Sample records for computer science degree

  1. Business Administration and Computer Science Degrees: Earnings, Job Security, and Job Satisfaction

    ERIC Educational Resources Information Center

    Mehta, Kamlesh; Uhlig, Ronald

    2017-01-01

    This paper examines the potential of business administration vs. computer science degrees in terms of earnings, job security, and job satisfaction. The paper focuses on earnings potential five years and ten years after the completion of business administration and computer science degrees. Moreover, the paper presents the income changes with…

  2. African-American males in computer science---Examining the pipeline for clogs

    NASA Astrophysics Data System (ADS)

    Stone, Daryl Bryant

    The literature on African-American males (AAM) begins with a statement to the effect that "Today young Black men are more likely to be killed or sent to prison than to graduate from college." Why are the numbers of African-American male college graduates decreasing? Why are those enrolled in college not majoring in the science, technology, engineering, and mathematics (STEM) disciplines? This research explored why African-American males are not filling the well-recognized industry need for Computer Scientist/Technologists by choosing college tracks to these careers. The literature on STEM disciplines focuses largely on women in STEM, as opposed to minorities, and within minorities, there is a noticeable research gap in addressing the needs and opportunities available to African-American males. The primary goal of this study was therefore to examine the computer science "pipeline" from the African-American male perspective. The method included a "Computer Science Degree Self-Efficacy Scale" be distributed to five groups of African-American male students, to include: (1) fourth graders, (2) eighth graders, (3) eleventh graders, (4) underclass undergraduate computer science majors, and (5) upperclass undergraduate computer science majors. In addition to a 30-question self-efficacy test, subjects from each group were asked to participate in a group discussion about "African-American males in computer science." The audio record of each group meeting provides qualitative data for the study. The hypotheses include the following: (1) There is no significant difference in "Computer Science Degree" self-efficacy between fourth and eighth graders. (2) There is no significant difference in "Computer Science Degree" self-efficacy between eighth and eleventh graders. (3) There is no significant difference in "Computer Science Degree" self-efficacy between eleventh graders and lower-level computer science majors. (4) There is no significant difference in "Computer Science Degree" self-efficacy between lower-level computer science majors and upper-level computer science majors. (5) There is no significant difference in "Computer Science Degree" self-efficacy between each of the five groups of students. Finally, the researcher selected African-American male students attending six primary schools, including the predominately African-American elementary, middle and high school that the researcher attended during his own academic career. Additionally, a racially mixed elementary, middle and high school was selected from the same county in Maryland. Bowie State University provided both the underclass and upperclass computer science majors surveyed in this study. Of the five hypotheses, the sample provided enough evidence to support the claim that there are significant differences in the "Computer Science Degree" self-efficacy between each of the five groups of students. ANOVA analysis by question and total self-efficacy scores provided more results of statistical significance. Additionally, factor analysis and review of the qualitative data provide more insightful results. Overall, the data suggest 'a clog' may exist in the middle school level and students attending racially mixed schools were more confident in their computer, math and science skills. African-American males admit to spending lots of time on social networking websites and emailing, but are 'dis-aware' of the skills and knowledge needed to study in the computing disciplines. The majority of the subjects knew little, if any, AAMs in the 'computing discipline pipeline'. The collegian African-American males, in this study, agree that computer programming is a difficult area and serves as a 'major clog in the pipeline'.

  3. A Study: Exploring the Feasibility of Developing a Computer Science Online Degree Program at Tuskegee University

    ERIC Educational Resources Information Center

    Buckley, Ingrid A.; Narang, Hira

    2014-01-01

    This paper investigates the feasibility of developing an online degree for a computer science and information technology degree programs. Our motivation is to increase access to quality education with the aim of stimulating growth, attracting new students, and retaining our current student body. A survey was conducted of CS/IT online degrees which…

  4. Alliance for Computational Science Collaboration HBCU Partnership at Fisk University. Final Report 2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, W. E.

