NASA Technical Reports Server (NTRS)
Horn, W. J.; Carlson, L. A.
1983-01-01
A FORTRAN computer program called THERMTRAJ is presented which can be used to compute the trajectory of high altitude scientific zero pressure balloons from launch through all subsequent phases of the balloon flight. In addition, balloon gas and film temperatures can be computed at every point of the flight. The program has the ability to account for ballasting, changes in cloud cover, variable atmospheric temperature profiles, and both unconditional valving and scheduled valving of the balloon gas. The program was verified for an extensive range of balloon sizes (from 0.5 to 41.47 million cubic feet). Instructions on program usage, listing of the program source deck, input data and printed and plotted output for a verification case are included.
NASA Technical Reports Server (NTRS)
Lee, A. Y.
1967-01-01
Computer program calculates the steady state fluid distribution, temperature rise, and pressure drop of a coolant, the material temperature distribution of a heat generating solid, and the heat flux distributions at the fluid-solid interfaces. It performs the necessary iterations automatically within the computer, in one machine run.
SSME structural computer program development. Volume 2: BOPACE users manual
NASA Technical Reports Server (NTRS)
Vos, R. G.
1973-01-01
A computer program for use with a thermal-elastic-plastic-creep structural analyzer is presented. The following functions of the computer program are discussed: (1) analysis of very high temperature and large plastic-creep effects, (2) treatment of cyclic thermal and mechanical loads, (3) development of constitutive theory which closely follows actual behavior under variable temperature conditions, (4) stable numerical solution approach which avoids cumulative errors, and (5) capability of handling up to 1000 degrees of freedom. The computer program is written in FORTRAN IV and has been run on the IBM 360 and UNIVAC 1108 computer systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swindeman, M. J.; Jetter, R. I.; Sham, T. -L.
One of the objectives of the high temperature design methodology activities is to develop and validate both improvements and the basic features of ASME Boiler and Pressure Vessel Code, Section III, Rules for Construction of Nuclear Facility Components, Division 5, High Temperature Reactors, Subsection HB, Subpart B (HBB). The overall scope of this task is to develop a computer program to aid assessment procedures of components under specified loading conditions in accordance with the elevated temperature design requirements for Division 5 Class A components. There are many features and alternative paths of varying complexity in HBB. The initial focus ofmore » this computer program is a basic path through the various options for a single reference material, 316H stainless steel. However, the computer program is being structured for eventual incorporation all of the features and permitted materials of HBB. This report will first provide a description of the overall computer program, particular challenges in developing numerical procedures for the assessment, and an overall approach to computer program development. This is followed by a more comprehensive appendix, which is the draft computer program manual for the program development. The strain limits rules have been implemented in the computer program. The evaluation of creep-fatigue damage will be implemented in future work scope.« less
SPECIFIC HEAT DATA ANALYSIS PROGRAM FOR THE IBM 704 DIGITAL COMPUTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roach, P.R.
1962-01-01
A computer program was developed to calculate the specific heat of a substance in the temperature range from 0.3 to 4.2 deg K, given temperature calibration data for a carbon resistance thermometer, experimental temperature drift, and heating period data. The speciftc heats calculated from these data are then fitted by a curve by the methods of least squares and the specific heats are corrected for the effect of the curvature of the data. The method, operation, program details, and program stops are discussed. A program listing is included. (M.C.G.)
NASA Technical Reports Server (NTRS)
Buchele, D. R.
1977-01-01
A computer program to calculate the temperature profile of a flame or hot gas was presented in detail. Emphasis was on profiles found in jet engine or rocket engine exhaust streams containing H2O or CO2 radiating gases. The temperature profile was assumed axisymmetric with an assumed functional form controlled by two variable parameters. The parameters were calculated using measurements of gas radiation at two wavelengths in the infrared. The program also gave some information on the pressure profile. A method of selection of wavelengths was given that is likely to lead to an accurate determination of the parameters. The program is written in FORTRAN IV language and runs in less than 60 seconds on a Univac 1100 computer.
NASA Technical Reports Server (NTRS)
Hosny, W. M.; Tabakoff, W.
1975-01-01
A two-dimensional finite difference numerical technique is presented to determine the temperature distribution in a solid blade of a radial guide vane. A computer program is written in Fortran IV for IBM 370/165 computer. The computer results obtained from these programs have a similar behavior and trend as those obtained by experimental results.
NASA Technical Reports Server (NTRS)
Head, D. E.; Mitchell, K. L.
1967-01-01
Program computes the thermal environment of a spacecraft in a lunar orbit. The quantities determined include the incident flux /solar and lunar emitted radiation/, total radiation absorbed by a surface, and the resulting surface temperature as a function of time and orbital position.
Segregation effects during solidification in weightless melts
NASA Technical Reports Server (NTRS)
Li, C.; Gershinsky, M.
1974-01-01
The generalized problem of determining the temperature and solute concentration profiles during directional solidification of binary alloys with surface evaporation was mathematically formulated. Realistic initial and boundary conditions were defined, and a computer program was developed and checked out. The programs computes the positions of two moving boundaries, evaporation and solidification, and their velocities. Temperature and solute concentration profiles in the semiinfinite material body at selected instances of time are also computed.
NASA Technical Reports Server (NTRS)
Stocks, Dana R.
1986-01-01
The Dynamic Gas Temperature Measurement System compensation software accepts digitized data from two different diameter thermocouples and computes a compensated frequency response spectrum for one of the thermocouples. Detailed discussions of the physical system, analytical model, and computer software are presented in this volume and in Volume 1 of this report under Task 3. Computer program software restrictions and test cases are also presented. Compensated and uncompensated data may be presented in either the time or frequency domain. Time domain data are presented as instantaneous temperature vs time. Frequency domain data may be presented in several forms such as power spectral density vs frequency.
Computer-Generated Phase Diagrams for Binary Mixtures.
ERIC Educational Resources Information Center
Jolls, Kenneth R.; And Others
1983-01-01
Computer programs that generate projections of thermodynamic phase surfaces through computer graphics were used to produce diagrams representing properties of water and steam and the pressure-volume-temperature behavior of most of the common equations of state. The program, program options emphasizing thermodynamic features of interest, and…
Three-dimensional vector modeling and restoration of flat finite wave tank radiometric measurements
NASA Technical Reports Server (NTRS)
Truman, W. M.; Balanis, C. A.
1977-01-01
The three-dimensional vector interaction between a microwave radiometer and a wave tank was modeled. Computer programs for predicting the response of the radiometer to the brightness temperature characteristics of the surroundings were developed along with a computer program that can invert (restore) the radiometer measurements. It is shown that the computer programs can be used to simulate the viewing of large bodies of water, and is applicable to radiometer measurements received from satellites monitoring the ocean. The water temperature, salinity, and wind speed can be determined.
Evaluation of thermal network correction program using test temperature data
NASA Technical Reports Server (NTRS)
Ishimoto, T.; Fink, L. C.
1972-01-01
An evaluation process to determine the accuracy of a computer program for thermal network correction is discussed. The evaluation is required since factors such as inaccuracies of temperatures, insufficient number of temperature points over a specified time period, lack of one-to-one correlation between temperature sensor and nodal locations, and incomplete temperature measurements are not present in the computer-generated information. The mathematical models used in the evaluation are those that describe a physical system composed of both a conventional and a heat pipe platform. A description of the models used, the results of the evaluation of the thermal network correction, and input instructions for the thermal network correction program are presented.
Computer program for afterheat temperature distribution for mobile nuclear power plant
NASA Technical Reports Server (NTRS)
Parker, W. G.; Vanbibber, L. E.
1972-01-01
ESATA computer program was developed to analyze thermal safety aspects of post-impacted mobile nuclear power plants. Program is written in FORTRAN 4 and designed for IBM 7094/7044 direct coupled system.
Program Processes Thermocouple Readings
NASA Technical Reports Server (NTRS)
Quave, Christine A.; Nail, William, III
1995-01-01
Digital Signal Processor for Thermocouples (DART) computer program implements precise and fast method of converting voltage to temperature for large-temperature-range thermocouple applications. Written using LabVIEW software. DART available only as object code for use on Macintosh II FX or higher-series computers running System 7.0 or later and IBM PC-series and compatible computers running Microsoft Windows 3.1. Macintosh version of DART (SSC-00032) requires LabVIEW 2.2.1 or 3.0 for execution. IBM PC version (SSC-00031) requires LabVIEW 3.0 for Windows 3.1. LabVIEW software product of National Instruments and not included with program.
The revised solar array synthesis computer program
NASA Technical Reports Server (NTRS)
1970-01-01
The Revised Solar Array Synthesis Computer Program is described. It is a general-purpose program which computes solar array output characteristics while accounting for the effects of temperature, incidence angle, charged-particle irradiation, and other degradation effects on various solar array configurations in either circular or elliptical orbits. Array configurations may consist of up to 75 solar cell panels arranged in any series-parallel combination not exceeding three series-connected panels in a parallel string and no more than 25 parallel strings in an array. Up to 100 separate solar array current-voltage characteristics, corresponding to 100 equal-time increments during the sunlight illuminated portion of an orbit or any 100 user-specified combinations of incidence angle and temperature, can be computed and printed out during one complete computer execution. Individual panel incidence angles may be computed and printed out at the user's option.
Computer program to simulate Raman scattering
NASA Technical Reports Server (NTRS)
Zilles, B.; Carter, R.
1977-01-01
A computer program is described for simulating the vibration-rotation and pure rotational spectrum of a combustion system consisting of various diatomic molecules and CO2 as a function of temperature and number density. Two kinds of spectra are generated: a pure rotational spectrum for any mixture of diatomic and linear triatomic molecules, and a vibrational spectrum for diatomic molecules. The program is designed to accept independent rotational and vibrational temperatures for each molecule, as well as number densities.
The application of a computer data acquisition system to a new high temperature tribometer
NASA Technical Reports Server (NTRS)
Bonham, Charles D.; Dellacorte, Christopher
1991-01-01
The two data acquisition computer programs are described which were developed for a high temperature friction and wear test apparatus, a tribometer. The raw data produced by the tribometer and the methods used to sample that data are explained. In addition, the instrumentation and computer hardware and software are presented. Also shown is how computer data acquisition was applied to increase convenience and productivity on a high temperature tribometer.
The application of a computer data acquisition system for a new high temperature tribometer
NASA Technical Reports Server (NTRS)
Bonham, Charles D.; Dellacorte, Christopher
1990-01-01
The two data acquisition computer programs are described which were developed for a high temperature friction and wear test apparatus, a tribometer. The raw data produced by the tribometer and the methods used to sample that data are explained. In addition, the instrumentation and computer hardware and software are presented. Also shown is how computer data acquisition was applied to increase convenience and productivity on a high temperature tribometer.
NASA Technical Reports Server (NTRS)
Masters, P. A.
1974-01-01
An analysis to predict the pressurant gas requirements for the discharge of cryogenic liquid propellants from storage tanks is presented, along with an algorithm and two computer programs. One program deals with the pressurization (ramp) phase of bringing the propellant tank up to its operating pressure. The method of analysis involves a numerical solution of the temperature and velocity functions for the tank ullage at a discrete set of points in time and space. The input requirements of the program are the initial ullage conditions, the initial temperature and pressure of the pressurant gas, and the time for the expulsion or the ramp. Computations are performed which determine the heat transfer between the ullage gas and the tank wall. Heat transfer to the liquid interface and to the hardware components may be included in the analysis. The program output includes predictions of mass of pressurant required, total energy transfer, and wall and ullage temperatures. The analysis, the algorithm, a complete description of input and output, and the FORTRAN 4 program listings are presented. Sample cases are included to illustrate use of the programs.
Computer program determines gas flow rates in piping systems
NASA Technical Reports Server (NTRS)
Franke, R.
1966-01-01
Computer program calculates the steady state flow characteristics of an ideal compressible gas in a complex piping system. The program calculates the stagnation and total temperature, static and total pressure, loss factor, and forces on each element in the piping system.
GEO3D - Three-Dimensional Computer Model of a Ground Source Heat Pump System
James Menart
2013-06-07
This file is the setup file for the computer program GEO3D. GEO3D is a computer program written by Jim Menart to simulate vertical wells in conjunction with a heat pump for ground source heat pump (GSHP) systems. This is a very detailed three-dimensional computer model. This program produces detailed heat transfer and temperature field information for a vertical GSHP system.
Computer programs for thermodynamic and transport properties of hydrogen (tabcode-II)
NASA Technical Reports Server (NTRS)
Roder, H. M.; Mccarty, R. D.; Hall, W. J.
1972-01-01
The thermodynamic and transport properties of para and equilibrium hydrogen have been programmed into a series of computer routines. Input variables are the pair's pressure-temperature and pressure-enthalpy. The programs cover the range from 1 to 5000 psia with temperatures from the triple point to 6000 R or enthalpies from minus 130 BTU/lb to 25,000 BTU/lb. Output variables are enthalpy or temperature, density, entropy, thermal conductivity, viscosity, at constant volume, the heat capacity ratio, and a heat transfer parameter. Property values on the liquid and vapor boundaries are conveniently obtained through two small routines. The programs achieve high speed by using linear interpolation in a grid of precomputed points which define the surface of the property returned.
Computer Programs for Calculating the Isentropic Flow Properties for Mixtures of R-134a and Air
NASA Technical Reports Server (NTRS)
Kvaternik, Raymond G.
2000-01-01
Three computer programs for calculating the isentropic flow properties of R-134a/air mixtures which were developed in support of the heavy gas conversion of the Langley Transonic Dynamics Tunnel (TDT) from dichlorodifluoromethane (R-12) to 1,1,1,2 tetrafluoroethane (R-134a) are described. The first program calculates the Mach number and the corresponding flow properties when the total temperature, total pressure, static pressure, and mole fraction of R-134a in the mixture are given. The second program calculates tables of isentropic flow properties for a specified set of free-stream Mach numbers given the total pressure, total temperature, and mole fraction of R-134a. Real-gas effects are accounted for in these programs by treating the gases comprising the mixture as both thermally and calorically imperfect. The third program is a specialized version of the first program in which the gases are thermally perfect. It was written to provide a simpler computational alternative to the first program in those cases where real-gas effects are not important. The theory and computational procedures underlying the programs are summarized, the equations used to compute the flow quantities of interest are given, and sample calculated results that encompass the operating conditions of the TDT are shown.
Program For Analysis Of Metal-Matrix Composites
NASA Technical Reports Server (NTRS)
Murthy, P. L. N.; Mital, S. K.
1994-01-01
METCAN (METal matrix Composite ANalyzer) is computer program used to simulate computationally nonlinear behavior of high-temperature metal-matrix composite structural components in specific applications, providing comprehensive analyses of thermal and mechanical performances. Written in FORTRAN 77.
Computer program documentation: CYBER to Univac binary conversion user's guide
NASA Technical Reports Server (NTRS)
Martin, E. W.
1980-01-01
A user's guide for a computer program which will convert SINDA temperature history data from CDC (Cyber) binary format to UNIVAC 1100 binary format is presented. The various options available, the required input, the optional output, file assignments, and the restrictions of the program are discussed.
NASA Technical Reports Server (NTRS)
Jaffe, L. D.
1984-01-01
The CONC/11 computer program designed for calculating the performance of dish-type solar thermal collectors and power systems is discussed. This program is intended to aid the system or collector designer in evaluating the performance to be expected with possible design alternatives. From design or test data on the characteristics of the various subsystems, CONC/11 calculates the efficiencies of the collector and the overall power system as functions of the receiver temperature for a specified insolation. If desired, CONC/11 will also determine the receiver aperture and the receiver temperature that will provide the highest efficiencies at a given insolation. The program handles both simple and compound concentrators. The CONC/11 is written in Athena Extended FORTRAN (similar to FORTRAN 77) to operate primarily in an interactive mode on a Sperry 1100/81 computer. It could also be used on many small computers. A user's manual is also provided for this program.
NASA Technical Reports Server (NTRS)
Majumdar, Alok; Leclair, Andre; Moore, Ric; Schallhorn, Paul
2011-01-01
GFSSP stands for Generalized Fluid System Simulation Program. It is a general-purpose computer program to compute pressure, temperature and flow distribution in a flow network. GFSSP calculates pressure, temperature, and concentrations at nodes and calculates flow rates through branches. It was primarily developed to analyze Internal Flow Analysis of a Turbopump Transient Flow Analysis of a Propulsion System. GFSSP development started in 1994 with an objective to provide a generalized and easy to use flow analysis tool for thermo-fluid systems.
NASA Technical Reports Server (NTRS)
Hippensteele, S. A.; Colladay, R. S.
1978-01-01
A computer program for determining desired thermodynamic and transport property values by means of a three-dimensional (pressure, fuel-air ratio, and either enthalpy or temperature) interpolation routine was developed. The program calculates temperature (or enthalpy), molecular weight, viscosity, specific heat at constant pressure, thermal conductivity, isentropic exponent (equal to the specific heat ratio at conditions where gases do not react), Prandtl number, and entropy for air and a combustion gas mixture of ASTM-A-1 fuel and air over fuel-air ratios from zero to stoichiometric, pressures from 1 to 40 atm, and temperatures from 250 to 2800 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spycher, Nicolas; Peiffer, Loic; Finsterle, Stefan
GeoT implements the multicomponent geothermometry method developed by Reed and Spycher (1984, Geochim. Cosmichim. Acta 46 513–528) into a stand-alone computer program, to ease the application of this method and to improve the prediction of geothermal reservoir temperatures using full and integrated chemical analyses of geothermal fluids. Reservoir temperatures are estimated from statistical analyses of mineral saturation indices computed as a function of temperature. The reconstruction of the deep geothermal fluid compositions, and geothermometry computations, are all implemented into the same computer program, allowing unknown or poorly constrained input parameters to be estimated by numerical optimization using existing parameter estimationmore » software, such as iTOUGH2, PEST, or UCODE. This integrated geothermometry approach presents advantages over classical geothermometers for fluids that have not fully equilibrated with reservoir minerals and/or that have been subject to processes such as dilution and gas loss.« less
Computer program for pulsed thermocouples with corrections for radiation effects
NASA Technical Reports Server (NTRS)
Will, H. A.
1981-01-01
A pulsed thermocouple was used for measuring gas temperatures above the melting point of common thermocouples. This was done by allowing the thermocouple to heat until it approaches its melting point and then turning on the protective cooling gas. This method required a computer to extrapolate the thermocouple data to the higher gas temperatures. A method that includes the effect of radiation in the extrapolation is described. Computations of gas temperature are provided, along with the estimate of the final thermocouple wire temperature. Results from tests on high temperature combustor research rigs are presented.
High temperature composite analyzer (HITCAN) user's manual, version 1.0
NASA Technical Reports Server (NTRS)
Lackney, J. J.; Singhal, S. N.; Murthy, P. L. N.; Gotsis, P.
1993-01-01
This manual describes 'how-to-use' the computer code, HITCAN (HIgh Temperature Composite ANalyzer). HITCAN is a general purpose computer program for predicting nonlinear global structural and local stress-strain response of arbitrarily oriented, multilayered high temperature metal matrix composite structures. This code combines composite mechanics and laminate theory with an internal data base for material properties of the constituents (matrix, fiber and interphase). The thermo-mechanical properties of the constituents are considered to be nonlinearly dependent on several parameters including temperature, stress and stress rate. The computation procedure for the analysis of the composite structures uses the finite element method. HITCAN is written in FORTRAN 77 computer language and at present has been configured and executed on the NASA Lewis Research Center CRAY XMP and YMP computers. This manual describes HlTCAN's capabilities and limitations followed by input/execution/output descriptions and example problems. The input is described in detail including (1) geometry modeling, (2) types of finite elements, (3) types of analysis, (4) material data, (5) types of loading, (6) boundary conditions, (7) output control, (8) program options, and (9) data bank.
Development of a prototype automatic controller for liquid cooling garment inlet temperature
NASA Technical Reports Server (NTRS)
Weaver, C. S.; Webbon, B. W.; Montgomery, L. D.
1982-01-01
The development of a computer control of a liquid cooled garment (LCG) inlet temperature is descirbed. An adaptive model of the LCG is used to predict the heat-removal rates for various inlet temperatures. An experimental system that contains a microcomputer was constructed. The LCG inlet and outlet temperatures and the heat exchanger outlet temperature form the inputs to the computer. The adaptive model prediction method of control is successful during tests where the inlet temperature is automatically chosen by the computer. It is concluded that the program can be implemented in a microprocessor of a size that is practical for a life support back-pack.
An interactive computer code for calculation of gas-phase chemical equilibrium (EQLBRM)
NASA Technical Reports Server (NTRS)
Pratt, B. S.; Pratt, D. T.
1984-01-01
A user friendly, menu driven, interactive computer program known as EQLBRM which calculates the adiabatic equilibrium temperature and product composition resulting from the combustion of hydrocarbon fuels with air, at specified constant pressure and enthalpy is discussed. The program is developed primarily as an instructional tool to be run on small computers to allow the user to economically and efficiency explore the effects of varying fuel type, air/fuel ratio, inlet air and/or fuel temperature, and operating pressure on the performance of continuous combustion devices such as gas turbine combustors, Stirling engine burners, and power generation furnaces.
NASA Technical Reports Server (NTRS)
Gupta, S. K.; Tiwari, S. N.
1976-01-01
A simple procedure and computer program were developed for retrieving the surface temperature from the measurement of upwelling infrared radiance in a single spectral region in the atmosphere. The program evaluates the total upwelling radiance at any altitude in the region of the CO fundamental band (2070-2220 1/cm) for several values of surface temperature. Actual surface temperature is inferred by interpolation of the measured upwelling radiance between the computed values of radiance for the same altitude. Sensitivity calculations were made to determine the effect of uncertainty in various surface, atmospheric and experimental parameters on the inferred value of surface temperature. It is found that the uncertainties in water vapor concentration and surface emittance are the most important factors affecting the accuracy of the inferred value of surface temperature.
Program For Joule-Thomson Analysis Of Mixed Cryogens
NASA Technical Reports Server (NTRS)
Jones, Jack A.; Lund, Alan
1994-01-01
JTMIX computer program predicts ideal and realistic properties of mixed gases at temperatures between 65 and 80 K. Performs Joule-Thomson analysis of any gaseous mixture of neon, nitrogen, various hydrocarbons, argon, oxygen, carbon monoxide, carbon dioxide, and hydrogen sulfide. When used in conjunction with DDMIX computer program of National Institute of Standards and Technology (NIST), JTMIX accurately predicts order-of-magnitude increases in Joule-Thomson cooling capacities occuring when various hydrocarbons added to nitrogen. Also predicts boiling temperature of nitrogen depressed from normal value to as low as 60 K upon addition of neon. Written in Turbo C.
Validation of the solar heating and cooling high speed performance (HISPER) computer code
NASA Technical Reports Server (NTRS)
Wallace, D. B.
1980-01-01
Developed to give a quick and accurate predictions HISPER, a simplification of the TRNSYS program, achieves its computational speed by not simulating detailed system operations or performing detailed load computations. In order to validate the HISPER computer for air systems the simulation was compared to the actual performance of an operational test site. Solar insolation, ambient temperature, water usage rate, and water main temperatures from the data tapes for an office building in Huntsville, Alabama were used as input. The HISPER program was found to predict the heating loads and solar fraction of the loads with errors of less than ten percent. Good correlation was found on both a seasonal basis and a monthly basis. Several parameters (such as infiltration rate and the outside ambient temperature above which heating is not required) were found to require careful selection for accurate simulation.
Computer-aided roll pass design in rolling of airfoil shapes
NASA Technical Reports Server (NTRS)
Akgerman, N.; Lahoti, G. D.; Altan, T.
1980-01-01
This paper describes two computer-aided design (CAD) programs developed for modeling the shape rolling process for airfoil sections. The first program, SHPROL, uses a modular upper-bound method of analysis and predicts the lateral spread, elongation, and roll torque. The second program, ROLPAS, predicts the stresses, roll separating force, the roll torque and the details of metal flow by simulating the rolling process, using the slab method of analysis. ROLPAS is an interactive program; it offers graphic display capabilities and allows the user to interact with the computer via a keyboard, CRT, and a light pen. The accuracy of the computerized models was evaluated by (a) rolling a selected airfoil shape at room temperature from 1018 steel and isothermally at high temperature from Ti-6Al-4V, and (b) comparing the experimental results with computer predictions. The comparisons indicated that the CAD systems, described here, are useful for practical engineering purposes and can be utilized in roll pass design and analysis for airfoil and similar shapes.
High Temperature Composite Analyzer (HITCAN) demonstration manual, version 1.0
NASA Technical Reports Server (NTRS)
Singhal, S. N; Lackney, J. J.; Murthy, P. L. N.
1993-01-01
This manual comprises a variety of demonstration cases for the HITCAN (HIgh Temperature Composite ANalyzer) code. HITCAN is a general purpose computer program for predicting nonlinear global structural and local stress-strain response of arbitrarily oriented, multilayered high temperature metal matrix composite structures. HITCAN is written in FORTRAN 77 computer language and has been configured and executed on the NASA Lewis Research Center CRAY XMP and YMP computers. Detailed description of all program variables and terms used in this manual may be found in the User's Manual. The demonstration includes various cases to illustrate the features and analysis capabilities of the HITCAN computer code. These cases include: (1) static analysis, (2) nonlinear quasi-static (incremental) analysis, (3) modal analysis, (4) buckling analysis, (5) fiber degradation effects, (6) fabrication-induced stresses for a variety of structures; namely, beam, plate, ring, shell, and built-up structures. A brief discussion of each demonstration case with the associated input data file is provided. Sample results taken from the actual computer output are also included.
NASA Technical Reports Server (NTRS)
Cassenti, B. N.
1983-01-01
The results of a 10-month research and development program for nonlinear structural modeling with advanced time-temperature constitutive relationships are presented. The implementation of the theory in the MARC nonlinear finite element code is discussed, and instructions for the computational application of the theory are provided.
Single-node orbit analsyis with radiation heat transfer only
NASA Technical Reports Server (NTRS)
Peoples, J. A.
1977-01-01
The steady-state temperature of a single node which dissipates energy by radiation only is discussed for a nontime varying thermal environment. Relationships are developed to illustrate how shields can be utilized to represent a louver system. A computer program is presented which can assess periodic temperature characteristics of a single node in a time varying thermal environment having energy dissipation by radiation only. The computer program performs thermal orbital analysis for five combinations of plate, shields, and louvers.
NASA Technical Reports Server (NTRS)
Tabakoff, W.
1975-01-01
A two-dimensional finite difference numerical technique is presented to determine the temperature distribution in a solid blade of a radial turbine guide vane. A computer program is written in FORTRAN 4 for the IBM 370/165 computer. The computer results obtained from these programs have a similar behavior and trend as those obtained by experimental results.
User's Manual for Aerofcn: a FORTRAN Program to Compute Aerodynamic Parameters
NASA Technical Reports Server (NTRS)
Conley, Joseph L.
1992-01-01
The computer program AeroFcn is discussed. AeroFcn is a utility program that computes the following aerodynamic parameters: geopotential altitude, Mach number, true velocity, dynamic pressure, calibrated airspeed, equivalent airspeed, impact pressure, total pressure, total temperature, Reynolds number, speed of sound, static density, static pressure, static temperature, coefficient of dynamic viscosity, kinematic viscosity, geometric altitude, and specific energy for a standard- or a modified standard-day atmosphere using compressible flow and normal shock relations. Any two parameters that define a unique flight condition are selected, and their values are entered interactively. The remaining parameters are computed, and the solutions are stored in an output file. Multiple cases can be run, and the multiple case solutions can be stored in another output file for plotting. Parameter units, the output format, and primary constants in the atmospheric and aerodynamic equations can also be changed.
Computer program for design analysis of radial-inflow turbines
NASA Technical Reports Server (NTRS)
Glassman, A. J.
1976-01-01
A computer program written in FORTRAN that may be used for the design analysis of radial-inflow turbines was documented. The following information is included: loss model (estimation of losses), the analysis equations, a description of the input and output data, the FORTRAN program listing and list of variables, and sample cases. The input design requirements include the power, mass flow rate, inlet temperature and pressure, and rotational speed. The program output data includes various diameters, efficiencies, temperatures, pressures, velocities, and flow angles for the appropriate calculation stations. The design variables include the stator-exit angle, rotor radius ratios, and rotor-exit tangential velocity distribution. The losses are determined by an internal loss model.
NASA Technical Reports Server (NTRS)
Staffanson, F. L.
1981-01-01
The FORTRAN computer program RAWINPROC accepts output from NASA Wallops computer program METPASS1; and produces input for NASA computer program 3.0.0700 (ECC-PRD). The three parts together form a software system for the completely automatic reduction of standard RAWINSONDE sounding data. RAWINPROC pre-edits the 0.1-second data, including time-of-day, azimuth, elevation, and sonde-modulated tone frequency, condenses the data according to successive dwells of the tone frequency, decommutates the condensed data into the proper channels (temperature, relative humidity, high and low references), determines the running baroswitch contact number and computes the associated pressure altitudes, and interpolates the data appropriate for input to ACC-PRD.
NASA Technical Reports Server (NTRS)
Cassenti, B. N.
1983-01-01
The results of a 10-month research and development program for the development of advanced time-temperature constitutive relationships are presented. The program included (1) the effect of rate of change of temperature, (2) the development of a term to include time independent effects, and (3) improvements in computational efficiency. It was shown that rate of change of temperature could have a substantial effect on the predicted material response. A modification to include time-independent effects, applicable to many viscoplastic constitutive theories, was shown to reduce to classical plasticity. The computation time can be reduced by a factor of two if self-adaptive integration is used when compared to an integration using ordinary forward differences. During the course of the investigation, it was demonstrated that the most important single factor affecting the theoretical accuracy was the choice of material parameters.
Ground temperature measurement by PRT-5 for maps experiment
NASA Technical Reports Server (NTRS)
Gupta, S. K.; Tiwari, S. N.
1978-01-01
A simple algorithm and computer program were developed for determining the actual surface temperature from the effective brightness temperature as measured remotely by a radiation thermometer called PRT-5. This procedure allows the computation of atmospheric correction to the effective brightness temperature without performing detailed radiative transfer calculations. Model radiative transfer calculations were performed to compute atmospheric corrections for several values of the surface and atmospheric parameters individually and in combination. Polynomial regressions were performed between the magnitudes or deviations of these parameters and the corresponding computed corrections to establish simple analytical relations between them. Analytical relations were also developed to represent combined correction for simultaneous variation of parameters in terms of their individual corrections.
Dynamic gas temperature measurement system. Volume 2: Operation and program manual
NASA Technical Reports Server (NTRS)
Purpura, P. T.
1983-01-01
The hot section technology (HOST) dynamic gas temperature measurement system computer program acquires data from two type B thermocouples of different diameters. The analysis method determines the in situ value of an aerodynamic parameter T, containing the heat transfer coefficient from the transfer function of the two thermocouples. This aerodynamic parameter is used to compute a fequency response spectrum and compensate the dynamic portion of the signal of the smaller thermocouple. The calculations for the aerodynamic parameter and the data compensation technique are discussed. Compensated data are presented in either the time or frequency domain, time domain data as dynamic temperature vs time, or frequency domain data.
NASA Technical Reports Server (NTRS)
Kemp, N. H.; Krech, R. H.
1980-01-01
The development of computer codes for the thrust chamber of a rocket of which the propellant gas is heated by a CW laser beam was investigated. The following results are presented: (1) simplified models of laser heated thrusters for approximate parametric studies and performance mapping; (3) computer programs for thrust chamber design; and (3) shock tube experiment to measure absorption coefficients. Two thrust chamber design programs are outlined: (1) for seeded hydrogen, with both low temperature and high temperature seeds, which absorbs the laser radiation continuously, starting at the inlet gas temperature; and (2) for hydrogen seeded with cesium, in which a laser supported combustion wave stands near the gas inlet, and heats the gas up to a temperature at which the gas can absorb the laser energy.
NASA Technical Reports Server (NTRS)
Field, Richard T.
1990-01-01
SOILSIM, a digital model of energy and moisture fluxes in the soil and above the soil surface, is presented. It simulates the time evolution of soil temperature and moisture, temperature of the soil surface and plant canopy the above surface, and the fluxes of sensible and latent heat into the atmosphere in response to surface weather conditions. The model is driven by simple weather observations including wind speed, air temperature, air humidity, and incident radiation. The model intended to be useful in conjunction with remotely sensed information of the land surface state, such as surface brightness temperature and soil moisture, for computing wide area evapotranspiration.
Mathematical modeling of high and low temperature heat pipes
NASA Technical Reports Server (NTRS)
Chi, S. W.
1971-01-01
Mathematical models are developed for calculating heat-transfer limitations of high-temperature heat pipes and heat-transfer limitations and temperature gradient of low temperature heat pipes. Calculated results are compared with the available experimental data from various sources to increase confidence in the present math models. Complete listings of two computer programs for high- and low-temperature heat pipes respectively are appended. These programs enable the performance of heat pipes with wrapped-screen, rectangular-groove or screen-covered rectangular-groove wick to be predicted.
Investigation and evaluation of a computer program to minimize three-dimensional flight time tracks
NASA Technical Reports Server (NTRS)
Parke, F. I.
1981-01-01
The program for the DC 8-D3 flight planning was slightly modified for the three dimensional flight planning for DC 10 aircrafts. Several test runs of the modified program over the North Atlantic and North America were made for verifying the program. While geopotential height and temperature were used in a previous program as meteorological data, the modified program uses wind direction and speed and temperature received from the National Weather Service. A scanning program was written to collect required weather information from the raw data received in a packed decimal format. Two sets of weather data, the 12-hour forecast and 24-hour forecast based on 0000 GMT, are used for dynamic processes in testruns. In order to save computing time only the weather data of the North Atlantic and North America is previously stored in a PCF file and then scanned one by one.
The Shock and Vibration Digest. Volume 15, Number 3
1983-03-01
High Temperature Gas-Cooled Reactor Core with Block-type Fuel (2nd Report: An Analytical Method of Two-dmentmnal Vibration of Interacting CohunM) T...Computer-aided techniquei, Detign techniquei A wite of computer programs hat been developed which allow« advanced fatigue analyiit procedures to be...valuei with those developed by bearing analysis computer programs were used to formulate an understanding of the mechanisms that induce ball skidding
NASA Technical Reports Server (NTRS)
Borysow, Aleksandra
1998-01-01
Accurate knowledge of certain collision-induced absorption continua of molecular pairs such as H2-H2, H2-He, H2-CH4, CO2-CO2, etc., is a prerequisite for most spectral analyses and modelling attempts of atmospheres of planets and cold stars. We collect and regularly update simple, state of the art computer programs for the calculation of the absorption coefficient of such molecular pairs over a broad range of temperatures and frequencies, for the various rotovibrational bands. The computational results are in agreement with the existing laboratory measurements of such absorption continua, recorded with a spectral resolution of a few wavenumbers, but reliable computational results may be expected even in the far wings, and at temperatures for which laboratory measurements do not exist. Detailed information is given concerning the systems thus studied, the temperature and frequency ranges considered, the rotovibrational bands thus modelled, and how one may obtain copies of the FORTRAN77 computer programs by e-mail.
[Development of a predictive program for microbial growth under various temperature conditions].
Fujikawa, Hiroshi; Yano, Kazuyoshi; Morozumi, Satoshi; Kimura, Bon; Fujii, Tateo
2006-12-01
A predictive program for microbial growth under various temperature conditions was developed with a mathematical model. The model was a new logistic model recently developed by us. The program predicts Escherichia coli growth in broth, Staphylococcus aureus growth and its enterotoxin production in milk, and Vibrio parahaemolyticus growth in broth at various temperature patterns. The program, which was built with Microsoft Excel (Visual Basic Application), is user-friendly; users can easily input the temperature history of a test food and obtain the prediction instantly on the computer screen. The predicted growth and toxin production can be important indices to determine whether a food is microbiologically safe or not. This program should be a useful tool to confirm the microbial safety of commercial foods.
User's Manual for Thermal Analysis Program of Axially Grooved Heat Pipe (HTGAP)
NASA Technical Reports Server (NTRS)
Kamotani, Y.
1978-01-01
A computer program that numerically predicts the steady state temperature distribution inside an axially grooved heat pipe wall for a given groove geometry and working fluid under various heat input and output modes is described. The program computes both evaporator and condenser film coefficients. The program is able to handle both axisymmetric and nonaxisymmetric heat transfer cases. Non-axisymmetric heat transfer results either from non-uniform input at the evaporator or non-uniform heat removal from the condenser, or from both. The presence of a liquid pool in the condenser region under one-g condition also causes non-axisymmetric heat transfer, and its effect on the pipe wall temperature distribution is included in the present program. The hydrodynamic aspect of an axially grooved heat pipe is studied in the Groove Analysis Program (GAP). The present thermal analysis program assumes that the GAP program (or other similar programs) is run first so that the heat transport limit and optimum fluid charge of the heat pipe are known a priori.
Computer program documentation: Raw-to-processed SINDA program (RTOPHS) user's guide
NASA Technical Reports Server (NTRS)
Damico, S. J.
1980-01-01
Use of the Raw to Processed SINDA(System Improved Numerical Differencing Analyzer) Program, RTOPHS, which provides a means of making the temperature prediction data on binary HSTFLO and HISTRY units generated by SINDA available to engineers in an easy to use format, is discussed. The program accomplishes this by reading the HISTRY unit and according to user input instructions, the desired times and temperature prediction data are extracted and written to a word addressable drum file.
NASA Astrophysics Data System (ADS)
Wainwright, Carroll L.
2012-09-01
I present a numerical package (CosmoTransitions) for analyzing finite-temperature cosmological phase transitions driven by single or multiple scalar fields. The package analyzes the different vacua of a theory to determine their critical temperatures (where the vacuum energy levels are degenerate), their supercooling temperatures, and the bubble wall profiles which separate the phases and describe their tunneling dynamics. I introduce a new method of path deformation to find the profiles of both thin- and thick-walled bubbles. CosmoTransitions is freely available for public use.Program summaryProgram Title: CosmoTransitionsCatalogue identifier: AEML_v1_0Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEML_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 8775No. of bytes in distributed program, including test data, etc.: 621096Distribution format: tar.gzProgramming language: Python.Computer: Developed on a 2009 MacBook Pro. No computer-specific optimization was performed.Operating system: Designed and tested on Mac OS X 10.6.8. Compatible with any OS with Python installed.RAM: Approximately 50 MB, mostly for loading plotting packages.Classification: 1.9, 11.1.External routines: SciPy, NumPy, matplotLibNature of problem: I describe a program to analyze early-Universe finite-temperature phase transitions with multiple scalar fields. The goal is to analyze the phase structure of an input theory, determine the amount of supercooling at each phase transition, and find the bubble-wall profiles of the nucleated bubbles that drive the transitions.Solution method: To find the bubble-wall profile, the program assumes that tunneling happens along a fixed path in field space. This reduces the equations of motion to one dimension, which can then be solved using the overshoot/undershoot method. The path iteratively deforms in the direction opposite the forces perpendicular to the path until the perpendicular forces vanish (or become very small). To find the phase structure, the program finds and integrates the change in a phase's minimum with respect to temperature.Running time: Approximately 1 minute for full analysis of the two-scalar-field test model on a 2.5 GHz CPU.
NASA Technical Reports Server (NTRS)
Taylor, C. M.
1977-01-01
A finite element computer program which enables the analysis of distortions and stresses occurring in compounds having a relative interference is presented. The program is limited to situations in which the loading is axisymmetric. Loads arising from the interference fit(s) and external, inertial, and thermal loadings are accommodated. The components comprise several different homogeneous isotropic materials whose properties may be a function of temperature. An example illustrating the data input and program output is given.
Three computer codes to read, plot and tabulate operational test-site recorded solar data
NASA Technical Reports Server (NTRS)
Stewart, S. D.; Sampson, R. S., Jr.; Stonemetz, R. E.; Rouse, S. L.
1980-01-01
Computer programs used to process data that will be used in the evaluation of collector efficiency and solar system performance are described. The program, TAPFIL, reads data from an IBM 360 tape containing information (insolation, flowrates, temperatures, etc.) from 48 operational solar heating and cooling test sites. Two other programs, CHPLOT and WRTCNL, plot and tabulate the data from the direct access, unformatted TAPFIL file. The methodology of the programs, their inputs, and their outputs are described.
NASA Technical Reports Server (NTRS)
Cook, D. W.
1977-01-01
Computer simulation is used to demonstrate that crewman comfort can be assured by using automatic control of the inlet temperature of the coolant into the liquid cooled garment when input to the controller consists of measurements of the garment inlet temperature and the garment outlet temperature difference. Subsequent tests using a facsimile of the control logic developed in the computer program confirmed the feasibility of such a design scheme.
NASA Technical Reports Server (NTRS)
Omori, S.
1973-01-01
As described in Vol. 1, the eddy viscosity is calculated through the turbulent kinetic energy, in order to include the history of the flow and the effect of chemical reaction on boundary layer characteristics. Calculations can be performed for two different cooling concepts; that is, transpiration and regeneratively cooled wall cases. For the regenerative cooling option, coolant and gas side wall temperature and coolant bulk temperature in a rocket engine can be computed along the nozzle axis. Thus, this computer program is useful in designing coolant flow rate and cooling tube geometry, including the tube wall thickness as well as in predicting the effects of boundary layers along the gas side wall on thrust performances.
Thermophysical properties of Helium-4 from 0.8 to 1500 K with pressures to 2000 MPa
NASA Technical Reports Server (NTRS)
Arp, Vincent D.; Mccarty, Robert D.
1989-01-01
Tabular summary data of the thermophysical properties of fluid helium are given for temperatures from 0.8 to 1500 K, with pressures to 2000 MPa between 75 and 300 K, or to 100 MPa outside of this temperature band. Properties include density, specific heats, enthalpy, entropy, internal energy, sound velocity, expansivity, compressibility, thermal conductivity, and viscosity. The data are calculated from a computer program which is available from the National Institute of Standards and Technology. The computer program is based on carefully fitted state equations for both normal and superfluid helium.
Program documentation: Surface heating rate of thin skin models (THNSKN)
NASA Technical Reports Server (NTRS)
Mcbryde, J. D.
1975-01-01
Program THNSKN computes the mean heating rate at a maximum of 100 locations on the surface of thin skin transient heating rate models. Output is printed in tabular form and consists of time history tabulation of temperatures, average temperatures, heat loss without conduction correction, mean heating rate, least squares heating rate, and the percent standard error of the least squares heating rates. The input tape used is produced by the program EHTS03.
Computation of the temperature distribution in cooled radial inflow turbine guide vanes
NASA Technical Reports Server (NTRS)
Tabakoff, W.; Hosny, W.; Hamed, A.
1977-01-01
A two-dimensional finite-difference numerical technique is presented to determine the temperature distribution of an internally-cooled blade of radial turbine guide vanes. A simple convection cooling is assumed inside the guide vane. Such an arrangement results in relatively small cooling effectiveness at the leading edge and at the trailing edge. Heat transfer augmentation in these critical areas may be achieved by using impingement jets and film cooling. A computer program is written in Fortran IV for IBM 370/165 computer.
Ruiz, B C; Tucker, W K; Kirby, R R
1975-01-01
With a desk-top, programmable calculator, it is now possible to do complex, previously time-consuming computations in the blood-gas laboratory. The authors have developed a program with the necessary algorithms for temperature correction of blood gases and calculation of acid-base variables and intrapulmonary shunt. It was necessary to develop formulas for the Po2 temperature-correction coefficient, the oxyhemoglobin-dissociation curve for adults (withe necessary adjustments for fetal blood), and changes in water vapor pressure due to variation in body temperature. Using this program in conjuction with a Monroe 1860-21 statistical programmable calculator, it is possible to temperature-correct pH,Pco2, and Po2. The machine will compute alveolar-arterial oxygen tension gradient, oxygen saturation (So2), oxygen content (Co2), actual HCO minus 3 and a modified base excess. If arterial blood and mixed venous blood are obtained, the calculator will print out intrapulmonary shunt data (Qs/Qt) and arteriovenous oxygen differences (a minus vDo2). There also is a formula to compute P50 if pH,Pco2,Po2, and measured So2 from two samples of tonometered blood (one above 50 per cent and one below 50 per cent saturation) are put into the calculator.
High-freezing-point fuel studies
NASA Technical Reports Server (NTRS)
Tolle, F. F.
1980-01-01
Considerable progress in developing the experimental and analytical techniques needed to design airplanes to accommodate fuels with less stringent low temperature specifications is reported. A computer technique for calculating fuel temperature profiles in full tanks was developed. The computer program is being extended to include the case of partially empty tanks. Ultimately, the completed package is to be incorporated into an aircraft fuel tank thermal analyser code to permit the designer to fly various thermal exposure patterns, study fuel temperatures versus time, and determine holdup.
NASA Technical Reports Server (NTRS)
Lansing, F. L.
1979-01-01
A computer program which can distinguish between different receiver designs, and predict transient performance under variable solar flux, or ambient temperatures, etc. has a basic structure that fits a general heat transfer problem, but with specific features that are custom-made for solar receivers. The code is written in MBASIC computer language. The methodology followed in solving the heat transfer problem is explained. A program flow chart, an explanation of input and output tables, and an example of the simulation of a cavity-type solar receiver are included.
Multicolor pyrometer for materials processing in space
NASA Technical Reports Server (NTRS)
Frish, M. B.; Frank, J.; Baker, J. E.; Foutter, R. R.; Beerman, H.; Allen, M. G.
1990-01-01
This report documents the work performed by Physical Sciences Inc. (PSI), under contract to NASA JPL, during a 2.5-year SBIR Phase 2 Program. The program goals were to design, construct, and program a prototype passive imaging pyrometer capable of measuring, as accurately as possible, and controlling the temperature distribution across the surface of a moving object suspended in space. These goals were achieved and the instrument was delivered to JPL in November 1989. The pyrometer utilizes an optical system which operates at short wavelengths compared to the peak of the black-body spectrum for the temperature range of interest, thus minimizing errors associated with a lack of knowledge about the heated sample's emissivity. To cover temperatures from 900 to 2500 K, six wavelengths are available. The preferred wavelength for measurement of a particular temperature decreases as the temperature increases. Images at all six wavelengths are projected onto a single CCD camera concurrently. The camera and optical system have been calibrated to relate the measured intensity at each pixel to the temperature of the heated object. The output of the camera is digitized by a frame grabber installed in a personal computer and analyzed automatically to yield temperature information. The data can be used in a feedback loop to alter the status of computer-activated switches and thereby control a heating system.
TAP 2: A finite element program for thermal analysis of convectively cooled structures
NASA Technical Reports Server (NTRS)
Thornton, E. A.
1980-01-01
A finite element computer program (TAP 2) for steady-state and transient thermal analyses of convectively cooled structures is presented. The program has a finite element library of six elements: two conduction/convection elements to model heat transfer in a solid, two convection elements to model heat transfer in a fluid, and two integrated conduction/convection elements to represent combined heat transfer in tubular and plate/fin fluid passages. Nonlinear thermal analysis due to temperature-dependent thermal parameters is performed using the Newton-Raphson iteration method. Transient analyses are performed using an implicit Crank-Nicolson time integration scheme with consistent or lumped capacitance matrices as an option. Program output includes nodal temperatures and element heat fluxes. Pressure drops in fluid passages may be computed as an option. User instructions and sample problems are presented in appendixes.
iGeoT v1.0: Automatic Parameter Estimation for Multicomponent Geothermometry, User's Guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spycher, Nicolas; Finsterle, Stefan
GeoT implements the multicomponent geothermometry method developed by Reed and Spycher [1984] into a stand-alone computer program to ease the application of this method and to improve the prediction of geothermal reservoir temperatures using full and integrated chemical analyses of geothermal fluids. Reservoir temperatures are estimated from statistical analyses of mineral saturation indices computed as a function of temperature. The reconstruction of the deep geothermal fluid compositions, and geothermometry computations, are all implemented into the same computer program, allowing unknown or poorly constrained input parameters to be estimated by numerical optimization. This integrated geothermometry approach presents advantages over classical geothermometersmore » for fluids that have not fully equilibrated with reservoir minerals and/or that have been subject to processes such as dilution and gas loss. This manual contains installation instructions for iGeoT, and briefly describes the input formats needed to run iGeoT in Automatic or Expert Mode. An example is also provided to demonstrate the use of iGeoT.« less
Mathematical modeling of high and low temperature heat pipes
NASA Technical Reports Server (NTRS)
Chi, S. W.
1971-01-01
Following a review of heat and mass transfer theory relevant to heat pipe performance, math models are developed for calculating heat-transfer limitations of high-temperature heat pipes and heat-transfer limitations and temperature gradient of low temperature heat pipes. Calculated results are compared with the available experimental data from various sources to increase confidence in the present math models. Complete listings of two computer programs for high- and low-temperature heat pipes respectively are included. These programs enable the performance to be predicted of heat pipes with wrapped-screen, rectangular-groove, or screen-covered rectangular-groove wick.
Beam-plasma dielectric tensor with Mathematica
NASA Astrophysics Data System (ADS)
Bret, A.
2007-03-01
We present a Mathematica notebook allowing for the symbolic calculation of the 3×3 dielectric tensor of an electron-beam plasma system in the fluid approximation. Calculation is detailed for a cold relativistic electron beam entering a cold magnetized plasma, and for arbitrarily oriented wave vectors. We show how one can elaborate on this example to account for temperatures, arbitrarily oriented magnetic field or a different kind of plasma. Program summaryTitle of program: Tensor Catalog identifier: ADYT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADYT_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested: Computers: Any computer running Mathematica 4.1. Tested on DELL Dimension 5100 and IBM ThinkPad T42. Installations: ETSI Industriales, Universidad Castilla la Mancha, Ciudad Real, Spain Operating system under which the program has been tested: Windows XP Pro Programming language used: Mathematica 4.1 Memory required to execute with typical data: 7.17 Mbytes No. of bytes in distributed program, including test data, etc.: 33 439 No. of lines in distributed program, including test data, etc.: 3169 Distribution format: tar.gz Nature of the physical problem: The dielectric tensor of a relativistic beam plasma system may be quite involved to calculate symbolically when considering a magnetized plasma, kinetic pressure, collisions between species, and so on. The present Mathematica notebook performs the symbolic computation in terms of some usual dimensionless variables. Method of solution: The linearized relativistic fluid equations are directly entered and solved by Mathematica to express the first-order expression of the current. This expression is then introduced into a combination of Faraday and Ampère-Maxwell's equations to give the dielectric tensor. Some additional manipulations are needed to express the result in terms of the dimensionless variables. Restrictions on the complexity of the problem: Temperature effects are limited to small, i.e. non-relativistic, temperatures. The kinetic counterpart of the present Mathematica will usually not compute the required integrals. Typical running time: About 1 minute on a Intel Centrino 1.5 GHz Laptop with 512 MB of RAM. Unusual features of the program: None.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pendergrass, J.H.
1977-10-01
Based on the theory developed in an earlier report, a FORTRAN computer program, DIFFUSE, was written. It computes, for design purposes, rates of transport of hydrogen isotopes by temperature-dependent quasi-unidirectional, and quasi-static combined ordinary and thermal diffusion through thin, hot thermonuclear reactor components that can be represented by composites of plane, cylindrical-shell, and spherical-shell elements when the dominant resistance to transfer is that of the bulk metal. The program is described, directions for its use are given, and a listing of the program, together with sample problem results, is presented.
Computer assisted screening, correction, and analysis of historical weather measurements
NASA Astrophysics Data System (ADS)
Burnette, Dorian J.; Stahle, David W.
2013-04-01
A computer program, Historical Observation Tools (HOB Tools), has been developed to facilitate many of the calculations used by historical climatologists to develop instrumental and documentary temperature and precipitation datasets and makes them readily accessible to other researchers. The primitive methodology used by the early weather observers makes the application of standard techniques difficult. HOB Tools provides a step-by-step framework to visually and statistically assess, adjust, and reconstruct historical temperature and precipitation datasets. These routines include the ability to check for undocumented discontinuities, adjust temperature data for poor thermometer exposures and diurnal averaging, and assess and adjust daily precipitation data for undercount. This paper provides an overview of the Visual Basic.NET program and a demonstration of how it can assist in the development of extended temperature and precipitation datasets using modern and early instrumental measurements from the United States.
NASA Technical Reports Server (NTRS)
Gaugler, R. E.
1979-01-01
A computer program to calculate transient and steady state temperatures, pressures, and coolant flows in a cooled axial flow turbine blade or vane with an impingement insert is described. Coolant-side heat transfer coefficients are calculated internally in the program, with the user specifying either impingement or convection heat transfer at each internal flow station. Spent impingement air flows in a chordwise direction and is discharged through the trailing edge and through film cooling holes. The ability of the program to handle film cooling is limited by the internal flow model. Input to the program includes a description of the blade geometry, coolant-supply conditions, outside thermal boundary conditions, and wheel speed. The blade wall can have two layers of different materials, such as a ceramic thermal barrier coating over a metallic substrate. Program output includes the temperature at each node, the coolant pressures and flow rates, and the coolant-side heat transfer coefficients.
EXFILE: A program for compiling irradiation data on UN and UC fuel pins
NASA Technical Reports Server (NTRS)
Mayer, J. T.; Smith, R. L.; Weinstein, M. B.; Davison, H. W.
1973-01-01
A FORTRAN-4 computer program for handling fuel pin data is described. Its main features include standardized output, easy access for data manipulation, and tabulation of important material property data. An additional feature allows simplified preparation of input decks for a fuel swelling computer code (CYGRO-2). Data from over 300 high temperature nitride and carbide based fuel pin irradiations are listed.
Tool for analysis of early age transverse cracking of composite bridge decks.
DOT National Transportation Integrated Search
2011-08-29
"Executive Summary: Computational methods and associated software were developed : to compute stresses in HP concrete composite bridge decks due to temperature, shrinkage, and : vehicle loading. The structural analysis program uses a layered finite e...
TAP 1: A Finite Element Program for Steady-State Thermal Analysis of Convectively Cooled Structures
NASA Technical Reports Server (NTRS)
Thornton, E. A.
