain tensors through indexing schemes that sort observed diffraction peaks into sets associated with individual crystals and detect small radial motions in large numbers of such peaks. Combined measurements, facilitated by a new end station hutch at Advanced Photon Source beamline 1-ID, are mutually beneficial and result in accelerated data reduction. Further, absorption tomography yields density contrast that locates secondary phases, void clusters, and cracks, and tracks sample shape during deformation. A collaboration led by the Air Force Research Laboratory and including the Advanced Photon Source, Lawrence Livermore National Laboratory, Carnegie Mellon University, Petra-III, and Cornell University and CHESS is developing software and hardware for combined measurements. Examples of these capabilities include tracking of grain boundary migrations during thermal annealing, tensile deformation of zirconium, and combined measurements of nickel superalloys and a titanium alloy under tensile forces. Work supported by NSF grant DMR-1105173
The effective molarity (EM)--a computational approach.
Karaman, Rafik
2010-08-01
The effective molarity (EM) for 12 intramolecular S(N)2 processes involving the formation of substituted aziridines and substituted epoxides were computed using ab initio and DFT calculation methods. Strong correlation was found between the calculated effective molarity and the experimentally determined values. This result could open a door for obtaining EM values for intramolecular processes that are difficult to be experimentally provided. Furthermore, the calculation results reveal that the driving forces for ring-closing reactions in the two different systems are proximity orientation of the nucleophile to the electrophile and the ground strain energies of the products and the reactants. Copyright 2010 Elsevier Inc. All rights reserved.
A Multiple Period Problem in Distributed Energy Management Systems Considering CO2 Emissions
NASA Astrophysics Data System (ADS)
Muroda, Yuki; Miyamoto, Toshiyuki; Mori, Kazuyuki; Kitamura, Shoichi; Yamamoto, Takaya
Consider a special district (group) which is composed of multiple companies (agents), and where each agent responds to an energy demand and has a CO2 emission allowance imposed. A distributed energy management system (DEMS) optimizes energy consumption of a group through energy trading in the group. In this paper, we extended the energy distribution decision and optimal planning problem in DEMSs from a single period problem to a multiple periods one. The extension enabled us to consider more realistic constraints such as demand patterns, the start-up cost, and minimum running/outage times of equipment. At first, we extended the market-oriented programming (MOP) method for deciding energy distribution to the multiple periods problem. The bidding strategy of each agent is formulated by a 0-1 mixed non-linear programming problem. Secondly, we proposed decomposing the problem into a set of single period problems in order to solve it faster. In order to decompose the problem, we proposed a CO2 emission allowance distribution method, called an EP method. We confirmed that the proposed method was able to produce solutions whose group costs were close to lower-bound group costs by computational experiments. In addition, we verified that reduction in computational time was achieved without losing the quality of solutions by using the EP method.
Free energy landscape from path-sampling: application to the structural transition in LJ38
NASA Astrophysics Data System (ADS)
Adjanor, G.; Athènes, M.; Calvo, F.
2006-09-01
We introduce a path-sampling scheme that allows equilibrium state-ensemble averages to be computed by means of a biased distribution of non-equilibrium paths. This non-equilibrium method is applied to the case of the 38-atom Lennard-Jones atomic cluster, which has a double-funnel energy landscape. We calculate the free energy profile along the Q4 bond orientational order parameter. At high or moderate temperature the results obtained using the non-equilibrium approach are consistent with those obtained using conventional equilibrium methods, including parallel tempering and Wang-Landau Monte Carlo simulations. At lower temperatures, the non-equilibrium approach becomes more efficient in exploring the relevant inherent structures. In particular, the free energy agrees with the predictions of the harmonic superposition approximation.
New Angles on Standard Force Fields: Toward a General Approach for Treating Atomic-Level Anisotropy
Van Vleet, Mary J.; Misquitta, Alston J.; Schmidt, J. R.
2017-12-21
Nearly all standard force fields employ the “sum-of-spheres” approximation, which models intermolecular interactions purely in terms of interatomic distances. Nonetheless, atoms in molecules can have significantly nonspherical shapes, leading to interatomic interaction energies with strong orientation dependencies. Neglecting this “atomic-level anisotropy” can lead to significant errors in predicting interaction energies. Herein, we propose a simple, transferable, and computationally efficient model (MASTIFF) whereby atomic-level orientation dependence can be incorporated into ab initio intermolecular force fields. MASTIFF includes anisotropic exchange-repulsion, charge penetration, and dispersion effects, in conjunction with a standard treatment of anisotropic long-range (multipolar) electrostatics. To validate our approach, we benchmarkmore » MASTIFF against various sum-of-spheres models over a large library of intermolecular interactions between small organic molecules. MASTIFF achieves quantitative accuracy, with respect to both high-level electronic structure theory and experiment, thus showing promise as a basis for “next-generation” force field development.« less
New Angles on Standard Force Fields: Toward a General Approach for Treating Atomic-Level Anisotropy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Vleet, Mary J.; Misquitta, Alston J.; Schmidt, J. R.
Nearly all standard force fields employ the “sum-of-spheres” approximation, which models intermolecular interactions purely in terms of interatomic distances. Nonetheless, atoms in molecules can have significantly nonspherical shapes, leading to interatomic interaction energies with strong orientation dependencies. Neglecting this “atomic-level anisotropy” can lead to significant errors in predicting interaction energies. Herein, we propose a simple, transferable, and computationally efficient model (MASTIFF) whereby atomic-level orientation dependence can be incorporated into ab initio intermolecular force fields. MASTIFF includes anisotropic exchange-repulsion, charge penetration, and dispersion effects, in conjunction with a standard treatment of anisotropic long-range (multipolar) electrostatics. To validate our approach, we benchmarkmore » MASTIFF against various sum-of-spheres models over a large library of intermolecular interactions between small organic molecules. MASTIFF achieves quantitative accuracy, with respect to both high-level electronic structure theory and experiment, thus showing promise as a basis for “next-generation” force field development.« less
NASA Astrophysics Data System (ADS)
He, Hong-Sen; Zhang, Ming-Ming; Dong, Jun; Ueda, Ken-Ichi
2016-12-01
A tilted, linearly polarized laser diode end-pumped Cr4+:YAG passively Q-switched a-cut Nd:YVO4 microchip laser for generating numerous Ince-Gaussian (IG) laser modes with controllable orientations has been demonstrated by selecting the crystalline orientation of an a-cut Nd:YVO4 crystal. The same IG laser mode with different orientations has been achieved with the same absorbed pump power in a passively Q-switched Nd:YVO4 microchip laser under linearly polarized pumping when the incident pump power and the crystalline orientation of an a-cut Nd:YVO4 crystal are both properly selected. The significant improvement of pulsed laser performance of controllable IG modes has been achieved by selecting the crystalline orientation of an a-cut Nd:YVO4 crystal. The maximum pulse energy is obtained along the a-axis of an a-cut Nd:YVO4 crystal and the highest peak power is achieved along the c-axis of an a-cut Nd:YVO4 crystal, respectively, which has potential applications on quantum computation and optical manipulation. The generation of controllable IG laser modes in microchip lasers under linearly polarized pumping provides a convenient and universal way to control IG laser mode numbers with anisotropic crystal as a gain medium.
NASA Astrophysics Data System (ADS)
Romo, Cynthia Paulinne
High speed digital video images of encased and uncased large-scale explosions of Ammonium Nitrate Fuel Oil (ANFO), and Composition C-4 (C-4) at different masses were analyzed using the background oriented schlieren visualization technique. The encased explosions for ANFO and C-4 took place in the form of car bombs and pipe bombs respectively. The data obtained from the video footage were used to produce shock wave radius vs time profiles, as well as Mach number vs shock wave position profiles. The experimentally measured shock wave data for each explosive material were scaled using Sachs' scaling laws to a 1 kilogram charge at normal temperature and pressure. The results of C-4 were compared to literature, while the results of scaled ANFO were compared to each other, and to the results obtained during the uncased detonations. The comparison between the scaled profiles gathered from the encased and uncased detonations resulted in the identification of the relative amount of energy lost due to the fragmentation of the case. The C-4 profiles were compared to those obtained from computational simulations performed via CTH. The C-4 results showed an agreement in the data reported in literature and that obtained using the background-oriented schlieren (BOS) technique, as well as a good overall agreement with the profiles obtained computationally.
Market penetration of energy supply technologies
NASA Astrophysics Data System (ADS)
Condap, R. J.
1980-03-01
Techniques to incorporate the concepts of profit-induced growth and risk aversion into policy-oriented optimization models of the domestic energy sector are examined. After reviewing the pertinent market penetration literature, simple mathematical programs in which the introduction of new energy technologies is constrained primarily by the reinvestment of profits are formulated. The main results involve the convergence behavior of technology production levels under various assumptions about the form of the energy demand function. Next, profitability growth constraints are embedded in a full-scale model of U.S. energy-economy interactions. A rapidly convergent algorithm is developed to utilize optimal shadow prices in the computation of profitability for individual technologies. Allowance is made for additional policy variables such as government funding and taxation. The result is an optimal deployment schedule for current and future energy technologies which is consistent with the sector's ability to finance capacity expansion.
Finite element solution for energy conservation using a highly stable explicit integration algorithm
NASA Technical Reports Server (NTRS)
Baker, A. J.; Manhardt, P. D.
1972-01-01
Theoretical derivation of a finite element solution algorithm for the transient energy conservation equation in multidimensional, stationary multi-media continua with irregular solution domain closure is considered. The complete finite element matrix forms for arbitrarily irregular discretizations are established, using natural coordinate function representations. The algorithm is embodied into a user-oriented computer program (COMOC) which obtains transient temperature distributions at the node points of the finite element discretization using a highly stable explicit integration procedure with automatic error control features. The finite element algorithm is shown to posses convergence with discretization for a transient sample problem. The condensed form for the specific heat element matrix is shown to be preferable to the consistent form. Computed results for diverse problems illustrate the versatility of COMOC, and easily prepared output subroutines are shown to allow quick engineering assessment of solution behavior.
An Introductory Course on Service-Oriented Computing for High Schools
ERIC Educational Resources Information Center
Tsai, W. T.; Chen, Yinong; Cheng, Calvin; Sun, Xin; Bitter, Gary; White, Mary
2008-01-01
Service-Oriented Computing (SOC) is a new computing paradigm that has been adopted by major computer companies as well as government agencies such as the Department of Defense for mission-critical applications. SOC is being used for developing Web and electronic business applications, as well as robotics, gaming, and scientific applications. Yet,…
ERIC Educational Resources Information Center
Castillo, Antonio S.; Berenguer, Isabel A.; Sánchez, Alexander G.; Álvarez, Tomás R. R.
2017-01-01
This paper analyzes the results of a diagnostic study carried out with second year students of the computational sciences majors at University of Oriente, Cuba, to determine the limitations that they present in computational algorithmization. An exploratory research was developed using quantitative and qualitative methods. The results allowed…
Ramírez, David; Caballero, Julio
2018-04-28
Molecular docking is the most frequently used computational method for studying the interactions between organic molecules and biological macromolecules. In this context, docking allows predicting the preferred pose of a ligand inside a receptor binding site. However, the selection of the “best” solution is not a trivial task, despite the widely accepted selection criterion that the best pose corresponds to the best energy score. Here, several rigid-target docking methods were evaluated on the same dataset with respect to their ability to reproduce crystallographic binding orientations, to test if the best energy score is a reliable criterion for selecting the best solution. For this, two experiments were performed: (A) to reconstruct the ligand-receptor complex by performing docking of the ligand in its own crystal structure receptor (defined as self-docking), and (B) to reconstruct the ligand-receptor complex by performing docking of the ligand in a crystal structure receptor that contains other ligand (defined as cross-docking). Root-mean square deviation (RMSD) was used to evaluate how different the obtained docking orientation is from the corresponding co-crystallized pose of the same ligand molecule. We found that docking score function is capable of predicting crystallographic binding orientations, but the best ranked solution according to the docking energy is not always the pose that reproduces the experimental binding orientation. This happened when self-docking was achieved, but it was critical in cross-docking. Taking into account that docking is typically used with predictive purposes, during cross-docking experiments, our results indicate that the best energy score is not a reliable criterion to select the best solution in common docking applications. It is strongly recommended to choose the best docking solution according to the scoring function along with additional structural criteria described for analogue ligands to assure the selection of a correct docking solution.
Torres, Jaume; Briggs, John A G; Arkin, Isaiah T
2002-01-01
Molecular interactions between transmembrane alpha-helices can be explored using global searching molecular dynamics simulations (GSMDS), a method that produces a group of probable low energy structures. We have shown previously that the correct model in various homooligomers is always located at the bottom of one of various possible energy basins. Unfortunately, the correct model is not necessarily the one with the lowest energy according to the computational protocol, which has resulted in overlooking of this parameter in favor of experimental data. In an attempt to use energetic considerations in the aforementioned analysis, we used global searching molecular dynamics simulations on three homooligomers of different sizes, the structures of which are known. As expected, our results show that even when the conformational space searched includes the correct structure, taking together simulations using both left and right handedness, the correct model does not necessarily have the lowest energy. However, for the models derived from the simulation that uses the correct handedness, the lowest energy model is always at, or very close to, the correct orientation. We hypothesize that this should also be true when simulations are performed using homologous sequences, and consequently lowest energy models with the right handedness should produce a cluster around a certain orientation. In contrast, using the wrong handedness the lowest energy structures for each sequence should appear at many different orientations. The rationale behind this is that, although more than one energy basin may exist, basins that do not contain the correct model will shift or disappear because they will be destabilized by at least one conservative (i.e. silent) mutation, whereas the basin containing the correct model will remain. This not only allows one to point to the possible handedness of the bundle, but can be used to overcome ambiguities arising from the use of homologous sequences in the analysis of global searching molecular dynamics simulations. In addition, because clustering of lowest energy models arising from homologous sequences only happens when the estimation of the helix tilt is correct, it may provide a validation for the helix tilt estimate. PMID:12023229
A Fundamental Study of the Bonding of Thermal Barrier Coatings.
1986-06-01
information, as there is a ubiquitous glassy phase which can, at times, obscure the interface bound- ary. Computer simulation is being used to interpret...interpret the interface structure and determine whether or not an amorphous phase is actually present. It is tempting, however, to stggest that the...discussed, we have been unable so far to specify the ZrO2 orientation that leads to this low-energy interface . It is common in HREM to determine the crystal
Exhaustively sampling peptide adsorption with metadynamics.
Deighan, Michael; Pfaendtner, Jim
2013-06-25
Simulating the adsorption of a peptide or protein and obtaining quantitative estimates of thermodynamic observables remains challenging for many reasons. One reason is the dearth of molecular scale experimental data available for validating such computational models. We also lack simulation methodologies that effectively address the dual challenges of simulating protein adsorption: overcoming strong surface binding and sampling conformational changes. Unbiased classical simulations do not address either of these challenges. Previous attempts that apply enhanced sampling generally focus on only one of the two issues, leaving the other to chance or brute force computing. To improve our ability to accurately resolve adsorbed protein orientation and conformational states, we have applied the Parallel Tempering Metadynamics in the Well-Tempered Ensemble (PTMetaD-WTE) method to several explicitly solvated protein/surface systems. We simulated the adsorption behavior of two peptides, LKα14 and LKβ15, onto two self-assembled monolayer (SAM) surfaces with carboxyl and methyl terminal functionalities. PTMetaD-WTE proved effective at achieving rapid convergence of the simulations, whose results elucidated different aspects of peptide adsorption including: binding free energies, side chain orientations, and preferred conformations. We investigated how specific molecular features of the surface/protein interface change the shape of the multidimensional peptide binding free energy landscape. Additionally, we compared our enhanced sampling technique with umbrella sampling and also evaluated three commonly used molecular dynamics force fields.
Field gradients can control the alignment of nanorods.
Ooi, Chinchun; Yellen, Benjamin B
2008-08-19
This work is motivated by the unexpected experimental observation that field gradients can control the alignment of nonmagnetic nanorods immersed inside magnetic fluids. In the presence of local field gradients, nanorods were observed to align perpendicular to the external field at low field strengths, but parallel to the external field at high field strengths. The switching behavior results from the competition between a preference to align with the external field (orientational potential energy) and preference to move into regions of minimum magnetic field (positional potential energy). A theoretical model is developed to explain this experimental behavior by investigating the statistics of nanorod alignment as a function of both the external uniform magnetic field strength and the local magnetic field variation above a periodic array of micromagnets. Computational phase diagrams are developed which indicate that the relative population of nanorods in parallel and perpendicular states can be adjusted through several control parameters. However, an energy barrier to rotation was discovered to influence the rate kinetics and restrict the utility of this assembly technique to nanorods which are slightly shorter than the micromagnet length. Experimental results concerning the orientation of nanorods inside magnetic fluid are also presented and shown to be in strong agreement with the theoretical work.
ERIC Educational Resources Information Center
Ryoo, Jean; Goode, Joanna; Margolis, Jane
2015-01-01
This article describes the importance that high school computer science teachers place on a teachers' professional learning community designed around an inquiry- and equity-oriented approach for broadening participation in computing. Using grounded theory to analyze four years of teacher surveys and interviews from the Exploring Computer Science…
Calculus: A Computer Oriented Presentation, Part 1 [and] Part 2.
ERIC Educational Resources Information Center
Stenberg, Warren; Walker, Robert J.
Parts one and two of a one-year computer-oriented calculus course (without analytic geometry) are presented. The ideas of calculus are introduced and motivated through computer (i.e., algorithmic) concepts. An introduction to computing via algorithms and a simple flow chart language allows the book to be self-contained, except that material on…
Computer Science Majors: Sex Role Orientation, Academic Achievement, and Social Cognitive Factors
ERIC Educational Resources Information Center
Brown, Chris; Garavalia, Linda S.; Fritts, Mary Lou Hines; Olson, Elizabeth A.
2006-01-01
This study examined the sex role orientations endorsed by 188 male and female students majoring in computer science, a male-dominated college degree program. The relations among sex role orientation and academic achievement and social cognitive factors influential in career decision-making self-efficacy were explored. Findings revealed that…
Mentat: An object-oriented macro data flow system
NASA Technical Reports Server (NTRS)
Grimshaw, Andrew S.; Liu, Jane W. S.
1988-01-01
Mentat, an object-oriented macro data flow system designed to facilitate parallelism in distributed systems, is presented. The macro data flow model is a model of computation similar to the data flow model with two principal differences: the computational complexity of the actors is much greater than in traditional data flow systems, and there are persistent actors that maintain state information between executions. Mentat is a system that combines the object-oriented programming paradigm and the macro data flow model of computation. Mentat programs use a dynamic structure called a future list to represent the future of computations.
Properties of Vector Preisach Models
NASA Technical Reports Server (NTRS)
Kahler, Gary R.; Patel, Umesh D.; Torre, Edward Della
2004-01-01
This paper discusses rotational anisotropy and rotational accommodation of magnetic particle tape. These effects have a performance impact during the reading and writing of the recording process. We introduce the reduced vector model as the basis for the computations. Rotational magnetization models must accurately compute the anisotropic characteristics of ellipsoidally magnetizable media. An ellipticity factor is derived for these media that computes the two-dimensional magnetization trajectory for all applied fields. An orientation correction must be applied to the computed rotational magnetization. For isotropic materials, an orientation correction has been developed and presented. For anisotropic materials, an orientation correction is introduced.
Kramer, Tobias; Noack, Matthias; Reinefeld, Alexander; Rodríguez, Mirta; Zelinskyy, Yaroslav
2018-06-11
Time- and frequency-resolved optical signals provide insights into the properties of light-harvesting molecular complexes, including excitation energies, dipole strengths and orientations, as well as in the exciton energy flow through the complex. The hierarchical equations of motion (HEOM) provide a unifying theory, which allows one to study the combined effects of system-environment dissipation and non-Markovian memory without making restrictive assumptions about weak or strong couplings or separability of vibrational and electronic degrees of freedom. With increasing system size the exact solution of the open quantum system dynamics requires memory and compute resources beyond a single compute node. To overcome this barrier, we developed a scalable variant of HEOM. Our distributed memory HEOM, DM-HEOM, is a universal tool for open quantum system dynamics. It is used to accurately compute all experimentally accessible time- and frequency-resolved processes in light-harvesting molecular complexes with arbitrary system-environment couplings for a wide range of temperatures and complex sizes. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Toward a Unified Sub-symbolic Computational Theory of Cognition
Butz, Martin V.
2016-01-01
This paper proposes how various disciplinary theories of cognition may be combined into a unifying, sub-symbolic, computational theory of cognition. The following theories are considered for integration: psychological theories, including the theory of event coding, event segmentation theory, the theory of anticipatory behavioral control, and concept development; artificial intelligence and machine learning theories, including reinforcement learning and generative artificial neural networks; and theories from theoretical and computational neuroscience, including predictive coding and free energy-based inference. In the light of such a potential unification, it is discussed how abstract cognitive, conceptualized knowledge and understanding may be learned from actively gathered sensorimotor experiences. The unification rests on the free energy-based inference principle, which essentially implies that the brain builds a predictive, generative model of its environment. Neural activity-oriented inference causes the continuous adaptation of the currently active predictive encodings. Neural structure-oriented inference causes the longer term adaptation of the developing generative model as a whole. Finally, active inference strives for maintaining internal homeostasis, causing goal-directed motor behavior. To learn abstract, hierarchical encodings, however, it is proposed that free energy-based inference needs to be enhanced with structural priors, which bias cognitive development toward the formation of particular, behaviorally suitable encoding structures. As a result, it is hypothesized how abstract concepts can develop from, and thus how they are structured by and grounded in, sensorimotor experiences. Moreover, it is sketched-out how symbol-like thought can be generated by a temporarily active set of predictive encodings, which constitute a distributed neural attractor in the form of an interactive free-energy minimum. The activated, interactive network attractor essentially characterizes the semantics of a concept or a concept composition, such as an actual or imagined situation in our environment. Temporal successions of attractors then encode unfolding semantics, which may be generated by a behavioral or mental interaction with an actual or imagined situation in our environment. Implications, further predictions, possible verification, and falsifications, as well as potential enhancements into a fully spelled-out unified theory of cognition are discussed at the end of the paper. PMID:27445895
Loura, Luís M S
2012-11-19
Because of its acute sensitivity to distance in the nanometer scale, Förster resonance energy transfer (FRET) has found a large variety of applications in many fields of chemistry, physics, and biology. One important issue regarding the correct usage of FRET is its dependence on the donor-acceptor relative orientation, expressed as the orientation factor k(2). Different donor/acceptor conformations can lead to k(2) values in the 0 ≤ k(2) ≤ 4 range. Because the characteristic distance for FRET, R(0), is proportional to (k(2))1/6, uncertainties in the orientation factor are reflected in the quality of information that can be retrieved from a FRET experiment. In most cases, the average value of k(2) corresponding to the dynamic isotropic limit (
NASA Astrophysics Data System (ADS)
Erić, M.; Petrović, S.; Kokkoris, M.; Lagoyannis, A.; Paneta, V.; Harissopulos, S.; Telečki, I.
2012-03-01
This work reports on the experimentally obtained depth profiles of 4 MeV 14N2+ ions implanted in the <1 0 0>, <1 1 0> and randomly oriented silicon crystals. The ion fluence was 1017 particles/cm2. The nitrogen depth profiling has been performed using the Nuclear Reaction Analysis (NRA) method, via the study of 14N(d,α0)12C and 14N(d,α1)12C nuclear reactions, and with the implementation of SRIM 2010 and SIMNRA computer simulation codes. For the randomly oriented silicon crystal, change of the density of silicon matrix and the nitrogen "bubble" formation have been proposed as the explanation for the difference between the experimental and simulated nitrogen depth profiles. During the implantation, the RBS/C spectra were measured on the nitrogen implanted and on the virgin crystal spots. These spectra provide information on the amorphization of the silicon crystals induced by the ion implantation.
Non-invasive imaging of the crystalline structure within a human tooth.
Egan, Christopher K; Jacques, Simon D M; Di Michiel, Marco; Cai, Biao; Zandbergen, Mathijs W; Lee, Peter D; Beale, Andrew M; Cernik, Robert J
2013-09-01
The internal crystalline structure of a human molar tooth has been non-destructively imaged in cross-section using X-ray diffraction computed tomography. Diffraction signals from high-energy X-rays which have large attenuation lengths for hard biomaterials have been collected in a transmission geometry. Coupling this with a computed tomography data acquisition and mathematically reconstructing their spatial origins, diffraction patterns from every voxel within the tooth can be obtained. Using this method we have observed the spatial variations of some key material parameters including nanocrystallite size, organic content, lattice parameters, crystallographic preferred orientation and degree of orientation. We have also made a link between the spatial variations of the unit cell lattice parameters and the chemical make-up of the tooth. In addition, we have determined how the onset of tooth decay occurs through clear amorphization of the hydroxyapatite crystal, and we have been able to map the extent of decay within the tooth. The described method has strong prospects for non-destructive probing of mineralized biomaterials. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Color-Center Production and Formation in Electron-Irradiated Magnesium Aluminate Spinel and Ceria
Costantini, Jean-Marc; Lelong, Gerald; Guillaumet, Maxime; ...
2016-06-20
Single crystals of magnesium aluminate spinel (MgAl2O4) with (100) or (110) orientations and cerium dioxide or ceria (CeO2) were irradiated by 1.0-MeV and 2.5-MeV electrons in a high fluence range. Point-defect production was studied by off-line UV-visible optical spectroscopy after irradiation. For spinel, regardless of both crystal orientation and electron energy, two characteristic broad bands centered at photon energies of 5.4 eV and 4.9 eV were assigned to F and F+ centers (neutral and singly-ionized oxygen vacancies), respectively, on the basis of available literature data. No clear differences in colour-centre formation were observed for the two crystal orientations. Using calculationsmore » of displacement cross sections by elastic collisions, these results are consistent with a very large threshold displacement energy (200 eV) for oxygen atoms at RT. A third very broad band centered at 3.7 eV might be attributed either to an oxygen hole center (V-type center) or an F2 dimer center (oxygen di-vacancy). The onset of recovery of these color centers took place at 200°C with almost full bleaching at 600°C. Activation energies (~0.3-0.4 eV) for defect recovery were deduced from the isochronal annealing data by using a first-order kinetics analysis. For ceria, a sub band-gap absorption feature peaked at ~3.1 eV was recorded for 2.5-MeV electron irradiation only. Assuming a ballistic process, we suggest that the latter defect might result from cerium atom displacement on the basis of computed cross sections.« less
Palmer, Jeremy C; Car, Roberto; Debenedetti, Pablo G
2013-01-01
We investigate the metastable phase behaviour of the ST2 water model under deeply supercooled conditions. The phase behaviour is examined using umbrella sampling (US) and well-tempered metadynamics (WT-MetaD) simulations to compute the reversible free energy surface parameterized by density and bond-orientation order. We find that free energy surfaces computed with both techniques clearly show two liquid phases in coexistence, in agreement with our earlier US and grand canonical Monte Carlo calculations [Y. Liu, J. C. Palmer, A. Z. Panagiotopoulos and P. G. Debenedetti, J Chem Phys, 2012, 137, 214505; Y. Liu, A. Z. Panagiotopoulos and P. G. Debenedetti, J Chem Phys, 2009, 131, 104508]. While we demonstrate that US and WT-MetaD produce consistent results, the latter technique is estimated to be more computationally efficient by an order of magnitude. As a result, we show that WT-MetaD can be used to study the finite-size scaling behaviour of the free energy barrier separating the two liquids for systems containing 192, 300 and 400 ST2 molecules. Although our results are consistent with the expected N(2/3) scaling law, we conclude that larger systems must be examined to provide conclusive evidence of a first-order phase transition and associated second critical point.
NASA Astrophysics Data System (ADS)
Krueger, Hannah E.; Wirth, Erin A.
2017-10-01
The Cascadia subduction zone exhibits along-strike segmentation in structure, processes, and seismogenic behavior. While characterization of seismic anisotropy can constrain deformation processes at depth, the character of seismic anisotropy in Cascadia remains poorly understood. This is primarily due to a lack of seismicity in the subducting Juan de Fuca slab, which limits shear wave splitting and other seismological analyses that interrogate the fine-scale anisotropic structure of the crust and mantle wedge. We investigate lower crustal anisotropy and mantle wedge structure by computing P-to-S receiver functions at 12 broadband seismic stations along the Cascadia subduction zone. We observe P-to-SV converted energy consistent with previously estimated Moho depths. Several stations exhibit evidence of an "inverted Moho" (i.e., a downward velocity decrease across the crust-mantle boundary), indicative of a serpentinized mantle wedge. Stations with an underlying hydrated mantle wedge appear prevalent from northern Washington to central Oregon, but sparse in southern Oregon and northern California. Transverse component receiver functions are complex, suggesting anisotropic and/or dipping crustal structure. To constrain the orientation of crustal anisotropy we compute synthetic receiver functions using manual forward modeling. We determine that the lower crust shows variable orientations of anisotropy along-strike, with highly complex anisotropy in northern Cascadia, and generally NW-SE and NE-SW orientations of slow-axis anisotropy in central and southern Cascadia, respectively. The orientations of anisotropy from this work generally agree with those inferred from shear wave splitting of tremor studies at similar locations, lending confidence to this relatively new method of inferring seismic anisotropy from slow earthquakes.
Kulhánek, Tomáš; Ježek, Filip; Mateják, Marek; Šilar, Jan; Kofránek, Jří
2015-08-01
This work introduces experiences of teaching modeling and simulation for graduate students in the field of biomedical engineering. We emphasize the acausal and object-oriented modeling technique and we have moved from teaching block-oriented tool MATLAB Simulink to acausal and object oriented Modelica language, which can express the structure of the system rather than a process of computation. However, block-oriented approach is allowed in Modelica language too and students have tendency to express the process of computation. Usage of the exemplar acausal domains and approach allows students to understand the modeled problems much deeper. The causality of the computation is derived automatically by the simulation tool.
Computational Study of the Effect of Slot Orientation on Synthetic Jet-Based Separation Control
2012-01-01
Wind Turbine Blades,” Journal of Wind Energy, Vol. 13, Issue 2-3, 2009, pp. 221 – 237. [10] Crook, A. and Wood, N. J., “Measurements and...by these hairpin structures could be desirable for separation control. Roll-up of jets into vortex ring followed by tilting and stretching occurred...at an intermediate Reynolds number and velocity ratio. By increasing these two flow parameters, rapid penetration of the tilted vortex ring up to the
Capsule endoscope localization based on computer vision technique.
Liu, Li; Hu, Chao; Cai, Wentao; Meng, Max Q H
2009-01-01
To build a new type of wireless capsule endoscope with interactive gastrointestinal tract examination, a localization and orientation system is needed for tracking 3D location and 3D orientation of the capsule movement. The magnetic localization and orientation method produces only 5 DOF, but misses the information of rotation angle along capsule's main axis. In this paper, we presented a complementary orientation approach for the capsule endoscope, and the 3D rotation can be determined by applying computer vision technique on the captured endoscopic images. The experimental results show that the complementary orientation method has good accuracy and high feasibility.
NEXUS - Resilient Intelligent Middleware
NASA Astrophysics Data System (ADS)
Kaveh, N.; Hercock, R. Ghanea
Service-oriented computing, a composition of distributed-object computing, component-based, and Web-based concepts, is becoming the widespread choice for developing dynamic heterogeneous software assets available as services across a network. One of the major strengths of service-oriented technologies is the high abstraction layer and large granularity level at which software assets are viewed compared to traditional object-oriented technologies. Collaboration through encapsulated and separately defined service interfaces creates a service-oriented environment, whereby multiple services can be linked together through their interfaces to compose a functional system. This approach enables better integration of legacy and non-legacy services, via wrapper interfaces, and allows for service composition at a more abstract level especially in cases such as vertical market stacks. The heterogeneous nature of service-oriented technologies and the granularity of their software components makes them a suitable computing model in the pervasive domain.
Orientational imaging of a single plasmonic nanoparticle using dark-field hyperspectral imaging
NASA Astrophysics Data System (ADS)
Mehta, Nishir; Mahigir, Amirreza; Veronis, Georgios; Gartia, Manas Ranjan
2017-08-01
Orientation of plasmonic nanostructures is an important feature in many nanoscale applications such as catalyst, biosensors DNA interactions, protein detections, hotspot of surface enhanced Raman spectroscopy (SERS), and fluorescence resonant energy transfer (FRET) experiments. However, due to diffraction limit, it is challenging to obtain the exact orientation of the nanostructure using standard optical microscope. Hyperspectral Imaging Microscopy is a state-of-the-art visualization technology that combines modern optics with hyperspectral imaging and computer system to provide the identification and quantitative spectral analysis of nano- and microscale structures. In this work, initially we use transmitted dark field imaging technique to locate single nanoparticle on a glass substrate. Then we employ hyperspectral imaging technique at the same spot to investigate orientation of single nanoparticle. No special tagging or staining of nanoparticle has been done, as more likely required in traditional microscopy techniques. Different orientations have been identified by carefully understanding and calibrating shift in spectral response from each different orientations of similar sized nanoparticles. Wavelengths recorded are between 300 nm to 900 nm. The orientations measured by hyperspectral microscopy was validated using finite difference time domain (FDTD) electrodynamics calculations and scanning electron microscopy (SEM) analysis. The combination of high resolution nanometer-scale imaging techniques and the modern numerical modeling capacities thus enables a meaningful advance in our knowledge of manipulating and fabricating shaped nanostructures. This work will advance our understanding of the behavior of small nanoparticle clusters useful for sensing, nanomedicine, and surface sciences.
New Computational Approach to Electron Transport in Irregular Graphene Nanostructures
NASA Astrophysics Data System (ADS)
Mason, Douglas; Heller, Eric; Prendergast, David; Neaton, Jeffrey
2009-03-01
For novel graphene devices of nanoscale-to-macroscopic scale, many aspects of their transport properties are not easily understood due to difficulties in fabricating devices with regular edges. Here we develop a framework to efficiently calculate and potentially screen electronic transport properties of arbitrary nanoscale graphene device structures. A generalization of the established recursive Green's function method is presented, providing access to arbitrary device and lead geometries with substantial computer-time savings. Using single-orbital nearest-neighbor tight-binding models and the Green's function-Landauer scattering formalism, we will explore the transmission function of irregular two-dimensional graphene-based nanostructures with arbitrary lead orientation. Prepared by LBNL under contract DE-AC02-05CH11231 and supported by the U.S. Dept. of Energy Computer Science Graduate Fellowship under grant DE-FG02-97ER25308.
NASA Technical Reports Server (NTRS)
Afjeh, Abdollah A.; Reed, John A.
2003-01-01
The following reports are presented on this project:A first year progress report on: Development of a Dynamically Configurable,Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation; A second year progress report on: Development of a Dynamically Configurable, Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation; An Extensible, Interchangeable and Sharable Database Model for Improving Multidisciplinary Aircraft Design; Interactive, Secure Web-enabled Aircraft Engine Simulation Using XML Databinding Integration; and Improving the Aircraft Design Process Using Web-based Modeling and Simulation.
Trainable multiscript orientation detection
NASA Astrophysics Data System (ADS)
Van Beusekom, Joost; Rangoni, Yves; Breuel, Thomas M.
2010-01-01
Detecting the correct orientation of document images is an important step in large scale digitization processes, as most subsequent document analysis and optical character recognition methods assume upright position of the document page. Many methods have been proposed to solve the problem, most of which base on ascender to descender ratio computation. Unfortunately, this cannot be used for scripts having no descenders nor ascenders. Therefore, we present a trainable method using character similarity to compute the correct orientation. A connected component based distance measure is computed to compare the characters of the document image to characters whose orientation is known. This allows to detect the orientation for which the distance is lowest as the correct orientation. Training is easily achieved by exchanging the reference characters by characters of the script to be analyzed. Evaluation of the proposed approach showed accuracy of above 99% for Latin and Japanese script from the public UW-III and UW-II datasets. An accuracy of 98.9% was obtained for Fraktur on a non-public dataset. Comparison of the proposed method to two methods using ascender / descender ratio based orientation detection shows a significant improvement.
Optical study of the DAFT/FADA galaxy cluster survey
NASA Astrophysics Data System (ADS)
Martinet, N.; Durret, F.; Clowe, D.; Adami, C.
2013-11-01
DAFT/FADA (Dark energy American French Team) is a large survey of ˜90 high redshift (0.4
Autonomous Sensors Powered by Energy Harvesting from von Karman Vortices in Airflow.
Demori, Marco; Ferrari, Marco; Bonzanini, Arianna; Poesio, Pietro; Ferrari, Vittorio
2017-09-13
In this paper an energy harvesting system based on a piezoelectric converter to extract energy from airflow and use it to power battery-less sensors is presented. The converter is embedded as a part of a flexure beam that is put into vibrations by von Karman vortices detached from a bluff body placed upstream. The vortex street has been investigated by Computational Fluid Dynamics (CFD) simulations, aiming at assessing the vortex shedding frequency as a function of the flow velocity. From the simulation results the preferred positioning of the beam behind the bluff body has been derived. In the experimental characterization the electrical output from the converter has been measured for different flow velocities and beam orientations. Highest conversion effectiveness is obtained by an optimal orientation of the beam, to exploit the maximum forcing, and for flow velocities where the repetition frequency of the vortices allows to excite the beam resonant frequency at its first flexural mode. The possibility to power battery-less sensors and make them autonomous has been shown by developing an energy management and signal conditioning electronic circuit plus two sensors for measuring temperature and flow velocity and transmitting their values over a RF signal. A harvested power of about 650 μW with retransmission intervals below 2 min have been obtained for the optimal flow velocity of 4 m/s.
Autonomous Sensors Powered by Energy Harvesting from von Karman Vortices in Airflow
Bonzanini, Arianna; Poesio, Pietro
2017-01-01
In this paper an energy harvesting system based on a piezoelectric converter to extract energy from airflow and use it to power battery-less sensors is presented. The converter is embedded as a part of a flexure beam that is put into vibrations by von Karman vortices detached from a bluff body placed upstream. The vortex street has been investigated by Computational Fluid Dynamics (CFD) simulations, aiming at assessing the vortex shedding frequency as a function of the flow velocity. From the simulation results the preferred positioning of the beam behind the bluff body has been derived. In the experimental characterization the electrical output from the converter has been measured for different flow velocities and beam orientations. Highest conversion effectiveness is obtained by an optimal orientation of the beam, to exploit the maximum forcing, and for flow velocities where the repetition frequency of the vortices allows to excite the beam resonant frequency at its first flexural mode. The possibility to power battery-less sensors and make them autonomous has been shown by developing an energy management and signal conditioning electronic circuit plus two sensors for measuring temperature and flow velocity and transmitting their values over a RF signal. A harvested power of about 650 μW with retransmission intervals below 2 min have been obtained for the optimal flow velocity of 4 m/s. PMID:28902139
Quantitative assessment of the enamel machinability in tooth preparation with dental diamond burs.
Song, Xiao-Fei; Jin, Chen-Xin; Yin, Ling
2015-01-01
Enamel cutting using dental handpieces is a critical process in tooth preparation for dental restorations and treatment but the machinability of enamel is poorly understood. This paper reports on the first quantitative assessment of the enamel machinability using computer-assisted numerical control, high-speed data acquisition, and force sensing systems. The enamel machinability in terms of cutting forces, force ratio, cutting torque, cutting speed and specific cutting energy were characterized in relation to enamel surface orientation, specific material removal rate and diamond bur grit size. The results show that enamel surface orientation, specific material removal rate and diamond bur grit size critically affected the enamel cutting capability. Cutting buccal/lingual surfaces resulted in significantly higher tangential and normal forces, torques and specific energy (p<0.05) but lower cutting speeds than occlusal surfaces (p<0.05). Increasing material removal rate for high cutting efficiencies using coarse burs yielded remarkable rises in cutting forces and torque (p<0.05) but significant reductions in cutting speed and specific cutting energy (p<0.05). In particular, great variations in cutting forces, torques and specific energy were observed at the specific material removal rate of 3mm(3)/min/mm using coarse burs, indicating the cutting limit. This work provides fundamental data and the scientific understanding of the enamel machinability for clinical dental practice. Copyright © 2014 Elsevier Ltd. All rights reserved.
Free energy landscapes of encounter complexes in protein-protein association.
Camacho, C J; Weng, Z; Vajda, S; DeLisi, C
1999-03-01
We report the computer generation of a high-density map of the thermodynamic properties of the diffusion-accessible encounter conformations of four receptor-ligand protein pairs, and use it to study the electrostatic and desolvation components of the free energy of association. Encounter complex conformations are generated by sampling the translational/rotational space of the ligand around the receptor, both at 5-A and zero surface-to-surface separations. We find that partial desolvation is always an important effect, and it becomes dominant for complexes in which one of the reactants is neutral or weakly charged. The interaction provides a slowly varying attractive force over a small but significant region of the molecular surface. In complexes with no strong charge complementarity this region surrounds the binding site, and the orientation of the ligand in the encounter conformation with the lowest desolvation free energy is similar to the one observed in the fully formed complex. Complexes with strong opposite charges exhibit two types of behavior. In the first group, represented by barnase/barstar, electrostatics exerts strong orientational steering toward the binding site, and desolvation provides some added adhesion within the local region of low electrostatic energy. In the second group, represented by the complex of kallikrein and pancreatic trypsin inhibitor, the overall stability results from the rather nonspecific electrostatic attraction, whereas the affinity toward the binding region is determined by desolvation interactions.
ERIC Educational Resources Information Center
LESCARBEAU, ROLAND F.; AND OTHERS
A SUGGESTED POST-SECONDARY CURRICULUM GUIDE FOR ELECTRO-MECHANICAL TECHNOLOGY ORIENTED SPECIFICALLY TO THE COMPUTER AND BUSINESS MACHINE FIELDS WAS DEVELOPED BY A GROUP OF COOPERATING INSTITUTIONS, NOW INCORPORATED AS TECHNICAL EDUCATION CONSORTIUM, INCORPORATED. SPECIFIC NEEDS OF THE COMPUTER AND BUSINESS MACHINE INDUSTRY WERE DETERMINED FROM…
Aşkar, Petek; Altun, Arif; Cangöz, Banu; Cevik, Vildan; Kaya, Galip; Türksoy, Hasan
2012-04-01
The purpose of this study was to assess whether a computerized battery of neuropsychological tests could produce similar results as the conventional forms. Comparisons on 77 volunteer undergraduates were carried out with two neuropsychological tests: Line Orientation Test and Enhanced Cued Recall Test. Firstly, students were assigned randomly across the test medium (paper-and-pencil versus computerized). Secondly, the groups were given the same test in the other medium after a 30-day interval between tests. Results showed that the Enhanced Cued Recall Test-Computer-based did not correlate with the Enhanced Cued Recall Test-Paper-and-pencil results. Line Orientation Test-Computer-based scores, on the other hand, did correlate significantly with the Line Orientation Test-Paper-and-pencil version. In both tests, scores were higher on paper-and-pencil tests compared to computer-based tests. Total score difference between modalities was statistically significant for both Enhanced Cued Recall Tests and for the Line Orientation Test. In both computer-based tests, it took less time for participants to complete the tests.
Generic, Type-Safe and Object Oriented Computer Algebra Software
NASA Astrophysics Data System (ADS)
Kredel, Heinz; Jolly, Raphael
Advances in computer science, in particular object oriented programming, and software engineering have had little practical impact on computer algebra systems in the last 30 years. The software design of existing systems is still dominated by ad-hoc memory management, weakly typed algorithm libraries and proprietary domain specific interactive expression interpreters. We discuss a modular approach to computer algebra software: usage of state-of-the-art memory management and run-time systems (e.g. JVM) usage of strongly typed, generic, object oriented programming languages (e.g. Java) and usage of general purpose, dynamic interactive expression interpreters (e.g. Python) To illustrate the workability of this approach, we have implemented and studied computer algebra systems in Java and Scala. In this paper we report on the current state of this work by presenting new examples.
In situ grain fracture mechanics during uniaxial compaction of granular solids
NASA Astrophysics Data System (ADS)
Hurley, R. C.; Lind, J.; Pagan, D. C.; Akin, M. C.; Herbold, E. B.
2018-03-01
Grain fracture and crushing are known to influence the macroscopic mechanical behavior of granular materials and be influenced by factors such as grain composition, morphology, and microstructure. In this paper, we investigate grain fracture and crushing by combining synchrotron x-ray computed tomography and three-dimensional x-ray diffraction to study two granular samples undergoing uniaxial compaction. Our measurements provide details of grain kinematics, contacts, average intra-granular stresses, inter-particle forces, and intra-grain crystal and fracture plane orientations. Our analyses elucidate the complex nature of fracture and crushing, showing that: (1) the average stress states of grains prior to fracture vary widely in their relation to global and local trends; (2) fractured grains experience inter-particle forces and stored energies that are statistically higher than intact grains prior to fracture; (3) fracture plane orientations are primarily controlled by average intra-granular stress and contact fabric rather than the orientation of the crystal lattice; (4) the creation of new surfaces during fracture accounts for a very small portion of the energy dissipated during compaction; (5) mixing brittle and ductile grain materials alters the grain-scale fracture response. The results highlight an application of combined x-ray measurements for non-destructive in situ analysis of granular solids and provide details about grain fracture that have important implications for theory and modeling.
NASA Astrophysics Data System (ADS)
Karuppasamy, Ayyanar; Udhaya kumar, Chandran; Karthikeyan, Subramanian; Velayutham Pillai, Muthiah Pillai; Ramalingan, Chennan
2017-11-01
A novel conjugated octylcarbazole ornamented 3-phenothiazinal, 10-(9-octyl-9H-carbazol-3-yl)-10H-phenothiazine-3-carbaldehyde (OCPTC) was synthesized and fully characterized by 1H-NMR, 13C-NMR, elemental and single crystal XRD analyses. The optimized geometrical structure, vibrational frequencies and NMR have been computed with M06-2X method using 6-31+G(d,p) basis set. Total electronic energies and HOMO-LUMO energy gaps in gas phase are discussed. The geometrical parameters of the title compound obtained from single crystal XRD studies have been found in accord with the calculated (DFT) values. The experimental and theoretical FT-IR and NMR results of the title molecule have been investigated. The experimentally observed vibrational frequencies have been compared with the calculated ones, which are in good agreement with each other. Single crystal X-ray structural analysis of OCPTC, evidences the ''butterfly conformation'' of phenothiazine ring with nearly perpendicular orientation of the carbazole structural motif to the phenothiazine moiety.
A Software Rejuvenation Framework for Distributed Computing
NASA Technical Reports Server (NTRS)
Chau, Savio
2009-01-01
A performability-oriented conceptual framework for software rejuvenation has been constructed as a means of increasing levels of reliability and performance in distributed stateful computing. As used here, performability-oriented signifies that the construction of the framework is guided by the concept of analyzing the ability of a given computing system to deliver services with gracefully degradable performance. The framework is especially intended to support applications that involve stateful replicas of server computers.
An Experimental and Computational Study of the Gas-Phase Acidities of the Common Amino Acid Amides.
Plummer, Chelsea E; Stover, Michele L; Bokatzian, Samantha S; Davis, John T M; Dixon, David A; Cassady, Carolyn J
2015-07-30
Using proton-transfer reactions in a Fourier transform ion cyclotron resonance mass spectrometer and correlated molecular orbital theory at the G3(MP2) level, gas-phase acidities (GAs) and the associated structures for amides corresponding to the common amino acids have been determined for the first time. These values are important because amino acid amides are models for residues in peptides and proteins. For compounds whose most acidic site is the C-terminal amide nitrogen, two ions populations were observed experimentally with GAs that differ by 4-7 kcal/mol. The lower energy, more acidic structure accounts for the majority of the ions formed by electrospray ionization. G3(MP2) calculations predict that the lowest energy anionic conformer has a cis-like orientation of the [-C(═O)NH](-) group whereas the higher energy, less acidic conformer has a trans-like orientation of this group. These two distinct conformers were predicted for compounds with aliphatic, amide, basic, hydroxyl, and thioether side chains. For the most acidic amino acid amides (tyrosine, cysteine, tryptophan, histidine, aspartic acid, and glutamic acid amides) only one conformer was observed experimentally, and its experimental GA correlates with the theoretical GA related to side chain deprotonation.
Electromagnetic pulse scattering by a spacecraft nearing light speed.
Garner, Timothy J; Lakhtakia, Akhlesh; Breakall, James K; Bohren, Craig F
2017-08-01
Humans will launch spacecraft that travel at an appreciable fraction of the speed of light. Spacecraft traffic will be tracked by radar. Scattering of pulsed electromagnetic fields by an object in uniform translational motion at relativistic speed may be computed using the frame-hopping technique. Pulse scattering depends strongly on the velocity, shape, orientation, and composition of the object. The peak magnitude of the backscattered signal varies by many orders of magnitude, depending on whether the object is advancing toward or receding from the source of the interrogating signal. The peak magnitude of the backscattered signal goes to zero as the object recedes from the observer at a speed very closely approaching light speed, rendering the object invisible to the observer. The energy scattered by an object in motion may increase or decrease relative to the energy scattered by the same object at rest. Both the magnitude and sign of the change depend on the velocity of the object, as well as on its shape, orientation, and composition. In some cases, the change in total scattered energy is greatest when the object is moving transversely to the propagation direction of the interrogating signal, even though the Doppler effect is strongest when the motion is parallel or antiparallel to the propagation direction.
Investigation of binding features: effects on the interaction between CYP2A6 and inhibitors.