    2004-08-16

    Computational Science plays a big role in research and development in mathematics, science, engineering and biomedical disciplines. The Alliance for Computational Science Collaboration (ACSC) has the goal of training African-American and other minority scientists in the computational science field for eventual employment with the Department of Energy (DOE). The involvements of Historically Black Colleges and Universities (HBCU) in the Alliance provide avenues for producing future DOE African-American scientists. Fisk University has been participating in this program through grants from the DOE. The DOE grant supported computational science activities at Fisk University. The research areas included energy related projects, distributed computing,more » visualization of scientific systems and biomedical computing. Students' involvement in computational science research included undergraduate summer research at Oak Ridge National Lab, on-campus research involving the participation of undergraduates, participation of undergraduate and faculty members in workshops, and mentoring of students. These activities enhanced research and education in computational science, thereby adding to Fisk University's spectrum of research and educational capabilities. Among the successes of the computational science activities are the acceptance of three undergraduate students to graduate schools with full scholarships beginning fall 2002 (one for master degree program and two for Doctoral degree program).« less

  5. Assessment of Examinations in Computer Science Doctoral Education

    ERIC Educational Resources Information Center

    Straub, Jeremy

    2014-01-01

    This article surveys the examination requirements for attaining degree candidate (candidacy) status in computer science doctoral programs at all of the computer science doctoral granting institutions in the United States. It presents a framework for program examination requirement categorization, and categorizes these programs by the type or types…

  6. Interactive Synthesis of Code Level Security Rules

    DTIC Science & Technology

    2017-04-01

    Interactive Synthesis of Code-Level Security Rules A Thesis Presented by Leo St. Amour to The Department of Computer Science in partial fulfillment...of the requirements for the degree of Master of Science in Computer Science Northeastern University Boston, Massachusetts April 2017 DISTRIBUTION...Abstract of the Thesis Interactive Synthesis of Code-Level Security Rules by Leo St. Amour Master of Science in Computer Science Northeastern University

  7. Who Will Do Science? Trends, and Their Causes in Minority and Female Representation among Holders of Advanced Degrees in Science and Mathematics. A Special Report.

    ERIC Educational Resources Information Center

    Berryman, Sue E.

    This paper describes trends in and causes of minority and female representation among holders of advanced science and math degrees. The minority groups studied are Blacks, Hispanic Americans, American Indians, and Asian Americans, all of whom are compared with Whites. The degrees looked at include those in math, the computer sciences, physical…

  8. Graduate Training at the Interface of Computational and Experimental Biology: An Outcome Report from a Partnership of Volunteers between a University and a National Laboratory

    PubMed Central

    von Arnim, Albrecht G.; Missra, Anamika

    2017-01-01

    Leading voices in the biological sciences have called for a transformation in graduate education leading to the PhD degree. One area commonly singled out for growth and innovation is cross-training in computational science. In 1998, the University of Tennessee (UT) founded an intercollegiate graduate program called the UT-ORNL Graduate School of Genome Science and Technology in partnership with the nearby Oak Ridge National Laboratory. Here, we report outcome data that attest to the program’s effectiveness in graduating computationally enabled biologists for diverse careers. Among 77 PhD graduates since 2003, the majority came with traditional degrees in the biological sciences, yet two-thirds moved into computational or hybrid (computational–experimental) positions. We describe the curriculum of the program and how it has changed. We also summarize how the program seeks to establish cohesion between computational and experimental biologists. This type of program can respond flexibly and dynamically to unmet training needs. In conclusion, this study from a flagship, state-supported university may serve as a reference point for creating a stable, degree-granting, interdepartmental graduate program in computational biology and allied areas. PMID:29167223

  9. An Assessment of Computer Science Degree Programs in Virginia. A Report to the Council of Higher Education and Virginia's State-Supported Institutions of Higher Education.

    ERIC Educational Resources Information Center

    Virginia State Council of Higher Education, Richmond.