1976-01-01
The program has a finite element library of six elements: two conduction/convection elements to model heat transfer in a solid, two convection elements to model heat transfer in a fluid, and two integrated conduction/convection elements to represent combined heat transfer in tubular and plate/fin fluid passages. Nonlinear thermal analysis due to temperature dependent thermal parameters is performed using the Newton-Raphson iteration method. Program output includes nodal temperatures and element heat fluxes. Pressure drops in fluid passages may be computed as an option. A companion plotting program for displaying the finite element model and predicted temperature distributions is presented. User instructions and sample problems are presented in appendixes.
NASA Technical Reports Server (NTRS)
Bradley, P. F.; Throckmorton, D. A.
1981-01-01
A study was completed to determine the sensitivity of computed convective heating rates to uncertainties in the thermal protection system thermal model. Those parameters considered were: density, thermal conductivity, and specific heat of both the reusable surface insulation and its coating; coating thickness and emittance; and temperature measurement uncertainty. The assessment used a modified version of the computer program to calculate heating rates from temperature time histories. The original version of the program solves the direct one dimensional heating problem and this modified version of The program is set up to solve the inverse problem. The modified program was used in thermocouple data reduction for shuttle flight data. Both nominal thermal models and altered thermal models were used to determine the necessity for accurate knowledge of thermal protection system's material thermal properties. For many thermal properties, the sensitivity (inaccuracies created in the calculation of convective heating rate by an altered property) was very low.
NASA Technical Reports Server (NTRS)
Spring, A. H.
1973-01-01
The application of a structural computer program for analysis of a thrust chamber liner is discussed. Two objectives were accomplished as follows: (1) exercise of the full capabilities of the computer program and (2) definition of thermal and mechanical boundary conditions to reflect the emergency power level operating conditions for the SSME 47OK engine at a station just upstream of the thrust chamber throat. Creep information on the thrust chamber is presented as a reference curve of creep strain versus time for various temperatures. Contour plots of the effective plastic strain, effective stress, and effective creep strain are developed.
ERIC Educational Resources Information Center
McGrath, Diane, Ed.
1989-01-01
Reviewed are two computer software programs for Apple II computers on weather for upper elementary and middle school grades. "Weather" introduces the major factors (temperature, humidity, wind, and air pressure) affecting weather. "How Weather Works" uses simulation and auto-tutorial formats on sun, wind, fronts, clouds, and…
Peleg, Micha; Normand, Mark D
2015-09-01
When a vitamin's, pigment's or other food component's chemical degradation follows a known fixed order kinetics, and its rate constant's temperature-dependence follows a two parameter model, then, at least theoretically, it is possible to extract these two parameters from two successive experimental concentration ratios determined during the food's non-isothermal storage. This requires numerical solution of two simultaneous equations, themselves the numerical solutions of two differential rate equations, with a program especially developed for the purpose. Once calculated, these parameters can be used to reconstruct the entire degradation curve for the particular temperature history and predict the degradation curves for other temperature histories. The concept and computation method were tested with simulated degradation under rising and/or falling oscillating temperature conditions, employing the exponential model to characterize the rate constant's temperature-dependence. In computer simulations, the method's predictions were robust against minor errors in the two concentration ratios. The program to do the calculations was posted as freeware on the Internet. The temperature profile can be entered as an algebraic expression that can include 'If' statements, or as an imported digitized time-temperature data file, to be converted into an Interpolating Function by the program. The numerical solution of the two simultaneous equations requires close initial guesses of the exponential model's parameters. Programs were devised to obtain these initial values by matching the two experimental concentration ratios with a generated degradation curve whose parameters can be varied manually with sliders on the screen. These programs too were made available as freeware on the Internet and were tested with published data on vitamin A. Copyright © 2015 Elsevier Ltd. All rights reserved.
FY16 ASME High Temperature Code Activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swindeman, M. J.; Jetter, R. I.; Sham, T. -L.
2016-09-01
One of the objectives of the ASME high temperature Code activities is to develop and validate both improvements and the basic features of Section III, Division 5, Subsection HB, Subpart B (HBB). The overall scope of this task is to develop a computer program to be used to assess whether or not a specific component under specified loading conditions will satisfy the elevated temperature design requirements for Class A components in Section III, Division 5, Subsection HB, Subpart B (HBB). There are many features and alternative paths of varying complexity in HBB. The initial focus of this task is amore » basic path through the various options for a single reference material, 316H stainless steel. However, the program will be structured for eventual incorporation all the features and permitted materials of HBB. Since this task has recently been initiated, this report focuses on the description of the initial path forward and an overall description of the approach to computer program development.« less
HUMAN--A Comprehensive Physiological Model.
ERIC Educational Resources Information Center
Coleman, Thomas G.; Randall, James E.
1983-01-01
Describes computer program (HUMAN) used to simulate physiological experiments on patient pathology. Program (available from authors, including versions for microcomputers) consists of dynamic interactions of over 150 physiological variables and integrating approximations of cardiovascular, renal, lung, temperature regulation, and some hormone…
NASA Technical Reports Server (NTRS)
Mccarty, R. D.
1980-01-01
The thermodynamic and transport properties of selected cryogens had programmed into a series of computer routines. Input variables are any two of P, rho or T in the single phase regions and either P or T for the saturated liquid or vapor state. The output is pressure, density, temperature, entropy, enthalpy for all of the fluids and in most cases specific heat capacity and speed of sound. Viscosity and thermal conductivity are also given for most of the fluids. The programs are designed for access by remote terminal; however, they have been written in a modular form to allow the user to select either specific fluids or specific properties for particular needs. The program includes properties for hydrogen, helium, neon, nitrogen, oxygen, argon, and methane. The programs include properties for gaseous and liquid states usually from the triple point to some upper limit of pressure and temperature which varies from fluid to fluid.
NASA Technical Reports Server (NTRS)
Saltsman, James F.
1992-01-01
This manual presents computer programs for characterizing and predicting fatigue and creep-fatigue resistance of metallic materials in the high-temperature, long-life regime for isothermal and nonisothermal fatigue. The programs use the total strain version of Strainrange Partitioning (TS-SRP). An extensive database has also been developed in a parallel effort. This database is probably the largest source of high-temperature, creep-fatigue test data available in the public domain and can be used with other life prediction methods as well. This users manual, software, and database are all in the public domain and are available through COSMIC (382 East Broad Street, Athens, GA 30602; (404) 542-3265, FAX (404) 542-4807). Two disks accompany this manual. The first disk contains the source code, executable files, and sample output from these programs. The second disk contains the creep-fatigue data in a format compatible with these programs.
Thermal radiation view factor: Methods, accuracy and computer-aided procedures
NASA Technical Reports Server (NTRS)
Kadaba, P. V.
1982-01-01
The computer aided thermal analysis programs which predicts the result of predetermined acceptable temperature range prior to stationing of these orbiting equipment in various attitudes with respect to the Sun and the Earth was examined. Complexity of the surface geometries suggests the use of numerical schemes for the determination of these viewfactors. Basic definitions and standard methods which form the basis for various digital computer methods and various numerical methods are presented. The physical model and the mathematical methods on which a number of available programs are built are summarized. The strength and the weaknesses of the methods employed, the accuracy of the calculations and the time required for computations are evaluated. The situations where accuracies are important for energy calculations are identified and methods to save computational times are proposed. Guide to best use of the available programs at several centers and the future choices for efficient use of digital computers are included in the recommendations.
Validation of Magnetic Resonance Thermometry by Computational Fluid Dynamics
NASA Astrophysics Data System (ADS)
Rydquist, Grant; Owkes, Mark; Verhulst, Claire M.; Benson, Michael J.; Vanpoppel, Bret P.; Burton, Sascha; Eaton, John K.; Elkins, Christopher P.
2016-11-01
Magnetic Resonance Thermometry (MRT) is a new experimental technique that can create fully three-dimensional temperature fields in a noninvasive manner. However, validation is still required to determine the accuracy of measured results. One method of examination is to compare data gathered experimentally to data computed with computational fluid dynamics (CFD). In this study, large-eddy simulations have been performed with the NGA computational platform to generate data for a comparison with previously run MRT experiments. The experimental setup consisted of a heated jet inclined at 30° injected into a larger channel. In the simulations, viscosity and density were scaled according to the local temperature to account for differences in buoyant and viscous forces. A mesh-independent study was performed with 5 mil-, 15 mil- and 45 mil-cell meshes. The program Star-CCM + was used to simulate the complete experimental geometry. This was compared to data generated from NGA. Overall, both programs show good agreement with the experimental data gathered with MRT. With this data, the validity of MRT as a diagnostic tool has been shown and the tool can be used to further our understanding of a range of flows with non-trivial temperature distributions.
Computer program for preliminary design analysis of axial-flow turbines
NASA Technical Reports Server (NTRS)
Glassman, A. J.
1972-01-01
The program method is based on a mean-diameter flow analysis. Input design requirements include power or pressure ratio, flow, temperature, pressure, and speed. Turbine designs are generated for any specified number of stages and for any of three types of velocity diagrams (symmetrical, zero exit swirl, or impulse). Exit turning vanes can be included in the design. Program output includes inlet and exit annulus dimensions, exit temperature and pressure, total and static efficiencies, blading angles, and last-stage critical velocity ratios. The report presents the analysis method, a description of input and output with sample cases, and the program listing.
Toroidal transformer design program with application to inverter circuitry
NASA Technical Reports Server (NTRS)
Dayton, J. A., Jr.
1972-01-01
Estimates of temperature, weight, efficiency, regulation, and final dimensions are included in the output of the computer program for the design of transformers for use in the basic parallel inverter. The program, written in FORTRAN 4, selects a tape wound toroidal magnetic core and, taking temperature, materials, core geometry, skin depth, and ohmic losses into account, chooses the appropriate wire sizes and number of turns for the center tapped primary and single secondary coils. Using the program, 2- and 4-kilovolt-ampere transformers are designed for frequencies from 200 to 3200 Hz and the efficiency of a basic transistor inverter is estimated.
NASA Technical Reports Server (NTRS)
Glassman, A. J.
1974-01-01
A computer program to analyze power systems having any number of shafts up to a maximum of five is presented. On each shaft there can be as many as five compressors and five turbines, along with any specified number of intervening intercoolers and reheaters. A recuperator can be included. Turbine coolant flow can be accounted for. Any fuel consisting entirely of hydrogen and/or carbon can be used. The program is valid for maximum temperatures up to about 2000 K (3600 R). The system description, the analysis method, a detailed explanation of program input and output including an illustrative example, a dictionary of program variables, and the program listing are explained.
ERIC Educational Resources Information Center
Collier, Herbert I.
1978-01-01
Energy conservation programs at Louisiana State University reduced energy use 23 percent. The programs involved computer controlled power management systems, adjustment of building temperatures and lighting levels to prescribed standards, consolidation of night classes, centralization of chilled water systems, and manual monitoring of heating and…
Manual of phosphoric acid fuel cell stack three-dimensional model and computer program
NASA Technical Reports Server (NTRS)
Lu, C. Y.; Alkasab, K. A.
1984-01-01
A detailed distributed mathematical model of phosphoric acid fuel cell stack have been developed, with the FORTRAN computer program, for analyzing the temperature distribution in the stack and the associated current density distribution on the cell plates. Energy, mass, and electrochemical analyses in the stack were combined to develop the model. Several reasonable assumptions were made to solve this mathematical model by means of the finite differences numerical method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedrich, C.M.
1963-05-01
PLASTlC-SASS, an ALTAC-3 computer program that determines stresses and deflections in a flat-plate, rectangular reactor subassembly is described. Elastic, plastic, and creep properties are used to calculate the results of temperature, pressure, and fuel expansion. Plate deflections increase or decrease local channel thicknesses and thus produce a hydraulic load which is a function of fuel plate deflection. (auth)
NASA Technical Reports Server (NTRS)
Yanosy, James L.
1988-01-01
This manual describes how to use the Emulation Simulation Computer Model (ESCM). Based on G189A, ESCM computes the transient performance of a Space Station atmospheric revitalization subsystem (ARS) with CO2 removal provided by a solid amine water desorbed subsystem called SAWD. Many performance parameters are computed some of which are cabin CO2 partial pressure, relative humidity, temperature, O2 partial pressure, and dew point. The program allows the user to simulate various possible combinations of man loading, metabolic profiles, cabin volumes and certain hypothesized failures that could occur.
Automated data acquisition and processing for a Hohlraum reflectometer
NASA Technical Reports Server (NTRS)
Difilippo, Frank; Mirtich, Michael J.
1988-01-01
A computer and data acquisition board were used to automate a Perkin-Elmer Model 13 spectrophotometer with a Hohlraum reflectivity attachment. Additional electronic circuitry was necessary for amplification, filtering, and debouncing. The computer was programmed to calculate spectral emittance from 1.7 to 14.7 micrometers and also total emittance versus temperature. Automation of the Hohlraum reflectometer reduced the time required to determine total emittance versus temperature from about three hours to about 40 minutes.
NASA Technical Reports Server (NTRS)
Viswanathan, A. V.; Tamekuni, M.; Tripp, L. L.
1974-01-01
General-purpose program is intended for thermal stress and instability analyses of structures such as axially-stiffened curved panels. Two types of instability analyses can be effected by program: (1) thermal buckling with temperature variation as specified and (2) buckling due to in-plane biaxial loading.
NASA Technical Reports Server (NTRS)
Gaugler, R. E.
1978-01-01
A computer program to calculate transient and steady state temperatures, pressures, and coolant flows in a cooled, axial flow turbine blade or vane with an impingement insert is described. Coolant side heat transfer coefficients are calculated internally in the program, with the user specifying either impingement or convection heat transfer at each internal flow station. Spent impingement air flows in a chordwise direction and is discharged through the trailing edge and through film cooling holes. The ability of the program to handle film cooling is limited by the internal flow model. Sample problems, with tables of input and output, are included in the report. Input to the program includes a description of the blade geometry, coolant supply conditions, outside thermal boundary conditions, and wheel speed. The blade wall can have two layers of different materials, such as a ceramic thermal barrier coating over a metallic substrate. Program output includes the temperature at each node, the coolant pressures and flow rates, and the inside heat-transfer coefficients.
NASA Technical Reports Server (NTRS)
Gordon, Sanford; Zeleznik, Frank J.; Huff, Vearl N.
1959-01-01
A general computer program for chemical equilibrium and rocket performance calculations was written for the IBM 650 computer with 2000 words of drum storage, 60 words of high-speed core storage, indexing registers, and floating point attachments. The program is capable of carrying out combustion and isentropic expansion calculations on a chemical system that may include as many as 10 different chemical elements, 30 reaction products, and 25 pressure ratios. In addition to the equilibrium composition, temperature, and pressure, the program calculates specific impulse, specific impulse in vacuum, characteristic velocity, thrust coefficient, area ratio, molecular weight, Mach number, specific heat, isentropic exponent, enthalpy, entropy, and several thermodynamic first derivatives.
Thermal and orbital analysis of Earth monitoring Sun-synchronous space experiments
NASA Technical Reports Server (NTRS)
Killough, Brian D.
1990-01-01
The fundamentals of an Earth monitoring Sun-synchronous orbit are presented. A Sun-synchronous Orbit Analysis Program (SOAP) was developed to calculate orbital parameters for an entire year. The output from this program provides the required input data for the TRASYS thermal radiation computer code, which in turn computes the infrared, solar and Earth albedo heat fluxes incident on a space experiment. Direct incident heat fluxes can be used as input to a generalized thermal analyzer program to size radiators and predict instrument operating temperatures. The SOAP computer code and its application to the thermal analysis methodology presented, should prove useful to the thermal engineer during the design phases of Earth monitoring Sun-synchronous space experiments.
Program Helps To Determine Chemical-Reaction Mechanisms
NASA Technical Reports Server (NTRS)
Bittker, D. A.; Radhakrishnan, K.
1995-01-01
General Chemical Kinetics and Sensitivity Analysis (LSENS) computer code developed for use in solving complex, homogeneous, gas-phase, chemical-kinetics problems. Provides for efficient and accurate chemical-kinetics computations and provides for sensitivity analysis for variety of problems, including problems involving honisothermal conditions. Incorporates mathematical models for static system, steady one-dimensional inviscid flow, reaction behind incident shock wave (with boundary-layer correction), and perfectly stirred reactor. Computations of equilibrium properties performed for following assigned states: enthalpy and pressure, temperature and pressure, internal energy and volume, and temperature and volume. Written in FORTRAN 77 with exception of NAMELIST extensions used for input.
NASTRAN thermal analyzer: A general purpose finite element heat transfer computer program
NASA Technical Reports Server (NTRS)
Lee, H.; Mason, J. B.
1972-01-01
The program not only can render temperature distributions in solids subjected to various thermal boundary conditions, including effects of diffuse-gray thermal radiation, but is fully compatible in capacity and in the finite-element model representation with that of its structural counterpart in the NASTRAN system. The development history of the finite-element approach for determining temperatures is summarized. The scope of analysis capability, program structure, features, and limitations are given with the objective of providing NASTRAN users with an overall veiw of the NASTRAN thermal analyzer.
2014-01-01
program officer of ONR’s Computational Neuro - science and Biorobotics programs. “The goal of this research is to develop the mutual interaction between...water temperature, and transmitted this data to my office every five minutes. The entire buoy including the radio transmitter was powered by the BMFC
Computer code for preliminary sizing analysis of axial-flow turbines
NASA Technical Reports Server (NTRS)
Glassman, Arthur J.
1992-01-01
This mean diameter flow analysis uses a stage average velocity diagram as the basis for the computational efficiency. Input design requirements include power or pressure ratio, flow rate, temperature, pressure, and rotative speed. Turbine designs are generated for any specified number of stages and for any of three types of velocity diagrams (symmetrical, zero exit swirl, or impulse) or for any specified stage swirl split. Exit turning vanes can be included in the design. The program output includes inlet and exit annulus dimensions, exit temperature and pressure, total and static efficiencies, flow angles, and last stage absolute and relative Mach numbers. An analysis is presented along with a description of the computer program input and output with sample cases. The analysis and code presented herein are modifications of those described in NASA-TN-D-6702. These modifications improve modeling rigor and extend code applicability.
NASA Technical Reports Server (NTRS)
Wilson, R. B.; Bak, M. J.; Nakazawa, S.; Banerjee, P. K.
1984-01-01
A 3-D inelastic analysis methods program consists of a series of computer codes embodying a progression of mathematical models (mechanics of materials, special finite element, boundary element) for streamlined analysis of combustor liners, turbine blades, and turbine vanes. These models address the effects of high temperatures and thermal/mechanical loadings on the local (stress/strain) and global (dynamics, buckling) structural behavior of the three selected components. These models are used to solve 3-D inelastic problems using linear approximations in the sense that stresses/strains and temperatures in generic modeling regions are linear functions of the spatial coordinates, and solution increments for load, temperature and/or time are extrapolated linearly from previous information. Three linear formulation computer codes, referred to as MOMM (Mechanics of Materials Model), MHOST (MARC-Hot Section Technology), and BEST (Boundary Element Stress Technology), were developed and are described.
NECAP 4.1: NASA's Energy-Cost Analysis Program input manual
NASA Technical Reports Server (NTRS)
Jensen, R. N.
1982-01-01
The computer program NECAP (NASA's Energy Cost Analysis Program) is described. The program is a versatile building design and energy analysis tool which has embodied within it state of the art techniques for performing thermal load calculations and energy use predictions. With the program, comparisons of building designs and operational alternatives for new or existing buildings can be made. The major feature of the program is the response factor technique for calculating the heat transfer through the building surfaces which accounts for the building's mass. The program expands the response factor technique into a space response factor to account for internal building temperature swings; this is extremely important in determining true building loads and energy consumption when internal temperatures are allowed to swing.
Combining Thermal And Structural Analyses
NASA Technical Reports Server (NTRS)
Winegar, Steven R.
1990-01-01
Computer code makes programs compatible so stresses and deformations calculated. Paper describes computer code combining thermal analysis with structural analysis. Called SNIP (for SINDA-NASTRAN Interfacing Program), code provides interface between finite-difference thermal model of system and finite-element structural model when no node-to-element correlation between models. Eliminates much manual work in converting temperature results of SINDA (Systems Improved Numerical Differencing Analyzer) program into thermal loads for NASTRAN (NASA Structural Analysis) program. Used to analyze concentrating reflectors for solar generation of electric power. Large thermal and structural models needed to predict distortion of surface shapes, and SNIP saves considerable time and effort in combining models.
A theoretical study of heterojunction and graded band gap type solar cells
NASA Technical Reports Server (NTRS)
Chiang, J. P. C.; Hauser, J. R.
1979-01-01
The work performed concentrated on including multisun effects, high temperature effects, and electron irradiation effects into the computer analysis program for heterojunction and graded bandgap solar cells. These objectives were accomplished and the program is now available for such calculations.
SINDA, Systems Improved Numerical Differencing Analyzer
NASA Technical Reports Server (NTRS)
Fink, L. C.; Pan, H. M. Y.; Ishimoto, T.
1972-01-01
Computer program has been written to analyze group of 100-node areas and then provide for summation of any number of 100-node areas to obtain temperature profile. SINDA program options offer user variety of methods for solution of thermal analog modes presented in network format.
NASA Astrophysics Data System (ADS)
Wong-Loya, J. A.; Santoyo, E.; Andaverde, J. A.; Quiroz-Ruiz, A.
2015-12-01
A Web-Based Computer System (RPM-WEBBSYS) has been developed for the application of the Rational Polynomial Method (RPM) to estimate static formation temperatures (SFT) of geothermal and petroleum wells. The system is also capable to reproduce the full thermal recovery processes occurred during the well completion. RPM-WEBBSYS has been programmed using advances of the information technology to perform more efficiently computations of SFT. RPM-WEBBSYS may be friendly and rapidly executed by using any computing device (e.g., personal computers and portable computing devices such as tablets or smartphones) with Internet access and a web browser. The computer system was validated using bottomhole temperature (BHT) measurements logged in a synthetic heat transfer experiment, where a good matching between predicted and true SFT was achieved. RPM-WEBBSYS was finally applied to BHT logs collected from well drilling and shut-in operations, where the typical problems of the under- and over-estimation of the SFT (exhibited by most of the existing analytical methods) were effectively corrected.
Web-phreeq: a WWW instructional tool for modeling the distribution of chemical species in water
NASA Astrophysics Data System (ADS)
Saini-Eidukat, Bernhardt; Yahin, Andrew
1999-05-01
A WWW-based tool, WEB-PHREEQ, was developed for classroom teaching and for routine calculation of low temperature aqueous speciation. Accessible with any computer that has an internet-connected forms-capable WWW-browser, WEB-PHREEQ provides user interface and other support for modeling, creates a properly formatted input file, passes it to the public domain program PHREEQC and returns the output to the WWW browser. Users can calculate the equilibrium speciation of a solution over a range of temperatures or can react solid minerals or gases with a particular water and examine the resulting chemistry. WEB-PHREEQ is one of a number of interactive distributed-computing programs available on the WWW that are of interest to geoscientists.
NASA Technical Reports Server (NTRS)
Bade, W. L.; Yos, J. M.
1975-01-01
A computer program for calculating quasi-one-dimensional gas flow in axisymmetric and two-dimensional nozzles and rectangular channels is presented. Flow is assumed to start from a state of thermochemical equilibrium at a high temperature in an upstream reservoir. The program provides solutions based on frozen chemistry, chemical equilibrium, and nonequilibrium flow with finite reaction rates. Electronic nonequilibrium effects can be included using a two-temperature model. An approximate laminar boundary layer calculation is given for the shear and heat flux on the nozzle wall. Boundary layer displacement effects on the inviscid flow are considered also. Chemical equilibrium and transport property calculations are provided by subroutines. The code contains precoded thermochemical, chemical kinetic, and transport cross section data for high-temperature air, CO2-N2-Ar mixtures, helium, and argon. It provides calculations of the stagnation conditions on axisymmetric or two-dimensional models, and of the conditions on the flat surface of a blunt wedge. The primary purpose of the code is to describe the flow conditions and test conditions in electric arc heated wind tunnels.
An efficient annealing in Boltzmann machine in Hopfield neural network
NASA Astrophysics Data System (ADS)
Kin, Teoh Yeong; Hasan, Suzanawati Abu; Bulot, Norhisam; Ismail, Mohammad Hafiz
2012-09-01
This paper proposes and implements Boltzmann machine in Hopfield neural network doing logic programming based on the energy minimization system. The temperature scheduling in Boltzmann machine enhancing the performance of doing logic programming in Hopfield neural network. The finest temperature is determined by observing the ratio of global solution and final hamming distance using computer simulations. The study shows that Boltzmann Machine model is more stable and competent in term of representing and solving difficult combinatory problems.
NASA Technical Reports Server (NTRS)
Nesbitt, James A.
2001-01-01
A finite-difference computer program (COSIM) has been written which models the one-dimensional, diffusional transport associated with high-temperature oxidation and interdiffusion of overlay-coated substrates. The program predicts concentration profiles for up to three elements in the coating and substrate after various oxidation exposures. Surface recession due to solute loss is also predicted. Ternary cross terms and concentration-dependent diffusion coefficients are taken into account. The program also incorporates a previously-developed oxide growth and spalling model to simulate either isothermal or cyclic oxidation exposures. In addition to predicting concentration profiles after various oxidation exposures, the program can also be used to predict coating life based on a concentration dependent failure criterion (e.g., surface solute content drops to 2%). The computer code is written in FORTRAN and employs numerous subroutines to make the program flexible and easily modifiable to other coating oxidation problems.
HEATPLOT: a temperature distribution plotting program for heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elrod, D.C.; Turner, W.D.
1977-07-01
HEATPLOT is a temperature distribution plotting program that may be used with HEATING5, a generalized heat conduction code. HEATPLOT is capable of drawing temperature contours (isotherms), temperature-time profiles, and temperature-distance profiles from the current HEATING5 temperature distribution or from temperature changes relative to the initial temperature distribution. Contour plots may be made for two- or three-dimensional models. Temperature-time profiles and temperature-distance profiles may be made for one-, two-, and three-dimensional models. HEATPLOT is an IBM 360/370 computer code which uses the DISSPLA plotting package. Plots may be created on the CALCOMP pen-and-ink, and CALCOMP cathode ray tube (CRT), or themore » EAI pen-and-ink plotters. Printer plots may be produced or a compressed data set that may be routed to any of the available plotters may be made.« less
ERIC Educational Resources Information Center
Holko, David A.
1982-01-01
Presents a complete computer program demonstrating the relationship between volume/pressure for Boyle's Law, volume/temperature for Charles' Law, and volume/moles of gas for Avagadro's Law. The programing reinforces students' application of gas laws and equates a simulated moving piston to theoretical values derived using the ideal gas law.…
Performance characteristics of three-phase induction motors
NASA Technical Reports Server (NTRS)
Wood, M. E.
1977-01-01
An investigation into the characteristics of three phase, 400 Hz, induction motors of the general type used on aircraft and spacecraft is summarized. Results of laboratory tests are presented and compared with results from a computer program. Representative motors were both tested and simulated under nominal conditions as well as off nominal conditions of temperature, frequency, voltage magnitude, and voltage balance. Good correlation was achieved between simulated and laboratory results. The primary purpose of the program was to verify the simulation accuracy of the computer program, which in turn will be used as an analytical tool to support the shuttle orbiter.
Comprehensive silicon solar-cell computer modeling
NASA Technical Reports Server (NTRS)
Lamorte, M. F.
1984-01-01
A comprehensive silicon solar cell computer modeling scheme was developed to perform the following tasks: (1) model and analysis of the net charge distribution in quasineutral regions; (2) experimentally determined temperature behavior of Spire Corp. n+pp+ solar cells where n+-emitter is formed by ion implantation of 75As or 31P; and (3) initial validation results of computer simulation program using Spire Corp. n+pp+ cells.
NASA Technical Reports Server (NTRS)
Boyce, Lola; Bast, Callie C.; Trimble, Greg A.
1992-01-01
This report presents the results of a fourth year effort of a research program, conducted for NASA-LeRC by the University of Texas at San Antonio (UTSA). The research included on-going development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic material strength degradation model, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subject to a number of effects or primitive variables. These primitive variables may include high temperature, fatigue or creep. In most cases, strength is reduced as a result of the action of a variable. This multifactor interaction strength degradation equation has been randomized and is included in the computer program, PROMISS. Also included in the research is the development of methodology to calibrate the above-described constitutive equation using actual experimental materials data together with regression analysis of that data, thereby predicting values for the empirical material constants for each effect or primitive variable. This regression methodology is included in the computer program, PROMISC. Actual experimental materials data were obtained from industry and the open literature for materials typically for applications in aerospace propulsion system components. Material data for Inconel 718 has been analyzed using the developed methodology.
NASA Technical Reports Server (NTRS)
Boyce, Lola; Bast, Callie C.; Trimble, Greg A.
1992-01-01
The results of a fourth year effort of a research program conducted for NASA-LeRC by The University of Texas at San Antonio (UTSA) are presented. The research included on-going development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic material strength degradation model, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subjected to a number of effects or primitive variables. These primitive variables may include high temperature, fatigue, or creep. In most cases, strength is reduced as a result of the action of a variable. This multifactor interaction strength degradation equation was randomized and is included in the computer program, PROMISC. Also included in the research is the development of methodology to calibrate the above-described constitutive equation using actual experimental materials data together with regression analysis of that data, thereby predicting values for the empirical material constants for each effect or primitive variable. This regression methodology is included in the computer program, PROMISC. Actual experimental materials data were obtained from industry and the open literature for materials typically for applications in aerospace propulsion system components. Material data for Inconel 718 was analyzed using the developed methodology.
NASA Technical Reports Server (NTRS)
Haas, L. A., Sr.
1976-01-01
The Fail-Safe Abort System TEMPerature Analysis Program, (FASTEMP), user's manual is presented. This program was used to analyze fail-safe abort systems for an actively cooled hypersonic aircraft. FASTEMP analyzes the steady state or transient temperature response of a thermal model defined in rectangular, cylindrical, conical and/or spherical coordinate system. FASTEMP provides the user with a large selection of subroutines for heat transfer calculations. The various modes of heat transfer available from these subroutines are: heat storage, conduction, radiation, heat addition or generation, convection, and fluid flow.
Elevated temperature crack growth
NASA Technical Reports Server (NTRS)
Kim, K. S.; Vanstone, R. H.
1992-01-01
The purpose of this program was to extend the work performed in the base program (CR 182247) into the regime of time-dependent crack growth under isothermal and thermal mechanical fatigue (TMF) loading, where creep deformation also influences the crack growth behavior. The investigation was performed in a two-year, six-task, combined experimental and analytical program. The path-independent integrals for application to time-dependent crack growth were critically reviewed. The crack growth was simulated using a finite element method. The path-independent integrals were computed from the results of finite-element analyses. The ability of these integrals to correlate experimental crack growth data were evaluated under various loading and temperature conditions. The results indicate that some of these integrals are viable parameters for crack growth prediction at elevated temperatures.
NASA Technical Reports Server (NTRS)
Vanbibber, L. E.; Parker, W. G.
1973-01-01
A computer program was adapted from a previous generation program to analyze the temperature and internal pressure response of a radioactive nuclear waste material disposal container following impact on the earth. This program considers component melting, LiH dissociation, temperature dependent properties and pressure and container stress response. Analyses were performed for 21 cases with variations in radioactive power level, container geometry, degree of deformation of the container, degree of burial and soil properties. Results indicated that the integrity of SS-316 containers could be maintained with partial burials of either underformed or deformed containers. Results indicated that completely buried waste containers, with power levels above 5 kW, experienced creep stress rupture failures in 4 to 12 days.
NASA Technical Reports Server (NTRS)
Taylor, C. M.; Bill, R. C.
1978-01-01
A ceramic/metallic aircraft gas turbine outer gas path seal designed for improved engine performance was studied. Transient temperature and stress profiles in a test seal geometry were determined by numerical analysis. During a simulated engine deceleration cycle from sea-level takeoff to idle conditions, the maximum seal temperature occurred below the seal surface, therefore the top layer of the seal was probably subjected to tensile stresses exceeding the modulus of rupture. In the stress analysis both two- and three-dimensional finite element computer programs were used. Predicted trends of the simpler and more easily usable two-dimensional element programs were borne out by the three-dimensional finite element program results.
Structural-Thermal-Optical Program (STOP)
NASA Technical Reports Server (NTRS)
Lee, H. P.
1972-01-01
A structural thermal optical computer program is developed which uses a finite element approach and applies the Ritz method for solving heat transfer problems. Temperatures are represented at the vertices of each element and the displacements which yield deformations at any point of the heated surface are interpolated through grid points.
A computer program for the calculation of laminar and turbulent boundary layer flows
NASA Technical Reports Server (NTRS)
Dwyer, H. A.; Doss, E. D.; Goldman, A. L.
1972-01-01
The results are presented of a study to produce a computer program to calculate laminar and turbulent boundary layer flows. The program is capable of calculating the following types of flow: (1) incompressible or compressible, (2) two dimensional or axisymmetric, and (3) flows with significant transverse curvature. Also, the program can handle a large variety of boundary conditions, such as blowing or suction, arbitrary temperature distributions and arbitrary wall heat fluxes. The program has been specialized to the calculation of equilibrium air flows and all of the thermodynamic and transport properties used are for air. For the turbulent transport properties, the eddy viscosity approach has been used. Although the eddy viscosity models are semi-empirical, the model employed in the program has corrections for pressure gradients, suction and blowing and compressibility. The basic method of approach is to put the equations of motion into a finite difference form and then solve them by use of a digital computer. The program is written in FORTRAN 4 and requires small amounts of computer time on most scientific machines. For example, most laminar flows can be calculated in less than one minute of machine time, while turbulent flows usually require three or four minutes.
NASA Technical Reports Server (NTRS)
Liew, K. H.; Urip, E.; Yang, S. L.; Marek, C. J.
2004-01-01
Droplet interaction with a high temperature gaseous crossflow is important because of its wide application in systems involving two phase mixing such as in combustion requiring quick mixing of fuel and air with the reduction of pollutants and for jet mixing in the dilution zone of combustors. Therefore, the focus of this work is to investigate dispersion of a two-dimensional atomized and evaporating spray jet into a two-dimensional crossflow. An interactive Microsoft Excel program for tracking a single droplet in crossflow that has previously been developed will be modified to include droplet evaporation computation. In addition to the high velocity airflow, the injected droplets are also subjected to combustor temperature and pressure that affect their motion in the flow field. Six ordinary differential equations are then solved by 4th-order Runge-Kutta method using Microsoft Excel software. Microsoft Visual Basic programming and Microsoft Excel macrocode are used to produce the data and plot graphs describing the droplet's motion in the flow field. This program computes and plots the data sequentially without forcing the user to open other types of plotting programs. A user's manual on how to use the program is included.
GASPLOT - A computer graphics program that draws a variety of thermophysical property charts
NASA Technical Reports Server (NTRS)
Trivisonno, R. J.; Hendricks, R. C.
1977-01-01
A FORTRAN V computer program, written for the UNIVAC 1100 series, is used to draw a variety of precision thermophysical property charts on the Calcomp plotter. In addition to the program (GASPLOT), which requires (15 160) sub 10 storages, a thermophysical properties routine needed to produce plots. The program is designed so that any two of the state variables, the derived variables, or the transport variables may be plotted as the ordinate - abscissa pair with as many as five parametric variables. The parameters may be temperature, pressure, density, enthalpy, and entropy. Each parameter may have as many a 49 values, and the range of the variables is limited only by the thermophysical properties routine.
Integrated analysis of engine structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1981-01-01
The need for light, durable, fuel efficient, cost effective aircraft requires the development of engine structures which are flexible, made from advaced materials (including composites), resist higher temperatures, maintain tighter clearances and have lower maintenance costs. The formal quantification of any or several of these requires integrated computer programs (multilevel and/or interdisciplinary analysis programs interconnected) for engine structural analysis/design. Several integrated analysis computer prorams are under development at Lewis Reseach Center. These programs include: (1) COBSTRAN-Composite Blade Structural Analysis, (2) CODSTRAN-Composite Durability Structural Analysis, (3) CISTRAN-Composite Impact Structural Analysis, (4) STAEBL-StruTailoring of Engine Blades, and (5) ESMOSS-Engine Structures Modeling Software System. Three other related programs, developed under Lewis sponsorship, are described.
Assessment of two-temperature kinetic model for dissociating and weakly-ionizing nitrogen
NASA Technical Reports Server (NTRS)
Park, C.
1986-01-01
The validity of the author's two-temperature, chemical/kinetic model which the author has recently improved is assessed by comparing the calculated results with the existing experimental data for nitrogen in the dissociating and weakly ionizing regime produced behind a normal shock wave. The computer program Shock Tube Radiation Program (STRAP) based on the two-temperature model is used in calculating the flow properties behind the shock wave and the Nonequilibrium Air Radiation (NEQAIR) program, in determining the radiative characteristics of the flow. Both programs were developed earlier. Comparison is made between the calculated and the existing shock tube data on (1) spectra in the equilibrium region, (2) rotational temperature of the N2(+) B state, (3) vibrational temperature of the N2(+) B state, (4) electronic excitation temperature of the N2 B state, (5) the shape of time-variation of radiation intensities, (6) the times to reach the peak in radiation intensity and equilibrium, and (7) the ratio of nonequilibrium to equilibrium radiative heat fluxes. Good agreement is seen between the experimental data and the present calculation except for the vibrational temperature. A possible reason for the discrepancy is given.
NASA Technical Reports Server (NTRS)
Nastrom, G. D.; Jasperson, W. H.
1983-01-01
Temperature data obtained by the Global Atmospheric Sampling Program (GASP) during the period March 1975 to July 1979 are compiled to form flight summaries of static air temperature and a geographic temperature climatology. The flight summaries include the height and location of the coldest observed temperature and the mean flight level, temperature and the standard deviation of temperature for each flight as well as for flight segments. These summaries are ordered by route and month. The temperature climatology was computed for all statistically independent temperture data for each flight. The grid used consists of 5 deg latitude, 30 deg longitude and 2000 feet vertical resolution from FL270 to FL430 for each month of the year. The number of statistically independent observations, their mean, standard deviation and the empirical 98, 50, 16, 2 and .3 probability percentiles are presented.
Computation of hypersonic flows with finite rate condensation and evaporation of water
NASA Technical Reports Server (NTRS)
Perrell, Eric R.; Candler, Graham V.; Erickson, Wayne D.; Wieting, Alan R.
1993-01-01
A computer program for modelling 2D hypersonic flows of gases containing water vapor and liquid water droplets is presented. The effects of interphase mass, momentum and energy transfer are studied. Computations are compared with existing quasi-1D calculations on the nozzle of the NASA Langley Eight Foot High Temperature Tunnel, a hypersonic wind tunnel driven by combustion of natural gas in oxygen enriched air.
Shaded-Color Picture Generation of Computer-Defined Arbitrary Shapes
NASA Technical Reports Server (NTRS)
Cozzolongo, J. V.; Hermstad, D. L.; Mccoy, D. S.; Clark, J.
1986-01-01
SHADE computer program generates realistic color-shaded pictures from computer-defined arbitrary shapes. Objects defined for computer representation displayed as smooth, color-shaded surfaces, including varying degrees of transparency. Results also used for presentation of computational results. By performing color mapping, SHADE colors model surface to display analysis results as pressures, stresses, and temperatures. NASA has used SHADE extensively in sign and analysis of high-performance aircraft. Industry should find applications for SHADE in computer-aided design and computer-aided manufacturing. SHADE written in VAX FORTRAN and MACRO Assembler for either interactive or batch execution.
NASA Technical Reports Server (NTRS)
Hosny, W. M.; Tabakoff, W.
1977-01-01
A two dimensional finite difference numerical technique is presented to determine the temperature distribution of an internal cooled blade of radial turbine guide vanes. A simple convection cooling is assumed inside the guide vane blade. Such cooling has relatively small cooling effectiveness at the leading edge and at the trailing edge. Heat transfer augmentation in these critical areas may be achieved by using impingement jets and film cooling. A computer program is written in FORTRAN IV for IBM 370/165 computer.
Study of cryogenic propellant systems for loading the space shuttle. Part 2: Hydrogen systems
NASA Technical Reports Server (NTRS)
Steward, W. G.
1975-01-01
Computer simulation studies of liquid hydrogen fill and vent systems for the space shuttle are studied. The computer programs calculate maximum and minimum permissible flow rates during cooldown as limited by thermal stress considerations, fill line cooldown time, pressure drop, flow rates, vapor content, vent line pressure drop and vent line discharge temperature. The input data for these programs are selected through graphic displays which schematically depict the part of the system being analyzed. The computed output is also displayed in the form of printed messages and graphs. Digital readouts of graph coordinates may also be obtained. Procedures are given for operation of the graphic display unit and the associated minicomputer and timesharing computer.
A computer program for geochemical analysis of acid-rain and other low-ionic-strength, acidic waters
Johnsson, P.A.; Lord, D.G.
1987-01-01
ARCHEM, a computer program written in FORTRAN 77, is designed primarily for use in the routine geochemical interpretation of low-ionic-strength, acidic waters. On the basis of chemical analyses of the water, and either laboratory or field determinations of pH, temperature, and dissolved oxygen, the program calculates the equilibrium distribution of major inorganic aqueous species and of inorganic aluminum complexes. The concentration of the organic anion is estimated from the dissolved organic concentration. Ionic ferrous iron is calculated from the dissolved oxygen concentration. Ionic balances and comparisons of computed with measured specific conductances are performed as checks on the analytical accuracy of chemical analyses. ARCHEM may be tailored easily to fit different sampling protocols, and may be run on multiple sample analyses. (Author 's abstract)
Rotary engine performance computer program (RCEMAP and RCEMAPPC): User's guide
NASA Technical Reports Server (NTRS)
Bartrand, Timothy A.; Willis, Edward A.
1993-01-01
This report is a user's guide for a computer code that simulates the performance of several rotary combustion engine configurations. It is intended to assist prospective users in getting started with RCEMAP and/or RCEMAPPC. RCEMAP (Rotary Combustion Engine performance MAP generating code) is the mainframe version, while RCEMAPPC is a simplified subset designed for the personal computer, or PC, environment. Both versions are based on an open, zero-dimensional combustion system model for the prediction of instantaneous pressures, temperature, chemical composition and other in-chamber thermodynamic properties. Both versions predict overall engine performance and thermal characteristics, including bmep, bsfc, exhaust gas temperature, average material temperatures, and turbocharger operating conditions. Required inputs include engine geometry, materials, constants for use in the combustion heat release model, and turbomachinery maps. Illustrative examples and sample input files for both versions are included.
NASA Astrophysics Data System (ADS)
1992-12-01
ESDU 92035 provides details of a FORTRAN program that implements the calculation method of ESDU 83004. It allows performance analysis of an existing design, or the design of a bearing dimensions, subject to any space constraint, are recommended. The predicted performance includes the lubricant film thickness under load, its temperature and flow rate, the power loss, and the bearing temperature. Recommendations are also made on surface finish. Warning messages are output in the following cases, for each of which possible remedial actions are suggested: drain or pad temperature too high, churning losses too great, film thickness too small, pad number too high, ratio or inner to outer pad radius too large, flow rate too great, lubricant or pad temperature outside usable range. A lubricant database is provided that may be extended or edited. The program applies to Newtonian lubricants in laminar flow. Worked examples illustrate the use of the program.
Temperature and solute-transport simulation in streamflow using a Lagrangian reference frame
Jobson, Harvey E.
1980-01-01
A computer program for simulating one-dimensional, unsteady temperature and solute transport in a river has been developed and documented for general use. The solution approach to the convective-diffusion equation uses a moving reference frame (Lagrangian) which greatly simplifies the mathematics of the solution procedure and dramatically reduces errors caused by numerical dispersion. The model documentation is presented as a series of four programs of increasing complexity. The conservative transport model can be used to route a single conservative substance. The simplified temperature model is used to predict water temperature in rivers when only temperature and windspeed data are available. The complete temperature model is highly accurate but requires rather complete meteorological data. Finally, the 10-parameter model can be used to route as many as 10 interacting constituents through a river reach. (USGS)
On 3-D inelastic analysis methods for hot section components (base program)
NASA Technical Reports Server (NTRS)
Wilson, R. B.; Bak, M. J.; Nakazawa, S.; Banerjee, P. K.
1986-01-01
A 3-D Inelastic Analysis Method program is described. This program consists of a series of new computer codes embodying a progression of mathematical models (mechanics of materials, special finite element, boundary element) for streamlined analysis of: (1) combustor liners, (2) turbine blades, and (3) turbine vanes. These models address the effects of high temperatures and thermal/mechanical loadings on the local (stress/strain)and global (dynamics, buckling) structural behavior of the three selected components. Three computer codes, referred to as MOMM (Mechanics of Materials Model), MHOST (Marc-Hot Section Technology), and BEST (Boundary Element Stress Technology), have been developed and are briefly described in this report.
NASA Technical Reports Server (NTRS)
Arya, Vinod K.; Halford, Gary R. (Technical Monitor)
2003-01-01
This manual presents computer programs FLAPS for characterizing and predicting fatigue and creep-fatigue resistance of metallic materials in the high-temperature, long-life regime for isothermal and nonisothermal fatigue. The programs use the Total Strain version of Strainrange Partitioning (TS-SRP), and several other life prediction methods described in this manual. The user should be thoroughly familiar with the TS-SRP and these life prediction methods before attempting to use any of these programs. Improper understanding can lead to incorrect use of the method and erroneous life predictions. An extensive database has also been developed in a parallel effort. The database is probably the largest source of high-temperature, creep-fatigue test data available in the public domain and can be used with other life-prediction methods as well. This users' manual, software, and database are all in the public domain and can be obtained by contacting the author. The Compact Disk (CD) accompanying this manual contains an executable file for the FLAPS program, two datasets required for the example problems in the manual, and the creep-fatigue data in a format compatible with these programs.
NECAP: NASA's Energy-Cost Analysis Program. Part 1: User's manual
NASA Technical Reports Server (NTRS)
Henninger, R. H. (Editor)
1975-01-01
The NECAP is a sophisticated building design and energy analysis tool which has embodied within it all of the latest ASHRAE state-of-the-art techniques for performing thermal load calculation and energy usage predictions. It is a set of six individual computer programs which include: response factor program, data verification program, thermal load analysis program, variable temperature program, system and equipment simulation program, and owning and operating cost program. Each segment of NECAP is described, and instructions are set forth for preparing the required input data and for interpreting the resulting reports.
Generalized Fluid System Simulation Program (GFSSP) - Version 6
NASA Technical Reports Server (NTRS)
Majumdar, Alok; LeClair, Andre; Moore, Ric; Schallhorn, Paul
2015-01-01
The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors, flow control valves and external body forces such as gravity and centrifugal. The thermo-fluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids, and 24 different resistance/source options are provided for modeling momentum sources or sinks in the branches. Users can introduce new physics, non-linear and time-dependent boundary conditions through user-subroutine.
Generalized Fluid System Simulation Program, Version 6.0
NASA Technical Reports Server (NTRS)
Majumdar, A. K.; LeClair, A. C.; Moore, A.; Schallhorn, P. A.
2013-01-01
The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependant flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors and external body forces such as gravity and centrifugal. The thermo-fluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids, and 24 different resistance/source options are provided for modeling momentum sources or sinks in the branches. This Technical Memorandum illustrates the application and verification of the code through 25 demonstrated example problems.
Generalized Fluid System Simulation Program, Version 5.0-Educational
NASA Technical Reports Server (NTRS)
Majumdar, A. K.
2011-01-01
The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors and external body forces such as gravity and centrifugal. The thermofluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the point, drag and click method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids and 21 different resistance/source options are provided for modeling momentum sources or sinks in the branches. This Technical Memorandum illustrates the application and verification of the code through 12 demonstrated example problems.
Simulation of Transcritical CO2 Refrigeration System with Booster Hot Gas Bypass in Tropical Climate
NASA Astrophysics Data System (ADS)
Santosa, I. D. M. C.; Sudirman; Waisnawa, IGNS; Sunu, PW; Temaja, IW
2018-01-01
A Simulation computer becomes significant important for performance analysis since there is high cost and time allocation to build an experimental rig, especially for CO2 refrigeration system. Besides, to modify the rig also need additional cos and time. One of computer program simulation that is very eligible to refrigeration system is Engineering Equation System (EES). In term of CO2 refrigeration system, environmental issues becomes priority on the refrigeration system development since the Carbon dioxide (CO2) is natural and clean refrigerant. This study aims is to analysis the EES simulation effectiveness to perform CO2 transcritical refrigeration system with booster hot gas bypass in high outdoor temperature. The research was carried out by theoretical study and numerical analysis of the refrigeration system using the EES program. Data input and simulation validation were obtained from experimental and secondary data. The result showed that the coefficient of performance (COP) decreased gradually with the outdoor temperature variation increasing. The results show the program can calculate the performance of the refrigeration system with quick running time and accurate. So, it will be significant important for the preliminary reference to improve the CO2 refrigeration system design for the hot climate temperature.
Computer program for determining the thermodynamic properties of Freon refrigerants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riemer, D.H.; Jacobs, H.R.; Boehm, R.F.
1977-12-01
This program was written to be used as a subroutine. The program determines the thermodynamics of Freon refrigerants. The following refrigerants can be analyzed F-11, F-12, F-13, F-14, F-21, F-22, F-23, F-113, and F-114. The subroutine can evaluate a thermodynamic state for these refrigerants given any of the following pairs of state quantities: pressure and quality, pressure and entropy, pressure and enthalpy, temperature and quality, temperature and specific volume, and temperature and pressure. These six pairs of knowns allow the user to analyze any thermodynamic cycle utilizing a refrigerant as the working fluid. The Downing form of the Martin equationmore » of state was used. This report contains a brief description, flow chart and listing of all subroutines required.« less
Computer program for determining the thermodynamic properties of freon refrigerants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riemer, D.H.; Jacobs, H.R.; Boehm, R.F.
1976-07-01
This program was written to be used as a subroutine. The program determines the thermodynamics of Freon refrigerants. The following refrigerants can be analyzed F-11, F-12, F-13, F-14, F-21, F-22, F-23, F-113, and F-114. The subroutine can evaluate a thermodynamic state for these refrigerants given any of the following pairs of state quantities: pressure and quality, pressure and entropy, pressure and enthalpy, temperature and quality, temperature and specific volume and temperature and pressure. These six pairs of knowns allow the user to analyze any thermodynamic cycle utilizing a refrigerant as the working fluid. The Downing form of the Martin equationmore » of state was used. A brief description, flow chart, and listing of all subroutines required are presented.« less
Computing Reliabilities Of Ceramic Components Subject To Fracture
NASA Technical Reports Server (NTRS)
Nemeth, N. N.; Gyekenyesi, J. P.; Manderscheid, J. M.
1992-01-01
CARES calculates fast-fracture reliability or failure probability of macroscopically isotropic ceramic components. Program uses results from commercial structural-analysis program (MSC/NASTRAN or ANSYS) to evaluate reliability of component in presence of inherent surface- and/or volume-type flaws. Computes measure of reliability by use of finite-element mathematical model applicable to multiple materials in sense model made function of statistical characterizations of many ceramic materials. Reliability analysis uses element stress, temperature, area, and volume outputs, obtained from two-dimensional shell and three-dimensional solid isoparametric or axisymmetric finite elements. Written in FORTRAN 77.
Review of NASA antiskid braking research
NASA Technical Reports Server (NTRS)
Tanner, J. A.
1982-01-01
NASA antiskid braking system research programs are reviewed. These programs include experimental studies of four antiskid systems on the Langley Landing Loads Track, flights tests with a DC-9 airplane, and computer simulation studies. Results from these research efforts include identification of factors contributing to degraded antiskid performance under adverse weather conditions, tire tread temperature measurements during antiskid braking on dry runway surfaces, and an assessment of the accuracy of various brake pressure-torque computer models. This information should lead to the development of better antiskid systems in the future.
NASA Astrophysics Data System (ADS)
Kostyuk, A. G.; Karpunin, A. P.
2016-01-01
This article describes a high accuracy method enabling performance of the calculation of real values of the initial temperature of a gas turbine unit (GTU), i.e., the gas temperature at the outlet of the combustion chamber, in a situation where manufacturers do not disclose this information. The features of the definition of the initial temperature of the GTU according to ISO standards were analyzed. It is noted that the true temperatures for high-temperature GTUs is significantly higher than values determined according to ISO standards. A computational procedure for the determination of gas temperatures in the air-gas channel of the gas turbine and cooling air consumptions over blade rims is proposed. As starting equations, the heat balance equation and the flow mixing equation for the combustion chamber are assumed. Results of acceptance GTU tests according to ISO standards and statistical dependencies of required cooling air consumptions on the gas temperature and the blade metal are also used for calculations. An example of the calculation is given for one of the units. Using a developed computer program, the temperatures in the air-gas channel of certain GTUs are calculated, taking into account their design features. These calculations are performed on the previously published procedure for the detailed calculation of the cooled gas turbine subject to additional losses arising because of the presence of the cooling system. The accuracy of calculations by the computer program is confirmed by conducting verification calculations for the GTU of the Mitsubishi Comp. and comparing results with published data of the company. Calculation data for temperatures were compared with the experimental data and the characteristics of the GTU, and the error of the proposed method is estimated.
NASA Technical Reports Server (NTRS)
Nesbitt, James A.
2000-01-01
A finite-difference computer program (COSIM) has been written which models the one-dimensional, diffusional transport associated with high-temperature oxidation and interdiffusion of overlay-coated substrates. The program predicts concentration profiles for up to three elements in the coating and substrate after various oxidation exposures. Surface recession due to solute loss is also predicted. Ternary cross terms and concentration-dependent diffusion coefficients are taken into account. The program also incorporates a previously-developed oxide growth and spalling model to simulate either isothermal or cyclic oxidation exposures. In addition to predicting concentration profiles after various oxidation exposures, the program can also be used to predict coating fife based on a concentration dependent failure criterion (e.g., surface solute content drops to two percent). The computer code, written in an extension of FORTRAN 77, employs numerous subroutines to make the program flexible and easily modifiable to other coating oxidation problems.
Automated Routines for Calculating Whole-Stream Metabolism: Theoretical Background and User's Guide
Bales, Jerad D.; Nardi, Mark R.