Ai, Chunzhi; Li, Yan; Wang, Yonghua; Li, Wei; Dong, Peipei; Ge, Guangbo; Yang, Ling
2010-07-15
A computational investigation has been carried out on CYP2A6 and its naphthalene inhibitors to explore the crucial molecular features contributing to binding specificity. The molecular bioactive orientations were obtained by docking (FlexX) these compounds into the active site of the enzyme. And the density functional theory method was further used to optimize the molecular structures with the subsequent analysis of molecular lipophilic potential (MLP) and molecular electrostatic potential (MEP). The minimal MLPs, minimal MEPs, and the band gap energies (the energy difference between the highest occupied molecular orbital and lowest unoccupied molecular orbital) showed high correlations with the inhibition activities (pIC(50)s), illustrating their significant roles in driving the inhibitor to adopt an appropriate bioactive conformation oriented in the active site of CYP2A6 enzyme. The differences in MLPs, MEPs, and the orbital energies have been identified as key features in determining the binding specificity of this series of compounds to CYP2A6 and the consequent inhibitory effects. In addition, the combinational use of the docking, MLP and MEP analysis is also demonstrated as a good attempt to gain an insight into the interaction between CYP2A6 and its inhibitors. Copyright 2010 Wiley Periodicals, Inc.
Jeon, Hyeonjae; Park, Kwangjin; Hwang, Dae-Joon; Choo, Hyunseung
2009-01-01
Sensor nodes transmit the sensed information to the sink through wireless sensor networks (WSNs). They have limited power, computational capacities and memory. Portable wireless devices are increasing in popularity. Mechanisms that allow information to be efficiently obtained through mobile WSNs are of significant interest. However, a mobile sink introduces many challenges to data dissemination in large WSNs. For example, it is important to efficiently identify the locations of mobile sinks and disseminate information from multi-source nodes to the multi-mobile sinks. In particular, a stationary dissemination path may no longer be effective in mobile sink applications, due to sink mobility. In this paper, we propose a Sink-oriented Dynamic Location Service (SDLS) approach to handle sink mobility. In SDLS, we propose an Eight-Direction Anchor (EDA) system that acts as a location service server. EDA prevents intensive energy consumption at the border sensor nodes and thus provides energy balancing to all the sensor nodes. Then we propose a Location-based Shortest Relay (LSR) that efficiently forwards (or relays) data from a source node to a sink with minimal delay path. Our results demonstrate that SDLS not only provides an efficient and scalable location service, but also reduces the average data communication overhead in scenarios with multiple and moving sinks and sources.
Computational study of peptide permeation through membrane: searching for hidden slow variables
NASA Astrophysics Data System (ADS)
Cardenas, Alfredo E.; Elber, Ron
2013-12-01
Atomically detailed molecular dynamics trajectories in conjunction with Milestoning are used to analyse the different contributions of coarse variables to the permeation process of a small peptide (N-acetyl-l-tryptophanamide, NATA) through a 1,2-dioleoyl-sn-glycero-3-phosphocholine membrane. The peptide reverses its overall orientation as it permeates through the biological bilayer. The large change in orientation is investigated explicitly but is shown to impact the free energy landscape and permeation time only moderately. Nevertheless, a significant difference in permeation properties of the two halves of the membrane suggests the presence of other hidden slow variables. We speculate, based on calculation of the potential of mean force, that a conformational transition of NATA makes significant contribution to these differences. Other candidates for hidden slow variables may include water permeation and collective motions of phospholipids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jun -Sang; Ray, Atish K.; Dawson, Paul R.
A shrink-fit sample is manufactured with a Ti-8Al-1Mo-1V alloy to introduce a multiaxial residual stress field in the disk of the sample. A set of strain and orientation pole figures are measured at various locations across the disk using synchrotron high-energy X-ray diffraction. Two approaches—the traditional sin 2Ψ method and the bi-scale optimization method—are taken to determine the stresses in the disk based on the measured strain and orientation pole figures, to explore the range of solutions that are possible for the stress field within the disk. While the stress components computed using the sin 2Ψ method and the bi-scalemore » optimization method have similar trends, their magnitudes are significantly different. Lastly, it is suspected that the local texture variation in the material is the cause of this discrepancy.« less
A challenging hysteresis operator for the simulation of Goss-textured magnetic materials
NASA Astrophysics Data System (ADS)
Cardelli, Ermanno; Faba, Antonio; Laudani, Antonino; Pompei, Michele; Quondam Antonio, Simone; Fulginei, Francesco Riganti; Salvini, Alessandro
2017-06-01
A new hysteresis operator for the simulation of Goss-textured ferromagnets is here defined. The operator is derived from the classic Stoner-Wohlfarth model, where the anisotropy energy is assumed to be cubic instead of uniaxial, in order to reproduce the magnetic behavior of Goss textured ferromagnetic materials, such as grain-oriented Fe-Si alloys, Ni-Fe alloys, and Ni-Co alloys. A vector hysteresis model based on a single hysteresis operator is then implemented and used for the prediction of the rotational magnetizations that have been measured in a sample of grain-oriented electrical steel. This is especially promising for FEM based calculations, where the magnetization state in each point must be recalculated at each time step. Finally, the computed loops, as well as the magnetic losses, are compared to the measured data.
Computational Studies of [Bmim][PF6]/n-Alcohol Interfaces with Many-Body Potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Tsun-Mei; Dang, Liem X.
2014-09-04
In this paper, we present the results from molecular-dynamics simulations of the equilibrium properties of liquid/liquid interfaces of room temperature ionic liquid [bmim][PF6] and simple alcohols (i.e., methanol, 1-butanol, and 1-hexanol) at room temperature. Polarizable potential models are employed to describe the interactions among species. Results from our simulations show stable interfaces between the ionic liquid and n-alcohols, and we found that the interfacial widths decrease from methanol to 1-butanol systems, and then increase for 1-hexanol interfaces. Angular distribution analysis reveals that the interface induces a strong orientational order of [bmim] and n-alcohol molecules near the interface, with [bmim] extendingmore » its butyl group into the alcohol phase while the alcohol has the OH group pointing into the ion liquid region, which is consistent with the recent sum-frequency-generation experiments. We found the interface to have a significant influence on the dynamics of ionic liquids and n-alcohols. The orientational autocorrelation functions illustrate that [bmim] rotate more freely near the interface than in the bulk, while the rotation of n-alcohol is hindered at the interface. Additionally, the time scale associated with the diffusion along the interfacial direction is found to be faster for [bmim] but slowed down for n-alcohols approaching the interface. We also calculate the dipole moment of n-alcohols as a function of the distance normal to the interface. We found that, even though methanol and 1-butanol have different dipole moments in bulk phase, they reach a similar value at the interface. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Pacific Northwest National Laboratory is a multiprogram national laboratory operated for the Department of Energy by Battelle. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.« less
NASA Astrophysics Data System (ADS)
Tsukamoto, Shigeru; Ono, Tomoya; Hirose, Kikuji; Blügel, Stefan
2017-03-01
The self-energy term used in transport calculations, which describes the coupling between electrode and transition regions, is able to be evaluated only from a limited number of the propagating and evanescent waves of a bulk electrode. This obviously contributes toward the reduction of the computational expenses in transport calculations. In this paper, we present a mathematical formula for reducing the computational expenses further without using any approximation and without losing accuracy. So far, the self-energy term has been handled as a matrix with the same dimension as the Hamiltonian submatrix representing the interaction between an electrode and a transition region. In this work, through the singular-value decomposition of the submatrix, the self-energy matrix is handled as a smaller matrix, whose dimension is the rank number of the Hamiltonian submatrix. This procedure is practical in the case of using the pseudopotentials in a separable form, and the computational expenses for determining the self-energy matrix are reduced by 90% when employing a code based on the real-space finite-difference formalism and projector-augmented wave method. In addition, this technique is applicable to the transport calculations using atomic or localized basis sets. Adopting the self-energy matrices obtained from this procedure, we present the calculation of the electron transport properties of C20 molecular junctions. The application demonstrates that the electron transmissions are sensitive to the orientation of the molecule with respect to the electrode surface. In addition, channel decomposition of the scattering wave functions reveals that some unoccupied C20 molecular orbitals mainly contribute to the electron conduction through the molecular junction.
ERIC Educational Resources Information Center
Mohd Syah, Nor Elleeiana; Hamzaid, Nur Azah; Murphy, Belinda Pingguan; Lim, Einly
2016-01-01
This study describes the development of a basic computer-based play pedagogy intervention using a dyscalculia-remedy-oriented approach such as repetition and number orientation manipulation, and the investigation of its effect on children displaying dyscalculia characteristics. This computer play was evaluated in a group of 50 seven-year-old…
Method for computing energy release rate using the elastic work factor approach
NASA Astrophysics Data System (ADS)
Rhee, K. Y.; Ernst, H. A.
1992-01-01
The elastic work factor eta(el) concept was applied to composite structures for the calculation of total energy release rate by using a single specimen. Cracked lap shear specimens with four different unidirectional fiber orientation were used to examine the dependence of eta(el) on the material properties. Also, three different thickness ratios (lap/strap) were used to determine how geometric conditions affect eta(el). The eta(el) values were calculated in two different ways: compliance method and crack closure method. The results show that the two methods produce comparable eta(el) values and, while eta(el) is affected significantly by geometric conditions, it is reasonably independent of material properties for the given geometry. The results also showed that the elastic work factor can be used to calculate total energy release rate using a single specimen.
10 CFR 434.511 - Orientation and shape.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Orientation and shape. 434.511 Section 434.511 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE... ft. except for dwelling units in hotels/motels and multi-family high-rise residential buildings where...
NASA Astrophysics Data System (ADS)
Köbler, Jonathan; Schneider, Matti; Ospald, Felix; Andrä, Heiko; Müller, Ralf
2018-06-01
For short fiber reinforced plastic parts the local fiber orientation has a strong influence on the mechanical properties. To enable multiscale computations using surrogate models we advocate a two-step identification strategy. Firstly, for a number of sample orientations an effective model is derived by numerical methods available in the literature. Secondly, to cover a general orientation state, these effective models are interpolated. In this article we develop a novel and effective strategy to carry out this interpolation. Firstly, taking into account symmetry arguments, we reduce the fiber orientation phase space to a triangle in R^2 . For an associated triangulation of this triangle we furnish each node with an surrogate model. Then, we use linear interpolation on the fiber orientation triangle to equip each fiber orientation state with an effective stress. The proposed approach is quite general, and works for any physically nonlinear constitutive law on the micro-scale, as long as surrogate models for single fiber orientation states can be extracted. To demonstrate the capabilities of our scheme we study the viscoelastic creep behavior of short glass fiber reinforced PA66, and use Schapery's collocation method together with FFT-based computational homogenization to derive single orientation state effective models. We discuss the efficient implementation of our method, and present results of a component scale computation on a benchmark component by using ABAQUS ®.
NASA Astrophysics Data System (ADS)
Köbler, Jonathan; Schneider, Matti; Ospald, Felix; Andrä, Heiko; Müller, Ralf
2018-04-01
For short fiber reinforced plastic parts the local fiber orientation has a strong influence on the mechanical properties. To enable multiscale computations using surrogate models we advocate a two-step identification strategy. Firstly, for a number of sample orientations an effective model is derived by numerical methods available in the literature. Secondly, to cover a general orientation state, these effective models are interpolated. In this article we develop a novel and effective strategy to carry out this interpolation. Firstly, taking into account symmetry arguments, we reduce the fiber orientation phase space to a triangle in R^2 . For an associated triangulation of this triangle we furnish each node with an surrogate model. Then, we use linear interpolation on the fiber orientation triangle to equip each fiber orientation state with an effective stress. The proposed approach is quite general, and works for any physically nonlinear constitutive law on the micro-scale, as long as surrogate models for single fiber orientation states can be extracted. To demonstrate the capabilities of our scheme we study the viscoelastic creep behavior of short glass fiber reinforced PA66, and use Schapery's collocation method together with FFT-based computational homogenization to derive single orientation state effective models. We discuss the efficient implementation of our method, and present results of a component scale computation on a benchmark component by using ABAQUS ®.
On discrete control of nonlinear systems with applications to robotics
NASA Technical Reports Server (NTRS)
Eslami, Mansour
1989-01-01
Much progress has been reported in the areas of modeling and control of nonlinear dynamic systems in a continuous-time framework. From implementation point of view, however, it is essential to study these nonlinear systems directly in a discrete setting that is amenable for interfacing with digital computers. But to develop discrete models and discrete controllers for a nonlinear system such as robot is a nontrivial task. Robot is also inherently a variable-inertia dynamic system involving additional complications. Not only the computer-oriented models of these systems must satisfy the usual requirements for such models, but these must also be compatible with the inherent capabilities of computers and must preserve the fundamental physical characteristics of continuous-time systems such as the conservation of energy and/or momentum. Preliminary issues regarding discrete systems in general and discrete models of a typical industrial robot that is developed with full consideration of the principle of conservation of energy are presented. Some research on the pertinent tactile information processing is reviewed. Finally, system control methods and how to integrate these issues in order to complete the task of discrete control of a robot manipulator are also reviewed.
1980-01-01
necessary and identify by block number) on-the-job training task proficiency mission-oriented training training management aircraft armament systems...as was the training itself, to determine the feasibility of applying state-of-the-art computer technology to the problems of management and...62 Measures Used in Rank-ordering Functions ........ ........... 63 Computer-Supportable Functions ........ .. 63 Instructional Management
NIMBUS-7 ERB MATGEN Science Document
NASA Technical Reports Server (NTRS)
Soule, H. V.
1983-01-01
The ERB algorithms and computer software data flow used to convert sensor data into equivalent radiometric data are described in detail. The NIMBUS satellite location, orientation and sensor orientation algorithms are given. The computer housekeeping and data flow and sensor/data status algorithms are also given.
Energy monitoring and analysis during deformation of bedded-sandstone: use of acoustic emission.
Wasantha, P L P; Ranjith, P G; Shao, S S
2014-01-01
This paper investigates the mechanical behaviour and energy releasing characteristics of bedded-sandstone with bedding layers in different orientations, under uniaxial compression. Cylindrical sandstone specimens (54 mm diameter and 108 mm height) with bedding layers inclined at angles of 10°, 20°, 35°, 55°, and 83° to the minor principal stress direction, were produced to perform a series of Uniaxial Compressive Strength (UCS) tests. One of the two identical sample sets was fully-saturated with water before testing and the other set was tested under dry conditions. An acoustic emission system was employed in all the testing to monitor the acoustic energy release during the whole deformation process of specimens. From the test results, the critical joint orientation was observed as 55° for both dry and saturated samples and the peak-strength losses due to water were 15.56%, 20.06%, 13.5%, 13.2%, and 13.52% for the bedding orientations 10°, 20°, 35°, 55°, and 83°, respectively. The failure mechanisms for the specimens with bedding layers in 10°, 20° orientations showed splitting type failure, while the specimens with bedding layers in 55°, 83° orientations were failed by sliding along a weaker bedding layer. The failure mechanism for the specimens with bedding layers in 35° orientation showed a mixed failure mode of both splitting and sliding types. Analysis of the acoustic energy, captured from the acoustic emission detection system, revealed that the acoustic energy release is considerably higher in dry specimens than that of the saturated specimens at any bedding orientation. In addition, higher energy release was observed for specimens with bedding layers oriented in shallow angles (which were undergoing splitting type failures), whereas specimens with steeply oriented bedding layers (which were undergoing sliding type failures) showed a comparatively less energy release under both dry and saturated conditions. Moreover, a considerable amount of energy dissipation before the ultimate failure was observed for specimens with bedding layers oriented in shallow angles under both dry and saturated conditions. These results confirm that when rock having bedding layers inclined in shallow angles the failures could be more violent and devastative than the failures of rock with steeply oriented bedding layers. Copyright © 2013 Elsevier B.V. All rights reserved.
1980-08-01
orientation, and HVAC systems have on three Army buildings in five different climatic regions. f Optimization of EnerV Usage in Military Facilities...The clinic’s environment is maintained by a multizone air-handling unit served by its own boiler and chiller . The building was modeled with 30... setpoints for the space temperature. This type of throttling range allows the heating system to control around a throttling range of 67 to 69oF (19 to 200
An ARM data-oriented diagnostics package to evaluate the climate model simulation
NASA Astrophysics Data System (ADS)
Zhang, C.; Xie, S.
2016-12-01
A set of diagnostics that utilize long-term high frequency measurements from the DOE Atmospheric Radiation Measurement (ARM) program is developed for evaluating the regional simulation of clouds, radiation and precipitation in climate models. The diagnostics results are computed and visualized automatically in a python-based package that aims to serve as an easy entry point for evaluating climate simulations using the ARM data, as well as the CMIP5 multi-model simulations. Basic performance metrics are computed to measure the accuracy of mean state and variability of simulated regional climate. The evaluated physical quantities include vertical profiles of clouds, temperature, relative humidity, cloud liquid water path, total column water vapor, precipitation, sensible and latent heat fluxes, radiative fluxes, aerosol and cloud microphysical properties. Process-oriented diagnostics focusing on individual cloud and precipitation-related phenomena are developed for the evaluation and development of specific model physical parameterizations. Application of the ARM diagnostics package will be presented in the AGU session. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, IM release number is: LLNL-ABS-698645.
Molecular three-body Brauner-Briggs-Klar theory for ion-impact ionization of molecules
NASA Astrophysics Data System (ADS)
Ghanbari-Adivi, E.
2016-12-01
Molecular three-body Brauner-Briggs-Klar (M3BBK) theory is developed to study the single ionization of diatomic molecules by ion impact. The orientation-averaged molecular orbital (OAMO) approximation is used to reduce the required computer time without sacrificing the performance of the method. The post-collision interaction (PCI) between the scattered projectile and the ejected electron is included. The theory is applied to collision of protons with hydrogen molecules. Results are obtained for two different kinematical regimes: i) fast collisions and low emission energies, and ii) not so fast collisions and higher emission energies. For both considered regimes, experimental fully differential cross-sections as well as different theoretical calculations are available for comparison. These comparisons are carried out and discussed.
Zimmerman, M I; Bowman, G R
2016-01-01
Molecular dynamics (MD) simulations are a powerful tool for understanding enzymes' structures and functions with full atomistic detail. These physics-based simulations model the dynamics of a protein in solution and store snapshots of its atomic coordinates at discrete time intervals. Analysis of the snapshots from these trajectories provides thermodynamic and kinetic properties such as conformational free energies, binding free energies, and transition times. Unfortunately, simulating biologically relevant timescales with brute force MD simulations requires enormous computing resources. In this chapter we detail a goal-oriented sampling algorithm, called fluctuation amplification of specific traits, that quickly generates pertinent thermodynamic and kinetic information by using an iterative series of short MD simulations to explore the vast depths of conformational space. © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunn, B. D.; Diamond, S. C.; Bennett, G. A.
1977-10-01
A set of computer programs, called Cal-ERDA, is described that is capable of rapid and detailed analysis of energy consumption in buildings. A new user-oriented input language, named the Building Design Language (BDL), has been written to allow simplified manipulation of the many variables used to describe a building and its operation. This manual provides the user with information necessary to understand in detail the Cal-ERDA set of computer programs. The new computer programs described include: an EXECUTIVE Processor to create computer system control commands; a BDL Processor to analyze input instructions, execute computer system control commands, perform assignments andmore » data retrieval, and control the operation of the LOADS, SYSTEMS, PLANT, ECONOMICS, and REPORT programs; a LOADS analysis program that calculates peak (design) zone and hourly loads and the effect of the ambient weather conditions, the internal occupancy, lighting, and equipment within the building, as well as variations in the size, location, orientation, construction, walls, roofs, floors, fenestrations, attachments (awnings, balconies), and shape of a building; a Heating, Ventilating, and Air-Conditioning (HVAC) SYSTEMS analysis program capable of modeling the operation of HVAC components including fans, coils, economizers, humidifiers, etc.; 16 standard configurations and operated according to various temperature and humidity control schedules. A plant equipment program models the operation of boilers, chillers, electrical generation equipment (diesel or turbines), heat storage apparatus (chilled or heated water), and solar heating and/or cooling systems. An ECONOMIC analysis program calculates life-cycle costs. A REPORT program produces tables of user-selected variables and arranges them according to user-specified formats. A set of WEATHER ANALYSIS programs manipulates, summarizes and plots weather data. Libraries of weather data, schedule data, and building data were prepared.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Espinosa, J. R.; Vega, C.; Sanz, E.
2014-10-07
The interfacial free energy between a crystal and a fluid, γ{sub cf}, is a highly relevant parameter in phenomena such as wetting or crystal nucleation and growth. Due to the difficulty of measuring γ{sub cf} experimentally, computer simulations are often used to study the crystal-fluid interface. Here, we present a novel simulation methodology for the calculation of γ{sub cf}. The methodology consists in using a mold composed of potential energy wells to induce the formation of a crystal slab in the fluid at coexistence conditions. This induction is done along a reversible pathway along which the free energy difference betweenmore » the initial and the final states is obtained by means of thermodynamic integration. The structure of the mold is given by that of the crystal lattice planes, which allows to easily obtain the free energy for different crystal orientations. The method is validated by calculating γ{sub cf} for previously studied systems, namely, the hard spheres and the Lennard-Jones systems. Our results for the latter show that the method is accurate enough to deal with the anisotropy of γ{sub cf} with respect to the crystal orientation. We also calculate γ{sub cf} for a recently proposed continuous version of the hard sphere potential and obtain the same γ{sub cf} as for the pure hard sphere system. The method can be implemented both in Monte Carlo and Molecular Dynamics. In fact, we show that it can be easily used in combination with the popular Molecular Dynamics package GROMACS.« less
Computer simulation of sputtering induced by swift heavy ions
NASA Astrophysics Data System (ADS)
Kucharczyk, P.; Füngerlings, A.; Weidtmann, B.; Wucher, A.
2018-07-01
New experimental results regarding the mass and charge state distribution of material sputtered under irradiation with swift heavy ions suggest fundamental differences between the ejection mechanisms under electronic and nuclear sputtering conditions. In order to illustrate the difference, computer simulations based on molecular dynamics were performed to model the surface ejection process of atoms and molecules induced by a swift heavy ion track. In a first approach, the track is homogeneously energized by assigning a fixed energy to each atom with randomly oriented direction of motion within a cylinder of a given radius around the projectile ion trace. The remainder of the target crystal is assumed to be at rest, and the resulting lattice dynamics is followed by molecular dynamics. The resulting sputter yield is calculated as a function of track radius and energy and compared to corresponding experimental data in order to find realistic values for the effective deposited lattice energy density. The sputtered material is analyzed with respect to emission angle and energy as well as depth of origin. The results are compared to corresponding data from keV sputter simulations. As a second step of complexity, the homogeneous and monoenergetic lattice energization is replaced by a starting energy distribution described by a local lattice temperature. As a first attempt, the respective temperature is assumed constant within the track, and the results are compared with those obtained from monoenergetic energization with the same average energy per atom.
A computational model of in vitro angiogenesis based on extracellular matrix fibre orientation.
Edgar, Lowell T; Sibole, Scott C; Underwood, Clayton J; Guilkey, James E; Weiss, Jeffrey A
2013-01-01
Recent interest in the process of vascularisation within the biomedical community has motivated numerous new research efforts focusing on the process of angiogenesis. Although the role of chemical factors during angiogenesis has been well documented, the role of mechanical factors, such as the interaction between angiogenic vessels and the extracellular matrix, remains poorly understood. In vitro methods for studying angiogenesis exist; however, measurements available using such techniques often suffer from limited spatial and temporal resolutions. For this reason, computational models have been extensively employed to investigate various aspects of angiogenesis. This paper outlines the formulation and validation of a simple and robust computational model developed to accurately simulate angiogenesis based on length, branching and orientation morphometrics collected from vascularised tissue constructs. Microvessels were represented as a series of connected line segments. The morphology of the vessels was determined by a linear combination of the collagen fibre orientation, the vessel density gradient and a random walk component. Excellent agreement was observed between computational and experimental morphometric data over time. Computational predictions of microvessel orientation within an anisotropic matrix correlated well with experimental data. The accuracy of this modelling approach makes it a valuable platform for investigating the role of mechanical interactions during angiogenesis.
DOEDEF Software System, Version 2. 2: Operational instructions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meirans, L.
The DOEDEF (Department of Energy Data Exchange Format) Software System is a collection of software routines written to facilitate the manipulation of IGES (Initial Graphics Exchange Specification) data. Typically, the IGES data has been produced by the IGES processors for a Computer-Aided Design (CAD) system, and the data manipulations are user-defined ''flavoring'' operations. The DOEDEF Software System is used in conjunction with the RIM (Relational Information Management) DBMS from Boeing Computer Services (Version 7, UD18 or higher). The three major pieces of the software system are: Parser, reads an ASCII IGES file and converts it to the RIM database equivalent;more » Kernel, provides the user with IGES-oriented interface routines to the database; and Filewriter, writes the RIM database to an IGES file.« less
Obtaining Reliable Predictions of Terrestrial Energy Coupling From Real-Time Solar Wind Measurement
NASA Technical Reports Server (NTRS)
Weimer, Daniel R.
2001-01-01
The first draft of a manuscript titled "Variable time delays in the propagation of the interplanetary magnetic field" has been completed, for submission to the Journal of Geophysical Research. In the preparation of this manuscript all data and analysis programs had been updated to the highest temporal resolution possible, at 16 seconds or better. The program which computes the "measured" IMF propagation time delays from these data has also undergone another improvement. In another significant development, a technique has been developed in order to predict IMF phase plane orientations, and the resulting time delays, using only measurements from a single satellite at L1. The "minimum variance" method is used for this computation. Further work will be done on optimizing the choice of several parameters for the minimum variance calculation.
Opportunities and choice in a new vector era
NASA Astrophysics Data System (ADS)
Nowak, A.
2014-06-01
This work discusses the significant changes in computing landscape related to the progression of Moore's Law, and the implications on scientific computing. Particular attention is devoted to the High Energy Physics domain (HEP), which has always made good use of threading, but levels of parallelism closer to the hardware were often left underutilized. Findings of the CERN openlab Platform Competence Center are reported in the context of expanding "performance dimensions", and especially the resurgence of vectors. These suggest that data oriented designs are feasible in HEP and have considerable potential for performance improvements on multiple levels, but will rarely trump algorithmic enhancements. Finally, an analysis of upcoming hardware and software technologies identifies heterogeneity as a major challenge for software, which will require more emphasis on scalable, efficient design.
Getting ready for petaflop capacities and beyond: a utility perspective
NASA Astrophysics Data System (ADS)
Hamelin, J. F.; Berthou, J. Y.
2008-07-01
Why should EDF, the leading producer and marketer of electricity in Europe, start adding teraflops to its terawatt-hours and become involved in high-performance computing (HPC)? In this paper we answer this question through examples of major opportunities that HPC brings to our business today and, we hope well into the future of petaflop and exaflop computing. Five cases are presented dealing with nondestructive testing, nuclear fuel management, mechanical behavior of nuclear fuel assemblies, water management, and energy management. For each case we show the benefits brought by HPC, describe the current level of numerical simulation performance, and discuss the perspectives for future steps. We also present the general background that explains why EDF is moving to this technology and briefly comment on the development of user-oriented simulation platforms.
Computer simulation of single-phase nanocrystalline permanent magnets
NASA Astrophysics Data System (ADS)
Griffiths, M. K.; Bishop, J. E. L.; Tucker, J. W.; Davies, H. A.
1998-03-01
Demagnetizing curves have been calculated numerically for three-dimensional micromagnetic model assemblies of randomly oriented, magnetically hard, exchange coupled, uniaxial nanocrystals as typified by rapidly quenched Nd 2Fe 14B. The curves were obtained as a sequence of static equilibrium states in an incrementally changing applied field. The magnetization distribution in each state was obtained by minimizing the sum of the exchange, anisotropy and Zeeman energies of the assembly, using a modified LaBonte method, with computational elements as small as 1.11 nm (roughly {1}/{4} the domain wall thickness in Nd 2Fe 14B). For computational economy, internal dipolar interactions were ignored in the energy minimization. For a material with the magnetic constants of stoichiometric Nd 2Fe 14B, tests showed that these interactions contribute less than 3% to the energy. On increasing the model grain size from 4.4 to 36 nm, the reduced remanence fell from 76 to 54% and the reduced intrinsic coercivity μ0iHCMS/ KU increased from 0.16 to 0.46 (just under half the Stoner-Wohlfarth value); both sets of results are in reasonable agreement with experimental values. The energy product, evaluated for Nd 2Fe 14B, ranged from ˜224 kJ/m 3 for 10 nm grains to ˜128 kJ/m 3 for 36 nm grains. For grain sizes ⩾20 nm, spatial magnetization variation was confined to domain walls centred on the grain boundaries. For grain sizes decreasing below about twice the domain wall thickness, spatial magnetization variation extended to the interior of the grains and exhibited increasingly long-range correlations.
Triple Differential Cross Sections for single ionization of the Ethane molecule
NASA Astrophysics Data System (ADS)
Ali, Esam; Nixon, Kate; Ning, Chuangang; Murray, Andrew; Madison, Don
2015-09-01
We report experimental and theoretical results for electron-impact (e,2e) ionization of the Ethane molecule (C2H6) in the coplanar scattering geometry for four different ejected electron energies Ea = 5,10,15, and 20 eV respectively, and for each ejected electron energy, the projectile scattering angle is fixed at 10°. We will show that the TDCS is very sensitive for the case of two heavy nuclei surrounded by lighter H nuclei. On the theoretical side, we have used the M3DW coupled with the Orientation Averaged Molecular Orbital (OAMO) approximation and proper average (PA) over all orientations. These approximations show good agreement with experimental data for the binary peaks. However, for the recoil peak region, experiment finds a noticeable peak while theory predicts no peak. No recoil peak suggests no (or very weak) nuclear scattering, so we have investigated the importance of nuclear scattering by moving the nuclei closer to the center of mass. This work is supported by the US National Science Foundation under Grant No. PHY-1068237 and XSEDE resources provided by the Texas Advanced Computing Center (Grant No. TG-MCA07S029).
NASA Astrophysics Data System (ADS)
Jennings, Guy; Lee, Peter L.
1995-02-01
In this paper we describe the design and implementation of a computerized data-acquisition system for high-speed energy-dispersive EXAFS experiments on the X6A beamline at the National Synchrotron Light Source. The acquisition system drives the stepper motors used to move the components of the experimental setup and controls the readout of the EXAFS spectra. The system runs on a Macintosh IIfx computer and is written entirely in the object-oriented language C++. Large segments of the system are implemented by means of commercial class libraries, specifically the MacApp application framework from Apple, the Rogue Wave class library, and the Hierarchical Data Format datafile format library from the National Center for Supercomputing Applications. This reduces the amount of code that must be written and enhances reliability. The system makes use of several advanced features of C++: Multiple inheritance allows the code to be decomposed into independent software components and the use of exception handling allows the system to be much more reliable in the event of unexpected errors. Object-oriented techniques allow the program to be extended easily as new requirements develop. All sections of the program related to a particular concept are located in a small set of source files. The program will also be used as a prototype for future software development plans for the Basic Energy Science Synchrotron Radiation Center Collaborative Access Team beamlines being designed and built at the Advanced Photon Source.
1993-03-25
application of Object-Oriented Programming (OOP) and Human-Computer Interface (HCI) design principles. Knowledge gained from each topic has been incorporated...through the ap- plication of Object-Oriented Programming (OOP) and Human-Computer Interface (HCI) design principles. Knowledge gained from each topic has...programming and Human-Computer Interface (HCI) design. Knowledge gained from each is applied to the design of a Form-based interface for database data
Some Specifications for a Computer-Oriented First Course in Electrical Engineering.
ERIC Educational Resources Information Center
Commission on Engineering Education, Washington, DC.
Reported are specifications for a computer-oriented first course in electrical engineering giving new direction to the development of texts and alternative courses of study. Guidelines for choice of topics, a statement of fundamental concepts, pitfalls to avoid, and some sample course outlines are given. The study of circuits through computer…
ERIC Educational Resources Information Center
Georgantaki, Stavroula C.; Retalis, Symeon D.
2007-01-01
"Object-Oriented Programming" subject is included in the ACM Curriculum Guidelines for Undergraduate and Graduate Degree Programs in Computer Science as well as in Curriculum for K-12 Computer Science. In a few research studies learning problems and difficulties have been recorded, and therefore, specific pedagogical guidelines and…
Science-Technology Coupling: The Case of Mathematical Logic and Computer Science.
ERIC Educational Resources Information Center
Wagner-Dobler, Roland
1997-01-01
In the history of science, there have often been periods of sudden rapprochements between pure science and technology-oriented branches of science. Mathematical logic as pure science and computer science as technology-oriented science have experienced such a rapprochement, which is studied in this article in a bibliometric manner. (Author)
Supporting Abstraction Processes in Problem Solving through Pattern-Oriented Instruction
ERIC Educational Resources Information Center
Muller, Orna; Haberman, Bruria
2008-01-01
Abstraction is a major concept in computer science and serves as a powerful tool in software development. Pattern-oriented instruction (POI) is a pedagogical approach that incorporates patterns in an introductory computer science course in order to structure the learning of algorithmic problem solving. This paper examines abstraction processes in…
Strategy Generalization across Orientation Tasks: Testing a Computational Cognitive Model
ERIC Educational Resources Information Center
Gunzelmann, Glenn
2008-01-01
Humans use their spatial information processing abilities flexibly to facilitate problem solving and decision making in a variety of tasks. This article explores the question of whether a general strategy can be adapted for performing two different spatial orientation tasks by testing the predictions of a computational cognitive model. Human…
ERIC Educational Resources Information Center
Reyes Alamo, Jose M.
2010-01-01
The Service Oriented Computing (SOC) paradigm, defines services as software artifacts whose implementations are separated from their specifications. Application developers rely on services to simplify the design, reduce the development time and cost. Within the SOC paradigm, different Service Oriented Architectures (SOAs) have been developed.…
A Future of Reversals: Dyslexic Talents in a World of Computer Visualization.
ERIC Educational Resources Information Center
West, Thomas G.
1992-01-01
This paper proposes that those traits which handicap visually oriented dyslexics in a verbally oriented educational system may confer advantages in new fields which rely on visual methods of analysis, especially those in computer applications. It is suggested that such traits also characterized Albert Einstein, Michael Faraday, James Maxwell, and…
Energy distribution in disordered elastic networks
NASA Astrophysics Data System (ADS)
Plaza, Gustavo R.
2010-09-01
Disordered networks are found in many natural and artificial materials, from gels or cytoskeletal structures to metallic foams or bones. Here, the energy distribution in this type of networks is modeled, taking into account the orientation of the struts. A correlation between the orientation and the energy per unit volume is found and described as a function of the connectivity in the network and the relative bending stiffness of the struts. If one or both parameters have relatively large values, the struts aligned in the loading direction present the highest values of energy. On the contrary, if these have relatively small values, the highest values of energy can be reached in the struts oriented transversally. This result allows explaining in a simple way remodeling processes in biological materials, for example, the remodeling of trabecular bone and the reorganization in the cytoskeleton. Additionally, the correlation between the orientation, the affinity, and the bending-stretching ratio in the network is discussed.
Improving Thermal Performance of a Residential Building, Related to Its Orientations - A Case Study
NASA Astrophysics Data System (ADS)
Akshaya, S.; Harish, S.; Arthy, R.; Muthu, D.; Venkatasubramanian, C.
2017-07-01
Urban planners and stakeholders require knowledge about the effectiveness of city-scale climate adaptation measures in order to develop climate resilient cities and to push forward the political process for the implementation of climate adaptation strategies. This study examines the impact of modifications in orientation of buildings with respect to heat load. Heat load calculation is a mathematical process to determine the best capacity, application and style of HVAC system. The purpose is to ensure energy efficiency while also maximizing comfort inside the building. This study of load calculation is essential for a building because it helps to pick the best orientation and focuses to find an orientation that will reduce energy due to direct solar radiation. One of the factors affecting this assessment is the latitude of the location. The heat gain is effective through walls and fenestration. Improper management through ineffective orientation of the building’s natural heat gain leads to excessive consumption of energy in the form of CL. The total heat gain for the above factors is calculated with the equations and assumptions as per ASHRAE code. After the calculation of heat load for different orientations, the best suited orientation of the building is found. By altering the building to suitable orientation, the dependence on electrical equipment can be minimized and thereby helps in energy conservation.
Object-Oriented Programming in High Schools the Turing Way.
ERIC Educational Resources Information Center
Holt, Richard C.
This paper proposes an approach to introducing object-oriented concepts to high school computer science students using the Object-Oriented Turing (OOT) language. Students can learn about basic object-oriented (OO) principles such as classes and inheritance by using and expanding a collection of classes that draw pictures like circles and happy…
Qin, Nan; Pinto, Marco; Tian, Zhen; Dedes, Georgios; Pompos, Arnold; Jiang, Steve B.; Parodi, Katia; Jia, Xun
2017-01-01
Monte Carlo (MC) simulation is considered as the most accurate method for calculation of absorbed dose and fundamental physics quantities related to biological effects in carbon ion therapy. To improve its computational efficiency, we have developed a GPU-oriented fast MC package named goCMC, for carbon therapy. goCMC simulates particle transport in voxelized geometry with kinetic energy up to 450 MeV/u. Class II condensed history simulation scheme with a continuous slowing down approximation was employed. Energy straggling and multiple scattering were modeled. δ-electrons were terminated with their energy locally deposited. Four types of nuclear interactions were implemented in goCMC, i.e., carbon-hydrogen, carbon-carbon, carbon-oxygen and carbon-calcium inelastic collisions. Total cross section data from Geant4 were used. Secondary particles produced in these interactions were sampled according to particle yield with energy and directional distribution data derived from Geant4 simulation results. Secondary charged particles were transported following the condensed history scheme, whereas secondary neutral particles were ignored. goCMC was developed under OpenCL framework and is executable on different platforms, e.g. GPU and multi-core CPU. We have validated goCMC with Geant4 in cases with different beam energy and phantoms including four homogeneous phantoms, one heterogeneous half-slab phantom, and one patient case. For each case 3 × 107 carbon ions were simulated, such that in the region with dose greater than 10% of maximum dose, the mean relative statistical uncertainty was less than 1%. Good agreements for dose distributions and range estimations between goCMC and Geant4 were observed. 3D gamma passing rates with 1%/1 mm criterion were over 90% within 10%) isodose line except in two extreme cases, and those with 2%/1 mm criterion were all over 96%. Efficiency and code portability were tested with different GPUs and CPUs. Depending on the beam energy and voxel size, the computation time to simulate 107 carbons was 9.9–125 sec, 2.5–50 sec and 60–612 sec on an AMD Radeon GPU card, an NVidia GeForce GTX 1080 GPU card and an Intel Xeon E5-2640 CPU, respectively. The combined accuracy, efficiency and portability make goCMC attractive for research and clinical applications in carbon ion therapy. PMID:28140352
NASA Astrophysics Data System (ADS)
Qin, Nan; Pinto, Marco; Tian, Zhen; Dedes, Georgios; Pompos, Arnold; Jiang, Steve B.; Parodi, Katia; Jia, Xun
2017-05-01
Monte Carlo (MC) simulation is considered as the most accurate method for calculation of absorbed dose and fundamental physics quantities related to biological effects in carbon ion therapy. To improve its computational efficiency, we have developed a GPU-oriented fast MC package named goCMC, for carbon therapy. goCMC simulates particle transport in voxelized geometry with kinetic energy up to 450 MeV u-1. Class II condensed history simulation scheme with a continuous slowing down approximation was employed. Energy straggling and multiple scattering were modeled. δ-electrons were terminated with their energy locally deposited. Four types of nuclear interactions were implemented in goCMC, i.e. carbon-hydrogen, carbon-carbon, carbon-oxygen and carbon-calcium inelastic collisions. Total cross section data from Geant4 were used. Secondary particles produced in these interactions were sampled according to particle yield with energy and directional distribution data derived from Geant4 simulation results. Secondary charged particles were transported following the condensed history scheme, whereas secondary neutral particles were ignored. goCMC was developed under OpenCL framework and is executable on different platforms, e.g. GPU and multi-core CPU. We have validated goCMC with Geant4 in cases with different beam energy and phantoms including four homogeneous phantoms, one heterogeneous half-slab phantom, and one patient case. For each case 3× {{10}7} carbon ions were simulated, such that in the region with dose greater than 10% of maximum dose, the mean relative statistical uncertainty was less than 1%. Good agreements for dose distributions and range estimations between goCMC and Geant4 were observed. 3D gamma passing rates with 1%/1 mm criterion were over 90% within 10% isodose line except in two extreme cases, and those with 2%/1 mm criterion were all over 96%. Efficiency and code portability were tested with different GPUs and CPUs. Depending on the beam energy and voxel size, the computation time to simulate {{10}7} carbons was 9.9-125 s, 2.5-50 s and 60-612 s on an AMD Radeon GPU card, an NVidia GeForce GTX 1080 GPU card and an Intel Xeon E5-2640 CPU, respectively. The combined accuracy, efficiency and portability make goCMC attractive for research and clinical applications in carbon ion therapy.
Qin, Nan; Pinto, Marco; Tian, Zhen; Dedes, Georgios; Pompos, Arnold; Jiang, Steve B; Parodi, Katia; Jia, Xun
2017-05-07
Monte Carlo (MC) simulation is considered as the most accurate method for calculation of absorbed dose and fundamental physics quantities related to biological effects in carbon ion therapy. To improve its computational efficiency, we have developed a GPU-oriented fast MC package named goCMC, for carbon therapy. goCMC simulates particle transport in voxelized geometry with kinetic energy up to 450 MeV u -1 . Class II condensed history simulation scheme with a continuous slowing down approximation was employed. Energy straggling and multiple scattering were modeled. δ-electrons were terminated with their energy locally deposited. Four types of nuclear interactions were implemented in goCMC, i.e. carbon-hydrogen, carbon-carbon, carbon-oxygen and carbon-calcium inelastic collisions. Total cross section data from Geant4 were used. Secondary particles produced in these interactions were sampled according to particle yield with energy and directional distribution data derived from Geant4 simulation results. Secondary charged particles were transported following the condensed history scheme, whereas secondary neutral particles were ignored. goCMC was developed under OpenCL framework and is executable on different platforms, e.g. GPU and multi-core CPU. We have validated goCMC with Geant4 in cases with different beam energy and phantoms including four homogeneous phantoms, one heterogeneous half-slab phantom, and one patient case. For each case [Formula: see text] carbon ions were simulated, such that in the region with dose greater than 10% of maximum dose, the mean relative statistical uncertainty was less than 1%. Good agreements for dose distributions and range estimations between goCMC and Geant4 were observed. 3D gamma passing rates with 1%/1 mm criterion were over 90% within 10% isodose line except in two extreme cases, and those with 2%/1 mm criterion were all over 96%. Efficiency and code portability were tested with different GPUs and CPUs. Depending on the beam energy and voxel size, the computation time to simulate [Formula: see text] carbons was 9.9-125 s, 2.5-50 s and 60-612 s on an AMD Radeon GPU card, an NVidia GeForce GTX 1080 GPU card and an Intel Xeon E5-2640 CPU, respectively. The combined accuracy, efficiency and portability make goCMC attractive for research and clinical applications in carbon ion therapy.
Determining Equilibrium Position For Acoustical Levitation
NASA Technical Reports Server (NTRS)
Barmatz, M. B.; Aveni, G.; Putterman, S.; Rudnick, J.
1989-01-01
Equilibrium position and orientation of acoustically-levitated weightless object determined by calibration technique on Earth. From calibration data, possible to calculate equilibrium position and orientation in presence of Earth gravitation. Sample not levitated acoustically during calibration. Technique relies on Boltzmann-Ehrenfest adiabatic-invariance principle. One converts resonant-frequency-shift data into data on normalized acoustical potential energy. Minimum of energy occurs at equilibrium point. From gradients of acoustical potential energy, one calculates acoustical restoring force or torque on objects as function of deviation from equilibrium position or orientation.
Simulating complex intracellular processes using object-oriented computational modelling.
Johnson, Colin G; Goldman, Jacki P; Gullick, William J
2004-11-01
The aim of this paper is to give an overview of computer modelling and simulation in cellular biology, in particular as applied to complex biochemical processes within the cell. This is illustrated by the use of the techniques of object-oriented modelling, where the computer is used to construct abstractions of objects in the domain being modelled, and these objects then interact within the computer to simulate the system and allow emergent properties to be observed. The paper also discusses the role of computer simulation in understanding complexity in biological systems, and the kinds of information which can be obtained about biology via simulation.
A Modelica-based Model Library for Building Energy and Control Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wetter, Michael
2009-04-07
This paper describes an open-source library with component models for building energy and control systems that is based on Modelica, an equation-based objectoriented language that is well positioned to become the standard for modeling of dynamic systems in various industrial sectors. The library is currently developed to support computational science and engineering for innovative building energy and control systems. Early applications will include controls design and analysis, rapid prototyping to support innovation of new building systems and the use of models during operation for controls, fault detection and diagnostics. This paper discusses the motivation for selecting an equation-based object-oriented language.more » It presents the architecture of the library and explains how base models can be used to rapidly implement new models. To demonstrate the capability of analyzing novel energy and control systems, the paper closes with an example where we compare the dynamic performance of a conventional hydronic heating system with thermostatic radiator valves to an innovative heating system. In the new system, instead of a centralized circulation pump, each of the 18 radiators has a pump whose speed is controlled using a room temperature feedback loop, and the temperature of the boiler is controlled based on the speed of the radiator pump. All flows are computed by solving for the pressure distribution in the piping network, and the controls include continuous and discrete time controls.« less
Electron Capture in Proton Collisions with CO.
NASA Astrophysics Data System (ADS)
Stancil, P. C.; Schultz, D. R.; Kimura, M.; Gu, J.-P.; Hirsch, G.; Buenker, R. J.; Li, Y.
1999-10-01
Electron capture by protons following collisions with carbon monoxide is studied with a variety of theoretical approaches including quantal and semiclassical molecular-orbital close-coupling (MOCC) and classical trajectory Monte Carlo (CTMC) techniques. The MOCC treatments utilize potential surfaces and couplings computed for a range of H^+-CO orientation angles and C-O separations. Results including integral, differential, electronic state-selective, and vibrational state-selective cross sections will be presented for low- to intermediate-energies. Comparison with experiment will be made where possible and the relevance of the reaction in astrophysics and atmospheric physics will be discussed.
NASA Technical Reports Server (NTRS)
Bekele, Gete
2002-01-01
This document explores the use of advanced computer technologies with an emphasis on object-oriented design to be applied in the development of software for a rocket engine to improve vehicle safety and reliability. The primary focus is on phase one of this project, the smart start sequence module. The objectives are: 1) To use current sound software engineering practices, object-orientation; 2) To improve on software development time, maintenance, execution and management; 3) To provide an alternate design choice for control, implementation, and performance.
Forest value orientations in Australia: an application of computer content analysis
Trevor J. Webb; David N. Bengston; David P. Fan
2008-01-01
This article explores the expression of three forest value orientations that emerged from an analysis of Australian news media discourse about the management of Australian native forests from August 1, 1997 through December 31, 2004. Computer-coded content analysis was used to measure and track the relative importance of commodity, ecological and moral/spiritual/...
ERIC Educational Resources Information Center
Hsu, P. -S.; Van Dyke, M.; Chen, Y.; Smith, T. J.
2015-01-01
The purpose of this quasi-experimental study was to explore how seventh graders in a suburban school in the United States developed argumentation skills and science knowledge in a project-based learning environment that incorporated a graph-oriented, computer-assisted application. A total of 54 students (three classes) comprised this treatment…
Bilingual Academic Computer and Technology Oriented Program. Project COM-TECH, 1987-1988.
ERIC Educational Resources Information Center
Berney, Tomi D.; Plotkin, Donna
The Bilingual Computer and Technology Oriented Program (COM-TECH) completed the final year of a 3-year funding cycle. The project's primary goal was to provide bilingual individualized instruction, using an enrichment approach, to Spanish- and Haitian Creole/French-speaking students of varying levels of native and English second-language (ESL)…
Web-Based Seamless Migration for Task-Oriented Mobile Distance Learning
ERIC Educational Resources Information Center
Zhang, Degan; Li, Yuan-chao; Zhang, Huaiyu; Zhang, Xinshang; Zeng, Guangping
2006-01-01
As a new kind of computing paradigm, pervasive computing will meet the requirements of human being that anybody maybe obtain services in anywhere and at anytime, task-oriented seamless migration is one of its applications. Apparently, the function of seamless mobility is suitable for mobile services, such as mobile Web-based learning. In this…
The Use of Computer Vision Algorithms for Automatic Orientation of Terrestrial Laser Scanning Data
NASA Astrophysics Data System (ADS)
Markiewicz, Jakub Stefan
2016-06-01
The paper presents analysis of the orientation of terrestrial laser scanning (TLS) data. In the proposed data processing methodology, point clouds are considered as panoramic images enriched by the depth map. Computer vision (CV) algorithms are used for orientation, which are applied for testing the correctness of the detection of tie points and time of computations, and for assessing difficulties in their implementation. The BRISK, FASRT, MSER, SIFT, SURF, ASIFT and CenSurE algorithms are used to search for key-points. The source data are point clouds acquired using a Z+F 5006h terrestrial laser scanner on the ruins of Iłża Castle, Poland. Algorithms allowing combination of the photogrammetric and CV approaches are also presented.
Computational Approach for Epitaxial Polymorph Stabilization through Substrate Selection.
Ding, Hong; Dwaraknath, Shyam S; Garten, Lauren; Ndione, Paul; Ginley, David; Persson, Kristin A
2016-05-25
With the ultimate goal of finding new polymorphs through targeted synthesis conditions and techniques, we outline a computational framework to select optimal substrates for epitaxial growth using first principle calculations of formation energies, elastic strain energy, and topological information. To demonstrate the approach, we study the stabilization of metastable VO2 compounds which provides a rich chemical and structural polymorph space. We find that common polymorph statistics, lattice matching, and energy above hull considerations recommends homostructural growth on TiO2 substrates, where the VO2 brookite phase would be preferentially grown on the a-c TiO2 brookite plane while the columbite and anatase structures favor the a-b plane on the respective TiO2 phases. Overall, we find that a model which incorporates a geometric unit cell area matching between the substrate and the target film as well as the resulting strain energy density of the film provide qualitative agreement with experimental observations for the heterostructural growth of known VO2 polymorphs: rutile, A and B phases. The minimal interfacial geometry matching and estimated strain energy criteria provide several suggestions for substrates and substrate-film orientations for the heterostructural growth of the hitherto hypothetical anatase, brookite, and columbite polymorphs. These criteria serve as a preliminary guidance for the experimental efforts stabilizing new materials and/or polymorphs through epitaxy. The current screening algorithm is being integrated within the Materials Project online framework and data and hence publicly available.