    This report presents the results of a review of all significant instructional efforts in the computer science discipline in Virginia institutions of higher education, with emphasis on those whose instructional activities constitute complete degree programs. The report is based largely on information provided by the institutions in self-studies. A…

  10. Examining Key Factors that Contribute to African Americans' Pursuit of Computing Science Degrees: Implications for Cultivating Career Choice and Aspiration

    ERIC Educational Resources Information Center

    Charleston, LaVar Jovan

    2010-01-01

    As a result of decreasing degree attainment in science, technology, engineering, and mathematics (STEM) fields, the United States is undergoing a shortage in the STEM workforce that it has not encountered since the mid-1950s (ACT, 2006; Gilbert & Jackson, 2007). Moreover, as computer usage cuts across diverse aspects of modern culture, the…

  11. Studying Computer Science in a Multidisciplinary Degree Programme: Freshman Students' Orientation, Knowledge, and Background

    ERIC Educational Resources Information Center

    Kautz, Karlheinz; Kofoed, Uffe

    2004-01-01

    Teachers at universities are facing an increasing disparity in students' prior IT knowledge and, at the same time, experience a growing disengagement of the students with regard to involvement in study activities. As computer science teachers in a joint programme in computer science and business administration, we made a number of similar…

  12. AIR FORCE CYBER MISSION ASSURANCE SOURCES OF MISSION UNCERTAINTY

    DTIC Science & Technology

    2017-04-06

    Army’s Command and General Staff College at Fort Leavenworth, Kansas. Lt Col Herwick holds a bachelor of science degree in Computer Science from the...United States Air Force Academy and a master’s degree in Computer Resources and Information Management from Webster University. iii Abstract...vocabulary and while it is common to use conversationally, that usage is not always based on specific definitions. As a result, it finds common usage in

  13. Scaling Bulk Data Analysis with Mapreduce

    DTIC Science & Technology

    2017-09-01

    Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN COMPUTER SCIENCE from the NAVAL POSTGRADUATE SCHOOL September...2017 Approved by: Michael McCarrin Thesis Co-Advisor Marcus S. Stefanou Thesis Co-Advisor Peter J. Denning Chair, Department of Computer Science iii...98 xiii THIS PAGE INTENTIONALLY LEFT BLANK xiv List of Acronyms and Abbreviations CART Computer Analysis and Response Team DELV Distributed Environment

  14. Graduate Training at the Interface of Computational and Experimental Biology: An Outcome Report from a Partnership of Volunteers between a University and a National Laboratory.

    PubMed

    von Arnim, Albrecht G; Missra, Anamika

    2017-01-01

    Leading voices in the biological sciences have called for a transformation in graduate education leading to the PhD degree. One area commonly singled out for growth and innovation is cross-training in computational science. In 1998, the University of Tennessee (UT) founded an intercollegiate graduate program called the UT-ORNL Graduate School of Genome Science and Technology in partnership with the nearby Oak Ridge National Laboratory. Here, we report outcome data that attest to the program's effectiveness in graduating computationally enabled biologists for diverse careers. Among 77 PhD graduates since 2003, the majority came with traditional degrees in the biological sciences, yet two-thirds moved into computational or hybrid (computational-experimental) positions. We describe the curriculum of the program and how it has changed. We also summarize how the program seeks to establish cohesion between computational and experimental biologists. This type of program can respond flexibly and dynamically to unmet training needs. In conclusion, this study from a flagship, state-supported university may serve as a reference point for creating a stable, degree-granting, interdepartmental graduate program in computational biology and allied areas. © 2017 A. G. von Arnim and A. Missra. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  15. Stuck in the Shallow End: Education, Race, and Computing. Updated Edition

    ERIC Educational Resources Information Center

    Margolis, Jane

    2017-01-01

    The number of African Americans and Latino/as receiving undergraduate and advanced degrees in computer science is disproportionately low. And relatively few African American and Latino/a high school students receive the kind of institutional encouragement, educational opportunities, and preparation needed for them to choose computer science as a…

  16. Spiral and Project-Based Learning with Peer Assessment in a Computer Science Project Management Course

    ERIC Educational Resources Information Center

    Jaime, Arturo; Blanco, José Miguel; Domínguez, César; Sánchez, Ana; Heras, Jónathan; Usandizaga, Imanol