2007-01-01
In order to standardize methods and facilitate rapid calculation and archival of stream-metabolism variables, the Stream Metabolism Program was developed to calculate gross primary production, net ecosystem production, respiration, and selected other variables from continuous measurements of dissolved-oxygen concentration, water temperature, and other user-supplied information. Methods for calculating metabolism from continuous measurements of dissolved-oxygen concentration and water temperature are fairly well known, but a standard set of procedures and computation software for all aspects of the calculations were not available previously. The Stream Metabolism Program addresses this deficiency with a stand-alone executable computer program written in Visual Basic.NET?, which runs in the Microsoft Windows? environment. All equations and assumptions used in the development of the software are documented in this report. Detailed guidance on application of the software is presented, along with a summary of the data required to use the software. Data from either a single station or paired (upstream, downstream) stations can be used with the software to calculate metabolism variables.
Using a Computer to Monitor Temperature and Light.
ERIC Educational Resources Information Center
Watson, J. M.
1984-01-01
A 16K Sinclair ZX81 microcomputer equipped with an analog to digital board and a Sinclair printer was used to capture data continuously from a total of eight temperature or light sensors. Describes the construction of the peripherals, explains how to connect them together, and provides a program to run the ZX81. (Author/JN)
Temperature control simulation for a microwave transmitter cooling system. [deep space network
NASA Technical Reports Server (NTRS)
Yung, C. S.
1980-01-01
The thermal performance of a temperature control system for the antenna microwave transmitter (klystron tube) of the Deep Space Network antenna tracking system is discussed. In particular the mathematical model is presented along with the details of a computer program which is written for the system simulation and the performance parameterization. Analytical expressions are presented.
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Miyahira, T. F.; Weiss, R. S.
1979-01-01
Computed statistical averages and standard deviations with respect to the measured cells for each intensity temperature measurement condition are presented. Display averages and standard deviations of the cell characteristics in a two dimensional array format are shown: one dimension representing incoming light intensity, and another, the cell temperature. Programs for calculating the temperature coefficients of the pertinent cell electrical parameters are presented, and postirradiation data are summarized.
Low temperature Grüneisen parameter of cubic ionic crystals
NASA Astrophysics Data System (ADS)
Batana, Alicia; Monard, María C.; Rosario Soriano, María
1987-02-01
Title of program: CAROLINA Catalogue number: AATG Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland (see application form in this issue) Computer: IBM/370, Model 158; Installation: Centro de Tecnología y Ciencia de Sistemas, Universidad de Buenos Aires Operating system: VM/370 Programming language used: FORTRAN High speed storage required: 3 kwords No. of bits in a word: 32 Peripherals used: disk IBM 3340/70 MB No. of lines in combined program and test deck: 447
Computer program for analysis of split-Stirling-cycle cryogenic coolers
NASA Technical Reports Server (NTRS)
Brown, M. T.; Russo, S. C.
1983-01-01
A computer program for predicting the detailed thermodynamic performance of split-Stirling-cycle refrigerators has been developed. The mathematical model includes the refrigerator cold head, free-displacer/regenerator, gas transfer line, and provision for modeling a mechanical or thermal compressor. To allow for dynamic processes (such as aerodynamic friction and heat transfer) temperature, pressure, and mass flow rate are varied by sub-dividing the refrigerator into an appropriate number of fluid and structural control volumes. Of special importance to modeling of cryogenic coolers is the inclusion of real gas properties, and allowance for variation of thermo-physical properties such as thermal conductivities, specific heats and viscosities, with temperature and/or pressure. The resulting model, therefore, comprehensively simulates the split-cycle cooler both spatially and temporally by reflecting the effects of dynamic processes and real material properties.
A Computer Program for the Computation of Running Gear Temperatures Using Green's Function
NASA Technical Reports Server (NTRS)
Koshigoe, S.; Murdock, J. W.; Akin, L. S.; Townsend, D. P.
1996-01-01
A new technique has been developed to study two dimensional heat transfer problems in gears. This technique consists of transforming the heat equation into a line integral equation with the use of Green's theorem. The equation is then expressed in terms of eigenfunctions that satisfy the Helmholtz equation, and their corresponding eigenvalues for an arbitrarily shaped region of interest. The eigenfunction are obtalned by solving an intergral equation. Once the eigenfunctions are found, the temperature is expanded in terms of the eigenfunctions with unknown time dependent coefficients that can be solved by using Runge Kutta methods. The time integration is extremely efficient. Therefore, any changes in the time dependent coefficients or source terms in the boundary conditions do not impose a great computational burden on the user. The method is demonstrated by applying it to a sample gear tooth. Temperature histories at representative surface locatons are given.
NASA Technical Reports Server (NTRS)
Conel, J. E.
1975-01-01
A computer program (Program SPHERE) solving the inhomogeneous equation of heat conduction with radiation boundary condition on a thermally homogeneous sphere is described. The source terms are taken to be exponential functions of the time. Thermal properties are independent of temperature. The solutions are appropriate to studying certain classes of planetary thermal history. Special application to the moon is discussed.
WETAIR: A computer code for calculating thermodynamic and transport properties of air-water mixtures
NASA Technical Reports Server (NTRS)
Fessler, T. E.
1979-01-01
A computer program subroutine, WETAIR, was developed to calculate the thermodynamic and transport properties of air water mixtures. It determines the thermodynamic state from assigned values of temperature and density, pressure and density, temperature and pressure, pressure and entropy, or pressure and enthalpy. The WETAIR calculates the properties of dry air and water (steam) by interpolating to obtain values from property tables. Then it uses simple mixing laws to calculate the properties of air water mixtures. Properties of mixtures with water contents below 40 percent (by mass) can be calculated at temperatures from 273.2 to 1497 K and pressures to 450 MN/sq m. Dry air properties can be calculated at temperatures as low as 150 K. Water properties can be calculated at temperatures to 1747 K and pressures to 100 MN/sq m. The WETAIR is available in both SFTRAN and FORTRAN.
Program For Optimization Of Nuclear Rocket Engines
NASA Technical Reports Server (NTRS)
Plebuch, R. K.; Mcdougall, J. K.; Ridolphi, F.; Walton, James T.
1994-01-01
NOP is versatile digital-computer program devoloped for parametric analysis of beryllium-reflected, graphite-moderated nuclear rocket engines. Facilitates analysis of performance of engine with respect to such considerations as specific impulse, engine power, type of engine cycle, and engine-design constraints arising from complications of fuel loading and internal gradients of temperature. Predicts minimum weight for specified performance.
Orbiter/payload contamination control assessment support
NASA Technical Reports Server (NTRS)
Rantanen, R. O.; Strange, D. A.; Hetrick, M. A.
1978-01-01
The development and integration of 16 payload bay liner filters into the existing shuttle/payload contamination evaluation (SPACE) computer program is discussed as well as an initial mission profile model. As part of the mission profile model, a thermal conversion program, a temperature cycling routine, a flexible plot routine and a mission simulation of orbital flight test 3 are presented.
Monolithic ceramic analysis using the SCARE program
NASA Technical Reports Server (NTRS)
Manderscheid, Jane M.
1988-01-01
The Structural Ceramics Analysis and Reliability Evaluation (SCARE) computer program calculates the fast fracture reliability of monolithic ceramic components. The code is a post-processor to the MSC/NASTRAN general purpose finite element program. The SCARE program automatically accepts the MSC/NASTRAN output necessary to compute reliability. This includes element stresses, temperatures, volumes, and areas. The SCARE program computes two-parameter Weibull strength distributions from input fracture data for both volume and surface flaws. The distributions can then be used to calculate the reliability of geometrically complex components subjected to multiaxial stress states. Several fracture criteria and flaw types are available for selection by the user, including out-of-plane crack extension theories. The theoretical basis for the reliability calculations was proposed by Batdorf. These models combine linear elastic fracture mechanics (LEFM) with Weibull statistics to provide a mechanistic failure criterion. Other fracture theories included in SCARE are the normal stress averaging technique and the principle of independent action. The objective of this presentation is to summarize these theories, including their limitations and advantages, and to provide a general description of the SCARE program, along with example problems.
Thermal-stress analysis for a wood composite blade
NASA Technical Reports Server (NTRS)
Fu, K. C.; Harb, A.
1984-01-01
A thermal-stress analysis of a wind turbine blade made of wood composite material is reported. First, the governing partial differential equation on heat conduction is derived, then, a finite element procedure using variational approach is developed for the solution of the governing equation. Thus, the temperature distribution throughout the blade is determined. Next, based on the temperature distribution, a finite element procedure using potential energy approach is applied to determine the thermal-stress distribution. A set of results is obtained through the use of a computer, which is considered to be satisfactory. All computer programs are contained in the report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Runnels, Scott Robert; Caldwell, Wendy; Brown, Barton Jed
The two primary purposes of LANL’s Computational Physics Student Summer Workshop are (1) To educate graduate and exceptional undergraduate students in the challenges and applications of computational physics of interest to LANL, and (2) Entice their interest toward those challenges. Computational physics is emerging as a discipline in its own right, combining expertise in mathematics, physics, and computer science. The mathematical aspects focus on numerical methods for solving equations on the computer as well as developing test problems with analytical solutions. The physics aspects are very broad, ranging from low-temperature material modeling to extremely high temperature plasma physics, radiation transportmore » and neutron transport. The computer science issues are concerned with matching numerical algorithms to emerging architectures and maintaining the quality of extremely large codes built to perform multi-physics calculations. Although graduate programs associated with computational physics are emerging, it is apparent that the pool of U.S. citizens in this multi-disciplinary field is relatively small and is typically not focused on the aspects that are of primary interest to LANL. Furthermore, more structured foundations for LANL interaction with universities in computational physics is needed; historically interactions rely heavily on individuals’ personalities and personal contacts. Thus a tertiary purpose of the Summer Workshop is to build an educational network of LANL researchers, university professors, and emerging students to advance the field and LANL’s involvement in it. This report includes both the background for the program and the reports from the students.« less
Computing Operating Characteristics Of Bearing/Shaft Systems
NASA Technical Reports Server (NTRS)
Moore, James D.
1996-01-01
SHABERTH computer program predicts operating characteristics of bearings in multibearing load-support system. Lubricated and nonlubricated bearings modeled. Calculates loads, torques, temperatures, and fatigue lives of ball and/or roller bearings on single shaft. Provides for analysis of reaction of system to termination of supply of lubricant to bearings and other lubricated mechanical elements. Valuable in design and analysis of shaft/bearing systems. Two versions of SHABERTH available. Cray version (LEW-14860), "Computing Thermal Performances Of Shafts and Bearings". IBM PC version (MFS-28818), written for IBM PC-series and compatible computers running MS-DOS.
LENMODEL: A forward model for calculating length distributions and fission-track ages in apatite
NASA Astrophysics Data System (ADS)
Crowley, Kevin D.
1993-05-01
The program LENMODEL is a forward model for annealing of fission tracks in apatite. It provides estimates of the track-length distribution, fission-track age, and areal track density for any user-supplied thermal history. The program approximates the thermal history, in which temperature is represented as a continuous function of time, by a series of isothermal steps of various durations. Equations describing the production of tracks as a function of time and annealing of tracks as a function of time and temperature are solved for each step. The step calculations are summed to obtain estimates for the entire thermal history. Computational efficiency is maximized by performing the step calculations backwards in model time. The program incorporates an intuitive and easy-to-use graphical interface. Thermal history is input to the program using a mouse. Model options are specified by selecting context-sensitive commands from a bar menu. The program allows for considerable selection of equations and parameters used in the calculations. The program was written for PC-compatible computers running DOS TM 3.0 and above (and Windows TM 3.0 or above) with VGA or SVGA graphics and a Microsoft TM-compatible mouse. Single copies of a runtime version of the program are available from the author by written request as explained in the last section of this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goltz, G.; Kaiser, L.M.; Weiner, H.
A major mission of the U.S. Coast Guard is the task of providing and maintaining Maritime Aids to Navigation. These aids are located on and near the coastline and inland waters of the United States and its possessions. A computer program, Design Synthesis and Performance Analysis (DSPA), has been developed by the Jet Propulsion Laboratory to demonstrate the feasibility of low-cost solar array/battery power systems for use on flashing lamp buoys. To provide detailed, realistic temperature, wind, and solar insolation data for analysis of the flashing lamp buoy power systems, the two DSPA support computer program sets: MERGE and STATmore » were developed. A general description of these two packages is presented in this program summary report. The MERGE program set will enable the Coast Guard to combine temperature and wind velocity data (NOAA TDF-14 tapes) with solar insolation data (NOAA DECK-280 tapes) onto a single sequential MERGE file containing up to 12 years of hourly observations. This MERGE file can then be used as direct input to the DSPA program. The STAT program set will enable a statistical analysis to be performed of the MERGE data and produce high or low or mean profiles of the data and/or do a worst case analysis. The STAT output file consists of a one-year set of hourly statistical weather data which can be used as input to the DSPA program.« less
User's guide to the UTIL-ODRC tape processing program. [for the Orbital Data Reduction Center
NASA Technical Reports Server (NTRS)
Juba, S. M. (Principal Investigator)
1981-01-01
The UTIL-ODRC computer compatible tape processing program, its input/output requirements, and its interface with the EXEC 8 operating system are described. It is a multipurpose orbital data reduction center (ODRC) tape processing program enabling the user to create either exact duplicate tapes and/or tapes in SINDA/HISTRY format. Input data elements for PRAMPT/FLOPLT and/or BATCH PLOT programs, a temperature summary, and a printed summary can also be produced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunn, B. D.; Diamond, S. C.; Bennett, G. A.
1977-10-01
A set of computer programs, called Cal-ERDA, is described that is capable of rapid and detailed analysis of energy consumption in buildings. A new user-oriented input language, named the Building Design Language (BDL), has been written to allow simplified manipulation of the many variables used to describe a building and its operation. This manual provides the user with information necessary to understand in detail the Cal-ERDA set of computer programs. The new computer programs described include: an EXECUTIVE Processor to create computer system control commands; a BDL Processor to analyze input instructions, execute computer system control commands, perform assignments andmore » data retrieval, and control the operation of the LOADS, SYSTEMS, PLANT, ECONOMICS, and REPORT programs; a LOADS analysis program that calculates peak (design) zone and hourly loads and the effect of the ambient weather conditions, the internal occupancy, lighting, and equipment within the building, as well as variations in the size, location, orientation, construction, walls, roofs, floors, fenestrations, attachments (awnings, balconies), and shape of a building; a Heating, Ventilating, and Air-Conditioning (HVAC) SYSTEMS analysis program capable of modeling the operation of HVAC components including fans, coils, economizers, humidifiers, etc.; 16 standard configurations and operated according to various temperature and humidity control schedules. A plant equipment program models the operation of boilers, chillers, electrical generation equipment (diesel or turbines), heat storage apparatus (chilled or heated water), and solar heating and/or cooling systems. An ECONOMIC analysis program calculates life-cycle costs. A REPORT program produces tables of user-selected variables and arranges them according to user-specified formats. A set of WEATHER ANALYSIS programs manipulates, summarizes and plots weather data. Libraries of weather data, schedule data, and building data were prepared.« less
NASA Technical Reports Server (NTRS)
Aggarwal, Arun K.
1993-01-01
The computer program SASHBEAN (Sikorsky Aircraft Spherical Roller High Speed Bearing Analysis) analyzes and predicts the operating characteristics of a Single Row, Angular Contact, Spherical Roller Bearing (SRACSRB). The program runs on an IBM or IBM compatible personal computer, and for a given set of input data analyzes the bearing design for it's ring deflections (axial and radial), roller deflections, contact areas and stresses, induced axial thrust, rolling element and cage rotation speeds, lubrication parameters, fatigue lives, and amount of heat generated in the bearing. The dynamic loading of rollers due to centrifugal forces and gyroscopic moments, which becomes quite significant at high speeds, is fully considered in this analysis. For a known application and it's parameters, the program is also capable of performing steady-state and time-transient thermal analyses of the bearing system. The steady-state analysis capability allows the user to estimate the expected steady-state temperature map in and around the bearing under normal operating conditions. On the other hand, the transient analysis feature provides the user a means to simulate the 'lost lubricant' condition and predict a time-temperature history of various critical points in the system. The bearing's 'time-to-failure' estimate may also be made from this (transient) analysis by considering the bearing as failed when a certain temperature limit is reached in the bearing components. The program is fully interactive and allows the user to get started and access most of its features with a minimal of training. For the most part, the program is menu driven, and adequate help messages were provided to guide a new user through various menu options and data input screens. All input data, both for mechanical and thermal analyses, are read through graphical input screens, thereby eliminating any need of a separate text editor/word processor to edit/create data files. Provision is also available to select and view the contents of output files on the monitor screen if no paper printouts are required. A separate volume (Volume-2) of this documentation describes, in detail, the underlying mathematical formulations, assumptions, and solution algorithms of this program.
Experimental and theoretical studies of near-ground acoustic radiation propagation in the atmosphere
NASA Astrophysics Data System (ADS)
Belov, Vladimir V.; Burkatovskaya, Yuliya B.; Krasnenko, Nikolai P.; Rakov, Aleksandr S.; Rakov, Denis S.; Shamanaeva, Liudmila G.
2017-11-01
Results of experimental and theoretical studies of the process of near-ground propagation of monochromatic acoustic radiation on atmospheric paths from a source to a receiver taking into account the contribution of multiple scattering on fluctuations of atmospheric temperature and wind velocity, refraction of sound on the wind velocity and temperature gradients, and its reflection by the underlying surface for different models of the atmosphere depending the sound frequency, coefficient of reflection from the underlying surface, propagation distance, and source and receiver altitudes are presented. Calculations were performed by the Monte Carlo method using the local estimation algorithm by the computer program developed by the authors. Results of experimental investigations under controllable conditions are compared with theoretical estimates and results of analytical calculations for the Delany-Bazley impedance model. Satisfactory agreement of the data obtained confirms the correctness of the suggested computer program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eperin, A.P.; Zakharzhevsky, Yu.O.; Arzhaev, A.I.
A two-year Finnish-Russian cooperation program has been initiated in 1995 to demonstrate the applicability of the leak-before-break concept (LBB) to the primary circuit piping of the Leningrad NPP. The program includes J-R curve testing of authentic pipe materials at full operating temperature, screening and computational LBB analyses complying with the USNRC Standard Review Plan 3.6.3, and exchange of LBB-related information with emphasis on NDE. Domestic computer codes are mainly used, and all tests and analyses are independently carried out by each party. The results are believed to apply generally to RBMK type plants of the first generation.
Design and Operating Characteristics of High-Speed, Small-Bore Cylindrical-Roller Bearings
NASA Technical Reports Server (NTRS)
Pinel, Stanley, I.; Signer, Hans R.; Zaretsky, Erwin V.
2000-01-01
The computer program SHABERTH was used to analyze 35-mm-bore cylindrical roller bearings designed and manufactured for high-speed turbomachinery applications. Parametric tests of the bearings were conducted on a high-speed, high-temperature bearing tester and the results were compared with the computer predictions. Bearings with a channeled inner ring were lubricated through the inner ring, while bearings with a channeled outer ring were lubricated with oil jets. Tests were run with and without outer-ring cooling. The predicted bearing life decreased with increasing speed because of increased contact stresses caused by centrifugal load. Lower temperatures, less roller skidding, and lower power losses were obtained with channeled inner rings. Power losses calculated by the SHABERTH computer program correlated reasonably well with the test results. The Parker formula for XCAV (used in SHABERTH as a measure of oil volume in the bearing cavity) needed to be adjusted to reflect the prevailing operating conditions. The XCAV formula will need to be further refined to reflect roller bearing lubrication, ring design, cage design, and location of the cage-controlling land.
Extravehicular mobility unit thermal simulator
NASA Technical Reports Server (NTRS)
Hixon, C. W.; Phillips, M. A.
1973-01-01
The analytical methods, thermal model, and user's instructions for the SIM bay extravehicular mobility unit (EMU) routine are presented. This digital computer program was developed for detailed thermal performance predictions of the crewman performing a command module extravehicular activity during transearth coast. It accounts for conductive, convective, and radiative heat transfer as well as fluid flow and associated flow control components. The program is a derivative of the Apollo lunar surface EMU digital simulator. It has the operational flexibility to accept card or magnetic tape for both the input data and program logic. Output can be tabular and/or plotted and the mission simulation can be stopped and restarted at the discretion of the user. The program was developed for the NASA-JSC Univac 1108 computer system and several of the capabilities represent utilization of unique features of that system. Analytical methods used in the computer routine are based on finite difference approximations to differential heat and mass balance equations which account for temperature or time dependent thermo-physical properties.
NASA Technical Reports Server (NTRS)
Favor, R. J.; Maykuth, D. J.; Bartlett, E. S.; Mindlin, H.
1972-01-01
A program to determine the characteristics of two coated columbium alloy systems for spacecraft structures is discussed. The alloy was evaluated as coated base material, coated butt-welded material, and material thermal/pressure cycled prior to testing up to 30 cycles. Evaluation was by means of tensile tests covering the temperature range to 2400 F. Design allowables were computed and are presented as tables of data. The summary includes a room temperature property table, effect of temperature curves, and typical stress-strain curves.
G189A analytical simulation of the RITE Integrated Waste Management-Water System
NASA Technical Reports Server (NTRS)
Coggi, J. V.; Clonts, S. E.
1974-01-01
This paper discusses the computer simulation of the Integrated Waste Management-Water System Using Radioisotopes for Thermal Energy (RITE) and applications of the simulation. Variations in the system temperature and flows due to particular operating conditions and variations in equipment heating loads imposed on the system were investigated with the computer program. The results were assessed from the standpoint of the computed dynamic characteristics of the system and the potential applications of the simulation to system development and vehicle integration.
Computer Simulation Of Cyclic Oxidation
NASA Technical Reports Server (NTRS)
Probst, H. B.; Lowell, C. E.
1990-01-01
Computer model developed to simulate cyclic oxidation of metals. With relatively few input parameters, kinetics of cyclic oxidation simulated for wide variety of temperatures, durations of cycles, and total numbers of cycles. Program written in BASICA and run on any IBM-compatible microcomputer. Used in variety of ways to aid experimental research. In minutes, effects of duration of cycle and/or number of cycles on oxidation kinetics of material surveyed.
Sizing-tube-fin space radiators
NASA Technical Reports Server (NTRS)
Peoples, J. A.
1978-01-01
Temperature and size considerations of the tube fin space radiator were characterized by charts and equations. An approach of accurately assessing rejection capability commensurate with a phase A/B level output is reviewed. A computer program, based on Mackey's equations, is also presented which sizes the rejection area for a given thermal load. The program also handles the flow and thermal considerations of the film coefficient.
Joint Services Electronics Program.
1980-05-01
STATEMMEN A Approved for public release, COD Distribution Unlimited.99 Joint Services Electronics Program* _-ANNUAL PROGRESS RP O. 93) 7 / Covering Period...and the temperature dependence of that (dispersive transport) trap limited mobility has shown interesting new effects. Publications of the Research...Low-Cost Laboratory Computer Interface System," (Scheduled for publication May, 1980, Review ot Scinti’i3 Instruments). | i III. INFORMATION
NASA Technical Reports Server (NTRS)
DeBaca, Richard C.; Sarkissian, Edwin; Madatyan, Mariyetta; Shepard, Douglas; Gluck, Scott; Apolinski, Mark; McDuffie, James; Tremblay, Dennis
2006-01-01
TES L1B Subsystem is a computer program that performs several functions for the Tropospheric Emission Spectrometer (TES). The term "L1B" (an abbreviation of "level 1B"), refers to data, specific to the TES, on radiometric calibrated spectral radiances and their corresponding noise equivalent spectral radiances (NESRs), plus ancillary geolocation, quality, and engineering data. The functions performed by TES L1B Subsystem include shear analysis, monitoring of signal levels, detection of ice build-up, and phase correction and radiometric and spectral calibration of TES target data. Also, the program computes NESRs for target spectra, writes scientific TES level-1B data to hierarchical- data-format (HDF) files for public distribution, computes brightness temperatures, and quantifies interpixel signal variability for the purpose of first-order cloud and heterogeneous land screening by the level-2 software summarized in the immediately following article. This program uses an in-house-developed algorithm, called "NUSRT," to correct instrument line-shape factors.
NASA Technical Reports Server (NTRS)
Majumdar, A. K.
2011-01-01
The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors and external body forces such as gravity and centrifugal. The thermofluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the point, drag and click method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids and 21 different resistance/source options are provided for modeling momentum sources or sinks in the branches. This Technical Memorandum illustrates the application and verification of the code through 12 demonstrated example problems. This supplement gives the input and output data files for the examples.
NASA Technical Reports Server (NTRS)
Roberts, Floyd E., III
1994-01-01
Software provides for control and acquisition of data from optical pyrometer. There are six individual programs in PYROLASER package. Provides quick and easy way to set up, control, and program standard Pyrolaser. Temperature and emisivity measurements either collected as if Pyrolaser in manual operating mode or displayed on real-time strip charts and stored in standard spreadsheet format for posttest analysis. Shell supplied to allow macros, which are test-specific, added to system easily. Written using Labview software for use on Macintosh-series computers running System 6.0.3 or later, Sun Sparc-series computers running Open-Windows 3.0 or MIT's X Window System (X11R4 or X11R5), and IBM PC or compatible computers running Microsoft Windows 3.1 or later.
Probabilistic lifetime strength of aerospace materials via computational simulation
NASA Technical Reports Server (NTRS)
Boyce, Lola; Keating, Jerome P.; Lovelace, Thomas B.; Bast, Callie C.
1991-01-01
The results of a second year effort of a research program are presented. The research included development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic phenomenological constitutive relationship, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subjected to a number of effects of primitive variables. These primitive variables often originate in the environment and may include stress from loading, temperature, chemical, or radiation attack. This multifactor interaction constitutive equation is included in the computer program, PROMISS. Also included in the research is the development of methodology to calibrate the constitutive equation using actual experimental materials data together with the multiple linear regression of that data.
NASA Technical Reports Server (NTRS)
Tripp, L. L.; Tamekuni, M.; Viswanathan, A. V.
1973-01-01
The use of the computer program BUCLASP3 is described. The code is intended for thermal stress and instability analyses of structures such as unidirectionally stiffened panels. There are two types of instability analyses that can be effected by PAINT; (1) thermal buckling, and (2) buckling due to a specified inplane biaxial loading. Any structure that has a constant cross section in one direction, that may be idealized as an assemblage of beam elements and laminated flat and curved plate strip-elements can be analyzed. The two parallel ends of the panel must be simply supported, whereas arbitrary elastic boundary conditions may be imposed along any one or both external longitudinal side. Any variation in the temperature rise (from ambient) through the cross section of a panel is considered in the analyses but it must be assumed that in the longitudinal direction the temperature field is constant. Load distributions for the externally applied inplane biaxial loads are similar in nature to the permissible temperature field.
Simulation of Propagation of Compartment Fire on Building Facades
NASA Astrophysics Data System (ADS)
Simion, A.; Dragne, H.; Stoica, D.; Anghel, I.
2018-06-01
The façade fire simulation of buildings is carried out with Pyrosim numerical fire modeling program, following the implementation of a fire scenario in this simulation program. The scenario that was implemented in the Pyrosim program by researchers from the INCERC Fire Safety Research and Testing Laboratory complied with the requirements of BS 8414. The results obtained following the run of the computational program led to the visual validation of effluents at different time points from the beginning of the thermal load burning, as well as the validation in terms of recorded temperatures. It is considered that the results obtained are reasonable, the test being fully validated from the point of view of the implementation of the fire scenario, of the correct development of the effluents and of the temperature values [1].
Real-time aerodynamic heating and surface temperature calculations for hypersonic flight simulation
NASA Technical Reports Server (NTRS)
Quinn, Robert D.; Gong, Leslie
1990-01-01
A real-time heating algorithm was derived and installed on the Ames Research Center Dryden Flight Research Facility real-time flight simulator. This program can calculate two- and three-dimensional stagnation point surface heating rates and surface temperatures. The two-dimensional calculations can be made with or without leading-edge sweep. In addition, upper and lower surface heating rates and surface temperatures for flat plates, wedges, and cones can be calculated. Laminar or turbulent heating can be calculated, with boundary-layer transition made a function of free-stream Reynolds number and free-stream Mach number. Real-time heating rates and surface temperatures calculated for a generic hypersonic vehicle are presented and compared with more exact values computed by a batch aeroheating program. As these comparisons show, the heating algorithm used on the flight simulator calculates surface heating rates and temperatures well within the accuracy required to evaluate flight profiles for acceptable heating trajectories.
Microwave brightness temperature of a windblown sea
NASA Technical Reports Server (NTRS)
Hall, F. G.
1972-01-01
A mathematical model is developed for the apparent temperature of the sea at all microwave frequencies. The model is a numerical model in which both the clear water structure and white water are accounted for as a function of wind speed. The model produces results similar to Stogryn's model at 19.35 GHz for wind speeds less than 8 m/sec; it can use radiosonde data to calculate atmospheric effects and can incorporate an empirically determined antenna gain pattern. The corresponding computer program is of modular design and the logic of the main program is capable of treating a horizontally inhomogeneous surface or atmosphere. It is shown that a variation of microwave brightness temperature with zenith angle is necessary to produce the wind sensitivity of the horizontally polarized brightness temperature; the variation of sky temperature with frequency is sufficient to produce a frequency dependent wind sensitivity.
NASA Technical Reports Server (NTRS)
Rule, W. K.; Giridharan, V.
1991-01-01
A family of user-friendly, DOS PC based, Microsoft BASIC programs written to provide spacecraft designers with empirical predictions of space debris damage to orbiting spacecraft are described. Spacecraft wall temperatures and condensate formation is also predicted. The spacecraft wall configuration is assumed to consist of multilayered insulation (MLI) placed between a Whipple style bumper and the pressure wall. Impact damage predictions are based on data sets of experimental results obtained from simulating debris impacts on spacecraft using light gas guns on earth. A module of the program facilitates the creation of the database of experimental results that is used by the damage prediction modules to predict damage to the bumper, the MLI, and the pressure wall. A finite difference technique is used to predict temperature distributions in the pressure wall, the MLI, and the bumper. Condensate layer thickness is predicted for the case where the pressure wall temperature drops below the dew point temperature of the spacecraft atmosphere.
Upgrade to the Cryogenic Hydrogen Gas Target Monitoring System
NASA Astrophysics Data System (ADS)
Slater, Michael; Tribble, Robert
2013-10-01
The cryogenic hydrogen gas target at Texas A&M is a vital component for creating a secondary radioactive beam that is then used in experiments in the Momentum Achromat Recoil Spectrometer (MARS). A stable beam from the K500 superconducting cyclotron enters the gas cell and some incident particles are transmuted by a nuclear reaction into a radioactive beam, which are separated from the primary beam and used in MARS experiments. The pressure in the target chamber is monitored so that a predictable isotope production rate can be assured. A ``black box'' received the analog pressure data and sent RS232 serial data through an outdated serial connection to an outdated Visual Basic 6 (VB6) program, which plotted the chamber pressure continuously. The black box has been upgraded to an Arduino UNO microcontroller [Atmel Inc.], which can receive the pressure data and output via USB to a computer. It has been programmed to also accept temperature data for future upgrade. A new computer program, with updated capabilities, has been written in Python. The software can send email alerts, create audible alarms through the Arduino, and plot pressure and temperature. The program has been designed to better fit the needs of the users. Funded by DOE and NSF-REU Program.
Stream temperature investigations: field and analytic methods
Bartholow, J.M.
1989-01-01
Alternative public domain stream and reservoir temperature models are contrasted with SNTEMP. A distinction is made between steady-flow and dynamic-flow models and their respective capabilities. Regression models are offered as an alternative approach for some situations, with appropriate mathematical formulas suggested. Appendices provide information on State and Federal agencies that are good data sources, vendors for field instrumentation, and small computer programs useful in data reduction.
Computational chemistry research
NASA Technical Reports Server (NTRS)
Levin, Eugene
1987-01-01
Task 41 is composed of two parts: (1) analysis and design studies related to the Numerical Aerodynamic Simulation (NAS) Extended Operating Configuration (EOC) and (2) computational chemistry. During the first half of 1987, Dr. Levin served as a member of an advanced system planning team to establish the requirements, goals, and principal technical characteristics of the NAS EOC. A paper entitled 'Scaling of Data Communications for an Advanced Supercomputer Network' is included. The high temperature transport properties (such as viscosity, thermal conductivity, etc.) of the major constituents of air (oxygen and nitrogen) were correctly determined. The results of prior ab initio computer solutions of the Schroedinger equation were combined with the best available experimental data to obtain complete interaction potentials for both neutral and ion-atom collision partners. These potentials were then used in a computer program to evaluate the collision cross-sections from which the transport properties could be determined. A paper entitled 'High Temperature Transport Properties of Air' is included.
Elevated temperature crack growth
NASA Technical Reports Server (NTRS)
Malik, S. N.; Vanstone, R. H.; Kim, K. S.; Laflen, J. H.
1985-01-01
The purpose is to determine the ability of currently available P-I integrals to correlate fatigue crack propagation under conditions that simulate the turbojet engine combustor liner environment. The utility of advanced fracture mechanics measurements will also be evaluated during the course of the program. To date, an appropriate specimen design, a crack displacement measurement method, and boundary condition simulation in the computational model of the specimen were achieved. Alloy 718 was selected as an analog material based on its ability to simulate high temperature behavior at lower temperatures. Tensile and cyclic tests were run at several strain rates so that an appropriate constitutive model could be developed. Suitable P-I integrals were programmed into a finite element post-processor for eventual comparison with experimental data.
Temperature specification in atomistic molecular dynamics and its impact on simulation efficacy
NASA Astrophysics Data System (ADS)
Ocaya, R. O.; Terblans, J. J.
2017-10-01
Temperature is a vital thermodynamical function for physical systems. Knowledge of system temperature permits assessment of system ergodicity, entropy, system state and stability. Rapid theoretical and computational developments in the fields of condensed matter physics, chemistry, material science, molecular biology, nanotechnology and others necessitate clarity in the temperature specification. Temperature-based materials simulations, both standalone and distributed computing, are projected to grow in prominence over diverse research fields. In this article we discuss the apparent variability of temperature modeling formalisms used currently in atomistic molecular dynamics simulations, with respect to system energetics,dynamics and structural evolution. Commercial simulation programs, which by nature are heuristic, do not openly discuss this fundamental question. We address temperature specification in the context of atomistic molecular dynamics. We define a thermostat at 400K relative to a heat bath at 300K firstly using a modified ab-initio Newtonian method, and secondly using a Monte-Carlo method. The thermostatic vacancy formation and cohesion energies, equilibrium lattice constant for FCC copper is then calculated. Finally we compare and contrast the results.
Determining noise temperatures in beam waveguide systems
NASA Technical Reports Server (NTRS)
Imbriale, W.; Veruttipong, W.; Otoshi, T.; Franco, M.
1994-01-01
A new 34-m research and development antenna was fabricated and tested as a precursor to introducing beam waveguide (BWG) antennas and Ka-band (32 GHz) frequencies into the NASA/JPL Deep Space Network. For deep space use, system noise temperature is a critical parameter. There are thought to be two major contributors to noise temperature in a BWG system: the spillover past the mirrors, and the conductivity loss in the walls. However, to date, there are no generally accepted methods for computing noise temperatures in a beam waveguide system. An extensive measurement program was undertaken to determine noise temperatures in such a system along with a correspondent effort in analytic prediction. Utilizing a very sensitive radiometer, noise temperature measurements were made at the Cassegrain focus, an intermediate focal point, and the focal point in the basement pedestal room. Several different horn diameters were used to simulate different amounts of spillover past the mirrors. Two analytic procedures were developed for computing noise temperature, one utilizing circular waveguide modes and the other a semiempirical approach. The results of both prediction methods are compared to the experimental data.
Visualization assisted by parallel processing
NASA Astrophysics Data System (ADS)
Lange, B.; Rey, H.; Vasques, X.; Puech, W.; Rodriguez, N.
2011-01-01
This paper discusses the experimental results of our visualization model for data extracted from sensors. The objective of this paper is to find a computationally efficient method to produce a real time rendering visualization for a large amount of data. We develop visualization method to monitor temperature variance of a data center. Sensors are placed on three layers and do not cover all the room. We use particle paradigm to interpolate data sensors. Particles model the "space" of the room. In this work we use a partition of the particle set, using two mathematical methods: Delaunay triangulation and Voronoý cells. Avis and Bhattacharya present these two algorithms in. Particles provide information on the room temperature at different coordinates over time. To locate and update particles data we define a computational cost function. To solve this function in an efficient way, we use a client server paradigm. Server computes data and client display this data on different kind of hardware. This paper is organized as follows. The first part presents related algorithm used to visualize large flow of data. The second part presents different platforms and methods used, which was evaluated in order to determine the better solution for the task proposed. The benchmark use the computational cost of our algorithm that formed based on located particles compared to sensors and on update of particles value. The benchmark was done on a personal computer using CPU, multi core programming, GPU programming and hybrid GPU/CPU. GPU programming method is growing in the research field; this method allows getting a real time rendering instates of a precompute rendering. For improving our results, we compute our algorithm on a High Performance Computing (HPC), this benchmark was used to improve multi-core method. HPC is commonly used in data visualization (astronomy, physic, etc) for improving the rendering and getting real-time.
Kuu, Wei Y; Nail, Steven L
2009-09-01
Computer programs in FORTRAN were developed to rapidly determine the optimal shelf temperature, T(f), and chamber pressure, P(c), to achieve the shortest primary drying time. The constraint for the optimization is to ensure that the product temperature profile, T(b), is below the target temperature, T(target). Five percent mannitol was chosen as the model formulation. After obtaining the optimal sets of T(f) and P(c), each cycle was assigned with a cycle rank number in terms of the length of drying time. Further optimization was achieved by dividing the drying time into a series of ramping steps for T(f), in a cascading manner (termed the cascading T(f) cycle), to further shorten the cycle time. For the purpose of demonstrating the validity of the optimized T(f) and P(c), four cycles with different predicted lengths of drying time, along with the cascading T(f) cycle, were chosen for experimental cycle runs. Tunable diode laser absorption spectroscopy (TDLAS) was used to continuously measure the sublimation rate. As predicted, maximum product temperatures were controlled slightly below the target temperature of -25 degrees C, and the cascading T(f)-ramping cycle is the most efficient cycle design. In addition, the experimental cycle rank order closely matches with that determined by modeling.
Thermal-stress analysis for wood composite blade. [horizontal axis wind turbines
NASA Technical Reports Server (NTRS)
Fu, K. C.; Harb, A.
1984-01-01
The thermal-stress induced by solar insolation on a wood composite blade of a Mod-OA wind turbine was investigated. The temperature distribution throughout the blade (a heat conduction problem) was analyzed and the thermal-stress distribution of the blades caused by the temperature distribution (a thermal-stress analysis problem) was then determined. The computer programs used for both problems are included along with output examples.
A data acquisition and control program for axial-torsional fatigue testing
NASA Technical Reports Server (NTRS)
Kalluri, Sreeramesh; Bonacuse, Peter J.
1989-01-01
A computer program was developed for data acquisition and control of axial-torsional fatigue experiments. The multitasked, interrupt-driven program was written in Pascal and Assembly. This program is capable of dual-channel control and six-channel data acquisition. It can be utilized to perform inphase and out-of-phase axial-torsional isothermal fatigue or deformation experiments. The program was successfully used to conduct inphase axial-torsional fatigue experiments on 304 stainless steel at room temperature and on Hastelloy X at 800 C. The details of the software and some of the results generated to date are presented.
NASA Technical Reports Server (NTRS)
Johnson, F. T.; Samant, S. S.; Bieterman, M. B.; Melvin, R. G.; Young, D. P.; Bussoletti, J. E.; Hilmes, C. L.
1992-01-01
The TranAir computer program calculates transonic flow about arbitrary configurations at subsonic, transonic, and supersonic freestream Mach numbers. TranAir solves the nonlinear full potential equations subject to a variety of boundary conditions modeling wakes, inlets, exhausts, porous walls, and impermeable surfaces. Regions with different total temperature and pressure can be represented. The user's manual describes how to run the TranAir program and its graphical support programs.
ERIC Educational Resources Information Center
Wai, C. M.; Hutchinson, S. G.
1989-01-01
Discusses the calculation of free energy in reactions between silicon dioxide and carbon. Describes several computer programs for calculating the free energy minimization and their uses in chemistry classrooms. Lists 16 references. (YP)
40 CFR 86.1809-10 - Prohibition of defeat devices.
Code of Federal Regulations, 2014 CFR
2014-07-01
... programs, engineering evaluations, design specifications, calibrations, on-board computer algorithms, and..., with the Part II certification application, an engineering evaluation demonstrating to the satisfaction... not occur in the temperature range of 20 to 86 °F. For diesel vehicles, the engineering evaluation...
RNAiFold2T: Constraint Programming design of thermo-IRES switches.
Garcia-Martin, Juan Antonio; Dotu, Ivan; Fernandez-Chamorro, Javier; Lozano, Gloria; Ramajo, Jorge; Martinez-Salas, Encarnacion; Clote, Peter
2016-06-15
RNA thermometers (RNATs) are cis-regulatory elements that change secondary structure upon temperature shift. Often involved in the regulation of heat shock, cold shock and virulence genes, RNATs constitute an interesting potential resource in synthetic biology, where engineered RNATs could prove to be useful tools in biosensors and conditional gene regulation. Solving the 2-temperature inverse folding problem is critical for RNAT engineering. Here we introduce RNAiFold2T, the first Constraint Programming (CP) and Large Neighborhood Search (LNS) algorithms to solve this problem. Benchmarking tests of RNAiFold2T against existent programs (adaptive walk and genetic algorithm) inverse folding show that our software generates two orders of magnitude more solutions, thus allowing ample exploration of the space of solutions. Subsequently, solutions can be prioritized by computing various measures, including probability of target structure in the ensemble, melting temperature, etc. Using this strategy, we rationally designed two thermosensor internal ribosome entry site (thermo-IRES) elements, whose normalized cap-independent translation efficiency is approximately 50% greater at 42 °C than 30 °C, when tested in reticulocyte lysates. Translation efficiency is lower than that of the wild-type IRES element, which on the other hand is fully resistant to temperature shift-up. This appears to be the first purely computational design of functional RNA thermoswitches, and certainly the first purely computational design of functional thermo-IRES elements. RNAiFold2T is publicly available as part of the new release RNAiFold3.0 at https://github.com/clotelab/RNAiFold and http://bioinformatics.bc.edu/clotelab/RNAiFold, which latter has a web server as well. The software is written in C ++ and uses OR-Tools CP search engine. clote@bc.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Souza, W.R.
1987-01-01
This report documents a graphical display program for the U. S. Geological Survey finite-element groundwater flow and solute transport model. Graphic features of the program, SUTRA-PLOT (SUTRA-PLOT = saturated/unsaturated transport), include: (1) plots of the finite-element mesh, (2) velocity vector plots, (3) contour plots of pressure, solute concentration, temperature, or saturation, and (4) a finite-element interpolator for gridding data prior to contouring. SUTRA-PLOT is written in FORTRAN 77 on a PRIME 750 computer system, and requires Version 9.0 or higher of the DISSPLA graphics library. The program requires two input files: the SUTRA input data list and the SUTRA simulation output listing. The program is menu driven and specifications for individual types of plots are entered and may be edited interactively. Installation instruction, a source code listing, and a description of the computer code are given. Six examples of plotting applications are used to demonstrate various features of the plotting program. (Author 's abstract)
Computer analysis of digital well logs
Scott, James H.
1984-01-01
A comprehensive system of computer programs has been developed by the U.S. Geological Survey for analyzing digital well logs. The programs are operational on a minicomputer in a research well-logging truck, making it possible to analyze and replot the logs while at the field site. The minicomputer also serves as a controller of digitizers, counters, and recorders during acquisition of well logs. The analytical programs are coordinated with the data acquisition programs in a flexible system that allows the operator to make changes quickly and easily in program variables such as calibration coefficients, measurement units, and plotting scales. The programs are designed to analyze the following well-logging measurements: natural gamma-ray, neutron-neutron, dual-detector density with caliper, magnetic susceptibility, single-point resistance, self potential, resistivity (normal and Wenner configurations), induced polarization, temperature, sonic delta-t, and sonic amplitude. The computer programs are designed to make basic corrections for depth displacements, tool response characteristics, hole diameter, and borehole fluid effects (when applicable). Corrected well-log measurements are output to magnetic tape or plotter with measurement units transformed to petrophysical and chemical units of interest, such as grade of uranium mineralization in percent eU3O8, neutron porosity index in percent, and sonic velocity in kilometers per second.
Zero-G Thermodynamic Venting System (TVS) Performance Prediction Program
NASA Technical Reports Server (NTRS)
Nguyen, Han
1994-01-01
This report documents the Zero-g Thermodynamic Venting System (TVS) performance prediction computer program. The zero-g TVS is a device that destratifies and rejects environmentally induced zero-g thermal gradients in the LH2 storage transfer system. A recirculation pump and spray injection manifold recirculates liquid throughout the length of the tank thereby destratifying both the ullage gas and liquid bulk. Heat rejection is accomplished by the opening of the TVS control valve which allows a small flow rate to expand to a low pressure thereby producing a low temperature heat sink which is used to absorb heat from the recirculating liquid flow. The program was written in FORTRAN 77 language on the HP-9000 and IBM PC computers. It can be run on various platforms with a FORTRAN compiler.
Computing Cooling Flows in Turbines
NASA Technical Reports Server (NTRS)
Gauntner, J.
1986-01-01
Algorithm developed for calculating both quantity of compressor bleed flow required to cool turbine and resulting decrease in efficiency due to cooling air injected into gas stream. Program intended for use with axial-flow, air-breathing, jet-propulsion engines with variety of airfoil-cooling configurations. Algorithm results compared extremely well with figures given by major engine manufacturers for given bulk-metal temperatures and cooling configurations. Program written in FORTRAN IV for batch execution.
SEMI-ANALYTIC CALCULATION OF THE TEMPERATURE DISTRIBUTION IN A PERFORATED CIRCLE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, J.M.; Fowler, J.K.
The flow of heat in a tube-in-shell fuel element is closely related to the two-dimensional heat flow in a circular region perforated by a number of circular holes. Mathematical expressions for the two-dimensional temperature distribution were obtained in terms of sources and sinks of increasing complexity located within the holes and beyond the outer circle. A computer program, TINS, which solves the temperature problem for an array of one or two rings of holes, with or without a center hole, is also described. (auth)
1980-09-01
METHOD OF COLLECTION AND ANALYSIS OF SAMPLES 2 3.1 Temperature 2 3.2 Thermometric Depth 2 3.3 Salinity 2 3.4 Dissolved Oxygen 3 3.5 Chlorinity 3 3.6 pH...or -40 to 600C) being used. The accuracZ of the temperature measurements has been quoted to be within the range ±0.03 C. 3.2 Thermometric Depth jp...Depths were calculated from temperature measurements by the method described by Pollack [91 using computer programs written at MRL. These thermometric
Multidimensional effects in the thermal response of fuel rod simulators. [PWR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dabbs, R.D.; Ott, L.J.
1980-01-01
One of the primary objectives of the Oak Ridge National Laboratory Pressurized-Water Reactor Blowdown Heat Transfer Separate-Effects Program is the determination of the transient surface temperature and surface heat flux of fuel pin simulators (FPSs) from internal thermocouple signals obtained during a loss-of-coolant experiment (LOCE) in the Thermal-Hydraulics Test Facility. This analysis requires the solution of the classical inverse heat conduction problem. The assumptions that allow the governing differential equation to be reduced to one dimension can introduce significant errors in the computed surface heat flux and surface temperature. The degree to which these computed variables are perturbed is addressedmore » and quantified.« less
Computer simulation of the coffee leaf miner using sexual Penna aging model
NASA Astrophysics Data System (ADS)
de Oliveira, A. C. S.; Martins, S. G. F.; Zacarias, M. S.
2008-01-01
Forecast models based on climatic conditions are of great interest in Integrated Pest Management (IPM) programs. The success of these models depends, among other factors, on the knowledge of the temperature effect on the pests’ population dynamics. In this direction, a computer simulation was made for the population dynamics of the coffee leaf miner, L. coffeella, at different temperatures, considering experimental data relative to the pest. The age structure was inserted into the dynamics through sexual Penna Model. The results obtained, such as life expectancy, growth rate and annual generations’ number, in agreement to those in laboratory and field conditions, show that the simulation can be used as a forecast model for controlling L. coffeella.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghrayeb, S. Z.; Ouisloumen, M.; Ougouag, A. M.
2012-07-01
A multi-group formulation for the exact neutron elastic scattering kernel is developed. This formulation is intended for implementation into a lattice physics code. The correct accounting for the crystal lattice effects influences the estimated values for the probability of neutron absorption and scattering, which in turn affect the estimation of core reactivity and burnup characteristics. A computer program has been written to test the formulation for various nuclides. Results of the multi-group code have been verified against the correct analytic scattering kernel. In both cases neutrons were started at various energies and temperatures and the corresponding scattering kernels were tallied.more » (authors)« less
NASA Astrophysics Data System (ADS)
Jones, R. M.; Riley, J. P.; Georges, T. M.
1986-08-01
The modular FORTRAN 77 computer program traces the three-dimensional paths of acoustic rays through continuous model atmospheres by numerically integrating Hamilton's equations (a differential expression of Fermat's principle). The user specifies an atmospheric model by writing closed-form formulas for its three-dimensional wind and temperature (or sound speed) distribution, and by defining the height of the reflecting terrain vs. geographic latitude and longitude. Some general-purpose models are provided, or users can readily design their own. In addition to computing the geometry of each raypath, HARPA can calculate pulse travel time, phase time, Doppler shift (if the medium varies in time), absorption, and geometrical path length. The program prints a step-by-step account of a ray's progress. The 410-page documentation describes the ray-tracing equations and the structure of the program, and provides complete instructions, illustrated by a sample case.
Thermophysical properties of gas phase uranium tetrafluoride
NASA Technical Reports Server (NTRS)
Watanabe, Yoichi; Anghaie, Samim
1993-01-01
Thermophysical data of gaseous uranium tetrafluoride (UF4) are theoretically obtained by taking into account dissociation of molecules at high temperatures (2000-6000 K). Determined quantities include specific heat, optical opacity, diffusion coefficient, viscosity, and thermal conductivity. A computer program is developed for the calculation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrestha, P.; Pham, K.
1995-12-31
Under emergency conditions, a bare overhead conductor can carry an increased amount of current that is well in excess of its normal rating. When there is this increase in current flow on a bare overhead conductor, the temperature does not rise instantaneously. but increases along a curve determined by the current, the conductor properties and the ambient conditions. The conductor temperature at the end of a short-time overload period must be restricted to its maximum design value. This paper presents a simplified approach in analyzing the dynamic performance for bare overhead conductors during short-time overload condition. A computer program wasmore » developed to calculate the short-time ratings for bare overhead conductors. The following parameters: current induced heating. solar load, convective/conductive cooling, radiative cooling, altitude, wind velocity and ampacity of the bare conductor were considered. Several sample graphical output lots are included with the paper.« less
A computer program for the simulation of heat and moisture flow in soils
NASA Technical Reports Server (NTRS)
Camillo, P.; Schmugge, T. J.
1981-01-01
A computer program that simulates the flow of heat and moisture in soils is described. The space-time dependence of temperature and moisture content is described by a set of diffusion-type partial differential equations. The simulator uses a predictor/corrector to numerically integrate them, giving wetness and temperature profiles as a function of time. The simulator was used to generate solutions to diffusion-type partial differential equations for which analytical solutions are known. These equations include both constant and variable diffusivities, and both flux and constant concentration boundary conditions. In all cases, the simulated and analytic solutions agreed to within the error bounds which were imposed on the integrator. Simulations of heat and moisture flow under actual field conditions were also performed. Ground truth data were used for the boundary conditions and soil transport properties. The qualitative agreement between simulated and measured profiles is an indication that the model equations are reasonably accurate representations of the physical processes involved.
Solder creep-fatigue interactions with flexible leaded parts
NASA Technical Reports Server (NTRS)
Ross, R. G., Jr.; Wen, L. C.; Mon, G. R.; Jetter, E.
1992-01-01
With flexible leaded parts, the solder-joint failure process involves a complex interplay of creep and fatigue mechanisms. To better understand the role of creep in typical multi-hour cyclic loading conditions, a specialized non-linear finite-element creep simulation computer program has been formulated. The numerical algorithm includes the complete part-lead-solder-PWB system, accounting for strain-rate dependence of creep on applied stress and temperature, and the role of the part-lead dimensions and flexibility that determine the total creep deflection (solder strain range) during stress relaxation. The computer program has been used to explore the effects of various solder creep-fatigue parameters such as lead height and stiffness, thermal-cycle test profile, and part/board differential thermal expansion properties. One of the most interesting findings is the strong presence of unidirectional creep-ratcheting that occurs during thermal cycling due to temperature dominated strain-rate effects. To corroborate the solder fatigue model predictions, a number of carefully controlled thermal-cycle tests have been conducted using special bimetallic test boards.
An Automated Technique for Estimating Daily Precipitation over the State of Virginia
NASA Technical Reports Server (NTRS)
Follansbee, W. A.; Chamberlain, L. W., III
1981-01-01
Digital IR and visible imagery obtained from a geostationary satellite located over the equator at 75 deg west latitude were provided by NASA and used to obtain a linear relationship between cloud top temperature and hourly precipitation. Two computer programs written in FORTRAN were used. The first program computes the satellite estimate field from the hourly digital IR imagery. The second program computes the final estimate for the entire state area by comparing five preliminary estimates of 24 hour precipitation with control raingage readings and determining which of the five methods gives the best estimate for the day. The final estimate is then produced by incorporating control gage readings into the winning method. In presenting reliable precipitation estimates for every cell in Virginia in near real time on a daily on going basis, the techniques require on the order of 125 to 150 daily gage readings by dependable, highly motivated observers distributed as uniformly as feasible across the state.
AAFE RADSCAT data reduction programs user's guide
NASA Technical Reports Server (NTRS)
Claassen, J. P.