Computational Approach for Epitaxial Polymorph Stabilization through Substrate Selection
Ding, Hong; Dwaraknath, Shyam S.; Garten, Lauren; ...
2016-05-04
With the ultimate goal of finding new polymorphs through targeted synthesis conditions and techniques, we outline a computational framework to select optimal substrates for epitaxial growth using first principle calculations of formation energies, elastic strain energy, and topological information. To demonstrate the approach, we study the stabilization of metastable VO 2 compounds which provides a rich chemical and structural polymorph space. Here, we find that common polymorph statistics, lattice matching, and energy above hull considerations recommends homostructural growth on TiO 2 substrates, where the VO 2 brookite phase would be preferentially grown on the a-c TiO 2 brookite plane whilemore » the columbite and anatase structures favor the a-b plane on the respective TiO 2 phases. Overall, we find that a model which incorporates a geometric unit cell area matching between the substrate and the target film as well as the resulting strain energy density of the film provide qualitative agreement with experimental observations for the heterostructural growth of known VO 2 polymorphs: rutile, A and B phases. The minimal interfacial geometry matching and estimated strain energy criteria provide several suggestions for substrates and substrate-film orientations for the heterostructural growth of the hitherto hypothetical anatase, brookite, and columbite polymorphs. Our criteria serve as a preliminary guidance for the experimental efforts stabilizing new materials and/or polymorphs through epitaxy. The current screening algorithm is being integrated within the Materials Project online framework and data and hence publicly available.« less
Computational Approach for Epitaxial Polymorph Stabilization through Substrate Selection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Hong; Dwaraknath, Shyam S.; Garten, Lauren
With the ultimate goal of finding new polymorphs through targeted synthesis conditions and techniques, we outline a computational framework to select optimal substrates for epitaxial growth using first principle calculations of formation energies, elastic strain energy, and topological information. To demonstrate the approach, we study the stabilization of metastable VO2 compounds which provides a rich chemical and structural polymorph space. We find that common polymorph statistics, lattice matching, and energy above hull considerations recommends homostructural growth on TiO2 substrates, where the VO2 brookite phase would be preferentially grown on the a-c TiO2 brookite plane while the columbite and anatase structuresmore » favor the a-b plane on the respective TiO2 phases. Overall, we find that a model which incorporates a geometric unit cell area matching between the substrate and the target film as well as the resulting strain energy density of the film provide qualitative agreement with experimental observations for the heterostructural growth of known VO2 polymorphs: rutile, A and B phases. The minimal interfacial geometry matching and estimated strain energy criteria provide several suggestions for substrates and substrate-film orientations for the heterostructural growth of the hitherto hypothetical anatase, brookite, and columbite polymorphs. These criteria serve as a preliminary guidance for the experimental efforts stabilizing new materials and/or polymorphs through epitaxy. The current screening algorithm is being integrated within the Materials Project online framework and data and hence publicly available.« less
Computational Approach for Epitaxial Polymorph Stabilization through Substrate Selection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Hong; Dwaraknath, Shyam S.; Garten, Lauren
With the ultimate goal of finding new polymorphs through targeted synthesis conditions and techniques, we outline a computational framework to select optimal substrates for epitaxial growth using first principle calculations of formation energies, elastic strain energy, and topological information. To demonstrate the approach, we study the stabilization of metastable VO 2 compounds which provides a rich chemical and structural polymorph space. Here, we find that common polymorph statistics, lattice matching, and energy above hull considerations recommends homostructural growth on TiO 2 substrates, where the VO 2 brookite phase would be preferentially grown on the a-c TiO 2 brookite plane whilemore » the columbite and anatase structures favor the a-b plane on the respective TiO 2 phases. Overall, we find that a model which incorporates a geometric unit cell area matching between the substrate and the target film as well as the resulting strain energy density of the film provide qualitative agreement with experimental observations for the heterostructural growth of known VO 2 polymorphs: rutile, A and B phases. The minimal interfacial geometry matching and estimated strain energy criteria provide several suggestions for substrates and substrate-film orientations for the heterostructural growth of the hitherto hypothetical anatase, brookite, and columbite polymorphs. Our criteria serve as a preliminary guidance for the experimental efforts stabilizing new materials and/or polymorphs through epitaxy. The current screening algorithm is being integrated within the Materials Project online framework and data and hence publicly available.« less
Numerical Simulation with Experimental Validation of the Draping Behavior of Woven Fabrics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodgers, William; Pasupuleti, Praveen; Zhao, Selina
Woven fabric composites are extensively used in molding complex geometrical shapes due to their high conformability compared to other fabrics. Preforming is an important step in the overall process. In this step, the two-dimensional fabric is draped to become the three-dimensional shape of the part prior to resin injection. During preforming, the orientation of the tows may change significantly compared to the initial orientations. Accurate prediction of the tow orientations after molding is important for evaluating the structural performance of the final part. This paper investigates the fiber angle changes for carbon fiber woven fabrics during draping over a truncatedmore » pyramid tool designed and fabricated at the General Motors Research Labs. This aspect of study is a subset of the broad study conducted under the purview of a Department of Energy project funded to GM in developing state of the art computational tools for integrated manufacturing and structural performance prediction of carbon fiber composites. Fabric bending, picture frame testing, and bias-extension evaluations were carried out to determine the material parameters for these fabrics. The PAM-FORM computer program was used to model the draping behavior of these fabrics. Following deformation, fiber angle changes at different locations on the truncated pyramid were measured experimentally. The predicted angles matched the experimental results well as measured along the centerline and at several different locations on the deformed fabric. Details of the test methods used as well as the numerical results with various simulation parameters will be provided.« less
NASA Astrophysics Data System (ADS)
Mansour, F. A.; Nizam, M.; Anwar, M.
2017-02-01
This research aims to predict the optimum surface orientation angles in solar panel installation to achieve maximum solar radiation. Incident solar radiation is calculated using koronakis mathematical model. Particle Swarm Optimization (PSO) is used as computational method to find optimum angle orientation for solar panel installation in order to get maximum solar radiation. A series of simulation has been carried out to calculate solar radiation based on monthly, seasonally, semi-yearly and yearly period. South-facing was calculated also as comparison of proposed method. South-facing considers azimuth of 0°. Proposed method attains higher incident predictions than South-facing that recorded 2511.03 kWh/m2for monthly. It were about 2486.49 kWh/m2, 2482.13 kWh/m2and 2367.68 kWh/m2 for seasonally, semi-yearly and yearly. South-facing predicted approximately 2496.89 kWh/m2, 2472.40 kWh/m2, 2468.96 kWh/m2, 2356.09 kWh/m2for monthly, seasonally, semi-yearly and yearly periods respectively. Semi-yearly is the best choice because it needs twice adjustments of solar panel in a year. Yet it considers inefficient to adjust solar panel position in every season or monthly with no significant solar radiation increase than semi-yearly and solar tracking device still considers costly in solar energy system. PSO was able to predict accurately with simple concept, easy and computationally efficient. It has been proven by finding the best fitness faster.
Elbaz, Mohammed S M; van der Geest, Rob J; Calkoen, Emmeline E; de Roos, Albert; Lelieveldt, Boudewijn P F; Roest, Arno A W; Westenberg, Jos J M
2017-02-01
To evaluate viscous energy loss and the association with three-dimensional (3D) vortex ring formation in left ventricular (LV) blood flow during diastolic filling. Thirty healthy volunteers were compared with 32 patients with corrected atrioventricular septal defect as unnatural mitral valve morphology and inflow are common in these patients. 4DFlow MRI was acquired from which 3D vortex ring formation was identified in LV blood flow at peak early (E)-filling and late (A)-filling and characterized by its presence/absence, orientation, and position from the lateral wall. Viscous energy loss was computed over E-filling, A-filling, and complete diastole using the Navier-Stokes energy equations. Compared with healthy volunteers, viscous energy loss was significantly elevated in patients with disturbed vortex ring formation as characterized by a significantly inclined orientation and/or position closer to the lateral wall. Highest viscous energy loss was found in patients without a ring-shaped vortex during E-filling (on average more than double compared with patients with ring-shape vortex, P < 0.003). Altered A-filling vortex ring formation was associated with significant increase in total viscous energy loss over diastole even in the presence of normal E-filling vortex ring. Altered vortex ring formation during LV filling is associated with increased viscous energy loss. Magn Reson Med 77:794-805, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
van der Geest, Rob J.; Calkoen, Emmeline E.; de Roos, Albert; Lelieveldt, Boudewijn P.F.; Roest, Arno A.W.; Westenberg, Jos J.M.
2016-01-01
Purpose To evaluate viscous energy loss and the association with three‐dimensional (3D) vortex ring formation in left ventricular (LV) blood flow during diastolic filling. Theory and Methods Thirty healthy volunteers were compared with 32 patients with corrected atrioventricular septal defect as unnatural mitral valve morphology and inflow are common in these patients. 4DFlow MRI was acquired from which 3D vortex ring formation was identified in LV blood flow at peak early (E)‐filling and late (A)‐filling and characterized by its presence/absence, orientation, and position from the lateral wall. Viscous energy loss was computed over E‐filling, A‐filling, and complete diastole using the Navier‐Stokes energy equations. Results Compared with healthy volunteers, viscous energy loss was significantly elevated in patients with disturbed vortex ring formation as characterized by a significantly inclined orientation and/or position closer to the lateral wall. Highest viscous energy loss was found in patients without a ring‐shaped vortex during E‐filling (on average more than double compared with patients with ring‐shape vortex, P < 0.003). Altered A‐filling vortex ring formation was associated with significant increase in total viscous energy loss over diastole even in the presence of normal E‐filling vortex ring. Conclusion Altered vortex ring formation during LV filling is associated with increased viscous energy loss. Magn Reson Med 77:794–805, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. PMID:26924448
Object-oriented Tools for Distributed Computing
NASA Technical Reports Server (NTRS)
Adler, Richard M.
1993-01-01
Distributed computing systems are proliferating, owing to the availability of powerful, affordable microcomputers and inexpensive communication networks. A critical problem in developing such systems is getting application programs to interact with one another across a computer network. Remote interprogram connectivity is particularly challenging across heterogeneous environments, where applications run on different kinds of computers and operating systems. NetWorks! (trademark) is an innovative software product that provides an object-oriented messaging solution to these problems. This paper describes the design and functionality of NetWorks! and illustrates how it is being used to build complex distributed applications for NASA and in the commercial sector.
An Object-Oriented Approach to Writing Computational Electromagnetics Codes
NASA Technical Reports Server (NTRS)
Zimmerman, Martin; Mallasch, Paul G.
1996-01-01
Presently, most computer software development in the Computational Electromagnetics (CEM) community employs the structured programming paradigm, particularly using the Fortran language. Other segments of the software community began switching to an Object-Oriented Programming (OOP) paradigm in recent years to help ease design and development of highly complex codes. This paper examines design of a time-domain numerical analysis CEM code using the OOP paradigm, comparing OOP code and structured programming code in terms of software maintenance, portability, flexibility, and speed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thi, Thanh Binh Nguyen; Morioka, Mizuki; Yokoyama, Atsushi
Numerical prediction of the fiber orientation in the short-glass fiber (GF) reinforced polyamide 6 (PA6) composites with the fiber weight concentration of 30%, 50%, and 70% manufactured by the injection molding process is presented. And the fiber orientation was also directly observed and measured through X-ray computed tomography. During the injection molding process of the short-fiber/thermoplastic composite, the fiber orientation is produced by the flow states and the fiber-fiber interaction. Folgar and Tucker equation is the well known for modeling the fiber orientation in a concentrated suspension. They included into Jeffrey’s equation a diffusive type of term by introducing amore » phenomenological coefficient to account for the fiber-fiber interaction. Our developed model for the fiber-fiber interaction was proposed by modifying the rotary diffusion term of the Folgar-Tucker equation. This model was presented in a conference paper of the 29{sup th} International Conference of the Polymer Processing Society published by AIP conference proceeding. For modeling fiber interaction, the fiber dynamic simulation was introduced in order to obtain a global fiber interaction coefficient, which is sum function of the fiber concentration, aspect ratio, and angular velocity. The fiber orientation is predicted by using the proposed fiber interaction model incorporated into a computer aided engineering simulation package C-Mold. An experimental program has been carried out in which the fiber orientation distribution has been measured in 100 x 100 x 2 mm injection-molded plate and 100 x 80 x 2 mm injection-molded weld by analyzed with a high resolution 3D X-ray computed tomography system XVA-160α, and calculated by X-ray computed tomography imaging. The numerical prediction shows a good agreement with experimental validation. And the complex fiber orientation in the injection-molded weld was investigated.« less
NASA Astrophysics Data System (ADS)
Thi, Thanh Binh Nguyen; Morioka, Mizuki; Yokoyama, Atsushi; Hamanaka, Senji; Yamashita, Katsuhisa; Nonomura, Chisato
2015-05-01
Numerical prediction of the fiber orientation in the short-glass fiber (GF) reinforced polyamide 6 (PA6) composites with the fiber weight concentration of 30%, 50%, and 70% manufactured by the injection molding process is presented. And the fiber orientation was also directly observed and measured through X-ray computed tomography. During the injection molding process of the short-fiber/thermoplastic composite, the fiber orientation is produced by the flow states and the fiber-fiber interaction. Folgar and Tucker equation is the well known for modeling the fiber orientation in a concentrated suspension. They included into Jeffrey's equation a diffusive type of term by introducing a phenomenological coefficient to account for the fiber-fiber interaction. Our developed model for the fiber-fiber interaction was proposed by modifying the rotary diffusion term of the Folgar-Tucker equation. This model was presented in a conference paper of the 29th International Conference of the Polymer Processing Society published by AIP conference proceeding. For modeling fiber interaction, the fiber dynamic simulation was introduced in order to obtain a global fiber interaction coefficient, which is sum function of the fiber concentration, aspect ratio, and angular velocity. The fiber orientation is predicted by using the proposed fiber interaction model incorporated into a computer aided engineering simulation package C-Mold. An experimental program has been carried out in which the fiber orientation distribution has been measured in 100 x 100 x 2 mm injection-molded plate and 100 x 80 x 2 mm injection-molded weld by analyzed with a high resolution 3D X-ray computed tomography system XVA-160α, and calculated by X-ray computed tomography imaging. The numerical prediction shows a good agreement with experimental validation. And the complex fiber orientation in the injection-molded weld was investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christensen, C.; Horowitz, S.
In subdivisions, house orientations are largely determined by street layout. The resulting house orientations affect energy consumption (annual and on-peak) for heating and cooling, depending on window area distributions and shading from neighboring houses. House orientations also affect energy production (annual and on-peak) from solar thermal and photovoltaic systems, depending on available roof surfaces. Therefore, house orientations fundamentally influence both energy consumption and production, and an appropriate street layout is a prerequisite for taking full advantage of energy efficiency and renewable energy opportunities. The potential influence of street layout on solar performance is often acknowledged, but solar and energy issuesmore » must compete with many other criteria and constraints that influence subdivision street layout. When only general guidelines regarding energy are available, these factors may be ignored or have limited effect. Also, typical guidelines are often not site-specific and do not account for local parameters such as climate and the time value of energy. For energy to be given its due consideration in subdivision design, energy impacts need to be accurately quantified and displayed interactively to facilitate analysis of design alternatives. This paper describes a new computerized Subdivision Energy Analysis Tool being developed to allow users to interactively design subdivision street layouts while receiving feedback about energy impacts based on user-specified building design variants and availability of roof surfaces for photovoltaic and solar water heating systems.« less
NASA Astrophysics Data System (ADS)
Bonitati, Joey; Slimmer, Ben; Li, Weichuan; Potel, Gregory; Nunes, Filomena
2017-09-01
The calculable form of the R-matrix method has been previously shown to be a useful tool in approximately solving the Schrodinger equation in nuclear scattering problems. We use this technique combined with the Gauss quadrature for the Lagrange-mesh method to efficiently solve for the wave functions of projectile nuclei in low energy collisions (1-100 MeV) involving an arbitrary number of channels. We include the local Woods-Saxon potential, the non-local potential of Perey and Buck, a Coulomb potential, and a coupling potential to computationally solve for the wave function of two nuclei at short distances. Object oriented programming is used to increase modularity, and parallel programming techniques are introduced to reduce computation time. We conclude that the R-matrix method is an effective method to predict the wave functions of nuclei in scattering problems involving both multiple channels and non-local potentials. Michigan State University iCER ACRES REU.
Operation of the computer model for direct atomic oxygen exposure of Earth satellites
NASA Technical Reports Server (NTRS)
Bourassa, R. J.; Gruenbaum, P. E.; Gillis, J. R.; Hargraves, C. R.
1995-01-01
One of the primary causes of material degradation in low Earth orbit (LEO) is exposure to atomic oxygen. When atomic oxygen molecules collide with an orbiting spacecraft, the relative velocity is 7 to 8 km/sec and the collision energy is 4 to 5 eV per atom. Under these conditions, atomic oxygen may initiate a number of chemical and physical reactions with exposed materials. These reactions contribute to material degradation, surface erosion, and contamination. Interpretation of these effects on materials and the design of space hardware to withstand on-orbit conditions requires quantitative knowledge of the atomic oxygen exposure environment. Atomic oxygen flux is a function of orbit altitude, the orientation of the orbit plan to the Sun, solar and geomagnetic activity, and the angle between exposed surfaces and the spacecraft heading. We have developed a computer model to predict the atomic oxygen exposure of spacecraft in low Earth orbit. The application of this computer model is discussed.
Orientation/Time Management Skill Training Lesson: Development and Evaluation
1979-07-01
instructional environment. This Orientation/ Time Management lesson provides students with appropriate role models for increasing acceptance of their...time savings can be obtained by a combination of this type of orientation and time management skill training with a computer-based progress targeting
NASA Astrophysics Data System (ADS)
Grinberg, Horacio; Freed, Karl F.; Williams, Carl J.
1997-08-01
The analytical infinite order sudden (IOS) quantum theory of triatomic photodissociation, developed in paper I, is applied to study the indirect photodissociation of NOCl through a real or virtual intermediate state. The theory uses the IOS approximation for the dynamics in the final dissociative channels and an Airy function approximation for the continuum functions. The transition is taken as polarized in the plane of the molecule; symmetric top wave functions are used for both the initial and intermediate bound states; and simple semiempirical model potentials are employed for each state. The theory provides analytical expressions for the photofragment yield spectrum for producing particular final fragment ro-vibrational states as a function of the photon excitation energy. Computations are made of the photofragment excitation spectrum of NOCl in the region of the T1(13A″)←S0(11A') transition for producing the NO fragment in the vibrational states nNO=0, 1, and 2. The computed spectra for the unexcited nNO==0 and excited nNO=2 states are in reasonable agreement with experiment. However, some discrepancies are observed for the singly excited nNO=1 vibrational state, indicating deficiencies in the semiempirical potential energy surface. Computations for two different orientations of the in-plane transition dipole moment produce very similar excitation spectra. Calculations of fragment rotational distributions are performed for high values of the total angular momentum J, a feature that would be very difficult to perform with close-coupled methods. Computations are also made of the thermally averaged rotational energy distributions to simulate the conditions in actual supersonic jet experiments.
Progress in modeling and simulation.
Kindler, E
1998-01-01
For the modeling of systems, the computers are more and more used while the other "media" (including the human intellect) carrying the models are abandoned. For the modeling of knowledges, i.e. of more or less general concepts (possibly used to model systems composed of instances of such concepts), the object-oriented programming is nowadays widely used. For the modeling of processes existing and developing in the time, computer simulation is used, the results of which are often presented by means of animation (graphical pictures moving and changing in time). Unfortunately, the object-oriented programming tools are commonly not designed to be of a great use for simulation while the programming tools for simulation do not enable their users to apply the advantages of the object-oriented programming. Nevertheless, there are exclusions enabling to use general concepts represented at a computer, for constructing simulation models and for their easy modification. They are described in the present paper, together with true definitions of modeling, simulation and object-oriented programming (including cases that do not satisfy the definitions but are dangerous to introduce misunderstanding), an outline of their applications and of their further development. In relation to the fact that computing systems are being introduced to be control components into a large spectrum of (technological, social and biological) systems, the attention is oriented to models of systems containing modeling components.
NASA Astrophysics Data System (ADS)
Mallory, Joel D.; Mandelshtam, Vladimir A.
2016-08-01
We employ the diffusion Monte Carlo (DMC) method in conjunction with the recently developed, ab initio-based MB-pol potential energy surface to characterize the ground states of small (H2O)2-6 clusters and their deuterated isotopomers. Observables, other than the ground state energies, are computed using the descendant weighting approach. Among those are various spatial correlation functions and relative isomer fractions. Interestingly, the ground states of all clusters considered in this study, except for the dimer, are delocalized over at least two conformations that differ by the orientation of one or more water monomers with the relative isomer populations being sensitive to the isotope substitution. Most remarkably, the ground state of the (H2O)6 hexamer is represented by four distinct cage structures, while that of (D2O)6 is dominated by the prism, i.e., the global minimum geometry, with a very small contribution from a prism-book geometry. In addition, for (H2O)6 and (D2O)6, we performed DMC calculations to compute the ground states constrained to the cage and prism geometries. These calculations compared results for three different potentials, MB-pol, TTM3/F, and q-TIP4P/F.
de Tudela, Ricardo Pérez; Barragán, Patricia; Prosmiti, Rita; Villarreal, Pablo; Delgado-Barrio, Gerardo
2011-03-31
Classical and path integral Monte Carlo (CMC, PIMC) "on the fly" calculations are carried out to investigate anharmonic quantum effects on the thermal equilibrium structure of the H5(+) cluster. The idea to follow in our computations is based on using a combination of the above-mentioned nuclear classical and quantum statistical methods, and first-principles density functional (DFT) electronic structure calculations. The interaction energies are computed within the DFT framework using the B3(H) hybrid functional, specially designed for hydrogen-only systems. The global minimum of the potential is predicted to be a nonplanar configuration of C(2v) symmetry, while the next three low-lying stationary points on the surface correspond to extremely low-energy barriers for the internal proton transfer and to the rotation of the H2 molecules, around the C2 axis of H5(+), connecting the symmetric C(2v) minima in the planar and nonplanar orientations. On the basis of full-dimensional converged PIMC calculations, results on the quantum vibrational zero-point energy (ZPE) and state of H5(+) are reported at a low temperature of 10 K, and the influence of the above-mentioned topological features of the surface on its probability distributions is clearly demonstrated.
NASA Technical Reports Server (NTRS)
Hochhalter, Jake D.; Littlewood, David J.; Christ, Robert J., Jr.; Veilleux, M. G.; Bozek, J. E.; Ingraffea, A. R.; Maniatty, Antionette M.
2010-01-01
The objective of this paper is to develop further a framework for computationally modeling microstructurally small fatigue crack growth in AA 7075-T651 [1]. The focus is on the nucleation event, when a crack extends from within a second-phase particle into a surrounding grain, since this has been observed to be an initiating mechanism for fatigue crack growth in this alloy. It is hypothesized that nucleation can be predicted by computing a non-local nucleation metric near the crack front. The hypothesis is tested by employing a combination of experimentation and nite element modeling in which various slip-based and energy-based nucleation metrics are tested for validity, where each metric is derived from a continuum crystal plasticity formulation. To investigate each metric, a non-local procedure is developed for the calculation of nucleation metrics in the neighborhood of a crack front. Initially, an idealized baseline model consisting of a single grain containing a semi-ellipsoidal surface particle is studied to investigate the dependence of each nucleation metric on lattice orientation, number of load cycles, and non-local regularization method. This is followed by a comparison of experimental observations and computational results for microstructural models constructed by replicating the observed microstructural geometry near second-phase particles in fatigue specimens. It is found that orientation strongly influences the direction of slip localization and, as a result, in uences the nucleation mechanism. Also, the baseline models, replication models, and past experimental observation consistently suggest that a set of particular grain orientations is most likely to nucleate fatigue cracks. It is found that a continuum crystal plasticity model and a non-local nucleation metric can be used to predict the nucleation event in AA 7075-T651. However, nucleation metric threshold values that correspond to various nucleation governing mechanisms must be calibrated.
NASA Astrophysics Data System (ADS)
Kumar Ray, Atish
There exists considerable debate in the texture community about whether grain interactions are a necessary factor to explain the development of deformation textures in polycrystalline metals. Computer simulations indicate that grain interactions play a significant role, while experimental evidence shows that the material type and starting orientation are more important in the development of texture and microstructure. A balanced review of the literature on face-centered cubic metals shows that the opposing viewpoints have developed due to the lack of any complete experimental study which considers both the intrinsic (material type and starting orientation) and extrinsic (grain interaction) factors. In this study, a novel method was developed to assemble ideally orientated crystalline aggregates in 99.99% aluminum (Al) or copper (Cu) to experimentally evaluate the effect of grain interactions on room temperature deformation texture. Ideal orientations relevant to face-centered cubic rolling textures, Cube {100} <001>, Goss {110} <001>, Brass {110} <11¯2> and Copper {112} <111¯> were paired in different combinations and deformed by plane strain compression to moderate strain levels of 1.0 to 1.5. Orientation dependent mechanical behavior was distinguishable from that of the neighbor-influenced behavior. In interacting crystals the constraint on the rolling direction shear strains (gammaXY , gammaXZ) was found to be most critical to show the effect of interactions via the evolution of local microstructure and microtexture. Interacting crystals with increasing deformations were observed to gradually rotate towards the S-component, {123} <634>. Apart from the average lattice reorientations, the interacting crystals also developed strong long-range orientation gradients inside the bulk of the crystal, which were identified as accumulating misorientations across the deformation boundaries. Based on a statistical procedure using quaternions, the orientation and interaction related heterogeneous deformations were characterized by three principal component vectors and their respective eigenvalues for both the orientation and misorientation distributions. For the case of a medium stacking fault energy metal like Cu, the texture and microstructure development depends wholly on the starting orientations. Microstructural instabilities in Cu are explained through a local slip clustering process, and the possible role of grain interactions on such instabilities is proposed. In contrast, the texture and microstructure development in a high stacking fault energy metal like Al is found to be dependent on the grain interactions. In general, orientation, grain interaction and material type were found to be key factors in the development of rolling textures in face-centered cubic metals and alloys. Moreso, in the texture development not any single parameter can be held responsible, rather, the interdependency of each of the three parameters must be considered. In this frame-work polycrystalline grains can be classified into four types according to their stability and susceptibility during deformation.
Banerjee, Suvrajit; Parimal, Siddharth; Cramer, Steven M
2017-08-18
Multimodal (MM) chromatography provides a powerful means to enhance the selectivity of protein separations by taking advantage of multiple weak interactions that include electrostatic, hydrophobic and van der Waals interactions. In order to increase our understanding of such phenomena, a computationally efficient approach was developed that combines short molecular dynamics simulations and continuum solvent based coarse-grained free energy calculations in order to study the binding of proteins to Self Assembled Monolayers (SAM) presenting MM ligands. Using this method, the free energies of protein-MM SAM binding over a range of incident orientations of the protein can be determined. The resulting free energies were then examined to identify the more "strongly bound" orientations of different proteins with two multimodal surfaces. The overall free energy of protein-MM surface binding was then determined and correlated to retention factors from isocratic chromatography. This correlation, combined with analytical expressions from the literature, was then employed to predict protein gradient elution salt concentrations as well as selectivity reversals with different MM resin systems. Patches on protein surfaces that interacted strongly with MM surfaces were also identified by determining the frequency of heavy atom contacts with the atoms of the MM SAMs. A comparison of these patches to Electrostatic Potential and hydrophobicity maps indicated that while all of these patches contained significant positive charge, only the highest frequency sites also possessed hydrophobicity. The ability to identify key binding patches on proteins may have significant impact on process development for the separation of bioproduct related impurities. Copyright © 2017 Elsevier B.V. All rights reserved.
Orientation-dependent structural and photocatalytic properties of LaCoO3 epitaxial nano-thin films
NASA Astrophysics Data System (ADS)
Zhang, Yan-ping; Liu, Hai-feng; Hu, Hai-long; Xie, Rui-shi; Ma, Guo-hua; Huo, Ji-chuan; Wang, Hai-bin
2018-02-01
LaCoO3 epitaxial films were grown on (100), (110) and (111) oriented LaAlO3 substrates by the polymer-assisted deposition method. Crystal structure measurement and cross-section observation indicate that all the LaCoO3 films are epitaxially grown in accordance with the orientation of LaAlO3 substrates, with biaxial compressive strain in the ab plane. Owing to the different strain directions of CoO6 octahedron, the mean Co-O bond length increases by different amounts in (100), (110) and (111) oriented films compared with that of bulk LaCoO3, and the (100) oriented LaCoO3 has the largest increase. Photocatalytic degradation of methyl orange indicates that the order of photocatalytic activity of the three oriented films is (100) > (111) > (110). Combined with analysis of electronic nature and band structure for LaCoO3 films, it is found that the change of the photocatalytic activity is closely related to the crystal field splitting energy of Co3+ and Co-O binding energy. The increase in the mean Co-O bond length will decrease the crystal field splitting energy of Co3+ and Co-O binding energy and further reduce the value of band gap energy, thus improving the photocatalytic activity. This may also provide a clue for expanding the visible-light-induced photocatalytic application of LaCoO3.
Philip A. Loring; F. Stuart Chapin; S. Craig Gerlach
2008-01-01
Computational thinking (CT) is a way to solve problems and understand complex systems that draws on concepts fundamental to computer science and is well suited to the challenges that face researchers of complex, linked social-ecological systems. This paper explores CT's usefulness to sustainability science through the application of the services-oriented...
ERIC Educational Resources Information Center
Ferreira, Deller James; Ambrósio, Ana Paula Laboissière; Melo, Tatiane F. N.
2018-01-01
This article describes how it is due to the fact that computer science is present in many activities of daily life, students need to develop skills to solve problems to improve the lives of people in general. This article investigates correlations between teachers' motivational orientations, beliefs and practices with respect to the application of…
Magnetic Flux Circulation During Dawn-Dusk Oriented Interplanetary Magnetic Field
NASA Technical Reports Server (NTRS)
Mitchell, E. J.; Lopez, R. E.; Fok, M.-C.; Deng, Y.; Wiltberger, M.; Lyon, J.
2010-01-01
Magnetic flux circulation is a primary mode of energy transfer from the solar wind into the ionosphere and inner magnetosphere. For southward interplanetary magnetic field (IMF), magnetic flux circulation is described by the Dungey cycle (dayside merging, night side reconnection, and magnetospheric convection), and both the ionosphere and inner magnetosphere receive energy. For dawn-dusk oriented IMF, magnetic flux circulation is not well understood, and the inner magnetosphere does not receive energy. Several models have been suggested for possible reconnection patterns; the general pattern is: dayside merging; reconnection on the dayside or along the dawn/dusk regions; and, return flow on dayside only. These models are consistent with the lack of energy in the inner magnetosphere. We will present evidence that the Dungey cycle does not explain the energy transfer during dawn-dusk oriented IMF. We will also present evidence of how magnetic flux does circulate during dawn-dusk oriented IMF, specifically how the magnetic flux reconnects and circulates back.
Wahlberg, Nanna; Madsen, Anders Ø; Mikkelsen, Kurt V
2018-06-09
The nucleation processes of acetaminophen on poly(methyl methacrylate) and poly(vinyl acetate) have been investigated and the mechanisms of the processes are studied. This is achieved by a combination of theoretical models and computational investigations within the framework of a modified QM/MM method; a Coulomb-van der Waals model. We have combined quantum mechanical computations and electrostatic models at the atomistic level for investigating the stability of different orientations of acetaminophen on the polymer surfaces. Based on the Coulomb-van der Waals model, we have determined the most stable orientation to be a flat orientation, and the strongest interaction is seen between poly(vinyl acetate) and the molecule in a flat orientation in vacuum.
NASA Astrophysics Data System (ADS)
Ehrman, Lisa M.
2005-07-01
Rather than emitting pulses, passive radar systems rely on "illuminators of opportunity," such as TV and FM radio, to illuminate potential targets. These systems are attractive since they allow receivers to operate without emitting energy, rendering them covert. Until recently, most of the research regarding passive radar has focused on detecting and tracking targets. This dissertation focuses on extending the capabilities of passive radar systems to include automatic target recognition. The target recognition algorithm described in this dissertation uses the radar cross section (RCS) of potential targets, collected over a short period of time, as the key information for target recognition. To make the simulated RCS as accurate as possible, the received signal model accounts for aircraft position and orientation, propagation losses, and antenna gain patterns. An extended Kalman filter (EKF) estimates the target's orientation (and uncertainty in the estimate) from velocity measurements obtained from the passive radar tracker. Coupling the aircraft orientation and state with the known antenna locations permits computation of the incident and observed azimuth and elevation angles. The Fast Illinois Solver Code (FISC) simulates the RCS of potential target classes as a function of these angles. Thus, the approximated incident and observed angles allow the appropriate RCS to be extracted from a database of FISC results. Using this process, the RCS of each aircraft in the target class is simulated as though each is executing the same maneuver as the target detected by the system. Two additional scaling processes are required to transform the RCS into a power profile (magnitude only) simulating the signal in the receiver. First, the RCS is scaled by the Advanced Refractive Effects Prediction System (AREPS) code to account for propagation losses that occur as functions of altitude and range. Then, the Numerical Electromagnetic Code (NEC2) computes the antenna gain pattern, further scaling the RCS. A Rician likelihood model compares the scaled RCS of the illuminated aircraft with those of the potential targets. To improve the robustness of the result, the algorithm jointly optimizes over feasible orientation profiles and target types via dynamic programming.
NASA Astrophysics Data System (ADS)
Ge, Jun; Remiens, Denis; Costecalde, Jean; Chen, Ying; Dong, Xianlin; Wang, Genshui
2013-10-01
The effect of residual stress on energy storage property was investigated for a series of PbZrO3 thin films on SrTiO3 and Si substrates. Compressive or tensile residual stress influences the critical electric field EA for the ferroelectric-to-antiferroelectric phase transition, thus for films with (110)/(101) orientation, energy density W of films on SrTiO3 is 38% larger than films on Si; in contrast, (001)-oriented PbZrO3 films on SrTiO3 show slightly smaller W compared to films on Si. We conclude that the different responses of W to stress are related to the different constrain states in films with different orientations.
NASA Astrophysics Data System (ADS)
Bordner, Andrew J.; Zorman, Barry; Abagyan, Ruben
2011-10-01
Membrane proteins comprise a significant fraction of the proteomes of sequenced organisms and are the targets of approximately half of marketed drugs. However, in spite of their prevalence and biomedical importance, relatively few experimental structures are available due to technical challenges. Computational simulations can potentially address this deficit by providing structural models of membrane proteins. Solvation within the spatially heterogeneous membrane/solvent environment provides a major component of the energetics driving protein folding and association within the membrane. We have developed an implicit solvation model for membranes that is both computationally efficient and accurate enough to enable molecular mechanics predictions for the folding and association of peptides within the membrane. We derived the new atomic solvation model parameters using an unbiased fitting procedure to experimental data and have applied it to diverse problems in order to test its accuracy and to gain insight into membrane protein folding. First, we predicted the positions and orientations of peptides and complexes within the lipid bilayer and compared the simulation results with solid-state NMR structures. Additionally, we performed folding simulations for a series of host-guest peptides with varying propensities to form alpha helices in a hydrophobic environment and compared the structures with experimental measurements. We were also able to successfully predict the structures of amphipathic peptides as well as the structures for dimeric complexes of short hexapeptides that have experimentally characterized propensities to form beta sheets within the membrane. Finally, we compared calculated relative transfer energies with data from experiments measuring the effects of mutations on the free energies of translocon-mediated insertion of proteins into lipid bilayers and of combined folding and membrane insertion of a beta barrel protein.
NASA Astrophysics Data System (ADS)
Priye, Aashish; Marlow, William H.
2013-10-01
The phenomenon of particle resuspension plays a vital role in numerous fields. Among many aspects of particle resuspension dynamics, a dominant concern is the accurate description and formulation of the van der Waals (vdW) interactions between the particle and substrate. Current models treat adhesion by incorporating a material-dependent Hamaker's constant which relies on the heuristic Hamaker's two-body interactions. However, this assumption of pairwise summation of interaction energies can lead to significant errors in condensed matter as it does not take into account the many-body interaction and retardation effects. To address these issues, an approach based on Lifshitz continuum theory of vdW interactions has been developed to calculate the principal many-body interactions between arbitrary geometries at all separation distances to a high degree of accuracy through Lifshitz's theory. We have applied this numerical implementation to calculate the many-body vdW interactions between spherical particles and surfaces with sinusoidally varying roughness profile and also to non-spherical particles (cubes, cylinders, tetrahedron etc) orientated differently with respect to the surface. Our calculations revealed that increasing the surface roughness amplitude decreases the adhesion force and non-spherical particles adhere to the surfaces more strongly when their flatter sides are oriented towards the surface. Such practical shapes and structures of particle-surface systems have not been previously considered in resuspension models and this rigorous treatment of vdW interactions provides more realistic adhesion forces between the particle and the surface which can then be coupled with computational fluid dynamics models to improve the predictive capabilities of particle resuspension dynamics.
Whiteley, Chris G; Lee, Duu-Jong
2016-09-09
The interaction of gold nanoparticles (AuNP) with human immune-deficiency virus aspartic protease (HIVPR) is modelled using a regime of molecular dynamics simulations. The simulations of the 'docking', first as a rigid-body complex, and eventually through flexible-fit analysis, creates 36 different complexes from four initial orientations of the nanoparticle strategically positioned around the surface of the enzyme. The structural deviations of the enzymes from the initial x-ray crystal structure during each docking simulation are assessed by comparative analysis of secondary structural elements, root mean square deviations, B-factors, interactive bonding energies, dihedral angles, radius of gyration (R g), circular dichroism (CD), volume occupied by C α , electrostatic potentials, solvation energies and hydrophobicities. Normalisation of the data narrows the selection from the initial 36 to one 'final' probable structure. It is concluded that, after computer simulations on each of the 36 initial complexes incorporating the 12 different biophysical techniques, the top five complexes are the same no matter which technique is explored. The significance of the present work is an expansion of an earlier study on the molecular dynamic simulation for the interaction of HIVPR with silver nanoparticles. This work is supported by experimental evidence since the initial 'orientation' of the AgNP with the enzyme is the same as the 'final' AuNP-HIVPR complex generated in the present study. The findings will provide insight into the forces of the binding of the HIVPR to AuNP. It is anticipated that the protocol developed in this study will act as a standard process for the interaction of any nanoparticle with any biomedical target.
Stress and performance: do service orientation and emotional energy moderate the relationship?
Smith, Michael R; Rasmussen, Jennifer L; Mills, Maura J; Wefald, Andrew J; Downey, Ronald G
2012-01-01
The current study examines the moderating effect of customer service orientation and emotional energy on the stress-performance relationship for 681 U.S. casual dining restaurant employees. Customer service orientation was hypothesized to moderate the stress-performance relationship for Front-of-House (FOH) workers. Emotional energy was hypothesized to moderate stress-performance for Back-of-House (BOH) workers. Contrary to expectations, customer service orientation failed to moderate the effects of stress on performance for FOH employees, but the results supported that customer service orientation is likely a mediator of the relationship. However, the hypothesis was supported for BOH workers; emotional energy was found to moderate stress performance for these employees. This finding suggests that during times of high stress, meaningful, warm, and empathetic relationships are likely to impact BOH workers' ability to maintain performance. These findings have real-world implications in organizational practice, including highlighting the importance of developing positive and meaningful social interactions among workers and facilitating appropriate person-job fits. Doing so is likely to help in alleviating worker stress and is also likely to encourage worker performance.
A scattering model for defoliated vegetation
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.
1986-01-01
A scattering model for defoliated vegetation is conceived as a layer of dielectric, finite-length cylinders with specified size and orientation distributions above an irregular ground surface. The scattering phase matrix of a single cylinder is computed, then the radiative transfer technique is applied to link volume scattering from vegetation to surface scattering from the soil surface. Polarized and depolarized scattering are computed and the effects of the cylinder size and orientation distributions are illustrated. It is found that size and orientation distributions have significant effects on the backscattered signal. The model is compared with scattering from defoliated trees and agricultural crops.
The Effect of Planetary Albedo on Solar Orientation of Spacecraft
NASA Technical Reports Server (NTRS)
Fontana, Anthony
1967-01-01
The analytical expression for the solar orientation error caused by planetary albedo is derived. A typical solar sensor output characteristic is assumed and a computer solution to the analytical is obtained. The computer results are presented for a spacecraft in the vicinity of Earth, Venus, Mars, and the Moon. Each planetary body is assumed to be a spherical diffuse reflector with cylindrical shadows and a constant albedo. The data generated herein permit the selection of an appropriate coarse-sensor to fine-sensor switching angle for solar orientation control systems and facilitate the the interpretation of solar-referenced scientific experiment data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2017-01-11
Anthropogenic carbon dioxide (CO 2) emission from point sources, such as coal fired-power plants, account for the majority of the green houses gasses in the atmosphere. Capture, storage and utilization are required to mitigate adverse environmental effects. Aqueous amine-based CO 2 capture solvents are currently considered the industry standard, but deployment to market is limited by their high regeneration energy demand. In that context, energy efficient and less-viscous water-lean transformational solvent systems known as CO 2 Binding Organic Liquids (CO 2BOLs) are being developed in our group to advance this technology to commercialization. Herein, we present a logical design approachmore » based on fundamental concepts of organic chemistry and computer simulations aimed at lowering solvent viscosity. Conceptually, viscosity reduction would be achieved by systemmatic methods such as introduction of steric hindrance on the anion to minimize the intermolecular cation-anion interactions, fine tuning the electronics, hydrogen bonding orientation and strength, and charge solvation. Conventional standard trial-and-error approaches while effective, are time consuming and economically expensive. Herein, we rethink the metrics and design principles of low-viscosity CO 2 capture solvents using a combined synthesis and computational modeling approach. We critically study the impacts of modyfying factors such as as orientation of hydrogen bonding, introduction of higher degrees of freedom and cation or anion charge solvation and assess if or how each factor impacts viscosity of CO 2BOL CO 2 capture solvents. Ultimately, we found that hydrogen bond orientation and strength is predominantly influencing the viscosity in CO 2BOL solvents. With this knowledge, a new 1-MEIPADM-2-BOL CO 2BOL variant was synthesized and tested, resulting in a solvent that is approximately 60% less viscous at 25 mol% CO 2 loading with respect to our base compound 1-IPADM-2-BOL. The insights gained from the current study redefines the fundamental concepts and understanding of what influences viscosity in concentrated organic CO 2 capture solvents.« less
Ribeiro, Douglas S
2017-06-01
This study presents computations of three energy related properties for 26 previously published multisite intermolecular potentials of methane: MM2, MM3, MM2en, MM3en, MM2mc, MM3mc, MM3envir, RMK, OPLS all-atom, MUB-2, AMBER, BOYD, Williams, Sheikh, MG, Tsuzuki, E2-Gay, E4-Gay, MP4exp-6(iii), MP4exp-6(iv), Rowley-A, Rowley-B, TraPPE-EH, Ouyang, CLC, and Chao and three united atom potentials: Saager-Fischer (SF), OPLS united atom, and HFD. The three properties analyzed are the second virial coefficients for 14 temperature points in the range of 110 to 623.15 K, the interaction energies for 12 orientations of the methane dimer as a function of distance followed by a comparison to three ab initio data sets and the cohesive energy of the aggregate of 512 methane molecules. The latter computed energies are correlated to latent heat of evaporation of 11 potentials and are proposed as surrogate approximate parameters for ΔH vap for the studied potentials. The 10 best performing potentials are selected by rms order in each one of the properties and three of them are found to be present simultaneously in the three sets: Tsuzuki, MM3mc, and MM2mc. On the basis of the cohesive energy of the aggregate, a quantitative measure of the anisotropy of the potentials is proposed. The results are discussed on the basis of anisotropy, nonadditivity and ability of the potentials to reproduce ab initio data. It is concluded that the nonadditivity of the pair potentials holds and the available ab initio data did not lead to pair potentials that are cohesive enough to reproduce accurately the second virial coefficients.
D Animation Reconstruction from Multi-Camera Coordinates Transformation
NASA Astrophysics Data System (ADS)
Jhan, J. P.; Rau, J. Y.; Chou, C. M.
2016-06-01
Reservoir dredging issues are important to extend the life of reservoir. The most effective and cost reduction way is to construct a tunnel to desilt the bottom sediment. Conventional technique is to construct a cofferdam to separate the water, construct the intake of tunnel inside and remove the cofferdam afterwards. In Taiwan, the ZengWen reservoir dredging project will install an Elephant-trunk Steel Pipe (ETSP) in the water to connect the desilting tunnel without building the cofferdam. Since the installation is critical to the whole project, a 1:20 model was built to simulate the installation steps in a towing tank, i.e. launching, dragging, water injection, and sinking. To increase the construction safety, photogrammetry technic is adopted to record images during the simulation, compute its transformation parameters for dynamic analysis and reconstruct the 4D animations. In this study, several Australiscoded targets are fixed on the surface of ETSP for auto-recognition and measurement. The cameras orientations are computed by space resection where the 3D coordinates of coded targets are measured. Two approaches for motion parameters computation are proposed, i.e. performing 3D conformal transformation from the coordinates of cameras and relative orientation computation by the orientation of single camera. Experimental results show the 3D conformal transformation can achieve sub-mm simulation results, and relative orientation computation shows the flexibility for dynamic motion analysis which is easier and more efficiency.
NASA Astrophysics Data System (ADS)
Li, X.; Li, S. W.
2012-07-01
In this paper, an efficient global optimization algorithm in the field of artificial intelligence, named Particle Swarm Optimization (PSO), is introduced into close range photogrammetric data processing. PSO can be applied to obtain the approximate values of exterior orientation elements under the condition that multi-intersection photography and a small portable plane control frame are used. PSO, put forward by an American social psychologist J. Kennedy and an electrical engineer R.C. Eberhart, is a stochastic global optimization method based on swarm intelligence, which was inspired by social behavior of bird flocking or fish schooling. The strategy of obtaining the approximate values of exterior orientation elements using PSO is as follows: in terms of image coordinate observed values and space coordinates of few control points, the equations of calculating the image coordinate residual errors can be given. The sum of absolute value of each image coordinate is minimized to be the objective function. The difference between image coordinate observed value and the image coordinate computed through collinear condition equation is defined as the image coordinate residual error. Firstly a gross area of exterior orientation elements is given, and then the adjustment of other parameters is made to get the particles fly in the gross area. After iterative computation for certain times, the satisfied approximate values of exterior orientation elements are obtained. By doing so, the procedures like positioning and measuring space control points in close range photogrammetry can be avoided. Obviously, this method can improve the surveying efficiency greatly and at the same time can decrease the surveying cost. And during such a process, only one small portable control frame with a couple of control points is employed, and there are no strict requirements for the space distribution of control points. In order to verify the effectiveness of this algorithm, two experiments are carried out. In the first experiment, images of a standard grid board are taken according to multi-intersection photography using digital camera. Three points or six points which are located on the left-down corner of the standard grid are regarded as control points respectively, and the exterior orientation elements of each image are computed through PSO, and compared with these elements computed through bundle adjustment. In the second experiment, the exterior orientation elements obtained from the first experiment are used as approximate values in bundle adjustment and then the space coordinates of other grid points on the board can be computed. The coordinate difference of grid points between these computed space coordinates and their known coordinates can be used to compute the accuracy. The point accuracy computed in above experiments are ±0.76mm and ±0.43mm respectively. The above experiments prove the effectiveness of PSO used in close range photogrammetry to compute approximate values of exterior orientation elements, and the algorithm can meet the requirement of higher accuracy. In short, PSO can get better results in a faster, cheaper way compared with other surveying methods in close range photogrammetry.
Method for Statically Checking an Object-oriented Computer Program Module
NASA Technical Reports Server (NTRS)
Bierhoff, Kevin M. (Inventor); Aldrich, Jonathan (Inventor)
2012-01-01
A method for statically checking an object-oriented computer program module includes the step of identifying objects within a computer program module, at least one of the objects having a plurality of references thereto, possibly from multiple clients. A discipline of permissions is imposed on the objects identified within the computer program module. The permissions enable tracking, from among a discrete set of changeable states, a subset of states each object might be in. A determination is made regarding whether the imposed permissions are violated by a potential reference to any of the identified objects. The results of the determination are output to a user.
Java and its future in biomedical computing.
Rodgers, R P
1996-01-01
Java, a new object-oriented computing language related to C++, is receiving considerable attention due to its use in creating network-sharable, platform-independent software modules (known as "applets") that can be used with the World Wide Web. The Web has rapidly become the most commonly used information-retrieval tool associated with the global computer network known as the Internet, and Java has the potential to further accelerate the Web's application to medical problems. Java's potentially wide acceptance due to its Web association and its own technical merits also suggests that it may become a popular language for non-Web-based, object-oriented computing. PMID:8880677
NASA Astrophysics Data System (ADS)
Savkiv, Volodymyr; Mykhailyshyn, Roman; Duchon, Frantisek; Mikhalishin, Mykhailo
2017-11-01
The article deals with the topical issue of reducing energy consumption for transportation of industrial objects. The energy efficiency of the process of objects manipulation with the use of the orientation optimization method while gripping with the help of different methods has been studied. The analysis of the influence of the constituent parts of inertial forces, that affect the object of manipulation, on the necessary force characteristics and energy consumption of Bernoulli gripping device has been proposed. The economic efficiency of the use of the optimal orientation of Bernoulli gripping device while transporting the object of manipulation in comparison to the transportation without re-orientation has been proved.
ERIC Educational Resources Information Center
Sins, Patrick H. M.; van Joolingen, Wouter R.; Savelsbergh, Elwin R.; van Hout-Wolters, Bernadette
2008-01-01
Purpose of the present study was to test a conceptual model of relations among achievement goal orientation, self-efficacy, cognitive processing, and achievement of students working within a particular collaborative task context. The task involved a collaborative computer-based modeling task. In order to test the model, group measures of…
ERIC Educational Resources Information Center
Guloy, Sheryl; Salimi, Farimah; Cukierman, Diana; McGee Thompson, Donna
2017-01-01
Using a design-based orientation, this mixed-method study explored ways to support computing science and engineering students whose study strategies may be inadequate to meet coursework expectations. Learning support workshops, paired with university courses, have been found to assist students as they transition to university learning, thereby…
Nonlinear elastic effects on the energy flux deviation of ultrasonic waves in gr/ep composites
NASA Technical Reports Server (NTRS)
Prosser, William H.; Kriz, R. D.; Fitting, Dale W.
1992-01-01
The effects of nonlinear elasticity on energy flux deviation in undirectional gr/ep composites are examined. The shift in the flux deviation is modeled using acoustoelasticity theory and the second- and third-order elastic stiffness coefficients for T300/5208 gr/ep. Two conditions of applied uniaxial stress are considered. In the first case, the direction of applied uniaxial stress was along the fiber axis (x3), while in the second case it was perpendicular to the fiber axis along the laminate stacking direction (x1). For both conditions, the change in the energy flux deviation angle from the condition of zero applied stress is computed over the range of propagation directions of 0 to 60 deg from the fiber axis at two-degree intervals. A positive flux deviation angle implies the energy deviates away from the fiber direction toward the x1 axis, while a negative deviation means that the energy deviates toward the fibers. Over this range of fiber orientation angles, the energy of the quasi-longitudinal and pure mode transverse waves deviates toward the fibers, while that of the quasi-transverse mode deviates away from the fibers.
A Fast Evaluation Method for Energy Building Consumption Based on the Design of Experiments
NASA Astrophysics Data System (ADS)
Belahya, Hocine; Boubekri, Abdelghani; Kriker, Abdelouahed
2017-08-01
Building sector is one of the effective consumer energy by 42% in Algeria. The need for energy has continued to grow, in inordinate way, due to lack of legislation on energy performance in this large consumer sector. Another reason is the simultaneous change of users’ requirements to maintain their comfort, especially summer in dry lands and parts of southern Algeria, where the town of Ouargla presents a typical example which leads to a large amount of electricity consumption through the use of air conditioning. In order to achieve a high performance envelope of the building, an optimization of major parameters building envelope is required, using design of experiments (DOE), can determine the most effective parameters and eliminate the less importance. The study building is often complex and time consuming due to the large number of parameters to consider. This study focuses on reducing the computing time and determines the major parameters of building energy consumption, such as area of building, factor shape, orientation, ration walls to windows …etc to make some proposal models in order to minimize the seasonal energy consumption due to air conditioning needs.
Temperature dependence of stacking faults in catalyst-free GaAs nanopillars.
Shapiro, Joshua N; Lin, Andrew; Ratsch, Christian; Huffaker, D L
2013-11-29
Impressive opto-electronic devices and transistors have recently been fabricated from GaAs nanopillars grown by catalyst-free selective-area epitaxy, but this growth technique has always resulted in high densities of stacking faults. A stacking fault occurs when atoms on the growing (111) surface occupy the sites of a hexagonal-close-pack (hcp) lattice instead of the normal face-centered-cubic (fcc) lattice sites. When stacking faults occur consecutively, the crystal structure is locally wurtzite instead of zinc-blende, and the resulting band offsets are known to negatively impact device performance. Here we present experimental and theoretical evidence that indicate stacking fault formation is related to the size of the critical nucleus, which is temperature dependent. The difference in energy between the hcp and fcc orientation of small nuclei is computed using density-function theory. The minimum energy difference of 0.22 eV is calculated for a nucleus with 21 atoms, so the population of nuclei in the hcp orientation is expected to decrease as the nucleus grows larger. The experiment shows that stacking fault occurrence is dramatically reduced from 22% to 3% by raising the growth temperature from 730 to 790 ° C. These data are interpreted using classical nucleation theory which dictates a larger critical nucleus at higher growth temperature.
Radiant energy required for infrared neural stimulation
Tan, Xiaodong; Rajguru, Suhrud; Young, Hunter; ...
2015-08-25
Infrared neural stimulation (INS) has been proposed as an alternative method to electrical stimulation because of its spatial selective stimulation. Independent of the mechanism for INS, to translate the method into a device it is important to determine the energy for stimulation required at the target structure. Custom-designed, flat and angle polished fibers, were used to deliver the photons. By rotating the angle polished fibers, the orientation of the radiation beam in the cochlea could be changed. INS-evoked compound action potentials and single unit responses in the central nucleus of the inferior colliculus (ICC) were recorded. X-ray computed tomography wasmore » used to determine the orientation of the optical fiber. Maximum responses were observed when the radiation beam was directed towards the spiral ganglion neurons (SGNs), whereas little responses were seen when the beam was directed towards the basilar membrane. The radiant exposure required at the SGNs to evoke compound action potentials (CAPs) or ICC responses was on average 18.9 ± 12.2 or 10.3 ± 4.9 mJ/cm 2, respectively. For cochlear INS it has been debated whether the radiation directly stimulates the SGNs or evokes a photoacoustic effect. The results support the view that a direct interaction between neurons and radiation dominates the response to INS.« less
Segmentation of images for gingival growth measurement
NASA Astrophysics Data System (ADS)
Kim, Dong-Il; Wilson, Joseph N.
1992-12-01
The ability to measure gingival volume growth from dental casts would provide a valuable resource for periodontists. This problem is attractive from a computer vision standpoint due to the complexities of data acquisition, segmentation of gingival and tooth surfaces and boundaries, and extraction of features (such as tooth axes) to help solve the correspondence problem for multiple casts. In this paper, a structured light 3-D range finder is used to collect raw data. The most complicated subtask is that of detecting discontinuities such as the gingival margin. Discontinuity detection is hindered both by cast anomalies (such as bubbles and holes generated during the process of dental impression) and by the subtle nature of the discontinuities themselves. First, we discuss an approach to segmenting a dental cast into tooth and gingival units using depth and orientation discontinuities. The visible cast surface is reconstructed by obtaining the minimum of a parameterized functional. The first derivative of the energy functional (which corresponds to the Euler-Lagrange equation) is solved using the multigrid methods. both orientation and depth discontinuities are detected by adding a discrete discontinuity functional to the energy functional. The principal axes and boundaries of the teeth provide the information necessary to determine the region to be measured in estimating gingival growth. Finally, voxels corresponding to growth regions are counted to measure the target volume.
Radiant energy required for infrared neural stimulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Xiaodong; Rajguru, Suhrud; Young, Hunter
Infrared neural stimulation (INS) has been proposed as an alternative method to electrical stimulation because of its spatial selective stimulation. Independent of the mechanism for INS, to translate the method into a device it is important to determine the energy for stimulation required at the target structure. Custom-designed, flat and angle polished fibers, were used to deliver the photons. By rotating the angle polished fibers, the orientation of the radiation beam in the cochlea could be changed. INS-evoked compound action potentials and single unit responses in the central nucleus of the inferior colliculus (ICC) were recorded. X-ray computed tomography wasmore » used to determine the orientation of the optical fiber. Maximum responses were observed when the radiation beam was directed towards the spiral ganglion neurons (SGNs), whereas little responses were seen when the beam was directed towards the basilar membrane. The radiant exposure required at the SGNs to evoke compound action potentials (CAPs) or ICC responses was on average 18.9 ± 12.2 or 10.3 ± 4.9 mJ/cm 2, respectively. For cochlear INS it has been debated whether the radiation directly stimulates the SGNs or evokes a photoacoustic effect. The results support the view that a direct interaction between neurons and radiation dominates the response to INS.« less
Issues in undergraduate education in computational science and high performance computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchioro, T.L. II; Martin, D.
1994-12-31
The ever increasing need for mathematical and computational literacy within their society and among members of the work force has generated enormous pressure to revise and improve the teaching of related subjects throughout the curriculum, particularly at the undergraduate level. The Calculus Reform movement is perhaps the best known example of an organized initiative in this regard. The UCES (Undergraduate Computational Engineering and Science) project, an effort funded by the Department of Energy and administered through the Ames Laboratory, is sponsoring an informal and open discussion of the salient issues confronting efforts to improve and expand the teaching of computationalmore » science as a problem oriented, interdisciplinary approach to scientific investigation. Although the format is open, the authors hope to consider pertinent questions such as: (1) How can faculty and research scientists obtain the recognition necessary to further excellence in teaching the mathematical and computational sciences? (2) What sort of educational resources--both hardware and software--are needed to teach computational science at the undergraduate level? Are traditional procedural languages sufficient? Are PCs enough? Are massively parallel platforms needed? (3) How can electronic educational materials be distributed in an efficient way? Can they be made interactive in nature? How should such materials be tied to the World Wide Web and the growing ``Information Superhighway``?« less
A service-oriented data access control model
NASA Astrophysics Data System (ADS)
Meng, Wei; Li, Fengmin; Pan, Juchen; Song, Song; Bian, Jiali
2017-01-01
The development of mobile computing, cloud computing and distributed computing meets the growing individual service needs. Facing with complex application system, it's an urgent problem to ensure real-time, dynamic, and fine-grained data access control. By analyzing common data access control models, on the basis of mandatory access control model, the paper proposes a service-oriented access control model. By regarding system services as subject and data of databases as object, the model defines access levels and access identification of subject and object, and ensures system services securely to access databases.
Optimized diffusion gradient orientation schemes for corrupted clinical DTI data sets.
Dubois, J; Poupon, C; Lethimonnier, F; Le Bihan, D
2006-08-01
A method is proposed for generating schemes of diffusion gradient orientations which allow the diffusion tensor to be reconstructed from partial data sets in clinical DT-MRI, should the acquisition be corrupted or terminated before completion because of patient motion. A general energy-minimization electrostatic model was developed in which the interactions between orientations are weighted according to their temporal order during acquisition. In this report, two corruption scenarios were specifically considered for generating relatively uniform schemes of 18 and 60 orientations, with useful subsets of 6 and 15 orientations. The sets and subsets were compared to conventional sets through their energy, condition number and rotational invariance. Schemes of 18 orientations were tested on a volunteer. The optimized sets were similar to uniform sets in terms of energy, condition number and rotational invariance, whether the complete set or only a subset was considered. Diffusion maps obtained in vivo were close to those for uniform sets whatever the acquisition time was. This was not the case with conventional schemes, whose subset uniformity was insufficient. With the proposed approach, sets of orientations responding to several corruption scenarios can be generated, which is potentially useful for imaging uncooperative patients or infants.
Object-oriented design for accelerator control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stok, P.D.V. van der; Berk, F. van den; Deckers, R.
1994-02-01
An object-oriented design for the distributed computer control system of the accelerator ring EUTERPE is presented. Because of the experimental nature of the ring, flexibility is of the utmost importance. The object-oriented principles have contributed considerably to the flexibility of the design incorporating multiple views, multi-level access and distributed surveillance.
1990-10-01
to economic, technological, spatial or logistic concerns, or involve training, man-machine interfaces, or integration into existing systems. Once the...probabilistic reasoning, mixed analysis- and simulation-oriented, mixed computation- and communication-oriented, nonpreemptive static priority...scheduling base, nonrandomized, preemptive static priority scheduling base, randomized, simulation-oriented, and static scheduling base. The selection of both
NASA Astrophysics Data System (ADS)
Ryoo, Jean; Goode, Joanna; Margolis, Jane
2015-10-01
This article describes the importance that high school computer science teachers place on a teachers' professional learning community designed around an inquiry- and equity-oriented approach for broadening participation in computing. Using grounded theory to analyze four years of teacher surveys and interviews from the Exploring Computer Science (ECS) program in the Los Angeles Unified School District, this article describes how participating in professional development activities purposefully aimed at fostering a teachers' professional learning community helps ECS teachers make the transition to an inquiry-based classroom culture and break professional isolation. This professional learning community also provides experiences that challenge prevalent deficit notions and stereotypes about which students can or cannot excel in computer science.
Orientation-dependent structural and photocatalytic properties of LaCoO3 epitaxial nano-thin films
Zhang, Yan-ping; Hu, Hai-long; Xie, Rui-shi; Ma, Guo-hua; Huo, Ji-chuan; Wang, Hai-bin
2018-01-01
LaCoO3 epitaxial films were grown on (100), (110) and (111) oriented LaAlO3 substrates by the polymer-assisted deposition method. Crystal structure measurement and cross-section observation indicate that all the LaCoO3 films are epitaxially grown in accordance with the orientation of LaAlO3 substrates, with biaxial compressive strain in the ab plane. Owing to the different strain directions of CoO6 octahedron, the mean Co–O bond length increases by different amounts in (100), (110) and (111) oriented films compared with that of bulk LaCoO3, and the (100) oriented LaCoO3 has the largest increase. Photocatalytic degradation of methyl orange indicates that the order of photocatalytic activity of the three oriented films is (100) > (111) > (110). Combined with analysis of electronic nature and band structure for LaCoO3 films, it is found that the change of the photocatalytic activity is closely related to the crystal field splitting energy of Co3+ and Co–O binding energy. The increase in the mean Co–O bond length will decrease the crystal field splitting energy of Co3+ and Co–O binding energy and further reduce the value of band gap energy, thus improving the photocatalytic activity. This may also provide a clue for expanding the visible-light-induced photocatalytic application of LaCoO3. PMID:29515854
Orientation-dependent structural and photocatalytic properties of LaCoO3 epitaxial nano-thin films.
Zhang, Yan-Ping; Liu, Hai-Feng; Hu, Hai-Long; Xie, Rui-Shi; Ma, Guo-Hua; Huo, Ji-Chuan; Wang, Hai-Bin
2018-02-01
LaCoO 3 epitaxial films were grown on (100), (110) and (111) oriented LaAlO 3 substrates by the polymer-assisted deposition method. Crystal structure measurement and cross-section observation indicate that all the LaCoO 3 films are epitaxially grown in accordance with the orientation of LaAlO 3 substrates, with biaxial compressive strain in the ab plane. Owing to the different strain directions of CoO 6 octahedron, the mean Co-O bond length increases by different amounts in (100), (110) and (111) oriented films compared with that of bulk LaCoO 3 , and the (100) oriented LaCoO 3 has the largest increase. Photocatalytic degradation of methyl orange indicates that the order of photocatalytic activity of the three oriented films is (100) > (111) > (110). Combined with analysis of electronic nature and band structure for LaCoO 3 films, it is found that the change of the photocatalytic activity is closely related to the crystal field splitting energy of Co 3+ and Co-O binding energy. The increase in the mean Co-O bond length will decrease the crystal field splitting energy of Co 3+ and Co-O binding energy and further reduce the value of band gap energy, thus improving the photocatalytic activity. This may also provide a clue for expanding the visible-light-induced photocatalytic application of LaCoO 3 .
NASA Astrophysics Data System (ADS)
Shahrouzi, Hamid; Moses, Anthony J.; Anderson, Philip I.; Li, Guobao; Hu, Zhuochao
2018-04-01
The flux distribution in an overlapped linear joint constructed in the central region of an Epstein Square was studied experimentally and results compared with those obtained using a computational magnetic field solver. High permeability grain-oriented (GO) and low permeability non-oriented (NO) electrical steels were compared at a nominal core flux density of 1.60 T at 50 Hz. It was found that the experimental results only agreed well at flux densities at which the reluctance of different paths of the flux are similar. Also it was revealed that the flux becomes more uniform when the working point of the electrical steel is close to the knee point of the B-H curve of the steel.
Neuromorphic VLSI vision system for real-time texture segregation.
Shimonomura, Kazuhiro; Yagi, Tetsuya
2008-10-01
The visual system of the brain can perceive an external scene in real-time with extremely low power dissipation, although the response speed of an individual neuron is considerably lower than that of semiconductor devices. The neurons in the visual pathway generate their receptive fields using a parallel and hierarchical architecture. This architecture of the visual cortex is interesting and important for designing a novel perception system from an engineering perspective. The aim of this study is to develop a vision system hardware, which is designed inspired by a hierarchical visual processing in V1, for real time texture segregation. The system consists of a silicon retina, orientation chip, and field programmable gate array (FPGA) circuit. The silicon retina emulates the neural circuits of the vertebrate retina and exhibits a Laplacian-Gaussian-like receptive field. The orientation chip selectively aggregates multiple pixels of the silicon retina in order to produce Gabor-like receptive fields that are tuned to various orientations by mimicking the feed-forward model proposed by Hubel and Wiesel. The FPGA circuit receives the output of the orientation chip and computes the responses of the complex cells. Using this system, the neural images of simple cells were computed in real-time for various orientations and spatial frequencies. Using the orientation-selective outputs obtained from the multi-chip system, a real-time texture segregation was conducted based on a computational model inspired by psychophysics and neurophysiology. The texture image was filtered by the two orthogonally oriented receptive fields of the multi-chip system and the filtered images were combined to segregate the area of different texture orientation with the aid of FPGA. The present system is also useful for the investigation of the functions of the higher-order cells that can be obtained by combining the simple and complex cells.
Information Sources on Computer Literacy.
ERIC Educational Resources Information Center
Ossman, Marian R.
1984-01-01
Cites books, journals, articles, and speeches covering the gamut from computer literacy as a national crisis to a current listing of popular computer camps, educational computing, library role, and staff training. Primary focus is on microcomputers, but several less recent articles are oriented to computers in general. (MBR)
Computational Cardiac Anatomy Using MRI
Beg, Mirza Faisal; Helm, Patrick A.; McVeigh, Elliot; Miller, Michael I.; Winslow, Raimond L.
2005-01-01
Ventricular geometry and fiber orientation may undergo global or local remodeling in cardiac disease. However, there are as yet no mathematical and computational methods for quantifying variation of geometry and fiber orientation or the nature of their remodeling in disease. Toward this goal, a landmark and image intensity-based large deformation diffeomorphic metric mapping (LDDMM) method to transform heart geometry into common coordinates for quantification of shape and form was developed. Two automated landmark placement methods for modeling tissue deformations expected in different cardiac pathologies are presented. The transformations, computed using the combined use of landmarks and image intensities, yields high-registration accuracy of heart anatomies even in the presence of significant variation of cardiac shape and form. Once heart anatomies have been registered, properties of tissue geometry and cardiac fiber orientation in corresponding regions of different hearts may be quantified. PMID:15508155
OWL: A scalable Monte Carlo simulation suite for finite-temperature study of materials
NASA Astrophysics Data System (ADS)
Li, Ying Wai; Yuk, Simuck F.; Cooper, Valentino R.; Eisenbach, Markus; Odbadrakh, Khorgolkhuu
The OWL suite is a simulation package for performing large-scale Monte Carlo simulations. Its object-oriented, modular design enables it to interface with various external packages for energy evaluations. It is therefore applicable to study the finite-temperature properties for a wide range of systems: from simple classical spin models to materials where the energy is evaluated by ab initio methods. This scheme not only allows for the study of thermodynamic properties based on first-principles statistical mechanics, it also provides a means for massive, multi-level parallelism to fully exploit the capacity of modern heterogeneous computer architectures. We will demonstrate how improved strong and weak scaling is achieved by employing novel, parallel and scalable Monte Carlo algorithms, as well as the applications of OWL to a few selected frontier materials research problems. This research was supported by the Office of Science of the Department of Energy under contract DE-AC05-00OR22725.
NASA Astrophysics Data System (ADS)
Barayan, Olfat Mohammad
A considerable amount of money for high-energy consumption is spent in traditional buildings located in hot climate regions. High-energy consumption is significantly influenced by several causes, including building materials, orientation, mass, and openings' sizes. This paper aims to identify these causes and find practical solutions to reduce the annual cost of bills. For the purpose of this study, simulation research method has been followed. A comparison between two Revit models has also been created to point out the major cause of high-energy consumption. By analysing different orientations, wall insulation, and window glazing and applying some other high performance building techniques, a conclusion was found to confirm that appropriate building materials play a vital role in affecting energy cost. Therefore, the ability to reduce the energy cost by more than 50% in traditional buildings depends on a careful balance of building materials, mass, orientation, and type of window glazing.
NASA Technical Reports Server (NTRS)
Minnetyan, Levon; Chamis, Christos C. (Technical Monitor)
2003-01-01
Computational simulation results can give the prediction of damage growth and progression and fracture toughness of composite structures. The experimental data from literature provide environmental effects on the fracture behavior of metallic or fiber composite structures. However, the traditional experimental methods to analyze the influence of the imposed conditions are expensive and time consuming. This research used the CODSTRAN code to model the temperature effects, scaling effects and the loading effects of fiber/braided composite specimens with and without fiber-optic sensors on the damage initiation and energy release rates. The load-displacement relationship and fracture toughness assessment approach is compared with the test results from literature and it is verified that the computational simulation, with the use of established material modeling and finite element modules, adequately tracks the changes of fracture toughness and subsequent fracture propagation for any fiber/braided composite structure due to the change of fiber orientations, presence of large diameter optical fibers, and any loading conditions.
NASA Technical Reports Server (NTRS)
Minnetyan, Levon; Chamis, Christos C. (Technical Monitor)
2003-01-01
Computational simulation results can give the prediction of damage growth and progression and fracture toughness of composite structures. The experimental data from literature provide environmental effects on the fracture behavior of metallic or fiber composite structures. However, the traditional experimental methods to analyze the influence of the imposed conditions are expensive and time consuming. This research used the CODSTRAN code to model the temperature effects, scaling effects and the loading effects of fiberbraided composite specimens with and without fiber-optic sensors on the damage initiation and energy release rates. The load-displacement relationship and fracture toughness assessment approach is compared with the test results from literature and it is verified that the computational simulation, with the use of established material modeling and finite element modules, adequately tracks the changes of fracture toughness and subsequent fracture propagation for any fiberbraided composite structure due to the change of fiber orientations, presence of large diameter optical fibers, and any loading conditions.
Modeling Methodologies for Design and Control of Solid Oxide Fuel Cell APUs
NASA Astrophysics Data System (ADS)
Pianese, C.; Sorrentino, M.
2009-08-01
Among the existing fuel cell technologies, Solid Oxide Fuel Cells (SOFC) are particularly suitable for both stationary and mobile applications, due to their high energy conversion efficiencies, modularity, high fuel flexibility, low emissions and noise. Moreover, the high working temperatures enable their use for efficient cogeneration applications. SOFCs are entering in a pre-industrial era and a strong interest for designing tools has growth in the last years. Optimal system configuration, components sizing, control and diagnostic system design require computational tools that meet the conflicting needs of accuracy, affordable computational time, limited experimental efforts and flexibility. The paper gives an overview on control-oriented modeling of SOFC at both single cell and stack level. Such an approach provides useful simulation tools for designing and controlling SOFC-APUs destined to a wide application area, ranging from automotive to marine and airplane APUs.
NASA Astrophysics Data System (ADS)
Akimenko, S. S.; Fefelov, V. F.; Myshlyavtsev, A. V.; Stishenko, P. V.
2018-02-01
The model of dimers adsorption on hexagonal lattice with different orientations to surface and hard-spheres lateral interactions has been studied at nonzero temperature. The transfer-matrix method was used as the main one and the Monte Carlo method was used for checking of some extreme cases. Adsorption isotherms, dependencies of the entropy from the density of the adsorption layer and of the energy from the system temperature at certain points of the phase space, were computed. It was found that at least the first ten phases of the ground state still persist at nonzero temperatures.
Lin, Liqiang; Zeng, Xiaowei
2015-01-01
The focus of this work is to investigate spall fracture in polycrystalline materials under high-speed impact loading by using an atomistic-based interfacial zone model. We illustrate that for polycrystalline materials, increases in the potential energy ratio between grain boundaries and grains could cause a fracture transition from intergranular to transgranular mode. We also found out that the spall strength increases when there is a fracture transition from intergranular to transgranular. In addition, analysis of grain size, crystal lattice orientation and impact speed reveals that the spall strength increases as grain size or impact speed increases. PMID:26435546
Computational Exploration of a Protein Receptor Binding Space with Student Proposed Peptide Ligands
King, Matthew D.; Phillips, Paul; Turner, Matthew W.; Katz, Michael; Lew, Sarah; Bradburn, Sarah; Andersen, Tim; Mcdougal, Owen M.
2017-01-01
Computational molecular docking is a fast and effective in silico method for the analysis of binding between a protein receptor model and a ligand. The visualization and manipulation of protein to ligand binding in three-dimensional space represents a powerful tool in the biochemistry curriculum to enhance student learning. The DockoMatic tutorial described herein provides a framework by which instructors can guide students through a drug screening exercise. Using receptor models derived from readily available protein crystal structures, docking programs have the ability to predict ligand binding properties, such as preferential binding orientations and binding affinities. The use of computational studies can significantly enhance complimentary wet chemical experimentation by providing insight into the important molecular interactions within the system of interest, as well as guide the design of new candidate ligands based on observed binding motifs and energetics. In this laboratory tutorial, the graphical user interface, DockoMatic, facilitates docking job submissions to the docking engine, AutoDock 4.2. The purpose of this exercise is to successfully dock a 17-amino acid peptide, α-conotoxin TxIA, to the acetylcholine binding protein from Aplysia californica-AChBP to determine the most stable binding configuration. Each student will then propose two specific amino acid substitutions of α-conotoxin TxIA to enhance peptide binding affinity, create the mutant in DockoMatic, and perform docking calculations to compare their results with the class. Students will also compare intermolecular forces, binding energy, and geometric orientation of their prepared analog to their initial α-conotoxin TxIA docking results. PMID:26537635
NASA Astrophysics Data System (ADS)
Dragoni, Daniele; Daff, Thomas D.; Csányi, Gábor; Marzari, Nicola
2018-01-01
We show that the Gaussian Approximation Potential (GAP) machine-learning framework can describe complex magnetic potential energy surfaces, taking ferromagnetic iron as a paradigmatic challenging case. The training database includes total energies, forces, and stresses obtained from density-functional theory in the generalized-gradient approximation, and comprises approximately 150,000 local atomic environments, ranging from pristine and defected bulk configurations to surfaces and generalized stacking faults with different crystallographic orientations. We find the structural, vibrational, and thermodynamic properties of the GAP model to be in excellent agreement with those obtained directly from first-principles electronic-structure calculations. There is good transferability to quantities, such as Peierls energy barriers, which are determined to a large extent by atomic configurations that were not part of the training set. We observe the benefit and the need of using highly converged electronic-structure calculations to sample a target potential energy surface. The end result is a systematically improvable potential that can achieve the same accuracy of density-functional theory calculations, but at a fraction of the computational cost.
Shan, Tzu-Ray; Wixom, Ryan R; Mattsson, Ann E; Thompson, Aidan P
2013-01-24
The dependence of the reaction initiation mechanism of pentaerythritol tetranitrate (PETN) on shock orientation and shock strength is investigated with molecular dynamics simulations using a reactive force field and the multiscale shock technique. In the simulations, a single crystal of PETN is shocked along the [110], [001], and [100] orientations with shock velocities in the range 3-10 km/s. Reactions occur with shock velocities of 6 km/s or stronger, and reactions initiate through the dissociation of nitro and nitrate groups from the PETN molecules. The most sensitive orientation is [110], while [100] is the most insensitive. For the [001] orientation, PETN decomposition via nitro group dissociation is the dominant reaction initiation mechanism, while for the [110] and [100] orientations the decomposition is via mixed nitro and nitrate group dissociation. For shock along the [001] orientation, we find that CO-NO(2) bonds initially acquire more kinetic energy, facilitating nitro dissociation. For the other two orientations, C-ONO(2) bonds acquire more kinetic energy, facilitating nitrate group dissociation.
A Service-oriented Approach towards Context-aware Mobile Learning Management Systems
2010-07-01
towards a pervasive university. Keywords-context-aware computing, service-oriented archi- tecture, mobile computing, elearning , learn management sys- tem I...usage of device- specific features provide support for various ubiquitous and pervasive eLearning scenarios [2][3]. By knowing where the user currently...data from the mobile device towards a context-aware mobile LMS. II. BASIC CONCEPTS For a better understanding of the presented eLearning sce- narios
Implementation of Virtualization Oriented Architecture: A Healthcare Industry Case Study
NASA Astrophysics Data System (ADS)
Rao, G. Subrahmanya Vrk; Parthasarathi, Jinka; Karthik, Sundararaman; Rao, Gvn Appa; Ganesan, Suresh
This paper presents a Virtualization Oriented Architecture (VOA) and an implementation of VOA for Hridaya - a Telemedicine initiative. Hadoop Compute cloud was established at our labs and jobs which require a massive computing capability such as ECG signal analysis were submitted and the study is presented in this current paper. VOA takes advantage of inexpensive community PCs and provides added advantages such as Fault Tolerance, Scalability, Performance, High Availability.
Service-oriented Software Defined Optical Networks for Cloud Computing
NASA Astrophysics Data System (ADS)
Liu, Yuze; Li, Hui; Ji, Yuefeng
2017-10-01
With the development of big data and cloud computing technology, the traditional software-defined network is facing new challenges (e.g., ubiquitous accessibility, higher bandwidth, more flexible management and greater security). This paper proposes a new service-oriented software defined optical network architecture, including a resource layer, a service abstract layer, a control layer and an application layer. We then dwell on the corresponding service providing method. Different service ID is used to identify the service a device can offer. Finally, we experimentally evaluate that proposed service providing method can be applied to transmit different services based on the service ID in the service-oriented software defined optical network.
NASA Astrophysics Data System (ADS)
Angsten, Thomas; Asta, Mark
2018-04-01
Ground-state epitaxial phase diagrams are calculated by density functional theory (DFT) for SrTiO3, CaTiO3, and SrHfO3 perovskite-based compounds, accounting for the effects of antiferrodistortive and A -site displacement modes. Biaxial strain states corresponding to epitaxial growth of (001)-oriented films are considered, with misfit strains ranging between -4 % and 4%. Ground-state structures are determined using a computational procedure in which input structures for DFT optimizations are identified as local minima in expansions of the total energy with respect to strain and soft-mode degrees of freedom. Comparison to results of previous DFT studies demonstrates the effectiveness of the computational approach in predicting ground-state phases. The calculated results show that antiferrodistortive octahedral rotations and associated A -site displacement modes act to suppress polarization and reduce the epitaxial strain energy. A projection of calculated atomic displacements in the ground-state epitaxial structures onto soft-mode eigenvectors shows that three ferroelectric and six antiferrodistortive displacement modes are dominant at all misfit strains considered, with the relative contributions from each varying systematically with the strain. Additional A -site displacement modes contribute to the atomic displacements in CaTiO3 and SrHfO3, which serve to optimize the coordination of the undersized A -site cation.
Texas A & M University at Galveston: College and University Computing Environment.
ERIC Educational Resources Information Center
CAUSE/EFFECT, 1986
1986-01-01
Texas A & M University at Galveston is the only marine and maritime-oriented University in the Southwest. Its computing policy/direction, academic computing, administrative computing, and library automation are described, and hurricance emergency plans are also discussed. (MLW)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Jun; Burghardt, Wesley R.; Bubeck, Robert A.
The development of molecular orientation in thermotropic liquid crystalline polymers (TLCPs) during injection molding has been investigated using two-dimensional wide-angle X-ray scattering coordinated with numerical computations employing the Larson-Doi polydomain model. Orientation distributions were measured in 'short shot' moldings to characterize structural evolution prior to completion of mold filling, in both thin and thick rectangular plaques. Distinct orientation patterns are observed near the filling front. In particular, strong extension at the melt front results in nearly transverse molecular alignment. Far away from the flow front shear competes with extension to produce complex spatial distributions of orientation. The relative influence ofmore » shear is stronger in the thin plaque, producing orientation along the filling direction. Exploiting an analogy between the Larson-Doi model and a fiber orientation model, we test the ability of process simulation tools to predict TLCP orientation distributions during molding. Substantial discrepancies between model predictions and experimental measurements are found near the flow front in partially filled short shots, attributed to the limits of the Hele-Shaw approximation used in the computations. Much of the flow front effect is however 'washed out' by subsequent shear flow as mold filling progresses, leading to improved agreement between experiment and corresponding numerical predictions.« less
Aspect-Oriented Subprogram Synthesizes UML Sequence Diagrams
NASA Technical Reports Server (NTRS)
Barry, Matthew R.; Osborne, Richard N.
2006-01-01
The Rational Sequence computer program described elsewhere includes a subprogram that utilizes the capability for aspect-oriented programming when that capability is present. This subprogram is denoted the Rational Sequence (AspectJ) component because it uses AspectJ, which is an extension of the Java programming language that introduces aspect-oriented programming techniques into the language
ERIC Educational Resources Information Center
Perez-Felkner, Lara; McDonald, Sarah-Kathryn; Schneider, Barbara; Grogan, Erin
2012-01-01
Although important strides toward gender parity have been made in several scientific fields, women remain underrepresented in the physical sciences, engineering, mathematics, and computer sciences (PEMCs). This study examines the effects of adolescents' subjective orientations, course taking, and academic performance on the likelihood of majoring…
Developing Formal Object-oriented Requirements Specifications: A Model, Tool and Technique.
ERIC Educational Resources Information Center
Jackson, Robert B.; And Others
1995-01-01
Presents a formal object-oriented specification model (OSS) for computer software system development that is supported by a tool that automatically generates a prototype from an object-oriented analysis model (OSA) instance, lets the user examine the prototype, and permits the user to refine the OSA model instance to generate a requirements…
Perona, P
1998-01-01
Diffusions are useful for image processing and computer vision because they provide a convenient way of smoothing noisy data, analyzing images at multiple scales, and enhancing discontinuities. A number of diffusions of image brightness have been defined and studied so far; they may be applied to scalar and vector-valued quantities that are naturally associated with intervals of either the real line, or other flat manifolds. Some quantities of interest in computer vision, and other areas of engineering that deal with images, are defined on curved manifolds;typical examples are orientation and hue that are defined on the circle. Generalizing brightness diffusions to orientation is not straightforward, especially in the case where a discrete implementation is sought. An example of what may go wrong is presented.A method is proposed to define diffusions of orientation-like quantities. First a definition in the continuum is discussed, then a discrete orientation diffusion is proposed. The behavior of such diffusions is explored both analytically and experimentally. It is shown how such orientation diffusions contain a nonlinearity that is reminiscent of edge-process and anisotropic diffusion. A number of open questions are proposed at the end.
Kuhlmann, Levin; Vidyasagar, Trichur R.
2011-01-01
Controversy remains about how orientation selectivity emerges in simple cells of the mammalian primary visual cortex. In this paper, we present a computational model of how the orientation-biased responses of cells in lateral geniculate nucleus (LGN) can contribute to the orientation selectivity in simple cells in cats. We propose that simple cells are excited by lateral geniculate fields with an orientation-bias and disynaptically inhibited by unoriented lateral geniculate fields (or biased fields pooled across orientations), both at approximately the same retinotopic co-ordinates. This interaction, combined with recurrent cortical excitation and inhibition, helps to create the sharp orientation tuning seen in simple cell responses. Along with describing orientation selectivity, the model also accounts for the spatial frequency and length–response functions in simple cells, in normal conditions as well as under the influence of the GABAA antagonist, bicuculline. In addition, the model captures the response properties of LGN and simple cells to simultaneous visual stimulation and electrical stimulation of the LGN. We show that the sharp selectivity for stimulus orientation seen in primary visual cortical cells can be achieved without the excitatory convergence of the LGN input cells with receptive fields along a line in visual space, which has been a core assumption in classical models of visual cortex. We have also simulated how the full range of orientations seen in the cortex can emerge from the activity among broadly tuned channels tuned to a limited number of optimum orientations, just as in the classical case of coding for color in trichromatic primates. PMID:22013414
Orientation selectivity of synaptic input to neurons in mouse and cat primary visual cortex.
Tan, Andrew Y Y; Brown, Brandon D; Scholl, Benjamin; Mohanty, Deepankar; Priebe, Nicholas J
2011-08-24
Primary visual cortex (V1) is the site at which orientation selectivity emerges in mammals: visual thalamus afferents to V1 respond equally to all stimulus orientations, whereas their target V1 neurons respond selectively to stimulus orientation. The emergence of orientation selectivity in V1 has long served as a model for investigating cortical computation. Recent evidence for orientation selectivity in mouse V1 opens cortical computation to dissection by genetic and imaging tools, but also raises two essential questions: (1) How does orientation selectivity in mouse V1 neurons compare with that in previously described species? (2) What is the synaptic basis for orientation selectivity in mouse V1? A comparison of orientation selectivity in mouse and in cat, where such measures have traditionally been made, reveals that orientation selectivity in mouse V1 is weaker than in cat V1, but that spike threshold plays a similar role in narrowing selectivity between membrane potential and spike rate. To uncover the synaptic basis for orientation selectivity, we made whole-cell recordings in vivo from mouse V1 neurons, comparing neuronal input selectivity-based on membrane potential, synaptic excitation, and synaptic inhibition-to output selectivity based on spiking. We found that a neuron's excitatory and inhibitory inputs are selective for the same stimulus orientations as is its membrane potential response, and that inhibitory selectivity is not broader than excitatory selectivity. Inhibition has different dynamics than excitation, adapting more rapidly. In neurons with temporally modulated responses, the timing of excitation and inhibition was different in mice and cats.
Orientation Selectivity of Synaptic Input to Neurons in Mouse and Cat Primary Visual Cortex
Tan (陈勇毅), Andrew Y. Y.; Brown, Brandon D.; Scholl, Benjamin; Mohanty, Deepankar; Priebe, Nicholas J.
2011-01-01
Primary visual cortex (V1) is the site at which orientation selectivity emerges in mammals: visual thalamus afferents to V1 respond equally to all stimulus orientations whereas their target V1 neurons respond selectively to stimulus orientation. The emergence of orientation selectivity in V1 has long served as a model for investigating cortical computation. Recent evidence for orientation selectivity in mouse V1 opens cortical computation to dissection by genetic and imaging tools, but also raises two essential questions: 1) how does orientation selectivity in mouse V1 neurons compare with that in previously described species? 2) what is the synaptic basis for orientation selectivity in mouse V1? A comparison of orientation selectivity in mouse and in cat, where such measures have traditionally been made, reveals that orientation selectivity in mouse V1 is weaker than in cat V1, but that spike threshold plays a similar role in narrowing selectivity between membrane potential and spike rate. To uncover the synaptic basis for orientation selectivity, we made whole-cell recordings in vivo from mouse V1 neurons, comparing neuronal input selectivity - based on membrane potential, synaptic excitation, and synaptic inhibition - to output selectivity based on spiking. We found that a neuron's excitatory and inhibitory inputs are selective for the same stimulus orientations as is its membrane potential response, and that inhibitory selectivity is not broader than excitatory selectivity. Inhibition has different dynamics than excitation, adapting more rapidly. In neurons with temporally modulated responses, the timing of excitation and inhibition was different in mice and cats. PMID:21865476
Quality user support: Supporting quality users
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woolley, T.C.
1994-12-31
During the past decade, fundamental changes have occurred in technical computing in the oil industry. Technical computing systems have moved from local, fragmented quantity, to global, integrated, quality. The compute power available to the average geoscientist at his desktop has grown exponentially. Technical computing applications have increased in integration and complexity. At the same time, there has been a significant change in the work force due to the pressures of restructuring, and the increased focus on international opportunities. The profile of the user of technical computing resources has changed. Users are generally more mature, knowledgeable, and team oriented than theirmore » predecessors. In the 1990s, computer literacy is a requirement. This paper describes the steps taken by Oryx Energy Company to address the problems and opportunities created by the explosive growth in computing power and needs, coupled with the contraction of the business. A successful user support strategy will be described. Characteristics of the program include: (1) Client driven support; (2) Empowerment of highly skilled professionals to fill the support role; (3) Routine and ongoing modification to the support plan; (4) Utilization of the support assignment to create highly trained advocates on the line; (5) Integration of the support role to the reservoir management team. Results of the plan include a highly trained work force, stakeholder teams that include support personnel, and global support from a centralized support organization.« less
NASA Astrophysics Data System (ADS)
Li, Yaping; Lagowski, Jolanta B.
2011-08-01
Inorganic (mostly silicon based) solar cells are important devices that are used to solve the world energy and environmental needs. Now days, organic solar cells are attracting considerable attention in the field of photovoltaic cells because of their low cost and processing flexibility. Often conjugated polymers are used in the construction of the organic solar cells. We study the conjugated polymers' charge transport using computational approach that involves the use of the density functional theory (DFT), semiempirical (ZINDO), and Monte Carlo (MC) theoretical methods in order to determine their transfer integrals, reorganization energies, transfer rates (with the use of Marcus-Hush equation) and mobilities. We employ the experimentally determined three dimensional (3D) structure of poly(9,9'-di-n-octylfluorene-alt-benzothiadiazole) (F8BT) to estimate the electron mobility in a similar co-alternating polymer consisting of carbazole and benzothiadiazole units (C8BT). In agreement with our previous work, we found that including an orientational disorder in the crystal reduces the electron mobility in C8BT. We hope that the proposed computational approach can be used to predict charge mobility in organic materials that are used in solar cells.
Measurement profiles of nano-scale ion beam for optimized radiation energy losses
NASA Astrophysics Data System (ADS)
Woo, T. H.; Cho, H. S.
2011-10-01
The behavior of charged particles is investigated for nano-scale ion beam therapy using a medical accelerator. Computational work is performed for the Bragg-peak simulation, which is focused on human organ material of pancreas and thyroid. The Results show that the trends of the dose have several different kinds of distributions. Before constructing a heavy ion collider, this study can give us the reliability of the therapeutic effect. Realistic treatment using human organs is calculated in a simple and cost effective manner using the computational code, the Stopping and Range of Ions in Matter 2008 (SRIM 2008). Considering the safety of the therapy, it is suggested to give a patient orient planning of the cancer therapy. The energy losses in ionization and phonon are analyzed, which are the behaviors in the molecular level nano-scopic investigation. The different fluctuations are shown at 150 MeV, where the lowest temperature is found in proton and pancreas case. Finally, the protocol for the radiation therapy is constructed by the simulation in which the procedure for a better therapy is selected. An experimental measurement incorporated with the simulations could be programmed by this protocol.
Computing Curvature Sensitivity of Biomolecules in Membranes by Simulated Buckling.
Elías-Wolff, Federico; Lindén, Martin; Lyubartsev, Alexander P; Brandt, Erik G
2018-03-13
Membrane curvature sensing, where the binding free energies of membrane-associated molecules depend on the local membrane curvature, is a key factor to modulate and maintain the shape and organization of cell membranes. However, the microscopic mechanisms are not well understood, partly due to absence of efficient simulation methods. Here, we describe a method to compute the curvature dependence of the binding free energy of a membrane-associated probe molecule that interacts with a buckled membrane, which has been created by lateral compression of a flat bilayer patch. This buckling approach samples a wide range of curvatures in a single simulation, and anisotropic effects can be extracted from the orientation statistics. We develop an efficient and robust algorithm to extract the motion of the probe along the buckled membrane surface, and evaluate its numerical properties by extensive sampling of three coarse-grained model systems: local lipid density in a curved environment for single-component bilayers, curvature preferences of individual lipids in two-component membranes, and curvature sensing by a homotrimeric transmembrane protein. The method can be used to complement experimental data from curvature partition assays and provides additional insight into mesoscopic theories and molecular mechanisms for curvature sensing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lave, Matthew Samuel; Stein, Joshua S.; Burnham, Laurie
A 9.6 kW test array of Prism bifacial modules and reference monofacial modules installed in February 2016 at the New Mexico Regional Test Center has produced six months of performance data. The data reveal that the Prism modules are out-performing the monofacial modules, with bifacial gains in energy over the six-month period ranging from 18% to 136%, depending on the orientation and ground albedo. These measured bifacial gains were found to be in good agreement with modeled bifacial gains using equations previously published by Prism. The most dramatic increase in performance was seen among the vertically tilted, west-facing modules, wheremore » the bifacial modules produced more than double the energy of monofacial modules and more energy than monofacial modules at any orientation. Because peak energy generation (mid-morning and mid-afternoon) for these bifacial modules may best match load on the electric grid, the west-facing orientation may be more economically desirable than traditional south-facing module orientations (which peak at solar noon).« less
ERIC Educational Resources Information Center
Abuzaghleh, Omar; Goldschmidt, Kathleen; Elleithy, Yasser; Lee, Jeongkyu
2013-01-01
With the advances in computing power, high-performance computing (HPC) platforms have had an impact on not only scientific research in advanced organizations but also computer science curriculum in the educational community. For example, multicore programming and parallel systems are highly desired courses in the computer science major. However,…
Effective Energy Simulation and Optimal Design of Side-lit Buildings with Venetian Blinds
NASA Astrophysics Data System (ADS)
Cheng, Tian
Venetian blinds are popularly used in buildings to control the amount of incoming daylight for improving visual comfort and reducing heat gains in air-conditioning systems. Studies have shown that the proper design and operation of window systems could result in significant energy savings in both lighting and cooling. However, there is no convenient computer tool that allows effective and efficient optimization of the envelope of side-lit buildings with blinds now. Three computer tools, Adeline, DOE2 and EnergyPlus widely used for the above-mentioned purpose have been experimentally examined in this study. Results indicate that the two former tools give unacceptable accuracy due to unrealistic assumptions adopted while the last one may generate large errors in certain conditions. Moreover, current computer tools have to conduct hourly energy simulations, which are not necessary for life-cycle energy analysis and optimal design, to provide annual cooling loads. This is not computationally efficient, particularly not suitable for optimal designing a building at initial stage because the impacts of many design variations and optional features have to be evaluated. A methodology is therefore developed for efficient and effective thermal and daylighting simulations and optimal design of buildings with blinds. Based on geometric optics and radiosity method, a mathematical model is developed to reasonably simulate the daylighting behaviors of venetian blinds. Indoor illuminance at any reference point can be directly and efficiently computed. They have been validated with both experiments and simulations with Radiance. Validation results show that indoor illuminances computed by the new models agree well with the measured data, and the accuracy provided by them is equivalent to that of Radiance. The computational efficiency of the new models is much higher than that of Radiance as well as EnergyPlus. Two new methods are developed for the thermal simulation of buildings. A fast Fourier transform (FFT) method is presented to avoid the root-searching process in the inverse Laplace transform of multilayered walls. Generalized explicit FFT formulae for calculating the discrete Fourier transform (DFT) are developed for the first time. They can largely facilitate the implementation of FFT. The new method also provides a basis for generating the symbolic response factors. Validation simulations show that it can generate the response factors as accurate as the analytical solutions. The second method is for direct estimation of annual or seasonal cooling loads without the need for tedious hourly energy simulations. It is validated by hourly simulation results with DOE2. Then symbolic long-term cooling load can be created by combining the two methods with thermal network analysis. The symbolic long-term cooling load can keep the design parameters of interest as symbols, which is particularly useful for the optimal design and sensitivity analysis. The methodology is applied to an office building in Hong Kong for the optimal design of building envelope. Design variables such as window-to-wall ratio, building orientation, and glazing optical and thermal properties are included in the study. Results show that the selected design values could significantly impact the energy performance of windows, and the optimal design of side-lit buildings could greatly enhance energy savings. The application example also demonstrates that the developed methodology significantly facilitates the optimal building design and sensitivity analysis, and leads to high computational efficiency.
Jacob, Mathews; Blu, Thierry; Vaillant, Cedric; Maddocks, John H; Unser, Michael
2006-01-01
We introduce a three-dimensional (3-D) parametric active contour algorithm for the shape estimation of DNA molecules from stereo cryo-electron micrographs. We estimate the shape by matching the projections of a 3-D global shape model with the micrographs; we choose the global model as a 3-D filament with a B-spline skeleton and a specified radial profile. The active contour algorithm iteratively updates the B-spline coefficients, which requires us to evaluate the projections and match them with the micrographs at every iteration. Since the evaluation of the projections of the global model is computationally expensive, we propose a fast algorithm based on locally approximating it by elongated blob-like templates. We introduce the concept of projection-steerability and derive a projection-steerable elongated template. Since the two-dimensional projections of such a blob at any 3-D orientation can be expressed as a linear combination of a few basis functions, matching the projections of such a 3-D template involves evaluating a weighted sum of inner products between the basis functions and the micrographs. The weights are simple functions of the 3-D orientation and the inner-products are evaluated efficiently by separable filtering. We choose an internal energy term that penalizes the average curvature magnitude. Since the exact length of the DNA molecule is known a priori, we introduce a constraint energy term that forces the curve to have this specified length. The sum of these energies along with the image energy derived from the matching process is minimized using the conjugate gradients algorithm. We validate the algorithm using real, as well as simulated, data and show that it performs well.
Exploring Factors That Affect Adoption of Computer Security Practices among College Students
ERIC Educational Resources Information Center
Alqarni, Amani
2017-01-01
Cyber-attacks threaten the security of computer users' information, networks, machines, and privacy. Studies of computer security education, awareness, and training among ordinary computer users, college students, non-IT-oriented user groups, and non-technically trained citizens are limited. Most research has focused on computer security standards…
Luo, Jiebo; Boutell, Matthew
2005-05-01
Automatic image orientation detection for natural images is a useful, yet challenging research topic. Humans use scene context and semantic object recognition to identify the correct image orientation. However, it is difficult for a computer to perform the task in the same way because current object recognition algorithms are extremely limited in their scope and robustness. As a result, existing orientation detection methods were built upon low-level vision features such as spatial distributions of color and texture. Discrepant detection rates have been reported for these methods in the literature. We have developed a probabilistic approach to image orientation detection via confidence-based integration of low-level and semantic cues within a Bayesian framework. Our current accuracy is 90 percent for unconstrained consumer photos, impressive given the findings of a psychophysical study conducted recently. The proposed framework is an attempt to bridge the gap between computer and human vision systems and is applicable to other problems involving semantic scene content understanding.