1976-01-01
Theory, design and operation of the computer programs which automate the reduction of joint radiometer and scatterometer observations are presented. The programs reduce scatterometer measurements to the normalized scattering coefficient; whereas the radiometer measurements are converted into antenna temperatures. The programs are both investigator and user oriented. Supplementary parameters are provided to aid in the interpretation of the observations. A hierarchy of diagnostics is available to evaluate the operation of the instrument, the conduct of the experiments and the quality of the records. General descriptions of the programs and their data products are also presented. This document therefore serves as a user's guide to the programs and is therefore intended to serve both the experimenter and the program operator.
NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species
NASA Technical Reports Server (NTRS)
McBride, Bonnie J.; Zehe, Michael J.; Gordon, Sanford
2002-01-01
This report documents the library of thermodynamic data used with the NASA Glenn computer program CEA (Chemical Equilibrium with Applications). This library, containing data for over 2000 solid, liquid, and gaseous chemical species for temperatures ranging from 200 to 20,000 K, is available for use with other computer codes as well. The data are expressed as least-squares coefficients to a seven-term functional form for C((sup o)(sub p)) (T) / R with integration constants for H (sup o) (T) / RT and S(sup o) (T) / R. The NASA Glenn computer program PAC (Properties and Coefficients) was used to calculate thermodynamic functions and to generate the least-squares coefficients. PAC input was taken from a variety of sources. A complete listing of the database is given along with a summary of thermodynamic properties at 0 and 298.15 K.
Computer modeling of photodegradation
NASA Technical Reports Server (NTRS)
Guillet, J.
1986-01-01
A computer program to simulate the photodegradation of materials exposed to terrestrial weathering environments is being developed. Input parameters would include the solar spectrum, the daily levels and variations of temperature and relative humidity, and materials such as EVA. A brief description of the program, its operating principles, and how it works was initially described. After that, the presentation focuses on the recent work of simulating aging in a normal, terrestrial day-night cycle. This is significant, as almost all accelerated aging schemes maintain a constant light illumination without a dark cycle, and this may be a critical factor not included in acceleration aging schemes. For outdoor aging, the computer model is indicating that the night dark cycle has a dramatic influence on the chemistry of photothermal degradation, and hints that a dark cycle may be needed in an accelerated aging scheme.
A simplified solar cell array modelling program
NASA Technical Reports Server (NTRS)
Hughes, R. D.
1982-01-01
As part of the energy conversion/self sufficiency efforts of DSN engineering, it was necessary to have a simplified computer model of a solar photovoltaic (PV) system. This article describes the analysis and simplifications employed in the development of a PV cell array computer model. The analysis of the incident solar radiation, steady state cell temperature and the current-voltage characteristics of a cell array are discussed. A sample cell array was modelled and the results are presented.
Ultrasonic tomography for in-process measurements of temperature in a multi-phase medium
Beller, Laurence S.
1993-01-01
A method and apparatus for the in-process measurement of internal particulate temperature utilizing ultrasonic tomography techniques to determine the speed of sound through a specimen material. Ultrasonic pulses are transmitted through a material, which can be a multi-phase material, over known flight paths and the ultrasonic pulse transit times through all sectors of the specimen are measured to determine the speed of sound. The speed of sound being a function of temperature, it is possible to establish the correlation between speed of sound and temperature, throughout a cross-section of the material, which correlation is programmed into a computer to provide for a continuous in-process measurement of temperature throughout the specimen.
NASA Technical Reports Server (NTRS)
Gordon, L. H.; Phillips, B. R.; Evangelista, J.
1978-01-01
Computer program represents attempt to understand and model characteristics of electrolysis cells. It allows user to determine how cell efficiency is affected by temperature, pressure, current density, electrolyte concentration, characteristic dimensions, membrane resistance, and electrolyte circulation rate. It also calculates ratio of bubble velocity to electrolyte velocity for anode and cathode chambers.
Comparison of two procedures for predicting rocket engine nozzle performance
NASA Technical Reports Server (NTRS)
Davidian, Kenneth J.
1987-01-01
Two nozzle performance prediction procedures which are based on the standardized JANNAF methodology are presented and compared for four rocket engine nozzles. The first procedure required operator intercedence to transfer data between the individual performance programs. The second procedure is more automated in that all necessary programs are collected into a single computer code, thereby eliminating the need for data reformatting. Results from both procedures show similar trends but quantitative differences. Agreement was best in the predictions of specific impulse and local skin friction coefficient. Other compared quantities include characteristic velocity, thrust coefficient, thrust decrement, boundary layer displacement thickness, momentum thickness, and heat loss rate to the wall. Effects of wall temperature profile used as an input to the programs was investigated by running three wall temperature profiles. It was found that this change greatly affected the boundary layer displacement thickness and heat loss to the wall. The other quantities, however, were not drastically affected by the wall temperature profile change.
NASA Technical Reports Server (NTRS)
Barrett, C. E.; Presler, A. F.
1976-01-01
A FORTRAN computer program (COREST) was developed to analyze the high-temperature paralinear oxidation behavior of metals. It is based on a mass-balance approach and uses typical gravimetric input data. COREST was applied to predominantly Cr2O3-forming alloys tested isothermally for long times. These alloys behaved paralinearly above 1100 C as a result of simultaneous scale formation and scale vaporization. Output includes the pertinent formation and vaporization constants and kinetic values of interest. COREST also estimates specific sample weight and specific scale weight as a function of time. Most importantly, from a corrosion standpoint, it estimates specific metal loss.
Advanced ETC/LSS computerized analytical models, CO2 concentration. Volume 1: Summary document
NASA Technical Reports Server (NTRS)
Taylor, B. N.; Loscutoff, A. V.
1972-01-01
Computer simulations have been prepared for the concepts of C02 concentration which have the potential for maintaining a C02 partial pressure of 3.0 mmHg, or less, in a spacecraft environment. The simulations were performed using the G-189A Generalized Environmental Control computer program. In preparing the simulations, new subroutines to model the principal functional components for each concept were prepared and integrated into the existing program. Sample problems were run to demonstrate the methods of simulation and performance characteristics of the individual concepts. Comparison runs for each concept can be made for parametric values of cabin pressure, crew size, cabin air dry and wet bulb temperatures, and mission duration.
PRELIMINARY DESIGN ANALYSIS OF AXIAL FLOW TURBINES
NASA Technical Reports Server (NTRS)
Glassman, A. J.
1994-01-01
A computer program has been developed for the preliminary design analysis of axial-flow turbines. Rapid approximate generalized procedures requiring minimum input are used to provide turbine overall geometry and performance adequate for screening studies. The computations are based on mean-diameter flow properties and a stage-average velocity diagram. Gas properties are assumed constant throughout the turbine. For any given turbine, all stages, except the first, are specified to have the same shape velocity diagram. The first stage differs only in the value of inlet flow angle. The velocity diagram shape depends upon the stage work factor value and the specified type of velocity diagram. Velocity diagrams can be specified as symmetrical, zero exit swirl, or impulse; or by inputting stage swirl split. Exit turning vanes can be included in the design. The 1991 update includes a generalized velocity diagram, a more flexible meanline path, a reheat model, a radial component of velocity, and a computation of free-vortex hub and tip velocity diagrams. Also, a loss-coefficient calibration was performed to provide recommended values for airbreathing engine turbines. Input design requirements include power or pressure ratio, mass flow rate, inlet temperature and pressure, and rotative speed. The design variables include inlet and exit diameters, stator angle or exit radius ratio, and number of stages. Gas properties are input as gas constant, specific heat ratio, and viscosity. The program output includes inlet and exit annulus dimensions, exit temperature and pressure, total and static efficiencies, flow angles, blading angles, and last stage absolute and relative Mach numbers. This program is written in FORTRAN 77 and can be ported to any computer with a standard FORTRAN compiler which supports NAMELIST. It was originally developed on an IBM 7000 series computer running VM and has been implemented on IBM PC computers and compatibles running MS-DOS under Lahey FORTRAN, and DEC VAX series computers running VMS. Format statements in the code may need to be rewritten depending on your FORTRAN compiler. The source code and sample data are available on a 5.25 inch 360K MS-DOS format diskette. This program was developed in 1972 and was last updated in 1991. IBM and IBM PC are registered trademarks of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation. DEC VAX, and VMS are trademarks of Digital Equipment Corporation.
High-temperature behavior of advanced spacecraft TPS
NASA Technical Reports Server (NTRS)
Pallix, Joan
1994-01-01
The objective of this work has been to develop more efficient, lighter weight, and higher temperature thermal protection systems (TPS) for future reentry space vehicles. The research carried out during this funding period involved the design, analysis, testing, fabrication, and characterization of thermal protection materials to be used on future hypersonic vehicles. This work is important for the prediction of material performance at high temperature and aids in the design of thermal protection systems for a number of programs including programs such as the National Aerospace Plane (NASP), Pegasus and Pegasus/SWERVE, the Comet Rendezvous and Flyby Vehicle (CRAF), and the Mars mission entry vehicles. Research has been performed in two main areas including development and testing of thermal protection systems (TPS) and computational research. A variety of TPS materials and coatings have been developed during this funding period. Ceramic coatings were developed for flexible insulations as well as for low density ceramic insulators. Chemical vapor deposition processes were established for the fabrication of ceramic matrix composites. Experimental testing and characterization of these materials has been carried out in the NASA Ames Research Center Thermophysics Facilities and in the Ames time-of-flight mass spectrometer facility. By means of computation, we have been better able to understand the flow structure and properties of the TPS components and to estimate the aerothermal heating, stress, ablation rate, thermal response, and shape change on the surfaces of TPS. In addition, work for the computational surface thermochemistry project has included modification of existing computer codes and creating new codes to model material response and shape change on atmospheric entry vehicles in a variety of environments (e.g., earth and Mars atmospheres).
High-temperature behavior of advanced spacecraft TPS
NASA Astrophysics Data System (ADS)
Pallix, Joan
1994-05-01
The objective of this work has been to develop more efficient, lighter weight, and higher temperature thermal protection systems (TPS) for future reentry space vehicles. The research carried out during this funding period involved the design, analysis, testing, fabrication, and characterization of thermal protection materials to be used on future hypersonic vehicles. This work is important for the prediction of material performance at high temperature and aids in the design of thermal protection systems for a number of programs including programs such as the National Aerospace Plane (NASP), Pegasus and Pegasus/SWERVE, the Comet Rendezvous and Flyby Vehicle (CRAF), and the Mars mission entry vehicles. Research has been performed in two main areas including development and testing of thermal protection systems (TPS) and computational research. A variety of TPS materials and coatings have been developed during this funding period. Ceramic coatings were developed for flexible insulations as well as for low density ceramic insulators. Chemical vapor deposition processes were established for the fabrication of ceramic matrix composites. Experimental testing and characterization of these materials has been carried out in the NASA Ames Research Center Thermophysics Facilities and in the Ames time-of-flight mass spectrometer facility. By means of computation, we have been better able to understand the flow structure and properties of the TPS components and to estimate the aerothermal heating, stress, ablation rate, thermal response, and shape change on the surfaces of TPS. In addition, work for the computational surface thermochemistry project has included modification of existing computer codes and creating new codes to model material response and shape change on atmospheric entry vehicles in a variety of environments (e.g., earth and Mars atmospheres).
An ab initio variationally computed room-temperature line list for (32)S(16)O3.
Underwood, Daniel S; Tennyson, Jonathan; Yurchenko, Sergei N
2013-07-07
Ab initio potential energy and dipole moment surfaces are computed for sulfur trioxide (SO3) at the CCSD(T)-F12b level of theory with appropriate triple-zeta basis sets. The analytical representations of these surfaces are used, with a slight correction, to compute pure rotational and rotation-vibration spectra of (32)S(16)O3 using the variational nuclear motion program TROVE. The calculations considered transitions in the region 0-4000 cm(-1) with rotational states up to J = 85. The resulting line list of 174,674,257 transitions is appropriate for modelling room temperature (32)S(16)O3 spectra. Good agreement is found with the observed infrared absorption spectra and the calculations are used to place the measured relative intensities on an absolute scale. A list of 10,878 experimental transitions is provided in a form suitable for inclusion in standard atmospheric and planetary spectroscopic databases.
Design and Operating Characteristics of High-Speed, Small-Bore, Angular-Contact Ball Bearings
NASA Technical Reports Server (NTRS)
Pinel, Stanley I.; Signer, Hans R.; Zaretsky, Erwin V.
1998-01-01
The computer program SHABERTH was used to analyze 35-mm-bore, angular-contact ball bearings designed and manufactured for high-speed turbomachinery applications. Parametric tests of the bearings were conducted on a high-speed, high-temperature bearing tester and were compared with the computer predictions. Four bearing and cage designs were studied. The bearings were lubricated either by jet lubrication or through the split inner ring with and without outer-ring cooling. The predicted bearing life decreased with increasing speed because of increased operating contact stresses caused by changes in contact angle and centrifugal load. For thrust loads only, the difference in calculated life for the 24 deg. and 30 deg. contact-angle bearings was insignificant. However, for combined loading, the 24 deg. contact-angle bearing gave longer life. For split-inner-ring bearings, optimal operating conditions were obtained with a 24 deg. contact angle and an inner-ring, land-guided cage, using outer-ring cooling in conjunction with low lubricant flow rates. Lower temperature and power losses were obtained with a single-outer-ring, land-guided cage for the 24 deg. contact-angle bearing having a relieved inner ring and partially relieved outer ring. Inner-ring temperatures were independent of lubrication mode and cage design. In comparison with measured values, reasonably good engineering correlation was obtained using the computer program SHABERTH for predicted bearing power loss and for inner- and outer-ring temperatures. The Parker formula for XCAV (used in SHABERTH, a measure of oil volume in the bearing cavity) may need to be refined to reflect bearing lubrication mode, cage design, and location of cage-controlling land.
NASA Technical Reports Server (NTRS)
Khonsari, M. M.
1983-01-01
Thermohydrodynamic effects in journal bearings operating under steady load in laminar regime are investigated. An analytical model for the finite and infinitely long journal bearings is formulated. The model includes correction factors for the cavitation effects in the unloaded region of the bearing and the mixing of the recirculating oil and supply oil at the oil inlet. A finite difference computer program is developed to numerically solve the governing equations of the continuity, Reynolds, energy, Laplace heat conduction, and a viscosity-temperature relation simultaneously. The program includes a numerical technique for obtaining an isothermal shaft temperature. The numerical results of temperature distribution and the heat effects on the bearing load carrying capacity agree closely with those of experimental findings. Several different sets of simpler boundary conditions for the energy equation are studied.
A Temperature Sensor using a Silicon-on-Insulator (SOI) Timer for Very Wide Temperature Measurement
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Hammoud, Ahmad; Elbuluk, Malik; Culley, Dennis E.
2008-01-01
A temperature sensor based on a commercial-off-the-shelf (COTS) Silicon-on-Insulator (SOI) Timer was designed for extreme temperature applications. The sensor can operate under a wide temperature range from hot jet engine compartments to cryogenic space exploration missions. For example, in Jet Engine Distributed Control Architecture, the sensor must be able to operate at temperatures exceeding 150 C. For space missions, extremely low cryogenic temperatures need to be measured. The output of the sensor, which consisted of a stream of digitized pulses whose period was proportional to the sensed temperature, can be interfaced with a controller or a computer. The data acquisition system would then give a direct readout of the temperature through the use of a look-up table, a built-in algorithm, or a mathematical model. Because of the wide range of temperature measurement and because the sensor is made of carefully selected COTS parts, this work is directly applicable to the NASA Fundamental Aeronautics/Subsonic Fixed Wing Program--Jet Engine Distributed Engine Control Task and to the NASA Electronic Parts and Packaging (NEPP) Program. In the past, a temperature sensor was designed and built using an SOI operational amplifier, and a report was issued. This work used an SOI 555 timer as its core and is completely new work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jadaan, O.M.; Powers, L.M.; Nemeth, N.N.
1995-08-01
A probabilistic design methodology which predicts the fast fracture and time-dependent failure behavior of thermomechanically loaded ceramic components is discussed using the CARES/LIFE integrated design computer program. Slow crack growth (SCG) is assumed to be the mechanism responsible for delayed failure behavior. Inert strength and dynamic fatigue data obtained from testing coupon specimens (O-ring and C-ring specimens) are initially used to calculate the fast fracture and SCG material parameters as a function of temperature using the parameter estimation techniques available with the CARES/LIFE code. Finite element analysis (FEA) is used to compute the stress distributions for the tube as amore » function of applied pressure. Knowing the stress and temperature distributions and the fast fracture and SCG material parameters, the life time for a given tube can be computed. A stress-failure probability-time to failure (SPT) diagram is subsequently constructed for these tubes. Such a diagram can be used by design engineers to estimate the time to failure at a given failure probability level for a component subjected to a given thermomechanical load.« less
Heat Transfer Measurements during DC Casting of Aluminium Part I: Measurement Technique
NASA Astrophysics Data System (ADS)
Bakken, J. A.; Bergström, T.
A method for determination of surface heat transfer to the cooling water and mould based on in-situ temperature measurements in the DC cast ingot has been developed. Three or more steel mantled coaxial thermocouples (0.5 mm diam.) are mounted on a wire frame called a "harp". Allowing the "harp" to freeze into the solid ingots during the casting time-temperature plots T1 (t), T2(t), T3 (t) are obtained for three moving points positioned typically 3, 7 and 11 mm from the ingot surface. From these measurements surface temperature, heat flux and heat transfer coefficients are computed as functions of vertical distance. The computer program is based on steady-state two-dimensional heat balances with convective terms for two fixed volume elements: one around thermocouple T1 and one surface element. A special numerical smoothing procedure is incorporated. The heat of solidification is taken into account.
NASA Astrophysics Data System (ADS)
Pelanti, Marica; Shyue, Keh-Ming
2015-05-01
The authors regret that one erroneous plot of the numerical results for a dodecane liquid-vapor shock tube problem was included in Fig. 3, p. 346, of the article [1]. Specifically, the graph of the vapor-liquid temperature difference (Tv -Tl) displayed at the bottom-right corner of Fig. 3 in [1] is not correct due to some wrong settings introduced in the temperature visualization tool. The error pertains solely to simulation data post-processing, and it is not related to the numerical methods and programs employed to run the experiment. We display here in Fig. 1 the correct temperature difference plot, generated from our original results computed for the dodecane shock tube test described in [1]. We think that is important to notify this correction to avoid any confusion.
CCARES: A computer algorithm for the reliability analysis of laminated CMC components
NASA Technical Reports Server (NTRS)
Duffy, Stephen F.; Gyekenyesi, John P.
1993-01-01
Structural components produced from laminated CMC (ceramic matrix composite) materials are being considered for a broad range of aerospace applications that include various structural components for the national aerospace plane, the space shuttle main engine, and advanced gas turbines. Specifically, these applications include segmented engine liners, small missile engine turbine rotors, and exhaust nozzles. Use of these materials allows for improvements in fuel efficiency due to increased engine temperatures and pressures, which in turn generate more power and thrust. Furthermore, this class of materials offers significant potential for raising the thrust-to-weight ratio of gas turbine engines by tailoring directions of high specific reliability. The emerging composite systems, particularly those with silicon nitride or silicon carbide matrix, can compete with metals in many demanding applications. Laminated CMC prototypes have already demonstrated functional capabilities at temperatures approaching 1400 C, which is well beyond the operational limits of most metallic materials. Laminated CMC material systems have several mechanical characteristics which must be carefully considered in the design process. Test bed software programs are needed that incorporate stochastic design concepts that are user friendly, computationally efficient, and have flexible architectures that readily incorporate changes in design philosophy. The CCARES (Composite Ceramics Analysis and Reliability Evaluation of Structures) program is representative of an effort to fill this need. CCARES is a public domain computer algorithm, coupled to a general purpose finite element program, which predicts the fast fracture reliability of a structural component under multiaxial loading conditions.
Laboratory Connections: Using LOGO in the Science Laboratory.
ERIC Educational Resources Information Center
Kolodiy, George Oleh
1991-01-01
Described is a LOGO computer program that enables students to investigate the relationship between a digital number and the resistance in a variable resistor used to generate that number. Likewise, actual temperature readings and the corresponding resistance within a thermistor can be used for data gathering and subsequent analysis. (JJK)
Thermal analysis of underground power cable system
NASA Astrophysics Data System (ADS)
Rerak, Monika; Ocłoń, Paweł
2017-10-01
The paper presents the application of Finite Element Method in thermal analysis of underground power cable system. The computations were performed for power cables buried in-line in the ground at a depth of 2 meters. The developed mathematical model allows determining the two-dimensional temperature distribution in the soil, thermal backfill and power cables. The simulations studied the effect of soil and cable backfill thermal conductivity on the maximum temperature of the cable conductor. Also, the effect of cable diameter on the temperature of cable core was studied. Numerical analyses were performed based on a program written in MATLAB.
Silicon material task. Part 3: Low-cost silicon solar array project
NASA Technical Reports Server (NTRS)
Roques, R. A.; Coldwell, D. M.
1977-01-01
The feasibility of a process for carbon reduction of low impurity silica in a plasma heat source was investigated to produce low-cost solar-grade silicon. Theoretical aspects of the reaction chemistry were studied with the aid of a computer program using iterative free energy minimization. These calculations indicate a threshold temperature exists at 2400 K below which no silicon is formed. The computer simulation technique of molecular dynamics was used to study the quenching of product species.
NASA Technical Reports Server (NTRS)
1973-01-01
A computer programmer's manual for a digital computer which will permit rapid and accurate parametric analysis of current and advanced attitude control propulsion systems is presented. The concept is for a cold helium pressurized, subcritical cryogen fluid supplied, bipropellant gas-fed attitude control propulsion system. The cryogen fluids are stored as liquids under low pressure and temperature conditions. The mathematical model provides a generalized form for the procedural technique employed in setting up the analysis program.
Correlation of predicted and measured thermal stresses on a truss-type aircraft structure
NASA Technical Reports Server (NTRS)
Jenkins, J. M.; Schuster, L. S.; Carter, A. L.
1978-01-01
A test structure representing a portion of a hypersonic vehicle was instrumented with strain gages and thermocouples. This test structure was then subjected to laboratory heating representative of supersonic and hypersonic flight conditions. A finite element computer model of this structure was developed using several types of elements with the NASA structural analysis (NASTRAN) computer program. Temperature inputs from the test were used to generate predicted model thermal stresses and these were correlated with the test measurements.
2005 Science and Technology for Chem-Bio Information Systems (S and T CBIS) volume 3 Thursday
2005-10-28
radar, lidar, or sodar with computer on-board. Temperature and moisture MW radiometer with computer on- board. Portable meteorological sensors ... Wireless on the go is a way of life now – my cell phone , my PDA, my IPOD (look, I’m “Podcasting”!) and dock it when I’m at home – Same components...Team.. Other specifications will follow… Standardization of the interfaces across all CBRN sensors / devices ! JPEO-CBD 20 Joint Program Executive Office
Orion Service Module Reaction Control System Plume Impingement Analysis Using PLIMP/RAMP2
NASA Technical Reports Server (NTRS)
Wang, Xiao-Yen; Lumpkin, Forrest E., III; Gati, Frank; Yuko, James R.; Motil, Brian J.
2009-01-01
The Orion Crew Exploration Vehicle Service Module Reaction Control System engine plume impingement was computed using the plume impingement program (PLIMP). PLIMP uses the plume solution from RAMP2, which is the refined version of the reacting and multiphase program (RAMP) code. The heating rate and pressure (force and moment) on surfaces or components of the Service Module were computed. The RAMP2 solution of the flow field inside the engine and the plume was compared with those computed using GASP, a computational fluid dynamics code, showing reasonable agreement. The computed heating rate and pressure using PLIMP were compared with the Reaction Control System plume model (RPM) solution and the plume impingement dynamics (PIDYN) solution. RPM uses the GASP-based plume solution, whereas PIDYN uses the SCARF plume solution. Three sets of the heating rate and pressure solutions agree well. Further thermal analysis on the avionic ring of the Service Module was performed using MSC Patran/Pthermal. The obtained temperature results showed that thermal protection is necessary because of significant heating from the plume.
Turbine Blade and Endwall Heat Transfer Measured in NASA Glenn's Transonic Turbine Blade Cascade
NASA Technical Reports Server (NTRS)
Giel, Paul W.
2000-01-01
Higher operating temperatures increase the efficiency of aircraft gas turbine engines, but can also degrade internal components. High-pressure turbine blades just downstream of the combustor are particularly susceptible to overheating. Computational fluid dynamics (CFD) computer programs can predict the flow around the blades so that potential hot spots can be identified and appropriate cooling schemes can be designed. Various blade and cooling schemes can be examined computationally before any hardware is built, thus saving time and effort. Often though, the accuracy of these programs has been found to be inadequate for predicting heat transfer. Code and model developers need highly detailed aerodynamic and heat transfer data to validate and improve their analyses. The Transonic Turbine Blade Cascade was built at the NASA Glenn Research Center at Lewis Field to help satisfy the need for this type of data.
VALIDATION OF ANSYS FINITE ELEMENT ANALYSIS SOFTWARE
DOE Office of Scientific and Technical Information (OSTI.GOV)
HAMM, E.R.
2003-06-27
This document provides a record of the verification and Validation of the ANSYS Version 7.0 software that is installed on selected CH2M HILL computers. The issues addressed include: Software verification, installation, validation, configuration management and error reporting. The ANSYS{reg_sign} computer program is a large scale multi-purpose finite element program which may be used for solving several classes of engineering analysis. The analysis capabilities of ANSYS Full Mechanical Version 7.0 installed on selected CH2M Hill Hanford Group (CH2M HILL) Intel processor based computers include the ability to solve static and dynamic structural analyses, steady-state and transient heat transfer problems, mode-frequency andmore » buckling eigenvalue problems, static or time-varying magnetic analyses and various types of field and coupled-field applications. The program contains many special features which allow nonlinearities or secondary effects to be included in the solution, such as plasticity, large strain, hyperelasticity, creep, swelling, large deflections, contact, stress stiffening, temperature dependency, material anisotropy, and thermal radiation. The ANSYS program has been in commercial use since 1970, and has been used extensively in the aerospace, automotive, construction, electronic, energy services, manufacturing, nuclear, plastics, oil and steel industries.« less
Trace contaminant control simulation computer program, version 8.1
NASA Technical Reports Server (NTRS)
Perry, J. L.
1994-01-01
The Trace Contaminant Control Simulation computer program is a tool for assessing the performance of various process technologies for removing trace chemical contamination from a spacecraft cabin atmosphere. Included in the simulation are chemical and physical adsorption by activated charcoal, chemical adsorption by lithium hydroxide, absorption by humidity condensate, and low- and high-temperature catalytic oxidation. Means are provided for simulating regenerable as well as nonregenerable systems. The program provides an overall mass balance of chemical contaminants in a spacecraft cabin given specified generation rates. Removal rates are based on device flow rates specified by the user and calculated removal efficiencies based on cabin concentration and removal technology experimental data. Versions 1.0 through 8.0 are documented in NASA TM-108409. TM-108409 also contains a source file listing for version 8.0. Changes to version 8.0 are documented in this technical memorandum and a source file listing for the modified version, version 8.1, is provided. Detailed descriptions for the computer program subprograms are extracted from TM-108409 and modified as necessary to reflect version 8.1. Version 8.1 supersedes version 8.0. Information on a separate user's guide is available from the author.
Fearnot, N E; Kitoh, O; Fujita, T; Okamura, H; Smith, H J; Calderini, M
1989-05-01
The effectiveness of using blood temperature change as an indicator to automatically vary heart rate physiologically was evaluated in 3 patients implanted with Model Sensor Kelvin 500 (Cook Pacemaker Corporation, Leechburg, PA, USA) pacemakers. Each patient performed two block-randomized treadmill exercise tests: one while programmed for temperature-based, rate-modulated pacing and the other while programmed without rate modulation. In 1 pacemaker patient and 4 volunteers, heart rates were recorded during exposure to a hot water bath. Blood temperature measured at 10 sec intervals and pacing rate measured at 1 min intervals were telemetered to a diagnostic programmer and data collector for storage and transfer to a computer. Observation comments and ECG-derived heart rates were manually recorded. The temperature-based pacemaker was shown to respond promptly not only to physical exertion but also to emotionally caused stress and submersion in a hot bath. These events cause increased heart rate in the normal heart. Using a suitable algorithm to process the measurement of blood temperature, it was possible to produce appropriate pacing rates in paced patients.
Columbia: The first five flights entry heating data series. Volume 2: The OMS Pod
NASA Technical Reports Server (NTRS)
Williams, S. D.
1983-01-01
Entry heating flight data and wind tunnel data on the OMS Pod are presented for the first five flights of the Space Shuttle Orbiter. The heating rate data are presented in terms of normalized film heat transfer coefficients as a function of angle-of-attack, Mach number, and normal shock Reynolds number. The surface heating rates and temperatures were obtained via the JSC NONLIN/INVERSE computer program. Time history plots of the surface heating rates and temperatures are also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, Brian; Gutowska, Izabela; Chiger, Howard
Computer simulations of nuclear reactor thermal-hydraulic phenomena are often used in the design and licensing of nuclear reactor systems. In order to assess the accuracy of these computer simulations, computer codes and methods are often validated against experimental data. This experimental data must be of sufficiently high quality in order to conduct a robust validation exercise. In addition, this experimental data is generally collected at experimental facilities that are of a smaller scale than the reactor systems that are being simulated due to cost considerations. Therefore, smaller scale test facilities must be designed and constructed in such a fashion tomore » ensure that the prototypical behavior of a particular nuclear reactor system is preserved. The work completed through this project has resulted in scaling analyses and conceptual design development for a test facility capable of collecting code validation data for the following high temperature gas reactor systems and events— 1. Passive natural circulation core cooling system, 2. pebble bed gas reactor concept, 3. General Atomics Energy Multiplier Module reactor, and 4. prismatic block design steam-water ingress event. In the event that code validation data for these systems or events is needed in the future, significant progress in the design of an appropriate integral-type test facility has already been completed as a result of this project. Where applicable, the next step would be to begin the detailed design development and material procurement. As part of this project applicable scaling analyses were completed and test facility design requirements developed. Conceptual designs were developed for the implementation of these design requirements at the Oregon State University (OSU) High Temperature Test Facility (HTTF). The original HTTF is based on a ¼-scale model of a high temperature gas reactor concept with the capability for both forced and natural circulation flow through a prismatic core with an electrical heat source. The peak core region temperature capability is 1400°C. As part of this project, an inventory of test facilities that could be used for these experimental programs was completed. Several of these facilities showed some promise, however, upon further investigation it became clear that only the OSU HTTF had the power and/or peak temperature limits that would allow for the experimental programs envisioned herein. Thus the conceptual design and feasibility study development focused on examining the feasibility of configuring the current HTTF to collect validation data for these experimental programs. In addition to the scaling analyses and conceptual design development, a test plan was developed for the envisioned modified test facility. This test plan included a discussion on an appropriate shakedown test program as well as the specific matrix tests. Finally, a feasibility study was completed to determine the cost and schedule considerations that would be important to any test program developed to investigate these designs and events.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Eric D.
1999-06-17
In the world of computer-based data acquisition and control, the graphical interface program LabVIEW from National Instruments is so ubiquitous that in many ways it has almost become the laboratory standard. To date, there have been approximately fifteen books concerning LabVIEW, but Professor Essick's treatise takes on a completely different tack than all of the previous discussions. In the more standard treatments of the ways and wherefores of LabVIEW such as LabVIEW Graphical Programming: Practical Applications in Instrumentation and Control by Gary W. Johnson (McGraw Hill, NY 1997), the emphasis has been instructing the reader how to program LabVIEW tomore » create a Virtual Instrument (VI) on the computer for interfacing to a particular instruments. LabVIEW is written in G a graphical programming language developed by National Instruments. In the past the emphasis has been on training the experimenter to learn G . Without going into details here, G incorporates the usual loops, arithmetic expressions, etc., found in many programming languages, but in an icon (graphical) environment. The net result being that LabVIEW contains all of the standard methods needed for interfacing to instruments, data acquisition, data analysis, graphics, and also methodology to incorporate programs written in other languages into LabVIEW. Historically, according to Professor Essick, he developed a series of experiments for an upper division laboratory course for computer-based instrumentation. His observation was that while many students had the necessary background in computer programming languages, there were students who had virtually no concept about writing a computer program let alone a computer- based interfacing program. Thus the beginnings of a concept for not only teaching computer- based instrumentation techniques, but aiso a method for the beginner to experience writing a com- puter program. Professor Essick saw LabVIEW as the perfect environment in which to teach computer-based research skills. With this goal in mind, he has succeeded admirably. Advanced LabVIEW Labs presents a series of chapters devoted to not only introducing the reader to LabVIEW, but also to the concepts necessary for writing a successful computer pro- gram. Each chapter is an assignment for the student and is suitable for a ten week course. The first topic introduces the while loop and waveform chart VI'S. After learning how to launch LabVIEW, the student then leans how to use LabVIEW functions such as sine and cosine. The beauty of thk and subsequent chapters, the student is introduced immediately to computer-based instruction by learning how to display the results in graph form on the screen. At each point along the way, the student is not only introduced to another LabVIEW operation, but also to such subjects as spread sheets for data storage, numerical integration, Fourier transformations', curve fitting algorithms, etc. The last few chapters conclude with the purpose of the learning module, and that is, com- puter-based instrumentation. Computer-based laboratory projects such as analog-to-digital con- version, digitizing oscilloscopes treated. Advanced Lab VIEW Labs finishes with a treatment on GPIB interfacing and finally, the student is asked to create an operating VI for temperature con- trol. This is an excellent text, not only as an treatise on LabVIEW but also as an introduction to computer programming logic. All programmers, who are struggling to not only learning how interface computers to instruments, but also trying understand top down programming and other programming language techniques, should add Advanced Lab-VIEW Labs to their computer library.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Eric D.
1999-06-17
In the world of computer-based data acquisition and control, the graphical interface program LabVIEW from National Instruments is so ubiquitous that in many ways it has almost become the laboratory standard. To date, there have been approximately fifteen books concerning LabVIEW, but Professor Essick's treatise takes on a completely different tack than all of the previous discussions. In the more standard treatments of the ways and wherefores of LabVIEW such as LabVIEW Graphical Programming: Practical Applications in Instrumentation and Control by Gary W. Johnson (McGraw Hill, NY 1997), the emphasis has been instructing the reader how to program LabVIEW tomore » create a Virtual Instrument (VI) on the computer for interfacing to a particular instruments. LabVIEW is written in "G" a graphical programming language developed by National Instruments. In the past the emphasis has been on training the experimenter to learn "G". Without going into details here, "G" incorporates the usual loops, arithmetic expressions, etc., found in many programming languages, but in an icon (graphical) environment. The net result being that LabVIEW contains all of the standard methods needed for interfacing to instruments, data acquisition, data analysis, graphics, and also methodology to incorporate programs written in other languages into LabVIEW. Historically, according to Professor Essick, he developed a series of experiments for an upper division laboratory course for computer-based instrumentation. His observation was that while many students had the necessary background in computer programming languages, there were students who had virtually no concept about writing a computer program let alone a computer- based interfacing program. Thus the beginnings of a concept for not only teaching computer- based instrumentation techniques, but aiso a method for the beginner to experience writing a com- puter program. Professor Essick saw LabVIEW as the "perfect environment in which to teach computer-based research skills." With this goal in mind, he has succeeded admirably. Advanced LabVIEW Labs presents a series of chapters devoted to not only introducing the reader to LabVIEW, but also to the concepts necessary for writing a successful computer pro- gram. Each chapter is an assignment for the student and is suitable for a ten week course. The first topic introduces the while loop and waveform chart VI'S. After learning how to launch LabVIEW, the student then leans how to use LabVIEW functions such as sine and cosine. The beauty of thk and subsequent chapters, the student is introduced immediately to computer-based instruction by learning how to display the results in graph form on the screen. At each point along the way, the student is not only introduced to another LabVIEW operation, but also to such subjects as spread sheets for data storage, numerical integration, Fourier transformations', curve fitting algorithms, etc. The last few chapters conclude with the purpose of the learning module, and that is, com- puter-based instrumentation. Computer-based laboratory projects such as analog-to-digital con- version, digitizing oscilloscopes treated. Advanced Lab VIEW Labs finishes with a treatment on GPIB interfacing and finally, the student is asked to create an operating VI for temperature con- trol. This is an excellent text, not only as an treatise on LabVIEW but also as an introduction to computer programming logic. All programmers, who are struggling to not only learning how interface computers to instruments, but also trying understand top down programming and other programming language techniques, should add Advanced Lab-VIEW Labs to their computer library.« less
NASA Technical Reports Server (NTRS)
Kuczmarski, Maria A.; Neudeck, Philip G.
2000-01-01
Most solid-state electronic devices diodes, transistors, and integrated circuits are based on silicon. Although this material works well for many applications, its properties limit its ability to function under extreme high-temperature or high-power operating conditions. Silicon carbide (SiC), with its desirable physical properties, could someday replace silicon for these types of applications. A major roadblock to realizing this potential is the quality of SiC material that can currently be produced. Semiconductors require very uniform, high-quality material, and commercially available SiC tends to suffer from defects in the crystalline structure that have largely been eliminated in silicon. In some power circuits, these defects can focus energy into an extremely small area, leading to overheating that can damage the device. In an effort to better understand the way that these defects affect the electrical performance and reliability of an SiC device in a power circuit, the NASA Glenn Research Center at Lewis Field began an in-house three-dimensional computational modeling effort. The goal is to predict the temperature distributions within a SiC diode structure subjected to the various transient overvoltage breakdown stresses that occur in power management circuits. A commercial computational fluid dynamics computer program (FLUENT-Fluent, Inc., Lebanon, New Hampshire) was used to build a model of a defect-free SiC diode and generate a computational mesh. A typical breakdown power density was applied over 0.5 msec in a heated layer at the junction between the p-type SiC and n-type SiC, and the temperature distribution throughout the diode was then calculated. The peak temperature extracted from the computational model agreed well (within 6 percent) with previous first-order calculations of the maximum expected temperature at the end of the breakdown pulse. This level of agreement is excellent for a model of this type and indicates that three-dimensional computational modeling can provide useful predictions for this class of problem. The model is now being extended to include the effects of crystal defects. The model will provide unique insights into how high the temperature rises in the vicinity of the defects in a diode at various power densities and pulse durations. This information also will help researchers in understanding and designing SiC devices for safe and reliable operation in high-power circuits.
Ultrasonic tomography for in-process measurements of temperature in a multi-phase medium
Beller, L.S.
1993-01-26
A method and apparatus are described for the in-process measurement of internal particulate temperature utilizing ultrasonic tomography techniques to determine the speed of sound through a specimen material. Ultrasonic pulses are transmitted through a material, which can be a multi-phase material, over known flight paths and the ultrasonic pulse transit times through all sectors of the specimen are measured to determine the speed of sound. The speed of sound being a function of temperature, it is possible to establish the correlation between speed of sound and temperature, throughout a cross-section of the material, which correlation is programmed into a computer to provide for a continuous in-process measurement of temperature throughout the specimen.
Constitutive modeling for isotropic materials (HOST)
NASA Technical Reports Server (NTRS)
Lindholm, Ulric S.; Chan, Kwai S.; Bodner, S. R.; Weber, R. M.; Walker, K. P.; Cassenti, B. N.
1984-01-01
The results of the first year of work on a program to validate unified constitutive models for isotropic materials utilized in high temperature regions of gas turbine engines and to demonstrate their usefulness in computing stress-strain-time-temperature histories in complex three-dimensional structural components. The unified theories combine all inelastic strain-rate components in a single term avoiding, for example, treating plasticity and creep as separate response phenomena. An extensive review of existing unified theories is given and numerical methods for integrating these stiff time-temperature-dependent constitutive equations are discussed. Two particular models, those developed by Bodner and Partom and by Walker, were selected for more detailed development and evaluation against experimental tensile, creep and cyclic strain tests on specimens of a cast nickel base alloy, B19000+Hf. Initial results comparing computed and test results for tensile and cyclic straining for temperature from ambient to 982 C and strain rates from 10(exp-7) 10(exp-3) s(exp-1) are given. Some preliminary date correlations are presented also for highly non-proportional biaxial loading which demonstrate an increase in biaxial cyclic hardening rate over uniaxial or proportional loading conditions. Initial work has begun on the implementation of both constitutive models in the MARC finite element computer code.
Thermal response of Space Shuttle wing during reentry heating
NASA Technical Reports Server (NTRS)
Gong, L.; Ko, W. L.; Quinn, R. D.
1984-01-01
A structural performance and resizing (SPAR) finite element thermal analysis computer program was used in the heat transfer analysis of the space shuttle orbiter that was subjected to reentry aerodynamic heatings. One wing segment of the right wing (WS 240) and the whole left wing were selected for the thermal analysis. Results showed that the predicted thermal protection system (TPS) temperatures were in good agreement with the space transportation system, trajectory 5 (STS-5) flight-measured temperatures. In addition, calculated aluminum structural temperatures were in fairly good agreement with the flight data up to the point of touchdown. Results also showed that the internal free convection had a considerable effect on the change of structural temperatures after touchdown.
NASA Technical Reports Server (NTRS)
1982-01-01
A program to study stress generation mechanisms in silicon sheet growth was started. The purpose of the research is to define post-growth temperature profiles for the sheet that can minimize its stress during growth at high speeds, e.g., greater than 3 cm/min. The initial tasks described concern work in progress toward the development of computing capabilities to (1) model stress-temperature relationships in steady-state ribbon growth, and (2) provide a means to calculate realistic temperature fields in ribbon, given growth system component temperatures as boundary conditions. If it is determined that low stress configurations can be achieved, the modeling is to be tested experimentally by constructing low-stress growth systems for EFG silicon ribbon.
Manifest: A computer program for 2-D flow modeling in Stirling machines
NASA Technical Reports Server (NTRS)
Gedeon, David
1989-01-01
A computer program named Manifest is discussed. Manifest is a program one might want to use to model the fluid dynamics in the manifolds commonly found between the heat exchangers and regenerators of Stirling machines; but not just in the manifolds - in the regenerators as well. And in all sorts of other places too, such as: in heaters or coolers, or perhaps even in cylinder spaces. There are probably nonStirling uses for Manifest also. In broad strokes, Manifest will: (1) model oscillating internal compressible laminar fluid flow in a wide range of two-dimensional regions, either filled with porous materials or empty; (2) present a graphics-based user-friendly interface, allowing easy selection and modification of region shape and boundary condition specification; (3) run on a personal computer, or optionally (in the case of its number-crunching module) on a supercomputer; and (4) allow interactive examination of the solution output so the user can view vector plots of flow velocity, contour plots of pressure and temperature at various locations and tabulate energy-related integrals of interest.
Whitbeck, David E.
2006-01-01
The Lamoreux Potential Evapotranspiration (LXPET) Program computes potential evapotranspiration (PET) using inputs from four different meteorological sources: temperature, dewpoint, wind speed, and solar radiation. PET and the same four meteorological inputs are used with precipitation data in the Hydrological Simulation Program-Fortran (HSPF) to simulate streamflow in the Salt Creek watershed, DuPage County, Illinois. Streamflows from HSPF are routed with the Full Equations (FEQ) model to determine water-surface elevations. Consequently, variations in meteorological inputs have potential to propagate through many calculations. Sensitivity of PET to variation was simulated by increasing the meteorological input values by 20, 40, and 60 percent and evaluating the change in the calculated PET. Increases in temperatures produced the greatest percent changes, followed by increases in solar radiation, dewpoint, and then wind speed. Additional sensitivity of PET was considered for shifts in input temperatures and dewpoints by absolute differences of ?10, ?20, and ?30 degrees Fahrenheit (degF). Again, changes in input temperatures produced the greatest differences in PET. Sensitivity of streamflow simulated by HSPF was evaluated for 20-percent increases in meteorological inputs. These simulations showed that increases in temperature produced the greatest change in flow. Finally, peak water-surface elevations for nine storm events were compared among unmodified meteorological inputs and inputs with values predicted 6, 24, and 48 hours preceding the simulated peak. Results of this study can be applied to determine how errors specific to a hydrologic system will affect computations of system streamflow and water-surface elevations.
Skylab extravehicular mobility unit thermal simulator
NASA Technical Reports Server (NTRS)
Hixon, C. W.; Phillips, M. A.
1974-01-01
The analytical methods, thermal model, and user's instructions for the Skylab Extravehicular Mobility Unit (SEMU) routine are presented. This digital computer program was developed for detailed thermal performance predictions of the SEMU on the NASA-JSC Univac 1108 computer system. It accounts for conductive, convective, and radiant heat transfer as well as fluid flow and special component characterization. The program provides thermal performance predictions for a 967 node thermal model in one thirty-sixth (1/36) of mission time when operated at a calculating interval of three minutes (mission time). The program has the operational flexibility to: (1) accept card or magnetic tape data input for the thermal model describing the SEMU structure, fluid systems, crewman and component performance, (2) accept card and/or magnetic tape input of internally generated heat and heat influx from the space environment, and (3) output tabular or plotted histories of temperature, flow rates, and other parameters describing system operating modes.
POSTOP: Postbuckled open-stiffener optimum panels, user's manual
NASA Technical Reports Server (NTRS)
Biggers, S. B.; Dickson, J. N.
1984-01-01
The computer program POSTOP developed to serve as an aid in the analysis and sizing of stiffened composite panels that may be loaded in the postbuckling regime, is intended for the preliminary design of metal or composite panels with open-section stiffeners, subjected to multiple combined biaxial compression (or tension), shear and normal pressure load cases. Longitudinal compression, however, is assumed to be the dominant loading. Temperature, initial bow eccentricity and load eccentricity effects are included. The panel geometry is assumed to be repetitive over several bays in the longitudinal (stiffener) direction as well as in the transverse direction. Analytical routines are included to compute panel stiffnesses, strains, local and panel buckling loads, and skin/stiffener interface stresses. The resulting program is applicable to stiffened panels as commonly used in fuselage, wing, or empennage structures. The capabilities and limitations of the code are described. Instructions required to use the program and several example problems are included.
Soil Heat Flow. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.
ERIC Educational Resources Information Center
Simpson, James R.
These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. Soil heat flow and the resulting soil temperature distributions have ecological consequences…
Multistage Planetary Power Transmissions
NASA Technical Reports Server (NTRS)
Hadden, G. B.; Dyba, G. J.; Ragen, M. A.; Kleckner, R. J.; Sheynin, L.
1986-01-01
PLANETSYS simulates thermomechanical performance of multistage planetary performance of multistage planetary power transmission. Two versions of code developed, SKF version and NASA version. Major function of program: compute performance characteristics of planet bearing for any of six kinematic inversions. PLANETSYS solves heat-balance equations for either steadystate or transient thermal conditions, and produces temperature maps for mechanical system.
Computer Based Data Acquisition in the Undergraduate Lab.
ERIC Educational Resources Information Center
Wepfer, William J.; Oehmke, Roger L. T.
1987-01-01
Describes a data acquisition system developed for an undergraduate engineering students' instructional laboratory at Georgia Tech. Special emphasis is placed on the design of an A/D Converter Board used to measure the viscosity and temperature of motor oil. The Simons' BASIC Program Listing for the Commodore 64 microcomputer is appended. (LRW)
TRANSTRAIN: A program to compute strain transformations in composite materials
NASA Technical Reports Server (NTRS)
Ahmed, Rafiq
1990-01-01
Over the years, the solid rocket motor community has made increasing use of composite materials for thermal and structural applications. This is particularly true of solid rocket nozzles, which have used carbon phenolic and, increasingly, carbon-carbon materials to provide structural integrity and thermal protection at the high temperatures encountered during motor burn. To evaluate the degree of structural performance of nozzles and their materials and to verify analysis models, many subscale and full-scale tests are run. These provide engineers with valuable data needed to optimize design and to analyze nozzle hardware. Included among these data are strains, pressures, thrust, temperatures, and displacements. Recent nozzle test hardware has made increasing use of strain gauges embedded in the carbon composite material to measure internal strains. In order to evaluate strength, these data must be transformed into strains along the fiber directions. The fiber-direction stresses can then be calculated. A computer program written to help engineers correctly manipulate the strain data into a form that can be used to evaluate structural integrity of the nozzle is examined.
PNNL streamlines energy-guzzling computers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckman, Mary T.; Marquez, Andres
In a room the size of a garage, two rows of six-foot-tall racks holding supercomputer hard drives sit back-to-back. Thin tubes and wires snake off the hard drives, slithering into the corners. Stepping between the rows, a rush of heat whips around you -- the air from fans blowing off processing heat. But walk farther in, between the next racks of hard drives, and the temperature drops noticeably. These drives are being cooled by a non-conducting liquid that runs right over the hardworking processors. The liquid carries the heat away in tubes, saving the air a few degrees. This ismore » the Energy Smart Data Center at Pacific Northwest National Laboratory. The bigger, faster, and meatier supercomputers get, the more energy they consume. PNNL's Andres Marquez has developed this test bed to learn how to train the behemoths in energy efficiency. The work will help supercomputers perform better as well. Processors have to keep cool or suffer from "thermal throttling," says Marquez. "That's the performance threshold where the computer is too hot to run well. That threshold is an industry secret." The center at EMSL, DOE's national scientific user facility at PNNL, harbors several ways of experimenting with energy usage. For example, the room's air conditioning is isolated from the rest of EMSL -- pipes running beneath the floor carry temperature-controlled water through heat exchangers to cooling towers outside. "We can test whether it's more energy efficient to cool directly on the processing chips or out in the water tower," says Marquez. The hard drives feed energy and temperature data to a network server running specially designed software that controls and monitors the data center. To test the center’s limits, the team runs the processors flat out – not only on carefully controlled test programs in the Energy Smart computers, but also on real world software from other EMSL research, such as regional weather forecasting models. Marquez's group is also developing "power aware computing", where the computer programs themselves perform calculations more energy efficiently. Maybe once computers get smart about energy, they'll have tips for their users.« less
Plasma and magnetospheric research
NASA Technical Reports Server (NTRS)
Comfort, R. H.; Horwitz, J. L.
1984-01-01
Methods employed in the analysis of plasmas and the magnetosphere are examined. Computer programs which generate distribution functions are used in the analysis of charging phenomena and non maxwell plasmas in terms of density and average energy. An analytical model for spin curve analysis is presented. A program for the analysis of the differential ion flux probe on the space shuttle mission is complete. Satellite data analysis for ion heating, plasma flows in the polar cap, polar wind flow, and density and temperature profiles for several plasmasphere transits are included.
STS-1 environmental control and life support system. Consumables and thermal analysis
NASA Technical Reports Server (NTRS)
Steines, G.
1980-01-01
The Environmental Control and Life Support Systems (ECLSS)/thermal systems analysis for the Space Transportation System 1 Flight (STS-1) was performed using the shuttle environmental consumables usage requirements evaluation (SECURE) computer program. This program employs a nodal technique utilizing the Fortran Environmental Analysis Routines (FEAR). The output parameters evaluated were consumable quantities, fluid temperatures, heat transfer and rejection, and cabin atmospheric pressure. Analysis of these indicated that adequate margins exist for the nonpropulsive consumables and related thermal environment.
Digital computer program for nuclear reactor design water properties (LWBR Development Program)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lynn, L.L.
1967-07-01
An edit program MO899 for the tabulation of thermodynamic and transport properties of liquid and vapor water, frequently used in design calculations for pressurized water nuclear reactors, is described. The data tabulated are obtained from a FORTRAN IV subroutine named HOH. Values of enthalpy, specific volume, viscosity, and thermal conductivity are given for the following ranges: pressure from one bar (14.5 psia) to 175 bars (2538 psia) and temperature from as much as 320 deg C (608 deg F) below saturation up to 500 deg C (932 deg F) above saturation. (NSA 21: 38472)
Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, Kristie L.; Wang, Anbo; Pickrell, Gary R.
2006-11-14
This report summarizes technical progress during the program “Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries”, performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The objective of this program was to use technology recently invented at Virginia Tech to develop and demonstrate the application of self-calibrating optical fiber temperature and pressure sensors to several key energy-intensive industries where conventional, commercially available sensors exhibit greatly abbreviated lifetimes due primarily to environmental degradation. A number of significant technologies were developed under this program, including • a laser bonded silicamore » high temperature fiber sensor with a high temperature capability up to 700°C and a frequency response up to 150 kHz, • the world’s smallest fiber Fabry-Perot high temperature pressure sensor (125 x 20 μm) with 700°C capability, • UV-induced intrinsic Fabry-Perot interferometric sensors for distributed measurement, • a single crystal sapphire fiber-based sensor with a temperature capability up to 1600°C. These technologies have been well demonstrated and laboratory tested. Our work plan included conducting major field tests of these technologies at EPRI, Corning, Pratt & Whitney, and Global Energy; field validation of the technology is critical to ensuring its usefulness to U.S. industries. Unfortunately, due to budget cuts, DOE was unable to follow through with its funding commitment to support Energy Efficiency Science Initiative projects and this final phase was eliminated.« less
Loading tests of a wing structure for a hypersonic aircraft
NASA Technical Reports Server (NTRS)
Fields, R. A.; Reardon, L. F.; Siegel, W. H.
1980-01-01
Room-temperature loading tests were conducted on a wing structure designed with a beaded panel concept for a Mach 8 hypersonic research airplane. Strain, stress, and deflection data were compared with the results of three finite-element structural analysis computer programs and with design data. The test program data were used to evaluate the structural concept and the methods of analysis used in the design. A force stiffness technique was utilized in conjunction with load conditions which produced various combinations of panel shear and compression loading to determine the failure envelope of the buckling critical beaded panels The force-stiffness data did not result in any predictions of buckling failure. It was, therefore, concluded that the panels were conservatively designed as a result of design constraints and assumptions of panel eccentricities. The analysis programs calculated strains and stresses competently. Comparisons between calculated and measured structural deflections showed good agreement. The test program offered a positive demonstration of the beaded panel concept subjected to room-temperature load conditions.
A simulation exercise of a cavity-type solar receiver using the HEAP program
NASA Technical Reports Server (NTRS)
Lansing, F. L.
1979-01-01
A computer program has been developed at JPL to support the advanced studies of solar receivers in high concentration solar-thermal-electric power plants. This work presents briefly the program methodology, input data required, expected output results, capabilities and limitations. The program was used to simulate an existing 5 kwt experimental receiver of a cavity type. The receiver is located at the focus of a paraboloid dish and is connected to a Stirling engine. Both steady state and transient performance simulation were given. Details about the receiver modeling were also presented to illustrate the procedure followed. Simulated temperature patterns were found in good agreement with test data obtained by high temperature thermocouples. The simulated receiver performance was extrapolated to various operating conditions not attained experimentally. The results of the parameterization study were fitted to a general performance expression to determine the receiver characteristic constraints. The latter were used to optimize the receiver operating conditions to obtain the highest overall conversion efficiency.
NASA Technical Reports Server (NTRS)
Saltsman, J. F.
1994-01-01
TS-SRP/PACK is a set of computer programs for characterizing and predicting fatigue and creep-fatigue resistance of metallic materials in the high-temperature, long-life regime for isothermal and nonisothermal fatigue. The programs use the total strain version of the Strainrange Partitioning (TS-SRP). The user should be thoroughly familiar with the TS-SRP method before attempting to use any of these programs. The document for this program includes a theory manual as well as a detailed user's manual with a tutorial to guide the user in the proper use of TS-SRP. An extensive database has also been developed in a parallel effort. This database is an excellent source of high-temperature, creep-fatigue test data and can be used with other life-prediction methods as well. Five programs are included in TS-SRP/PACK along with the alloy database. The TABLE program is used to print the datasets, which are in NAMELIST format, in a reader friendly format. INDATA is used to create new datasets or add to existing ones. The FAIL program is used to characterize the failure behavior of an alloy as given by the constants in the strainrange-life relations used by the total strain version of SRP (TS-SRP) and the inelastic strainrange-based version of SRP. The program FLOW is used to characterize the flow behavior (the constitutive response) of an alloy as given by the constants in the flow equations used by TS-SRP. Finally, LIFE is used to predict the life of a specified cycle, using the constants characterizing failure and flow behavior determined by FAIL and FLOW. LIFE is written in interpretive BASIC to avoid compiling and linking every time the equation constants are changed. Four out of five programs in this package are written in FORTRAN 77 for IBM PC series and compatible computers running MS-DOS and are designed to read data using the NAMELIST format statement. The fifth is written in BASIC version 3.0 for IBM PC series and compatible computers running MS-DOS version 3.10. The executables require at least 239K of memory and DOS 3.1 or higher. To compile the source, a Lahey FORTRAN compiler is required. Source code modifications will be necessary if the compiler to be used does not support NAMELIST input. Probably the easiest revision to make is to use a list-directed READ statement. The standard distribution medium for this program is a set of two 5.25 inch 360K MS-DOS format diskettes. The contents of the diskettes are compressed using the PKWARE archiving tools. The utility to unarchive the files, PKUNZIP.EXE, is included. TS-SRP/PACK was developed in 1992.
Bearing tester data compilation, analysis, and reporting and bearing math modeling
NASA Technical Reports Server (NTRS)
1983-01-01
The Shaberth bearing analysis computer program was developed for the analysis of jet engine shaft/bearing systems operating above room temperature with normal hydrocarbon lubricants. It is also possible to use this tool to evaluate the shaft bearing systems operating in cryogenics. Effects such as fluid drag, radial temperature gradients, outer race misalignments and clearance changes were simulated and evaluated. In addition, the speed and preload effects on bearing radial stiffness was evaluated. The Shaberth program was also used to provide contact stresses from which contact geometry was calculated to support other analyses such as the determination of cryogenic fluid film thickness in the contacts and evaluation of surface and subsurface stresses necessary for bearing failure evaluation. This program was a vital tool for the thermal analysis of the bearing in that it provides the heat generation rates at the rolling element/race contacts for input into a thermal model of the bearing/shaft assembly.
Simulating the Gradually Deteriorating Performance of an RTG
NASA Technical Reports Server (NTRS)
Wood, Eric G.; Ewell, Richard C.; Patel, Jagdish; Hanks, David R.; Lozano, Juan A.; Snyder, G. Jeffrey; Noon, Larry
2008-01-01
Degra (now in version 3) is a computer program that simulates the performance of a radioisotope thermoelectric generator (RTG) over its lifetime. Degra is provided with a graphical user interface that is used to edit input parameters that describe the initial state of the RTG and the time-varying loads and environment to which it will be exposed. Performance is computed by modeling the flows of heat from the radioactive source and through the thermocouples, also allowing for losses, to determine the temperature drop across the thermocouples. This temperature drop is used to determine the open-circuit voltage, electrical resistance, and thermal conductance of the thermocouples. Output power can then be computed by relating the open-circuit voltage and the electrical resistance of the thermocouples to a specified time-varying load voltage. Degra accounts for the gradual deterioration of performance attributable primarily to decay of the radioactive source and secondarily to gradual deterioration of the thermoelectric material. To provide guidance to an RTG designer, given a minimum of input, Degra computes the dimensions, masses, and thermal conductances of important internal structures as well as the overall external dimensions and total mass.
Ionization-chamber smoke detector system
Roe, Robert F.
1976-10-19
This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system is designed to reduce false alarms caused by fluctuations in ambient temperature. Means are provided for periodically firing the gas discharge triode and each time recording the triggering voltage required. A computer compares each triggering voltage with its predecessor. The computer is programmed to energize an alarm if the difference between the two compared voltages is a relatively large value indicative of particulates in the measuring chamber and to disregard smaller differences typically resulting from changes in ambient temperature.
Finite-element reentry heat-transfer analysis of space shuttle Orbiter
NASA Technical Reports Server (NTRS)
Ko, William L.; Quinn, Robert D.; Gong, Leslie
1986-01-01
A structural performance and resizing (SPAR) finite-element thermal analysis computer program was used in the heat-transfer analysis of the space shuttle orbiter subjected to reentry aerodynamic heating. Three wing cross sections and one midfuselage cross section were selected for the thermal analysis. The predicted thermal protection system temperatures were found to agree well with flight-measured temperatures. The calculated aluminum structural temperatures also agreed reasonably well with the flight data from reentry to touchdown. The effects of internal radiation and of internal convection were found to be significant. The SPAR finite-element solutions agreed reasonably well with those obtained from the conventional finite-difference method.
Improving the efficiency of the Finite Temperature Density Matrix Renormalization Group method
NASA Astrophysics Data System (ADS)
Nocera, Alberto; Alvarez, Gonzalo
I review the basics of the finite temperature DMRG method, and then show how its efficiency can be improved by working on reduced Hilbert spaces and by using canonical approaches. My talk explains the applicability of the ancilla DMRG method beyond spins systems to t-J and Hubbard models, and addresses the computation of static and dynamical observables at finite temperature. Finally, I discuss the features of and roadmap for our DMRG + + codebase. Work done at CNMS, sponsored by the SUF Division, BES, U.S. DOE under contract with UT-Battelle. Support by the early career research program, DSUF, BES, DOE.
Computation of Thermally Perfect Compressible Flow Properties
NASA Technical Reports Server (NTRS)
Witte, David W.; Tatum, Kenneth E.; Williams, S. Blake
1996-01-01
A set of compressible flow relations for a thermally perfect, calorically imperfect gas are derived for a value of c(sub p) (specific heat at constant pressure) expressed as a polynomial function of temperature and developed into a computer program, referred to as the Thermally Perfect Gas (TPG) code. The code is available free from the NASA Langley Software Server at URL http://www.larc.nasa.gov/LSS. The code produces tables of compressible flow properties similar to those found in NACA Report 1135. Unlike the NACA Report 1135 tables which are valid only in the calorically perfect temperature regime the TPG code results are also valid in the thermally perfect, calorically imperfect temperature regime, giving the TPG code a considerably larger range of temperature application. Accuracy of the TPG code in the calorically perfect and in the thermally perfect, calorically imperfect temperature regimes are verified by comparisons with the methods of NACA Report 1135. The advantages of the TPG code compared to the thermally perfect, calorically imperfect method of NACA Report 1135 are its applicability to any type of gas (monatomic, diatomic, triatomic, or polyatomic) or any specified mixture of gases, ease-of-use, and tabulated results.
TACT1- TRANSIENT THERMAL ANALYSIS OF A COOLED TURBINE BLADE OR VANE EQUIPPED WITH A COOLANT INSERT
NASA Technical Reports Server (NTRS)
Gaugler, R. E.
1994-01-01
As turbine-engine core operating conditions become more severe, designers must develop more effective means of cooling blades and vanes. In order to design reliable, cooled turbine blades, advanced transient thermal calculation techniques are required. The TACT1 computer program was developed to perform transient and steady-state heat-transfer and coolant-flow analyses for cooled blades, given the outside hot-gas boundary condition, the coolant inlet conditions, the geometry of the blade shell, and the cooling configuration. TACT1 can analyze turbine blades, or vanes, equipped with a central coolant-plenum insert from which coolant-air impinges on the inner surface of the blade shell. Coolant-side heat-transfer coefficients are calculated with the heat transfer mode at each station being user specified as either impingement with crossflow, forced convection channel flow, or forced convection over pin fins. A limited capability to handle film cooling is also available in the program. The TACT1 program solves for the blade temperature distribution using a transient energy equation for each node. The nodal energy balances are linearized, one-dimensional, heat-conduction equations which are applied at the wall-outer-surface node, at the junction of the cladding and the metal node, and at the wall-inner-surface node. At the mid-metal node a linear, three-dimensional, heat-conduction equation is used. Similarly, the coolant pressure distribution is determined by solving the set of transfer momentum equations for the one-dimensional flow between adjacent fluid nodes. In the coolant channel, energy and momentum equations for one-dimensional compressible flow, including friction and heat transfer, are used for the elemental channel length between two coolant nodes. The TACT1 program first obtains a steady-state solution using iterative calculations to obtain convergence of stable temperatures, pressures, coolant-flow split, and overall coolant mass balance. Transient calculations are based on the steady-state solutions obtained. Input to the TACT1 program includes a geometrical description of the blade and insert, the nodal spacing to be used, and the boundary conditions describing the outside hot-gas and the coolant-inlet conditions. The program output includes the value of nodal temperatures and pressures at each iteration. The final solution output includes the temperature at each coolant node, and the coolant flow rates and Reynolds numbers. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 computer with a central memory requirement of approximately 480K of 8 bit bytes. The TACT1 program was developed in 1978.
Alloy Design Workbench-Surface Modeling Package Developed
NASA Technical Reports Server (NTRS)
Abel, Phillip B.; Noebe, Ronald D.; Bozzolo, Guillermo H.; Good, Brian S.; Daugherty, Elaine S.
2003-01-01
NASA Glenn Research Center's Computational Materials Group has integrated a graphical user interface with in-house-developed surface modeling capabilities, with the goal of using computationally efficient atomistic simulations to aid the development of advanced aerospace materials, through the modeling of alloy surfaces, surface alloys, and segregation. The software is also ideal for modeling nanomaterials, since surface and interfacial effects can dominate material behavior and properties at this level. Through the combination of an accurate atomistic surface modeling methodology and an efficient computational engine, it is now possible to directly model these types of surface phenomenon and metallic nanostructures without a supercomputer. Fulfilling a High Operating Temperature Propulsion Components (HOTPC) project level-I milestone, a graphical user interface was created for a suite of quantum approximate atomistic materials modeling Fortran programs developed at Glenn. The resulting "Alloy Design Workbench-Surface Modeling Package" (ADW-SMP) is the combination of proven quantum approximate Bozzolo-Ferrante-Smith (BFS) algorithms (refs. 1 and 2) with a productivity-enhancing graphical front end. Written in the portable, platform independent Java programming language, the graphical user interface calls on extensively tested Fortran programs running in the background for the detailed computational tasks. Designed to run on desktop computers, the package has been deployed on PC, Mac, and SGI computer systems. The graphical user interface integrates two modes of computational materials exploration. One mode uses Monte Carlo simulations to determine lowest energy equilibrium configurations. The second approach is an interactive "what if" comparison of atomic configuration energies, designed to provide real-time insight into the underlying drivers of alloying processes.
Parallel Computing for Probabilistic Response Analysis of High Temperature Composites
NASA Technical Reports Server (NTRS)
Sues, R. H.; Lua, Y. J.; Smith, M. D.
1994-01-01
The objective of this Phase I research was to establish the required software and hardware strategies to achieve large scale parallelism in solving PCM problems. To meet this objective, several investigations were conducted. First, we identified the multiple levels of parallelism in PCM and the computational strategies to exploit these parallelisms. Next, several software and hardware efficiency investigations were conducted. These involved the use of three different parallel programming paradigms and solution of two example problems on both a shared-memory multiprocessor and a distributed-memory network of workstations.
Parkhurst, David L.; Appelo, C.A.J.
1999-01-01
PHREEQC version 2 is a computer program written in the C programming language that is designed to perform a wide variety of low-temperature aqueous geochemical calculations. PHREEQC is based on an ion-association aqueous model and has capabilities for (1) speciation and saturation-index calculations; (2) batch-reaction and one-dimensional (1D) transport calculations involving reversible reactions, which include aqueous, mineral, gas, solid-solution, surface-complexation, and ion-exchange equilibria, and irreversible reactions, which include specified mole transfers of reactants, kinetically controlled reactions, mixing of solutions, and temperature changes; and (3) inverse modeling, which finds sets of mineral and gas mole transfers that account for differences in composition between waters, within specified compositional uncertainty limits.New features in PHREEQC version 2 relative to version 1 include capabilities to simulate dispersion (or diffusion) and stagnant zones in 1D-transport calculations, to model kinetic reactions with user-defined rate expressions, to model the formation or dissolution of ideal, multicomponent or nonideal, binary solid solutions, to model fixed-volume gas phases in addition to fixed-pressure gas phases, to allow the number of surface or exchange sites to vary with the dissolution or precipitation of minerals or kinetic reactants, to include isotope mole balances in inverse modeling calculations, to automatically use multiple sets of convergence parameters, to print user-defined quantities to the primary output file and (or) to a file suitable for importation into a spreadsheet, and to define solution compositions in a format more compatible with spreadsheet programs. This report presents the equations that are the basis for chemical equilibrium, kinetic, transport, and inverse-modeling calculations in PHREEQC; describes the input for the program; and presents examples that demonstrate most of the program's capabilities.
DITT: a computer program for Data Interpretation for Torsional Tests
Chen, Albert T.F.
1979-01-01
Measurements of the helium concentration of soil samples collected and stored in Vacutainer-brand evacuated glass tubes show that Vacutainers are reliable containers for soil collection. Within the limits of reproducibility, helium content of soils appears to be independent of variations in soil temperature, barometric pressure, and quantity of soil moisture present in the sample.
METCAN demonstration manual, version 1.0
NASA Technical Reports Server (NTRS)
Lee, H.-J.; Murthy, P. L. N.
1992-01-01
The various features of the Metal Matrix Composite Analyzer (METCAN) computer program to simulate the high temperature nonlinear behavior of continuous fiber reinforced metal matrix composites are demonstrated. Different problems are used to demonstrate various capabilities of METCAN for both static and cyclic analyses. A complete description of the METCAN output file is also included to help interpret results.
Calculation of Macrosegregation in an Ingot
NASA Technical Reports Server (NTRS)
Poirier, D. R.; Maples, A. L.
1986-01-01
Report describes both two-dimensional theoretical model of macrosegregation (separating into regions of discrete composition) in solidification of binary alloy in chilled rectangular mold and interactive computer program embodying model. Model evolved from previous ones limited to calculating effects of interdendritic fluid flow on final macrosegregation for given input temperature field under assumption of no fluid in bulk melt.
ERIC Educational Resources Information Center
Gates, David M.
These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This report introduces two models of the thermal energy budget of a leaf. Typical values for…
Analysis of thermal stresses and metal movement during welding
NASA Technical Reports Server (NTRS)
Muraki, T.; Pattee, F. M.; Masubuchi, K.
1974-01-01
Finite element computer programs were developed to determine thermal stresses and metal movement during butt welding of flat plates and bead-on-plate welding along the girth of a cylindrical shell. Circular cylindrical shells of 6061 aluminum alloy were used for the tests. Measurements were made of changes in temperature and thermal strains during the welding process.
NASA Technical Reports Server (NTRS)
Boyce, Lola; Bast, Callie C.
1992-01-01
The research included ongoing development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic material strength degradation model, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subjected to a number of effects or primative variables. These primative variable may include high temperature, fatigue or creep. In most cases, strength is reduced as a result of the action of a variable. This multifactor interaction strength degradation equation has been randomized and is included in the computer program, PROMISS. Also included in the research is the development of methodology to calibrate the above described constitutive equation using actual experimental materials data together with linear regression of that data, thereby predicting values for the empirical material constraints for each effect or primative variable. This regression methodology is included in the computer program, PROMISC. Actual experimental materials data were obtained from the open literature for materials typically of interest to those studying aerospace propulsion system components. Material data for Inconel 718 was analyzed using the developed methodology.
ThermoBuild: Online Method Made Available for Accessing NASA Glenn Thermodynamic Data
NASA Technical Reports Server (NTRS)
McBride, Bonnie; Zehe, Michael J.
2004-01-01
The new Web site program "ThermoBuild" allows users to easily access and use the NASA Glenn Thermodynamic Database of over 2000 solid, liquid, and gaseous species. A convenient periodic table allows users to "build" the molecules of interest and designate the temperature range over which thermodynamic functions are to be displayed. ThermoBuild also allows users to build custom databases for use with NASA's Chemical Equilibrium with Applications (CEA) program or other programs that require the NASA format for thermodynamic properties. The NASA Glenn Research Center has long been a leader in the compilation and dissemination of up-to-date thermodynamic data, primarily for use with the NASA CEA program, but increasingly for use with other computer programs.
HSR combustion analytical research
NASA Technical Reports Server (NTRS)
Nguyen, H. Lee
1992-01-01
Increasing the pressure and temperature of the engines of a new generation of supersonic airliners increases the emissions of nitrogen oxides (NO(x)) to a level that would have an adverse impact on the Earth's protective ozone layer. In the process of evolving and implementing low emissions combustor technologies, NASA LeRC has pursued a combustion analysis code program to guide combustor design processes, to identify potential concepts of the greatest promise, and to optimize them at low cost, with short turnaround time. The computational analyses are evaluated at actual engine operating conditions. The approach is to upgrade and apply advanced computer programs for gas turbine applications. Efforts were made in further improving the code capabilities for modeling the physics and the numerical methods of solution. Then test cases and measurements from experiments are used for code validation.
Marsili, Simone; Signorini, Giorgio Federico; Chelli, Riccardo; Marchi, Massimo; Procacci, Piero
2010-04-15
We present the new release of the ORAC engine (Procacci et al., Comput Chem 1997, 18, 1834), a FORTRAN suite to simulate complex biosystems at the atomistic level. The previous release of the ORAC code included multiple time steps integration, smooth particle mesh Ewald method, constant pressure and constant temperature simulations. The present release has been supplemented with the most advanced techniques for enhanced sampling in atomistic systems including replica exchange with solute tempering, metadynamics and steered molecular dynamics. All these computational technologies have been implemented for parallel architectures using the standard MPI communication protocol. ORAC is an open-source program distributed free of charge under the GNU general public license (GPL) at http://www.chim.unifi.it/orac. 2009 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Runnels, Scott Robert; Bachrach, Harrison Ian; Carlson, Nils
The two primary purposes of LANL’s Computational Physics Student Summer Workshop are (1) To educate graduate and exceptional undergraduate students in the challenges and applications of computational physics of interest to LANL, and (2) Entice their interest toward those challenges. Computational physics is emerging as a discipline in its own right, combining expertise in mathematics, physics, and computer science. The mathematical aspects focus on numerical methods for solving equations on the computer as well as developing test problems with analytical solutions. The physics aspects are very broad, ranging from low-temperature material modeling to extremely high temperature plasma physics, radiation transportmore » and neutron transport. The computer science issues are concerned with matching numerical algorithms to emerging architectures and maintaining the quality of extremely large codes built to perform multi-physics calculations. Although graduate programs associated with computational physics are emerging, it is apparent that the pool of U.S. citizens in this multi-disciplinary field is relatively small and is typically not focused on the aspects that are of primary interest to LANL. Furthermore, more structured foundations for LANL interaction with universities in computational physics is needed; historically interactions rely heavily on individuals’ personalities and personal contacts. Thus a tertiary purpose of the Summer Workshop is to build an educational network of LANL researchers, university professors, and emerging students to advance the field and LANL’s involvement in it.« less
Monitoring Temperature and Fan Speed Using Ganglia and Winbond Chips
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCaffrey, Cattie; /SLAC
2006-09-27
Effective monitoring is essential to keep a large group of machines, like the ones at Stanford Linear Accelerator Center (SLAC), up and running. SLAC currently uses Ganglia Monitoring System to observe about 2000 machines, analyzing metrics like CPU usage and I/O rate. However, metrics essential to machine hardware health, such as temperature and fan speed, are not being monitored. Many machines have a Winbond w83782d chip which monitors three temperatures, two of which come from dual CPUs, and returns the information when the sensor command is invoked. Ganglia also provides a feature, gmetric, that allows the users to monitor theirmore » own metrics and incorporate them into the monitoring system. The programming language Perl is chosen to implement a script that invokes the sensors command, extracts the temperature and fan speed information, and calls gmetric with the appropriate arguments. Two machines were used to test the script; the two CPUs on each machine run at about 65 Celsius, which is well within the operating temperature range (The maximum safe temperature range is 77-82 Celsius for the Pentium III processors being used). Installing the script on all machines with a Winbond w83782d chip allows the SLAC Scientific Computing and Computing Services group (SCCS) to better evaluate current cooling methods.« less
An expert computer program for classifying stars on the MK spectral classification system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, R. O.; Corbally, C. J.
2014-04-01
This paper describes an expert computer program (MKCLASS) designed to classify stellar spectra on the MK Spectral Classification system in a way similar to humans—by direct comparison with the MK classification standards. Like an expert human classifier, the program first comes up with a rough spectral type, and then refines that spectral type by direct comparison with MK standards drawn from a standards library. A number of spectral peculiarities, including barium stars, Ap and Am stars, λ Bootis stars, carbon-rich giants, etc., can be detected and classified by the program. The program also evaluates the quality of the delivered spectralmore » type. The program currently is capable of classifying spectra in the violet-green region in either the rectified or flux-calibrated format, although the accuracy of the flux calibration is not important. We report on tests of MKCLASS on spectra classified by human classifiers; those tests suggest that over the entire HR diagram, MKCLASS will classify in the temperature dimension with a precision of 0.6 spectral subclass, and in the luminosity dimension with a precision of about one half of a luminosity class. These results compare well with human classifiers.« less
1DTempPro: analyzing temperature profiles for groundwater/surface-water exchange
Voytek, Emily B.; Drenkelfuss, Anja; Day-Lewis, Frederick D.; Healy, Richard; Lane, John W.; Werkema, Dale D.
2014-01-01
A new computer program, 1DTempPro, is presented for the analysis of vertical one-dimensional (1D) temperature profiles under saturated flow conditions. 1DTempPro is a graphical user interface to the U.S. Geological Survey code Variably Saturated 2-Dimensional Heat Transport (VS2DH), which numerically solves the flow and heat-transport equations. Pre- and postprocessor features allow the user to calibrate VS2DH models to estimate vertical groundwater/surface-water exchange and also hydraulic conductivity for cases where hydraulic head is known.
NASA Astrophysics Data System (ADS)
Predoi-Cross, Adriana; Liu, W.; Murphy, Reba; Povey, Chad; Gamache, R.; Laraia, A.; McKellar, A. R. W.; Hurtmans, Daniel; Devi, V. M.
2015-10-01
The group of authors would like to make the following clarification: the retrievals of self-broadened temperature dependence coefficients were performed by the authors both using the multispectrum fit program from Ref. [14] and using the multispectrum fit program of D. Chris Benner [Benner DC, Rinsland CP, Devi VM, Smith MAH, Atkins D. A multispectrum nonlinear least-squares fitting technique. J. Quant. Spectrosc. Radiat. Transf. 1995;53:705-21.). To retrieve the room temperature self-broadening parameters, the authors have used the values in Ref. [4]. For reasons of consistency with the results published for air-broadening and air-shift temperature dependence coefficients in A. Predoi-Cross, A.R.W. McKellar, D. Chris Benner, V. Malathy Devi, R.R. Gamache, C.E. Miller, R.A. Toth, L.R. Brown, Temperature dependences for air-broadened Lorentz half width and pressure-shift coefficients in the 30013←00001 and 30012←00001 bands of CO2near 1600 μm, Canadian Journal of Physics, 87 (5) (2009) 517-535, Tables 2 and 3, and Figures 2 and 4 contain only the values retrieved using the multispectrum fit program of D. Chris Benner. We would like to thank D. Chris Benner for allowing us to use his fitting software.
NASA Astrophysics Data System (ADS)
Bakker, Ronald J.
2018-06-01
The program AqSo_NaCl has been developed to calculate pressure - molar volume - temperature - composition (p-V-T-x) properties, enthalpy, and heat capacity of the binary H2O-NaCl system. The algorithms are designed in BASIC within the Xojo programming environment, and can be operated as stand-alone project with Macintosh-, Windows-, and Unix-based operating systems. A series of ten self-instructive interfaces (modules) are developed to calculate fluid inclusion properties and pore fluid properties. The modules may be used to calculate properties of pure NaCl, the halite-liquidus, the halite-vapourus, dew-point and bubble-point curves (liquid-vapour), critical point, and SLV solid-liquid-vapour curves at temperatures above 0.1 °C (with halite) and below 0.1 °C (with ice or hydrohalite). Isochores of homogeneous fluids and unmixed fluids in a closed system can be calculated and exported to a.txt file. Isochores calculated for fluid inclusions can be corrected according to the volumetric properties of quartz. Microthermometric data, i.e. dissolution temperatures and homogenization temperatures, can be used to calculated bulk fluid properties of fluid inclusions. Alternatively, in the absence of total homogenization temperature the volume fraction of the liquid phase in fluid inclusions can be used to obtain bulk properties.
Parameter monitoring compensation system and method
Barkman, William E.; Babelay, Edwin F.; DeMint, Paul D.; Hebble, Thomas L.; Igou, Richard E.; Williams, Richard R.; Klages, Edward J.; Rasnick, William H.
1995-01-01
A compensation system for a computer-controlled machining apparatus having a controller and including a cutting tool and a workpiece holder which are movable relative to one another along preprogrammed path during a machining operation utilizes sensors for gathering information at a preselected stage of a machining operation relating to an actual condition. The controller compares the actual condition to a condition which the program presumes to exist at the preselected stage and alters the program in accordance with detected variations between the actual condition and the assumed condition. Such conditions may be related to process parameters, such as a position, dimension or shape of the cutting tool or workpiece or an environmental temperature associated with the machining operation, and such sensors may be a contact or a non-contact type of sensor or a temperature transducer.
Preliminary topical report on comparison reactor disassembly calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLaughlin, T.P.
1975-11-01
Preliminary results of comparison disassembly calculations for a representative LMFBR model (2100-l voided core) and arbitrary accident conditions are described. The analytical methods employed were the computer programs: FX2- POOL, PAD, and VENUS-II. The calculated fission energy depositions are in good agreement, as are measures of the destructive potential of the excursions, kinetic energy, and work. However, in some cases the resulting fuel temperatures are substantially divergent. Differences in the fission energy deposition appear to be attributable to residual inconsistencies in specifying the comparison cases. In contrast, temperature discrepancies probably stem from basic differences in the energy partition models inherentmore » in the codes. Although explanations of the discrepancies are being pursued, the preliminary results indicate that all three computational methods provide a consistent, global characterization of the contrived disassembly accident. (auth)« less
NASA Technical Reports Server (NTRS)
Allison, L. J.
1972-01-01
A complete documentation of Numbus 2 High Resolution infrared Radiometer data and ESSA-1 and 3 television photographs is presented for the life-time of Hurricane Inez, 1966. Ten computer produced radiation charts were analyzed in order to delineate the three dimensional cloud structure during the formative, mature and dissipating stages of this tropical cyclone. Time sections were drawn throughout the storm's life cycle to relate the warm core development and upper level outflow of the storm with their respective cloud canopies, as shown by the radiation data. Aerial reconnaissance weather reports, radar photographs and conventional weather analyses were used to complement the satellite data. A computer program was utilized to accept Nimbus 2 HRIR equivalent blackbody temperatures within historical maximum and minimum sea surface temperature limits over the tropical Atlantic Ocean.
NASA Technical Reports Server (NTRS)
Morey, W. W.
1983-01-01
The objective of the hot section viewing program is to develop a prototype optical system for viewing the interior of a gas turbine combustor during high temperature, high pressure operation in order to produce a visual record of some causes of premature hot section failures. The program began by identifying and analyzing system designs that would provide clearest images while being able to survive the hostile environment inside the combustion chamber. Different illumination methods and computer techniques for image enhancement and analysis were examined during a preliminary test phase. In the final phase of the program the prototype system was designed and fabricated and is currently being tested on a high pressure combustor rig.
A computer program for calculating relative-transmissivity input arrays to aid model calibration
Weiss, Emanuel
1982-01-01
A program is documented that calculates a transmissivity distribution for input to a digital ground-water flow model. Factors that are taken into account in the calculation are: aquifer thickness, ground-water viscosity and its dependence on temperature and dissolved solids, and permeability and its dependence on overburden pressure. Other factors affecting ground-water flow are indicated. With small changes in the program code, leakance also could be calculated. The purpose of these calculations is to provide a physical basis for efficient calibration, and to extend rational transmissivity trends into areas where model calibration is insensitive to transmissivity values.
NASA Technical Reports Server (NTRS)
Creason, A. S.; Miranda, F. A.
1996-01-01
Knowledge of the microwave properties at cryogenic temperatures of components fabricated using High-Temperature-Superconductors (HTS) is useful in the design of HTS-based microwave circuits. Therefore, fast and reliable characterization techniques have been developed to study the aforementioned properties. In this paper, we discuss computer analysis techniques employed in the cryogenic characterization of HTS-based resonators. The revised data analysis process requires minimal user input. and organizes the data in a form that is easily accessible by the user for further examination. These programs retrieve data generated during the cryogenic characterization at microwave frequencies of HTS based resonators and use it to calculate parameters such as the loaded and unloaded quality factors (Q and Q(sub o), respectively), the resonant frequency (f(sub o)), and the coupling coefficient (k), which are important quantities in the evaluation of HTS resonators. While the data are also stored for further use, the programs allow the user to obtain a graphical representation of any of the measured parameters as a function of temperature soon after the completion of the cryogenic measurement cycle. Although these programs were developed to study planar HTS-based resonators operating in the reflection mode, they could also be used in the cryogenic characterization of two ports (i.e., reflection/transmission) resonators.
Computer assisted thermal-vacuum testing
NASA Technical Reports Server (NTRS)
Petrie, W.; Mikk, G.
1977-01-01
In testing complex systems and components under dynamic thermal-vacuum environments, it is desirable to optimize the environment control sequence in order to reduce test duration and cost. This paper describes an approach where a computer is utilized as part of the test control operation. Real time test data is made available to the computer through time-sharing terminals at appropriate time intervals. A mathematical model of the test article and environmental control equipment is then operated on using the real time data to yield current thermal status, temperature analysis, trend prediction and recommended thermal control setting changes to arrive at the required thermal condition. The data acquisition interface and the time-sharing hook-up to an IBM-370 computer is described along with a typical control program and data demonstrating its use.
METal matrix composite ANalyzer (METCAN): Theoretical manual
NASA Technical Reports Server (NTRS)
Murthy, P. L. N.; Chamis, C. C.
1993-01-01
This manuscript is intended to be a companion volume to the 'METCAN User's Manual' and the 'METAN Demonstration Manual.' The primary purpose of the manual is to give details pertaining to micromechanics and macromechanics equations of high temperature metal matrix composites that are programmed in the METCAN computer code. The subroutines which contain the programmed equations are also mentioned in order to facilitate any future changes or modifications that the user may intend to incorporate in the code. Assumptions and derivations leading to the micromechanics equations are briefly mentioned.
Siggaard-Andersen, O; Siggaard-Andersen, M
1990-01-01
Input parameters for the program are the arterial pH, pCO2, and pO2 (measured by a blood gas analyzer), oxygen saturation, carboxy-, met-, and total hemoglobin (measured by a multi-wavelength spectrometer), supplemented by patient age, sex, temperature, inspired oxygen fraction, fraction of fetal hemoglobin, and ambient pressure. Output parameters are the inspired and alveolar oxygen partial pressures, pH,pCO2 and pO2 referring to the actual patient temperature, estimated shunt fraction, half-saturation tension, estimated 2,3-diphosphoglycerate concentration, oxygen content and oxygen capacity, extracellular base excess, and plasma bicarbonate concentration. Three parameters related to the blood oxygen availability are calculated: the oxygen extraction tension, concentration of extractable oxygen, and oxygen compensation factor. Calculations of the 'reverse' type may also be performed so that the effect of therapeutic measures on the oxygen status or the acid-base status can be predicted. The user may choose among several different units of measurement and two different conventions for symbols. The results are presented in a data display screen comprising all quantities together with age, sex, and temperature adjusted reference values. The program generates a 'laboratory diagnosis' of the oxygen status and the acid-base status and three graphs illustrating the oxygen status and the acid-base status of the patient: the oxygen graph, the acid-base chart and the blood gas map. A printed summary in one A4 page including a graphical display can be produced with an Epson or HP Laser compatible printer. The program is primarily intended for routine laboratories with a blood gas analyzer combined with a multi-wavelength spectrometer. Calculating the derived quantities may enhance the usefulness of the analyzers and improve patient care. The program may also be used as a teaching aid in acid-base and respiratory physiology. The program requires an IBM PC, XT, AT or similar compatible computer running under DOS version 2.11 or later. A VGA color monitor is preferred, but the program also supports EGA, CGA, and Hercules monitors. The program will be freely available at the cost of a discette and mailing expenses by courtesy of Radiometer Medical A/S, Emdrupvej 72, DK-2400 Copenhagen NV, Denmark (valid through 1991). A simplified algorithm for a programmable pocket calculator avoiding iterative calculations is given as an Appendix.
Dynamic Temperature and Pressure Measurements in the Core of a Propulsion Engine
NASA Technical Reports Server (NTRS)
Schuster, Bill; Gordon, Grant; Hultgren, Lennart S.
2015-01-01
Dynamic temperature and pressure measurements were made in the core of a TECH977 propulsion engine as part of a NASA funded investigation into indirect combustion noise. Dynamic temperature measurements were made in the combustor, the inter-turbine duct, and the mixer using ten two-wire thermocouple probes. Internal dynamic pressure measurements were made at the same locations using piezoresistive transducers installed in semi-infinite coils. Measurements were acquired at four steady state operating conditions covering the range of aircraft approach power settings. Fluctuating gas temperature spectra were computed from the thermocouple probe voltage measurements using a compensation procedure that was developed under previous NASA test programs. A database of simultaneously acquired dynamic temperature and dynamic pressure measurements was produced. Spectral and cross-spectral analyses were conducted to explore the characteristics of the temperature and pressure fluctuations inside the engine, with a particular focus on attempting to identify the presence of indirect combustion noise.
Single Particle Jumps in Sheared SiO2
NASA Astrophysics Data System (ADS)
McMahon, Sean; Vollmayr-Lee, Katharina; Cookmeyer, Jonathan; Horbach, Juergen
We study the dynamics of a sheared glass via molecular dynamics simulations. Using the BKS potential we simulate the strong glass former SiO2. The system is initially well equilibrated at a high temperature, then quenched to a temperature below the glass transition, and, after a waiting time at the desired low temperature, sheared with constant strain rate. We present preliminary results of an analysis of single particle trajectories of the sheared glass. We acknowledge the support via NSF REU Grant #PHY-1156964, DoD ASSURE program, and NSF-MRI CHE-1229354 as part of the MERCURY high-performance computer consortium. We thank G.P. Shrivastav, Ch. Scherer and B. Temelso.
NASA Technical Reports Server (NTRS)
Coe, H. H.
1984-01-01
Planetsys and Spherbean, two computer programs developed for the analysis of rolling element bearings, were used to simulate the thermal performance of an OH-58 helicopter main rotor transmission. A steady state and a transient thermal analysis were made and temperatures thus calculated were compared with experimental data obtained from a transmission that was operated to destruction, which occurred about 30 min after all the oil was drained from the transmission. Temperatures predicted by Spherbean were within 3% of the corresponding measured values at 15 min elapsed time and within 9% at 25 min. Spherbean also indicates a potential for high bearing cage temperatures with misalignment and outer ring rotation.
Method for in-situ restoration of plantinum resistance thermometer calibration
Carroll, Radford M.
1989-01-01
A method is provided for in-situ restoration of platinum resistance thermometers (PRT's) that have undergone surface oxide contamination and/or strain-related damage causing decalibration. The method, which may be automated using a programmed computer control arrangement, consists of applying a dc heating current to the resistive sensing element of the PRT of sufficient magnitude to heat the element to an annealing temperature and maintaining the temperature for a specified period to restore the element to a stress-free calibration condition. The process anneals the sensing element of the PRT without subjecting the entire PRT assembly to the annealing temperature and may be used in the periodic maintenance of installed PRT's.
Method for in-situ restoration of platinum resistance thermometer calibration
Carroll, R.M.
1987-10-23
A method is provided for in-situ restoration of platinum resistance thermometers (PRT's) that have undergone surface oxide contamination and/or stain-related damage causing decalibration. The method, which may be automated using a programmed computer control arrangement, consists of applying a dc heating current to the resistive sensing element of the PRT of sufficient magnitude to heat the element to an annealing temperature and maintaining the temperature for a specified period to restore the element to a stress-free calibration condition. The process anneals the sensing element of the PRT without subjecting the entire PRT assembly to the annealing temperature and may be used in the periodic maintenance of installed PRT's. 1 fig.
Neutron Transmission of Single-crystal Sapphire Filters
NASA Astrophysics Data System (ADS)
Adib, M.; Kilany, M.; Habib, N.; Fathallah, M.
2005-05-01
An additive formula is given that permits the calculation of the nuclear capture, thermal diffuse and Bragg scattering cross-sections as a function of sapphire temperature and crystal parameters. We have developed a computer program that allows calculations of the thermal neutron transmission for the sapphire rhombohedral structure and its equivalent trigonal structure. The calculated total cross-section values and effective attenuation coefficient for single-crystalline sapphire at different temperatures are compared with measured values. Overall agreement is indicated between the formula and experimental data. We discuss the use of sapphire single crystal as a thermal neutron filter in terms of the optimum cystal thickness, mosaic spread, temperature, cutting plane and tuning for efficient transmission of thermal-reactor neutrons.
Life prediction and constitutive models for engine hot section anisotropic materials program
NASA Technical Reports Server (NTRS)
Nissley, D. M.; Meyer, T. G.
1992-01-01
This report presents the results from a 35 month period of a program designed to develop generic constitutive and life prediction approaches and models for nickel-based single crystal gas turbine airfoils. The program is composed of a base program and an optional program. The base program addresses the high temperature coated single crystal regime above the airfoil root platform. The optional program investigates the low temperature uncoated single crystal regime below the airfoil root platform including the notched conditions of the airfoil attachment. Both base and option programs involve experimental and analytical efforts. Results from uniaxial constitutive and fatigue life experiments of coated and uncoated PWA 1480 single crystal material form the basis for the analytical modeling effort. Four single crystal primary orientations were used in the experiments: (001), (011), (111), and (213). Specific secondary orientations were also selected for the notched experiments in the optional program. Constitutive models for an overlay coating and PWA 1480 single crystal material were developed based on isothermal hysteresis loop data and verified using thermomechanical (TMF) hysteresis loop data. A fatigue life approach and life models were selected for TMF crack initiation of coated PWA 1480. An initial life model used to correlate smooth and notched fatigue data obtained in the option program shows promise. Computer software incorporating the overlay coating and PWA 1480 constitutive models was developed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Binney, E.J.
LION4 is a computer program for calculating one-, two-, or three-dimensional transient and steady-state temperature distributions in reactor and reactor plant components. It is used primarily for thermal-structural analyses. It utilizes finite difference techniques with first-order forward difference integration and is capable of handling a wide variety of bounding conditions. Heat transfer situations accommodated include forced and free convection in both reduced and fully-automated temperature dependent forms, coolant flow effects, a limited thermal radiation capability, a stationary or stagnant fluid gap, a dual dependency (temperature difference and temperature level) heat transfer, an alternative heat transfer mode comparison and selection facilitymore » combined with heat flux direction sensor, and any form of time-dependent boundary temperatures. The program, which handles time and space dependent internal heat generation, can also provide temperature dependent material properties with limited non-isotropic properties. User-oriented capabilities available include temperature means with various weightings and a complete heat flow rate surveillance system.CDC6600,7600;UNIVAC1108;IBM360,370; FORTRAN IV and ASCENT (CDC6600,7600), FORTRAN IV (UNIVAC1108A,B and IBM360,370); SCOPE (CDC6600,7600), EXEC8 (UNIVAC1108A,B), OS/360,370 (IBM360,370); The CDC6600 version plotter routine LAPL4 is used to produce the input required by the associated CalComp plotter for graphical output. The IBM360 version requires 350K for execution and one additional input/output unit besides the standard units.« less
JTMIX - CRYOGENIC MIXED FLUID JOULE-THOMSON ANALYSIS PROGRAM
NASA Technical Reports Server (NTRS)
Jones, J. A.
1994-01-01
JTMIX was written to allow the prediction of both ideal and realistic properties of mixed gases in the 65-80K temperature range. It allows mixed gas J-T analysis for any fluid combination of neon, nitrogen, various hydrocarbons, argon, oxygen, carbon monoxide, carbon dioxide, and hydrogen sulfide. When used in conjunction with the NIST computer program DDMIX, JTMIX has accurately predicted order-of-magnitude increases in J-T cooling capacities when various hydrocarbons are added to nitrogen, and it predicts nitrogen normal boiling point depressions to as low as 60K when neon is added. JTMIX searches for heat exchanger "pinch points" that can result from insolubility of various components in each other. These points result in numerical solutions that cannot exist. The length of the heat exchanger is searched for such points and, if they exist, the user is warned and the temperatures and heat exchanger effectiveness are corrected to provide a real solution. JTMIX gives very good correlation (within data accuracy) to mixed gas data published by the USSR and data taken by APD for the U.S. Naval Weapons Lab. Data taken at JPL also confirms JTMIX for all cases tested. JTMIX is written in Turbo C for IBM PC compatible computers running MS-DOS. The National Institute of Standards and Technology's (NIST, Gaithersburg, MD, 301-975-2208) computer code DDMIX is required to provide mixed-fluid enthalpy data which is input into JTMIX. The standard distribution medium for this program is a 5.25 inch 360K MS-DOS format diskette. JTMIX was developed in 1991 and is a copyrighted work with all copyright vested in NASA.
A novel method of sensing temperatures of magnet coils of SINP-MaPLE plasma device
NASA Astrophysics Data System (ADS)
Pal, A. M.; Bhattacharya, S.; Biswas, S.; Basu, S.; Pal, R.
2014-03-01
A set of 36 magnet coils is used to produce a continuous, uniform magnetic field of about 0.35 Tesla inside the vacuum chamber of the MaPLE Device, a linear laboratory plasma device (3 m long and 0.30 m in diameter) built for studying basic magnetized plasma physics phenomena. To protect the water cooled-coils from serious damage due to overheating temperatures of all the coils are monitored electronically using low cost temperature sensor IC chips, a technique first being used in similar magnet system. Utilizing the Parallel Port of a Personal Computer a novel scheme is used to avoid deploying microprocessor that is associated with involved circuitry and low level programming to address and control the large number of sensors. The simple circuits and a program code to implement the idea are developed, tested and presently in operation. The whole arrangement comes out to be not only attractive, but also simple, economical and easy to install elsewhere.
Operational cooling tower model (CTTOOL V1.0)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aleman, S.; LocalDomainServers, L.; Garrett, A.
2015-01-01
Mechanical draft cooling towers (MDCT’s) are widely used to remove waste heat from industrial processes, including suspected proliferators of weapons of mass destruction (WMD). The temperature of the air being exhausted from the MDCT is proportional to the amount of thermal energy being removed from the process cooling water, although ambient weather conditions and cooling water flow rate must be known or estimated to calculate the rate of thermal energy dissipation (Q). It is theoretically possible to derive MDCT air exhaust temperatures from thermal images taken from a remote sensor. A numerical model of a MDCT is required to translatemore » the air exhaust temperature to a Q. This report describes the MDCT model developed by the Problem Centered Integrated Analysis (PCIA) program that was designed to perform those computational tasks. The PCIA program is a collaborative effort between the Savannah River National Laboratory (SRNL), the Northrop-Grumman Corporation (NG) and the Aerospace Corporation (AERO).« less
The Coastal Ocean Prediction Systems program: Understanding and managing our coastal ocean
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eden, H.F.; Mooers, C.N.K.
1990-06-01
The goal of COPS is to couple a program of regular observations to numerical models, through techniques of data assimilation, in order to provide a predictive capability for the US coastal ocean including the Great Lakes, estuaries, and the entire Exclusive Economic Zone (EEZ). The objectives of the program include: determining the predictability of the coastal ocean and the processes that govern the predictability; developing efficient prediction systems for the coastal ocean based on the assimilation of real-time observations into numerical models; and coupling the predictive systems for the physical behavior of the coastal ocean to predictive systems for biological,more » chemical, and geological processes to achieve an interdisciplinary capability. COPS will provide the basis for effective monitoring and prediction of coastal ocean conditions by optimizing the use of increased scientific understanding, improved observations, advanced computer models, and computer graphics to make the best possible estimates of sea level, currents, temperatures, salinities, and other properties of entire coastal regions.« less
Bearing tester data compilation, analysis, and reporting and bearing math modeling
NASA Technical Reports Server (NTRS)
1986-01-01
A test condition data base was developed for the Bearing and Seal Materials Tester (BSMT) program which permits rapid retrieval of test data for trend analysis and evaluation. A model was developed for the Space shuttle Main Engine (SSME) Liquid Oxygen (LOX) turbopump shaft/bearing system. The model was used to perform parametric analyses to determine the sensitivity of bearing operating characteristics and temperatures to variations in: axial preload, contact friction, coolant flow and subcooling, heat transfer coefficients, outer race misalignments, and outer race to isolator clearances. The bearing program ADORE (Advanced Dynamics of Rolling Elements) was installed on the UNIVAC 1100/80 computer system and is operational. ADORE is an advanced FORTRAN computer program for the real time simulation of the dynamic performance of rolling bearings. A model of the 57 mm turbine-end bearing is currently being checked out. Analyses were conducted to estimate flow work energy for several flow diverter configurations and coolant flow rates for the LOX BSMT.
High speed cylindrical roller bearing analysis. SKF computer program CYBEAN. Volume 2: User's manual
NASA Technical Reports Server (NTRS)
Dyba, G. J.; Kleckner, R. J.
1981-01-01
CYBEAN (CYlindrical BEaring ANalysis) was created to detail radially loaded, aligned and misaligned cylindrical roller bearing performance under a variety of operating conditions. Emphasis was placed on detailing the effects of high speed, preload and system thermal coupling. Roller tilt, skew, radial, circumferential and axial displacement as well as flange contact were considered. Variable housing and flexible out-of-round outer ring geometries, and both steady state and time transient temperature calculations were enabled. The complete range of elastohydrodynamic contact considerations, employing full and partial film conditions were treated in the computation of raceway and flange contacts. The practical and correct implementation of CYBEAN is discussed. The capability to execute the program at four different levels of complexity was included. In addition, the program was updated to properly direct roller-to-raceway contact load vectors automatically in those cases where roller or ring profiles have small radii of curvature. Input and output architectures containing guidelines for use and two sample executions are detailed.
POSTOP: Postbuckled open-stiffener optimum panels-theory and capability
NASA Technical Reports Server (NTRS)
Dickson, J. N.; Biggers, S. B.
1984-01-01
The computer program POSTOP was developed to serve as an aid in the analysis and sizing of stiffened composite panels that are loaded in the postbuckling regime. A comprehensive set of analysis routines was coupled to a widely used optimization program to produce this sizing code. POSTOP is intended for the preliminary design of metal or composite panels with open-section stiffeners, subjected to multiple combined biaxial compression (or tension), shear and normal pressure load cases. Longitudinal compression, however, is assumed to be the dominant loading. Temperature, initial bow eccentricity and load eccentricity effects are included. The panel geometry is assumed to be repetitive over several bays in the longitudinal (stiffener) direction as well as in the transverse direction. Analytical routines are included to compute panel stiffnesses, strains, local and panel buckling loads, and skin/stiffener interface stresses. The resulting program is applicable to stiffened panels as commonly used in fuselage, wing, or empennage structures. The analysis procedures and rationale for the assumptions used therein are described in detail.
NASA Technical Reports Server (NTRS)
Zehe, Michael J.; Gordon, Sanford; McBride, Bonnie J.
2002-01-01
For several decades the NASA Glenn Research Center has been providing a file of thermodynamic data for use in several computer programs. These data are in the form of least-squares coefficients that have been calculated from tabular thermodynamic data by means of the NASA Properties and Coefficients (PAC) program. The source thermodynamic data are obtained from the literature or from standard compilations. Most gas-phase thermodynamic functions are calculated by the authors from molecular constant data using ideal gas partition functions. The Coefficients and Properties (CAP) program described in this report permits the generation of tabulated thermodynamic functions from the NASA least-squares coefficients. CAP provides considerable flexibility in the output format, the number of temperatures to be tabulated, and the energy units of the calculated properties. This report provides a detailed description of input preparation, examples of input and output for several species, and a listing of all species in the current NASA Glenn thermodynamic data file.
CAP: A Computer Code for Generating Tabular Thermodynamic Functions from NASA Lewis Coefficients
NASA Technical Reports Server (NTRS)
Zehe, Michael J.; Gordon, Sanford; McBride, Bonnie J.
2001-01-01
For several decades the NASA Glenn Research Center has been providing a file of thermodynamic data for use in several computer programs. These data are in the form of least-squares coefficients that have been calculated from tabular thermodynamic data by means of the NASA Properties and Coefficients (PAC) program. The source thermodynamic data are obtained from the literature or from standard compilations. Most gas-phase thermodynamic functions are calculated by the authors from molecular constant data using ideal gas partition functions. The Coefficients and Properties (CAP) program described in this report permits the generation of tabulated thermodynamic functions from the NASA least-squares coefficients. CAP provides considerable flexibility in the output format, the number of temperatures to be tabulated, and the energy units of the calculated properties. This report provides a detailed description of input preparation, examples of input and output for several species, and a listing of all species in the current NASA Glenn thermodynamic data file.
Magneto Caloric Effect in Ni-Mn-Ga alloys: First Principles and Experimental studies
NASA Astrophysics Data System (ADS)
Odbadrakh, Khorgolkhuu; Nicholson, Don; Brown, Gregory; Rusanu, Aurelian; Rios, Orlando; Hodges, Jason; Safa-Sefat, Athena; Ludtka, Gerard; Eisenbach, Markus; Evans, Boyd
2012-02-01
Understanding the Magneto-Caloric Effect (MCE) in alloys with real technological potential is important to the development of viable MCE based products. We report results of computational and experimental investigation of a candidate MCE materials Ni-Mn-Ga alloys. The Wang-Landau statistical method is used in tandem with Locally Self-consistent Multiple Scattering (LSMS) method to explore magnetic states of the system. A classical Heisenberg Hamiltonian is parametrized based on these states and used in obtaining the density of magnetic states. The Currie temperature, isothermal entropy change, and adiabatic temperature change are then calculated from the density of states. Experiments to observe the structural and magnetic phase transformations were performed at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) on alloys of Ni-Mn-Ga and Fe-Ni-Mn-Ga-Cu. Data from the observations are discussed in comparison with the computational studies. This work was sponsored by the Laboratory Directed Research and Development Program (ORNL), by the Mathematical, Information, and Computational Sciences Division; Office of Advanced Scientific Computing Research (US DOE), and by the Materials Sciences and Engineering Division; Office of Basic Energy Sciences (US DOE).
Multiple Concentric Cylinder Model (MCCM) user's guide
NASA Technical Reports Server (NTRS)
Williams, Todd O.; Pindera, Marek-Jerzy
1994-01-01
A user's guide for the computer program mccm.f is presented. The program is based on a recently developed solution methodology for the inelastic response of an arbitrarily layered, concentric cylinder assemblage under thermomechanical loading which is used to model the axisymmetric behavior of unidirectional metal matrix composites in the presence of various microstructural details. These details include the layered morphology of certain types of ceramic fibers, as well as multiple fiber/matrix interfacial layers recently proposed as a means of reducing fabrication-induced, and in-service, residual stress. The computer code allows efficient characterization and evaluation of new fibers and/or new coating systems on existing fibers with a minimum of effort, taking into account inelastic and temperature-dependent properties and different morphologies of the fiber and the interfacial region. It also facilitates efficient design of engineered interfaces for unidirectional metal matrix composites.
Thermodynamic Data to 20,000 K For Monatomic Gases
NASA Technical Reports Server (NTRS)
Gordon, Sanford; McBride, Bonnie J.
1999-01-01
This report contains standard-state thermodynamic functions for 50 gaseous atomic elements plus deuterium and electron gas, 51 singly ionized positive ions, and 36 singly ionized negative ions. The data were generated by the NASA Lewis computer program PAC97, a modified version of PAC91 reported in McBride and Gordon. This report is being published primarily to document part of the data currently being used in several NASA Lewis computer programs. The data are presented in tabular and graphical format and are also represented in the form of least-squares coefficients. The tables give the following data as functions of temperature : heat capacity, enthalpy, entropy Gibbs energy, enthalpy of formation, and equilibrium constant. A brief discussion and a comparison of calculated results are given for several models for calculating ideal thermodynamic data for monatomic gases.
NASA Technical Reports Server (NTRS)
1995-01-01
An evaluation of the effect of model inlet air temperature drift during a test run was performed to aid in the decision on the need for and/or the schedule for including heaters in the SRMAFTE. The Sverdrup acceptance test data was used to determine the drift in air temperature during runs over the entire range of delivered flow rates and pressures. The effect of this temperature drift on the model Reynolds number was also calculated. It was concluded from this study that a 2% change in absolute temperature during a test run could be adequately accounted for by the data analysis program. A handout package of these results was prepared and presented to ED35 management.