Sordo, Margarita; Boxwala, Aziz A; Ogunyemi, Omolola; Greenes, Robert A
2004-01-01
A major obstacle to sharing computable clinical knowledge is the lack of a common language for specifying expressions and criteria. Such a language could be used to specify decision criteria, formulae, and constraints on data and action. Al-though the Arden Syntax addresses this problem for clinical rules, its generalization to HL7's object-oriented data model is limited. The GELLO Expression language is an object-oriented language used for expressing logical conditions and computations in the GLIF3 (GuideLine Interchange Format, v. 3) guideline modeling language. It has been further developed under the auspices of the HL7 Clinical Decision Support Technical Committee, as a proposed HL7 standard., GELLO is based on the Object Constraint Language (OCL), because it is vendor-independent, object-oriented, and side-effect-free. GELLO expects an object-oriented data model. Although choice of model is arbitrary, standardization is facilitated by ensuring that the data model is compatible with the HL7 Reference Information Model (RIM).
Controllable 0–π Josephson junctions containing a ferromagnetic spin valve
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gingrich, E. C.; Niedzielski, Bethany M.; Glick, Joseph A.
Superconductivity and ferromagnetism are antagonistic forms of order, and rarely coexist. Many interesting new phenomena occur, however, in hybrid superconducting/ferromagnetic systems. For example, a Josephson junction containing a ferromagnetic material can exhibit an intrinsic phase shift of π in its ground state for certain thicknesses of the material. Such ‘π-junctions’ were first realized experimentally in 2001, and have been proposed as circuit elements for both high-speed classical superconducting computing and for quantum computing. Here we demonstrate experimentally that the phase state of a Josephson junction containing two ferromagnetic layers can be toggled between 0 and pi by changing the relativemore » orientation of the two magnetizations. These controllable 0–π junctions have immediate applications in cryogenic memory, where they serve as a necessary component to an ultralow power superconducting computer. Such a fully superconducting computer is estimated to be orders of magnitude more energy-efficient than current semiconductor-based supercomputers. Here, phase-controllable junctions also open up new possibilities for superconducting circuit elements such as superconducting ‘programmable logic’, where they could function in superconducting analogues to field-programmable gate arrays.« less
Excitation of nucleobases from a computational perspective I: reaction paths.
Giussani, Angelo; Segarra-Martí, Javier; Roca-Sanjuán, Daniel; Merchán, Manuela
2015-01-01
The main intrinsic photochemical events in nucleobases can be described on theoretical grounds within the realm of non-adiabatic computational photochemistry. From a static standpoint, the photochemical reaction path approach (PRPA), through the computation of the respective minimum energy path (MEP), can be regarded as the most suitable strategy in order to explore the electronically excited isolated nucleobases. Unfortunately, the PRPA does not appear widely in the studies reported in the last decade. The main ultrafast decay observed experimentally for the gas-phase excited nucleobases is related to the computed barrierless MEPs from the bright excited state connecting the initial Franck-Condon region and a conical intersection involving the ground state. At the highest level of theory currently available (CASPT2//CASPT2), the lowest excited (1)(ππ*) hypersurface for cytosine has a shallow minimum along the MEP deactivation pathway. In any case, the internal conversion processes in all the natural nucleobases are attained by means of interstate crossings, a self-protection mechanism that prevents the occurrence of photoinduced damage of nucleobases by ultraviolet radiation. Many alternative and secondary paths have been proposed in the literature, which ultimately provide a rich and constructive interplay between experimentally and theoretically oriented research.
Controllable 0–π Josephson junctions containing a ferromagnetic spin valve
Gingrich, E. C.; Niedzielski, Bethany M.; Glick, Joseph A.; ...
2016-03-14
Superconductivity and ferromagnetism are antagonistic forms of order, and rarely coexist. Many interesting new phenomena occur, however, in hybrid superconducting/ferromagnetic systems. For example, a Josephson junction containing a ferromagnetic material can exhibit an intrinsic phase shift of π in its ground state for certain thicknesses of the material. Such ‘π-junctions’ were first realized experimentally in 2001, and have been proposed as circuit elements for both high-speed classical superconducting computing and for quantum computing. Here we demonstrate experimentally that the phase state of a Josephson junction containing two ferromagnetic layers can be toggled between 0 and pi by changing the relativemore » orientation of the two magnetizations. These controllable 0–π junctions have immediate applications in cryogenic memory, where they serve as a necessary component to an ultralow power superconducting computer. Such a fully superconducting computer is estimated to be orders of magnitude more energy-efficient than current semiconductor-based supercomputers. Here, phase-controllable junctions also open up new possibilities for superconducting circuit elements such as superconducting ‘programmable logic’, where they could function in superconducting analogues to field-programmable gate arrays.« less
Dynamics and Statistical Mechanics of Rotating and non-Rotating Vortical Flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Chjan
Three projects were analyzed with the overall aim of developing a computational/analytical model for estimating values of the energy, angular momentum, enstrophy and total variation of fluid height at phase transitions between disordered and self-organized flow states in planetary atmospheres. It is believed that these transitions in equilibrium statistical mechanics models play a role in the construction of large-scale, stable structures including super-rotation in the Venusian atmosphere and the formation of the Great Red Spot on Jupiter. Exact solutions of the spherical energy-enstrophy models for rotating planetary atmospheres by Kac's method of steepest descent predicted phase transitions to super-rotating solid-bodymore » flows at high energy to enstrophy ratio for all planetary spins and to sub-rotating modes if the planetary spin is large enough. These canonical statistical ensembles are well-defined for the long-range energy interactions that arise from 2D fluid flows on compact oriented manifolds such as the surface of the sphere and torus. This is because in Fourier space available through Hodge theory, the energy terms are exactly diagonalizable and hence has zero range, leading to well-defined heat baths.« less
Understanding nanofluid stability through molecular simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dang, Liem X.; Annapureddy, Harsha V.; Sun, Xiuquan
We performed molecular dynamics simulations to study solvation of a nanoparticle and nanoparticle-nanoparticle interactions in an n-hexane solution. Structural signatures are barely observed between the nanoparticle and n-hexane molecules because of weak binding and steric effects. The dynamic properties of the n-hexane molecule, on the other hand, are significantly influenced by the solvated nanoparticle. The diffusion of n-hexane molecules inside the nanoparticle is significantly decreased mainly because of the loss of dimensions of translation. Because one translational degree of freedom is lost by colliding with the wall of nanoparticle, the n-hexane molecules outside the nanoparticle diffuse 30% slower than themore » molecules in pure solution. The computed free energy profiles illustrate that the arrangement of the nanoparticles in bulk n-hexane solution are dependent on the orientation and functional group. We found that the n-hexane solvent exerts some effects on the interactions between the solvated nanoparticles. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences and by the Office of Energy Efficiency and Renewable Energy, Geothermal Technologies Program. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mallory, Joel D.; Mandelshtam, Vladimir A.
2016-08-14
We employ the diffusion Monte Carlo (DMC) method in conjunction with the recently developed, ab initio-based MB-pol potential energy surface to characterize the ground states of small (H{sub 2}O){sub 2−6} clusters and their deuterated isotopomers. Observables, other than the ground state energies, are computed using the descendant weighting approach. Among those are various spatial correlation functions and relative isomer fractions. Interestingly, the ground states of all clusters considered in this study, except for the dimer, are delocalized over at least two conformations that differ by the orientation of one or more water monomers with the relative isomer populations being sensitivemore » to the isotope substitution. Most remarkably, the ground state of the (H{sub 2}O){sub 6} hexamer is represented by four distinct cage structures, while that of (D{sub 2}O){sub 6} is dominated by the prism, i.e., the global minimum geometry, with a very small contribution from a prism-book geometry. In addition, for (H{sub 2}O){sub 6} and (D{sub 2}O){sub 6}, we performed DMC calculations to compute the ground states constrained to the cage and prism geometries. These calculations compared results for three different potentials, MB-pol, TTM3/F, and q-TIP4P/F.« less
Luchian, Raluca; Vinţeler, Emil; Chiş, Cosmina; Vasilescu, Mihai; Leopold, Nicolae; Prates Ramalho, João P; Chiş, Vasile
2017-12-01
The analysis of the possible conformers and the conformational change between solid and liquid states of a particular drug molecule are mandatory not only for describing reliably its spectroscopical properties but also for understanding the interaction with the receptor and its mechanism of action. Therefore, here we investigated the free-energy conformational landscape of levetiracetam (LEV) in gas phase as well as in water and ethanol, aiming to describe the 3-dimensional structure and energetic stability of its conformers. Twenty-two unique conformers were identified, and their energetic stability was determined at density functional theory B3LYP/6-31+G(2d,2p) level of theory. The 6 most stable monomers in water, within a relative free-energy window of 0.71 kcal mol -1 and clearly separated in energy from the remaining subset of 16 conformers, as well as the 3 most stable dimers were then used to compute the Boltzmann populations-averaged UV-Vis and NMR spectra of LEV. The conformational landscape in solution is distinctly different from that corresponding to gas phase, particularly due to the relative orientations of the butanamide group. Aiming to clarify the stability of the possible dimers of LEV, we also investigated computationally the structure of a set of 11 nonhydrated and hydrated homochiral hydrogen-bonded LEV dimers. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Mahaffey, Michael L.; McKillip, William D.
This manual is designed for teachers using the Career Oriented Mathematics units on owning an automobile and driving as a career, retail sales, measurement, and area-perimeter. The volume begins with a discussion of the philosophy and scheduling of the program which is designed to improve students' attitudes and ability in computation by…
ERIC Educational Resources Information Center
Hsu, P.-S.; Van Dyke, M.; Chen, Y.; Smith, T. J.
2016-01-01
The purpose of this mixed-methods study was to explore how seventh graders in a suburban school in the United States and sixth graders in an urban school in Taiwan developed argumentation skills and science knowledge in a project-based learning environment that incorporated a graph-oriented, computer-assisted application (GOCAA). A total of 42…
Design Tools for Accelerating Development and Usage of Multi-Core Computing Platforms
2014-04-01
Government formulated or supplied the drawings, specifications, or other data does not license the holder or any other person or corporation ; or convey...multicore PDSP platforms. The GPU- based capabilities of TDIF are currently oriented towards NVIDIA GPUs, based on the Compute Unified Device Architecture...CUDA) programming language [ NVIDIA 2007], which can be viewed as an extension of C. The multicore PDSP capabilities currently in TDIF are oriented
Estimating Relative Positions of Outer-Space Structures
NASA Technical Reports Server (NTRS)
Balian, Harry; Breckenridge, William; Brugarolas, Paul
2009-01-01
A computer program estimates the relative position and orientation of two structures from measurements, made by use of electronic cameras and laser range finders on one structure, of distances and angular positions of fiducial objects on the other structure. The program was written specifically for use in determining errors in the alignment of large structures deployed in outer space from a space shuttle. The program is based partly on equations for transformations among the various coordinate systems involved in the measurements and on equations that account for errors in the transformation operators. It computes a least-squares estimate of the relative position and orientation. Sequential least-squares estimates, acquired at a measurement rate of 4 Hz, are averaged by passing them through a fourth-order Butterworth filter. The program is executed in a computer aboard the space shuttle, and its position and orientation estimates are displayed to astronauts on a graphical user interface.
Implementation of an object oriented track reconstruction model into multiple LHC experiments*
NASA Astrophysics Data System (ADS)
Gaines, Irwin; Gonzalez, Saul; Qian, Sijin
2001-10-01
An Object Oriented (OO) model (Gaines et al., 1996; 1997; Gaines and Qian, 1998; 1999) for track reconstruction by the Kalman filtering method has been designed for high energy physics experiments at high luminosity hadron colliders. The model has been coded in the C++ programming language and has been successfully implemented into the OO computing environments of both the CMS (1994) and ATLAS (1994) experiments at the future Large Hadron Collider (LHC) at CERN. We shall report: how the OO model was adapted, with largely the same code, to different scenarios and serves the different reconstruction aims in different experiments (i.e. the level-2 trigger software for ATLAS and the offline software for CMS); how the OO model has been incorporated into different OO environments with a similar integration structure (demonstrating the ease of re-use of OO program); what are the OO model's performance, including execution time, memory usage, track finding efficiency and ghost rate, etc.; and additional physics performance based on use of the OO tracking model. We shall also mention the experience and lessons learned from the implementation of the OO model into the general OO software framework of the experiments. In summary, our practice shows that the OO technology really makes the software development and the integration issues straightforward and convenient; this may be particularly beneficial for the general non-computer-professional physicists.
Automated target recognition using passive radar and coordinated flight models
NASA Astrophysics Data System (ADS)
Ehrman, Lisa M.; Lanterman, Aaron D.
2003-09-01
Rather than emitting pulses, passive radar systems rely on illuminators of opportunity, such as TV and FM radio, to illuminate potential targets. These systems are particularly attractive since they allow receivers to operate without emitting energy, rendering them covert. Many existing passive radar systems estimate the locations and velocities of targets. This paper focuses on adding an automatic target recognition (ATR) component to such systems. Our approach to ATR compares the Radar Cross Section (RCS) of targets detected by a passive radar system to the simulated RCS of known targets. To make the comparison as accurate as possible, the received signal model accounts for aircraft position and orientation, propagation losses, and antenna gain patterns. The estimated positions become inputs for an algorithm that uses a coordinated flight model to compute probable aircraft orientation angles. The Fast Illinois Solver Code (FISC) simulates the RCS of several potential target classes as they execute the estimated maneuvers. The RCS is then scaled by the Advanced Refractive Effects Prediction System (AREPS) code to account for propagation losses that occur as functions of altitude and range. The Numerical Electromagnetic Code (NEC2) computes the antenna gain pattern, so that the RCS can be further scaled. The Rician model compares the RCS of the illuminated aircraft with those of the potential targets. This comparison results in target identification.
Wang, Huan; Yue, Bailing; Xie, Zengqi; Gao, Bingrong; Xu, Yuanxiang; Liu, Linlin; Sun, Hongbo; Ma, Yuguang
2013-03-14
The orientation factor κ(2) ranging from 0 to 4, which depends on the relative orientation of the transition dipoles of the energy donor (D) and the energy acceptor (A) in space, is one of the pivotal factors deciding the efficiency and directionality of resonance energy transfer (RET) in a D-A molecular system. In this work, tetracene (Tc) and pentacene (Pc) are successfully doped in a trans-1,4-distyrylbenzene (DSB) crystalline lattice to form definite D-A mutually perpendicular transition dipole orientations. The cross D-A dipole arrangement results in an extremely small orientation factor, which is about two orders smaller than that in the disordered films. The energy transfer properties from the host (DSB) to the guest (Tc/Pc) were investigated in detail by steady-state as well as time-resolved fluorescence spectroscopy. Our experimental research results show that the small value of κ(2) allows less or partial energy transfer from the host (DSB) to the guest (Tc) in a wide range of guest concentration, with the Förster distance of around 1.5 nm. By controlling the doping concentrations in the Tc and Pc doubly doped DSB crystals, we demonstrate, as an example, for the first time the application of the restricted energy transfer by D-A cross transition dipole arrangement for preparation of a large-size, white-emissive organic crystal with the CIE coordinates of (0.36, 0.37) approaching an ideal white light. In contrast, Tc is also doped in an anthracene crystalline lattice to form head-to-tail D-A transition dipole alignment, which is proved to be highly effective to promote the intermolecular energy transfer. In this doped system, the orientation factor is relatively large and the Förster distance is around 7 nm.
NASA Astrophysics Data System (ADS)
Mannsfeld, S. C.; Fritz, T.
2004-02-01
The physical structure of organic-inorganic heteroepitaxial thin films is usually governed by a fine balance between weak molecule-molecule interactions and a weakly laterally varying molecule-substrate interaction potential. Therefore, in order to investigate the energetics of such a layer system one has to consider large molecular domains. So far, layer potential calculations for large domains of organic thin films on crystalline substrates were difficult to perform concerning the computational effort which stems from the vast number of atoms which have to be included. Here, we present a technique which enables the calculation of the molecule-substrate interaction potential for large molecular domains by utilizing potential energy grid files. This technique allows the investigation of the substrate influence in systems prepared by organic molecular beam epitaxy (OMBE), like 3,4,9,10-perylenetetracarboxylicdianhydride on highly oriented pyrolytic graphite. For this system the so-called point-on-line coincidence was proposed, a growth mode which has been controversially discussed in literature. Furthermore, we are able to provide evidence for a general energetic advantage of such point-on-line coincident domain orientations over arbitrarily oriented domains which substantiates that energetically favorable lattice structures in OMBE systems are not restricted to commensurate unit cells or coincident super cells.
Computational study of antimalarial pyrazole alkaloids from Newbouldia laevis.
Mammino, Liliana; Bilonda, Mireille K
2014-11-01
Six pyrazole alkaloids of natural origin (isolated from Newbouldia laevis in DR Congo) that exhibit antimalarial activity-namely withasomnine, newbouldine, and their para-hydroxy and -methoxy derivatives-were investigated theoretically. The nitro derivatives of withasomnine and para-hydroxywithasomnine, which show enhanced antimalarial activity, were also studied in this manner. A thorough conformational study was performed in vacuo and in three solvents (chloroform, acetonitrile, and water) at different levels of theory (HF, DFT/B3LYP, and MP2) using different basis sets. Adducts with explicit water molecules were calculated at the HF level. Due to the rigidity of the pyrazole system and the benzene ring, the only factor that influences the energies of withasomnine and newbouldine is the relative orientation of the two ring systems; two orientations are equally preferred. The para-hydroxy and -methoxy derivatives show a preference for a planar orientation of the OH and OC bonds. The main stabilizing influence on the nitro derivative of para-hydroxywithasomnine is the intramolecular hydrogen bond between the two consecutive functional groups. The calculated adducts show the preferred arrangements of water molecules in the vicinity of the N atoms of the pyrazole system and, for the derivatives, also in the vicinity of the substituents on the benzene ring.
Earth Reflected Solar Radiation Incident upon an Arbitrarily Oriented Spinning Flat Plate
NASA Technical Reports Server (NTRS)
Cunningham, Fred G.
1963-01-01
A general derivation is given for the earth reflected solar radiation input to a flat plate--a solar cell paddle, for example--which is spinning about an axis coincident with the axis of symmetry of the satellite to which it is affixed. The resulting equations are written for the general case so that arbitrary orientations of the spin axis with respect to the earth-satellite line and arbitrary orientations of the normal to the plate with respect to the spin axis can be treated. No attempt is made to perform the resulting integrations because of the complexity of the equations; nor is there any attempt to delineate the integration limits for the general case. However, the equations governing these limits are given. The appendixes contain: the results, in graphical form, of two representative examples; the general computer program for the calculation is given in Fortran notation; and the results of a calculation of the distribution of albedo energy on the proposed Echo II satellite. The value of the mean solar constant used is 1.395 times 10 (sup 4) ergs per centimeters-squared per second; the mean albedo of the earth is assumed to be 0.34; and the earth is assumed to be a diffuse reflector.
High Performance Object-Oriented Scientific Programming in Fortran 90
NASA Technical Reports Server (NTRS)
Norton, Charles D.; Decyk, Viktor K.; Szymanski, Boleslaw K.
1997-01-01
We illustrate how Fortran 90 supports object-oriented concepts by example of plasma particle computations on the IBM SP. Our experience shows that Fortran 90 and object-oriented methodology give high performance while providing a bridge from Fortran 77 legacy codes to modern programming principles. All of our object-oriented Fortran 90 codes execute more quickly thatn the equeivalent C++ versions, yet the abstraction modelling capabilities used for scentific programming are comparably powereful.
2011-09-01
service -oriented systems • Software -as-a- Service ( SaaS ) • social network infrastructures • Internet marketing • mobile computing • context awareness...Maintenance and Evolution of Service -Oriented Systems (MESOA 2010), organized by members of the Carnegie Mellon Software Engineering Institute’s...CMU/SEI-2011-SR-008 | 1 1 Workshop Introduction The Software Engineering Institute (SEI) started developing a service -oriented architecture
Water promotes the sealing of nanoscale packing defects in folding proteins.
Fernández, Ariel
2014-05-21
A net dipole moment is shown to arise from a non-Debye component of water polarization created by nanoscale packing defects on the protein surface. Accordingly, the protein electrostatic field exerts a torque on the induced dipole, locally impeding the nucleation of ice at the protein-water interface. We evaluate the solvent orientation steering (SOS) as the reversible work needed to align the induced dipoles with the Debye electrostatic field and computed the SOS for the variable interface of a folding protein. The minimization of the SOS is shown to drive protein folding as evidenced by the entrainment of the total free energy by the SOS energy along trajectories that approach a Debye limit state where no torque arises. This result suggests that the minimization of anomalous water polarization at the interface promotes the sealing of packing defects, thereby maintaining structural integrity and committing the protein chain to fold.
Effect of molecular anisotropy on beam scattering measurements
NASA Technical Reports Server (NTRS)
Goldflam, R.; Green, S.; Kouri, D. J.; Monchick, L.
1978-01-01
Within the energy sudden approximation, the total integral and total differential scattering cross sections are given by the angle average of scattering cross sections computed at fixed rotor orientations. Using this formalism the effect of molecular anisotropy on scattering of He by HCl and by CO is examined. Comparisons with accurate close coupling calculations indicate that this approximation is quite reliable, even at very low collision energies, for both of these systems. Comparisons are also made with predictions based on the spherical average of the interaction. For HCl the anisotropy is rather weak and its main effect is a slight quenching of the oscillations in the differential cross sections relative to predictions of the spherical averaged potential. For CO the anisotropy is much stronger, so that the oscillatory pattern is strongly quenched and somewhat shifted. It appears that the sudden approximation provides a simple yet accurate method for describing the effect of molecular anisotropy on scattering measurements.
Hathout, Rania M; Metwally, Abdelkader A
2016-11-01
This study represents one of the series applying computer-oriented processes and tools in digging for information, analysing data and finally extracting correlations and meaningful outcomes. In this context, binding energies could be used to model and predict the mass of loaded drugs in solid lipid nanoparticles after molecular docking of literature-gathered drugs using MOE® software package on molecularly simulated tripalmitin matrices using GROMACS®. Consequently, Gaussian processes as a supervised machine learning artificial intelligence technique were used to correlate the drugs' descriptors (e.g. M.W., xLogP, TPSA and fragment complexity) with their molecular docking binding energies. Lower percentage bias was obtained compared to previous studies which allows the accurate estimation of the loaded mass of any drug in the investigated solid lipid nanoparticles by just projecting its chemical structure to its main features (descriptors). Copyright © 2016 Elsevier B.V. All rights reserved.
Protection of Computer Programs--A Dilemma.
ERIC Educational Resources Information Center
Carnahan, William H.
Computer programs, as legitimate original inventions or creative written expressions, are entitled to patent or copyright protection. Understanding the legal implications of this concept is crucial to both computer programmers and their employers in our increasingly computer-oriented way of life. Basically the copyright or patent procedure…
Studies of human dynamic space orientation using techniques of control theory
NASA Technical Reports Server (NTRS)
Young, L. R.
1974-01-01
Studies of human orientation and manual control in high order systems are summarized. Data cover techniques for measuring and altering orientation perception, role of non-visual motion sensors, particularly the vestibular and tactile sensors, use of motion cues in closed loop control of simple stable and unstable systems, and advanced computer controlled display systems.
ERIC Educational Resources Information Center
de Oliveira, Clara Amelia; Conte, Marcos Fernando; Riso, Bernardo Goncalves
This work presents a proposal for Teaching/Learning, on Object Oriented Programming for Entry Level Courses of Engineering and Computer Science, on University. The philosophy of Object Oriented Programming comes as a new pattern of solution for problems, where flexibility and reusability appears over the simple data structure and sequential…
NASA Astrophysics Data System (ADS)
Pevenstein, Jack Edward
This dissertation presents 18 alternative models for computing the social rate of return (SRR) of the joint Department of Energy (DOE)-National Institute of Standards and Technology (NIST) Energy-Related Inventions Program (ERIP) from 1975 to 1995. The models differ on the on the choice of societal benefit, adjustments made to the benefits, accounting for initial investments in ERIP and annual program appropriations. Alternative quantitative measures of societal benefit include annual gross market sales of successfully commercialized ERIP-supported inventions, annual energy savings resulting from the use of such inventions, pollution-remediation cost reductions due to decreased carbon emissions from greenhouse gases associated with more efficient energy generation. SRR computation employs the net present value (NPV) model with the SRR being the discount rate that reduces the NPV of a stream of societal benefits to zero over a period of n years given an initial investment and annual program appropriations. The SRR is the total rate of return to the nation from public investment in ERIP. The data used for computation were assembled by Dr. Marilyn A. Brown and her staff at Oak Ridge National Laboratory under contract to DOE since 1985. Other data on energy use and carbon emission from greenhouse gas production come from official publications of DOE's Energy Information Administration. Mean ERIP SRR = 412.7% with standard deviation = +/-426.5%. The population of the SRR sample is accepted as normally distributed at an alpha = 0.05, using the Kolmogorov-Smirnov test. These SRR's, which appear reasonable in comparison with those computed by Professor Edwin Mansfield, (Wharton School) for inventions and by Dr. Gregory Tassey (NIST Chief Economist) for NIST programs supporting innovations in measurement technology, show a significant underinvestment in public service technology innovation evaluation programs for independent inventors and small technology-oriented businesses. Moreover, it is argued that ERIP [with its participants] is a good representation of a larger community of independent inventors and innovators comprising a resource the writer calls the "national innovation infrastructure." This national innovation infrastructure, like ERIP, is underinvested in terms of public support. Thus, the nation would benefit from a large-scale, value-adding, public-service innovative technology evaluation program modeled on ERIP. Further, support of such technology evaluation programs at both state and Federal levels should be an important priority of public technology policy.
Ultrafast shock compression of self-assembled monolayers: a molecular picture.
Patterson, James E; Dlott, Dana D
2005-03-24
Simulations of self-assembled monolayers (SAMs) are performed to interpret experimental measurements of ultrafast approximately 1 GPa (volume compression deltaV approximately 0.1) planar shock compression dynamics probed by vibrational sum-frequency generation (SFG) spectroscopy (Lagutchev, A. S.; Patterson, J. E.; Huang, W.; Dlott, D. D. J. Phys. Chem. B 2005, 109, XXXX). The SAMs investigated are octadecanethiol (ODT) and pentadecanethiol (PDT) on Au(111) and Ag(111) substrates, and benzyl mercaptan (BMT) on Au(111). In the alkane SAMs, SFG is sensitive to the instantaneous orientation of the terminal methyl; in BMT it is sensitive to the phenyl orientation. Computed structures of alkane SAMs are in good agreement with experiment. In alkanes, the energies of gauche defects increase with increasing number and depth below the methyl plane, with the exception of ODT/Au where both single and double gauche defects at the two uppermost dihedrals have similar energies. Simulations of isothermal uniaxial compression of SAM lattices show that chain and methyl tilting is predominant in PDT/Au, ODT/Ag and PDT/Ag, whereas single and double gauche defect formation is predominant in ODT/Au. Time-resolved shock data showing transient SFG signal loss of ODT/Au and PDT/Au are fit by calculations of the terminal group orientations as a function of deltaV and their contributions to the SFG hyperpolarizability. The highly elastic response of PDT/Au results from shock-generated methyl and chain tilting. The viscoelastic response of ODT/Au results from shock generation of single and double gauche defects. Isothermal compression simulations help explain and fit the time dependence of shock spectra but generally underestimate the magnitude of SFG signal loss because they do not include effects of high-strain-rate dynamics and shock front and surface irregularities.
Murray, Matthew J; Ogden, Hannah M; Mullin, Amy S
2017-10-21
An optical centrifuge is used to generate an ensemble of CO 2 super rotors with oriented angular momentum. The collision dynamics and energy transfer behavior of the super rotor molecules are investigated using high-resolution transient IR absorption spectroscopy. New multipass IR detection provides improved sensitivity to perform polarization-dependent transient studies for rotational states with 76 ≤ J ≤ 100. Polarization-dependent measurements show that the collision-induced kinetic energy release is spatially anisotropic and results from both near-resonant energy transfer between super rotor molecules and non-resonant energy transfer between super rotors and thermal molecules. J-dependent studies show that the extent and duration of the orientational anisotropy increase with rotational angular momentum. The super rotors exhibit behavior akin to molecular gyroscopes, wherein molecules with larger amounts of angular momentum are less likely to change their angular momentum orientation through collisions.
NASA Astrophysics Data System (ADS)
Murray, Matthew J.; Ogden, Hannah M.; Mullin, Amy S.
2017-10-01
An optical centrifuge is used to generate an ensemble of CO2 super rotors with oriented angular momentum. The collision dynamics and energy transfer behavior of the super rotor molecules are investigated using high-resolution transient IR absorption spectroscopy. New multipass IR detection provides improved sensitivity to perform polarization-dependent transient studies for rotational states with 76 ≤ J ≤ 100. Polarization-dependent measurements show that the collision-induced kinetic energy release is spatially anisotropic and results from both near-resonant energy transfer between super rotor molecules and non-resonant energy transfer between super rotors and thermal molecules. J-dependent studies show that the extent and duration of the orientational anisotropy increase with rotational angular momentum. The super rotors exhibit behavior akin to molecular gyroscopes, wherein molecules with larger amounts of angular momentum are less likely to change their angular momentum orientation through collisions.
A Low Complexity System Based on Multiple Weighted Decision Trees for Indoor Localization
Sánchez-Rodríguez, David; Hernández-Morera, Pablo; Quinteiro, José Ma.; Alonso-González, Itziar
2015-01-01
Indoor position estimation has become an attractive research topic due to growing interest in location-aware services. Nevertheless, satisfying solutions have not been found with the considerations of both accuracy and system complexity. From the perspective of lightweight mobile devices, they are extremely important characteristics, because both the processor power and energy availability are limited. Hence, an indoor localization system with high computational complexity can cause complete battery drain within a few hours. In our research, we use a data mining technique named boosting to develop a localization system based on multiple weighted decision trees to predict the device location, since it has high accuracy and low computational complexity. The localization system is built using a dataset from sensor fusion, which combines the strength of radio signals from different wireless local area network access points and device orientation information from a digital compass built-in mobile device, so that extra sensors are unnecessary. Experimental results indicate that the proposed system leads to substantial improvements on computational complexity over the widely-used traditional fingerprinting methods, and it has a better accuracy than they have. PMID:26110413
Software Maintenance of the Subway Environment Simulation Computer Program
DOT National Transportation Integrated Search
1980-12-01
This document summarizes the software maintenance activities performed to support the Subway Environment Simulation (SES) Computer Program. The SES computer program is a design-oriented analytic tool developed during a recent five-year research proje...
An Object-Oriented Graphical User Interface for a Reusable Rocket Engine Intelligent Control System
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Musgrave, Jeffrey L.; Guo, Ten-Huei; Paxson, Daniel E.; Wong, Edmond; Saus, Joseph R.; Merrill, Walter C.
1994-01-01
An intelligent control system for reusable rocket engines under development at NASA Lewis Research Center requires a graphical user interface to allow observation of the closed-loop system in operation. The simulation testbed consists of a real-time engine simulation computer, a controls computer, and several auxiliary computers for diagnostics and coordination. The system is set up so that the simulation computer could be replaced by the real engine and the change would be transparent to the control system. Because of the hard real-time requirement of the control computer, putting a graphical user interface on it was not an option. Thus, a separate computer used strictly for the graphical user interface was warranted. An object-oriented LISP-based graphical user interface has been developed on a Texas Instruments Explorer 2+ to indicate the condition of the engine to the observer through plots, animation, interactive graphics, and text.
National Laboratory for Advanced Scientific Visualization at UNAM - Mexico
NASA Astrophysics Data System (ADS)
Manea, Marina; Constantin Manea, Vlad; Varela, Alfredo
2016-04-01
In 2015, the National Autonomous University of Mexico (UNAM) joined the family of Universities and Research Centers where advanced visualization and computing plays a key role to promote and advance missions in research, education, community outreach, as well as business-oriented consulting. This initiative provides access to a great variety of advanced hardware and software resources and offers a range of consulting services that spans a variety of areas related to scientific visualization, among which are: neuroanatomy, embryonic development, genome related studies, geosciences, geography, physics and mathematics related disciplines. The National Laboratory for Advanced Scientific Visualization delivers services through three main infrastructure environments: the 3D fully immersive display system Cave, the high resolution parallel visualization system Powerwall, the high resolution spherical displays Earth Simulator. The entire visualization infrastructure is interconnected to a high-performance-computing-cluster (HPCC) called ADA in honor to Ada Lovelace, considered to be the first computer programmer. The Cave is an extra large 3.6m wide room with projected images on the front, left and right, as well as floor walls. Specialized crystal eyes LCD-shutter glasses provide a strong stereo depth perception, and a variety of tracking devices allow software to track the position of a user's hand, head and wand. The Powerwall is designed to bring large amounts of complex data together through parallel computing for team interaction and collaboration. This system is composed by 24 (6x4) high-resolution ultra-thin (2 mm) bezel monitors connected to a high-performance GPU cluster. The Earth Simulator is a large (60") high-resolution spherical display used for global-scale data visualization like geophysical, meteorological, climate and ecology data. The HPCC-ADA, is a 1000+ computing core system, which offers parallel computing resources to applications that requires large quantity of memory as well as large and fast parallel storage systems. The entire system temperature is controlled by an energy and space efficient cooling solution, based on large rear door liquid cooled heat exchangers. This state-of-the-art infrastructure will boost research activities in the region, offer a powerful scientific tool for teaching at undergraduate and graduate levels, and enhance association and cooperation with business-oriented organizations.
The Road to Computer Literacy. Part V: Objectives and Activities for Grades 10-12.
ERIC Educational Resources Information Center
Bitter, Gary
1983-01-01
Presents computer-oriented activities in computer awareness and programing for students in grades 10-12. Intended for use by teachers of all disciplines, activities include such topics as prediction, interpretation and generalization of data, computer systems, PASCAL and PILOT programing, sampling techniques, computer survival, invasion of…
NASA Astrophysics Data System (ADS)
Paul, Abhijeet
2011-07-01
The technological progress in dimensional scaling has not only kept Silicon CMOS industry on Moore's law for the past five decades but has also benefited many other areas such as thermoelectricity, photo-voltaics, and energy storage. Extending CMOS beyond Si (More Moore, MM) and adding functional diversity to CMOS (More Than Moore, MTM) requires a thorough understanding of the basic electron and heat flow in semiconductors. Along with experiments computer modeling and simulation are playing an increasingly vital role in exploring the numerous possibilities in materials, devices and systems. With these aspects in mind the present work applies computational physics modeling and simulations to explore the, (i) electronic, (ii) thermal, and (iii) thermoelectric properties in nano-scale semiconductors. The electronic structure of zinc-blende and lead-chalcogenide nano-materials is calculated using an atomistic Tight-Binding model. The phonon dispersion in zinc-blende materials is obtained using the Modified Valence Force Field model. Electronic and thermal transport at the nano-scale is explored using Green's function method and Landauer's method. Thermoelectric properties of semiconductor nanostructures are calculated using Landauer's method. Using computer modeling and simulations the variation of the three physical properties (i-iii) are explored with varying size, transport orientation, shape, porosity, strain and alloying of nanostructures. The key findings are, (a) III-Vs and Ge with optimized strain and orientation can improve transistors' and thermoelectric performance, (b) porous Si nanowires provide a lucrative idea for enhancing the thermoelectric efficiency at room temperature, and (c) Si/Ge superlattice nanowires can be used for nano-scale tuning of lattice thermal conductivity by period control. The present work led to the development of two new interface trap density extraction methods in ultra-scaled FinFETs and correlation of the phonon shifts in Si nanowires to their shape, size and orientation benchmarked against experimental Raman spectroscopy data, thereby enabling nano-scale metrology. Contribution of two research and six educational tools on nanoHUB.org forms an integral part of the work for global dissemination of semiconductor knowledge. Atomic level manipulation holds the key to engineer material properties at the nano-scale. The findings of this work will hopefully open and guide new ways of engineering the electronic and thermal properties for better performance.
Functional implications of orientation maps in primary visual cortex
NASA Astrophysics Data System (ADS)
Koch, Erin; Jin, Jianzhong; Alonso, Jose M.; Zaidi, Qasim
2016-11-01
Stimulus orientation in the primary visual cortex of primates and carnivores is mapped as iso-orientation domains radiating from pinwheel centres, where orientation preferences of neighbouring cells change circularly. Whether this orientation map has a function is currently debated, because many mammals, such as rodents, do not have such maps. Here we show that two fundamental properties of visual cortical responses, contrast saturation and cross-orientation suppression, are stronger within cat iso-orientation domains than at pinwheel centres. These differences develop when excitation (not normalization) from neighbouring oriented neurons is applied to different cortical orientation domains and then balanced by inhibition from un-oriented neurons. The functions of the pinwheel mosaic emerge from these local intra-cortical computations: Narrower tuning, greater cross-orientation suppression and higher contrast gain of iso-orientation cells facilitate extraction of object contours from images, whereas broader tuning, greater linearity and less suppression of pinwheel cells generate selectivity for surface patterns and textures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinavicius, A.; Abrasonis, G.; Moeller, W.
2011-10-01
The nitrogen diffusivity in single-crystalline AISI 316L austenitic stainless steel (ASS) during ion nitriding has been investigated at different crystal orientations ((001), (110), (111)) under variations of ion flux (0.3-0.7 mA cm{sup -2}), ion energy (0.5-1.2 keV), and temperature (370-430 deg. C). The nitrogen depth profiles obtained from nuclear reaction analysis are in excellent agreement with fits using the model of diffusion under the influence of traps, from which diffusion coefficients were extracted. At fixed ion energy and flux, the diffusivity varies by a factor up to 2.5 at different crystal orientations. At (100) orientation, it increases linearly with increasingmore » ion flux or energy. The findings are discussed on the basis of atomistic mechanisms of interstitial diffusion, potential lattice distortions, local decomposition, and ion-induced lattice vibrational excitations.« less
Cladé, Thierry; Snyder, Joshua C.
2010-01-01
Clinical trials which use imaging typically require data management and workflow integration across several parties. We identify opportunities for all parties involved to realize benefits with a modular interoperability model based on service-oriented architecture and grid computing principles. We discuss middleware products for implementation of this model, and propose caGrid as an ideal candidate due to its healthcare focus; free, open source license; and mature developer tools and support. PMID:20449775
Probabilistic Surface Characterization for Safe Landing Hazard Detection and Avoidance (HDA)
NASA Technical Reports Server (NTRS)
Johnson, Andrew E. (Inventor); Ivanov, Tonislav I. (Inventor); Huertas, Andres (Inventor)
2015-01-01
Apparatuses, systems, computer programs and methods for performing hazard detection and avoidance for landing vehicles are provided. Hazard assessment takes into consideration the geometry of the lander. Safety probabilities are computed for a plurality of pixels in a digital elevation map. The safety probabilities are combined for pixels associated with one or more aim points and orientations. A worst case probability value is assigned to each of the one or more aim points and orientations.
Radiology image orientation processing for workstation display
NASA Astrophysics Data System (ADS)
Chang, Chung-Fu; Hu, Kermit; Wilson, Dennis L.
1998-06-01
Radiology images are acquired electronically using phosphor plates that are read in Computed Radiology (CR) readers. An automated radiology image orientation processor (RIOP) for determining the orientation for chest images and for abdomen images has been devised. In addition, the chest images are differentiated as front (AP or PA) or side (Lateral). Using the processing scheme outlined, hospitals will improve the efficiency of quality assurance (QA) technicians who orient images and prepare the images for presentation to the radiologists.
Reale, Riccardo; English, Niall J; Garate, José-Antonio; Marracino, Paolo; Liberti, Micaela; Apollonio, Francesca
2013-11-28
Water self-diffusion and the dipolar response of the selectivity filter within human aquaporin 4 have been studied using molecular dynamics (MD) simulations in the absence and presence of pulses of external static and alternating electric fields. The pulses were approximately 50 and 100 ns in duration and 0.0065 V/Å in (r.m.s.) intensity and were either static or else 2.45 or 100 GHz in frequency and applied both along and perpendicular to the channels. In addition, the relaxation of the aquaporin, water self-diffusion and gating dynamics following cessation of the impulses was studied. In previous work it was determined that switches in the dihedral angle of the selectivity filter led to boosting of water permeation events within the channels, in the presence of identical external static and alternating electric fields, although applied continuously. Here the application of field impulses (and subsequently, upon removal) has shown that it is the dipolar orientation of the histidine-201 residue in the selectivity filter which governs the dihedral angle, and hence influences water self-diffusion; this constitutes an appropriate order parameter. The dipolar response of this residue to the applied field leads to the adoption of four distinct states, which we modelled as time-homogeneous Markov jump processes, and may be distinguished in the potential of mean force (PMF) as a function of the dipolar orientation of histidine-201. The observations of enhanced "dipolar flipping" of H201 serve to explain increased levels of water self-diffusion within aquaporin channels during, and immediately following, field impulses, although the level of statistical certainty here is lower. Given the appreciable size of the energy barriers evident in PMFs computed directly from deterministic MD (whether in the absence or presence of external fields), metadynamics calculations were undertaken to explore the free-energy landscape of histidine-201 orientation with greater accuracy and precision. These indicate that electric fields do alter the free-energy profile of the H201 side-chain orientation, wherein a perturbation of the symmetric bimodal state evident in the zero-field case is observed. These effects are dependent on the field intensities.
Strategic directions of computing at Fermilab
NASA Astrophysics Data System (ADS)
Wolbers, Stephen
1998-05-01
Fermilab computing has changed a great deal over the years, driven by the demands of the Fermilab experimental community to record and analyze larger and larger datasets, by the desire to take advantage of advances in computing hardware and software, and by the advances coming from the R&D efforts of the Fermilab Computing Division. The strategic directions of Fermilab Computing continue to be driven by the needs of the experimental program. The current fixed-target run will produce over 100 TBytes of raw data and systems must be in place to allow the timely analysis of the data. The collider run II, beginning in 1999, is projected to produce of order 1 PByte of data per year. There will be a major change in methodology and software language as the experiments move away from FORTRAN and into object-oriented languages. Increased use of automation and the reduction of operator-assisted tape mounts will be required to meet the needs of the large experiments and large data sets. Work will continue on higher-rate data acquisition systems for future experiments and projects. R&D projects will be pursued as necessary to provide software, tools, or systems which cannot be purchased or acquired elsewhere. A closer working relation with other high energy laboratories will be pursued to reduce duplication of effort and to allow effective collaboration on many aspects of HEP computing.
Tang, Chen; Han, Lin; Ren, Hongwei; Zhou, Dongjian; Chang, Yiming; Wang, Xiaohang; Cui, Xiaolong
2008-10-01
We derive the second-order oriented partial-differential equations (PDEs) for denoising in electronic-speckle-pattern interferometry fringe patterns from two points of view. The first is based on variational methods, and the second is based on controlling diffusion direction. Our oriented PDE models make the diffusion along only the fringe orientation. The main advantage of our filtering method, based on oriented PDE models, is that it is very easy to implement compared with the published filtering methods along the fringe orientation. We demonstrate the performance of our oriented PDE models via application to two computer-simulated and experimentally obtained speckle fringes and compare with related PDE models.
Effect of Various Material Properties on the Adhesive Stage of Fretting
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1974-01-01
Various properties of metals and alloys were studied with respect to their effect on the initial stage of the fretting process, namely adhesion. Crystallographic orientation, crystal structure, interfacial binding energies of dissimiliar metal, segregation of alloy constituents and the nature and structure of surface films were found to influence adhesion. High atomic density, low surface energy grain orientations exhibited lower adhesion than other orientations. Knowledge of interfacial surface binding energies assists in predicting adhesive transfer and wear. Selective surface segregation of alloy constituents accomplishes both a reduction in adhesion and improved surface oxidation characteristics. Equivalent surface coverages of various adsorbed species indicate that some are markedly more effective in inhibiting adhesion than others.
Passive morphing of flying wing aircraft: Z-shaped configuration
NASA Astrophysics Data System (ADS)
Mardanpour, Pezhman; Hodges, Dewey H.
2014-01-01
High Altitude, Long Endurance (HALE) aircraft can achieve sustained, uninterrupted flight time if they use solar power. Wing morphing of solar powered HALE aircraft can significantly increase solar energy absorbency. An example of the kind of morphing considered in this paper requires the wings to fold so as to orient a solar panel to be hit more directly by the sun's rays at specific times of the day. An example of the kind of morphing considered in this paper requires the wings to fold so as to orient a solar panel that increases the absorption of solar energy by decreasing the angle of incidence of the solar radiation at specific times of the day. In this paper solar powered HALE flying wing aircraft are modeled with three beams with lockable hinge connections. Such aircraft are shown to be capable of morphing passively, following the sun by means of aerodynamic forces and engine thrusts. The analysis underlying NATASHA (Nonlinear Aeroelastic Trim And Stability of HALE Aircraft), a computer program that is based on geometrically exact, fully intrinsic beam equations and a finite-state induced flow model, was extended to include the ability to simulate morphing of the aircraft into a "Z" configuration. Because of the "long endurance" feature of HALE aircraft, such morphing needs to be done without relying on actuators and at as near zero energy cost as possible. The emphasis of this study is to substantially demonstrate the processes required to passively morph a flying wing into a Z-shaped configuration and back again.
Computer Series, 29: Bits and Pieces, 10.
ERIC Educational Resources Information Center
Moore, John W., Ed.
1982-01-01
Describes computer programs (available from authors) including molecular input to computer, programs for quantum chemistry, library orientation to technical literature, plotting potentiometric titration data, simulating oscilloscope curves, organic qualitative analysis with dynamic graphics, extended Huckel calculations, and calculator programs…
Miller, Patrick J O; Samarra, Filipa I P; Perthuison, Aurélie D
2007-06-01
This study investigates how particular received spectral characteristics of stereotyped calls of sexually dimorphic adult killer whales may be influenced by caller sex, orientation, and range. Calls were ascribed to individuals during natural behavior using a towed beamforming array. The fundamental frequency of both high-frequency and low-frequency components did not differ consistently by sex. The ratio of peak energy within the fundamental of the high-frequency component relative to summed peak energy in the first two low-frequency component harmonics, and the number of modulation bands off the high-frequency component, were significantly greater when whales were oriented towards the array, while range and adult sex had little effect. In contrast, the ratio of peak energy in the first versus second harmonics of the low-frequency component was greater in calls produced by adult females than adult males, while orientation and range had little effect. The dispersion of energy across harmonics has been shown to relate to body size or sex in terrestrial species, but pressure effects during diving are thought to make such a signal unreliable in diving animals. The observed spectral differences by signaler sex and orientation suggest that these types of information may be transmitted acoustically by freely diving killer whales.
Phase behavior and orientational ordering in block copolymers doped with anisotropic nanoparticles
NASA Astrophysics Data System (ADS)
Osipov, M. A.; Gorkunov, M. V.; Berezkin, A. V.; Kudryavtsev, Y. V.
2018-04-01
A molecular field theory and coarse-grained computer simulations with dissipative particle dynamics have been used to study the spontaneous orientational ordering of anisotropic nanoparticles in the lamellar and hexagonal phases of diblock copolymers and the effect of nanoparticles on the phase behavior of these systems. Both the molecular theory and computer simulations indicate that strongly anisotropic nanoparticles are ordered orientationally mainly in the boundary region between the domains and the nematic order parameter possesses opposite signs in adjacent domains. The orientational order is induced by the boundary and by the interaction between nanoparticles and the monomer units in different domains. In simulations, sufficiently long and strongly selective nanoparticles are ordered also inside the domains. The nematic order parameter and local concentration profiles of nanoparticles have been calculated numerically using the model of a nanoparticle with two interaction centers and also determined using the results of computer simulations. A number of phase diagrams have been obtained which illustrate the effect of nanoparticle selectivity and molar fraction of the stability ranges of various phases. Different morphologies have been identified by analyzing the static structure factor and a phase diagram has been constructed in coordinates' nanoparticle concentration-copolymer composition. Orientational ordering of even a small fraction of nanoparticles may result in a significant increase of the dielectric anisotropy of a polymer nanocomposite, which is important for various applications.
Free energy of steps using atomistic simulations
NASA Astrophysics Data System (ADS)
Freitas, Rodrigo; Frolov, Timofey; Asta, Mark
The properties of solid-liquid interfaces are known to play critical roles in solidification processes. Particularly special importance is given to thermodynamic quantities that describe the equilibrium state of these surfaces. For example, on the solid-liquid-vapor heteroepitaxial growth of semiconductor nanowires the crystal nucleation process on the faceted solid-liquid interface is influenced by the solid-liquid and vapor-solid interfacial free energies, and also by the free energies of associated steps at these faceted interfaces. Crystal-growth theories and mesoscale simulation methods depend on quantitative information about these properties, which are often poorly characterized from experimental measurements. In this work we propose an extension of the capillary fluctuation method for calculation of the free energy of steps on faceted crystal surfaces. From equilibrium atomistic simulations of steps on (111) surfaces of Copper we computed accurately the step free energy for different step orientations. We show that the step free energy remains finite at all temperature up to the melting point and that the results obtained agree with the more well established method of thermodynamic integration if finite size effects are taken into account. The research of RF and MA at UC Berkeley were supported by the US National Science Foundation (Grant No. DMR-1105409). TF acknowledges support through a postdoctoral fellowship from the Miller Institute for Basic Research in Science.