Microgravity nucleation and particle coagulation experiments support
NASA Technical Reports Server (NTRS)
Lilleleht, L. U.; Ferguson, F. T.
1987-01-01
A preliminary model for diffusion between concentric hemispheres was adapted to the cylindrical geometry of a microgravity nucleation apparatus, and extended to include the effects of radiation and conduction through the containment walls. Computer programs were developed to calculate first the temperature distribution and then the evolving concentration field using a finite difference formulation of the transient diffusion and radiation processes. The following estimations are made: (1) it takes approximately 35 minutes to establish a steady temperature field; (2) magnesium vapors released into the argon environment at the steady temperature distribution will reach a maximum supersaturation ratio of approximately 10,000 in the 20-second period at a distance of 15 cm from the source of vapors; and (3) approximately 750W electrical power will be required to maintain steady operating temperatures within the chamber.
DIY soundcard based temperature logging system. Part I: design
NASA Astrophysics Data System (ADS)
Nunn, John
2016-11-01
This paper aims to enable schools to make their own low-cost temperature logging instrument and to learn a something about its calibration in the process. This paper describes how a thermistor can be integrated into a simple potential divider circuit which is powered with the sound output of a computer and monitored by the microphone input. The voltage across a fixed resistor is recorded and scaled to convert it into a temperature reading in the range 0-100 °C. The calibration process is described with reference to fixed points and the effects of non-linearity are highlighted. An optimised calibration procedure is described which enables sub degree resolution and a software program was written which makes it possible to log, display and save temperature changes over a user determined period of time.
Integrated analyses in plastics forming
NASA Astrophysics Data System (ADS)
Bo, Wang
This is the thesis which explains the progress made in the analysis, simulation and testing of plastics forming. This progress can be applied to injection and compression mould design. Three activities of plastics forming have been investigated, namely filling analysis, cooling analysis and ejecting analysis. The filling section of plastics forming has been analysed and calculated by using MOLDFLOW and FILLCALC V. software. A comparing of high speed compression moulding and injection moulding has been made. The cooling section of plastics forming has been analysed by using MOLDFLOW software and a finite difference computer program. The latter program can be used as a sample program to calculate the feasibility of cooling different materials to required target temperatures under controlled cooling conditions. The application of thermal imaging has been also introduced to determine the actual process temperatures. Thermal imaging can be used as a powerful tool to analyse mould surface temperatures and to verify the mathematical model. A buckling problem for ejecting section has been modelled and calculated by PATRAN/ABAQUS finite element analysis software and tested. These calculations and analysis are applied to the special case but can be use as an example for general analysis and calculation in the ejection section of plastics forming.
Parametric analysis of ATM solar array.
NASA Technical Reports Server (NTRS)
Singh, B. K.; Adkisson, W. B.
1973-01-01
The paper discusses the methods used for the calculation of ATM solar array performance characteristics and provides the parametric analysis of solar panels used in SKYLAB. To predict the solar array performance under conditions other than test conditions, a mathematical model has been developed. Four computer programs have been used to convert the solar simulator test data to the parametric curves. The first performs module summations, the second determines average solar cell characteristics which will cause a mathematical model to generate a curve matching the test data, the third is a polynomial fit program which determines the polynomial equations for the solar cell characteristics versus temperature, and the fourth program uses the polynomial coefficients generated by the polynomial curve fit program to generate the parametric data.
Radiant Heat Transfer Between Nongray Parallel Plates of Tungsten
NASA Technical Reports Server (NTRS)
Branstetter, J. Robert
1961-01-01
Net radiant heat flow between two infinite, parallel, tungsten plates was computed by summing the monochromatic energy exchange; the results are graphically presented as a function of the temperatures of the two surfaces. In general these fluxes range from approximately a to 25 percent greater than the results of gray-body computations based on the same emissivity data. The selection of spectral emissivity data and the computational procedure are discussed. The present analytical procedure is so arranged that, as spectral emissivity data for a material become available, these data can be readily introduced into the NASA data-reduction equipment, which has been programmed to compute the net heat flux for the particular geometry and basic assumptions cited in the text. Nongray-body computational techniques for determining radiant heat flux appear practical provided the combination of select spectral emissivity data and the proper mechanized data-reduction equipment are brought to bear on the problem.
Effect of strain rate and temperature on mechanical properties of selected building Polish steels
NASA Astrophysics Data System (ADS)
Moćko, Wojciech; Kruszka, Leopold
2015-09-01
Currently, the computer programs of CAD type are basic tool for designing of various structures under impact loading. Application of the numerical calculations allows to substantially reduce amount of time required for the design stage of such projects. However, the proper use of computer aided designing technique requires input data for numerical software including elastic-plastic models of structural materials. This work deals with the constitutive model developed by Rusinek and Klepaczko (RK) applied for the modelling of mechanical behaviour of selected grades structural St0S, St3SX, 18GS and 34GS steels and presents here results of experimental and empirical analyses to describe dynamic elastic-plastic behaviours of tested materials at wide range of temperature. In order to calibrate the RK constitutive model, series of compression tests at wide range of strain rates, including static, quasi-static and dynamic investigations at lowered, room and elevated temperatures, were carried out using two testing stands: servo-hydraulic machine and split Hopkinson bar. The results were analysed to determine influence of temperature and strain rate on visco-plastic response of tested steels, and show good correlation with experimental data.
Parameter monitoring compensation system and method
Barkman, W.E.; Babelay, E.F.; DeMint, P.D.; Hebble, T.L.; Igou, R.E.; Williams, R.R.; Klages, E.J.; Rasnick, W.H.
1995-02-07
A compensation system is described for a computer-controlled machining apparatus having a controller and including a cutting tool and a workpiece holder which are movable relative to one another along a preprogrammed path during a machining operation. It utilizes sensors for gathering information at a preselected stage of a machining operation relating to an actual condition. The controller compares the actual condition to a condition which the program presumes to exist at the preselected stage and alters the program in accordance with detected variations between the actual condition and the assumed condition. Such conditions may be related to process parameters, such as a position, dimension or shape of the cutting tool or workpiece or an environmental temperature associated with the machining operation, and such sensors may be a contact or a non-contact type of sensor or a temperature transducer. 7 figs.
NASA Technical Reports Server (NTRS)
Williams, S. D.
1983-01-01
Entry heating flight data and wind tunnel data on the lower wing 50% and 80% Semi-Spans are presented for the first five flights of the Space Shuttle Orbiter. The heating rate data is presented in terms of normalized film heat transfer coefficients as a function of angle-of-attack, Mach number, and Normal Shock Reynolds number. The surface heating rates and temperatures were obtained via the JSC NONLIN/INVERSE computer program. Time history plots of the surface heating rates and temperatures are also presented.
Nonequilibrium air radiation (Nequair) program: User's manual
NASA Technical Reports Server (NTRS)
Park, C.
1985-01-01
A supplement to the data relating to the calculation of nonequilibrium radiation in flight regimes of aeroassisted orbital transfer vehicles contains the listings of the computer code NEQAIR (Nonequilibrium Air Radiation), its primary input data, and explanation of the user-supplied input variables. The user-supplied input variables are the thermodynamic variables of air at a given point, i.e., number densities of various chemical species, translational temperatures of heavy particles and electrons, and vibrational temperature. These thermodynamic variables do not necessarily have to be in thermodynamic equilibrium. The code calculates emission and absorption characteristics of air under these given conditions.
Simulation of a manual electric-arc welding in a working gas pipeline. 1. Formulation of the problem
NASA Astrophysics Data System (ADS)
Baikov, V. I.; Gishkelyuk, I. A.; Rus', A. M.; Sidorovich, T. V.; Tonkonogov, B. A.
2010-11-01
Problems of mathematical simulation of the temperature stresses arising in the wall of a pipe of a cross-country gas pipeline in the process of electric-arc welding of defects in it have been considered. Mathematical models of formation of temperatures, deformations, and stresses in a gas pipe subjected to phase transformations have been developed. These models were numerically realized in the form of algorithms representing a part of an application-program package. Results of verification of the computational complex and calculation results obtained with it are presented.
Computer modeling of a hot filament diamond deposition reactor
NASA Technical Reports Server (NTRS)
Kuczmarski, Maria A.; Washlock, Paul A.; Angus, John C.
1991-01-01
A commercial fluid mechanics program, FLUENT, has been applied to the modeling of a hot-filament diamond deposition reactor. Streamlines and contours of constant temperature and species concentrations are obtained for practical reactor geometries and conditions. The modeling is presently restricted to two-dimensional simulations and to a chemical mechanism of ten independent homogeneous and surface reactions. Comparisons are made between predicted power consumption, substrate temperature, and concentrations of atomic hydrogen and methyl-radical with values taken from the literature. The results to date indicate that the modeling can aid in the rational design and analysis of practical reactor configurations.
NASA Technical Reports Server (NTRS)
Antaki, P. J.
1981-01-01
The joint probability distribution function (pdf), which is a modification of the bivariate Gaussian pdf, is discussed and results are presented for a global reaction model using the joint pdf. An alternative joint pdf is discussed. A criterion which permits the selection of temperature pdf's in different regions of turbulent, reacting flow fields is developed. Two principal approaches to the determination of reaction rates in computer programs containing detailed chemical kinetics are outlined. These models represent a practical solution to the modeling of species reaction rates in turbulent, reacting flows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohr, C.L.; Rausch, W.N.; Hesson, G.M.
The LOCA Simulation Program in the NRU reactor is the first set of experiments to provide data on the behavior of full-length, nuclear-heated PWR fuel bundles during the heatup, reflood, and quench phases of a loss-of-coolant accident (LOCA). This paper compares the temperature time histories of 4 experimental test cases with 4 computer codes: CE-THERM, FRAP-T5, GT3-FLECHT, and TRUMP-FLECHT. The preliminary comparisons between prediction and experiment show that the state-of-the art fuel codes have large uncertainties and are not necessarily conservative in predicting peak temperatures, turn around times, and bundle quench times.
Laserthermia: a new computer-controlled contact Nd: YAG system for interstitial local hyperthermia.
Daikuzono, N; Suzuki, S; Tajiri, H; Tsunekawa, H; Ohyama, M; Joffe, S N
1988-01-01
Contact Nd:YAG laser surgery is assuming a greater importance in endoscopic and open surgery, allowing coagulation, cutting, and vaporization with greater precision and safety. A new contact probe allows a wider angle of irradiation and diffusion of low-power laser energy (less than 5 watts), using the interstitial technique for producing local hyperthermia. Temperature sensors that monitor continuously can be placed directly into the surrounding tissue or tumor. Using a computer program interfaced with the laser and sensors, a controlled and stable temperature (e.g., 42 degrees C) can be produced in a known volume of tissue over a prolonged period of time (e.g., 20-40 min). This new laserthermia system, using a single low-power Nd:YAG laser for interstitial local hyperthermia, may offer many new advantages in the experimental treatment and clinical management of carcinoma. A multiple system is now being developed.
NASA Technical Reports Server (NTRS)
Kemp, N. H.; Lewis, P. F.
1980-01-01
The development of a computer program for the design of the thrust chamber for a CW laser heated thruster was examined. Hydrodgen was employed as the propellant gas and high temperature absorber. The laser absorption coefficient of the mixture/laser radiation combination is given in temperature and species densities. Radiative and absorptive properties are given to determine radiation from such gas mixtures. A computer code for calculating the axisymmetric channel flow of a gas mixture in chemical equilibrium, and laser energy absorption and convective and radiative heating is described. It is concluded that: (1) small amounts of cesium seed substantially increase the absorption coefficient of hydrogen; (2) cesium is a strong radiator and contributes greatly to radiation of cesium seeded hydrogen; (3) water vapor is a poor absorber; and (4) for 5.3mcm radiation, both H2O/CO and NO/CO seeded hydrogen mixtures are good absorbers.
Fuel freeze-point investigations. Final report, September 1982-March 1984
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desmarais, L.A.; Tolle, F.F.
1984-07-01
The objective of this program was to conduct a detailed assessment of the low-temperature environment to which USAF aircraft are exposed for the purpose of defining a maximum acceptable fuel freeze-point and also to define any operational changes required with the use of a high freeze-point fuel. A previous study of B-52, C-141, and KC-135 operational missions indicated that the -58 C freeze point specification was too conservative. Based on recommendations resulting from the previous program, several improvements in the method of analysis were made, such as: expansion of the atmospheric temperature data base, the addition of ground temperature analysis,more » the addition of fuel-freezing analysis to the one-dimensional fuel-temperature computer program, and the examination of heat transfer in external fuel tanks, such as pylon or tip tanks. The B-52, C-141, and KC-135 mission were analyzed again, along with the operational missions of two tactical airplanes, the A-10 and F-15; -50C was determined to be the maximum allowable freeze point for a general-purpose USAF aviation turbine fuel. Higher freeze points can be tolerated if the probability of operational interference is acceptably low or if operational changes can be made. Study of atmospheric temperatures encountered for the missions of the five-study aircraft indicates that a maximum freeze point of -48 C would not likely create any operational difficulties in Northern Europe.« less
Radiometer Calibrations: Saving Time by Automating the Gathering and Analysis Procedures
NASA Technical Reports Server (NTRS)
Sadino, Jeffrey L.
2005-01-01
Mr. Abtahi custom-designs radiometers for Mr. Hook's research group. Inherently, when the radiometers report the temperature of arbitrary surfaces, the results are affected by errors in accuracy. This problem can be reduced if the errors can be accounted for in a polynomial. This is achieved by pointing the radiometer at a constant-temperature surface. We have been using a Hartford Scientific WaterBath. The measurements from the radiometer are collected at many different temperatures and compared to the measurements made by a Hartford Chubb thermometer with a four-decimal point resolution. The data is analyzed and fit to a fifth-order polynomial. This formula is then uploaded into the radiometer software, enabling accurate data gathering. Traditionally, Mr. Abtahi has done this by hand, spending several hours of his time setting the temperature, waiting for stabilization, taking measurements, and then repeating for other temperatures. My program, written in the Python language, has enabled the data gathering and analysis process to be handed off to a less-senior member of the team. Simply by entering several initial settings, the program will simultaneously control all three instruments and organize the data suitable for computer analyses, thus giving the desired fifth-order polynomial. This will save time, allow for a more complete calibration data set, and allow for base calibrations to be developed. The program is expandable to simultaneously take any type of measurement from up to nine distinct instruments.
Temperature controlled formation of lead/acid batteries
NASA Astrophysics Data System (ADS)
Bungardt, M.
At present, standard formation programs have to accommodate the worst case. This is important, especially in respect of variations in climatic conditions. The standard must be set so that during the hottest weather periods the maximum electrolyte temperature is not exceeded. As this value is defined not only by the desired properties and the recipe of the active mass, but also by type and size of the separators and by the dimensions of the plates, general rules cannot be formulated. It is considered to be advantageous to introduce limiting data for the maximum temperature into a general formation program. The latter is defined so that under normal to good ambient conditions the shortest formation time is achieved. If required, the temperature control will reduce the currents employed in the different steps, according to need, and will extend the formation time accordingly. With computer-controlled formation, these parameters can be readily adjusted to suit each type of battery and can also be reset according to modifications in the preceding processing steps. Such a procedure ensures that: (i) the formation time is minimum under the given ambient conditions; (ii) in the event of malpractice ( e.g. actual program not fitting to size) the batteries will not be destroyed; (iii) the energy consumption is minimized (note, high electrolyte temperature leads to excess gassing). These features are incorporated in the BA/FOS-500 battery formation system developed by Digatron. The operational characteristics of this system are listed in Table 1.
NASA Astrophysics Data System (ADS)
Stock, Joachim W.; Kitzmann, Daniel; Patzer, A. Beate C.; Sedlmayr, Erwin
2018-06-01
For the calculation of complex neutral/ionized gas phase chemical equilibria, we present a semi-analytical versatile and efficient computer program, called FastChem. The applied method is based on the solution of a system of coupled nonlinear (and linear) algebraic equations, namely the law of mass action and the element conservation equations including charge balance, in many variables. Specifically, the system of equations is decomposed into a set of coupled nonlinear equations in one variable each, which are solved analytically whenever feasible to reduce computation time. Notably, the electron density is determined by using the method of Nelder and Mead at low temperatures. The program is written in object-oriented C++ which makes it easy to couple the code with other programs, although a stand-alone version is provided. FastChem can be used in parallel or sequentially and is available under the GNU General Public License version 3 at https://github.com/exoclime/FastChem together with several sample applications. The code has been successfully validated against previous studies and its convergence behavior has been tested even for extreme physical parameter ranges down to 100 K and up to 1000 bar. FastChem converges stable and robust in even most demanding chemical situations, which posed sometimes extreme challenges for previous algorithms.
Computer simulation of rapid crystal growth under microgravity
NASA Astrophysics Data System (ADS)
Hisada, Yasuhiro; Saito, Osami; Mitachi, Koshi; Nishinaga, Tatau
We are planning to grow a Ge single crystal under microgravity by the TR-IA rocket in 1992. The furnace temperature should be controlled so as to finish the crystal growth in a quite short time interval (about 6 min). This study deals with the computer simulation of rapid crystal growth in space to find the proper conditions for the experiment. The crystal growth process is influenced by various physical phenomena such as heat conduction, natural and Marangoni convections, phase change, and radiation from the furnace. In this study, a 2D simulation with axial symmetry is carried out, taking into account the radiation field with a specific temperature distribution of the furnace wall. The simulation program consists of four modules. The first module is applied for the calculation of the parabolic partial differential equation by using the control volume method. The second one evaluates implicitly the phase change by the enthalpy method. The third one is for computing the heat flux from surface by radiation. The last one is for calculating with the Monte Carlo method the view factors which are necessary to obtain the heat flux.
NASA Technical Reports Server (NTRS)
Blair, M. F.
1991-01-01
A combined experimental and computational program was conducted to examine the heat transfer distribution in a turbine rotor passage geometrically similar to the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump (HPFTP). Heat transfer was measured and computed for both the full span suction and pressure surfaces of the rotor airfoil as well as for the hub endwall surface. The objective of the program was to provide a benchmark-quality database for the assessment of rotor heat transfer computational techniques. The experimental portion of the study was conducted in a large scale, ambient temperature, rotating turbine model. The computational portion consisted of the application of a well-posed parabolized Navier-Stokes analysis of the calculation of the three-dimensional viscous flow through ducts simulating a gas turbine package. The results of this assessment indicate that the procedure has the potential to predict the aerodynamics and the heat transfer in a gas turbine passage and can be used to develop detailed three dimensional turbulence models for the prediction of skin friction and heat transfer in complex three dimensional flow passages.
NASA Tech Briefs, February 2001. Volume 25, No. 2
NASA Technical Reports Server (NTRS)
2001-01-01
The topics include: 1) Application Briefs; 2) National Design Engineering Show Preview; 3) Marketing Inventions to Increase Income; 4) A Personal-Computer-Based Physiological Training System; 5) Reconfigurable Arrays of Transistors for Evolvable Hardware; 6) Active Tactile Display Device for Reading by a Blind Person; 7) Program Automates Management of IBM VM Computer Systems; 8) System for Monitoring the Environment of a Spacecraft Launch; 9) Measurement of Stresses and Strains in Muscles and Tendons; 10) Optical Measurement of Temperatures in Muscles and Tendons; 11) Small Low-Temperature Thermometer With Nanokelvin Resolution; 12) Heterodyne Interferometer With Phase-Modulated Carrier; 13) Rechargeable Batteries Based on Intercalation in Graphite; 14) Signal Processor for Doppler Measurements in Icing Research; 15) Model Optimizes Drying of Wet Sheets; 16) High-Performance POSS-Modified Polymeric Composites; 17) Model Simulates Semi-Solid Material Processing; 18) Modular Cryogenic Insulation; 19) Passive Venting for Alleviating Helicopter Tail-Boom Loads; 20) Computer Program Predicts Rocket Noise; 21) Process for Polishing Bare Aluminum to High Optical Quality; 22) External Adhesive Pressure-Wall Patch; 23) Java Implementation of Information-Sharing Protocol; 24) Electronic Bulletin Board Publishes Schedules in Real Time; 25) Apparatus Would Extract Water From the Martian Atmosphere; 26) Review of Research on Supercritical vs Subcritical Fluids; 27) Hybrid Regenerative Water-Recycling System; 28) Study of Fusion-Driven Plasma Thruster With Magnetic Nozzle; 29) Liquid/Vapor-Hydrazine Thruster Would Produce Small Impulses; and 30) Thruster Based on Sublimation of Solid Hydrazine
Applications Guide for Propagation and Interference Analysis Computer Programs (0.1 to 20 GHz)
1978-03-01
146 A33 average ground . . . . . .. ....... 147 A34 good ground . . . ........ . . . .. 148 A35 sea water . ..................... 149 A36...fresh water . . . . . . . . . . . . 150 A37 smooth plains ........ ......... . 152 A38 rolling plains .................... 153 A39 hills . s...sec. 4.1), e) circular polarization [25, sec. 3.5], f) frequency and temperature variations of the complex dielectric constant of water [25, sec
After heat distribution of a mobile nuclear power plant
NASA Technical Reports Server (NTRS)
Parker, W. G.; Vanbibber, L. E.; Tang, Y. S.
1971-01-01
A computer program was developed to analyze the transient afterheat temperature and pressure response of a mobile gas-cooled reactor power plant following impact. The program considers (in addition to the standard modes of heat transfer) fission product decay and transport, metal-water reactions, core and shield melting and displacement, and pressure and containment vessel stress response. Analyses were performed for eight cases (both deformed and undeformed models) to verify operability of the program options. The results indicated that for a 350 psi (241 n/sq cm) initial internal pressure, the containment vessel can survive over 100,000 seconds following impact before creep rupture occurs. Recommendations were developed as to directions for redesign to extend containment vessel life.
CARES/Life Ceramics Durability Evaluation Software Used for Mars Microprobe Aeroshell
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.
1998-01-01
The CARES/Life computer program, which was developed at the NASA Lewis Research Center, predicts the probability of a monolithic ceramic component's failure as a function of time in service. The program has many features and options for materials evaluation and component design. It couples commercial finite element programs-which resolve a component's temperature and stress distribution-to-reliability evaluation and fracture mechanics routines for modeling strength-limiting defects. These routines are based on calculations of the probabilistic nature of the brittle material's strength. The capability, flexibility, and uniqueness of CARES/Life has attracted many users representing a broad range of interests and has resulted in numerous awards for technological achievements and technology transfer.
An update on the BQCD Hybrid Monte Carlo program
NASA Astrophysics Data System (ADS)
Haar, Taylor Ryan; Nakamura, Yoshifumi; Stüben, Hinnerk
2018-03-01
We present an update of BQCD, our Hybrid Monte Carlo program for simulating lattice QCD. BQCD is one of the main production codes of the QCDSF collaboration and is used by CSSM and in some Japanese finite temperature and finite density projects. Since the first publication of the code at Lattice 2010 the program has been extended in various ways. New features of the code include: dynamical QED, action modification in order to compute matrix elements by using Feynman-Hellman theory, more trace measurements (like Tr(D-n) for K, cSW and chemical potential reweighting), a more flexible integration scheme, polynomial filtering, term-splitting for RHMC, and a portable implementation of performance critical parts employing SIMD.
Role of temperature dependence of optical properties in laser irradiation of biological tissue
NASA Astrophysics Data System (ADS)
Rastegar, Sohi; Kim, Beop-Min; Jacques, Steven L.
1992-08-01
Optical properties of biological tissue can change as a result of thermal denaturation due to temperature rise; a familiar example is whitening observed in cooking egg-white. Changes in optical properties with temperature have been reported in the literature. Temperature rise due to laser irradiation is a function of the optical properties of tissue which themselves are a function of temperature of the tissue. This creates a coupling between light and temperature fields for biological tissue under laser irradiation. The effects of this coupling on the temperature response and light distribution may play an important role in dosimetry consideration for therapeutic as well as diagnostic application of lasers in medicine. In a previous study this problem was addressed in one dimension, for short irradiation exposures, using certain simplifying assumptions. The purpose of this research was to develop a mathematical model for dynamic optical changes with thermal denaturation and a computer program for simulation of these effects for a multi-dimensional geometry.
NASA Astrophysics Data System (ADS)
Jayalakshmi, D. S.; Sundareswari, M.; Viswanathan, E.; Das, Abhijeet
2018-04-01
The electrical conductivity, resistivity and Seebeck coefficient, Pauli magnetic susceptibility and power factor are computed under temperature (100 K - 800 K) in steps of 100 K for the theoretically designed compounds namely (Ca,Sr,Ba)Fe2Bi2 and their parent compounds namely (Ca,Sr,Ba)Fe2As2 by using Boltzmann transport theory interfaced to the Wien2k program. The Bulk modulus, electron phonon coupling constant, thermoelectric figure of merit (ZT) and transition temperature are calculated for the optimized anti ferromagnetic phase of the proposed compounds. The results are discussed for the novel compounds in view of their superconductivity existence and compared with their parent unconventional superconducting compounds.
METCAN-PC - METAL MATRIX COMPOSITE ANALYZER
NASA Technical Reports Server (NTRS)
Murthy, P. L.
1994-01-01
High temperature metal matrix composites offer great potential for use in advanced aerospace structural applications. The realization of this potential however, requires concurrent developments in (1) a technology base for fabricating high temperature metal matrix composite structural components, (2) experimental techniques for measuring their thermal and mechanical characteristics, and (3) computational methods to predict their behavior. METCAN (METal matrix Composite ANalyzer) is a computer program developed to predict this behavior. METCAN can be used to computationally simulate the non-linear behavior of high temperature metal matrix composites (HT-MMC), thus allowing the potential payoff for the specific application to be assessed. It provides a comprehensive analysis of composite thermal and mechanical performance. METCAN treats material nonlinearity at the constituent (fiber, matrix, and interphase) level, where the behavior of each constituent is modeled accounting for time-temperature-stress dependence. The composite properties are synthesized from the constituent instantaneous properties by making use of composite micromechanics and macromechanics. Factors which affect the behavior of the composite properties include the fabrication process variables, the fiber and matrix properties, the bonding between the fiber and matrix and/or the properties of the interphase between the fiber and matrix. The METCAN simulation is performed as point-wise analysis and produces composite properties which are readily incorporated into a finite element code to perform a global structural analysis. After the global structural analysis is performed, METCAN decomposes the composite properties back into the localized response at the various levels of the simulation. At this point the constituent properties are updated and the next iteration in the analysis is initiated. This cyclic procedure is referred to as the integrated approach to metal matrix composite analysis. METCAN-PC is written in FORTRAN 77 for IBM PC series and compatible computers running MS-DOS. An 80286 machine with an 80287 math co-processor is required for execution. The executable requires at least 640K of RAM and DOS 3.1 or higher. The package includes sample executables which were compiled under Microsoft FORTRAN v. 5.1. The standard distribution medium for this program is one 5.25 inch 360K MS-DOS format diskette. The contents of the diskette are compressed using the PKWARE archiving tools. The utility to unarchive the files, PKUNZIP.EXE, is included. METCAN-PC was developed in 1992.
TURBINE COOLING FLOW AND THE RESULTING DECREASE IN TURBINE EFFICIENCY
NASA Technical Reports Server (NTRS)
Gauntner, J. W.
1994-01-01
This algorithm has been developed for calculating both the quantity of compressor bleed flow required to cool a turbine and the resulting decrease in efficiency due to cooling air injected into the gas stream. Because of the trend toward higher turbine inlet temperatures, it is important to accurately predict the required cooling flow. This program is intended for use with axial flow, air-breathing jet propulsion engines with a variety of airfoil cooling configurations. The algorithm results have compared extremely well with figures given by major engine manufacturers for given bulk metal temperatures and cooling configurations. The program calculates the required cooling flow and corresponding decrease in stage efficiency for each row of airfoils throughout the turbine. These values are combined with the thermodynamic efficiency of the uncooled turbine to predict the total bleed airflow required and the altered turbine efficiency. There are ten airfoil cooling configurations and the algorithm allows a different option for each row of cooled airfoils. Materials technology is incorporated and requires the date of the first year of service for the turbine stator vane and rotor blade. The user must specify pressure, temperatures, and gas flows into the turbine. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 3080 series computer with a central memory requirement of approximately 61K of 8 bit bytes. This program was developed in 1980.
Research and educational initiatives at the Syracuse University Center for Hypersonics
NASA Technical Reports Server (NTRS)
Spina, E.; Lagraff, J.; Davidson, B.; Bogucz, E.; Dang, T.
1995-01-01
The Department of Mechanical, Aerospace, and Manufacturing Engineering and the Northeast Parallel Architectures Center of Syracuse University have been funded by NASA to establish a program to educate young engineers in the hypersonic disciplines. This goal is being achieved through a comprehensive five-year program that includes elements of undergraduate instruction, advanced graduate coursework, undergraduate research, and leading-edge hypersonics research. The research foci of the Syracuse Center for Hypersonics are three-fold; high-temperature composite materials, measurements in turbulent hypersonic flows, and the application of high-performance computing to hypersonic fluid dynamics.
MEGA16 - Computer program for analysis and extrapolation of stress-rupture data
NASA Technical Reports Server (NTRS)
Ensign, C. R.
1981-01-01
The computerized form of the minimum commitment method of interpolating and extrapolating stress versus time to failure data, MEGA16, is described. Examples are given of its many plots and tabular outputs for a typical set of data. The program assumes a specific model equation and then provides a family of predicted isothermals for any set of data with at least 12 stress-rupture results from three different temperatures spread over reasonable stress and time ranges. It is written in FORTRAN 4 using IBM plotting subroutines and its runs on an IBM 370 time sharing system.
Life prediction and constitutive models for engine hot section anisotropic materials program
NASA Technical Reports Server (NTRS)
Nissley, D. M.; Meyer, T. G.; Walker, K. P.
1992-01-01
This report presents a summary of results from a 7 year program designed to develop generic constitutive and life prediction approaches and models for nickel-based single crystal gas turbine airfoils. The program was composed of a base program and an optional program. The base program addressed the high temperature coated single crystal regime above the airfoil root platform. The optional program investigated the low temperature uncoated single crystal regime below the airfoil root platform including the notched conditions of the airfoil attachment. Both base and option programs involved experimental and analytical efforts. Results from uniaxial constitutive and fatigue life experiments of coated and uncoated PWA 1480 single crystal material formed the basis for the analytical modeling effort. Four single crystal primary orientations were used in the experiments: group of zone axes (001), group of zone axes (011), group of zone axes (111), and group of zone axes (213). Specific secondary orientations were also selected for the notched experiments in the optional program. Constitutive models for an overlay coating and PWA 1480 single crystal materials were developed based on isothermal hysteresis loop data and verified using thermomechanical (TMF) hysteresis loop data. A fatigue life approach and life models were developed for TMF crack initiation of coated PWA 1480. A life model was developed for smooth and notched fatigue in the option program. Finally, computer software incorporating the overlay coating and PWA 1480 constitutive and life models was developed.
Simulation of existing gas-fuelled conventional steam power plant using Cycle Tempo
NASA Astrophysics Data System (ADS)
Jamel, M. S.; Abd Rahman, A.; Shamsuddin, A. H.
2013-06-01
Simulation of a 200 MW gas-fuelled conventional steam power plant located in Basra, Iraq was carried out. The thermodynamic performance of the considered power plant is estimated by a system simulation. A flow-sheet computer program, "Cycle-Tempo" is used for the study. The plant components and piping systems were considered and described in detail. The simulation results were verified against data gathered from the log sheet obtained from the station during its operation hours and good results were obtained. Operational factors like the stack exhaust temperature and excess air percentage were studied and discussed, as were environmental factors, such as ambient air temperature and water inlet temperature. In addition, detailed exergy losses were illustrated and describe the temperature profiles for the main plant components. The results prompted many suggestions for improvement of the plant performance.
NASA Marshall Engineering Thermosphere Model. 2.0
NASA Technical Reports Server (NTRS)
Owens, J. K.
2002-01-01
This Technical Memorandum describes the NASA Marshall Engineering Thermosphere Model-Version 2.0 (MET-V 2.0) and contains an explanation on the use of the computer program along with an example of the MET-V 2.0 model products. The MET-V 2.0 provides an update to the 1988 version of the model. It provides information on the total mass density, temperature, and individual species number densities for any altitude between 90 and 2,500 km as a function of latitude, longitude, time, and solar and geomagnetic activity. A description is given for use of estimated future 13-mo smoothed solar flux and geomagnetic index values as input to the model. Address technical questions on the MET-V 2.0 and associated computer program to Jerry K. Owens, Spaceflight Experiments Group, Marshall Space Flight Center, Huntsville, AL 35812 (256-961-7576; e-mail Jerry.Owens@msfc.nasa.gov).
NASA Technical Reports Server (NTRS)
Rousseau, J.; Hwang, K. C.
1975-01-01
Investigations aimed at the optimization of a baseline Rankine cycle solar powered air conditioner and the development of a preliminary system specification were conducted. Efforts encompassed the following: (1) investigations of the use of recuperators/regenerators to enhance the performance of the baseline system, (2) development of an off-design computer program for system performance prediction, (3) optimization of the turbocompressor design to cover a broad range of conditions and permit operation at low heat source water temperatures, (4) generation of parametric data describing system performance (COP and capacity), (5) development and evaluation of candidate system augmentation concepts and selection of the optimum approach, (6) generation of auxiliary power requirement data, (7) development of a complete solar collector-thermal storage-air conditioner computer program, (8) evaluation of the baseline Rankine air conditioner over a five day period simulating the NASA solar house operation, and (9) evaluation of the air conditioner as a heat pump.
Prediction of elemental creep. [steady state and cyclic data from regression analysis
NASA Technical Reports Server (NTRS)
Davis, J. W.; Rummler, D. R.
1975-01-01
Cyclic and steady-state creep tests were performed to provide data which were used to develop predictive equations. These equations, describing creep as a function of stress, temperature, and time, were developed through the use of a least squares regression analyses computer program for both the steady-state and cyclic data sets. Comparison of the data from the two types of tests, revealed that there was no significant difference between the cyclic and steady-state creep strains for the L-605 sheet under the experimental conditions investigated (for the same total time at load). Attempts to develop a single linear equation describing the combined steady-state and cyclic creep data resulted in standard errors of estimates higher than obtained for the individual data sets. A proposed approach to predict elemental creep in metals uses the cyclic creep equation and a computer program which applies strain and time hardening theories of creep accumulation.
NASA Astrophysics Data System (ADS)
Howe, Alex R.; Burrows, Adam; Deming, Drake
2017-01-01
We provide an example of an analysis to explore the optimization of observations of transiting hot Jupiters with the James Webb Space Telescope (JWST) to characterize their atmospheres based on a simple three-parameter forward model. We construct expansive forward model sets for 11 hot Jupiters, 10 of which are relatively well characterized, exploring a range of parameters such as equilibrium temperature and metallicity, as well as considering host stars over a wide range in brightness. We compute posterior distributions of our model parameters for each planet with all of the available JWST spectroscopic modes and several programs of combined observations and compute their effectiveness using the metric of estimated mutual information per degree of freedom. From these simulations, clear trends emerge that provide guidelines for designing a JWST observing program. We demonstrate that these guidelines apply over a wide range of planet parameters and target brightnesses for our simple forward model.
NASA Technical Reports Server (NTRS)
Hendricks, R. C.
1994-01-01
A computer program, GASP, has been written to calculate the thermodynamic and transport properties of argon, carbon dioxide, carbon monoxide, fluorine, methane, neon, nitrogen, and oxygen. GASP accepts any two of pressure, temperature, or density as input. In addition, entropy and enthalpy are possible inputs. Outputs are temperature, density, pressure, entropy, enthalpy, specific heats, expansion coefficient, sonic velocity, viscosity, thermal conductivity, and surface tension. A special technique is provided to estimate the thermal conductivity near the thermodynamic critical point. GASP is a group of FORTRAN subroutines. The user typically would write a main program that invoked GASP to provide only the described outputs. Subroutines are structured so that the user may call only those subroutines needed for his particular calculations. Allowable pressures range from 0.l atmosphere to 100 to l,000 atmospheres, depending on the fluid. Similarly, allowable pressures range from the triple point of each substance to 300 degrees K to 2000 degrees K, depending on the substance. The GASP package was developed to be used with heat transfer and fluid flow applications. It is particularly useful in applications of cryogenic fluids. Some problems associated with the liquefication, storage, and gasification of liquefied natural gas and liquefied petroleum gas can also be studied using GASP. This program is written in FORTRAN IV for batch execution and is available for implementation on IBM 7000 series computers. GASP was developed in 1971.
Creation of lumped parameter thermal model by the use of finite elements
NASA Technical Reports Server (NTRS)
1978-01-01
In the finite difference technique, the thermal network is represented by an analogous electrical network. The development of this network model, which is used to describe a physical system, often requires tedious and mental data preparation and checkout by the analyst which can be greatly reduced through the use of the computer programs to develop automatically the mathematical model and associated input data and graphically display the analytical model to facilitate model verification. Three separate programs are involved which are linked through common mass storage files and data card formats. These programs are SPAR, CINGEN and GEOMPLT, and are used to (1) develop thermal models for the MITAS II thermal analyzer program; (2) produce geometry plots of the thermal network; and (3) produce temperature distribution and time history plots.
NASA Technical Reports Server (NTRS)
Gordon, Sanford
1991-01-01
The NNEP is a general computer program for calculating aircraft engine performance. NNEP has been used extensively to calculate the design and off-design (matched) performance of a broad range of turbine engines, ranging from subsonic turboprops to variable cycle engines for supersonic transports. Recently, however, there has been increased interest in applications for which NNEP is not capable of simulating, such as the use of alternate fuels including cryogenic fuels and the inclusion of chemical dissociation effects at high temperatures. To overcome these limitations, NNEP was extended by including a general chemical equilibrium method. This permits consideration of any propellant system and the calculation of performance with dissociation effects. The new extended program is referred to as NNEP89.
PYROLASER - PYROLASER OPTICAL PYROMETER OPERATING SYSTEM
NASA Technical Reports Server (NTRS)
Roberts, F. E.
1994-01-01
The PYROLASER package is an operating system for the Pyrometer Instrument Company's Pyrolaser. There are 6 individual programs in the PYROLASER package: two main programs, two lower level subprograms, and two programs which, although independent, function predominantly as macros. The package provides a quick and easy way to setup, control, and program a standard Pyrolaser. Temperature and emissivity measurements may be either collected as if the Pyrolaser were in the manual operations mode, or displayed on real time strip charts and stored in standard spreadsheet format for post-test analysis. A shell is supplied to allow macros, which are test-specific, to be easily added to the system. The Pyrolaser Simple Operation program provides full on-screen remote operation capabilities, thus allowing the user to operate the Pyrolaser from the computer just as it would be operated manually. The Pyrolaser Simple Operation program also allows the use of "quick starts". Quick starts provide an easy way to permit routines to be used as setup macros for specific applications or tests. The specific procedures required for a test may be ordered in a sequence structure and then the sequence structure can be started with a simple button in the cluster structure provided. One quick start macro is provided for continuous Pyrolaser operation. A subprogram, Display Continuous Pyr Data, is used to display and store the resulting data output. Using this macro, the system is set up for continuous operation and the subprogram is called to display the data in real time on strip charts. The data is simultaneously stored in a spreadsheet format. The resulting spreadsheet file can be opened in any one of a number of commercially available spreadsheet programs. The Read Continuous Pyrometer program is provided as a continuously run subprogram for incorporation of the Pyrolaser software into a process control or feedback control scheme in a multi-component system. The program requires the Pyrolaser to be set up using the Pyrometer String Transfer macro. It requires no inputs and provides temperature and emissivity as outputs. The Read Continuous Pyrometer program can be run continuously and the data can be sampled as often or as seldom as updates of temperature and emissivity are required. PYROLASER is written using the Labview software for use on Macintosh series computers running System 6.0.3 or later, Sun Sparc series computers running OpenWindows 3.0 or MIT's X Window System (X11R4 or X11R5), and IBM PC or compatibles running Microsoft Windows 3.1 or later. Labview requires a minimum of 5Mb of RAM on a Macintosh, 24Mb of RAM on a Sun, and 8Mb of RAM on an IBM PC or compatible. The Labview software is a product of National Instruments (Austin,TX; 800-433-3488), and is not included with this program. The standard distribution medium for PYROLASER is a 3.5 inch 800K Macintosh format diskette. It is also available on a 3.5 inch 720K MS-DOS format diskette, a 3.5 inch diskette in UNIX tar format, and a .25 inch streaming magnetic tape cartridge in UNIX tar format. An electronic copy of the documentation in Macintosh WordPerfect version 2.0.4 format is included on the distribution medium. Printed documentation is included in the price of the program. PYROLASER was developed in 1992.
Experimental clean combustor program: Noise study
NASA Technical Reports Server (NTRS)
Sofrin, T. G.; Riloff, N., Jr.
1976-01-01
Under a Noise Addendum to the NASA Experimental Clean Combustor Program (ECCP) internal pressure fluctuations were measured during tests of JT9D combustor designs conducted in a burner test rig. Measurements were correlated with burner operating parameters using an expression relating farfield noise to these parameters. For a given combustor, variation of internal noise with operating parameters was reasonably well predicted by this expression but the levels were higher than farfield predictions and differed significantly among several combustors. For two burners, discharge stream temperature fluctuations were obtained with fast-response thermocouples to allow calculation of indirect combustion noise which would be generated by passage of the temperature inhomogeneities through the high pressure turbine stages of a JT9D turbofan engine. Using a previously developed analysis, the computed indirect combustion noise was significantly lower than total low frequency core noise observed on this and several other engines.
Adavanced RTG and thermoelectric materials study
NASA Technical Reports Server (NTRS)
Eggers, P. E.
1971-01-01
A comprehensive, generalized two-dimensional RTG analysis computer program was developed. This program is capable of analyzing any specified RTG design under a wide range of transient as well as steady-state operating conditions. The feasibility of a new concept for the design of segmented (or single-phase) thermoelectric couples was demonstrated. A SiGe-PbTe segmented couple involving pressure contacted junctions at the intermediate- and hot-junction temperatures was successfully encapsulated in a hermetically sealed bellows enclosure. This bellows-encapsulated couple was operated between a hot- and cold-junction temperature of 1200 K and 450 K, respectively, with a measured energy conversion efficiency of 7.6 + or - .5 per cent. An experimental study of selected sublimation barrier schemes revealed that a significant reduction in the sublimation rate of p-type PbTe could be achieved by using multiple layers of SiO2 fibers. A comparison of the barrier effectiveness is given for three different barrier designs.
NASA Astrophysics Data System (ADS)
Cich, Matthew J.; Guillaume, Alexandre; Drouin, Brian; Benner, D. Chris
2017-06-01
Multispectrum analysis can be a challenge for a variety of reasons. It can be computationally intensive to fit a proper line shape model especially for high resolution experimental data. Band-wide analyses including many transitions along with interactions, across many pressures and temperatures are essential to accurately model, for example, atmospherically relevant systems. Labfit is a fast multispectrum analysis program originally developed by D. Chris Benner with a text-based interface. More recently at JPL a graphical user interface was developed with the goal of increasing the ease of use but also the number of potential users. The HTP lineshape model has been added to Labfit keeping it up-to-date with community standards. Recent analyses using labfit will be shown to demonstrate its ability to competently handle large experimental datasets, including high order lineshape effects, that are otherwise unmanageable.
NASA Astrophysics Data System (ADS)
Haramoto, Ken-Ichi
In general, air conditioning control in a building is operated mainly by indoor air temperature control. Although the operators of the machine in the building accepted a claim for indoor air temperature presented by the building inhabitants, the indoor conditions have been often too cool or warm. Therefore, in an attempt to create better thermal environments, the author paid attention to the PMV that is a thermal comfort index. And then, the possibility of air conditioning control using the PMV directly as the set point was verified by employing actual equipment in an air conditioning testing room and an office building. Prior to the execution of this control, the operation program of the PMV was installed in a DDC controller for the air conditioning control. And information from indoor sensors and so on was inputted to the controller, and the computed PMV was used as the feedback variable.
Computer modeling and simulation in inertial confinement fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCrory, R.L.; Verdon, C.P.
1989-03-01
The complex hydrodynamic and transport processes associated with the implosion of an inertial confinement fusion (ICF) pellet place considerable demands on numerical simulation programs. Processes associated with implosion can usually be described using relatively simple models, but their complex interplay requires that programs model most of the relevant physical phenomena accurately. Most hydrodynamic codes used in ICF incorporate a one-fluid, two-temperature model. Electrons and ions are assumed to flow as one fluid (no charge separation). Due to the relatively weak coupling between the ions and electrons, each species is treated separately in terms of its temperature. In this paper wemore » describe some of the major components associated with an ICF hydrodynamics simulation code. To serve as an example we draw heavily on a two-dimensional Lagrangian hydrodynamic code (ORCHID) written at the University of Rochester's Laboratory for Laser Energetics. 46 refs., 19 figs., 1 tab.« less
Flight experiment of thermal energy storage. [for spacecraft power systems
NASA Technical Reports Server (NTRS)
Namkoong, David
1989-01-01
Thermal energy storage (TES) enables a solar dynamic system to deliver constant electric power through periods of sun and shade. Brayton and Stirling power systems under current considerations for missions in the near future require working fluid temperatures in the 1100 to 1300+ K range. TES materials that meet these requirements fall into the fluoride family of salts. Salts shrink as they solidify, a change reaching 30 percent for some salts. Hot spots can develop in the TES container or the container can become distorted if the melting salt cannot expand elsewhere. Analysis of the transient, two-phase phenomenon is being incorporated into a three-dimensional computer code. The objective of the flight program is to verify the predictions of the code, particularly of the void location and its effect on containment temperature. The four experimental packages comprising the program will be the first tests of melting and freezing conducted under microgravity.
Exploration criteria for low permeability geothermal resources. Final report. [Coso KGRA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norton, D.
1977-10-01
Low permeability geothermal systems related to high temperature plutons in the upper crust were analyzed in order to ascertain those characteristics of these systems which could be detected by surface and shallow subsurface exploration methods. Analyses were designed to integrate data and concepts from the literature, which relate to the transport processes, together with computer simulation of idealized systems. The systems were analyzed by systematically varying input parameters in order to understand their effect on the variables which might be measured in an exploration-assessment program. The methods were applied to a prospective system in its early stages of evaluation. Datamore » from the Coso system were used. The study represents a first-order approximation to transport processes in geothermal systems, which consist of high temperature intrusions, host rock, and fluids. Included in an appendix are operations procedures for interactive graphics programs developed during the study. (MHR)« less
Processing EOS MLS Level-2 Data
NASA Technical Reports Server (NTRS)
Snyder, W. Van; Wu, Dong; Read, William; Jiang, Jonathan; Wagner, Paul; Livesey, Nathaniel; Schwartz, Michael; Filipiak, Mark; Pumphrey, Hugh; Shippony, Zvi
2006-01-01
A computer program performs level-2 processing of thermal-microwave-radiance data from observations of the limb of the Earth by the Earth Observing System (EOS) Microwave Limb Sounder (MLS). The purpose of the processing is to estimate the composition and temperature of the atmosphere versus altitude from .8 to .90 km. "Level-2" as used here is a specialists f term signifying both vertical profiles of geophysical parameters along the measurement track of the instrument and processing performed by this or other software to generate such profiles. Designed to be flexible, the program is controlled via a configuration file that defines all aspects of processing, including contents of state and measurement vectors, configurations of forward models, measurement and calibration data to be read, and the manner of inverting the models to obtain the desired estimates. The program can operate in a parallel form in which one instance of the program acts a master, coordinating the work of multiple slave instances on a cluster of computers, each slave operating on a portion of the data. Optionally, the configuration file can be made to instruct the software to produce files of simulated radiances based on state vectors formed from sets of geophysical data-product files taken as input.
Updated Chemical Kinetics and Sensitivity Analysis Code
NASA Technical Reports Server (NTRS)
Radhakrishnan, Krishnan
2005-01-01
An updated version of the General Chemical Kinetics and Sensitivity Analysis (LSENS) computer code has become available. A prior version of LSENS was described in "Program Helps to Determine Chemical-Reaction Mechanisms" (LEW-15758), NASA Tech Briefs, Vol. 19, No. 5 (May 1995), page 66. To recapitulate: LSENS solves complex, homogeneous, gas-phase, chemical-kinetics problems (e.g., combustion of fuels) that are represented by sets of many coupled, nonlinear, first-order ordinary differential equations. LSENS has been designed for flexibility, convenience, and computational efficiency. The present version of LSENS incorporates mathematical models for (1) a static system; (2) steady, one-dimensional inviscid flow; (3) reaction behind an incident shock wave, including boundary layer correction; (4) a perfectly stirred reactor; and (5) a perfectly stirred reactor followed by a plug-flow reactor. In addition, LSENS can compute equilibrium properties for the following assigned states: enthalpy and pressure, temperature and pressure, internal energy and volume, and temperature and volume. For static and one-dimensional-flow problems, including those behind an incident shock wave and following a perfectly stirred reactor calculation, LSENS can compute sensitivity coefficients of dependent variables and their derivatives, with respect to the initial values of dependent variables and/or the rate-coefficient parameters of the chemical reactions.
Dynamic and thermal analysis of high speed tapered roller bearings under combined loading
NASA Technical Reports Server (NTRS)
Crecelius, W. J.; Milke, D. R.
1973-01-01
The development of a computer program capable of predicting the thermal and kinetic performance of high-speed tapered roller bearings operating with fluid lubrication under applied axial, radial and moment loading (five degrees of freedom) is detailed. Various methods of applying lubrication can be considered as well as changes in bearing internal geometry which occur as the bearing is brought to operating speeds, loads and temperatures.
Temperature-Centric Evaluation of Sensor Transients
NASA Astrophysics Data System (ADS)
Ayhan, Tuba; Muezzinoglu, Kerem; Vergara, Alexander; Yalcin, Mustak
2011-09-01
Controllable sensing conditions provide the means for diversifying sensor response and achieving better selectivity. Modulating the sensing layer temperature of metal-oxide sensors is a popular method for multiplexing the limited number of sensing elements that can be employed in a practical array. Time limitations in many applications, however, cannot tolerate an ad-hoc, one-size-fits-all modulation pattern. When the response pattern is itself non-stationary, as in the transient phase, a temperature program also becomes infeasible. We consider the problem of determining and tuning into a fixed optimum temperature in a sensor array. For this purpose, we present an empirical analysis of the temperature's role on the performance of a metal-oxide gas sensor array in the identification of odorants along the response transient. We show that the optimal temperature in this sense depends heavily on the selection of (i) the set of candidate analytes, (ii) the time-window of the analysis, (iii) the feature extracted from the sensor response, and (iv) the computational identification method used.
NASA Technical Reports Server (NTRS)
Chinitz, W.; Foy, E.; Rowan, G.; Goldstein, D.
1982-01-01
The use of probability theory to determine the effects of turbulent fluctuations on reaction rates in turbulent combustion systems is briefly reviewed. Results are presented for the effect of species fluctuations in particular. It is found that turbulent fluctuations of species act to reduce the reaction rates, in contrast with the temperature fluctuations previously determined to increase Arrhenius reaction rate constants. For the temperature fluctuations, a criterion is set forth for determining if, in a given region of a turbulent flow field, the temperature can be expected to exhibit ramp like fluctuations. Using the above results, along with results previously obtained, a model is described for testing the effects of turbulent fluctuations of temperature and species on reaction rates in computer programs dealing with turbulent reacting flows. An alternative model which employs three variable probability density functions (temperature and two species) and is currently being formulated is discussed as well.
Particle-In-Cell simulations of high pressure plasmas using graphics processing units
NASA Astrophysics Data System (ADS)
Gebhardt, Markus; Atteln, Frank; Brinkmann, Ralf Peter; Mussenbrock, Thomas; Mertmann, Philipp; Awakowicz, Peter
2009-10-01
Particle-In-Cell (PIC) simulations are widely used to understand the fundamental phenomena in low-temperature plasmas. Particularly plasmas at very low gas pressures are studied using PIC methods. The inherent drawback of these methods is that they are very time consuming -- certain stability conditions has to be satisfied. This holds even more for the PIC simulation of high pressure plasmas due to the very high collision rates. The simulations take up to very much time to run on standard computers and require the help of computer clusters or super computers. Recent advances in the field of graphics processing units (GPUs) provides every personal computer with a highly parallel multi processor architecture for very little money. This architecture is freely programmable and can be used to implement a wide class of problems. In this paper we present the concepts of a fully parallel PIC simulation of high pressure plasmas using the benefits of GPU programming.
Entanglement negativity bounds for fermionic Gaussian states
NASA Astrophysics Data System (ADS)
Eisert, Jens; Eisler, Viktor; Zimborás, Zoltán
2018-04-01
The entanglement negativity is a versatile measure of entanglement that has numerous applications in quantum information and in condensed matter theory. It can not only efficiently be computed in the Hilbert space dimension, but for noninteracting bosonic systems, one can compute the negativity efficiently in the number of modes. However, such an efficient computation does not carry over to the fermionic realm, the ultimate reason for this being that the partial transpose of a fermionic Gaussian state is no longer Gaussian. To provide a remedy for this state of affairs, in this work, we introduce efficiently computable and rigorous upper and lower bounds to the negativity, making use of techniques of semidefinite programming, building upon the Lagrangian formulation of fermionic linear optics, and exploiting suitable products of Gaussian operators. We discuss examples in quantum many-body theory and hint at applications in the study of topological properties at finite temperature.
NASA Technical Reports Server (NTRS)
Larson, V. H.
1982-01-01
The basic equations that are used to describe the physical phenomena in a Stirling cycle engine are the general energy equations and equations for the conservation of mass and conversion of momentum. These equations, together with the equation of state, an analytical expression for the gas velocity, and an equation for mesh temperature are used in this computer study of Stirling cycle characteristics. The partial differential equations describing the physical phenomena that occurs in a Stirling cycle engine are of the hyperbolic type. The hyperbolic equations have real characteristic lines. By utilizing appropriate points along these curved lines the partial differential equations can be reduced to ordinary differential equations. These equations are solved numerically using a fourth-fifth order Runge-Kutta integration technique.