Numerically Exact Calculation of Rovibrational Levels of Cl^-H_2O
NASA Astrophysics Data System (ADS)
Wang, Xiao-Gang; Carrington, Tucker
2014-06-01
Large amplitude vibrations of Van der Waals clusters are important because they reveal large regions of a potential energy surface (PES). To calculate spectra of Van der Waals clusters it is common to use an adiabatic approximation. When coupling between intra- and inter-molecular coordinates is important non-adiabatic coupling cannot be neglected and it is therefore critical to develop and test theoretical methods that couple both types of coordinates. We have developed new product basis and contracted basis Lanczos methods for Van der Waals complexes and tested them by computing rovibrational energy levels of Cl^-H_2O. The new product basis is made of functions of the inter-monomer distance, Wigner functions that depend on Euler angles specifying the orientation of H_2O with respect to a frame attached to the inter-monomer Jacobi vector, basis functions for H_2O vibration, and Wigner functions that depend on Euler angles specifying the orientation of the inter-monomer Jacobi vector with respect to a space-fixed frame. An advantage of this product basis is that it can be used to make an efficient contracted basis by replacing the vibrational basis functions for the monomer with monomer vibrational wavefunctions. Due to weak coupling between intra- and inter-molecular coordinates, only a few tens of monomer vibrational wavefunctions are necessary. The validity of the two new methods is established by comparing energy levels with benchmark rovibrational levels obtained with polyspherical coordinates and spherical harmonic type basis functions. For all bases, product structure is exploited to calculate eigenvalues with the Lanczos algorithm. For Cl^-H_2O, we are able, for the first time, to compute accurate splittings due to tunnelling between the two equivalent C_s minima. We use the PES of Rheinecker and Bowman (RB). Our results are in good agreement with experiment for the five fundamental bands observed. J. Rheinecker and J. M. Bowman, J. Chem. Phys. 124 131102 (2006) J. Rheinecker and J. M. Bowman, J. Chem. Phys. 125 133206 (2006)} S. Horvath, A. B. McCoy, B. M. Elliott, G. H. Weddle, J. R. Roscioli, and M. A. Johnson J. Phys. Chem. A 114 1556 (2010)
The Layer-Oriented Approach to Declarative Languages for Biological Modeling
Raikov, Ivan; De Schutter, Erik
2012-01-01
We present a new approach to modeling languages for computational biology, which we call the layer-oriented approach. The approach stems from the observation that many diverse biological phenomena are described using a small set of mathematical formalisms (e.g. differential equations), while at the same time different domains and subdomains of computational biology require that models are structured according to the accepted terminology and classification of that domain. Our approach uses distinct semantic layers to represent the domain-specific biological concepts and the underlying mathematical formalisms. Additional functionality can be transparently added to the language by adding more layers. This approach is specifically concerned with declarative languages, and throughout the paper we note some of the limitations inherent to declarative approaches. The layer-oriented approach is a way to specify explicitly how high-level biological modeling concepts are mapped to a computational representation, while abstracting away details of particular programming languages and simulation environments. To illustrate this process, we define an example language for describing models of ionic currents, and use a general mathematical notation for semantic transformations to show how to generate model simulation code for various simulation environments. We use the example language to describe a Purkinje neuron model and demonstrate how the layer-oriented approach can be used for solving several practical issues of computational neuroscience model development. We discuss the advantages and limitations of the approach in comparison with other modeling language efforts in the domain of computational biology and outline some principles for extensible, flexible modeling language design. We conclude by describing in detail the semantic transformations defined for our language. PMID:22615554
The layer-oriented approach to declarative languages for biological modeling.
Raikov, Ivan; De Schutter, Erik
2012-01-01
We present a new approach to modeling languages for computational biology, which we call the layer-oriented approach. The approach stems from the observation that many diverse biological phenomena are described using a small set of mathematical formalisms (e.g. differential equations), while at the same time different domains and subdomains of computational biology require that models are structured according to the accepted terminology and classification of that domain. Our approach uses distinct semantic layers to represent the domain-specific biological concepts and the underlying mathematical formalisms. Additional functionality can be transparently added to the language by adding more layers. This approach is specifically concerned with declarative languages, and throughout the paper we note some of the limitations inherent to declarative approaches. The layer-oriented approach is a way to specify explicitly how high-level biological modeling concepts are mapped to a computational representation, while abstracting away details of particular programming languages and simulation environments. To illustrate this process, we define an example language for describing models of ionic currents, and use a general mathematical notation for semantic transformations to show how to generate model simulation code for various simulation environments. We use the example language to describe a Purkinje neuron model and demonstrate how the layer-oriented approach can be used for solving several practical issues of computational neuroscience model development. We discuss the advantages and limitations of the approach in comparison with other modeling language efforts in the domain of computational biology and outline some principles for extensible, flexible modeling language design. We conclude by describing in detail the semantic transformations defined for our language.
Ontology-Oriented Programming for Biomedical Informatics.
Lamy, Jean-Baptiste
2016-01-01
Ontologies are now widely used in the biomedical domain. However, it is difficult to manipulate ontologies in a computer program and, consequently, it is not easy to integrate ontologies with databases or websites. Two main approaches have been proposed for accessing ontologies in a computer program: traditional API (Application Programming Interface) and ontology-oriented programming, either static or dynamic. In this paper, we will review these approaches and discuss their appropriateness for biomedical ontologies. We will also present an experience feedback about the integration of an ontology in a computer software during the VIIIP research project. Finally, we will present OwlReady, the solution we developed.
ERIC Educational Resources Information Center
Stamas, Paul J.
2013-01-01
This case study research followed the two-year transition of a medium-sized manufacturing firm towards a service-oriented enterprise. A service-oriented enterprise is an emerging architecture of the firm that leverages the paradigm of services computing to integrate the capabilities of the firm with the complementary competencies of business…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, R. W.; Petrov, Yu. V.
2013-12-03
Within the US Department of Energy/Office of Fusion Energy magnetic fusion research program, there is an important whole-plasma-modeling need for a radio-frequency/neutral-beam-injection (RF/NBI) transport-oriented finite-difference Fokker-Planck (FP) code with combined capabilities for 4D (2R2V) geometry near the fusion plasma periphery, and computationally less demanding 3D (1R2V) bounce-averaged capabilities for plasma in the core of fusion devices. Demonstration of proof-of-principle achievement of this goal has been carried out in research carried out under Phase I of the SBIR award. Two DOE-sponsored codes, the CQL3D bounce-average Fokker-Planck code in which CompX has specialized, and the COGENT 4D, plasma edge-oriented Fokker-Planck code whichmore » has been constructed by Lawrence Livermore National Laboratory and Lawrence Berkeley Laboratory scientists, where coupled. Coupling was achieved by using CQL3D calculated velocity distributions including an energetic tail resulting from NBI, as boundary conditions for the COGENT code over the two-dimensional velocity space on a spatial interface (flux) surface at a given radius near the plasma periphery. The finite-orbit-width fast ions from the CQL3D distributions penetrated into the peripheral plasma modeled by the COGENT code. This combined code demonstrates the feasibility of the proposed 3D/4D code. By combining these codes, the greatest computational efficiency is achieved subject to present modeling needs in toroidally symmetric magnetic fusion devices. The more efficient 3D code can be used in its regions of applicability, coupled to the more computationally demanding 4D code in higher collisionality edge plasma regions where that extended capability is necessary for accurate representation of the plasma. More efficient code leads to greater use and utility of the model. An ancillary aim of the project is to make the combined 3D/4D code user friendly. Achievement of full-coupling of these two Fokker-Planck codes will advance computational modeling of plasma devices important to the USDOE magnetic fusion energy program, in particular the DIII-D tokamak at General Atomics, San Diego, the NSTX spherical tokamak at Princeton, New Jersey, and the MST reversed-field-pinch Madison, Wisconsin. The validation studies of the code against the experiments will improve understanding of physics important for magnetic fusion, and will increase our design capabilities for achieving the goals of the International Tokamak Experimental Reactor (ITER) project in which the US is a participant and which seeks to demonstrate at least a factor of five in fusion power production divided by input power.« less
Computer Instructional Aids for Undergraduate Control Education.
ERIC Educational Resources Information Center
Volz, Richard A.; And Others
Engineering is coming to rely more and more heavily upon the computer for computations, analyses, and graphic displays which aid the design process. A general purpose simulation system, the Time-shared Automatic Control Laboratory (TACL), and a set of computer-aided design programs, Control Oriented Interactive Graphic Analysis and Design…
Geothermal pilot study final report: creating an international geothermal energy community
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bresee, J.C.; Yen, W.W.S.; Metzler, J.E.
The Geothermal Pilot Study under the auspices of the Committee on the Challenges of Modern Society (CCMS) was established in 1973 to apply an action-oriented approach to international geothermal research and development, taking advantage of the established channels of governmental communication provided by the North Atlantic Treaty Organization (NATO). The Pilot Study was composed of five substudies. They included: computer-based information systems; direct application of geothermal energy; reservoir assessment; small geothermal power plants; and hot dry rock concepts. The most significant overall result of the CCMS Geothermal Pilot Study, which is now complete, is the establishment of an identifiable communitymore » of geothermal experts in a dozen or more countries active in development programs. Specific accomplishments include the creation of an international computer file of technical information on geothermal wells and fields, the development of studies and reports on direct applications, geothermal fluid injection and small power plants, and the operation of the visiting scientist program. In the United States, the computer file has aready proven useful in the development of reservoir models and of chemical geothermometers. The state-of-the-art report on direct uses of geothermal energy is proving to be a valuable resource document for laypersons and experts in an area of increasing interest to many countries. Geothermal fluid injection studies in El Salvador, New Zealand, and the United States have been assisted by the Reservoir Assessment Substudy and have led to long-range reservoir engineering studies in Mexico. At least seven small geothermal power plants are in use or have been planned for construction around the world since the Small Power Plant Substudy was instituted--at least partial credit for this increased application can be assigned to the CCMS Geothermal Pilot Study. (JGB)« less
Alarcón-Waess, O
2010-04-14
The self-orientational structure factor as well as the short-time self-orientational diffusion coefficient is computed for colloids composed by nonspherical molecules. To compute the short-time dynamics the hydrodynamic interactions are not taken into account. The hard molecules with at least one symmetry axis considered are: rods, spherocylinders, and tetragonal parallelepipeds. Because both orientational properties in study are written in terms of the second and fourth order parameters, these automatically hold the features of the order parameters. That is, they present a discontinuity for first order transitions, determining in this way the spinodal line. In order to analyze the nematic phase only, we choose the appropriate values for the representative quantities that characterize the molecules. Different formalisms are used to compute the structural properties: de Gennes-Landau approach, Smoluchowski equation and computer simulations. Some of the necessary inputs are taken from literature. Our results show that the self-orientational properties play an important role in the characterization and the localization of axially symmetric phases. While the self-structure decreases throughout the nematics, the short-time self-diffusion does not decrease but rather increases. We study the evolution of the second and fourth order parameters; we find different responses for axial and biaxial nematics, predicting the possibility of a biaxial nematics in tetragonal parallelepiped molecules. By considering the second order in the axial-biaxial phase transition, with the support of the self-orientational structure factor, we are able to propose the density at which this occurs. The short-time dynamics is able to predict a different value in the axial and the biaxial phases. Because the different behavior of the fourth order parameter, the diffusion coefficient is lower for a biaxial phase than for an axial one. Therefore the self-structure factor is able to localize continuous phase transitions involving axially symmetric phases and the short-time self-orientational diffusion is able to distinguish the ordered phase by considering the degree of alignment, that is, axial or biaxial.
Research on the Orientation and Application of Distributed Energy Storage in Energy Internet
NASA Astrophysics Data System (ADS)
Zeng, Ming; Zhou, Pengcheng; Li, Ran; Zhou, Jingjing; Chen, Tao; Li, Zhe
2018-01-01
Energy storage is indispensable resources to achieve a high proportion of new energy power consumption in electric power system. As an important support to energy Internet, energy storage system can achieve a variety of energy integration operation to ensure maximum energy efficiency. In this paper, firstly, the SWOT analysis method is used to express the internal and external advantages and disadvantages of distributed energy storage participating in the energy Internet. Secondly, the function orientation of distributed energy storage in energy Internet is studied, based on which the application modes of distributed energy storage in virtual power plant, community energy storage and auxiliary services are deeply studied. Finally, this paper puts forward the development strategy of distributed energy storage which is suitable for the development of China’s energy Internet, and summarizes and prospects the application of distributed energy storage system.
Computational exploration of a protein receptor binding space with student proposed peptide ligands.
King, Matthew D; Phillips, Paul; Turner, Matthew W; Katz, Michael; Lew, Sarah; Bradburn, Sarah; Andersen, Tim; McDougal, Owen M
2016-01-01
Computational molecular docking is a fast and effective in silico method for the analysis of binding between a protein receptor model and a ligand. The visualization and manipulation of protein to ligand binding in three-dimensional space represents a powerful tool in the biochemistry curriculum to enhance student learning. The DockoMatic tutorial described herein provides a framework by which instructors can guide students through a drug screening exercise. Using receptor models derived from readily available protein crystal structures, docking programs have the ability to predict ligand binding properties, such as preferential binding orientations and binding affinities. The use of computational studies can significantly enhance complimentary wet chemical experimentation by providing insight into the important molecular interactions within the system of interest, as well as guide the design of new candidate ligands based on observed binding motifs and energetics. In this laboratory tutorial, the graphical user interface, DockoMatic, facilitates docking job submissions to the docking engine, AutoDock 4.2. The purpose of this exercise is to successfully dock a 17-amino acid peptide, α-conotoxin TxIA, to the acetylcholine binding protein from Aplysia californica-AChBP to determine the most stable binding configuration. Each student will then propose two specific amino acid substitutions of α-conotoxin TxIA to enhance peptide binding affinity, create the mutant in DockoMatic, and perform docking calculations to compare their results with the class. Students will also compare intermolecular forces, binding energy, and geometric orientation of their prepared analog to their initial α-conotoxin TxIA docking results. © 2015 The International Union of Biochemistry and Molecular Biology.
Java Performance for Scientific Applications on LLNL Computer Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kapfer, C; Wissink, A
2002-05-10
Languages in use for high performance computing at the laboratory--Fortran (f77 and f90), C, and C++--have many years of development behind them and are generally considered the fastest available. However, Fortran and C do not readily extend to object-oriented programming models, limiting their capability for very complex simulation software. C++ facilitates object-oriented programming but is a very complex and error-prone language. Java offers a number of capabilities that these other languages do not. For instance it implements cleaner (i.e., easier to use and less prone to errors) object-oriented models than C++. It also offers networking and security as part ofmore » the language standard, and cross-platform executables that make it architecture neutral, to name a few. These features have made Java very popular for industrial computing applications. The aim of this paper is to explain the trade-offs in using Java for large-scale scientific applications at LLNL. Despite its advantages, the computational science community has been reluctant to write large-scale computationally intensive applications in Java due to concerns over its poor performance. However, considerable progress has been made over the last several years. The Java Grande Forum [1] has been promoting the use of Java for large-scale computing. Members have introduced efficient array libraries, developed fast just-in-time (JIT) compilers, and built links to existing packages used in high performance parallel computing.« less
Development of a KSC test and flight engineering oriented computer language, Phase 1
NASA Technical Reports Server (NTRS)
Case, C. W.; Kinney, E. L.; Gyure, J.
1970-01-01
Ten, primarily test oriented, computer languages reviewed during the phase 1 study effort are described. Fifty characteristics of ATOLL, ATLAS, and CLASP are compared. Unique characteristics of the other languages, including deficiencies, problems, safeguards, and checking provisions are identified. Programming aids related to these languages are reported, and the conclusions resulting from this phase of the study are discussed. A glossary and bibliography are included. For the reports on phase 2 of the study, see N71-35027 and N71-35029.
Dynamic electronic institutions in agent oriented cloud robotic systems.
Nagrath, Vineet; Morel, Olivier; Malik, Aamir; Saad, Naufal; Meriaudeau, Fabrice
2015-01-01
The dot-com bubble bursted in the year 2000 followed by a swift movement towards resource virtualization and cloud computing business model. Cloud computing emerged not as new form of computing or network technology but a mere remoulding of existing technologies to suit a new business model. Cloud robotics is understood as adaptation of cloud computing ideas for robotic applications. Current efforts in cloud robotics stress upon developing robots that utilize computing and service infrastructure of the cloud, without debating on the underlying business model. HTM5 is an OMG's MDA based Meta-model for agent oriented development of cloud robotic systems. The trade-view of HTM5 promotes peer-to-peer trade amongst software agents. HTM5 agents represent various cloud entities and implement their business logic on cloud interactions. Trade in a peer-to-peer cloud robotic system is based on relationships and contracts amongst several agent subsets. Electronic Institutions are associations of heterogeneous intelligent agents which interact with each other following predefined norms. In Dynamic Electronic Institutions, the process of formation, reformation and dissolution of institutions is automated leading to run time adaptations in groups of agents. DEIs in agent oriented cloud robotic ecosystems bring order and group intellect. This article presents DEI implementations through HTM5 methodology.
NASA Astrophysics Data System (ADS)
Kwon, Hyuk Ju; Yeon, Sang Hun; Lee, Keum Ho; Lee, Kwang Ho
2018-02-01
As various studies focusing on building energy saving have been continuously conducted, studies utilizing renewable energy sources, instead of fossil fuel, are needed. In particular, studies regarding solar energy are being carried out in the field of building science; in order to utilize such solar energy effectively, solar radiation being brought into the indoors should be acquired and blocked properly. Blinds are a typical solar radiation control device that is capable of controlling indoor thermal and light environments. However, slat-type blinds are manually controlled, giving a negative effect on building energy saving. In this regard, studies regarding the automatic control of slat-type blinds have been carried out for the last couple of decades. Therefore, this study aims to provide preliminary data for optimal control research through the controlling of slat angle in slat-type blinds by comprehensively considering various input variables. The window area ratio and orientation were selected as input variables. It was found that an optimal control algorithm was different among each window-to-wall ratio and window orientation. In addition, through comparing and analyzing the building energy saving performance for each condition by applying the developed algorithms to simulations, up to 20.7 % energy saving was shown in the cooling period and up to 12.3 % energy saving was shown in the heating period. In addition, building energy saving effect was greater as the window area ratio increased given the same orientation, and the effects of window-to-wall ratio in the cooling period were higher than those of window-to-wall ratio in the heating period.
Seed robustness of oriented relative fuzzy connectedness: core computation and its applications
NASA Astrophysics Data System (ADS)
Tavares, Anderson C. M.; Bejar, Hans H. C.; Miranda, Paulo A. V.
2017-02-01
In this work, we present a formal definition and an efficient algorithm to compute the cores of Oriented Relative Fuzzy Connectedness (ORFC), a recent seed-based segmentation technique. The core is a region where the seed can be moved without altering the segmentation, an important aspect for robust techniques and reduction of user effort. We show how ORFC cores can be used to build a powerful hybrid image segmentation approach. We also provide some new theoretical relations between ORFC and Oriented Image Foresting Transform (OIFT), as well as their cores. Experimental results among several methods show that the hybrid approach conserves high accuracy, avoids the shrinking problem and provides robustness to seed placement inside the desired object due to the cores properties.
The Computer Revolution and Physical Chemistry.
ERIC Educational Resources Information Center
O'Brien, James F.
1989-01-01
Describes laboratory-oriented software programs that are short, time-saving, eliminate computational errors, and not found in public domain courseware. Program availability for IBM and Apple microcomputers is included. (RT)
Calculation of the Frequency Distribution of the Energy Deposition in DNA Volumes by Heavy Ions
NASA Technical Reports Server (NTRS)
Plante, Ianik; Cicinotta, Francis A.
2012-01-01
Radiation quality effects are largely determined by energy deposition in small volumes of characteristic sizes less than 10 nm representative of short-segments of DNA, the DNA nucleosome, or molecules initiating oxidative stress in the nucleus, mitochondria, or extra-cellular matrix. On this scale, qualitatively distinct types of molecular damage are possible for high linear energy transfer (LET) radiation such as heavy ions compared to low LET radiation. Unique types of DNA lesions or oxidative damages are the likely outcome of the energy deposition. The frequency distribution for energy imparted to 1-20 nm targets per unit dose or particle fluence is a useful descriptor and can be evaluated as a function of impact parameter from an ions track. In this work, the simulation of 1-Gy irradiation of a cubic volume of 5 micron by: 1) 450 (1)H(+) ions, 300 MeV; 2) 10 (12)C(6+) ions, 290 MeV/amu and 3) (56)Fe(26+) ions, 1000 MeV/amu was done with the Monte-Carlo simulation code RITRACKS. Cylindrical targets are generated in the irradiated volume, with random orientation. The frequency distribution curves of the energy deposited in the targets is obtained. For small targets (i.e. <25 nm size), the probability of an ion to hit a target is very small; therefore a large number of tracks and targets as well as a large number of histories are necessary to obtain statistically significant results. This simulation is very time-consuming and is difficult to perform by using the original version of RITRACKS. Consequently, the code RITRACKS was adapted to use multiple CPU on a workstation or on a computer cluster. To validate the simulation results, similar calculations were performed using targets with fixed position and orientation, for which experimental data are available [5]. Since the probability of single- and double-strand breaks in DNA as function of energy deposited is well know, the results that were obtained can be used to estimate the yield of DSB, and can be extended to include other targeted or non-target effects.
NASA Astrophysics Data System (ADS)
Peetermans, S.; Bopp, M.; Vontobel, P.; Lehmann, E. H.
Common neutron imaging uses the full polychromatic neutron beam spectrum to reveal the material distribution in a non-destructive way. Performing it with a reduced energy band, i.e. energy-selective neutron imaging, allows access to local variation in sample crystallographic properties. Two sample categories can be discerned with different energy responses. Polycrystalline materials have an energy-dependent cross-section featuring Bragg edges. Energy-selective neutron imaging can be used to distinguish be- tween crystallographic phases, increase material sensitivity or penetration, improve quantification etc. An example of the latter is shown by the examination of copper discs prior to machining them into linear accelerator cavity structures. The cross-section of single crystals features distinct Bragg peaks. Based on their pattern, one can determine the orientation of the crystal, as in a Laue pattern, but with the tremendous advantage that the operation can be performed for each pixel, yielding crystal orientation maps at high spatial resolution. A wholly different method to investigate such samples is also introduced: neutron diffraction imaging. It is based on projections formed by neutrons diffracted from the crystal lattice out of the direct beam. The position of these projections on the detector gives information on the crystal orientation. The projection itself can be used to reconstruct the crystal shape. A three-dimensional mapping of local Bragg reflectivity or a grain orientation mapping can thus be obtained.
NASA Technical Reports Server (NTRS)
Hinson, D. P.
1983-01-01
The refractive index of planetary atmospheres at microwave frequencies is discussed. Physical models proposed for the refractive irregularities in the ionosphere and neutral atmosphere serve to characterize the atmospheric scattering structures, and are used subsequently to compute theoretical scintillation spectra for comparison with the Voyager occultation measurements. A technique for systematically analyzing and interpreting the signal fluctuations observed during planetary occultations is presented and applied to process the dual-wavelength data from the Voyager radio occultations by Jupiter, Saturn, and Titan. Results concerning the plasma irregularities in the upper ionospheres of Jupiter and Saturn are reported. The measured orientation of the irregularities is used to infer the magnetic field direction at several locations in the ionospheres of these two planets; the occultation measurements conflict with the predictions of Jovian magnetic field models, but generally confirm current models of Saturn's field. Wave parameters, including the vertical fluxes of energy and momentum, are estimated, and the source of the internal gravity waves discovered in Titan's upper atmosphere is considered.
Secondary iris recognition method based on local energy-orientation feature
NASA Astrophysics Data System (ADS)
Huo, Guang; Liu, Yuanning; Zhu, Xiaodong; Dong, Hongxing
2015-01-01
This paper proposes a secondary iris recognition based on local features. The application of the energy-orientation feature (EOF) by two-dimensional Gabor filter to the extraction of the iris goes before the first recognition by the threshold of similarity, which sets the whole iris database into two categories-a correctly recognized class and a class to be recognized. Therefore, the former are accepted and the latter are transformed by histogram to achieve an energy-orientation histogram feature (EOHF), which is followed by a second recognition with the chi-square distance. The experiment has proved that the proposed method, because of its higher correct recognition rate, could be designated as the most efficient and effective among its companion studies in iris recognition algorithms.
An object-oriented approach to data display and storage: 3 years experience, 25,000 cases.
Sainsbury, D A
1993-11-01
Object-oriented programming techniques were used to develop computer based data display and storage systems. These have been operating in the 8 anaesthetising areas of the Adelaide Children's Hospital for 3 years. The analogue and serial outputs from an array of patient monitors are connected to IBM compatible PC-XT computers. The information is displayed on a colour screen as wave-form and trend graphs and digital format in 'real time'. The trend data is printed simultaneously on a dot matrix printer. This data is also stored for 24 hours on 'hard' disk. The major benefit has been the provision of a single visual focus for all monitored variables. The automatic logging of data has been invaluable in the analysis of critical incidents. The systems were made possible by recent, rapid improvements in computer hardware and software. This paper traces the development of the program and demonstrates the advantages of object-oriented programming techniques.
High-ionic-strength electroosmotic flows in uncharged hydrophobic nanochannels.
Kim, Daejoong; Darve, Eric
2009-02-01
We report molecular dynamics simulation results of high-ionic-strength electroosmotic flows inside uncharged nanochannels. The possibility of this unusual electrokinetic phenomenon has been discussed by Dukhin et al. [A. Dukhin, S. Dukhin, P. Goetz, Langmuir 21 (2005) 9990]. Our computed velocity profiles clearly indicate the presence of a net flow with a maximum velocity around 2 m/s. We found the apparent zeta potential to be -29.7+/-6.8 mV, using the Helmholtz-Smoluchowski relation and the measured mean velocity. This value is comparable to experimentally measured values in Dukhin et al. and references therein. We also investigate the orientations of water molecules in response to an electric field by computing polarization density. Water molecules in the bulk region are oriented along the direction of the external electric field, while their near-wall orientation shows oscillations. The computation of three-dimensional density distributions of sodium and chloride ions around each individual water molecule show that chloride ions tend to concentrate near a water molecule, whereas sodium ions are diffusely distributed.
A Decade of Mobile Computing for Students
ERIC Educational Resources Information Center
Jenny, Frederick J.
2005-01-01
This paper describes the mobile computing at Grove City College, a small, private, liberal arts institution in Western Pennsylvania. They have entered their second decade of mobile computing for students in the school of about 2200. Each incoming freshman receives a laptop computing and inkjet printer during the fall orientation, all a benefit of…
A College That Relied on NeXT Computers Plans To Switch to Apple.
ERIC Educational Resources Information Center
Wilson, David L.
1997-01-01
Allegheny College (Pennsylvania), which uses NeXT computers, was dismayed when the technically superior operating system was orphaned but are now delighted that the company has been bought by Apple Computer and will make the operating system standard on Apple computers. The object-oriented operating system allows relatively unsophisticated users…
Working with Computers: Computer Orientation for Foreign Students.
ERIC Educational Resources Information Center
Barlow, Michael
Designed as a resource for foreign students, this book includes instructions not only on how to use computers, but also on how to use them to complete academic work more efficiently. Part I introduces the basic operations of mainframes and microcomputers and the major areas of computing, i.e., file management, editing, communications, databases,…
NASA Astrophysics Data System (ADS)
Chenard, Laurent
Mass urbanization is a major issue for town administrators. Population increase will have an impact on the quality of the environment for citizens. Government will have to take decisions to limit those effects. Green energies are part of the solution to reach fixed goals by the public administration for sustainable development. Passive solar energy is studied in this work in an urban canopy located in five different towns: San Francisco, Montreal, Bordeaux, Lyon and Stockholm. Passive solar energy is calculated in the heating season. Direct and diffuse solar radiation is considered by using the Perez model. Radiosity is not taken into account. Heating demand is calculated by the heating degree day method. Seven urban forms have been created to determine the amount of solar energy entering in every window of the urban canopy while taking into account urban context and forms. Optimal orientation of the canopy shows an increase of 5% of the passive solar radiation from original orientation, 180 degrees rotation from first orientation straight south. This value goes lower when stories are added to the urban context. A rotation of 90 degrees from the first orientation shows a decrease of 6 to 15% in solar passive gain. Densification of the urban canopy by adding stories to the buildings results in a loss up to 65% of the solar gain for the first story. It is showed that solar passive energy has a low ratio of 5% for space heating for old buildings, 1960 constructions. Today's buildings have a difference between passive solar energy and heating demand of 10 to 75% depending on the model and location.
Free energy barrier for melittin reorientation from a membrane-bound state to a transmembrane state.
Irudayam, Sheeba J; Pobandt, Tobias; Berkowitz, Max L
2013-10-31
An important step in a phospholipid membrane pore formation by melittin antimicrobial peptide is a reorientation of the peptide from a surface into a transmembrane conformation. Experiments measure the fraction of peptides in the surface state and the transmembrane state, but no computational study exists that quantifies the free energy curve for the reorientation. In this work we perform umbrella sampling simulations to calculate the potential of mean force (PMF) for the reorientation of melittin from a surface-bound state to a transmembrane state and provide a molecular level insight in understanding the peptide-lipid properties that influence the existence of the free energy barrier. The PMFs were calculated for a peptide to lipid (P/L) ratio of 1/128 and 4/128. We observe that the free energy barrier is reduced when the P/L ratio increases. In addition, we study the cooperative effect; specifically we investigate if the reorientation barrier is smaller for a second melittin, given that another neighboring melittin was already in the transmembrane orientation. We observe that indeed the barrier of the PMF curve is reduced in this case, thus confirming the presence of a cooperative effect.
Peng, Biaolin; Zhang, Qi; Li, Xing; Sun, Tieyu; Fan, Huiqing; Ke, Shanming; Ye, Mao; Wang, Yu; Lu, Wei; Niu, Hanben; Zeng, Xierong; Huang, Haitao
2015-06-24
A highly textured (111)-oriented Pb0.8Ba0.2ZrO3 (PBZ) relaxor thin film with the coexistence of antiferroelectric (AFE) and ferroelectric (FE) phases was prepared on a Pt/TiOx/SiO2/Si(100) substrate by using a sol-gel method. A large recoverable energy storage density of 40.18 J/cm(3) along with an efficiency of 64.1% was achieved at room temperature. Over a wide temperature range of 250 K (from room temperature to 523 K), the variation of the energy density is within 5%, indicating a high thermal stability. The high energy storage performance was endowed by a large dielectric breakdown strength, great relaxor dispersion, highly textured orientation, and the coexistence of FE and AFE phases. The PBZ thin film is believed to be an attractive material for applications in energy storage systems over a wide temperature range.
NASA Astrophysics Data System (ADS)
Saxena, Saurabh; Yaghoobian, Neda
2017-11-01
Fungus-cultivating termites of the subfamily Macrotermitinae that are extensively found throughout sub-Saharan Africa and south East Asia are one species of termites that collectively build massive, uninhabited, complex structures. These structures, which are much larger than the size of an individual termite, effectively use natural wind and solar energies and the energy embodied in colony's metabolic activity to maintain the necessary condition for termite survival. These mounds enclose a subterranean nest, where the termite live and cultivate fungus, as well as a complex network of tunnels consisting of a large, vertically oriented central chimney, surface conduits, and lateral connectives that connect the chimney and the surface conduits. In this study, we use computational modeling to explore the combined interaction of geometry, heterogeneous thermal mass, and porosity with the external turbulent wind and solar radiation to investigate the physical principles and fundamental aero-thermodynamics underlying the controlled and stable climate of termite mounds. Exploitation of natural resources of wind and solar energies in these natural systems for the purpose of ventilation will lead to new lessons for improving human habitats conditions.
Developing an orientation program.
Edwards, K
1999-01-01
When the local area experienced tremendous growth and change, the radiology department at Maury Hospital in Columbia, Tennessee looked seriously at its orientation process in preparation for hiring additional personnel. It was an appropriate time for the department to review its orientation process and to develop a manual to serve as both a tool for supervisors and an ongoing reference for new employees. To gather information for the manual, supervisors were asked to identify information they considered vital for new employees to know concerning the daily operations of the department, its policies and procedures, the organizational structure of the hospital, and hospital and departmental computer systems. That information became the basis of the orientation manual, and provided an introduction to the hospital and radiology department; the structure of the organization; an overview of the radiology department; personnel information; operating procedures and computer systems; and various policies and procedures. With the manual complete, the radiology department concentrated on an orientation process that would meet the needs of supervisors who said they had trouble remembering the many details necessary to teach new employees. A pre-orientation checklist was developed, which contained the many details supervisors must handle between the time an employee is hired and arrives for work. The next step was the creation of a checklist for use by the supervisor during a new employee's first week on the job. A final step in the hospital's orientation program is to have each new employee evaluate the entire orientation process. That information is then used to update and revise the manual.
High-End Computing for Incompressible Flows
NASA Technical Reports Server (NTRS)
Kwak, Dochan; Kiris, Cetin
2001-01-01
The objective of the First MIT Conference on Computational Fluid and Solid Mechanics (June 12-14, 2001) is to bring together industry and academia (and government) to nurture the next generation in computational mechanics. The objective of the current talk, 'High-End Computing for Incompressible Flows', is to discuss some of the current issues in large scale computing for mission-oriented tasks.
Empirical study on regional differentiation of rural household energy use in Northwest China
NASA Astrophysics Data System (ADS)
Wu, Wenheng; Zhang, Xin; Guo, Xiaodong
2018-02-01
To better understand regional differentiation of rural household energy use, data of energy use of 232 rural households in the Linwei District located in the lower reaches of the Weihe River of Northwest China were collected by questionnaires combined with face-to-face interview. Location quotient of energy use (LQEU) method is adopted in the paper. The results show that multiple energy sources are utilized due to market orientation in the plain area, and biogas is prominent as a result of policy orientation in the loess tableland, whereas firewood is dominant due to the influence of natural environment in the Qinling mountainous area. Regional differentiation of energy use is comprehensively affected by income level, air temperature, development conditions, energy policy, etc.
Data in support of energy performance of double-glazed windows.
Shakouri, Mahmoud; Banihashemi, Saeed
2016-06-01
This paper provides the data used in a research project to propose a new simplified windows rating system based on saved annual energy ("Developing an empirical predictive energy-rating model for windows by using Artificial Neural Network" (Shakouri Hassanabadi and Banihashemi Namini, 2012) [1], "Climatic, parametric and non-parametric analysis of energy performance of double-glazed windows in different climates" (Banihashemi et al., 2015) [2]). A full factorial simulation study was conducted to evaluate the performance of 26 different types of windows in a four-story residential building. In order to generalize the results, the selected windows were tested in four climates of cold, tropical, temperate, and hot and arid; and four different main orientations of North, West, South and East. The accompanied datasets include the annual saved cooling and heating energy in different climates and orientations by using the selected windows. Moreover, a complete dataset is provided that includes the specifications of 26 windows, climate data, month, and orientation of the window. This dataset can be used to make predictive models for energy efficiency assessment of double glazed windows.
Orientation selective deep brain stimulation
NASA Astrophysics Data System (ADS)
Lehto, Lauri J.; Slopsema, Julia P.; Johnson, Matthew D.; Shatillo, Artem; Teplitzky, Benjamin A.; Utecht, Lynn; Adriany, Gregor; Mangia, Silvia; Sierra, Alejandra; Low, Walter C.; Gröhn, Olli; Michaeli, Shalom
2017-02-01
Objective. Target selectivity of deep brain stimulation (DBS) therapy is critical, as the precise locus and pattern of the stimulation dictates the degree to which desired treatment responses are achieved and adverse side effects are avoided. There is a clear clinical need to improve DBS technology beyond currently available stimulation steering and shaping approaches. We introduce orientation selective neural stimulation as a concept to increase the specificity of target selection in DBS. Approach. This concept, which involves orienting the electric field along an axonal pathway, was tested in the corpus callosum of the rat brain by freely controlling the direction of the electric field on a plane using a three-electrode bundle, and monitoring the response of the neurons using functional magnetic resonance imaging (fMRI). Computational models were developed to further analyze axonal excitability for varied electric field orientation. Main results. Our results demonstrated that the strongest fMRI response was observed when the electric field was oriented parallel to the axons, while almost no response was detected with the perpendicular orientation of the electric field relative to the primary fiber tract. These results were confirmed by computational models of the experimental paradigm quantifying the activation of radially distributed axons while varying the primary direction of the electric field. Significance. The described strategies identify a new course for selective neuromodulation paradigms in DBS based on axonal fiber orientation.
Computer-Mediated Peer Review of Student Papers.
ERIC Educational Resources Information Center
Sullivan, Dave; Brown, Carol E.; Nielson, Norma L.
1998-01-01
Barriers to peer review of student work can be overcome using computer-mediated systems ranging from customized software to e-mail, multiuser object-oriented systems (MOOs), and Web-based projects. (SK)
NASA Technical Reports Server (NTRS)
Kolb, Mark A.
1990-01-01
Viewgraphs on Rubber Airplane: Constraint-based Component-Modeling for Knowledge Representation in Computer Aided Conceptual Design are presented. Topics covered include: computer aided design; object oriented programming; airfoil design; surveillance aircraft; commercial aircraft; aircraft design; and launch vehicles.
PHoToNs–A parallel heterogeneous and threads oriented code for cosmological N-body simulation
NASA Astrophysics Data System (ADS)
Wang, Qiao; Cao, Zong-Yan; Gao, Liang; Chi, Xue-Bin; Meng, Chen; Wang, Jie; Wang, Long
2018-06-01
We introduce a new code for cosmological simulations, PHoToNs, which incorporates features for performing massive cosmological simulations on heterogeneous high performance computer (HPC) systems and threads oriented programming. PHoToNs adopts a hybrid scheme to compute gravitational force, with the conventional Particle-Mesh (PM) algorithm to compute the long-range force, the Tree algorithm to compute the short range force and the direct summation Particle-Particle (PP) algorithm to compute gravity from very close particles. A self-similar space filling a Peano-Hilbert curve is used to decompose the computing domain. Threads programming is advantageously used to more flexibly manage the domain communication, PM calculation and synchronization, as well as Dual Tree Traversal on the CPU+MIC platform. PHoToNs scales well and efficiency of the PP kernel achieves 68.6% of peak performance on MIC and 74.4% on CPU platforms. We also test the accuracy of the code against the much used Gadget-2 in the community and found excellent agreement.
Integration of a neuroimaging processing pipeline into a pan-canadian computing grid
NASA Astrophysics Data System (ADS)
Lavoie-Courchesne, S.; Rioux, P.; Chouinard-Decorte, F.; Sherif, T.; Rousseau, M.-E.; Das, S.; Adalat, R.; Doyon, J.; Craddock, C.; Margulies, D.; Chu, C.; Lyttelton, O.; Evans, A. C.; Bellec, P.
2012-02-01
The ethos of the neuroimaging field is quickly moving towards the open sharing of resources, including both imaging databases and processing tools. As a neuroimaging database represents a large volume of datasets and as neuroimaging processing pipelines are composed of heterogeneous, computationally intensive tools, such open sharing raises specific computational challenges. This motivates the design of novel dedicated computing infrastructures. This paper describes an interface between PSOM, a code-oriented pipeline development framework, and CBRAIN, a web-oriented platform for grid computing. This interface was used to integrate a PSOM-compliant pipeline for preprocessing of structural and functional magnetic resonance imaging into CBRAIN. We further tested the capacity of our infrastructure to handle a real large-scale project. A neuroimaging database including close to 1000 subjects was preprocessed using our interface and publicly released to help the participants of the ADHD-200 international competition. This successful experiment demonstrated that our integrated grid-computing platform is a powerful solution for high-throughput pipeline analysis in the field of neuroimaging.
Petersson, Sven; Dyverfeldt, Petter; Sigfridsson, Andreas; Lantz, Jonas; Carlhäll, Carl-Johan; Ebbers, Tino
2016-03-01
Evaluate spiral three-dimensional (3D) phase contrast MRI for the assessment of turbulence and velocity in stenotic flow. A-stack-of-spirals 3D phase contrast MRI sequence was evaluated in vitro against a conventional Cartesian sequence. Measurements were made in a flow phantom with a 75% stenosis. Both spiral and Cartesian imaging were performed using different scan orientations and flow rates. Volume flow rate, maximum velocity and turbulent kinetic energy (TKE) were computed for both methods. Moreover, the estimated TKE was compared with computational fluid dynamics (CFD) data. There was good agreement between the turbulent kinetic energy from the spiral, Cartesian and CFD data. Flow rate and maximum velocity from the spiral data agreed well with Cartesian data. As expected, the short echo time of the spiral sequence resulted in less prominent displacement artifacts compared with the Cartesian sequence. However, both spiral and Cartesian flow rate estimates were sensitive to displacement when the flow was oblique to the encoding directions. Spiral 3D phase contrast MRI appears favorable for the assessment of stenotic flow. The spiral sequence was more than three times faster and less sensitive to displacement artifacts when compared with a conventional Cartesian sequence. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, K; Able, A
Purpose: To evaluate an Enhanced Dynamic Wedge (EDW) as part of machine commission process with feature study. Methods: The EDW system in this study was from a Truebeam, which is the Linear accelerator manufactured by Varian Medical Systems. The EDW feature vectors includes selected elements. These elements were dosimetric output spots check, field size, wedge angles, dose rate, collimator orientation, and different energy settings. Point dose measurement was done by a PTW farmer chamber, and profiles were measured by Gafchromic EBT2 films positing at different depths of the Solidwater based on the study elements. The output spot measurements were donemore » with PTW farmer chamber with Solidwater setting for all orientation and wedge angles in the EDW system. The profiles comparisons were done by IMRT measurement function in RIT software at version 6.3. And the films were scanned by Vidar scanner. Dosimetry calculation were done by using the same Solidwater scanned by GE LightSpeed CT in Eclipse Treatment Planning System (TPS). Then measurements were compared to simulation results in TPS. Results: The energy average percentage difference between chamber measurement and TPS was 0.16% with standard deviation (SD) at 0.93%. For selected features, the average percentage difference between film measurement and computation was 0.93% with SD at 1.55% in horizontal profiles, and 1.18% with SD at 0.98% at vertical profiles. The average gamma difference for film measurement and TPS computing results was at 0.924 with SD at 0.314. Conclusion: A feature vector was developed to describe the commission of EDW, and developing a complete set of features for sufficiency of commission of a LINAC function could provide optimal commission instance with acceptable confident level of clinical application of the machine. Given the institution specific vector pattern and big data process, it could provide wide range clinical outcome comparison information in application of EDW.« less
Robust Vision-Based Pose Estimation Algorithm for AN Uav with Known Gravity Vector
NASA Astrophysics Data System (ADS)
Kniaz, V. V.
2016-06-01
Accurate estimation of camera external orientation with respect to a known object is one of the central problems in photogrammetry and computer vision. In recent years this problem is gaining an increasing attention in the field of UAV autonomous flight. Such application requires a real-time performance and robustness of the external orientation estimation algorithm. The accuracy of the solution is strongly dependent on the number of reference points visible on the given image. The problem only has an analytical solution if 3 or more reference points are visible. However, in limited visibility conditions it is often needed to perform external orientation with only 2 visible reference points. In such case the solution could be found if the gravity vector direction in the camera coordinate system is known. A number of algorithms for external orientation estimation for the case of 2 known reference points and a gravity vector were developed to date. Most of these algorithms provide analytical solution in the form of polynomial equation that is subject to large errors in the case of complex reference points configurations. This paper is focused on the development of a new computationally effective and robust algorithm for external orientation based on positions of 2 known reference points and a gravity vector. The algorithm implementation for guidance of a Parrot AR.Drone 2.0 micro-UAV is discussed. The experimental evaluation of the algorithm proved its computational efficiency and robustness against errors in reference points positions and complex configurations.
Biomimetic light-harvesting funnels for re-directioning of diffuse light.
Pieper, Alexander; Hohgardt, Manuel; Willich, Maximilian; Gacek, Daniel Alexander; Hafi, Nour; Pfennig, Dominik; Albrecht, Andreas; Walla, Peter Jomo
2018-02-14
Efficient sunlight harvesting and re-directioning onto small areas has great potential for more widespread use of precious high-performance photovoltaics but so far intrinsic solar concentrator loss mechanisms outweighed the benefits. Here we present an antenna concept allowing high light absorption without high reabsorption or escape-cone losses. An excess of randomly oriented pigments collects light from any direction and funnels the energy to individual acceptors all having identical orientations and emitting ~90% of photons into angles suitable for total internal reflection waveguiding to desired energy converters (funneling diffuse-light re-directioning, FunDiLight). This is achieved using distinct molecules that align efficiently within stretched polymers together with others staying randomly orientated. Emission quantum efficiencies can be >80% and single-foil reabsorption <0.5%. Efficient donor-pool energy funneling, dipole re-orientation, and ~1.5-2 nm nearest donor-acceptor transfer occurs within hundreds to ~20 ps. Single-molecule 3D-polarization experiments confirm nearly parallel emitters. Stacked pigment selection may allow coverage of the entire solar spectrum.
Amino acids at water-vapor interfaces: surface activity and orientational ordering.
Vöhringer-Martinez, Esteban; Toro-Labbé, Alejandro
2010-10-14
The surface activity and orientational ordering of amino acids at water-vapor interfaces were studied with molecular dynamics simulations in combination with thermodynamic integration and umbrella sampling. Asparagine, representing amino acids with polar side chains, displays no surface activity. Tryptophan, in contrast, with its hydrophobic indole ring as side chain unveils a free energy minimum at the water-vapor interface, which lies 6 kJ/mol under the hydration free energy. To study the orientational ordering of tryptophan along the interface, the order parameter was calculated. At the free energy minimum and at the Gibbs dividing surface, the order parameter reveals a parallel alignment of the indole ring with the water surface exposing the π-system to electrophiles in the hydrophobic phase and indicating polarization dependent spectroscopy. In the vicinity of this position a perpendicular orientation is obtained. The surface excess, calculated from the potential of mean force along the interface, is in excellent agreement with experimental measurements.
Snow Crystal Orientation Effects on the Scattering of Passive Microwave Radiation
NASA Technical Reports Server (NTRS)
Foster, J. L.; Barton, J. S.; Chang, A. T. C.; Hall, D. K.
1999-01-01
For this study, consideration is given to the role crystal orientation plays in scattering and absorbing microwave radiation. A discrete dipole scattering model is used to measure the passive microwave radiation, at two polarizations (horizontal and vertical), scattered by snow crystals oriented in random and non random positions, having various sizes (ranging between 1 micrometers to 10,000 micrometers in radius), and shapes (including spheroids, cylinders, hexagons). The model results demonstrate that for the crystal sizes typically found in a snowpack, crystal orientation is insignificant compared to crystal size in terms of scattering microwave energy in the 8,100 gm (37 GHz) region of the spectrum. Therefore, the assumption used in radiative transfer approaches, where snow crystals are modeled as randomly oriented spheres, is adequate to account for the transfer of microwave energy emanating from the ground and passing through a snowpack.
Force-Free Magnetic Fields Calculated from Automated Tracing of Coronal Loops with AIA/SDO
NASA Astrophysics Data System (ADS)
Aschwanden, M. J.
2013-12-01
One of the most realistic magnetic field models of the solar corona is a nonlinear force-free field (NLFFF) solution. There exist about a dozen numeric codes that compute NLFFF solutions based on extrapolations of photospheric vector magnetograph data. However, since the photosphere and lower chromosphere is not force-free, a suitable correction has to be applied to the lower boundary condition. Despite of such "pre-processing" corrections, the resulting theoretical magnetic field lines deviate substantially from observed coronal loop geometries. - Here we developed an alternative method that fits an analytical NLFFF approximation to the observed geometry of coronal loops. The 2D coordinates of the geometry of coronal loop structures observed with AIA/SDO are traced with the "Oriented Coronal CUrved Loop Tracing" (OCCULT-2) code, an automated pattern recognition algorithm that has demonstrated the fidelity in loop tracing matching visual perception. A potential magnetic field solution is then derived from a line-of-sight magnetogram observed with HMI/SDO, and an analytical NLFFF approximation is then forward-fitted to the twisted geometry of coronal loops. We demonstrate the performance of this magnetic field modeling method for a number of solar active regions, before and after major flares observed with SDO. The difference of the NLFFF and the potential field energies allows us then to compute the free magnetic energy, which is an upper limit of the energy that is released during a solar flare.
Rotating full- and reduced-dimensional quantum chemical models of molecules
NASA Astrophysics Data System (ADS)
Fábri, Csaba; Mátyus, Edit; Császár, Attila G.
2011-02-01
A flexible protocol, applicable to semirigid as well as floppy polyatomic systems, is developed for the variational solution of the rotational-vibrational Schrödinger equation. The kinetic energy operator is expressed in terms of curvilinear coordinates, describing the internal motion, and rotational coordinates, characterizing the orientation of the frame fixed to the nonrigid body. Although the analytic form of the kinetic energy operator might be very complex, it does not need to be known a priori within this scheme as it is constructed automatically and numerically whenever needed. The internal coordinates can be chosen to best represent the system of interest and the body-fixed frame is not restricted to an embedding defined with respect to a single reference geometry. The features of the technique mentioned make it especially well suited to treat large-amplitude nuclear motions. Reduced-dimensional rovibrational models can be defined straightforwardly by introducing constraints on the generalized coordinates. In order to demonstrate the flexibility of the protocol and the associated computer code, the inversion-tunneling of the ammonia (14NH3) molecule is studied using one, two, three, four, and six active vibrational degrees of freedom, within both vibrational and rovibrational variational computations. For example, the one-dimensional inversion-tunneling model of ammonia is considered also for nonzero rotational angular momenta. It turns out to be difficult to significantly improve upon this simple model. Rotational-vibrational energy levels are presented for rotational angular momentum quantum numbers J = 0, 1, 2, 3, and 4.
Calculation of the absolute free energy of a smectic-A phase
NASA Astrophysics Data System (ADS)
Huang, Chien-Cheng; Ramachandran, Sanoop; Ryckaert, Jean-Paul
2014-12-01
In this paper, we provide a scheme to compute the absolute free energy of a smectic-A phase via the "indirect method." The state of interest is connected through a three-step reversible path to a reference state. This state consists of a low-density layer of rods coupled to two external fields maintaining these rods close to the layer's plane and oriented preferably normal to the layer. The low-density free energy of the reference state can be computed on the basis of the relevant second virial coefficients between two rods coupled to the two external fields. We apply this technique to the Gay-Berne potential for calamitics with a parameter set leading to stable isotropic (I), nematic (N), smectic-A (SmA), and crystal (Cr) phases. We locate the I-SmA phase transition at low pressure and the sequence of phase transitions I-N-SmA along higher-pressure isobars and we establish the location of the I-N-SmA triple point. Close to this triple point, we show that the N-SmA transition is clearly first order. Our results are compared to the coexistence lines of the approximate phase diagram elucidated by de Miguel et al. [J. Chem. Phys. 121, 11183 (2004), 10.1063/1.1810472] established through the direct observation of the sequence of phase transitions occurring along isobars under heating or cooling sequences of runs. Finally, we discuss the potential of our technique in studying similar transitions observed on layered phases under confinement.