Space Shuttle Main Engine performance analysis
NASA Technical Reports Server (NTRS)
Santi, L. Michael
1993-01-01
For a number of years, NASA has relied primarily upon periodically updated versions of Rocketdyne's power balance model (PBM) to provide space shuttle main engine (SSME) steady-state performance prediction. A recent computational study indicated that PBM predictions do not satisfy fundamental energy conservation principles. More recently, SSME test results provided by the Technology Test Bed (TTB) program have indicated significant discrepancies between PBM flow and temperature predictions and TTB observations. Results of these investigations have diminished confidence in the predictions provided by PBM, and motivated the development of new computational tools for supporting SSME performance analysis. A multivariate least squares regression algorithm was developed and implemented during this effort in order to efficiently characterize TTB data. This procedure, called the 'gains model,' was used to approximate the variation of SSME performance parameters such as flow rate, pressure, temperature, speed, and assorted hardware characteristics in terms of six assumed independent influences. These six influences were engine power level, mixture ratio, fuel inlet pressure and temperature, and oxidizer inlet pressure and temperature. A BFGS optimization algorithm provided the base procedure for determining regression coefficients for both linear and full quadratic approximations of parameter variation. Statistical information relative to data deviation from regression derived relations was also computed. A new strategy for integrating test data with theoretical performance prediction was also investigated. The current integration procedure employed by PBM treats test data as pristine and adjusts hardware characteristics in a heuristic manner to achieve engine balance. Within PBM, this integration procedure is called 'data reduction.' By contrast, the new data integration procedure, termed 'reconciliation,' uses mathematical optimization techniques, and requires both measurement and balance uncertainty estimates. The reconciler attempts to select operational parameters that minimize the difference between theoretical prediction and observation. Selected values are further constrained to fall within measurement uncertainty limits and to satisfy fundamental physical relations (mass conservation, energy conservation, pressure drop relations, etc.) within uncertainty estimates for all SSME subsystems. The parameter selection problem described above is a traditional nonlinear programming problem. The reconciler employs a mixed penalty method to determine optimum values of SSME operating parameters associated with this problem formulation.
1DTempPro: analyzing temperature profiles for groundwater/surface-water exchange.
Voytek, Emily B; Drenkelfuss, Anja; Day-Lewis, Frederick D; Healy, Richard; Lane, John W; Werkema, Dale
2014-01-01
A new computer program, 1DTempPro, is presented for the analysis of vertical one-dimensional (1D) temperature profiles under saturated flow conditions. 1DTempPro is a graphical user interface to the U.S. Geological Survey code Variably Saturated 2-Dimensional Heat Transport (VS2DH), which numerically solves the flow and heat-transport equations. Pre- and postprocessor features allow the user to calibrate VS2DH models to estimate vertical groundwater/surface-water exchange and also hydraulic conductivity for cases where hydraulic head is known. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.
NASA Technical Reports Server (NTRS)
Williams, S. D.
1984-01-01
Entry heating flight data and wind tunnel data on the side fuselage and payload bay door, Z = 400 and 440 trace aft of X/L=0.2, for the first five flights of the Space Shuttle Orbiter are presented. The heating rate data are reviewed in terms of normalized film heat transfer coefficients as a function of angle of attack, Mach number, and normal shock Reynolds number. The surface heatings rates and temperatures were obtained by the JSC NONLIN/INVERSE computer program. Time history plots of the surface heating rates and temperatures are outlined.
Evaluation of Turbulence-Model Performance in Jet Flows
NASA Technical Reports Server (NTRS)
Woodruff, S. L.; Seiner, J. M.; Hussaini, M. Y.; Erlebacher, G.
2001-01-01
The importance of reducing jet noise in both commercial and military aircraft applications has made jet acoustics a significant area of research. A technique for jet noise prediction commonly employed in practice is the MGB approach, based on the Lighthill acoustic analogy. This technique requires as aerodynamic input mean flow quantities and turbulence quantities like the kinetic energy and the dissipation. The purpose of the present paper is to assess existing capabilities for predicting these aerodynamic inputs. Two modern Navier-Stokes flow solvers, coupled with several modern turbulence models, are evaluated by comparison with experiment for their ability to predict mean flow properties in a supersonic jet plume. Potential weaknesses are identified for further investigation. Another comparison with similar intent is discussed by Barber et al. The ultimate goal of this research is to develop a reliable flow solver applicable to the low-noise, propulsion-efficient, nozzle exhaust systems being developed in NASA focused programs. These programs address a broad range of complex nozzle geometries operating in high temperature, compressible, flows. Seiner et al. previously discussed the jet configuration examined here. This convergent-divergent nozzle with an exit diameter of 3.6 inches was designed for an exhaust Mach number of 2.0 and a total temperature of 1680 F. The acoustic and aerodynamic data reported by Seiner et al. covered a range of jet total temperatures from 104 F to 2200 F at the fully-expanded nozzle pressure ratio. The aerodynamic data included centerline mean velocity and total temperature profiles. Computations were performed independently with two computational fluid dynamics (CFD) codes, ISAAC and PAB3D. Turbulence models employed include the k-epsilon model, the Gatski-Speziale algebraic-stress model and the Girimaji model, with and without the Sarkar compressibility correction. Centerline values of mean velocity and mean temperature are compared with experimental data.
NASA Technical Reports Server (NTRS)
Siegel, P. H.; Kerr, A. R.
1979-01-01
A user oriented computer program for analyzing microwave and millimeter wave mixers with a single Schottky barrier diode of known I-V and C-V characteristics is described. The program first performs a nonlinear analysis to determine the diode conductance and capacitance waveforms produced by the local oscillator. A small signal linear analysis is then used to find the conversion loss, port impedances, and input noise temperature of the mixer. Thermal noise from the series resistance of the diode and shot noise from the periodically pumped current in the diode conductance are considered. The effects of the series inductance and diode capacitance on the performance of some simple mixer circuits using a conventional Schottky diode, a Schottky diode in which there is no capacitance variation, and a Mott diode are studied. It is shown that the parametric effects of the voltage dependent capacitance of a conventional Schottky diode may be either detrimental or beneficial depending on the diode and circuit parameters.
Attenuation of thermal neutrons by an imperfect single crystal
NASA Astrophysics Data System (ADS)
Naguib, K.; Adib, M.
1996-06-01
A semi-empirical formula is given which allows one to calculate the total thermal cross section of an imperfect single crystal as a function of crystal constants, temperature and neutron energy E, in the energy range between 3 meV and 10 eV. The formula also includes the contribution of the parasitic Bragg scattering to the total cross section that takes into account the crystal mosaic spread value and its orientation with respect to the neutron beam direction. A computer program (ISCANF) was developed to calculate the total attenuation of neutrons using the proposed formula. The ISCANF program was applied to investigate the neutron attenuation through a copper single crystal. The calculated values of the neutron transmission through the imperfect copper single crystal were fitted to the measured ones in the energy range 3 - 40 meV at different crystal orientations. The result of fitting shows that use of the computer program ISCANF allows one to predict the behaviour of the total cross section of an imperfect copper single crystal for the whole energy range.
Improvement of program to calculate electronic properties of narrow band gap materials
NASA Technical Reports Server (NTRS)
Patterson, James D.; Abdelhakiem, Wafaa
1991-01-01
The program was improved by reprogramming it so it will run on both a SUN and a VAX. Also it is easily transportable as it is on a disk for use on a SUN. A computer literature search resulted in some improved parameters for Hg(1-x)Cd(x)Te and a table of parameters for Hg(1-x)Zn(x)Te. The effects of neutral defects were added to the program, and it was found, as expected, that they contribute very little to the mobility at temperatures of interest. The effect were added of varying the following parameters: dielectric constants, screening parameters, disorder energies, donor and acceptor concentrations, momentum matrix element, different expressions for energy gap, and transverse effective charge.
Ceramic component reliability with the restructured NASA/CARES computer program
NASA Technical Reports Server (NTRS)
Powers, Lynn M.; Starlinger, Alois; Gyekenyesi, John P.
1992-01-01
The Ceramics Analysis and Reliability Evaluation of Structures (CARES) integrated design program on statistical fast fracture reliability and monolithic ceramic components is enhanced to include the use of a neutral data base, two-dimensional modeling, and variable problem size. The data base allows for the efficient transfer of element stresses, temperatures, and volumes/areas from the finite element output to the reliability analysis program. Elements are divided to insure a direct correspondence between the subelements and the Gaussian integration points. Two-dimensional modeling is accomplished by assessing the volume flaw reliability with shell elements. To demonstrate the improvements in the algorithm, example problems are selected from a round-robin conducted by WELFEP (WEakest Link failure probability prediction by Finite Element Postprocessors).
Data processing for the DMSP microwave radiometer system
NASA Technical Reports Server (NTRS)
Rigone, J. L.; Stogryn, A. P.
1977-01-01
A software program was developed and tested to process microwave radiometry data to be acquired by the microwave sensor (SSM/T) on the Defense Meteorological Satellite Program spacecraft. The SSM/T 7-channel microwave radiometer and systems data will be data-linked to Air Force Global Weather Central (AFGWC) where they will be merged with ephemeris data prior to product processing for use in the AFGWC upper air data base (UADB). The overall system utilizes an integrated design to provide atmospheric temperature soundings for global applications. The fully automated processing at AFGWC was accomplished by four related computer processor programs to produce compatible UADB soundings, evaluate system performance, and update the a priori developed inversion matrices. Tests with simulated data produced results significantly better than climatology.
Reentry heating analysis of space shuttle with comparison of flight data
NASA Technical Reports Server (NTRS)
Gong, L.; Quinn, R. D.; Ko, W. L.
1982-01-01
Surface heating rates and surface temperatures for a space shuttle reentry profile were calculated for two wing cross sections and one fuselage cross section. Heating rates and temperatures at 12 locations on the wing and 6 locations on the fuselage are presented. The heating on the lower wing was most severe, with peak temperatures reaching values of 1240 C for turbulent flow and 900 C for laminar flow. For the fuselage, the most severe heating occured on the lower glove surface where peak temperatures of 910 C and 700 C were calculated for turbulent flow and laminar flow, respectively. Aluminum structural temperatures were calculated using a finite difference thermal analyzer computer program, and the predicted temperatures are compared to measured flight data. Skin temperatures measured on the lower surface of the wing and bay 1 of the upper surface of the wing agreed best with temperatures calculated assuming laminar flow. The measured temperatures at bays two and four on the upper surface of the wing were in quite good agreement with the temperatures calculated assuming separated flow. The measured temperatures on the lower forward spar cap of bay four were in good agreement with values predicted assuming laminar flow.
Optimization of thermal protection systems for the space shuttle vehicle. Volume 1: Final report
NASA Technical Reports Server (NTRS)
1972-01-01
A study performed to continue development of computational techniques for the Space Shuttle Thermal Protection System is reported. The resulting computer code was used to perform some additional optimization studies on several TPS configurations. The program was developed in Fortran 4 for the CDC 6400, and it was converted to Fortran 5 to be used for the Univac 1108. The computational methodology is developed in modular fashion to facilitate changes and updating of the techniques and to allow overlaying the computer code to fit into approximately 131,000 octal words of core storage. The program logic involves subroutines which handle input and output of information between computer and user, thermodynamic stress, dynamic, and weight/estimate analyses of a variety of panel configurations. These include metallic, ablative, RSI (with and without an underlying phase change material), and a thermodynamic analysis only of carbon-carbon systems applied to the leading edge and flat cover panels. Two different thermodynamic analyses are used. The first is a two-dimensional, explicit precedure with variable time steps which is used to describe the behavior of metallic and carbon-carbon leading edges. The second is a one-dimensional implicity technique used to predict temperature in the charring ablator and the noncharring RSI. The latter analysis is performed simply by suppressing the chemical reactions and pyrolysis of the TPS material.
Using commercial software products for atmospheric remote sensing
NASA Astrophysics Data System (ADS)
Kristl, Joseph A.; Tibaudo, Cheryl; Tang, Kuilian; Schroeder, John W.
2002-02-01
The Ontar Corporation (www.Ontar.com) has developed several products for atmospheric remote sensing to calculate radiative transport, atmospheric transmission, and sensor performance in both the normal atmosphere and the atmosphere disturbed by battlefield conditions of smoke, dust, explosives and turbulence. These products include: PcModWin: Uses the USAF standard MODTRAN model to compute the atmospheric transmission and radiance at medium spectral resolution (2 cm-1) from the ultraviolet/visible into the infrared and microwave regions of the spectrum. It can be used for any geometry and atmospheric conditions such as aerosols, clouds and rain. PcLnWin: Uses the USAF standard FASCOD model to compute atmospheric transmission and emission at high (line-by-line) spectral resolution using the HITRAN 2000 database. It can be used over the same spectrum from the UV/visible into the infrared and microwave regions of the spectrum. HitranPC: Computes the absolute high (line-by-line) spectral resolution transmission spectrum of the atmosphere for different temperatures and pressures. HitranPC is a user-friendly program developed by the University of South Florida (USF) and uses the international standard molecular spectroscopic database, HITRAN. LidarPC: A computer program to calculate the Laser Radar/L&n Equation for hard targets and atmospheric backscatter using manual input atmospheric parameters or HitranPC and BETASPEC - transmission and backscatter calculations of the atmosphere. Also developed by the University of South Florida (USF). PcEosael: is a library of programs that mathematically describe aspects of electromagnetic propagation in battlefield environments. 25 modules are connected but can be exercised individually. Covers eight general categories of atmospheric effects, including gases, aerosols and laser propagation. Based on codes developed by the Army Research Lab. NVTherm: NVTherm models parallel scan, serial scan, and staring thermal imagers that operate in the mid and far infrared spectral bands (3 to 12 micrometers wavelength). It predicts the Minimum Resolvable Temperature Difference (MRTD) or just MRT) that can be discriminated by a human when using a thermal imager. NVTherm also predicts the target acquisition range performance likely to be achieved using the sensor.
ERIC Educational Resources Information Center
Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.
This document, which is intended for use by community and junior colleges throughout Mississippi, contains curriculum frameworks for two programs in the state's postsecondary-level computer information systems technology cluster: computer programming and network support. Presented in the introduction are program descriptions and suggested course…
Greenhouse models of the atmosphere of Titan.
NASA Technical Reports Server (NTRS)
Pollack, J. B.
1973-01-01
The greenhouse effect is calculated for a series of Titanian atmosphere models with different proportions of methane, hydrogen, helium, and ammonia. A computer program is used in temperature-structure calculations based on radiative-convective thermal transfer considerations. A brightness temperature spectrum is derived for Titan and is compared with available observational data. It is concluded that the greenhouse effect on Titan is generated by pressure-induced transitions of methane and hydrogen. The helium-to-hydrogen ratio is found to have a maximum of about 1.5. The surface pressure is estimated to be at least 0.4 atm, with a daytime temperature of about 155 K at the surface. The presence of methane clouds in the upper troposphere is indicated. The clouds have a significant optical depth in the visible, but not in the thermal, infrared.
Effect of non-equilibrium flow chemistry and surface catalysis on surface heating to AFE
NASA Technical Reports Server (NTRS)
Stewart, David A.; Henline, William D.; Chen, Yih-Kanq
1991-01-01
The effect of nonequilibrium flow chemistry on the surface temperature distribution over the forebody heat shield on the Aeroassisted Flight Experiment (AFE) vehicle was investigated using a reacting boundary-layer code. Computations were performed by using boundary-layer-edge properties determined from global iterations between the boundary-layer code and flow field solutions from a viscous shock layer (VSL) and a full Navier-Stokes solution. Surface temperature distribution over the AFE heat shield was calculated for two flight conditions during a nominal AFE trajectory. This study indicates that the surface temperature distribution is sensitive to the nonequilibrium chemistry in the shock layer. Heating distributions over the AFE forebody calculated using nonequilibrium edge properties were similar to values calculated using the VSL program.
A historical perspective of the YF-12A thermal loads and structures program
NASA Technical Reports Server (NTRS)
Jenkins, Jerald M.; Quinn, Robert D.
1996-01-01
Around 1970, the Y-F-12A loads and structures efforts focused on numerous technological issues that needed defining with regard to aircraft that incorporate hot structures in the design. Laboratory structural heating test technology with infrared systems was largely created during this program. The program demonstrated the ability to duplicate the complex flight temperatures of an advanced supersonic airplane in a ground-based laboratory. The ability to heat and load an advanced operational aircraft in a laboratory at high temperatures and return it to flight status without adverse effects was demonstrated. The technology associated with measuring loads with strain gages on a hot structure was demonstrated with a thermal calibration concept. The results demonstrated that the thermal stresses were significant although the airplane was designed to reduce thermal stresses. Considerable modeling detail was required to predict the heat transfer and the corresponding structural characteristics. The overall YF-12A research effort was particularly productive, and a great deal of flight, laboratory, test and computational data were produced and cross-correlated.
NASA Technical Reports Server (NTRS)
Simmonds, A. L.; Miller, C. G., III; Nealy, J. E.
1976-01-01
Equilibrium thermodynamic properties for pure ammonia were generated for a range of temperature from 500 to 50,000 K and pressure from 0.01 to 40 MN/sq m and are presented in tabulated and graphical form. Properties include pressure, temperature, density, enthalpy, speed of sound, entropy, molecular-weight ratio, specific heat at constant pressure, specific heat at constant volume, isentropic exponent, and species mole fractions. These properties were calculated by the method which is based on minimization of the Gibbs free energy. The data presented herein are for an 18-species ammonia model. Heats of formation and spectroscopic constants used as input data are presented. Comparison of several thermodynamic properties calculated with the present program and a second computer code is performed for a range of pressure and for temperatures up to 30,000 K.
Thermal Model of a Current-Carrying Wire in a Vacuum
NASA Technical Reports Server (NTRS)
Border, James
2006-01-01
A computer program implements a thermal model of an insulated wire carrying electric current and surrounded by a vacuum. The model includes the effects of Joule heating, conduction of heat along the wire, and radiation of heat from the outer surface of the insulation on the wire. The model takes account of the temperature dependences of the thermal and electrical properties of the wire, the emissivity of the insulation, and the possibility that not only can temperature vary along the wire but, in addition, the ends of the wire can be thermally grounded at different temperatures. The resulting second-order differential equation for the steady-state temperature as a function of position along the wire is highly nonlinear. The wire is discretized along its length, and the equation is solved numerically by use of an iterative algorithm that utilizes a multidimensional version of the Newton-Raphson method.
High-temperature effect of hydrogen on sintered alpha-silicon carbide
NASA Technical Reports Server (NTRS)
Hallum, G. W.; Herbell, T. P.
1986-01-01
Sintered alpha-silicon carbide was exposed to pure, dry hydrogen at high temperatures for times up to 500 hr. Weight loss and corrosion were seen after 50 hr at temperatures as low as 1000 C. Corrosion of SiC by hydrogen produced grain boundary deterioration at 1100 C and a mixture of grain and grain boundary deterioration at 1300 C. Statistically significant strength reductions were seen in samples exposed to hydrogen for times greater than 50 hr and temperatures above 1100 C. Critical fracture origins were identified by fractography as either general grain boundary corrision at 1100 C or as corrosion pits at 1300 C. A maximum strength decrease of approximately 33 percent was seen at 1100 and 1300 C after 500 hr exposure to hydrogen. A computer assisted thermodynamic program was also used to predict possible reaction species of SiC and hydrogen.
Effect of high-temperature hydrogen exposure on sintered alpha-SiC
NASA Technical Reports Server (NTRS)
Hallum, Gary W.; Herbell, Thomas P.
1988-01-01
Sintered alpha-silicon carbide was exposed to pure, dry hydrogen at high temperatures for times up to 500 hr. Weight loss and corrosion were seen after 50 hr at temperatures as low as 1000 C. Corrosion of SiC by hydrogen produced grain boundary deterioration at 1100 C and a mixture of grain and grain boundary deterioration at 1300 C. Statistically significant strength reductions were seen in samples exposed to hydrogen for times greater than 50 hr and temperatures above 1100 C. Critical fracture origins were identified by fractography as either general grain boundary corrosion at 1100 C or as corrosion pits at 1300 C. A maximum strength decrease of approximately 33 percent was seen at 1100 and 1300 C after 500 hr exposure to hydrogen. A computer assisted thermodynamic program was also used to predict possible reaction species of SiC and hydrogen.
Toward a reaction rate model of condensed-phase RDX decomposition under high temperatures
NASA Astrophysics Data System (ADS)
Schweigert, Igor
2014-03-01
Shock ignition of energetic molecular solids is driven by microstructural heterogeneities, at which even moderate stresses can result in sufficiently high temperatures to initiate material decomposition and the release of the chemical energy. Mesoscale modeling of these ``hot spots'' requires a chemical reaction rate model that describes the energy release with a sub-microsecond resolution and under a wide range of temperatures. No such model is available even for well-studied energetic materials such as RDX. In this presentation, I will describe an ongoing effort to develop a reaction rate model of condensed-phase RDX decomposition under high temperatures using first-principles molecular dynamics, transition-state theory, and reaction network analysis. This work was supported by the Naval Research Laboratory, by the Office of Naval Research, and by the DOD High Performance Computing Modernization Program Software Application Institute for Multiscale Reactive Modeling of Insensitive Munitions.
Toward a reaction rate model of condensed-phase RDX decomposition under high temperatures
NASA Astrophysics Data System (ADS)
Schweigert, Igor
2015-06-01
Shock ignition of energetic molecular solids is driven by microstructural heterogeneities, at which even moderate stresses can result in sufficiently high temperatures to initiate material decomposition and chemical energy release. Mesoscale modeling of these ``hot spots'' requires a reaction rate model that describes the energy release with a sub-microsecond resolution and under a wide range of temperatures. No such model is available even for well-studied energetic materials such as RDX. In this presentation, I will describe an ongoing effort to develop a reaction rate model of condensed-phase RDX decomposition under high temperatures using first-principles molecular dynamics, transition-state theory, and reaction network analysis. This work was supported by the Naval Research Laboratory, by the Office of Naval Research, and by the DoD High Performance Computing Modernization Program Software Application Institute for Multiscale Reactive Modeling of Insensitive Munitions.
BASIC Programming In Water And Wastewater Analysis
NASA Technical Reports Server (NTRS)
Dreschel, Thomas
1988-01-01
Collection of computer programs assembled for use in water-analysis laboratories. First program calculates quality-control parameters used in routine water analysis. Second calculates line of best fit for standard concentrations and absorbances entered. Third calculates specific conductance from conductivity measurement and temperature at which measurement taken. Fourth calculates any one of four types of residue measured in water. Fifth, sixth, and seventh calculate results of titrations commonly performed on water samples. Eighth converts measurements, to actual dissolved-oxygen concentration using oxygen-saturation values for fresh and salt water. Ninth and tenth perform calculations of two other common titrimetric analyses. Eleventh calculates oil and grease residue from water sample. Last two use spectro-photometric measurements of absorbance at different wavelengths and residue measurements. Programs included in collection written for Hewlett-Packard 2647F in H-P BASIC.
A coactive interdisciplinary research program with NASA
NASA Technical Reports Server (NTRS)
Rouse, J. W., Jr.
1972-01-01
The applications area of the Texas A&M University remote sensing program consists of a series of coactive projects with NASA/MSC personnel. In each case, the Remote Sensing Center has served to complement and enhance the research capability within the Manned Spacecraft Center. In addition to the applications study area, the Texas A&M University program includes coordinated projects in sensors and data analysis. Under the sensors area, an extensive experimental study of microwave radiometry for soil moisture determination established the effect of soil moisture on the measured brightness temperature for several different soil types. The data analysis area included a project which ERTS-A and Skylab data were simulated using aircraft multispectral scanner measurements at two altitudes. This effort resulted in development of a library of computer programs which provides an operational capability in classification analysis of multispectral data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slogar, G.A.; Holder, R.C.
1976-03-01
Full scale engine testswere conducted on a GTCP85-98CK Auxiliary Power Unit and a TPE331-5-251M Turboprop engine. The purpose of this program was to measure exhaust emission of HC, CO, CO/sub 2/, NO/sub x/, and smoke at controlled (temperature, humidity, and pressure) engine inlet conditions. This data along with other available data will provide the data base for the determination of the effects of ambient conditions on gas turbine engines. This volume contains the computer programs for volume 2 data. (GRA)
The Geostationary Operational Environmental Satellite (GOES) Product Generation System
NASA Technical Reports Server (NTRS)
Haines, S. L.; Suggs, R. J.; Jedlovec, G. J.
2004-01-01
The Geostationary Operational Environmental Satellite (GOES) Product Generation System (GPGS) is introduced and described. GPGS is a set of computer programs developed and maintained at the Global Hydrology and Climate Center and is designed to generate meteorological data products using visible and infrared measurements from the GOES-East Imager and Sounder instruments. The products that are produced by GPGS are skin temperature, total precipitable water, cloud top pressure, cloud albedo, surface albedo, and surface insolation. A robust cloud mask is also generated. The retrieval methodology for each product is described to include algorithm descriptions and required inputs and outputs for the programs. Validation is supplied where applicable.
Electrochemical oxygen concentrator as an oxygen compressor
NASA Technical Reports Server (NTRS)
1975-01-01
A solid polymer electrolyte (SPE) oxygen compressor is described which generates pressures of 3000 psi. The SPE is a cation exchange membrane with chemical compatibility, and has the capability of withstanding 5000 psi. Other features of the compressor described include: gasketless sealing, porus plate cell supports, and conductive cooling. Results are presented of a computer program which defines the power of the system as a function of density, temperature, pressure, membrane thickness, and water content.
Technical accomplishments of the NASA Lewis Research Center, 1989
NASA Technical Reports Server (NTRS)
1990-01-01
Topics addressed include: high-temperature composite materials; structural mechanics; fatigue life prediction for composite materials; internal computational fluid mechanics; instrumentation and controls; electronics; stirling engines; aeropropulsion and space propulsion programs, including a study of slush hydrogen; space power for use in the space station, in the Mars rover, and other applications; thermal management; plasma and radiation; cryogenic fluid management in space; microgravity physics; combustion in reduced gravity; test facilities and resources.
ELM - A SIMPLE TOOL FOR THERMAL-HYDRAULIC ANALYSIS OF SOLID-CORE NUCLEAR ROCKET FUEL ELEMENTS
NASA Technical Reports Server (NTRS)
Walton, J. T.
1994-01-01
ELM is a simple computational tool for modeling the steady-state thermal-hydraulics of propellant flow through fuel element coolant channels in nuclear thermal rockets. Written for the nuclear propulsion project of the Space Exploration Initiative, ELM evaluates the various heat transfer coefficient and friction factor correlations available for turbulent pipe flow with heat addition. In the past, these correlations were found in different reactor analysis codes, but now comparisons are possible within one program. The logic of ELM is based on the one-dimensional conservation of energy in combination with Newton's Law of Cooling to determine the bulk flow temperature and the wall temperature across a control volume. Since the control volume is an incremental length of tube, the corresponding pressure drop is determined by application of the Law of Conservation of Momentum. The size, speed, and accuracy of ELM make it a simple tool for use in fuel element parametric studies. ELM is a machine independent program written in FORTRAN 77. It has been successfully compiled on an IBM PC compatible running MS-DOS using Lahey FORTRAN 77, a DEC VAX series computer running VMS, and a Sun4 series computer running SunOS UNIX. ELM requires 565K of RAM under SunOS 4.1, 360K of RAM under VMS 5.4, and 406K of RAM under MS-DOS. Because this program is machine independent, no executable is provided on the distribution media. The standard distribution medium for ELM is one 5.25 inch 360K MS-DOS format diskette. ELM was developed in 1991. DEC, VAX, and VMS are trademarks of Digital Equipment Corporation. Sun4 and SunOS are trademarks of Sun Microsystems, Inc. IBM PC is a registered trademark of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation.
An Automated Thermocouple Calibration System
NASA Technical Reports Server (NTRS)
Bethea, Mark D.; Rosenthal, Bruce N.
1992-01-01
An Automated Thermocouple Calibration System (ATCS) was developed for the unattended calibration of type K thermocouples. This system operates from room temperature to 650 C and has been used for calibration of thermocouples in an eight-zone furnace system which may employ as many as 60 thermocouples simultaneously. It is highly efficient, allowing for the calibration of large numbers of thermocouples in significantly less time than required for manual calibrations. The system consists of a personal computer, a data acquisition/control unit, and a laboratory calibration furnace. The calibration furnace is a microprocessor-controlled multipurpose temperature calibrator with an accuracy of +/- 0.7 C. The accuracy of the calibration furnace is traceable to the National Institute of Standards and Technology (NIST). The computer software is menu-based to give the user flexibility and ease of use. The user needs no programming experience to operate the systems. This system was specifically developed for use in the Microgravity Materials Science Laboratory (MMSL) at the NASA LeRC.
CFD Analysis of Emissions for a Candidate N+3 Combustor
NASA Technical Reports Server (NTRS)
Ajmani, Kumud
2015-01-01
An effort was undertaken to analyze the performance of a model Lean-Direct Injection (LDI) combustor designed to meet emissions and performance goals for NASA's N+3 program. Computational predictions of Emissions Index (EINOx) and combustor exit temperature were obtained for operation at typical power conditions expected of a small-core, high pressure-ratio (greater than 50), high T3 inlet temperature (greater than 950K) N+3 combustor. Reacting-flow computations were performed with the National Combustion Code (NCC) for a model N+3 LDI combustor, which consisted of a nine-element LDI flame-tube derived from a previous generation (N+2) thirteen-element LDI design. A consistent approach to mesh-optimization, spraymodeling and kinetics-modeling was used, in order to leverage the lessons learned from previous N+2 flame-tube analysis with the NCC. The NCC predictions for the current, non-optimized N+3 combustor operating indicated a 74% increase in NOx emissions as compared to that of the emissions-optimized, parent N+2 LDI combustor.
CFD Analysis of Emissions for a Candidate N+3 Combustor
NASA Technical Reports Server (NTRS)
Ajmani, Kumud
2015-01-01
An effort was undertaken to analyze the performance of a model Lean-Direct Injection (LDI) combustor designed to meet emissions and performance goals for NASA's N+3 program. Computational predictions of Emissions Index (EINOx) and combustor exit temperature were obtained for operation at typical power conditions expected of a small-core, high pressure-ratio (greater than 50), high T3 inlet temperature (greater than 950K) N+3 combustor. Reacting-flow computations were performed with the National Combustion Code (NCC) for a model N+3 LDI combustor, which consisted of a nine-element LDI flame-tube derived from a previous generation (N+2) thirteen-element LDI design. A consistent approach to mesh-optimization, spray-modeling and kinetics-modeling was used, in order to leverage the lessons learned from previous N+2 flame-tube analysis with the NCC. The NCC predictions for the current, non-optimized N+3 combustor operating indicated a 74% increase in NOx emissions as compared to that of the emissions-optimized, parent N+2 LDI combustor.
NASA Astrophysics Data System (ADS)
Santos, M. V.; Lespinard, A. R.
2011-12-01
The shelf life of mushrooms is very limited since they are susceptible to physical and microbial attack; therefore they are usually blanched and immediately frozen for commercial purposes. The aim of this work was to develop a numerical model using the finite element technique to predict freezing times of mushrooms considering the actual shape of the product. The original heat transfer equation was reformulated using a combined enthalpy-Kirchhoff formulation, therefore an own computational program using Matlab 6.5 (MathWorks, Natick, Massachusetts) was developed, considering the difficulties encountered when simulating this non-linear problem in commercial softwares. Digital images were used to generate the irregular contour and the domain discretization. The numerical predictions agreed with the experimental time-temperature curves during freezing of mushrooms (maximum absolute error <3.2°C) obtaining accurate results and minimum computer processing times. The codes were then applied to determine required processing times for different operating conditions (external fluid temperatures and surface heat transfer coefficients).
Application of remote sensing for prediction and detection of thermal pollution, phase 2
NASA Technical Reports Server (NTRS)
Veziroglu, T. N.; Lee, S. S.
1975-01-01
The development of a predictive mathematical model for thermal pollution in connection with remote sensing measurements was continued. A rigid-lid model has been developed and its application to far-field study has been completed. The velocity and temperature fields have been computed for different atmospheric conditions and for different boundary currents produced by tidal effects. In connection with the theoretical work, six experimental studies of the two sites in question (Biscayne Bay site and Hutchinson Island site) have been carried out. The temperature fields obtained during the tests at the Biscayne Bay site have been compared with the predictions of the rigid-lid model and these results are encouraging. The rigid-lid model is also being applied to near-field study. Preliminary results for a simple case have been obtained and execution of more realistic cases has been initiated. The development of a free-surface model also been initiated. The governing equations have been formulated and the computer programs have been written.
NASA Astrophysics Data System (ADS)
Liou, Meng-Sing
2013-11-01
The development of computational fluid dynamics over the last few decades has yielded enormous successes and capabilities that are being routinely employed today; however there remain some open problems to be properly resolved. One example is the so-called overheating problem, which can arise in two very different scenarios, from either colliding or receding streams. Common in both is a localized, numerically over-predicted temperature. Von Neumann reported the former, a compressive overheating, nearly 70 years ago and numerically smeared the temperature peak by introducing artificial diffusion. However, the latter is unphysical in an expansive (rarefying) situation; it still dogs every method known to the author. We will present a study aiming at resolving this overheating problem and we find that: (1) the entropy increase is one-to-one linked to the increase in the temperature rise and (2) the overheating is inevitable in the current computational fluid dynamics framework in practice. Finally we will show a simple hybrid method that fundamentally cures the overheating problem in a rarefying flow, but also retains the property of accurate shock capturing. Moreover, this remedy (enhancement of current numerical methods) can be included easily in the present Eulerian codes. This work is performed under NASA's Fundamental Aeronautics Program.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-05
.... Description of the Matching Program A. General The Computer Matching and Privacy Protection Act of 1988 (Pub... 1974: CMS Computer Matching Program Match No. 2013-01; HHS Computer Matching Program Match No. 1312...). ACTION: Notice of Computer Matching Program (CMP). SUMMARY: In accordance with the requirements of the...
Handheld Computer Use in U.S. Family Practice Residency Programs
Criswell, Dan F.; Parchman, Michael L.
2002-01-01
Objective: The purpose of the study was to evaluate the uses of handheld computers (also called personal digital assistants, or PDAs) in family practice residency programs in the United States. Study Design: In November 2000, the authors mailed a questionnaire to the program directors of all American Academy of Family Physicians (AAFP) and American College of Osteopathic Family Practice (ACOFP) residency programs in the United States. Measurements: Data and patterns of the use and non-use of handheld computers were identified. Results: Approximately 50 percent (306 of 610) of the programs responded to the survey. Two thirds of the programs reported that handheld computers were used in their residencies, and an additional 14 percent had plans for implementation within 24 months. Both the Palm and the Windows CE operating systems were used, with the Palm operating system the most common. Military programs had the highest rate of use (8 of 10 programs, 80 percent), and osteopathic programs had the lowest (23 of 55 programs, 42 percent). Of programs that reported handheld computer use, 45 percent had required handheld computer applications that are used uniformly by all users. Funding for handheld computers and related applications was non-budgeted in 76percent of the programs in which handheld computers were used. In programs providing a budget for handheld computers, the average annual budget per user was $461.58. Interested faculty or residents, rather than computer information services personnel, performed upkeep and maintenance of handheld computers in 72 percent of the programs in which the computers are used. In addition to the installed calendar, memo pad, and address book, the most common clinical uses of handheld computers in the programs were as medication reference tools, electronic textbooks, and clinical computational or calculator-type programs. Conclusions: Handheld computers are widely used in family practice residency programs in the United States. Although handheld computers were designed as electronic organizers, in family practice residencies they are used as medication reference tools, electronic textbooks, and clinical computational programs and to track activities that were previously associated with desktop database applications. PMID:11751806
Handheld computer use in U.S. family practice residency programs.
Criswell, Dan F; Parchman, Michael L
2002-01-01
The purpose of the study was to evaluate the uses of handheld computers (also called personal digital assistants, or PDAs) in family practice residency programs in the United States. In November 2000, the authors mailed a questionnaire to the program directors of all American Academy of Family Physicians (AAFP) and American College of Osteopathic Family Practice (ACOFP) residency programs in the United States. Data and patterns of the use and non-use of handheld computers were identified. Approximately 50 percent (306 of 610) of the programs responded to the survey. Two thirds of the programs reported that handheld computers were used in their residencies, and an additional 14 percent had plans for implementation within 24 months. Both the Palm and the Windows CE operating systems were used, with the Palm operating system the most common. Military programs had the highest rate of use (8 of 10 programs, 80 percent), and osteopathic programs had the lowest (23 of 55 programs, 42 percent). Of programs that reported handheld computer use, 45 percent had required handheld computer applications that are used uniformly by all users. Funding for handheld computers and related applications was non-budgeted in 76percent of the programs in which handheld computers were used. In programs providing a budget for handheld computers, the average annual budget per user was 461.58 dollars. Interested faculty or residents, rather than computer information services personnel, performed upkeep and maintenance of handheld computers in 72 percent of the programs in which the computers are used. In addition to the installed calendar, memo pad, and address book, the most common clinical uses of handheld computers in the programs were as medication reference tools, electronic textbooks, and clinical computational or calculator-type programs. Handheld computers are widely used in family practice residency programs in the United States. Although handheld computers were designed as electronic organizers, in family practice residencies they are used as medication reference tools, electronic textbooks, and clinical computational programs and to track activities that were previously associated with desktop database applications.
The RANDOM computer program: A linear congruential random number generator
NASA Technical Reports Server (NTRS)
Miles, R. F., Jr.
1986-01-01
The RANDOM Computer Program is a FORTRAN program for generating random number sequences and testing linear congruential random number generators (LCGs). The linear congruential form of random number generator is discussed, and the selection of parameters of an LCG for a microcomputer described. This document describes the following: (1) The RANDOM Computer Program; (2) RANDOM.MOD, the computer code needed to implement an LCG in a FORTRAN program; and (3) The RANCYCLE and the ARITH Computer Programs that provide computational assistance in the selection of parameters for an LCG. The RANDOM, RANCYCLE, and ARITH Computer Programs are written in Microsoft FORTRAN for the IBM PC microcomputer and its compatibles. With only minor modifications, the RANDOM Computer Program and its LCG can be run on most micromputers or mainframe computers.
DIALOG: An executive computer program for linking independent programs
NASA Technical Reports Server (NTRS)
Glatt, C. R.; Hague, D. S.; Watson, D. A.
1973-01-01
A very large scale computer programming procedure called the DIALOG executive system was developed for the CDC 6000 series computers. The executive computer program, DIALOG, controls the sequence of execution and data management function for a library of independent computer programs. Communication of common information is accomplished by DIALOG through a dynamically constructed and maintained data base of common information. Each computer program maintains its individual identity and is unaware of its contribution to the large scale program. This feature makes any computer program a candidate for use with the DIALOG executive system. The installation and uses of the DIALOG executive system are described.
NASA Technical Reports Server (NTRS)
Carey, L. D.; Petersen, W. A.; Deierling, W.; Roeder, W. P.
2009-01-01
A new weather radar is being acquired for use in support of America s space program at Cape Canaveral Air Force Station, NASA Kennedy Space Center, and Patrick AFB on the east coast of central Florida. This new radar replaces the modified WSR-74C at Patrick AFB that has been in use since 1984. The new radar is a Radtec TDR 43-250, which has Doppler and dual polarization capability. A new fixed scan strategy was designed to best support the space program. The fixed scan strategy represents a complex compromise between many competing factors and relies on climatological heights of various temperatures that are important for improved lightning forecasting and evaluation of Lightning Launch Commit Criteria (LCC), which are the weather rules to avoid lightning strikes to in-flight rockets. The 0 C to -20 C layer is vital since most generation of electric charge occurs within it and so it is critical in evaluating Lightning LCC and in forecasting lightning. These are two of the most important duties of 45 WS. While the fixed scan strategy that covers most of the climatological variation of the 0 C to -20 C levels with high resolution ensures that these critical temperatures are well covered most of the time, it also means that on any particular day the radar is spending precious time scanning at angles covering less important heights. The goal of this project is to develop a user-friendly, Interactive Data Language (IDL) computer program that will automatically generate optimized radar scan strategies that adapt to user input of the temperature profile and other important parameters. By using only the required scan angles output by the temperature profile adaptive scan strategy program, faster update times for volume scans and/or collection of more samples per gate for better data quality is possible, while maintaining high resolution at the critical temperature levels. The temperature profile adaptive technique will also take into account earth curvature and refraction when geo-locating the radar beam (i.e., beam height and arc distance), including non-standard refraction based on the user-input temperature profile. In addition to temperature profile adaptivity, this paper will also summarize the other requirements for this scan strategy program such as detection of low-level boundaries, detection of anvil clouds, reducing the Cone Of Silence, and allowing for times when deep convective clouds will not occur. The adaptive technique will be carefully compared to and benchmarked against the new fixed scan strategy. Specific environmental scenarios in which the adaptive scan strategy is able to optimize and improve coverage and resolution at critical heights, scan time, and/or sample numbers relative to the fixed scan strategy will be presented.
Quantum lattice model solver HΦ
NASA Astrophysics Data System (ADS)
Kawamura, Mitsuaki; Yoshimi, Kazuyoshi; Misawa, Takahiro; Yamaji, Youhei; Todo, Synge; Kawashima, Naoki
2017-08-01
HΦ [aitch-phi ] is a program package based on the Lanczos-type eigenvalue solution applicable to a broad range of quantum lattice models, i.e., arbitrary quantum lattice models with two-body interactions, including the Heisenberg model, the Kitaev model, the Hubbard model and the Kondo-lattice model. While it works well on PCs and PC-clusters, HΦ also runs efficiently on massively parallel computers, which considerably extends the tractable range of the system size. In addition, unlike most existing packages, HΦ supports finite-temperature calculations through the method of thermal pure quantum (TPQ) states. In this paper, we explain theoretical background and user-interface of HΦ. We also show the benchmark results of HΦ on supercomputers such as the K computer at RIKEN Advanced Institute for Computational Science (AICS) and SGI ICE XA (Sekirei) at the Institute for the Solid State Physics (ISSP).
Computer code for predicting coolant flow and heat transfer in turbomachinery
NASA Technical Reports Server (NTRS)
Meitner, Peter L.
1990-01-01
A computer code was developed to analyze any turbomachinery coolant flow path geometry that consist of a single flow passage with a unique inlet and exit. Flow can be bled off for tip-cap impingement cooling, and a flow bypass can be specified in which coolant flow is taken off at one point in the flow channel and reintroduced at a point farther downstream in the same channel. The user may either choose the coolant flow rate or let the program determine the flow rate from specified inlet and exit conditions. The computer code integrates the 1-D momentum and energy equations along a defined flow path and calculates the coolant's flow rate, temperature, pressure, and velocity and the heat transfer coefficients along the passage. The equations account for area change, mass addition or subtraction, pumping, friction, and heat transfer.
Cyclic fatigue analysis of rocket thrust chambers. Volume 1: OFHC copper chamber low cycle fatigue
NASA Technical Reports Server (NTRS)
Miller, R. W.
1974-01-01
A three-dimensional finite element elasto-plastic strain analysis was performed for the throat section of a regeneratively cooled rocket combustion chamber. The analysis employed the RETSCP finite element computer program. The analysis included thermal and pressure loads, and the effects of temperature dependent material properties, to determine the strain range corresponding to the chamber operating cycle. The analysis was performed for chamber configuration and operating conditions corresponding to a hydrogen-oxygen combustion chamber which was fatigue tested to failure. The computed strain range at typical chamber operating conditions was used in conjunction with oxygen-free, high-conductivity (OHFC) copper isothermal fatigue test data to predict chamber low-cycle fatigue life.
Casimir self-entropy of a spherical electromagnetic δ -function shell
NASA Astrophysics Data System (ADS)
Milton, Kimball A.; Kalauni, Pushpa; Parashar, Prachi; Li, Yang
2017-10-01
In this paper we continue our program of computing Casimir self-entropies of idealized electrical bodies. Here we consider an electromagnetic δ -function sphere ("semitransparent sphere") whose electric susceptibility has a transverse polarization with arbitrary strength. Dispersion is incorporated by a plasma-like model. In the strong-coupling limit, a perfectly conducting spherical shell is realized. We compute the entropy for both low and high temperatures. The transverse electric self-entropy is negative as expected, but the transverse magnetic self-entropy requires ultraviolet and infrared renormalization (subtraction), and, surprisingly, is only positive for sufficiently strong coupling. Results are robust under different regularization schemes. These rather surprising findings require further investigation.
Energy and life-cycle cost analysis of a six-story office building
NASA Astrophysics Data System (ADS)
Turiel, I.
1981-10-01
An energy analysis computer program, DOE-2, was used to compute annual energy use for a typical office building as originally designed and with several energy conserving design modifications. The largest energy use reductions were obtained with the incorporation of daylighting techniques, the use of double pane windows, night temperature setback, and the reduction of artificial lighting levels. A life-cycle cost model was developed to assess the cost-effectiveness of the design modifications discussed. The model incorporates such features as inclusion of taxes, depreciation, and financing of conservation investments. The energy conserving strategies are ranked according to economic criteria such as net present benefit, discounted payback period, and benefit to cost ratio.
NASA Technical Reports Server (NTRS)
Suomi, V. E.
1975-01-01
The complete output of the Synchronous Meteorological Satellite was recorded on one inch magnetic tape. A quality control subsystem tests cloud track vectors against four sets of criteria: (1) rejection if best match occurs on correlation boundary; (2) rejection if major correlation peak is not distinct and significantly greater than secondary peak; (3) rejection if correlation is not persistent; and (4) rejection if acceleration is too great. A cloud height program determines cloud optical thickness from visible data and computer infrared emissivity. From infrared data and temperature profile, cloud height is determined. A functional description and electronic schematics of equipment are given.
NASA Technical Reports Server (NTRS)
Anderson, E. C.; Lewis, C. H.
1971-01-01
Turbulent boundary layer flows of non-reacting gases are predicted for both interal (nozzle) and external flows. Effects of favorable pressure gradients on two eddy viscosity models were studied in rocket and hypervelocity wind tunnel flows. Nozzle flows of equilibrium air with stagnation temperatures up to 10,000 K were computed. Predictions of equilibrium nitrogen flows through hypervelocity nozzles were compared with experimental data. A slender spherically blunted cone was studied at 70,000 ft altitude and 19,000 ft/sec. in the earth's atmosphere. Comparisons with available experimental data showed good agreement. A computer program was developed and fully documented during this investigation for use by interested individuals.
High speed cylindrical roller bearing analysis, SKF computer program CYBEAN. Volume 2: User's manual
NASA Technical Reports Server (NTRS)
Kleckner, R. J.; Pirvics, J.
1978-01-01
The CYBEAN (Cylindrical Bearing Analysis) was created to detail radially loaded, aligned and misaligned cylindrical roller bearing performance under a variety of operating conditions. Emphasis was placed on detailing the effects of high speed, preload and system thermal coupling. Roller tilt, skew, radial, circumferential and axial displacement as well as flange contact were considered. Variable housing and flexible out-of-round outer ring geometries, and both steady state and time transient temperature calculations were enabled. The complete range of elastohydrodynamic contact considerations, employing full and partial film conditions were treated in the computation of raceway and flange contacts. Input and output architectures containing guidelines for use and a sample execution are detailed.
A CAD (Classroom Assessment Design) of a Computer Programming Course
ERIC Educational Resources Information Center
Hawi, Nazir S.
2012-01-01
This paper presents a CAD (classroom assessment design) of an entry-level undergraduate computer programming course "Computer Programming I". CAD has been the product of a long experience in teaching computer programming courses including teaching "Computer Programming I" 22 times. Each semester, CAD is evaluated and modified…
Computer Science Techniques Applied to Parallel Atomistic Simulation
NASA Astrophysics Data System (ADS)
Nakano, Aiichiro
1998-03-01
Recent developments in parallel processing technology and multiresolution numerical algorithms have established large-scale molecular dynamics (MD) simulations as a new research mode for studying materials phenomena such as fracture. However, this requires large system sizes and long simulated times. We have developed: i) Space-time multiresolution schemes; ii) fuzzy-clustering approach to hierarchical dynamics; iii) wavelet-based adaptive curvilinear-coordinate load balancing; iv) multilevel preconditioned conjugate gradient method; and v) spacefilling-curve-based data compression for parallel I/O. Using these techniques, million-atom parallel MD simulations are performed for the oxidation dynamics of nanocrystalline Al. The simulations take into account the effect of dynamic charge transfer between Al and O using the electronegativity equalization scheme. The resulting long-range Coulomb interaction is calculated efficiently with the fast multipole method. Results for temperature and charge distributions, residual stresses, bond lengths and bond angles, and diffusivities of Al and O will be presented. The oxidation of nanocrystalline Al is elucidated through immersive visualization in virtual environments. A unique dual-degree education program at Louisiana State University will also be discussed in which students can obtain a Ph.D. in Physics & Astronomy and a M.S. from the Department of Computer Science in five years. This program fosters interdisciplinary research activities for interfacing High Performance Computing and Communications with large-scale atomistic simulations of advanced materials. This work was supported by NSF (CAREER Program), ARO, PRF, and Louisiana LEQSF.
Automatic cassette to cassette radiant impulse processor
NASA Astrophysics Data System (ADS)
Sheets, Ronald E.
1985-01-01
Single wafer rapid annealing using high temperature isothermal processing has become increasingly popular in recent years. In addition to annealing, this process is also being investigated for suicide formation, passivation, glass reflow and alloying. Regardless of the application, there is a strong necessity to automate in order to maintain process control, repeatability, cleanliness and throughput. These requirements have been carefully addressed during the design and development of the Model 180 Radiant Impulse Processor which is a totally automatic cassette to cassette wafer processing system. Process control and repeatability are maintained by a closed loop optical pyrometer system which maintains the wafer at the programmed temperature-time conditions. Programmed recipes containing up to 10 steps may be easily entered on the computer keyboard or loaded in from a recipe library stored on a standard 5 {1}/{4″} floppy disk. Cold wall heating chamber construction, controlled environment (N 2, A, forming gas) and quartz wafer carriers prevent contamination of the wafer during high temperature processing. Throughputs of 150-240 wafers per hour are achieved by quickly heating the wafer to temperature (450-1400°C) in 3-6 s with a high intensity, uniform (± 1%) radiant flux of 100 {W}/{cm 2}, parallel wafer handling system and a wafer cool down stage.
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher; Valco, Mark J.
1999-01-01
The NASA Lewis Research Center is capitalizing on breakthroughs in foil air bearing performance, tribological coatings, and computer analyses to formulate the Oil-free Turbomachinery Program. The program s long-term goal is to develop an innovative, yet practical, oil-free aeropropulsion gas turbine engine that floats on advanced air bearings. This type of engine would operate at higher speeds and temperatures with lower weight and friction than conventional oil-lubricated engines. During startup and shutdown, solid lubricant coatings are required to prevent wear in such engines before the self-generating air-lubrication film develops. NASA s Tribology Branch has created PS304, a chrome-oxide-based plasma spray coating specifically tailored for shafts run against foil bearings. PS304 contains silver and barium fluoride/calcium fluoride eutectic (BaF2/CaF2) lubricant additives that, together, provide lubrication from cold start temperatures to over 650 C, the maximum use temperature for foil bearings. Recent lab tests show that bearings lubricated with PS304 survive over 100 000 start-stop cycles without experiencing any degradation in performance due to wear. The accompanying photograph shows a test bearing after it was run at 650 C. The rubbing process created a "polished" surface that enhances bearing load capacity.
NASA Technical Reports Server (NTRS)
Pan, Y. S.; Drummond, J. P.; Mcclinton, C. R.
1978-01-01
Two parabolic flow computer programs, SHIP (a finite-difference program) and COMOC (a finite-element program), are used for predicting three-dimensional turbulent reacting flow fields in supersonic combustors. The theoretical foundation of the two computer programs are described, and then the programs are applied to a three-dimensional turbulent mixing experiment. The cold (nonreacting) flow experiment was performed to study the mixing of helium jets with a supersonic airstream in a rectangular duct. Surveys of the flow field at an upstream were used as the initial data by programs; surveys at a downstream station provided comparison to assess program accuracy. Both computer programs predicted the experimental results and data trends reasonably well. However, the comparison between the computations from the two programs indicated that SHIP was more accurate in computation and more efficient in both computer storage and computing time than COMOC.
Computer program CDCID: an automated quality control program using CDC update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singer, G.L.; Aguilar, F.
1984-04-01
A computer program, CDCID, has been developed in coordination with a quality control program to provide a highly automated method of documenting changes to computer codes at EG and G Idaho, Inc. The method uses the standard CDC UPDATE program in such a manner that updates and their associated documentation are easily made and retrieved in various formats. The method allows each card image of a source program to point to the document which describes it, who created the card, and when it was created. The method described is applicable to the quality control of computer programs in general. Themore » computer program described is executable only on CDC computing systems, but the program could be modified and applied to any computing system with an adequate updating program.« less
NASA Technical Reports Server (NTRS)
Halpern, D.; Zlotnicki, V.; Newman, J.; Brown, O.; Wentz, F.
1991-01-01
Monthly mean global distributions for 1988 are presented with a common color scale and geographical map. Distributions are included for sea surface height variation estimated from GEOSAT; surface wind speed estimated from the Special Sensor Microwave Imager on the Defense Meteorological Satellite Program spacecraft; sea surface temperature estimated from the Advanced Very High Resolution Radiometer on NOAA spacecrafts; and the Cartesian components of the 10m height wind vector computed by the European Center for Medium Range Weather Forecasting. Charts of monthly mean value, sampling distribution, and standard deviation value are displayed. Annual mean distributions are displayed.
Post impact behavior of mobile reactor core containment systems
NASA Technical Reports Server (NTRS)
Puthoff, R. L.; Parker, W. G.; Vanbibber, L. E.
1972-01-01
The reactor core containment vessel temperatures after impact, and the design variables that affect the post impact survival of the system are analyzed. The heat transfer analysis includes conduction, radiation, and convection in addition to the core material heats of fusion and vaporization under partially burial conditions. Also, included is the fact that fission products vaporize and transport radially outward and condense outward and condense on cooler surfaces, resulting in a moving heat source. A computer program entitled Executive Subroutines for Afterheat Temperature Analysis (ESATA) was written to consider this complex heat transfer analysis. Seven cases were calculated of a reactor power system capable of delivering up to 300 MW of thermal power to a nuclear airplane.
Using the NASTRAN Thermal Analyzer to simulate a flight scientific instrument package
NASA Technical Reports Server (NTRS)
Lee, H.-P.; Jackson, C. E., Jr.
1974-01-01
The NASTRAN Thermal Analyzer has proven to be a unique and useful tool for thermal analyses involving large and complex structures where small, thermally induced deformations are critical. Among its major advantages are direct grid point-to-grid point compatibility with large structural models; plots of the model that may be generated for both conduction and boundary elements; versatility of applying transient thermal loads especially to repeat orbital cycles; on-line printer plotting of temperatures and rate of temperature changes as a function of time; and direct matrix input to solve linear differential equations on-line. These features provide a flexibility far beyond that available in most finite-difference thermal analysis computer programs.
(abstract) Simple Spreadsheet Thermal Models for Cryogenic Applications
NASA Technical Reports Server (NTRS)
Nash, A. E.
1994-01-01
Self consistent circuit analog thermal models, that can be run in commercial spreadsheet programs on personal computers, have been created to calculate the cooldown and steady state performance of cryogen cooled Dewars. The models include temperature dependent conduction and radiation effects. The outputs of the models provide temperature distribution and Dewar performance information. These models have been used to analyze the Cryogenic Telescope Test Facility (CTTF). The facility will be on line in early 1995 for its first user, the Infrared Telescope Technology Testbed (ITTT), for the Space Infrared Telescope Facility (SIRTF) at JPL. The model algorithm as well as a comparison of the model predictions and actual performance of this facility will be presented.
Simple Spreadsheet Thermal Models for Cryogenic Applications
NASA Technical Reports Server (NTRS)
Nash, Alfred
1995-01-01
Self consistent circuit analog thermal models that can be run in commercial spreadsheet programs on personal computers have been created to calculate the cooldown and steady state performance of cryogen cooled Dewars. The models include temperature dependent conduction and radiation effects. The outputs of the models provide temperature distribution and Dewar performance information. these models have been used to analyze the SIRTF Telescope Test Facility (STTF). The facility has been brought on line for its first user, the Infrared Telescope Technology Testbed (ITTT), for the Space Infrared Telescope Facility (SIRTF) at JPL. The model algorithm as well as a comparison between the models' predictions and actual performance of this facility will be presented.
Computational Model of Heat Transfer on the ISS
NASA Technical Reports Server (NTRS)
Torian, John G.; Rischar, Michael L.
2008-01-01
SCRAM Lite (SCRAM signifies Station Compact Radiator Analysis Model) is a computer program for analyzing convective and radiative heat-transfer and heat-rejection performance of coolant loops and radiators, respectively, in the active thermal-control systems of the International Space Station (ISS). SCRAM Lite is a derivative of prior versions of SCRAM but is more robust. SCRAM Lite computes thermal operating characteristics of active heat-transport and heat-rejection subsystems for the major ISS configurations from Flight 5A through completion of assembly. The program performs integrated analysis of both internal and external coolant loops of the various ISS modules and of an external active thermal control system, which includes radiators and the coolant loops that transfer heat to the radiators. The SCRAM Lite run time is of the order of one minute per day of mission time. The overall objective of the SCRAM Lite simulation is to process input profiles of equipment-rack, crew-metabolic, and other heat loads to determine flow rates, coolant supply temperatures, and available radiator heat-rejection capabilities. Analyses are performed for timelines of activities, orbital parameters, and attitudes for mission times ranging from a few hours to several months.
NASA Technical Reports Server (NTRS)
Groll, M.; Pittman, R. B.; Eninger, J. E.
1975-01-01
A recently developed, potentially high-performance nonarterial wick has been extensively tested. This slab wick has an axially varying porosity which can be tailored to match the local stress imposed on the wick. The purpose of the tests was to establish the usefulness of the graded-porosity slab wick at cryogenic temperatures between 110 K and 260 K, with methane and ethane as working fluids. For comparison, a homogeneous (i.e., uniform porosity) slab wick was also tested. The tests included: (1) maximum heat pipe performance as a function of fluid inventory, (2) maximum performance as a function of operating temperature, (3) maximum performance as a function of evaporator elevation, and (4) influence of slab wick orientation on performance. The experimental data was compared with theoretical predictions obtained with the computer program GRADE.
Addition of simultaneous heat and solute transport and variable fluid viscosity to SEAWAT
Thorne, D.; Langevin, C.D.; Sukop, M.C.
2006-01-01
SEAWAT is a finite-difference computer code designed to simulate coupled variable-density ground water flow and solute transport. This paper describes a new version of SEAWAT that adds the ability to simultaneously model energy and solute transport. This is necessary for simulating the transport of heat and salinity in coastal aquifers for example. This work extends the equation of state for fluid density to vary as a function of temperature and/or solute concentration. The program has also been modified to represent the effects of variable fluid viscosity as a function of temperature and/or concentration. The viscosity mechanism is verified against an analytical solution, and a test of temperature-dependent viscosity is provided. Finally, the classic Henry-Hilleke problem is solved with the new code. ?? 2006 Elsevier Ltd. All rights reserved.
Deuterium sputtering of Li and Li-O films
NASA Astrophysics Data System (ADS)
Nelson, Andrew; Buzi, Luxherta; Kaita, Robert; Koel, Bruce
2017-10-01
Lithium wall coatings have been shown to enhance the operational plasma performance of many fusion devices, including NSTX and other tokamaks, by reducing the global wall recycling coefficient. However, pure lithium surfaces are extremely difficult to maintain in experimental fusion devices due to both inevitable oxidation and codeposition from sputtering of hot plasma facing components. Sputtering of thin lithium and lithium oxide films on a molybdenum target by energetic deuterium ion bombardment was studied in laboratory experiments conducted in a surface science apparatus. A Colutron ion source was used to produce a monoenergetic, mass-selected ion beam. Measurements were made under ultrahigh vacuum conditions as a function of surface temperature (90-520 K) using x-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and temperature programmed desorption (TPD). Results are compared with computer simulations conducted on a temperature-dependent data-calibrated (TRIM) model.
NASA Technical Reports Server (NTRS)
Groll, M.; Pittman, R. B.; Eninger, J. E.
1976-01-01
A recently developed, potentially high-performance nonarterial wick was extensively tested. This slab wick has an axially varying porosity which can be tailored to match the local stress imposed on the wick. The purpose of the tests was to establish the usefulness of the graded-porosity slab wick at cryogenic temperatures between 110 and 260 K, with methane and ethane as working fluids. For comparison, a homogeneous (i.e., uniform porosity) slab wick was also tested. The tests included: maximum heat pipe performance as a function of fluid inventory, maximum performance as a function of operating temperature, maximum performance as a function of evaporator elevation, and influence of slab wick orientation on performance. The experimental data were compared with theoretical predictions obtained with the GRADE computer program.
NASA Technical Reports Server (NTRS)
Millard, J. P.; Green, M. J.; Sommer, S. C.
1972-01-01
An analytical study was conducted to develop a sensor for measuring the temperature of a planetary atmosphere from an entry vehicle traveling at supersonic speeds and having a detached shock. Such a sensor has been used in the Planetary Atmosphere Experiments Test Probe (PAET) mission and is planned for the Viking-Mars mission. The study specifically considered butt-welded thermocouple sensors stretched between two support posts; however, the factors considered are sufficiently general to apply to other sensors as well. This study included: (1) an investigation of the relation between sensor-measured temperature and free-stream conditions; (2) an evaluation of the effects of extraneous sources of heat; (3) the development of a computer program for evaluating sensor response during entry; and (4) a parametric study of sensor design characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pyun, J.J.; Majumdar, D.
The paper describes TEMPEST, a simple computer program for the temperature and pressure estimation of a boiling fuel-steel pool in an LMFBR core. The time scale of interest of this program is large, of the order of ten seconds. Further, the vigorous boiling in the pool will generate a large contact, and hence a large heat transfer between fuel and steel. The pool is assumed to be a uniform mixture of fuel and steel, and consequently vapor production is also assumed to be uniform throughout the pool. The pool is allowed to expand in volume if there is steel meltingmore » at the walls. In this program, the total mass of liquid and vapor fuel is always kept constant, but the total steel mass in the pool may change by steel wall melting. Because of a lack of clear understanding of the physical phenomena associated with the progression of a fuel-steel mixture at high temperature, various input options have been built-in to enable one to perform parametric studies. For example, the heat transfer from the pool to the surrounding steel structure may be controlled by input values for the heat transfer coefficients, or, the heat transfer may be calculated by a correlation obtained from the literature. Similarly, condensation of vapor on the top wall can be specified by input values of the condensation coefficient; the program can otherwise calculate condensation according to the non-equilibrium model predictions. Meltthrough rates of the surrounding steel walls can be specified by a fixed melt-rate or can be determined by a fraction of the heat loss that goes to steel-melting. The melted steel is raised to the pool temperature before it is joined with the pool material. Several applications of this program to various fuel-steel pools in the FFTF and the CRBR cores are discussed.« less
Application Portable Parallel Library
NASA Technical Reports Server (NTRS)
Cole, Gary L.; Blech, Richard A.; Quealy, Angela; Townsend, Scott
1995-01-01
Application Portable Parallel Library (APPL) computer program is subroutine-based message-passing software library intended to provide consistent interface to variety of multiprocessor computers on market today. Minimizes effort needed to move application program from one computer to another. User develops application program once and then easily moves application program from parallel computer on which created to another parallel computer. ("Parallel computer" also include heterogeneous collection of networked computers). Written in C language with one FORTRAN 77 subroutine for UNIX-based computers and callable from application programs written in C language or FORTRAN 77.
Equation-based languages – A new paradigm for building energy modeling, simulation and optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wetter, Michael; Bonvini, Marco; Nouidui, Thierry S.
Most of the state-of-the-art building simulation programs implement models in imperative programming languages. This complicates modeling and excludes the use of certain efficient methods for simulation and optimization. In contrast, equation-based modeling languages declare relations among variables, thereby allowing the use of computer algebra to enable much simpler schematic modeling and to generate efficient code for simulation and optimization. We contrast the two approaches in this paper. We explain how such manipulations support new use cases. In the first of two examples, we couple models of the electrical grid, multiple buildings, HVAC systems and controllers to test a controller thatmore » adjusts building room temperatures and PV inverter reactive power to maintain power quality. In the second example, we contrast the computing time for solving an optimal control problem for a room-level model predictive controller with and without symbolic manipulations. As a result, exploiting the equation-based language led to 2, 200 times faster solution« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howe, Alex R.; Burrows, Adam; Deming, Drake, E-mail: arhowe@umich.edu, E-mail: burrows@astro.princeton.edu, E-mail: ddeming@astro.umd.edu
We provide an example of an analysis to explore the optimization of observations of transiting hot Jupiters with the James Webb Space Telescope ( JWST ) to characterize their atmospheres based on a simple three-parameter forward model. We construct expansive forward model sets for 11 hot Jupiters, 10 of which are relatively well characterized, exploring a range of parameters such as equilibrium temperature and metallicity, as well as considering host stars over a wide range in brightness. We compute posterior distributions of our model parameters for each planet with all of the available JWST spectroscopic modes and several programs ofmore » combined observations and compute their effectiveness using the metric of estimated mutual information per degree of freedom. From these simulations, clear trends emerge that provide guidelines for designing a JWST observing program. We demonstrate that these guidelines apply over a wide range of planet parameters and target brightnesses for our simple forward model.« less
NASA Technical Reports Server (NTRS)
Davis, J. W.; Cramer, B. A.
1976-01-01
A method of analysis was developed for predicting permanent cyclic creep deflections in stiffened panel structures. This method uses creep equations based on cyclic tensile creep tests and a computer program to predict panel deflections as a function of mission cycle. Four materials were investigated - a titanium alloy (Ti-6Al-4V), a cobalt alloy (L605), and two nickel alloys (Rene'41 and TDNiCr). Steady-state and cyclic creep response data were obtained by testing tensile specimens fabricated from thin gage sheet (0.025 and 0.63 cm nominal). Steady-state and cyclic creep equations were developed which describe creep as a function of time, temperature and load. Tests were also performed on subsize (6.35 x 30.5 cm) rib and corrugation stiffened panels. These tests were used to correlate creep responses between elemental specimens and panels. The panel response was analyzed by use of a specially written computer program.
Computing Thermal Effects of Cavitation in Cryogenic Liquids
NASA Technical Reports Server (NTRS)
Hosangadi, Ashvin; Ahuja, Vineet; Dash, Sanford M.
2005-01-01
A computer program implements a numerical model of thermal effects of cavitation in cryogenic fluids. The model and program were developed for use in designing and predicting the performances of turbopumps for cryogenic fluids. Prior numerical models used for this purpose do not account for either the variability of properties of cryogenic fluids or the thermal effects (especially, evaporative cooling) involved in cavitation. It is important to account for both because in a cryogenic fluid, the thermal effects of cavitation are substantial, and the cavitation characteristics are altered by coupling between the variable fluid properties and the phase changes involved in cavitation. The present model accounts for both thermal effects and variability of properties by incorporating a generalized representation of the properties of cryogenic fluids into a generalized compressible-fluid formulation for a cavitating pump. The model has been extensively validated for liquid nitrogen and liquid hydrogen. Using the available data on the properties of these fluids, the model has been shown to predict accurate temperature-depression values.
Equation-based languages – A new paradigm for building energy modeling, simulation and optimization
Wetter, Michael; Bonvini, Marco; Nouidui, Thierry S.
2016-04-01
Most of the state-of-the-art building simulation programs implement models in imperative programming languages. This complicates modeling and excludes the use of certain efficient methods for simulation and optimization. In contrast, equation-based modeling languages declare relations among variables, thereby allowing the use of computer algebra to enable much simpler schematic modeling and to generate efficient code for simulation and optimization. We contrast the two approaches in this paper. We explain how such manipulations support new use cases. In the first of two examples, we couple models of the electrical grid, multiple buildings, HVAC systems and controllers to test a controller thatmore » adjusts building room temperatures and PV inverter reactive power to maintain power quality. In the second example, we contrast the computing time for solving an optimal control problem for a room-level model predictive controller with and without symbolic manipulations. As a result, exploiting the equation-based language led to 2, 200 times faster solution« less
A model of heat transfer in immersed man
NASA Technical Reports Server (NTRS)
Montgomery, L. D.
1974-01-01
An equation representing man's thermal balance under water is considered. The equation states that the body thermal loading from metabolic heat production and artificial heat input must be offset by respiratory and environmental heat exchange to maintain a constant body temperature. Critical body regions are affected by cold-water thermal stress. A model of the thermoregulatory system may be divided into the physical-controlled system and the dynamic controlling system. The thermal model is simulated by computer programs.
The heating of a plasma by a laser is studied, assuming the classical inverse bremsstrahlung mechanism for transfer of energy from laser photons to electron thermal energy. Emphasis is given to CO2 laser heating of the dense plasma focus (DPF) device. Particular attention is paid to the contribution of impurities to the radiation output of the DPF. A steady-state CORONA model is discussed and used to generate a computer program, CORONA, which calculates species densities as a function of electron temperature. (Author)
NASA Astrophysics Data System (ADS)
Xie, Beibei; Yang, Dong; Xie, Haiyan; Nie, Xin; Liu, Wanyu
2016-08-01
In order to expand the study on flow instability of supercritical circulating fluidized bed (CFB) boiler, a new numerical computational model considering the heat storage of the tube wall metal was presented in this paper. The lumped parameter method was proposed for wall temperature calculation and the single channel model was adopted for the analysis of flow instability. Based on the time-domain method, a new numerical computational program suitable for the analysis of flow instability in the water wall of supercritical CFB boiler with annular furnace was established. To verify the code, calculation results were respectively compared with data of commercial software. According to the comparisons, the new code was proved to be reasonable and accurate for practical engineering application in analysis of flow instability. Based on the new program, the flow instability of supercritical CFB boiler with annular furnace was simulated by time-domain method. When 1.2 times heat load disturbance was applied on the loop, results showed that the inlet flow rate, outlet flow rate and wall temperature fluctuated with time eventually remained at constant values, suggesting that the hydrodynamic flow was stable. The results also showed that in the case of considering the heat storage, the flow in the water wall is easier to return to stable state than without considering heat storage.
Middle-School Understanding of the Greenhouse Effect using a NetLogo Computer Model
NASA Astrophysics Data System (ADS)
Schultz, L.; Koons, P. O.; Schauffler, M.
2009-12-01
We investigated the effectiveness of a freely available agent based, modeling program as a learning tool for seventh and eighth grade students to explore the greenhouse effect without added curriculum. The investigation was conducted at two Maine middle-schools with 136 seventh-grade students and 11 eighth-grade students in eight classes. Students were given a pre-test that consisted of a concept map, a free-response question, and multiple-choice questions about how the greenhouse effect influences the Earth's temperature. The computer model simulates the greenhouse effect and allows students to manipulate atmospheric and surface conditions to observe the effects on the Earth’s temperature. Students explored the Greenhouse Effect model for approximately twenty minutes with only two focus questions for guidance. After the exploration period, students were given a post-test that was identical to the pre-test. Parametric post-test analysis of the assessments indicated middle-school students gained in their understanding about how the greenhouse effect influences the Earth's temperature after exploring the computer model for approximately twenty minutes. The magnitude of the changes in pre- and post-test concept map and free-response scores were small (average free-response post-test score of 7.0) compared to an expert's score (48), indicating that students understood only a few of the system relationships. While students gained in their understanding about the greenhouse effect, there was evidence that students held onto their misconceptions that (1) carbon dioxide in the atmosphere deteriorates the ozone layer, (2) the greenhouse effect is a result of humans burning fossil fuels, and (3) infrared and visible light have similar behaviors with greenhouse gases. We recommend using the Greenhouse Effect computer model with guided inquiry to focus students’ investigations on the system relationships in the model.
DIALOG: An executive computer program for linking independent programs
NASA Technical Reports Server (NTRS)
Glatt, C. R.; Hague, D. S.; Watson, D. A.
1973-01-01
A very large scale computer programming procedure called the DIALOG Executive System has been developed for the Univac 1100 series computers. The executive computer program, DIALOG, controls the sequence of execution and data management function for a library of independent computer programs. Communication of common information is accomplished by DIALOG through a dynamically constructed and maintained data base of common information. The unique feature of the DIALOG Executive System is the manner in which computer programs are linked. Each program maintains its individual identity and as such is unaware of its contribution to the large scale program. This feature makes any computer program a candidate for use with the DIALOG Executive System. The installation and use of the DIALOG Executive System are described at Johnson Space Center.
Programming the social computer.
Robertson, David; Giunchiglia, Fausto
2013-03-28
The aim of 'programming the global computer' was identified by Milner and others as one of the grand challenges of computing research. At the time this phrase was coined, it was natural to assume that this objective might be achieved primarily through extending programming and specification languages. The Internet, however, has brought with it a different style of computation that (although harnessing variants of traditional programming languages) operates in a style different to those with which we are familiar. The 'computer' on which we are running these computations is a social computer in the sense that many of the elementary functions of the computations it runs are performed by humans, and successful execution of a program often depends on properties of the human society over which the program operates. These sorts of programs are not programmed in a traditional way and may have to be understood in a way that is different from the traditional view of programming. This shift in perspective raises new challenges for the science of the Web and for computing in general.
Multiaxial Cyclic Thermoplasticity Analysis with Besseling's Subvolume Method
NASA Technical Reports Server (NTRS)
Mcknight, R. L.
1983-01-01
A modification was formulated to Besseling's Subvolume Method to allow it to use multilinear stress-strain curves which are temperature dependent to perform cyclic thermoplasticity analyses. This method automotically reproduces certain aspects of real material behavior important in the analysis of Aircraft Gas Turbine Engine (AGTE) components. These include the Bauschinger effect, cross-hardening, and memory. This constitutive equation was implemented in a finite element computer program called CYANIDE. Subsequently, classical time dependent plasticity (creep) was added to the program. Since its inception, this program was assessed against laboratory and component testing and engine experience. The ability of this program to simulate AGTE material response characteristics was verified by this experience and its utility in providing data for life analyses was demonstrated. In this area of life analysis, the multiaxial thermoplasticity capabilities of the method have proved a match for the actual AGTE life experience.
First-Principles Equation of State and Shock Compression of Warm Dense Aluminum and Hydrocarbons
NASA Astrophysics Data System (ADS)
Driver, Kevin; Soubiran, Francois; Zhang, Shuai; Militzer, Burkhard
2017-10-01
Theoretical studies of warm dense plasmas are a key component of progress in fusion science, defense science, and astrophysics programs. Path integral Monte Carlo (PIMC) and density functional theory molecular dynamics (DFT-MD), two state-of-the-art, first-principles, electronic-structure simulation methods, provide a consistent description of plasmas over a wide range of density and temperature conditions. Here, we combine high-temperature PIMC data with lower-temperature DFT-MD data to compute coherent equations of state (EOS) for aluminum and hydrocarbon plasmas. Subsequently, we derive shock Hugoniot curves from these EOSs and extract the temperature-density evolution of plasma structure and ionization behavior from pair-correlation function analyses. Since PIMC and DFT-MD accurately treat effects of atomic shell structure, we find compression maxima along Hugoniot curves attributed to K-shell and L-shell ionization, which provide a benchmark for widely-used EOS tables, such as SESAME and LEOS, and more efficient models. LLNL-ABS-734424. Funding provided by the DOE (DE-SC0010517) and in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Computational resources provided by Blue Waters (NSF ACI1640776) and NERSC. K. Driver's and S. Zhang's current address is Lawrence Livermore Natl. Lab, Livermore, CA, 94550, USA.
Faye, Robert E.; Jobson, Harvey E.; Land, Larry F.
1978-01-01
A calibrated and verified transient-flow temperature model was used to evaluate the effects of flow regulation and powerplant loadings on the natural temperature regime of the Chattahoochee River in northeast Georgia. Estimates were made of both instantaneous and average natural temperatures in the river during an 8-day period in August 1976. Differences between the computed average natural temperature and an independent estimateof natural temperature based on observed equilibrium temperatures were less than 0.5C. The combined thermal effects of flow regulation and powerplant effluents resulted in mean daily river temperatures downstreams of the powerplants about equal to or less than computed mean natural temperatures. The range and rates of change of computed natural diurnal temperature fluctuations were considerably less than those presently observed (1976) in the river. Except during periods of peak water-supply demand, differences between computed year 2000 river temperatures and observed present-day temperatures were less than 2C. (Woodard-USGS)
Oligo Design: a computer program for development of probes for oligonucleotide microarrays.
Herold, Keith E; Rasooly, Avraham
2003-12-01
Oligonucleotide microarrays have demonstrated potential for the analysis of gene expression, genotyping, and mutational analysis. Our work focuses primarily on the detection and identification of bacteria based on known short sequences of DNA. Oligo Design, the software described here, automates several design aspects that enable the improved selection of oligonucleotides for use with microarrays for these applications. Two major features of the program are: (i) a tiling algorithm for the design of short overlapping temperature-matched oligonucleotides of variable length, which are useful for the analysis of single nucleotide polymorphisms and (ii) a set of tools for the analysis of multiple alignments of gene families and related short DNA sequences, which allow for the identification of conserved DNA sequences for PCR primer selection and variable DNA sequences for the selection of unique probes for identification. Note that the program does not address the full genome perspective but, instead, is focused on the genetic analysis of short segments of DNA. The program is Internet-enabled and includes a built-in browser and the automated ability to download sequences from GenBank by specifying the GI number. The program also includes several utilities, including audio recital of a DNA sequence (useful for verifying sequences against a written document), a random sequence generator that provides insight into the relationship between melting temperature and GC content, and a PCR calculator.
ERIC Educational Resources Information Center
Stoilescu, Dorian; Egodawatte, Gunawardena
2010-01-01
Research shows that female and male students in undergraduate computer science programs view computer culture differently. Female students are interested more in the use of computers than in doing programming, whereas male students see computer science mainly as a programming activity. The overall purpose of our research was not to find new…
NASA Technical Reports Server (NTRS)
Spring, Samuel D.
2006-01-01
This report documents the results of an experimental program conducted on two advanced metallic alloy systems (Rene' 142 directionally solidified alloy (DS) and Rene' N6 single crystal alloy) and the characterization of two distinct internal state variable inelastic constitutive models. The long term objective of the study was to develop a computational life prediction methodology that can integrate the obtained material data. A specialized test matrix for characterizing advanced unified viscoplastic models was specified and conducted. This matrix included strain controlled tensile tests with intermittent relaxtion test with 2 hr hold times, constant stress creep tests, stepped creep tests, mixed creep and plasticity tests, cyclic temperature creep tests and tests in which temperature overloads were present to simulate actual operation conditions for validation of the models. The selected internal state variable models where shown to be capable of representing the material behavior exhibited by the experimental results; however the program ended prior to final validation of the models.
Finite temperature effects on the X-ray absorption spectra of energy related materials
NASA Astrophysics Data System (ADS)
Pascal, Tod; Prendergast, David
2014-03-01
We elucidate the role of room-temperature-induced instantaneous structural distortions in the Li K-edge X-ray absorption spectra (XAS) of crystalline LiF, Li2SO4, Li2O, Li3N and Li2CO3 using high resolution X-ray Raman spectroscopy (XRS) measurements and first-principles density functional theory calculations within the eXcited electron and Core Hole (XCH) approach. Based on thermodynamic sampling via ab-initio molecular dynamics (MD) simulations, we find calculated XAS in much better agreement with experiment than those computed using the rigid crystal structure alone. We show that local instantaneous distortion of the atomic lattice perturbs the symmetry of the Li 1 s core-excited-state electronic structure, broadening spectral line-shapes and, in some cases, producing additional spectral features. This work was conducted within the Batteries for Advanced Transportation Technologies (BATT) Program, supported by the U.S. Department of Energy Vehicle Technologies Program under Contract No. DE-AC02-05CH11231.
The study of heat penetration of kimchi soup on stationary and rotary retorts.
Cho, Won-Il; Park, Eun-Ji; Cheon, Hee Soon; Chung, Myong-Soo
2015-03-01
The aim of this study was to determine the heat-penetration characteristics using stationary and rotary retorts to manufacture Kimchi soup. Both heat-penetration tests and computer simulation based on mathematical modeling were performed. The sterility was measured at five different positions in the pouch. The results revealed only a small deviation of F 0 among the different positions, and the rate of heat transfer was increased by rotation of the retort. The thermal processing of retort-pouched Kimchi soup was analyzed mathematically using a finite-element model, and optimum models for predicting the time course of the temperature and F 0 were developed. The mathematical models could accurately predict the actual heat penetration of retort-pouched Kimchi soup. The average deviation of the temperature between the experimental and mathematical predicted model was 2.46% (R(2)=0.975). The changes in nodal temperature and F 0 caused by microbial inactivation in the finite-element model predicted using the NISA program were very similar to that of the experimental data of for the retorted Kimchi soup during sterilization with rotary retorts. The correlation coefficient between the simulation using the NISA program and the experimental data was very high, at 99%.
The Study of Heat Penetration of Kimchi Soup on Stationary and Rotary Retorts
Cho, Won-Il; Park, Eun-Ji; Cheon, Hee Soon; Chung, Myong-Soo
2015-01-01
The aim of this study was to determine the heat-penetration characteristics using stationary and rotary retorts to manufacture Kimchi soup. Both heat-penetration tests and computer simulation based on mathematical modeling were performed. The sterility was measured at five different positions in the pouch. The results revealed only a small deviation of F0 among the different positions, and the rate of heat transfer was increased by rotation of the retort. The thermal processing of retort-pouched Kimchi soup was analyzed mathematically using a finite-element model, and optimum models for predicting the time course of the temperature and F0 were developed. The mathematical models could accurately predict the actual heat penetration of retort-pouched Kimchi soup. The average deviation of the temperature between the experimental and mathematical predicted model was 2.46% (R2=0.975). The changes in nodal temperature and F0 caused by microbial inactivation in the finite-element model predicted using the NISA program were very similar to that of the experimental data of for the retorted Kimchi soup during sterilization with rotary retorts. The correlation coefficient between the simulation using the NISA program and the experimental data was very high, at 99%. PMID:25866751
HyPEP FY06 Report: Models and Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
DOE report
2006-09-01
The Department of Energy envisions the next generation very high-temperature gas-cooled reactor (VHTR) as a single-purpose or dual-purpose facility that produces hydrogen and electricity. The Ministry of Science and Technology (MOST) of the Republic of Korea also selected VHTR for the Nuclear Hydrogen Development and Demonstration (NHDD) Project. This research project aims at developing a user-friendly program for evaluating and optimizing cycle efficiencies of producing hydrogen and electricity in a Very-High-Temperature Reactor (VHTR). Systems for producing electricity and hydrogen are complex and the calculations associated with optimizing these systems are intensive, involving a large number of operating parameter variations andmore » many different system configurations. This research project will produce the HyPEP computer model, which is specifically designed to be an easy-to-use and fast running tool for evaluating nuclear hydrogen and electricity production facilities. The model accommodates flexible system layouts and its cost models will enable HyPEP to be well-suited for system optimization. Specific activities of this research are designed to develop the HyPEP model into a working tool, including (a) identifying major systems and components for modeling, (b) establishing system operating parameters and calculation scope, (c) establishing the overall calculation scheme, (d) developing component models, (e) developing cost and optimization models, and (f) verifying and validating the program. Once the HyPEP model is fully developed and validated, it will be used to execute calculations on candidate system configurations. FY-06 report includes a description of reference designs, methods used in this study, models and computational strategies developed for the first year effort. Results from computer codes such as HYSYS and GASS/PASS-H used by Idaho National Laboratory and Argonne National Laboratory, respectively will be benchmarked with HyPEP results in the following years.« less
Development of a Tool to Recreate the Mars Science Laboratory Aerothermal Environment
NASA Technical Reports Server (NTRS)
Beerman, A. F.; Lewis, M. J.; Santos, J. A.; White, T. R.
2010-01-01
The Mars Science Laboratory will enter the Martian atmosphere in 2012 with multiple char depth sensors and in-depth thermocouples in its heatshield. The aerothermal environment experienced by MSL may be computationally recreated using the data from the sensors and a material response program, such as the Fully Implicit Ablation and Thermal (FIAT) response program, through the matching of the char depth and thermocouple predictions of the material response program to the sensor data. A tool, CHanging Inputs from the Environment of FIAT (CHIEF), was developed to iteratively change different environmental conditions such that FIAT predictions match within certain criteria applied to an external data set. The computational environment is changed by iterating on the enthalpy, pressure, or heat transfer coefficient at certain times in the trajectory. CHIEF was initially compared against arc-jet test data from the development of the MSL heatshield and then against simulated sensor data derived from design trajectories for MSL. CHIEF was able to match char depth and in-depth thermocouple temperatures within the bounds placed upon it for these cases. Further refinement of CHIEF to compare multiple time points and assign convergence criteria may improve accuracy.
Interactive Educational Tool for Turbofan and Afterburning Turbojet Engines
NASA Technical Reports Server (NTRS)
Benson, Thomas J.
1997-01-01
A workstation-based, interactive educational computer program has been developed at the NASA Lewis Research Center to aid in the teaching and understanding of turbine engine design and analysis. This tool has recently been extended to model the performance of two-spool turbofans and afterburning turbojets. The program solves for the flow conditions through the engine by using classical one-dimensional thermodynamic analysis found in various propulsion textbooks. Either an approximately thermally perfect or calorically perfect gas can be used in the thermodynamic analysis. Students can vary the design conditions through a graphical user interface; engine performance is calculated immediately. A variety of graphical formats are used to present results, including numerical results, moving bar charts, and student-generated temperature versus entropy (Ts), pressure versus specific volume (pv), and engine performance plots. The package includes user-controlled printed output, restart capability, online help screens, and a browser that displays teacher-prepared lessons in turbomachinery. The program runs on a variety of workstations or a personal computer using the UNIX operating system and X-based graphics. It is being tested at several universities in the midwestern United States; the source and executables are available free from the author.
Personal Computer Transport Analysis Program
NASA Technical Reports Server (NTRS)
DiStefano, Frank, III; Wobick, Craig; Chapman, Kirt; McCloud, Peter
2012-01-01
The Personal Computer Transport Analysis Program (PCTAP) is C++ software used for analysis of thermal fluid systems. The program predicts thermal fluid system and component transients. The output consists of temperatures, flow rates, pressures, delta pressures, tank quantities, and gas quantities in the air, along with air scrubbing component performance. PCTAP s solution process assumes that the tubes in the system are well insulated so that only the heat transfer between fluid and tube wall and between adjacent tubes is modeled. The system described in the model file is broken down into its individual components; i.e., tubes, cold plates, heat exchangers, etc. A solution vector is built from the components and a flow is then simulated with fluid being transferred from one component to the next. The solution vector of components in the model file is built at the initiation of the run. This solution vector is simply a list of components in the order of their inlet dependency on other components. The component parameters are updated in the order in which they appear in the list at every time step. Once the solution vectors have been determined, PCTAP cycles through the components in the solution vector, executing their outlet function for each time-step increment.
NASA Technical Reports Server (NTRS)
Majumdar, A. K.; Hedayat, A.
2015-01-01
This paper describes the experience of the authors in using the Generalized Fluid System Simulation Program (GFSSP) in teaching Design of Thermal Systems class at University of Alabama in Huntsville. GFSSP is a finite volume based thermo-fluid system network analysis code, developed at NASA/Marshall Space Flight Center, and is extensively used in NASA, Department of Defense, and aerospace industries for propulsion system design, analysis, and performance evaluation. The educational version of GFSSP is freely available to all US higher education institutions. The main purpose of the paper is to illustrate the utilization of this user-friendly code for the thermal systems design and fluid engineering courses and to encourage the instructors to utilize the code for the class assignments as well as senior design projects. The need for a generalized computer program for thermofluid analysis in a flow network has been felt for a long time in aerospace industries. Designers of thermofluid systems often need to know pressures, temperatures, flow rates, concentrations, and heat transfer rates at different parts of a flow circuit for steady state or transient conditions. Such applications occur in propulsion systems for tank pressurization, internal flow analysis of rocket engine turbopumps, chilldown of cryogenic tanks and transfer lines, and many other applications of gas-liquid systems involving fluid transients and conjugate heat and mass transfer. Computer resource requirements to perform time-dependent, three-dimensional Navier-Stokes computational fluid dynamic (CFD) analysis of such systems are prohibitive and therefore are not practical. Available commercial codes are generally suitable for steady state, single-phase incompressible flow. Because of the proprietary nature of such codes, it is not possible to extend their capability to satisfy the above-mentioned needs. Therefore, the Generalized Fluid System Simulation Program (GFSSP1) has been developed at NASA Marshall Space Flight Center (MSFC) as a general fluid flow system solver capable of handling phase changes, compressibility, mixture thermodynamics and transient operations. It also includes the capability to model external body forces such as gravity and centrifugal effects in a complex flow network. The objectives of GFSSP development are: a) to develop a robust and efficient numerical algorithm to solve a system of equations describing a flow network containing phase changes, mixing, and rotation; and b) to implement the algorithm in a structured, easy-to-use computer program. The analysis of thermofluid dynamics in a complex network requires resolution of the system into fluid nodes and branches, and solid nodes and conductors as shown in Figure 1. Figure 1 shows a schematic and GFSSP flow circuit of a counter-flow heat exchanger. Hot nitrogen gas is flowing through a pipe, colder nitrogen is flowing counter to the hot stream in the annulus pipe and heat transfer occurs through metal tubes. The problem considered is to calculate flowrates and temperature distributions in both streams. GFSSP has a unique data structure, as shown in Figure 2, that allows constructing all possible arrangements of a flow network with no limit on the number of elements. The elements of a flow network are boundary nodes where pressure and temperature are specified, internal nodes where pressure and temperature are calculated, and branches where flowrates are calculated. For conjugate heat transfer problems, there are three additional elements: solid node, ambient node, and conductor. The solid and fluid nodes are connected with solid-fluid conductors. GFSSP solves the conservation equations of mass and energy, and equation of state in internal nodes to calculate pressure, temperature and resident mass. The momentum conservation equation is solved in branches to calculate flowrate. It also solves for energy conservation equations to calculate temperatures of solid nodes. The equations are coupled and nonlinear; therefore, they are solved by an iterative numerical scheme. GFSSP employs a unique numerical scheme known as simultaneous adjustment with successive substitution (SASS), which is a combination of Newton-Raphson and successive substitution methods. The mass and momentum conservation equations and the equation of state are solved by the Newton-Raphson method while the conservation of energy and species are solved by the successive substitution method. GFSSP is linked with two thermodynamic property programs, GASP2 and WASP3 and GASPAK4, that provide thermodynamic and thermophysical properties of selected fluids. Both programs cover a range of pressure and temperature that allows fluid properties to be evaluated for liquid, liquid-vapor (saturation), and vapor region. GASP and WASP provide properties of 12 fluids. GASPAK includes a library of 36 fluids. GFSSP has three major parts. The first part is the graphical user interface (GUI), visual thermofluid analyzer of systems and components (VTASC). VTASC allows users to create a flow circuit by a 'point and click' paradigm. It creates the GFSSP input file after the completion of the model building process. GFSSP's GUI provides the users a platform to build and run their models. It also allows post-processing of results. The network flow circuit is first built using three basic elements: boundary node, internal node, and branch.
41 CFR 105-64.110 - When may GSA establish computer matching programs?
Code of Federal Regulations, 2013 CFR
2013-07-01
... computer matching programs? 105-64.110 Section 105-64.110 Public Contracts and Property Management Federal... GSA establish computer matching programs? (a) System managers will establish computer matching... direction of the GSA Data Integrity Board that will be established when and if computer matching programs...
41 CFR 105-64.110 - When may GSA establish computer matching programs?
Code of Federal Regulations, 2012 CFR
2012-01-01
... computer matching programs? 105-64.110 Section 105-64.110 Public Contracts and Property Management Federal... GSA establish computer matching programs? (a) System managers will establish computer matching... direction of the GSA Data Integrity Board that will be established when and if computer matching programs...
41 CFR 105-64.110 - When may GSA establish computer matching programs?
Code of Federal Regulations, 2014 CFR
2014-01-01
... computer matching programs? 105-64.110 Section 105-64.110 Public Contracts and Property Management Federal... GSA establish computer matching programs? (a) System managers will establish computer matching... direction of the GSA Data Integrity Board that will be established when and if computer matching programs...
41 CFR 105-64.110 - When may GSA establish computer matching programs?
Code of Federal Regulations, 2010 CFR
2010-07-01
... computer matching programs? 105-64.110 Section 105-64.110 Public Contracts and Property Management Federal... GSA establish computer matching programs? (a) System managers will establish computer matching... direction of the GSA Data Integrity Board that will be established when and if computer matching programs...
41 CFR 105-64.110 - When may GSA establish computer matching programs?
Code of Federal Regulations, 2011 CFR
2011-01-01
... computer matching programs? 105-64.110 Section 105-64.110 Public Contracts and Property Management Federal... GSA establish computer matching programs? (a) System managers will establish computer matching... direction of the GSA Data Integrity Board that will be established when and if computer matching programs...
NASA Technical Reports Server (NTRS)
Liew, K. H.; Urip, E.; Yang, S. L.; Siow, Y. K.; Marek, C. J.
2005-01-01
Today s modern aircraft is based on air-breathing jet propulsion systems, which use moving fluids as substances to transform energy carried by the fluids into power. Throughout aero-vehicle evolution, improvements have been made to the engine efficiency and pollutants reduction. The major advantages associated with the addition of ITB are an increase in thermal efficiency and reduction in NOx emission. Lower temperature peak in the main combustor results in lower thermal NOx emission and lower amount of cooling air required. This study focuses on a parametric (on-design) cycle analysis of a dual-spool, separate-flow turbofan engine with an Interstage Turbine Burner (ITB). The ITB considered in this paper is a relatively new concept in modern jet engine propulsion. The ITB serves as a secondary combustor and is located between the high- and the low-pressure turbine, i.e., the transition duct. The objective of this study is to use design parameters, such as flight Mach number, compressor pressure ratio, fan pressure ratio, fan bypass ratio, and high-pressure turbine inlet temperature to obtain engine performance parameters, such as specific thrust and thrust specific fuel consumption. Results of this study can provide guidance in identifying the performance characteristics of various engine components, which can then be used to develop, analyze, integrate, and optimize the system performance of turbofan engines with an ITB. Visual Basic program, Microsoft Excel macrocode, and Microsoft Excel neuron code are used to facilitate Microsoft Excel software to plot engine performance versus engine design parameters. This program computes and plots the data sequentially without forcing users to open other types of plotting programs. A user s manual on how to use the program is also included in this report. Furthermore, this stand-alone program is written in conjunction with an off-design program which is an extension of this study. The computed result of a selected design-point engine will be exported to an engine reference data file that is required in off-design calculation.
Testing and Analytical Modeling for Purging Process of a Cryogenic Line
NASA Technical Reports Server (NTRS)
Hedayat, A.; Mazurkivich, P. V.; Nelson, M. A.; Majumdar, A. K.
2015-01-01
To gain confidence in developing analytical models of the purging process for the cryogenic main propulsion systems of upper stage, two test series were conducted. The test article, a 3.35 m long with the diameter of 20 cm incline line, was filled with liquid or gaseous hydrogen and then purged with gaseous helium (GHe). Total of 10 tests were conducted. The influences of GHe flow rates and initial temperatures were evaluated. The Generalized Fluid System Simulation Program (GFSSP), an in-house general-purpose fluid system analyzer computer program, was utilized to model and simulate selective tests. The test procedures, modeling descriptions, and the results are presented in the following sections.
Testing and Analytical Modeling for Purging Process of a Cryogenic Line
NASA Technical Reports Server (NTRS)
Hedayat, A.; Mazurkivich, P. V.; Nelson, M. A.; Majumdar, A. K.
2013-01-01
To gain confidence in developing analytical models of the purging process for the cryogenic main propulsion systems of upper stage, two test series were conducted. The test article, a 3.35 m long with the diameter of 20 cm incline line, was filled with liquid or gaseous hydrogen and then purged with gaseous helium (GHe). Total of 10 tests were conducted. The influences of GHe flow rates and initial temperatures were evaluated. The Generalized Fluid System Simulation Program (GFSSP), an in-house general-purpose fluid system analyzer computer program, was utilized to model and simulate selective tests. The test procedures, modeling descriptions, and the results are presented in the following sections.
Operation Program for the Spatially Phase-Shifted Digital Speckle Pattern Interferometer - SPS-DSPI
NASA Technical Reports Server (NTRS)
Blake, Peter N.; Jones, Joycelyn T.; Hostetter, Carl F.; Greenfield, Perry; Miller, Todd
2010-01-01
SPS-DSPI software has been revised so that Goddard optical engineers can operate the instrument, instead of data programmers. The user interface has been improved to view the data collected by the SPS-DSPI, with a real-time mode and a play-back mode. The SPS-DSPI has been developed by NASA/GSFC to measure the temperature distortions of the primary-mirror backplane structure for the James Webb Space Telescope. It requires a team of computer specialists to run successfully, because, at the time of this reporting, it just finished the prototype stage. This software improvement will transition the instrument to become available for use by many programs that measure distortion
On-line data analysis and monitoring for H1 drift chambers
NASA Astrophysics Data System (ADS)
Düllmann, Dirk
1992-05-01
The on-line monitoring, slow control and calibration of the H1 central jet chamber uses a VME multiprocessor system to perform the analysis and a connected Macintosh computer as graphical interface to the operator on shift. Task of this system are: - analysis of event data including on-line track search, - on-line calibration from normal events and testpulse events, - control of the high voltage and monitoring of settings and currents, - monitoring of temperature, pressure and mixture of the chambergas. A program package is described which controls the dataflow between data aquisition, differnt VME CPUs and Macintosh. It allows to run off-line style programs for the different tasks.
Effect of Microgravity on Material Undergoing Melting and Freezing: the TES Experiment
NASA Technical Reports Server (NTRS)
Namkoong, David; Jacqmin, David; Szaniszlo, Andrew
1995-01-01
This experiment is the first to melt and freeze a high temperature thermal energy storage (TES) material under an extended duration of microgravity. It is one of a series to validate an analytical computer program that predicts void behavior of substances undergoing phase change under microgravity. Two flight experiments were launched in STS-62. The first, TES-1, containing lithium fluoride in an annular volume, performed flawlessly in the 22 hours of its operation. Results are reported in this paper. A software failure in TES-2 caused its shutdown after 4 seconds. A computer program, TESSIM, for thermal energy storage simulation is being developed to analyze the phenomena occurring within the TES containment vessel. The first order effects, particularly the surface tension forces, have been incorporated into TESSIM. TESSIM validation is based on two types of results. First is the temperature history of various points of the containment structure, and second, upon return from flight, the distribution of the TES material within the containment vessel following the last freeze cycle. The temperature data over the four cycles showed a repetition of results over the third and fourth cycles. This result is a confirmation that any initial conditions prior to the first cycle had been damped out by the third cycle. The TESSIM simulation showed a close comparison with the flight data. The solidified TES material distribution within the containment vessel was obtained by a tomography imaging process. The frozen material was concentrated toward the colder end of the annular volume. The TESSIM prediction showed the same pattern. With the general agreement of TESSIM and the data, a computerized visual representation can be shown which accurately shows the movement and behavior of the void during the entire freezing and melting cycles.
Effect of microgravity on material undergoing melting and freezing: The TES Experiment
NASA Astrophysics Data System (ADS)
Namkoong, David; Jacqmin, David; Szaniszlo, Andrew
1995-01-01
This experiment is the first to melt and freeze a high temperature thermal energy storage (TES) material under an extended duration of microgravity. It is one of a series to validate an analytical computer program that predicts void behavior of substances undergoing phase change under microgravity. Two flight experiments were launched in STS-62. The first, TES-1, containing lithium fluoride in an annular volume, performed flawlessly in the 22 hours of its operation. Results are reported in this paper. A software failure in TES-2 caused its shutdown after 4 seconds. A computer program, TESSIM, for thermal energy storage simulation is being developed to analyze the phenomena occurring within the TES containment vessel. The first order effects, particularly the surface tension forces, have been incorporated into TESSIM. TESSIM validation is based on two types of results. First is the temperature history of various points of the containment structure, and second, upon return from flight, the distribution of the TES material within the containment vessel following the last freeze cycle. The temperature data over the four cycles showed a repetition of results over the third and fourth cycles. This result is a confirmation that any initial conditions prior to the first cycle had been damped out by the third cycle. The TESSIM simulation showed a close comparison with the flight data. The solidified TES material distribution within the containment vessel was obtained by a tomography imaging process. The frozen material was concentrated toward the colder end of the annular volume. The TESSIM prediction showed the same pattern. With the general agreement of TESSIM and the data, a computerized visual representation can be shown which accurately shows the movement and behavior of the void during the entire freezing and melting cycles.
NASA Technical Reports Server (NTRS)
Thompson, R. A.
1994-01-01
Accurate numerical prediction of high-temperature, chemically reacting flowfields requires a knowledge of the physical properties and reaction kinetics for the species involved in the reacting gas mixture. Assuming an 11-species air model at temperatures below 30,000 degrees Kelvin, SPECIES (Computer Codes for the Evaluation of Thermodynamic Properties, Transport Properties, and Equilibrium Constants of an 11-Species Air Model) computes values for the species thermodynamic and transport properties, diffusion coefficients and collision cross sections for any combination of the eleven species, and reaction rates for the twenty reactions normally occurring. The species represented in the model are diatomic nitrogen, diatomic oxygen, atomic nitrogen, atomic oxygen, nitric oxide, ionized nitric oxide, the free electron, ionized atomic nitrogen, ionized atomic oxygen, ionized diatomic nitrogen, and ionized diatomic oxygen. Sixteen subroutines compute the following properties for both a single species, interaction pair, or reaction, and an array of all species, pairs, or reactions: species specific heat and static enthalpy, species viscosity, species frozen thermal conductivity, diffusion coefficient, collision cross section (OMEGA 1,1), collision cross section (OMEGA 2,2), collision cross section ratio, and equilibrium constant. The program uses least squares polynomial curve-fits of the most accurate data believed available to provide the requested values more quickly than is possible with table look-up methods. The subroutines for computing transport coefficients and collision cross sections use additional code to correct for any electron pressure when working with ionic species. SPECIES was developed on a SUN 3/280 computer running the SunOS 3.5 operating system. It is written in standard FORTRAN 77 for use on any machine, and requires roughly 92K memory. The standard distribution medium for SPECIES is a 5.25 inch 360K MS-DOS format diskette. The contents of the diskettes are compressed using the PKWARE archiving tools. The utility to unarchive the files, PKUNZIP.EXE, is included. This program was last updated in 1991. SUN and SunOS are registered trademarks of Sun Microsystems, Inc.
NASA Astrophysics Data System (ADS)
Ceres, M.; Heselton, L. R., III
1981-11-01
This manual describes the computer programs for the FIREFINDER Digital Topographic Data Verification-Library-Dubbing System (FFDTDVLDS), and will assist in the maintenance of these programs. The manual contains detailed flow diagrams and associated descriptions for each computer program routine and subroutine. Complete computer program listings are also included. This information should be used when changes are made in the computer programs. The operating system has been designed to minimize operator intervention.
Ultra-low-energy analog straintronics using multiferroic composites
NASA Astrophysics Data System (ADS)
Roy, Kuntal
2014-03-01
Multiferroic devices, i.e., a magnetostrictive nanomagnet strain-coupled with a piezoelectric layer, are promising as binary switches for ultra-low-energy digital computing in beyond Moore's law era [Roy, K. Appl. Phys. Lett. 103, 173110 (2013), Roy, K. et al. Appl. Phys. Lett. 99, 063108 (2011), Phys. Rev. B 83, 224412 (2011), Scientific Reports (Nature Publishing Group) 3, 3038 (2013), J. Appl. Phys. 112, 023914 (2012)]. We show here that such multiferroic devices, apart from performing digital computation, can be also utilized for analog computing purposes, e.g., voltage amplification, filter etc. The analog computing capability is conceived by considering that magnetization's mean orientation shifts gradually although nanomagnet's potential minima changes abruptly. Using tunneling magnetoresistance (TMR) measurement, a continuous output voltage while varying the input voltage can be produced. Stochastic Landau-Lifshitz-Gilbert (LLG) equation in the presence of room-temperature (300 K) thermal fluctuations is solved to demonstrate the analog computing capability of such multiferroic devices. This work was supported in part by FAME, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA.
Computational and Physical Analysis of Catalytic Compounds
NASA Astrophysics Data System (ADS)
Wu, Richard; Sohn, Jung Jae; Kyung, Richard
2015-03-01
Nanoparticles exhibit unique physical and chemical properties depending on their geometrical properties. For this reason, synthesis of nanoparticles with controlled shape and size is important to use their unique properties. Catalyst supports are usually made of high-surface-area porous oxides or carbon nanomaterials. These support materials stabilize metal catalysts against sintering at high reaction temperatures. Many studies have demonstrated large enhancements of catalytic behavior due to the role of the oxide-metal interface. In this paper, the catalyzing ability of supported nano metal oxides, such as silicon oxide and titanium oxide compounds as catalysts have been analyzed using computational chemistry method. Computational programs such as Gamess and Chemcraft has been used in an effort to compute the efficiencies of catalytic compounds, and bonding energy changes during the optimization convergence. The result illustrates how the metal oxides stabilize and the steps that it takes. The graph of the energy computation step(N) versus energy(kcal/mol) curve shows that the energy of the titania converges faster at the 7th iteration calculation, whereas the silica converges at the 9th iteration calculation.
Archer, Charles J; Blocksome, Michael A; Peters, Amanda E; Ratterman, Joseph D; Smith, Brian E
2012-10-16
Methods, apparatus, and products are disclosed for scheduling applications for execution on a plurality of compute nodes of a parallel computer to manage temperature of the plurality of compute nodes during execution that include: identifying one or more applications for execution on the plurality of compute nodes; creating a plurality of physically discontiguous node partitions in dependence upon temperature characteristics for the compute nodes and a physical topology for the compute nodes, each discontiguous node partition specifying a collection of physically adjacent compute nodes; and assigning, for each application, that application to one or more of the discontiguous node partitions for execution on the compute nodes specified by the assigned discontiguous node partitions.
NASA Astrophysics Data System (ADS)
Puligheddu, Marcello; Gygi, Francois; Galli, Giulia
The prediction of the thermal properties of solids and liquids is central to numerous problems in condensed matter physics and materials science, including the study of thermal management of opto-electronic and energy conversion devices. We present a method to compute the thermal conductivity of solids by performing ab initio molecular dynamics at non equilibrium conditions. Our formulation is based on a generalization of the approach to equilibrium technique, using sinusoidal temperature gradients, and it only requires calculations of first principles trajectories and atomic forces. We discuss results and computational requirements for a representative, simple oxide, MgO, and compare with experiments and data obtained with classical potentials. This work was supported by MICCoM as part of the Computational Materials Science Program funded by the U.S. Department of Energy (DOE), Office of Science , Basic Energy Sciences (BES), Materials Sciences and Engineering Division under Grant DOE/BES 5J-30.
Computational strategies in the dynamic simulation of constrained flexible MBS
NASA Technical Reports Server (NTRS)
Amirouche, F. M. L.; Xie, M.
1993-01-01
This research focuses on the computational dynamics of flexible constrained multibody systems. At first a recursive mapping formulation of the kinematical expressions in a minimum dimension as well as the matrix representation of the equations of motion are presented. The method employs Kane's equation, FEM, and concepts of continuum mechanics. The generalized active forces are extended to include the effects of high temperature conditions, such as creep, thermal stress, and elastic-plastic deformation. The time variant constraint relations for rolling/contact conditions between two flexible bodies are also studied. The constraints for validation of MBS simulation of gear meshing contact using a modified Timoshenko beam theory are also presented. The last part deals with minimization of vibration/deformation of the elastic beam in multibody systems making use of time variant boundary conditions. The above methodologies and computational procedures developed are being implemented in a program called DYAMUS.