Spatial Decomposition of Translational Water–Water Correlation Entropy in Binding Pockets
2015-01-01
A number of computational tools available today compute the thermodynamic properties of water at surfaces and in binding pockets by using inhomogeneous solvation theory (IST) to analyze explicit-solvent simulations. Such methods enable qualitative spatial mappings of both energy and entropy around a solute of interest and can also be applied quantitatively. However, the entropy estimates of existing methods have, to date, been almost entirely limited to the first-order terms in the IST’s entropy expansion. These first-order terms account for localization and orientation of water molecules in the field of the solute but not for the modification of water–water correlations by the solute. Here, we present an extension of the Grid Inhomogeneous Solvation Theory (GIST) approach which accounts for water–water translational correlations. The method involves rewriting the two-point density of water in terms of a conditional density and utilizes the efficient nearest-neighbor entropy estimation approach. Spatial maps of this second order term, for water in and around the synthetic host cucurbit[7]uril and in the binding pocket of the enzyme Factor Xa, reveal mainly negative contributions, indicating solute-induced water–water correlations relative to bulk water; particularly strong signals are obtained for sites at the entrances of cavities or pockets. This second-order term thus enters with the same, negative, sign as the first order translational and orientational terms. Numerical and convergence properties of the methodology are examined. PMID:26636620
Sorci, Mirco; Dassa, Bareket; Liu, Hongwei; Anand, Gaurav; Dutta, Amit K; Pietrokovski, Shmuel; Belfort, Marlene; Belfort, Georges
2013-06-18
In order to measure the intermolecular binding forces between two halves (or partners) of naturally split protein splicing elements called inteins, a novel thiol-hydrazide linker was designed and used to orient immobilized antibodies specific for each partner. Activation of the surfaces was achieved in one step, allowing direct intermolecular force measurement of the binding of the two partners of the split intein (called protein trans-splicing). Through this binding process, a whole functional intein is formed resulting in subsequent splicing. Atomic force microscopy (AFM) was used to directly measure the split intein partner binding at 1 μm/s between native (wild-type) and mixed pairs of C- and N-terminal partners of naturally occurring split inteins from three cyanobacteria. Native and mixed pairs exhibit similar binding forces within the error of the measurement technique (~52 pN). Bioinformatic sequence analysis and computational structural analysis discovered a zipper-like contact between the two partners with electrostatic and nonpolar attraction between multiple aligned ion pairs and hydrophobic residues. Also, we tested the Jarzynski's equality and demonstrated, as expected, that nonequilibrium dissipative measurements obtained here gave larger energies of interaction as compared with those for equilibrium. Hence, AFM coupled with our immobilization strategy and computational studies provides a useful analytical tool for the direct measurement of intermolecular association of split inteins and could be extended to any interacting protein pair.
Protein-membrane electrostatic interactions: Application of the Lekner summation technique
NASA Astrophysics Data System (ADS)
Juffer, André H.; Shepherd, Craig M.; Vogel, Hans J.
2001-01-01
A model has been developed to calculate the electrostatic interaction between biomolecules and lipid bilayers. The effect of ionic strength is included by means of explicit ions, while water is described as a background continuum. The bilayer is considered at the atomic level. The Lekner summation technique is employed to calculate the long-range electrostatic interactions. The new method is employed to estimate the electrostatic contribution to the free energy of binding of sandostatin, a cyclic eight-residue analogue of the peptide hormone somatostatin, to lipid bilayers with thermodynamic integration. Monte Carlo simulation techniques were employed to determine ion distributions and peptide orientations. Both neutral as well as negatively charged lipid bilayers were used. An error analysis to judge the quality of the computation is also presented. The applicability of the Lekner summation technique to combine it with computer simulation models that simulate the adsorption of peptides (and proteins) into the interfacial region of lipid bilayers is discussed.
Influence of a large-scale field on energy dissipation in magnetohydrodynamic turbulence
NASA Astrophysics Data System (ADS)
Zhdankin, Vladimir; Boldyrev, Stanislav; Mason, Joanne
2017-07-01
In magnetohydrodynamic (MHD) turbulence, the large-scale magnetic field sets a preferred local direction for the small-scale dynamics, altering the statistics of turbulence from the isotropic case. This happens even in the absence of a total magnetic flux, since MHD turbulence forms randomly oriented large-scale domains of strong magnetic field. It is therefore customary to study small-scale magnetic plasma turbulence by assuming a strong background magnetic field relative to the turbulent fluctuations. This is done, for example, in reduced models of plasmas, such as reduced MHD, reduced-dimension kinetic models, gyrokinetics, etc., which make theoretical calculations easier and numerical computations cheaper. Recently, however, it has become clear that the turbulent energy dissipation is concentrated in the regions of strong magnetic field variations. A significant fraction of the energy dissipation may be localized in very small volumes corresponding to the boundaries between strongly magnetized domains. In these regions, the reduced models are not applicable. This has important implications for studies of particle heating and acceleration in magnetic plasma turbulence. The goal of this work is to systematically investigate the relationship between local magnetic field variations and magnetic energy dissipation, and to understand its implications for modelling energy dissipation in realistic turbulent plasmas.
Liu, Tianhui; Fu, Bina; Zhang, Dong H
2017-04-28
The dissociative chemisorption of HCl on the Au(111) surface has recently been an interesting and important subject, regarding the discrepancy between the theoretical dissociation probabilities and the experimental sticking probabilities. We here constructed an accurate full-dimensional (six-dimensional (6D)) potential energy surface (PES) based on the density functional theory (DFT) with the revised Perdew-Burke-Ernzerhof (RPBE) functional, and performed 6D quantum mechanical (QM) calculations for HCl dissociating on a rigid Au(111) surface. The effects of vibrational excitations, rotational orientations, and site-averaging approximation on the present RPBE PES are investigated. Due to the much higher barrier height obtained on the RPBE PES than on the PW91 PES, the agreement between the present theoretical and experimental results is greatly improved. In particular, at the very low kinetic energy, the QM-RPBE dissociation probability agrees well with the experimental data. However, the computed QM-RPBE reaction probabilities are still markedly different from the experimental values at most of the energy regions. In addition, the QM-RPBE results achieve good agreement with the recent ab initio molecular dynamics calculations based on the RPBE functional at high kinetic energies.
Goal-oriented explicit residual-type error estimates in XFEM
NASA Astrophysics Data System (ADS)
Rüter, Marcus; Gerasimov, Tymofiy; Stein, Erwin
2013-08-01
A goal-oriented a posteriori error estimator is derived to control the error obtained while approximately evaluating a quantity of engineering interest, represented in terms of a given linear or nonlinear functional, using extended finite elements of Q1 type. The same approximation method is used to solve the dual problem as required for the a posteriori error analysis. It is shown that for both problems to be solved numerically the same singular enrichment functions can be used. The goal-oriented error estimator presented can be classified as explicit residual type, i.e. the residuals of the approximations are used directly to compute upper bounds on the error of the quantity of interest. This approach therefore extends the explicit residual-type error estimator for classical energy norm error control as recently presented in Gerasimov et al. (Int J Numer Meth Eng 90:1118-1155, 2012a). Without loss of generality, the a posteriori error estimator is applied to the model problem of linear elastic fracture mechanics. Thus, emphasis is placed on the fracture criterion, here the J-integral, as the chosen quantity of interest. Finally, various illustrative numerical examples are presented where, on the one hand, the error estimator is compared to its finite element counterpart and, on the other hand, improved enrichment functions, as introduced in Gerasimov et al. (2012b), are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansmann, Ulrich H.E.
2012-07-02
This report summarizes the outcome of the international workshop From Computational Biophysics to Systems Biology (CBSB12) which was held June 3-5, 2012, at the University of Tennessee Conference Center in Knoxville, TN, and supported by DOE through the Conference Support Grant 120174. The purpose of CBSB12 was to provide a forum for the interaction between a data-mining interested systems biology community and a simulation and first-principle oriented computational biophysics/biochemistry community. CBSB12 was the sixth in a series of workshops of the same name organized in recent years, and the second that has been held in the USA. As in previousmore » years, it gave researchers from physics, biology, and computer science an opportunity to acquaint each other with current trends in computational biophysics and systems biology, to explore venues of cooperation, and to establish together a detailed understanding of cells at a molecular level. The conference grant of $10,000 was used to cover registration fees and provide travel fellowships to selected students and postdoctoral scientists. By educating graduate students and providing a forum for young scientists to perform research into the working of cells at a molecular level, the workshop adds to DOE's mission of paving the way to exploit the abilities of living systems to capture, store and utilize energy.« less
Geometric Modeling of Inclusions as Ellipsoids
NASA Technical Reports Server (NTRS)
Bonacuse, Peter J.
2008-01-01
Nonmetallic inclusions in gas turbine disk alloys can have a significant detrimental impact on fatigue life. Because large inclusions that lead to anomalously low lives occur infrequently, probabilistic approaches can be utilized to avoid the excessively conservative assumption of lifing to a large inclusion in a high stress location. A prerequisite to modeling the impact of inclusions on the fatigue life distribution is a characterization of the inclusion occurrence rate and size distribution. To help facilitate this process, a geometric simulation of the inclusions was devised. To make the simulation problem tractable, the irregularly sized and shaped inclusions were modeled as arbitrarily oriented, three independent dimensioned, ellipsoids. Random orientation of the ellipsoid is accomplished through a series of three orthogonal rotations of axes. In this report, a set of mathematical models for the following parameters are described: the intercepted area of a randomly sectioned ellipsoid, the dimensions and orientation of the intercepted ellipse, the area of a randomly oriented sectioned ellipse, the depth and width of a randomly oriented sectioned ellipse, and the projected area of a randomly oriented ellipsoid. These parameters are necessary to determine an inclusion s potential to develop a propagating fatigue crack. Without these mathematical models, computationally expensive search algorithms would be required to compute these parameters.
Object-oriented Technology for Compressor Simulation
NASA Technical Reports Server (NTRS)
Drummond, C. K.; Follen, G. J.; Cannon, M. R.
1994-01-01
An object-oriented basis for interdisciplinary compressor simulation can, in principle, overcome several barriers associated with the traditional structured (procedural) development approach. This paper presents the results of a research effort with the objective to explore the repercussions on design, analysis, and implementation of a compressor model in an object oriented (OO) language, and to examine the ability of the OO system design to accommodate computational fluid dynamics (CFD) code for compressor performance prediction. Three fundamental results are that: (1) the selection of the object oriented language is not the central issue; enhanced (interdisciplinary) analysis capability derives from a broader focus on object-oriented technology; (2) object-oriented designs will produce more effective and reusable computer programs when the technology is applied to issues involving complex system inter-relationships (more so than when addressing the complex physics of an isolated discipline); and (3) the concept of disposable prototypes is effective for exploratory research programs, but this requires organizations to have a commensurate long-term perspective. This work also suggests that interdisciplinary simulation can be effectively accomplished (over several levels of fidelity) with a mixed language treatment (i.e., FORTRAN-C++), reinforcing the notion the OO technology implementation into simulations is a 'journey' in which the syntax can, by design, continuously evolve.
Orientations of dendritic growth during solidification
NASA Astrophysics Data System (ADS)
Lee, Dong Nyung
2017-03-01
Dendrites are crystalline forms which grow far from the limit of stability of the plane front and adopt an orientation which is as close as possible to the heat flux direction. Dendritic growth orientations for cubic metals, bct Sn, and hcp Zn, can be controlled by thermal conductivity, Young's modulus, and surface energy. The control factors have been elaborated. Since the dendrite is a single crystal, its properties such as thermal conductivity that influences the heat flux direction, the minimum Young's modulus direction that influences the strain energy minimization, and the minimum surface energy plane that influences the crystal/liquid interface energy minimization have been proved to control the dendritic growth direction. The dendritic growth directions of cubic metals are determined by the minimum Young's modulus direction and/or axis direction of symmetry of the minimum crystal surface energy plane. The dendritic growth direction of bct Sn is determined by its maximum thermal conductivity direction and the minimum surface energy plane normal direction. The primary dendritic growth direction of hcp Zn is determined by its maximum thermal conductivity direction and the minimum surface energy plane normal direction and the secondary dendrite arm direction of hcp Zn is normal to the primary dendritic growth direction.
McWhinney, S R; Tremblay, A; Boe, S G; Bardouille, T
2018-02-01
Neurofeedback training teaches individuals to modulate brain activity by providing real-time feedback and can be used for brain-computer interface control. The present study aimed to optimize training by maximizing engagement through goal-oriented task design. Participants were shown either a visual display or a robot, where each was manipulated using motor imagery (MI)-related electroencephalography signals. Those with the robot were instructed to quickly navigate grid spaces, as the potential for goal-oriented design to strengthen learning was central to our investigation. Both groups were hypothesized to show increased magnitude of these signals across 10 sessions, with the greatest gains being seen in those navigating the robot due to increased engagement. Participants demonstrated the predicted increase in magnitude, with no differentiation between hemispheres. Participants navigating the robot showed stronger left-hand MI increases than those with the computer display. This is likely due to success being reliant on maintaining strong MI-related signals. While older participants showed stronger signals in early sessions, this trend later reversed, suggesting greater natural proficiency but reduced flexibility. These results demonstrate capacity for modulating neurofeedback using MI over a series of training sessions, using tasks of varied design. Importantly, the more goal-oriented robot control task resulted in greater improvements.
Scaffolding Collaborative Technical Writing with Procedural Facilitation and Synchronous Discussion
ERIC Educational Resources Information Center
Yeh, Shiou-Wen; Lo, Jia-Jiunn; Huang, Jeng-Jia
2011-01-01
With the advent of computer technology, researchers and instructors are attempting to devise computer support for effective collaborative technical writing. In this study, a computer-supported environment for collaborative technical writing was developed. This system (Process-Writing Wizard) provides process-oriented scaffolds and a synchronous…
ERIC Educational Resources Information Center
Classroom Computer Learning, 1984
1984-01-01
Offers suggestions for five computer-oriented classroom activities. They include uniting a writing class by having them collectively write a book using a word processor, examining FOR/NEXT loops, using a compound interest computer program, and developing a list of facts about computers. Includes four short programs which erase monitor screens. (JN)
10 CFR 2.1003 - Availability of material.
Code of Federal Regulations, 2013 CFR
2013-01-01
... its license application for a geologic repository, the NRC shall make available no later than thirty... privilege in § 2.1006, graphic-oriented documentary material that includes raw data, computer runs, computer... discrepancies; (ii) Gauge, meter and computer settings; (iii) Probe locations; (iv) Logging intervals and rates...
10 CFR 2.1003 - Availability of material.
Code of Federal Regulations, 2014 CFR
2014-01-01
... its license application for a geologic repository, the NRC shall make available no later than thirty... privilege in § 2.1006, graphic-oriented documentary material that includes raw data, computer runs, computer... discrepancies; (ii) Gauge, meter and computer settings; (iii) Probe locations; (iv) Logging intervals and rates...
Interaction of dyes CD–1 and SD–1 with the surface of oligodimethysiloxane
NASA Astrophysics Data System (ADS)
Chausov, D. N.
2018-03-01
We carried out the modeling orientation of the dyes CD–1 and SD–1 relative to the surface of oligodimethysiloxane using the atom–atom potentials method. We have discovered the dependence of the interaction energy in dyes molecules on the angles which characterizes their orientation relative to the surface of the oligodimethysiloxane crystal. It was found out that the obtained energy value of interaction with the surface can explain weak adhesive qualities of the dyes and the orientation type relative to the surface. We identified the break– loose force for the dyes on the oligodimethysiloxane crystal surface.
Effect of dispersion correction on the Au(1 1 1)-H2O interface: A first-principles study
NASA Astrophysics Data System (ADS)
Nadler, Roger; Sanz, Javier Fdez.
2012-09-01
A theoretical study of the H2O-Au(1 1 1) interface based on first principles density functional theory (DFT) calculations with and without inclusion of dispersion correction is reported. Three different computational approaches are considered. First, the standard generalized gradient approximation (GGA) functional PBE is employed. Second, an additional energy term is further included that adds a semi-empirically derived dispersion correction (PBE-D2), and, finally, a recently proposed functional that includes van der Waals (vdW) interactions directly in its functional form (optB86b-vdW) was used to represent the state-of-the art of DFT functionals. The monomeric water adsorption was first considered in order to explore the dependency of geometry on the details of the model slab used to represent it (size, thickness, coverage). When the dispersion corrections are included the Au-H2O interaction is stronger, as manifested by the smaller dAu-O and stronger adsorption energies. Additionally, the interfacial region between Au(1 1 1) slab surfaces and a liquid water layer was investigated with Born-Oppenheimer molecular dynamics (BOMD) using the same functionals. Two or three interfacial orientations can be determined, depending on the theoretical methodology applied. Closest to the surface, H2O is adsorbed O-down, whereas further away it is oriented with one OH bond pointing to the surface and the molecular plane parallel to the normal direction. For the optB86b-vdW functional a third orientation is found where one H atom points into the bulk water layer and the second OH bond is oriented parallel to the metal surface. As for the water density in the first adsorption layer we find a very small increase of roughly 8%. From the analysis of vibrational spectra a weakening of the H-bond network is observed upon the inclusion of the Au(1 1 1) slab, however, no disruption of H-bonds is observed. While the PBE and PBE-D2 spectra are very similar, the optB86b-vdW spectrum shows that the H-bonds are even more weakened.
Industrial Technology Orientation Curriculum Guide.
ERIC Educational Resources Information Center
Illinois State Board of Education, Springfield. Dept. of Adult, Vocational and Technical Education.
The four courses in this guide were designed to meet the specifications for the career orientation level of Illinois' Education for Employment Curriculum Model. These orientation-level courses can be taken by high school students in any sequence: (1) communication technology; (2) energy utilization technology; (3) production technology; and (4)…
ERIC Educational Resources Information Center
Godsall, R. A.
1974-01-01
A management simulation course has been designed by Dunchurch Industrial Staff College (DISC) that is management oriented rather than marketing oriented. The computer assisted program has been successful in allowing managers to experience immediately the effects of their decisions and also to experience each other's jobs and problems. (DS)
Evaluating Computer-Generated Domain-Oriented Vocabularies.
ERIC Educational Resources Information Center
Damerau, Fred J.
1990-01-01
Discusses methods for automatically compiling domain-oriented vocabularies in natural language systems and describes techniques for evaluating the quality of the resulting word lists. A study is described that used subject headings from Grolier's Encyclopedia and the United Press International newswire, and filters for removing high frequency…
Mechanisms of two-color laser-induced field-free molecular orientation.
Spanner, Michael; Patchkovskii, Serguei; Frumker, Eugene; Corkum, Paul
2012-09-14
Two mechanisms of two-color (ω+2ω) laser-induced field-free molecular orientation, based on the hyperpolarizability and ionization depletion, are explored and compared. The CO molecule is used as a computational example. While the hyperpolarizability mechanism generates small amounts of orientation at intensities below the ionization threshold, ionization depletion quickly becomes the dominant mechanism as soon as ionizing intensities are reached. Only the ionization mechanism leads to substantial orientation (e.g., on the order of
Computer use in primary care and patient-physician communication.
Sobral, Dilermando; Rosenbaum, Marcy; Figueiredo-Braga, Margarida
2015-07-08
This study evaluated how physicians and patients perceive the impact of computer use on clinical communication, and how a patient-centered orientation can influence this impact. The study followed a descriptive cross-sectional design and included 106 family physicians and 392 patients. An original questionnaire assessed computer use, participants' perspective of its impact, and patient centered strategies. Physicians reported spending 42% of consultation time in contact with the computer. A negative impact of computer in patient-physician communication regarding the consultation length, confidentiality, maintaining eye contact, active listening to the patient, and ability to understand the patient was reported by physicians, while patients reported a positive effect for all the items. Physicians considered that the usual computer placement in their consultation room was significantly unfavorable to patient-physician communication. Physicians perceive the impact of computer use on patient-physician communication as negative, while patients have a positive perception of computer use on patient-physician communication. Consultation support can represent a challenge to physicians who recognize its negative impact in patient centered orientation. Medical education programs aiming to enhance specific communication skills and to better integrate computer use in primary care settings are needed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Task-oriented situation recognition
NASA Astrophysics Data System (ADS)
Bauer, Alexander; Fischer, Yvonne
2010-04-01
From the advances in computer vision methods for the detection, tracking and recognition of objects in video streams, new opportunities for video surveillance arise: In the future, automated video surveillance systems will be able to detect critical situations early enough to enable an operator to take preventive actions, instead of using video material merely for forensic investigations. However, problems such as limited computational resources, privacy regulations and a constant change in potential threads have to be addressed by a practical automated video surveillance system. In this paper, we show how these problems can be addressed using a task-oriented approach. The system architecture of the task-oriented video surveillance system NEST and an algorithm for the detection of abnormal behavior as part of the system are presented and illustrated for the surveillance of guests inside a video-monitored building.
Asynchronous Data Retrieval from an Object-Oriented Database
NASA Astrophysics Data System (ADS)
Gilbert, Jonathan P.; Bic, Lubomir
We present an object-oriented semantic database model which, similar to other object-oriented systems, combines the virtues of four concepts: the functional data model, a property inheritance hierarchy, abstract data types and message-driven computation. The main emphasis is on the last of these four concepts. We describe generic procedures that permit queries to be processed in a purely message-driven manner. A database is represented as a network of nodes and directed arcs, in which each node is a logical processing element, capable of communicating with other nodes by exchanging messages. This eliminates the need for shared memory and for centralized control during query processing. Hence, the model is suitable for implementation on a multiprocessor computer architecture, consisting of large numbers of loosely coupled processing elements.
Saliency image of feature building for image quality assessment
NASA Astrophysics Data System (ADS)
Ju, Xinuo; Sun, Jiyin; Wang, Peng
2011-11-01
The purpose and method of image quality assessment are quite different for automatic target recognition (ATR) and traditional application. Local invariant feature detectors, mainly including corner detectors, blob detectors and region detectors etc., are widely applied for ATR. A saliency model of feature was proposed to evaluate feasibility of ATR in this paper. The first step consisted of computing the first-order derivatives on horizontal orientation and vertical orientation, and computing DoG maps in different scales respectively. Next, saliency images of feature were built based auto-correlation matrix in different scale. Then, saliency images of feature of different scales amalgamated. Experiment were performed on a large test set, including infrared images and optical images, and the result showed that the salient regions computed by this model were consistent with real feature regions computed by mostly local invariant feature extraction algorithms.
Wells, I G; Cartwright, R Y; Farnan, L P
1993-12-15
The computing strategy in our laboratories evolved from research in Artificial Intelligence, and is based on powerful software tools running on high performance desktop computers with a graphical user interface. This allows most tasks to be regarded as design problems rather than implementation projects, and both rapid prototyping and an object-oriented approach to be employed during the in-house development and enhancement of the laboratory information systems. The practical application of this strategy is discussed, with particular reference to the system designer, the laboratory user and the laboratory customer. Routine operation covers five departments, and the systems are stable, flexible and well accepted by the users. Client-server computing, currently undergoing final trials, is seen as the key to further development, and this approach to Pathology computing has considerable potential for the future.
NASA Technical Reports Server (NTRS)
Paulkovich, J.
1979-01-01
Device will convert wind, water, tidal or wave energy into electrical or mechanical energy. Is comprised of windmill-like paddles or blades synchronously geared to orient themselves to wind direction for optimum energy extraction.
Orientational Order on Surfaces: The Coupling of Topology, Geometry, and Dynamics
NASA Astrophysics Data System (ADS)
Nestler, M.; Nitschke, I.; Praetorius, S.; Voigt, A.
2018-02-01
We consider the numerical investigation of surface bound orientational order using unit tangential vector fields by means of a gradient flow equation of a weak surface Frank-Oseen energy. The energy is composed of intrinsic and extrinsic contributions, as well as a penalization term to enforce the unity of the vector field. Four different numerical discretizations, namely a discrete exterior calculus approach, a method based on vector spherical harmonics, a surface finite element method, and an approach utilizing an implicit surface description, the diffuse interface method, are described and compared with each other for surfaces with Euler characteristic 2. We demonstrate the influence of geometric properties on realizations of the Poincaré-Hopf theorem and show examples where the energy is decreased by introducing additional orientational defects.
A Practice-Oriented Bifurcation Analysis for Pulse Energy Converters. Part 2: An Operating Regime
NASA Astrophysics Data System (ADS)
Kolokolov, Yury; Monovskaya, Anna
The paper continues the discussion on bifurcation analysis for applications in practice-oriented solutions for pulse energy conversion systems (PEC-systems). Since a PEC-system represents a nonlinear object with a variable structure, then the description of its dynamics evolution involves bifurcation analysis conceptions. This means the necessity to resolve the conflict-of-units between the notions used to describe natural evolution (i.e. evolution of the operating process towards nonoperating processes and vice versa) and the notions used to describe a desirable artificial regime (i.e. an operating regime). We consider cause-effect relations in the following sequence: nonlinear dynamics-output signal-operating characteristics, where these characteristics include stability and performance. Then regularities of nonlinear dynamics should be translated into regularities of the output signal dynamics, and, after, into an evolutional picture of each operating characteristic. In order to make the translation without losses, we first take into account heterogeneous properties within the structures of the operating process in the parametrical (P-) and phase (X-) spaces, and analyze regularities of the operating stability and performance on the common basis by use of the modified bifurcation diagrams built in joint PX-space. Then, the correspondence between causes (degradation of the operating process stability) and effects (changes of the operating characteristics) is decomposed into three groups of abnormalities: conditionally unavoidable abnormalities (CU-abnormalities); conditionally probable abnormalities (CP-abnormalities); conditionally regular abnormalities (CR-abnormalities). Within each of these groups the evolutional homogeneity is retained. After, the resultant evolution of each operating characteristic is naturally aggregated through the superposition of cause-effect relations in accordance with each of the abnormalities. We demonstrate that the practice-oriented bifurcation analysis has fundamentally specific purposes and tools, like for the computer-based bifurcation analysis and the experimental bifurcation analysis. That is why, from our viewpoint, it seems to be a rather novel direction in the general context of bifurcation analysis conceptions. We believe that the discussion could be interesting to pioneer research intended for the design of promising systems of pulse energy conversion.
The Effect of fluid buoyancy and fracture orientation on CaCO3 Formation in a Fracture
NASA Astrophysics Data System (ADS)
Xu, Z.; Li, Q.; Sheets, J.; Kneafsey, T. J.; Jun, Y. S.; Cole, D. R.; Pyrak-Nolte, L. J.
2016-12-01
Sealing fractures through mineral precipitation is a potential way for improving caprock integrity in subsurface reservoirs. We investigated the effect of buoyancy and fracture orientation on the amount and spatial distribution of calcium carbonate (CaCO3) precipitates in a fracture. To monitor mineral precipitation during reactive flow, transparent acrylic casts of an induced fracture in Austin chalk were used. To trigger CaCO3 precipitates, 1M CaCl2 with either 0.6M NaHCO3 solution (for surface adhering precipitation), or 0.3M Na2CO3 solution (for pore filling precipitation) were injected simultaneously into a saturated fracture. Experiments were performed with the fracture plane oriented either parallel or perpendicular to gravity. Acoustic wave transmission (compressional wave, 1 MHz) and optical imaging were used to monitor the sample prior to, during and after fluid injection. Complementary X-ray computed tomography was performed throughout the experiments on vertical fractures and post injection for the horizontal fractures. For the vertical fractures, the denser CaCl2 almost completely displaced the carbonate solution in the fracture and caused strong localization of the precipitates. The width of the precipitated region grew slowly over time. The horizontal fracture caused the less dense carbonate to flow over the CaCl2 solution thus resulting in more mixing and a more even distribution of precipitates throughout the fracture. The acoustic signatures depended on the type of precipitation that occurred. For pore filling experiments, the compressional wave amplitude increased by 5-20% and the velocity increased for both the vertical and horizontal fractures. However, the acoustic responses differed between the vertical and horizontal fractures for surface adhering experiments. Based on the acoustic response, surface adhering precipitation increased fracture specific stiffness more in the horizontal fracture than in the vertical fracture. The horizontal fracture enabled more mixing of the two solutions within the fracture than the vertical fracture. This work was supported by the Center for Nanoscale Controls on Geologic CO (NCGC), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-AC02-05CH11231
ERIC Educational Resources Information Center
Kafai, Yasmin B.; Lee, Eunkyoung; Searle, Kristin; Fields, Deborah; Kaplan, Eliot; Lui, Debora
2014-01-01
In this article, we examine the use of electronic textiles (e-textiles) for introducing key computational concepts and practices while broadening perceptions about computing. The starting point of our work was the design and implementation of a curriculum module using the LilyPad Arduino in a pre-AP high school computer science class. To…
Study Orientation Ply of Fiberglass on Blade Salt Water Pump Windmill using Abaqus
NASA Astrophysics Data System (ADS)
Badruzzaman, B.; Sifa, A.
2018-02-01
Windmill is one tool to generate energy from wind energy is converted into energy motion, salt production process still using traditional process by utilizing windmill to move sea water to salt field With a windmill driven water system, a horizontal axis type windmill with an average windmill height of 3-4 m, with a potential wind speed of 5-9 m / s, the amount of blade used for salt water pumps as much as 4 blades, one of the main factor of the windmill component is a blade, blade designed for the needs of a salt water pump by using fiberglass material. On layer orientation 0°,30°,45°,60° and 90° with layer number 10 and layer thickness 2 mm, the purpose of this study was to determine the strength of fiberglass that was influenced by the orientation of the layer, and to determine the orientation of fiberglass layer before making. This method used Finite Element Analysis method using ABAQUS, with homogenous and heterogeneous layer parameters. The simulation result shows the difference in von misses value at an angle of 0°, 30°, 45°,60° homogeneous value is greater than heterogeneous value, whereas in orientation 90 heterogeneous values have value 1,689e9 Pa, greater than homogenous 90 orientation value of 1,296e9 Pa.
Insight into the molecular mechanism of water evaporation via the finite temperature string method.
Musolino, Nicholas; Trout, Bernhardt L
2013-04-07
The process of water's evaporation at its liquid/air interface has proven challenging to study experimentally and, because it constitutes a rare event on molecular time scales, presents a challenge for computer simulations as well. In this work, we simulated water's evaporation using the classical extended simple point charge model water model, and identified a minimum free energy path for this process in terms of 10 descriptive order parameters. The measured free energy change was 7.4 kcal/mol at 298 K, in reasonable agreement with the experimental value of 6.3 kcal/mol, and the mean first-passage time was 1375 ns for a single molecule, corresponding to an evaporation coefficient of 0.25. In the observed minimum free energy process, the water molecule diffuses to the surface, and tends to rotate so that its dipole and one O-H bond are oriented outward as it crosses the Gibbs dividing surface. As the water molecule moves further outward through the interfacial region, its local density is higher than the time-averaged density, indicating a local solvation shell that protrudes from the interface. The water molecule loses donor and acceptor hydrogen bonds, and then, with its dipole nearly normal to the interface, stops donating its remaining hydrogen bond. At that point, when the final, accepted hydrogen bond is broken, the water molecule is free. We also analyzed which order parameters are most important in the process and in reactive trajectories, and found that the relative orientation of water molecules near the evaporating molecule, and the number of accepted hydrogen bonds, were important variables in reactive trajectories and in kinetic descriptions of the process.
Overview of Computer Simulation Modeling Approaches and Methods
Robert E. Manning; Robert M. Itami; David N. Cole; Randy Gimblett
2005-01-01
The field of simulation modeling has grown greatly with recent advances in computer hardware and software. Much of this work has involved large scientific and industrial applications for which substantial financial resources are available. However, advances in object-oriented programming and simulation methodology, concurrent with dramatic increases in computer...
Computer-Based Education (CBE): Tomorrow's Traditional System.
ERIC Educational Resources Information Center
Rizza, Peter J., Jr.
1981-01-01
Examines the role of computer technology in education; discusses reasons for the slow evolution of Computer-Based Education (CBE); explores educational areas in which CBE can be used; presents barriers to widespread use of CBE; and describes the responsibilities of education, government, and business in supporting technology-oriented education.…
Computer Problem-Solving Coaches for Introductory Physics: Design and Usability Studies
ERIC Educational Resources Information Center
Ryan, Qing X.; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Mason, Andrew
2016-01-01
The combination of modern computing power, the interactivity of web applications, and the flexibility of object-oriented programming may finally be sufficient to create computer coaches that can help students develop metacognitive problem-solving skills, an important competence in our rapidly changing technological society. However, no matter how…
A New Start for Mathematics Curriculum.
ERIC Educational Resources Information Center
Tucker, Alan
Arguing that a major re-thinking of the mathematics curriculum is needed, this paper urges two-year colleges to take the lead in curriculum revision. Section I suggests that the pre-calculus orientation of high school mathematics may be inappropriate, viewing mathematics related to computers and dependent on computers for computation as more…
ERIC Educational Resources Information Center
Zonderman, Jon
1982-01-01
The proliferation of personal computers in home/schools and use of computer chips in educational toys has led to a rethinking of ideas about education and fun, and ways the two can combine to provide youngsters with enjoyable and profitable learning experiences. Provides examples of commercially available computer-oriented educational toys/games.…
Computer Rehabilitation Training for the Severely Disabled.
ERIC Educational Resources Information Center
Louisiana State Univ., Baton Rouge.
The Computer Rehabilitation Training Program for the Severely Disabled is a job-oriented training program to prepare physically handicapped persons to become computer programmers and analysts. The program is operated by: a nonprofit organization of Baton Rouge-area business people interested in data processing; the Department of Social Services,…
Methodological Challenges for Collaborative Learning Research
ERIC Educational Resources Information Center
Strijbos, Jan-Willem; Fischer, Frank
2007-01-01
Research on collaborative learning, both face-to-face and computer-supported, has thrived in the past 10 years. The studies range from outcome-oriented (individual and group learning) to process-oriented (impact of interaction on learning processes, motivation and organisation of collaboration) to mixed studies. Collaborative learning research is…
An introduction to quantitative remote sensing. [data processing
NASA Technical Reports Server (NTRS)
Lindenlaub, J. C.; Russell, J.
1974-01-01
The quantitative approach to remote sensing is discussed along with the analysis of remote sensing data. Emphasis is placed on the application of pattern recognition in numerically oriented remote sensing systems. A common background and orientation for users of the LARS computer software system is provided.
Twisting Anderson pseudospins with light: Quench dynamics in THz-pumped BCS superconductors
NASA Astrophysics Data System (ADS)
Chou, Yang-Zhi; Liao, Yunxiang; Foster, Matthew
We study the preparation and the detection of coherent far-from-equilibrium BCS superconductor dynamics in THz pump-probe experiments. In a recent experiment, an intense monocycle THz pulse with center frequency ω = Δ was injected into a superconductor with BCS gap Δ the post-pump evolution was detected via the optical conductivity. It was argued that nonlinear coupling of the pump to the Anderson pseudospins of the superconductor induces coherent dynamics of the Higgs mode Δ (t) . We validate this picture in a 2D BCS model with a combination of exact numerics and the Lax reduction, and we compute the dynamical phase diagram. The main effect of the pump is to scramble the orientations of Anderson pseudospins along the Fermi surface by twisting them in the xy-plane. We show that more intense pulses can induce a far-from-equilibrium gapless phase (phase I), originally predicted in the context of interaction quenches. We show that the THz pump can reach phase I at much lower energy densities than an interaction quench, and we demonstrate that Lax reduction provides a quantitative tool for computing coherent BCS dynamics. We also compute the optical conductivity for the states discussed here.
Spin-driven structural effects in alkali doped (4)He clusters from quantum calculations.
Bovino, S; Coccia, E; Bodo, E; Lopez-Durán, D; Gianturco, F A
2009-06-14
In this paper, we carry out variational Monte Carlo and diffusion Monte Carlo (DMC) calculations for Li(2)((1)Sigma(g) (+))((4)He)(N) and Li(2)((3)Sigma(u) (+))((4)He)(N) with N up to 30 and discuss in detail the results of our computations. After a comparison between our DMC energies with the "exact" discrete variable representation values for the species with one (4)He, in order to test the quality of our computations at 0 K, we analyze the structural features of the whole range of doped clusters. We find that both species reside on the droplet surface, but that their orientation is spin driven, i.e., the singlet molecule is perpendicular and the triplet one is parallel to the droplet's surface. We have also computed quantum vibrational relaxation rates for both dimers in collision with a single (4)He and we find them to differ by orders of magnitude at the estimated surface temperature. Our results therefore confirm the findings from a great number of experimental data present in the current literature and provide one of the first attempts at giving an accurate, fully quantum picture for the nanoscopic properties of alkali dimers in (4)He clusters.
Long-wave model for strongly anisotropic growth of a crystal step.
Khenner, Mikhail
2013-08-01
A continuum model for the dynamics of a single step with the strongly anisotropic line energy is formulated and analyzed. The step grows by attachment of adatoms from the lower terrace, onto which atoms adsorb from a vapor phase or from a molecular beam, and the desorption is nonnegligible (the "one-sided" model). Via a multiscale expansion, we derived a long-wave, strongly nonlinear, and strongly anisotropic evolution PDE for the step profile. Written in terms of the step slope, the PDE can be represented in a form similar to a convective Cahn-Hilliard equation. We performed the linear stability analysis and computed the nonlinear dynamics. Linear stability depends on whether the stiffness is minimum or maximum in the direction of the step growth. It also depends nontrivially on the combination of the anisotropy strength parameter and the atomic flux from the terrace to the step. Computations show formation and coarsening of a hill-and-valley structure superimposed onto a long-wavelength profile, which independently coarsens. Coarsening laws for the hill-and-valley structure are computed for two principal orientations of a maximum step stiffness, the increasing anisotropy strength, and the varying atomic flux.
Computer Series, 75: Bits and Pieces, 30.
ERIC Educational Resources Information Center
Moore, John W., Ed.
1986-01-01
Identifies six computer-oriented approaches to teaching concepts in chemistry. Describes courseware and equipment involved in various experiments dealing with such topics as polymer configurations, stepper motors, conductometric titration, kinetic spectrophotometry, and overlap integrals. (TW)
Javkhlantugs, Namsrai; Bayar, Hexig; Ganzorig, Chimed; Ueda, Kazuyoshi
2013-01-01
Having a theoretical understanding of the orientation of immunoglobulin on an immobilized solid surface is important in biomedical pathogen-detecting systems and cellular analysis. Despite the stable adsorption of immunoglobulin on a polystyrene (PS) surface that has been applied in many kinds of immunoassays, there are many uncertainties in antibody-based clinical and biological experimental methods. To understand the binding mechanism and physicochemical interactions between immunoglobulin and the PS surface at the atomic level, we investigated the binding behavior and interactions of the monoclonal immunoglobulin G (IgG) on the PS surface using the computational method. In our docking simulation with the different arrangement of translational and rotational orientation of IgG onto the PS surface, three typical orientation patterns of the immunoglobulin G on the PS surface were found. We precisely analyzed these orientation patterns and clarified how the immunoglobulin G interacts with the PS surface at atomic scale in the beginning of the adsorption process. Major driving forces for the adsorption of IgG onto the PS surface come from serine (Ser), aspartic acid (Asp), and glutamic acid (Glu) residues. PMID:23874096
Distributed Object Oriented Programming
1990-02-01
of the object oriented model of computation. Therefore, object oriented programming can provide the programmer with good conceptual tools to divide his...LABOR SALES-COMMISSION). The symbol + refers to the addition function and takes any number of numeric arguments. The third subtype of list forms is the...2) ’(:SEND-DONE) (SEWF (AREF OBJECT-i1-MESSAGES-SENT 2) ’(PROGN (FORMAT T "-s methd completely executed instr-ptr -s-V NAME %INSTR-PTR%) (INCF
William F. Lazarus; Douglas G. Tiffany; Ronald S. Zalesny Jr.; Don E. Riemenschneider
2011-01-01
Short-rotation woody crops (SRWC) such as hybrid poplars are becoming increasingly competitive with agriculture on marginal land. The trees can be grown for energy and for traditional uses such as oriented strandboard. Using IMPLAN (Impact Analysis for Planning) software, we modeled the impacts of shifting land use from hay and pasture for cow-calf beef operations to...
Strain-induced friction anisotropy between graphene and molecular liquids
NASA Astrophysics Data System (ADS)
Liao, Meng; To, Quy-Dong; Léonard, Céline; Monchiet, Vincent; Vo, Van-Hoang
2017-01-01
In this paper, we study the friction behavior of molecular liquids with anisotropically strained graphene. Due to the changes of lattice and the potential energy surface, the friction is orientation dependent and can be computed by tensorial Green-Kubo formula. Simple quantitative estimations are also proposed for the zero-time response and agree reasonably well with the molecular dynamics results. From simulations, we can obtain the information of structures, dynamics of the system, and study the influence of strain and molecular shapes on the anisotropy degree. It is found that unilateral strain can increase friction in all directions but the strain direction is privileged. Numerical evidences also show that nonspherical molecules are more sensitive to strain and give rise to more pronounced anisotropy effects.
NASA Astrophysics Data System (ADS)
Krivosenko, Yu. S.; Pavlychev, A. A.
2016-11-01
We investigate hard X-ray ionization of linear triatomic molecules accenting recoil-induced effects on the dynamics of molecular frame. This dynamics is studied within the two-springs and harmonic approximations. The mode-channel relationship connecting the excitations of vibrational, rotational and translational degrees of freedom with the Σ → Σ and Σ → Π photoionization channels is applied to compute the N 1s-1 photoelectron spectra of molecular N2 O for various photon energies. The distinct ionized-site- and molecular-orientation-specific changes in the vibration structure of the 1 s photoelectron lines of terminal and central nitrogen atoms are revealed and discussed.
Flexible 2D Crystals of Polycyclic Aromatics Stabilized by Static Distortion Waves.
Meissner, Matthias; Sojka, Falko; Matthes, Lars; Bechstedt, Friedhelm; Feng, Xinliang; Müllen, Klaus; Mannsfeld, Stefan C B; Forker, Roman; Fritz, Torsten
2016-07-26
The epitaxy of many organic films on inorganic substrates can be classified within the framework of rigid lattices which helps to understand the origin of energy gain driving the epitaxy of the films. Yet, there are adsorbate-substrate combinations with distinct mutual orientations for which this classification fails and epitaxy cannot be explained within a rigid lattice concept. It has been proposed that tiny shifts in atomic positions away from ideal lattice points, so-called static distortion waves (SDWs), are responsible for the observed orientational epitaxy in such cases. Using low-energy electron diffraction and scanning tunneling microscopy, we provide direct experimental evidence for SDWs in organic adsorbate films, namely hexa-peri-hexabenzocoronene on graphite. They manifest as wave-like sub-Ångström molecular displacements away from an ideal adsorbate lattice which is incommensurate with graphite. By means of a density-functional-theory based model, we show that, due to the flexibility in the adsorbate layer, molecule-substrate energy is gained by straining the intermolecular bonds and that the resulting total energy is minimal for the observed domain orientation, constituting the orientational epitaxy. While structural relaxation at an interface is a common assumption, the combination of the precise determination of the incommensurate epitaxial relation, the direct observation of SDWs in real space, and their identification as the sole source of epitaxial energy gain constitutes a comprehensive proof of this effect.
First-principles study of stability of helium-vacancy complexes below tungsten surfaces
NASA Astrophysics Data System (ADS)
Yang, L.; Bergstrom, Z. J.; Wirth, B. D.
2018-05-01
Density function theory calculations have been performed to study the stability of small helium-vacancy (He-V) complexes near tungsten (W) surfaces of different orientations. The results show that the stability of vacancies and He-V complexes near W surfaces depends on surface orientation. However, as the depth below the surface increased beyond about 0.65-0.8 nm, the stability of He-V complexes is similar to the bulk. The formation energies of single vacancies and di-vacancies at depths less than 0.2 nm below the W(110) surface are higher than for W(100) or W(111) surfaces, but have lower energies at depths between 0.2 and 0.65 nm. The formation energies of He-V complexes below W surfaces are sensitive to the geometric orientation of the He and vacancy, especially below the W(111) surface. Within about 0.2 nm of the top layer of the three W surfaces, neither a vacancy nor a di-vacancy can trap He. Because of the lower formation energy of He-V complexes and higher He binding energy to vacancies below the W(110) surface, the He desorption from the W(110) surface is less likely to occur than from the W(100) and W(111) surfaces. Our results provide fundamental insight into the differences in surface morphology changes observed in single W crystals with different surface orientations under He plasma exposure.
Flexible 2D Crystals of Polycyclic Aromatics Stabilized by Static Distortion Waves
2016-01-01
The epitaxy of many organic films on inorganic substrates can be classified within the framework of rigid lattices which helps to understand the origin of energy gain driving the epitaxy of the films. Yet, there are adsorbate–substrate combinations with distinct mutual orientations for which this classification fails and epitaxy cannot be explained within a rigid lattice concept. It has been proposed that tiny shifts in atomic positions away from ideal lattice points, so-called static distortion waves (SDWs), are responsible for the observed orientational epitaxy in such cases. Using low-energy electron diffraction and scanning tunneling microscopy, we provide direct experimental evidence for SDWs in organic adsorbate films, namely hexa-peri-hexabenzocoronene on graphite. They manifest as wave-like sub-Ångström molecular displacements away from an ideal adsorbate lattice which is incommensurate with graphite. By means of a density-functional-theory based model, we show that, due to the flexibility in the adsorbate layer, molecule–substrate energy is gained by straining the intermolecular bonds and that the resulting total energy is minimal for the observed domain orientation, constituting the orientational epitaxy. While structural relaxation at an interface is a common assumption, the combination of the precise determination of the incommensurate epitaxial relation, the direct observation of SDWs in real space, and their identification as the sole source of epitaxial energy gain constitutes a comprehensive proof of this effect. PMID:27014920
Nonlinear metamaterials for electromagnetic energy harvesting (Conference Presentation)
NASA Astrophysics Data System (ADS)
Oumbe Tekam, Gabin Thibaut; Ginis, Vincent; Seetharamdoo, Divitha; Danckaert, Jan
2016-09-01
Surrounded by electromagnetic radiation coming from wireless power transfer to consumer devices such as mobile phones, computers and television, our society is facing the scientific and technological challenge to recover energy that is otherwise lost to the environment. Energy harvesting is an emerging field of research focused on this largely unsolved problem, especially in the microwave regime. Metamaterials provide a very promising platform to meet this purpose. These artificial materials are made from subwavelength building blocks, and can be designed by resonate at particular frequencies, depending on their shape, geometry, size, and orientation. In this work, we show that an efficient electromagnetic energy harvester can be design by inserting a nonlinear element directly within the metamaterial unit cell, leading to the conversion of RF input power to DC charge accumulation. The electromagnetic energy harvester operating at microwave frequencies is built from a cut-wire metasurface, which operates as a quasistatic electric dipole resonator. Using the equivalent electrical circuit, we design the parameters to tune the resonance frequency of the harvester at the desired frequency, and we compare these results with numerical simulations. Finally, we discuss the efficiency of our metamaterial energy harvesters. This work potentially offers a variety of applications, for example in the telecommunications industry to charge phones, in robotics to power microrobots, and also in medicine to advance pacemakers or health monitoring sensors.
Panel, Nicolas; Sun, Young Joo; Fuentes, Ernesto J; Simonson, Thomas
2017-01-01
PDZ domains generally bind short amino acid sequences at the C-terminus of target proteins, and short peptides can be used as inhibitors or model ligands. Here, we used experimental binding assays and molecular dynamics simulations to characterize 51 complexes involving the Tiam1 PDZ domain and to test the performance of a semi-empirical free energy function. The free energy function combined a Poisson-Boltzmann (PB) continuum electrostatic term, a van der Waals interaction energy, and a surface area term. Each term was empirically weighted, giving a Linear Interaction Energy or "PB/LIE" free energy. The model yielded a mean unsigned deviation of 0.43 kcal/mol and a Pearson correlation of 0.64 between experimental and computed free energies, which was superior to a Null model that assumes all complexes have the same affinity. Analyses of the models support several experimental observations that indicate the orientation of the α 2 helix is a critical determinant for peptide specificity. The models were also used to predict binding free energies for nine new variants, corresponding to point mutants of the Syndecan1 and Caspr4 peptides. The predictions did not reveal improved binding; however, they suggest that an unnatural amino acid could be used to increase protease resistance and peptide lifetimes in vivo . The overall performance of the model should allow its use in the design of new PDZ ligands in the future.
Panel, Nicolas; Sun, Young Joo; Fuentes, Ernesto J.; Simonson, Thomas
2017-01-01
PDZ domains generally bind short amino acid sequences at the C-terminus of target proteins, and short peptides can be used as inhibitors or model ligands. Here, we used experimental binding assays and molecular dynamics simulations to characterize 51 complexes involving the Tiam1 PDZ domain and to test the performance of a semi-empirical free energy function. The free energy function combined a Poisson-Boltzmann (PB) continuum electrostatic term, a van der Waals interaction energy, and a surface area term. Each term was empirically weighted, giving a Linear Interaction Energy or “PB/LIE” free energy. The model yielded a mean unsigned deviation of 0.43 kcal/mol and a Pearson correlation of 0.64 between experimental and computed free energies, which was superior to a Null model that assumes all complexes have the same affinity. Analyses of the models support several experimental observations that indicate the orientation of the α2 helix is a critical determinant for peptide specificity. The models were also used to predict binding free energies for nine new variants, corresponding to point mutants of the Syndecan1 and Caspr4 peptides. The predictions did not reveal improved binding; however, they suggest that an unnatural amino acid could be used to increase protease resistance and peptide lifetimes in vivo. The overall performance of the model should allow its use in the design of new PDZ ligands in the future. PMID:29018806
Tian, Ye; Huang, Xiaoqiang; Zhu, Yushan
2015-08-01
Enzyme amino-acid sequences at ligand-binding interfaces are evolutionarily optimized for reactions, and the natural conformation of an enzyme-ligand complex must have a low free energy relative to alternative conformations in native-like or non-native sequences. Based on this assumption, a combined energy function was developed for enzyme design and then evaluated by recapitulating native enzyme sequences at ligand-binding interfaces for 10 enzyme-ligand complexes. In this energy function, the electrostatic interaction between polar or charged atoms at buried interfaces is described by an explicitly orientation-dependent hydrogen-bonding potential and a pairwise-decomposable generalized Born model based on the general side chain in the protein design framework. The energy function is augmented with a pairwise surface-area based hydrophobic contribution for nonpolar atom burial. Using this function, on average, 78% of the amino acids at ligand-binding sites were predicted correctly in the minimum-energy sequences, whereas 84% were predicted correctly in the most-similar sequences, which were selected from the top 20 sequences for each enzyme-ligand complex. Hydrogen bonds at the enzyme-ligand binding interfaces in the 10 complexes were usually recovered with the correct geometries. The binding energies calculated using the combined energy function helped to discriminate the active sequences from a pool of alternative sequences that were generated by repeatedly solving a series of mixed-integer linear programming problems for sequence selection with increasing integer cuts.
Wilaiprasitporn, Theerawit; Yagi, Tohru
2015-01-01
This research demonstrates the orientation-modulated attention effect on visual evoked potential. We combined this finding with our previous findings about the motion-modulated attention effect and used the result to develop novel visual stimuli for a personal identification number (PIN) application based on a brain-computer interface (BCI) framework. An electroencephalography amplifier with a single electrode channel was sufficient for our application. A computationally inexpensive algorithm and small datasets were used in processing. Seven healthy volunteers participated in experiments to measure offline performance. Mean accuracy was 83.3% at 13.9 bits/min. Encouraged by these results, we plan to continue developing the BCI-based personal identification application toward real-time systems.
Next Generation Multimedia Distributed Data Base Systems
NASA Technical Reports Server (NTRS)
Pendleton, Stuart E.
1997-01-01
The paradigm of client/server computing is changing. The model of a server running a monolithic application and supporting clients at the desktop is giving way to a different model that blurs the line between client and server. We are on the verge of plunging into the next generation of computing technology--distributed object-oriented computing. This is not only a change in requirements but a change in opportunities, and requires a new way of thinking for Information System (IS) developers. The information system demands caused by global competition are requiring even more access to decision making tools. Simply, object-oriented technology has been developed to supersede the current design process of information systems which is not capable of handling next generation multimedia.
A user-oriented and computerized model for estimating vehicle ride quality
NASA Technical Reports Server (NTRS)
Leatherwood, J. D.; Barker, L. M.
1984-01-01
A simplified empirical model and computer program for estimating passenger ride comfort within air and surface transportation systems are described. The model is based on subjective ratings from more than 3000 persons who were exposed to controlled combinations of noise and vibration in the passenger ride quality apparatus. This model has the capability of transforming individual elements of a vehicle's noise and vibration environment into subjective discomfort units and then combining the subjective units to produce a single discomfort index typifying passenger acceptance of the environment. The computational procedures required to obtain discomfort estimates are discussed, and a user oriented ride comfort computer program is described. Examples illustrating application of the simplified model to helicopter and automobile ride environments are presented.
ERIC Educational Resources Information Center
Karatas, Ilhan
2014-01-01
This study examines the effect of three different computer integration models on pre-service mathematics teachers' beliefs about using computers in mathematics education. Participants included 104 pre-service mathematics teachers (36 second-year students in the Computer Oriented Model group, 35 fourth-year students in the Integrated Model (IM)…
Computational Science in Armenia (Invited Talk)
NASA Astrophysics Data System (ADS)
Marandjian, H.; Shoukourian, Yu.
This survey is devoted to the development of informatics and computer science in Armenia. The results in theoretical computer science (algebraic models, solutions to systems of general form recursive equations, the methods of coding theory, pattern recognition and image processing), constitute the theoretical basis for developing problem-solving-oriented environments. As examples can be mentioned: a synthesizer of optimized distributed recursive programs, software tools for cluster-oriented implementations of two-dimensional cellular automata, a grid-aware web interface with advanced service trading for linear algebra calculations. In the direction of solving scientific problems that require high-performance computing resources, examples of completed projects include the field of physics (parallel computing of complex quantum systems), astrophysics (Armenian virtual laboratory), biology (molecular dynamics study of human red blood cell membrane), meteorology (implementing and evaluating the Weather Research and Forecast Model for the territory of Armenia). The overview also notes that the Institute for Informatics and Automation Problems of the National Academy of Sciences of Armenia has established a scientific and educational infrastructure, uniting computing clusters of scientific and educational institutions of the country and provides the scientific community with access to local and international computational resources, that is a strong support for computational science in Armenia.
Advances in integration of photovoltaic power and energy production in practical systems
NASA Astrophysics Data System (ADS)
Fartaria, Tomas Oliveira
This thesis presents advances in integration of photovoltaic (PV) power and energy in practical systems, such as existing power plants in buildings or directly integrated in the public electrical grid. It starts by providing an analyze of the current state of PV power and some of its limitations. The work done in this thesis begins by providing a model to compute mutual shading in large PV plants, and after provides a study of the integration of a PV plant in a biogas power plant. The remainder sections focus on the work done for project PVCROPS, which consisted on the construction and operation of two prototypes composed of a PV system and a novel battery connected to a building and to the public electrical grid. These prototypes were then used to test energy management strategies and validate the suitability of the two advanced batteries (a lithium-ion battery and a vanadium redox ow battery) for households (BIPV) and PV plants. This thesis is divided in 7 chapters: Chapter 1 provides an introduction to explain and develop the main research questions studied for this thesis; Chapter 2 presents the development of a ray-tracing model to compute shading in large PV elds (with or without trackers); Chapter 3 shows the simulation of hybridizing a biogas plant with a PV plant, using biogas as energy storage; Chapters 4 and 5 present the construction, programming, and initial operation of both prototypes (Chapter 4), EMS testing oriented to BIPV systems (Chapter 5). Finally, Chapters 6 provides some future lines of investigation that can follow this thesis, and Chapter 7 shows a synopsis of the main conclusions of this work.
Eike, David M; Maginn, Edward J
2006-04-28
A method recently developed to rigorously determine solid-liquid equilibrium using a free-energy-based analysis has been extended to analyze multiatom molecular systems. This method is based on using a pseudosupercritical transformation path to reversibly transform between solid and liquid phases. Integration along this path yields the free energy difference at a single state point, which can then be used to determine the free energy difference as a function of temperature and therefore locate the coexistence temperature at a fixed pressure. The primary extension reported here is the introduction of an external potential field capable of inducing center of mass order along with secondary orientational order for molecules. The method is used to calculate the melting point of 1-H-1,2,4-triazole and benzene. Despite the fact that the triazole model gives accurate bulk densities for the liquid and crystal phases, it is found to do a poor job of reproducing the experimental crystal structure and heat of fusion. Consequently, it yields a melting point that is 100 K lower than the experimental value. On the other hand, the benzene model has been parametrized extensively to match a wide range of properties and yields a melting point that is only 20 K lower than the experimental value. Previous work in which a simple "direct heating" method was used actually found that the melting point of the benzene model was 50 K higher than the experimental value. This demonstrates the importance of using proper free energy methods to compute phase behavior. It also shows that the melting point is a very sensitive measure of force field quality that should be considered in parametrization efforts. The method described here provides a relatively simple approach for computing melting points of molecular systems.
Capture and quality control mechanisms for ATP binding
Li, Li; Martinis, Susan A.
2013-01-01
The catalytic events in members of the nucleotidylyl transferase superfamily are initiated by a millisecond binding of ATP in the active site. Through metadynamics simulations on a class I aminoacyl-tRNA synthetase (aaRSs), the largest group in the superfamily, we calculate the free energy landscape of ATP selection and binding. Mutagenesis studies and fluorescence spectroscopy validated the identification of the most populated intermediate states. The rapid first binding step involves formation of encounter complexes captured through a fly-casting mechanism that acts up on the triphosphate moiety of ATP. In the slower nucleoside binding step, a conserved histidine in the HxxH motif orients the incoming ATP through base-stacking interactions resulting in a deep minimum in the free energy surface. Mutation of this histidine significantly decreases the binding affinity measured experimentally and computationally. The metadynamics simulations further reveal an intermediate quality control state that the synthetases and most likely other members of the superfamily use to select ATP over other nucleoside triphosphates. PMID:23276298
NASA Astrophysics Data System (ADS)
Manoonpong, Poramate; Petersen, Dennis; Kovalev, Alexander; Wörgötter, Florentin; Gorb, Stanislav N.; Spinner, Marlene; Heepe, Lars
2016-12-01
Based on the principles of morphological computation, we propose a novel approach that exploits the interaction between a passive anisotropic scale-like material (e.g., shark skin) and a non-smooth substrate to enhance locomotion efficiency of a robot walking on inclines. Real robot experiments show that passive tribologically-enhanced surfaces of the robot belly or foot allow the robot to grip on specific surfaces and move effectively with reduced energy consumption. Supplementing the robot experiments, we investigated tribological properties of the shark skin as well as its mechanical stability. It shows high frictional anisotropy due to an array of sloped denticles. The orientation of the denticles to the underlying collagenous material also strongly influences their mechanical interlocking with the substrate. This study not only opens up a new way of achieving energy-efficient legged robot locomotion but also provides a better understanding of the functionalities and mechanical properties of anisotropic surfaces. That understanding will assist developing new types of material for other real-world applications.
Manoonpong, Poramate; Petersen, Dennis; Kovalev, Alexander; Wörgötter, Florentin; Gorb, Stanislav N.; Spinner, Marlene; Heepe, Lars
2016-01-01
Based on the principles of morphological computation, we propose a novel approach that exploits the interaction between a passive anisotropic scale-like material (e.g., shark skin) and a non-smooth substrate to enhance locomotion efficiency of a robot walking on inclines. Real robot experiments show that passive tribologically-enhanced surfaces of the robot belly or foot allow the robot to grip on specific surfaces and move effectively with reduced energy consumption. Supplementing the robot experiments, we investigated tribological properties of the shark skin as well as its mechanical stability. It shows high frictional anisotropy due to an array of sloped denticles. The orientation of the denticles to the underlying collagenous material also strongly influences their mechanical interlocking with the substrate. This study not only opens up a new way of achieving energy-efficient legged robot locomotion but also provides a better understanding of the functionalities and mechanical properties of anisotropic surfaces. That understanding will assist developing new types of material for other real-world applications. PMID:28008936
Capture and quality control mechanisms for adenosine-5'-triphosphate binding.
Li, Li; Martinis, Susan A; Luthey-Schulten, Zaida
2013-04-24
The catalytic events in members of the nucleotidylyl transferase superfamily are initiated by a millisecond binding of ATP in the active site. Through metadynamics simulations on a class I aminoacyl-tRNA synthetase (aaRSs), the largest group in the superfamily, we calculate the free energy landscape of ATP selection and binding. Mutagenesis studies and fluorescence spectroscopy validated the identification of the most populated intermediate states. The rapid first binding step involves formation of encounter complexes captured through a fly casting mechanism that acts upon the triphosphate moiety of ATP. In the slower nucleoside binding step, a conserved histidine in the HxxH motif orients the incoming ATP through base-stacking interactions resulting in a deep minimum in the free energy surface. Mutation of this histidine significantly decreases the binding affinity measured experimentally and computationally. The metadynamics simulations further reveal an intermediate quality control state that the synthetases and most likely other members of the superfamily use to select ATP over other nucleoside triphosphates.
Interfacial free energy of the NaCl crystal-melt interface from capillary wave fluctuations.
Benet, Jorge; MacDowell, Luis G; Sanz, Eduardo
2015-04-07
In this work we study, by means of molecular dynamics simulations, the solid-liquid interface of NaCl under coexistence conditions. By analysing capillary waves, we obtain the stiffness for different orientations of the solid and calculate the interfacial free energy by expanding the dependency of the interfacial free energy with the solid orientation in terms of cubic harmonics. We obtain an average value for the solid-fluid interfacial free energy of 89 ± 6 mN m(-1) that is consistent with previous results based on the measure of nucleation free energy barriers [Valeriani et al., J. Chem. Phys. 122, 194501 (2005)]. We analyse the influence of the simulation setup on interfacial properties and find that facets prepared as an elongated rectangular stripe give the same results as those prepared as squares for all cases but the 111 face. For some crystal orientations, we observe at small wave-vectors a behaviour not consistent with capillary wave theory and show that this behavior does not depend on the simulation setup.
Modeling ground-based timber harvesting systems using computer simulation
Jingxin Wang; Chris B. LeDoux
2001-01-01
Modeling ground-based timber harvesting systems with an object-oriented methodology was investigated. Object-oriented modeling and design promote a better understanding of requirements, cleaner designs, and better maintainability of the harvesting simulation system. The model developed simulates chainsaw felling, drive-to-tree feller-buncher, swing-to-tree single-grip...
Assessing Knowledge Change in Computer Science
ERIC Educational Resources Information Center
Nash, Jane Gradwohl; Bravaco, Ralph J.; Simonson, Shai
2006-01-01
The purpose of this study was to assess structural knowledge change across a two-week workshop designed to provide high-school teachers with training in Java and Object Oriented Programming. Both before and after the workshop, teachers assigned relatedness ratings to pairs of key concepts regarding Java and Object Oriented Programming. Their…
Object-Oriented Algorithm For Evaluation Of Fault Trees
NASA Technical Reports Server (NTRS)
Patterson-Hine, F. A.; Koen, B. V.
1992-01-01
Algorithm for direct evaluation of fault trees incorporates techniques of object-oriented programming. Reduces number of calls needed to solve trees with repeated events. Provides significantly improved software environment for such computations as quantitative analyses of safety and reliability of complicated systems of equipment (e.g., spacecraft or factories).
The Effects of Goal-Oriented Instructions in Digital Game-Based Learning
ERIC Educational Resources Information Center
Erhel, Séverine; Jamet, Eric
2016-01-01
Few studies have investigated the effects of the instructions provided in educational computer games on cognitive processing and learning outcomes. In our experiment, we sought to compare the effects on learning outcomes of two different types of goal-oriented instructions: "mastery-goal" instructions, which prompt learners to develop…
Time-dependent analysis of the mixed-field orientation of molecules without rotational symmetry
NASA Astrophysics Data System (ADS)
Thesing, Linda V.; Küpper, Jochen; González-Férez, Rosario
2017-06-01
We present a theoretical study of the mixed-field orientation of molecules without rotational symmetry. The time-dependent one-dimensional and three-dimensional orientation of a thermal ensemble of 6-chloropyridazine-3-carbonitrile molecules in combined linearly or elliptically polarized laser fields and tilted dc electric fields is computed. The results are in good agreement with recent experimental results of one-dimensional orientation for weak dc electric fields [J. L. Hansen, J. Chem. Phys. 139, 234313 (2013)]. Moreover, they predict that using elliptically polarized laser fields or strong dc fields, three-dimensional orientation is obtained. The field-dressed dynamics of excited rotational states is characterized by highly non-adiabatic effects. We analyze the sources of these non-adiabatic effects and investigate their impact on the mixed-field orientation for different field configurations in mixed-field-orientation experiments.
NASA Astrophysics Data System (ADS)
Sauzay, Maxime
2006-06-01
Experimental studies of the plasticity mechanisms of polycrystals are usually based on the Schmid factor distribution supposing crystalline elasticity isotropy. A numerical evaluation of the effect of crystalline elasticity anisotropy on the apparent Schmid factor distribution at the free surface of polycrystals is presented. Cubic elasticity is considered. Order II stresses (averaged on all grains with the same crystallographic orientation) as well as variations between averages computed on grains with the same crystallographic orientation but with different neighbour grains are computed. The Finite Element Method is used. Commonly studied metals presenting an increasing anisotropy degree are considered (aluminium, nickel, austenite, copper). Concerning order II stresses in strongly anisotropic metals, the apparent Schmid factor distribution is drifted towards small Schmid factor values (the maximum Schmid factor is equal to 0.43 instead of 0.5) and the slip activation order between characteristic orientations of the crystallographic standard triangle is modified. The computed square deviations of the stresses averaged on grains with the same crystallographic orientation but with different neighbour grains are a bit higher than the second order ones (inter-orientation scatter). Our numerical evaluations agree quantitatively with several observations and measures of the literature concerning stress and strain distribution in copper and austenite polycrystals submitted to low amplitude loadings. Hopefully, the given apparent Schmid factor distributions could help to better understand the observations of the plasticity mechanisms taking place at the free surface of polycrystals. To cite this article: M. Sauzay, C. R. Mecanique 334 (2006).
An Object-oriented Computer Code for Aircraft Engine Weight Estimation
NASA Technical Reports Server (NTRS)
Tong, Michael T.; Naylor, Bret A.
2008-01-01
Reliable engine-weight estimation at the conceptual design stage is critical to the development of new aircraft engines. It helps to identify the best engine concept amongst several candidates. At NASA Glenn (GRC), the Weight Analysis of Turbine Engines (WATE) computer code, originally developed by Boeing Aircraft, has been used to estimate the engine weight of various conceptual engine designs. The code, written in FORTRAN, was originally developed for NASA in 1979. Since then, substantial improvements have been made to the code to improve the weight calculations for most of the engine components. Most recently, to improve the maintainability and extensibility of WATE, the FORTRAN code has been converted into an object-oriented version. The conversion was done within the NASA s NPSS (Numerical Propulsion System Simulation) framework. This enables WATE to interact seamlessly with the thermodynamic cycle model which provides component flow data such as airflows, temperatures, and pressures, etc. that are required for sizing the components and weight calculations. The tighter integration between the NPSS and WATE would greatly enhance system-level analysis and optimization capabilities. It also would facilitate the enhancement of the WATE code for next-generation aircraft and space propulsion systems. In this paper, the architecture of the object-oriented WATE code (or WATE++) is described. Both the FORTRAN and object-oriented versions of the code are employed to compute the dimensions and weight of a 300- passenger aircraft engine (GE90 class). Both versions of the code produce essentially identical results as should be the case. Keywords: NASA, aircraft engine, weight, object-oriented
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, F.; Wachem, B. G. M. van, E-mail: berend.van.wachem@gmail.com; George, W. K.
2015-08-15
This paper investigates the effects of particle shape and Stokes number on the behaviour of non-spherical particles in turbulent channel flow. Although there are a number of studies concerning spherical particles in turbulent flows, most important applications occurring in process, energy, and pharmaceutical industries deal with non-spherical particles. The computation employs a unique and novel four-way coupling with the Lagrangian point-particle approach. The fluid phase at low Reynolds number (Re{sub τ} = 150) is modelled by direct numerical simulation, while particles are tracked individually. Inter-particle and particle-wall collisions are also taken into account. To explore the effects of particles onmore » the flow turbulence, the statistics of the fluid flow such as the fluid velocity, the terms in the turbulence kinetic energy equation, the slip velocity between the two phases and velocity correlations are analysed considering ellipsoidal particles with different inertia and aspect ratio. The results of the simulations show that the turbulence is considerably attenuated, even in the very dilute regime. The reduction of the turbulence intensity is predominant near the turbulence kinetic energy peak in the near wall region, where particles preferentially accumulate. Moreover, the elongated shape of ellipsoids strengthens the turbulence attenuation. In simulations with ellipsoidal particles, the fluid-particle interactions strongly depend on the orientation of the ellipsoids. In the near wall region, ellipsoids tend to align predominantly within the streamwise (x) and wall-normal (y) planes and perpendicular to the span-wise direction, whereas no preferential orientation in the central region of the channel is observed. Important conclusions from this work include the effective viscosity of the flow is not affected, the direct dissipation by the particles is negligible, and the primary mechanism by which the particles affect the flow is by altering the turbulence structure around the turbulence kinetic energy peak.« less
Patra, Niladri; Ioannidis, Efthymios I.
2016-01-01
Catechol O-methyltransferase (COMT) is a SAM- and Mg2+-dependent methyltransferase that regulates neurotransmitters through methylation. Simulations and experiments have identified divergent catecholamine substrate orientations in the COMT active site: molecular dynamics simulations have favored a monodentate coordination of catecholate substrates to the active site Mg2+, and crystal structures instead preserve bidentate coordination along with short (2.65 Å) methyl donor-acceptor distances. We carry out longer dynamics (up to 350 ns) to quantify interconversion between bidentate and monodentate binding poses. We provide a systematic determination of the relative free energy of the monodentate and bidentate structures in order to identify whether structural differences alter the nature of the methyl transfer mechanism and source of enzymatic rate enhancement. We demonstrate that the bidentate and monodentate binding modes are close in energy but separated by a 7 kcal/mol free energy barrier. Analysis of interactions in the two binding modes reveals that the driving force for monodentate catecholate orientations in classical molecular dynamics simulations is derived from stronger electrostatic stabilization afforded by alternate Mg2+ coordination with strongly charged active site carboxylates. Mixed semi-empirical-classical (SQM/MM) substrate C-O distances (2.7 Å) for the bidentate case are in excellent agreement with COMT X-ray crystal structures, as long as charge transfer between the substrates, Mg2+, and surrounding ligands is permitted. SQM/MM free energy barriers for methyl transfer from bidentate and monodentate catecholate configurations are comparable at around 21–22 kcal/mol, in good agreement with experiment (18–19 kcal/mol). Overall, the work suggests that both binding poses are viable for methyl transfer, and accurate descriptions of charge transfer and electrostatics are needed to provide balanced relative barriers when multiple binding poses are accessible, for example in other transferases. PMID:27564542
Li, Zhenlong; Yang, Chaowei; Jin, Baoxuan; Yu, Manzhu; Liu, Kai; Sun, Min; Zhan, Matthew
2015-01-01
Geoscience observations and model simulations are generating vast amounts of multi-dimensional data. Effectively analyzing these data are essential for geoscience studies. However, the tasks are challenging for geoscientists because processing the massive amount of data is both computing and data intensive in that data analytics requires complex procedures and multiple tools. To tackle these challenges, a scientific workflow framework is proposed for big geoscience data analytics. In this framework techniques are proposed by leveraging cloud computing, MapReduce, and Service Oriented Architecture (SOA). Specifically, HBase is adopted for storing and managing big geoscience data across distributed computers. MapReduce-based algorithm framework is developed to support parallel processing of geoscience data. And service-oriented workflow architecture is built for supporting on-demand complex data analytics in the cloud environment. A proof-of-concept prototype tests the performance of the framework. Results show that this innovative framework significantly improves the efficiency of big geoscience data analytics by reducing the data processing time as well as simplifying data analytical procedures for geoscientists. PMID:25742012
E-Governance and Service Oriented Computing Architecture Model
NASA Astrophysics Data System (ADS)
Tejasvee, Sanjay; Sarangdevot, S. S.
2010-11-01
E-Governance is the effective application of information communication and technology (ICT) in the government processes to accomplish safe and reliable information lifecycle management. Lifecycle of the information involves various processes as capturing, preserving, manipulating and delivering information. E-Governance is meant to transform of governance in better manner to the citizens which is transparent, reliable, participatory, and accountable in point of view. The purpose of this paper is to attempt e-governance model, focus on the Service Oriented Computing Architecture (SOCA) that includes combination of information and services provided by the government, innovation, find out the way of optimal service delivery to citizens and implementation in transparent and liable practice. This paper also try to enhance focus on the E-government Service Manager as a essential or key factors service oriented and computing model that provides a dynamically extensible structural design in which all area or branch can bring in innovative services. The heart of this paper examine is an intangible model that enables E-government communication for trade and business, citizen and government and autonomous bodies.
Li, Zhenlong; Yang, Chaowei; Jin, Baoxuan; Yu, Manzhu; Liu, Kai; Sun, Min; Zhan, Matthew
2015-01-01
Geoscience observations and model simulations are generating vast amounts of multi-dimensional data. Effectively analyzing these data are essential for geoscience studies. However, the tasks are challenging for geoscientists because processing the massive amount of data is both computing and data intensive in that data analytics requires complex procedures and multiple tools. To tackle these challenges, a scientific workflow framework is proposed for big geoscience data analytics. In this framework techniques are proposed by leveraging cloud computing, MapReduce, and Service Oriented Architecture (SOA). Specifically, HBase is adopted for storing and managing big geoscience data across distributed computers. MapReduce-based algorithm framework is developed to support parallel processing of geoscience data. And service-oriented workflow architecture is built for supporting on-demand complex data analytics in the cloud environment. A proof-of-concept prototype tests the performance of the framework. Results show that this innovative framework significantly improves the efficiency of big geoscience data analytics by reducing the data processing time as well as simplifying data analytical procedures for geoscientists.
UFO (UnFold Operator) computer program abstract
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kissel, L.; Biggs, F.
UFO (UnFold Operator) is an interactive user-oriented computer program designed to solve a wide range of problems commonly encountered in physical measurements. This document provides a summary of the capabilities of version 3A of UFO.
1986-12-01
17 III. Analysis of Parallel Design ................................................ 18 Parallel Abstract Data ...Types ........................................... 18 Abstract Data Type .................................................. 19 Parallel ADT...22 Data -Structure Design ........................................... 23 Object-Oriented Design
The Role of Personal Computers in Vocational Education: A Critical View.
ERIC Educational Resources Information Center
Passmore, David L.; And Others
1984-01-01
Personal computers are inexpensive, portable, accessible, and adaptable for vocational education instruction, administration, and communications. Successful infusion of microcomputers into vocational education requires staff orientation, improvement in software quality, and careful planning. (SK)
DOT National Transportation Integrated Search
1976-01-01
This manual details the preparation of data for and the interpretation of output from the least squares computer program LSTSQR-1. The material presented here will be somewhat difficult for the non-computer oriented professional to interpret on the f...
Clem, John; Prozorov, Ruslan; Wijngaarden, Rinke J.
2013-09-04
The equilibrium topology of superconducting and normal domains in flat type-I superconductors is investigated. Important improvements with respect to previous work are that (1) the energy of the external magnetic field, as deformed by the presence of superconducting domains, is calculated in the same way for three different topologies and (2) calculations are made for arbitrary orientation of the applied field. A phase diagram is presented for the minimum-energy topology as a function of applied field magnitude and angle. For small (large) applied fields, normal (superconducting) tubes are found, while for intermediate fields, parallel domains have a lower energy. Themore » range of field magnitudes for which the superconducting-tubes structure is favored shrinks when the field is more in-plane oriented.« less
NASA Astrophysics Data System (ADS)
Lyu, Lu; Niu, Dongmei; Xie, Haipeng; Cao, Ningtong; Zhang, Hong; Zhang, Yuhe; Liu, Peng; Gao, Yongli
2016-01-01
Combining ultraviolet photoemission spectroscopy, X-ray photoemission spectroscopy, atomic force microscopy, and X-ray diffraction measurements, we performed a systematic investigation on the correlation of energy level alignment, film growth, and molecular orientation of 2,7-diocty[1]benzothieno[3,2-b]benzothiophene (C8-BTBT) on highly oriented pyrolytic graphite. The molecules lie down in the first layer and then stand up from the second layer. The ionization potential shows a sharp decrease from the lying down region to the standing up region. When C8-BTBT molecules start standing up, unconventional energy level band-bending-like shifts are observed as the film thickness increases. These shifts are ascribed to gradual decreasing of the molecular tilt angle about the substrate normal with the increasing film thickness.
Lyu, Lu; Niu, Dongmei; Xie, Haipeng; Cao, Ningtong; Zhang, Hong; Zhang, Yuhe; Liu, Peng; Gao, Yongli
2016-01-21
Combining ultraviolet photoemission spectroscopy, X-ray photoemission spectroscopy, atomic force microscopy, and X-ray diffraction measurements, we performed a systematic investigation on the correlation of energy level alignment, film growth, and molecular orientation of 2,7-diocty[1]benzothieno[3,2-b]benzothiophene (C8-BTBT) on highly oriented pyrolytic graphite. The molecules lie down in the first layer and then stand up from the second layer. The ionization potential shows a sharp decrease from the lying down region to the standing up region. When C8-BTBT molecules start standing up, unconventional energy level band-bending-like shifts are observed as the film thickness increases. These shifts are ascribed to gradual decreasing of the molecular tilt angle about the substrate normal with the increasing film thickness.
OpenFOAM: Open source CFD in research and industry
NASA Astrophysics Data System (ADS)
Jasak, Hrvoje
2009-12-01
The current focus of development in industrial Computational Fluid Dynamics (CFD) is integration of CFD into Computer-Aided product development, geometrical optimisation, robust design and similar. On the other hand, in CFD research aims to extend the boundaries ofpractical engineering use in "non-traditional " areas. Requirements of computational flexibility and code integration are contradictory: a change of coding paradigm, with object orientation, library components, equation mimicking is proposed as a way forward. This paper describes OpenFOAM, a C++ object oriented library for Computational Continuum Mechanics (CCM) developed by the author. Efficient and flexible implementation of complex physical models is achieved by mimicking the form ofpartial differential equation in software, with code functionality provided in library form. Open Source deployment and development model allows the user to achieve desired versatility in physical modeling without the sacrifice of complex geometry support and execution efficiency.
Recursive computer architecture for VLSI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Treleaven, P.C.; Hopkins, R.P.
1982-01-01
A general-purpose computer architecture based on the concept of recursion and suitable for VLSI computer systems built from replicated (lego-like) computing elements is presented. The recursive computer architecture is defined by presenting a program organisation, a machine organisation and an experimental machine implementation oriented to VLSI. The experimental implementation is being restricted to simple, identical microcomputers each containing a memory, a processor and a communications capability. This future generation of lego-like computer systems are termed fifth generation computers by the Japanese. 30 references.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kou, Stephen; Palsberg, Jens; Brooks, Jeffrey
Consumer electronics today such as cell phones often have one or more low-power FPGAs to assist with energy-intensive operations in order to reduce overall energy consumption and increase battery life. However, current techniques for programming FPGAs require people to be specially trained to do so. Ideally, software engineers can more readily take advantage of the benefits FPGAs offer by being able to program them using their existing skills, a common one being object-oriented programming. However, traditional techniques for compiling object-oriented languages are at odds with todays FPGA tools, which support neither pointers nor complex data structures. Open until now ismore » the problem of compiling an object-oriented language to an FPGA in a way that harnesses this potential for huge energy savings. In this paper, we present a new compilation technique that feeds into an existing FPGA tool chain and produces FPGAs with up to almost an order of magnitude in energy savings compared to a low-power microprocessor while still retaining comparable performance and area usage.« less
Nanostructured carbon films with oriented graphitic planes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teo, E. H. T.; Kalish, R.; Kulik, J.
2011-03-21
Nanostructured carbon films with oriented graphitic planes can be deposited by applying energetic carbon bombardment. The present work shows the possibility of structuring graphitic planes perpendicular to the substrate in following two distinct ways: (i) applying sufficiently large carbon energies for deposition at room temperature (E>10 keV), (ii) utilizing much lower energies for deposition at elevated substrate temperatures (T>200 deg. C). High resolution transmission electron microscopy is used to probe the graphitic planes. The alignment achieved at elevated temperatures does not depend on the deposition angle. The data provides insight into the mechanisms leading to the growth of oriented graphiticmore » planes under different conditions.« less
Equilibrium of fluid membranes endowed with orientational order
NASA Astrophysics Data System (ADS)
Kumar Alageshan, Jaya; Chakrabarti, Buddhapriya; Hatwalne, Yashodhan
2017-04-01
Minimization of the low-temperature elastic free-energy functional of orientationlly ordered membranes involves independent variation of the membrane-shape, while keeping the orientational order on it (its texture) fixed. We propose an operational, coordinate-independent method for implementing such a variation. Using the Nelson-Peliti formulation of elasticity that emphasizes the interplay between geometry, topology, and thermal fluctuations of orientationally ordered membranes, we minimize the elastic free energy to obtain equations governing their equilibrium shape, together with associated free boundary conditions. Our results are essential for understanding and predicting equilibrium shapes as well as textures of membranes and vesicles; particularly under conditions in which shape deformations are large.
Marotta, Phillip L; Voisin, Dexter R
2017-10-01
The following study assessed whether future orientation mediated the effects of peer norms and parental monitoring on delinquency and substance use among 549 African American adolescents. Structural equation modeling computed direct and indirect (meditational) relationships between parental monitoring and peer norms through future orientation. Parental monitoring significantly correlated with lower delinquency through future orientation ( B = -.05, standard deviation = .01, p < .01). Future orientation mediated more than quarter (27.70%) of the total effect of parental monitoring on delinquency. Overall findings underscore the importance of strengthening resilience factors for African American youth, especially those who live in low-income communities.
Wahlberg, Nanna; Madsen, Anders Ø; Mikkelsen, Kurt V
2018-06-09
We have investigated the mechanism of the nucleation of acetaminophen on poly(methyl-methacrylate) and poly(vinyl-acetate) utilizing a combination of quantum mechanical computations and electrostatic models. We have used a heterogeneous dielectric solvation model to determine the stability of different orientations of acetaminophen on polymer surfaces. We find that for the nucleation of acetaminophen on the polymer surfaces in vacuum, the most stable orientation is a flat orientation. For the nucleation process in solution where acetaminophen and the polymer surface are surrounded by a solvent, we find that the heterogeneous dielectric solvation model predicts that a sideways orientation is the most stable orientation.
Center for Science and Technology Policy Research
Expect Surprise: Hurricanes Harvey, Irma, Maria, and Beyond Ten Essentials for Action-Oriented and Second Goldstein Bruce Goldstein Ten Essentials for Action-Oriented and Second Order Energy Transitions
High-Performance Java Codes for Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Riley, Christopher; Chatterjee, Siddhartha; Biswas, Rupak; Biegel, Bryan (Technical Monitor)
2001-01-01
The computational science community is reluctant to write large-scale computationally -intensive applications in Java due to concerns over Java's poor performance, despite the claimed software engineering advantages of its object-oriented features. Naive Java implementations of numerical algorithms can perform poorly compared to corresponding Fortran or C implementations. To achieve high performance, Java applications must be designed with good performance as a primary goal. This paper presents the object-oriented design and implementation of two real-world applications from the field of Computational Fluid Dynamics (CFD): a finite-volume fluid flow solver (LAURA, from NASA Langley Research Center), and an unstructured mesh adaptation algorithm (2D_TAG, from NASA Ames Research Center). This work builds on our previous experience with the design of high-performance numerical libraries in Java. We examine the performance of the applications using the currently available Java infrastructure and show that the Java version of the flow solver LAURA performs almost within a factor of 2 of the original procedural version. Our Java version of the mesh adaptation algorithm 2D_TAG performs within a factor of 1.5 of its original procedural version on certain platforms. Our results demonstrate that object-oriented software design principles are not necessarily inimical to high performance.
In silico FRET from simulated dye dynamics
NASA Astrophysics Data System (ADS)
Hoefling, Martin; Grubmüller, Helmut
2013-03-01
Single molecule fluorescence resonance energy transfer (smFRET) experiments probe molecular distances on the nanometer scale. In such experiments, distances are recorded from FRET transfer efficiencies via the Förster formula, E=1/(1+(). The energy transfer however also depends on the mutual orientation of the two dyes used as distance reporter. Since this information is typically inaccessible in FRET experiments, one has to rely on approximations, which reduce the accuracy of these distance measurements. A common approximation is an isotropic and uncorrelated dye orientation distribution. To assess the impact of such approximations, we present the algorithms and implementation of a computational toolkit for the simulation of smFRET on the basis of molecular dynamics (MD) trajectory ensembles. In this study, the dye orientation dynamics, which are used to determine dynamic FRET efficiencies, are extracted from MD simulations. In a subsequent step, photons and bursts are generated using a Monte Carlo algorithm. The application of the developed toolkit on a poly-proline system demonstrated good agreement between smFRET simulations and experimental results and therefore confirms our computational method. Furthermore, it enabled the identification of the structural basis of measured heterogeneity. The presented computational toolkit is written in Python, available as open-source, applicable to arbitrary systems and can easily be extended and adapted to further problems. Catalogue identifier: AENV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPLv3, the bundled SIMD friendly Mersenne twister implementation [1] is provided under the SFMT-License. No. of lines in distributed program, including test data, etc.: 317880 No. of bytes in distributed program, including test data, etc.: 54774217 Distribution format: tar.gz Programming language: Python, Cython, C (ANSI C99). Computer: Any (see memory requirements). Operating system: Any OS with CPython distribution (e.g. Linux, MacOSX, Windows). Has the code been vectorised or parallelized?: Yes, in Ref. [2], 4 CPU cores were used. RAM: About 700MB per process for the simulation setup in Ref. [2]. Classification: 16.1, 16.7, 23. External routines: Calculation of Rκ2-trajectories from GROMACS [3] MD trajectories requires the GromPy Python module described in Ref. [4] or a GROMACS 4.6 installation. The md2fret program uses a standard Python interpreter (CPython) v2.6+ and < v3.0 as well as the NumPy module. The analysis examples require the Matplotlib Python module. Nature of problem: Simulation and interpretation of single molecule FRET experiments. Solution method: Combination of force-field based molecular dynamics (MD) simulating the dye dynamics and Monte Carlo sampling to obtain photon statistics of FRET kinetics. Additional comments: !!!!! The distribution file for this program is over 50 Mbytes and therefore is not delivered directly when download or Email is requested. Instead a html file giving details of how the program can be obtained is sent. !!!!! Running time: A single run in Ref. [2] takes about 10 min on a Quad Core Intel Xeon CPU W3520 2.67GHz with 6GB physical RAM References: [1] M. Saito, M. Matsumoto, SIMD-oriented fast Mersenne twister: a 128-bit pseudorandom number generator, in: A. Keller, S. Heinrich, H. Niederreiter (Eds.), Monte Carlo and Quasi-Monte Carlo Methods 2006, Springer; Berlin, Heidelberg, 2008, pp. 607-622. [2] M. Hoefling, N. Lima, D. Hänni, B. Schuler, C. A. M. Seidel, H. Grubmüller, Structural heterogeneity and quantitative FRET efficiency distributions of polyprolines through a hybrid atomistic simulation and Monte Carlo approach, PLoS ONE 6 (5) (2011) e19791. [3] D. V. D. Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, H. J. C. Berendsen, GROMACS: fast, flexible, and free., J Comput Chem 26 (16) (2005) 1701-1718. [4] R. Pool, A. Feenstra, M. Hoefling, R. Schulz, J. C. Smith, J. Heringa, Enabling grand-canonical Monte Carlo: Extending the flexibility of gromacs through the GromPy Python interface module, Journal of Chemical Theory and Computation 33 (12) (2012) 1207-1214.
NASA Astrophysics Data System (ADS)
Mello, K. E.; Murarka, S. P.; Lu, T.-M.; Lee, S. L.
1997-06-01
Reflection x-ray pole figure analysis techniques were used to study the heteroepitaxial relationships of the cobalt germanide CoGe2 to GaAs(100). The alloy films were grown using the partially ionized beam deposition technique, in which low energy Ge+ ions are employed to alter the heteroepitaxial orientation of the CoGe2 deposits. The CoGe2[001](100)∥GaAs[100](001) orientation, which has the smallest lattice mismatch, was found to occur for depositions performed at a substrate temperature around 280 °C and with ˜1200 eV Ge+ ions. Lowering the substrate temperature or reducing the Ge+ ion energy leads to CoGe2(100) orientation domination with CoGe2[100](010)∥GaAs[100](001) and CoGe2[100](001)∥GaAs[100](001). Substrate temperature alone was seen to produce only the CoGe2(100) orientation. For CoGe2(001) films, additional energy was required from Ge+ ions in the evaporant stream.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stein, Joshua; Burnham, Laurie; Lave, Matthew Samuel
A 9.6 kW test array of Prism bifacial modules and reference monofacial modules installed in February 2016 at the New Mexico Regional Test Center has produced one year of performance data. The data reveal that the Prism modules are out-performing the monofacial modules, with bifacial gains in energy over the twelve-month period ranging from 17% to 132%, depending on the orientation and ground albedo. These measured bifacial gains were found to be in good agreement with modeled bifacial gains using equations previously published by Prism Solar. The most dramatic increase in performance was seen among the vertically mounted, west-facing modules,more » where the bifacial modules produced more than double the energy of monofacial modules in the same orientation. Because peak energy generation (mid- morning and mid-afternoon) for these bifacial modules may best match load on the electric grid, the west-facing orientation may be more economically desirable than traditional south-facing module orientations (which peak at solar noon).« less
COINGRAD; Control Oriented Interactive Graphical Analysis and Design.
ERIC Educational Resources Information Center
Volz, Richard A.; And Others
The computer is currently a vital tool in engineering analysis and design. With the introduction of moderately priced graphics terminals, it will become even more important in the future as rapid graphic interaction between the engineer and the computer becomes more feasible in computer-aided design (CAD). To provide a vehicle for introducing…
A Computer Course for Business Students: Teacher's Guide.
ERIC Educational Resources Information Center
Waterhouse, Ann
This teacher's guide is for a course designed to teach business students the fundamentals of the BASIC language and computer programming using a series of business-oriented programs. Each lesson contains an introduction, flow charts, and computer programs. The six lesson topics are print-out and format control, count-average, withholding tax…
ERIC Educational Resources Information Center
Benda, Klara; Bruckman, Amy; Guzdial, Mark
2012-01-01
We present the results of an interview study investigating student experiences in two online introductory computer science courses. Our theoretical approach is situated at the intersection of two research traditions: "distance and adult education research," which tends to be sociologically oriented, and "computer science education…
Making Informed Decisions: Management Issues Influencing Computers in the Classroom.
ERIC Educational Resources Information Center
Strickland, James
A number of noninstructional factors appear to determine the extent to which computers make a difference in writing instruction. Once computers have been purchased and installed, it is generally school administrators who make management decisions, often from an uninformed pedagogical orientation. Issues such as what hardware and software to buy,…
Computer Gaming at Every Age: A Comparative Evaluation of Alice
ERIC Educational Resources Information Center
Seals, Cheryl D.; McMillian, Yolanda; Rouse, Kenneth; Agarwal, Ravikant; Johnson, Andrea Williams; Gilbert, Juan E.; Chapman, Richard
2008-01-01
This research has two thrusts of teaching object oriented programming to very young audiences and of increasing student excitement about computing applications with the long-term goal of increasing involvement in technology classes, in the use of computer applications and interest in technology careers. The goal of this work was to provide…
Teaching Design Patterns through Computer Game Development
ERIC Educational Resources Information Center
Gestwicki, Paul; Sun, Fu-Shing
2008-01-01
We present an approach for teaching design patterns that emphasizes object-orientation and patterns integration. The context of computer game development is used to engage and motivate students, and it is additionally rich with design patterns. A case study is presented based on "EEClone," an arcade-style computer game implemented in Java. Our…
Manual for Museum Computer Network GRIPHOS Application.
ERIC Educational Resources Information Center
Vance, David
This is the second in a series of manuals prepared by the Museum Computer Network explaining the use of General Retrieval and Information Processor for Humanities Oriented Studies (GRIPHOS). The user with little or no background in electronic data processing is introduced to the use of the various computer programs of the GRIPHOS system and the…
Creating Printed Materials for Mathematics with a Macintosh Computer.
ERIC Educational Resources Information Center
Mahler, Philip
This document gives instructions on how to use a Macintosh computer to create printed materials for mathematics. A Macintosh computer, Microsoft Word, and objected-oriented (Draw-type) art program, and a function-graphing program are capable of producing high quality printed instructional materials for mathematics. Word 5.1 has an equation editor…
Making Water Pollution a Problem in the Classroom Through Computer Assisted Instruction.
ERIC Educational Resources Information Center
Flowers, John D.
Alternative means for dealing with water pollution control are presented for students and teachers. One computer oriented program is described in terms of teaching wastewater treatment and pollution concepts to middle and secondary school students. Suggestions are given to help teachers use a computer simulation program in their classrooms.…
Teaching computer interfacing with virtual instruments in an object-oriented language.
Gulotta, M
1995-01-01
LabVIEW is a graphic object-oriented computer language developed to facilitate hardware/software communication. LabVIEW is a complete computer language that can be used like Basic, FORTRAN, or C. In LabVIEW one creates virtual instruments that aesthetically look like real instruments but are controlled by sophisticated computer programs. There are several levels of data acquisition VIs that make it easy to control data flow, and many signal processing and analysis algorithms come with the software as premade VIs. In the classroom, the similarity between virtual and real instruments helps students understand how information is passed between the computer and attached instruments. The software may be used in the absence of hardware so that students can work at home as well as in the classroom. This article demonstrates how LabVIEW can be used to control data flow between computers and instruments, points out important features for signal processing and analysis, and shows how virtual instruments may be used in place of physical instrumentation. Applications of LabVIEW to the teaching laboratory are also discussed, and a plausible course outline is given. PMID:8580361
Teaching computer interfacing with virtual instruments in an object-oriented language.
Gulotta, M
1995-11-01
LabVIEW is a graphic object-oriented computer language developed to facilitate hardware/software communication. LabVIEW is a complete computer language that can be used like Basic, FORTRAN, or C. In LabVIEW one creates virtual instruments that aesthetically look like real instruments but are controlled by sophisticated computer programs. There are several levels of data acquisition VIs that make it easy to control data flow, and many signal processing and analysis algorithms come with the software as premade VIs. In the classroom, the similarity between virtual and real instruments helps students understand how information is passed between the computer and attached instruments. The software may be used in the absence of hardware so that students can work at home as well as in the classroom. This article demonstrates how LabVIEW can be used to control data flow between computers and instruments, points out important features for signal processing and analysis, and shows how virtual instruments may be used in place of physical instrumentation. Applications of LabVIEW to the teaching laboratory are also discussed, and a plausible course outline is given.
Conductivity of Nanowire Arrays under Random and Ordered Orientation Configurations
Jagota, Milind; Tansu, Nelson
2015-01-01
A computational model was developed to analyze electrical conductivity of random metal nanowire networks. It was demonstrated for the first time through use of this model that a performance gain in random metal nanowire networks can be achieved by slightly restricting nanowire orientation. It was furthermore shown that heavily ordered configurations do not outperform configurations with some degree of randomness; randomness in the case of metal nanowire orientations acts to increase conductivity. PMID:25976936
A cascaded two-step Kalman filter for estimation of human body segment orientation using MEMS-IMU.
Zihajehzadeh, S; Loh, D; Lee, M; Hoskinson, R; Park, E J
2014-01-01
Orientation of human body segments is an important quantity in many biomechanical analyses. To get robust and drift-free 3-D orientation, raw data from miniature body worn MEMS-based inertial measurement units (IMU) should be blended in a Kalman filter. Aiming at less computational cost, this work presents a novel cascaded two-step Kalman filter orientation estimation algorithm. Tilt angles are estimated in the first step of the proposed cascaded Kalman filter. The estimated tilt angles are passed to the second step of the filter for yaw angle calculation. The orientation results are benchmarked against the ones from a highly accurate tactical grade IMU. Experimental results reveal that the proposed algorithm provides robust orientation estimation in both kinematically and magnetically disturbed conditions.
Sulphur hexaflouride: low energy (e,2e) experiments and molecular three-body distorted wave theory
NASA Astrophysics Data System (ADS)
Nixon, Kate L.; Murray, Andrew J.; Chaluvadi, H.; Ning, C. G.; Colgan, James; Madison, Don H.
2016-10-01
Experimental and theoretical triple differential ionisation cross-sections (TDCSs) are presented for the highest occupied molecular orbital of sulphur hexafluoride. These measurements were performed in the low energy regime, with outgoing electron energies ranging from 5 to 40 eV in a coplanar geometry, and with energies of 10 and 20 eV in a perpendicular geometry. Complementary theoretical predictions of the TDCS were calculated using the molecular three-body distorted wave formalism. Calculations were performed using a proper average over molecular orientations as well as the orientation-averaged molecular orbital approximation. This more sophisticated model was found to be in closer agreement with the experimental data, however neither model accurately predicts the TDCS over all geometries and energies.
Computer-oriented emissions inventory procedure for urban and industrial sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Runca, E.; Zannetti, P.; Melli, P.
1978-06-01
A knowledge of the rate of emission of atmospheric pollutants is essential for the enforcement of air quality control policies. A computer-oriented emission inventory procedure has been developed and applied to Venice, Italy. By using optically readable forms this procedure avoids many of the errors inherent in the transcription and punching steps typical of approaches applied so far. Moreover, this procedure allows an easy updating of the inventory. Emission patterns of SO/sub 2/ in the area of Venice showed that the total urban emissions were about 6% of those emitted by industrial sources.
Müller, Anne D; Artemyev, Anton N; Demekhin, Philipp V
2018-06-07
Angle-resolved multiphoton ionization of fenchone and camphor by short intense laser pulses is computed by the time-dependent single center method. Thereby, the photoelectron circular dichroism (PECD) in the three-photon resonance enhanced ionization and four-photon above-threshold ionization of these molecules is investigated in detail. The computational results are in satisfactory agreement with the available experimental data, measured for randomly oriented fenchone and camphor molecules at different wavelengths of the exciting pulses. We predict a significant enhancement of the multiphoton PECD for uniaxially oriented fenchone and camphor.
NASA Astrophysics Data System (ADS)
Müller, Anne D.; Artemyev, Anton N.; Demekhin, Philipp V.
2018-06-01
Angle-resolved multiphoton ionization of fenchone and camphor by short intense laser pulses is computed by the time-dependent single center method. Thereby, the photoelectron circular dichroism (PECD) in the three-photon resonance enhanced ionization and four-photon above-threshold ionization of these molecules is investigated in detail. The computational results are in satisfactory agreement with the available experimental data, measured for randomly oriented fenchone and camphor molecules at different wavelengths of the exciting pulses. We predict a significant enhancement of the multiphoton PECD for uniaxially oriented fenchone and camphor.