    2016-01-01

    Different learning methods such as project-based learning, spiral learning and peer assessment have been implemented in science disciplines with different outcomes. This paper presents a proposal for a project management course in the context of a computer science degree. Our proposal combines three well-known methods: project-based learning,…

  17. Community Colleges and Cybersecurity Education.

    ERIC Educational Resources Information Center

    Teles, Elizabeth J.; Hovis, R. Corby

    2002-01-01

    Describes recent federal legislation (H.R. 3394) that charges the National Science Foundation with offering more grants to colleges and universities for degree programs in computer and network security, and to establish trainee programs for graduate students who pursue doctoral degrees in computer and network security. Discusses aspects of…

  18. Women in Technology: College Experiences That Are Correlated with Long-Term Career Success

    ERIC Educational Resources Information Center

    Moreno, Melissa Gearhart

    2017-01-01

    Women are underrepresented in technology careers because they pursue technology degrees less frequently and leave technology careers at greater numbers than do men. By analyzing a representative dataset of college graduates with degrees in computer science, computer engineering, and management information systems, this study identified…

  19. Building an Effective Interdisciplinary Professional Master's Degree

    ERIC Educational Resources Information Center

    Kline, Douglas M.; Vetter, Ron; Barnhill, Karen

    2013-01-01

    This article describes the creation of the Master of Science of Computer Science and Information Systems at University of North Carolina Wilmington. The creation of this graduate degree was funded by the Sloan Foundation as a new type of program, the Professional Master's. The program was designed with significant industry input, and is truly…

  20. Why are some STEM fields more gender balanced than others?

    PubMed

    Cheryan, Sapna; Ziegler, Sianna A; Montoya, Amanda K; Jiang, Lily

    2017-01-01

    Women obtain more than half of U.S. undergraduate degrees in biology, chemistry, and mathematics, yet they earn less than 20% of computer science, engineering, and physics undergraduate degrees (National Science Foundation, 2014a). Gender differences in interest in computer science, engineering, and physics appear even before college. Why are women represented in some science, technology, engineering, and mathematics (STEM) fields more than others? We conduct a critical review of the most commonly cited factors explaining gender disparities in STEM participation and investigate whether these factors explain differential gender participation across STEM fields. Math performance and discrimination influence who enters STEM, but there is little evidence to date that these factors explain why women's underrepresentation is relatively worse in some STEM fields. We introduce a model with three overarching factors to explain the larger gender gaps in participation in computer science, engineering, and physics than in biology, chemistry, and mathematics: (a) masculine cultures that signal a lower sense of belonging to women than men, (b) a lack of sufficient early experience with computer science, engineering, and physics, and (c) gender gaps in self-efficacy. Efforts to increase women's participation in computer science, engineering, and physics may benefit from changing masculine cultures and providing students with early experiences that signal equally to both girls and boys that they belong and can succeed in these fields. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  1. Recruiting Women into Computer Science and Information Systems

    ERIC Educational Resources Information Center

    Broad, Steven; McGee, Meredith

    2014-01-01

    While many technical disciplines have reached or are moving toward gender parity in the number of bachelors degrees in those fields, the percentage of women graduating in computer science remains stubbornly low. Many recent efforts to address this situation have focused on retention of undergraduate majors or graduate students, recruiting…

  2. Applying IRSS Theory: The Clark Atlanta University Exemplar

    ERIC Educational Resources Information Center

    Payton, Fay Cobb; Suarez-Brown, Tiki L.; Smith Lamar, Courtney

    2012-01-01

    The percentage of underrepresented minorities (African-American, Hispanic, Native Americans) that have obtained graduate level degrees within computing disciplines (computer science, computer information systems, computer engineering, and information technology) is dismal at best. Despite the fact that academia, the computing workforce,…

  3. In Pursuit of a Computing Degree: Cultural Implications for American Indians

    ERIC Educational Resources Information Center

    Kodaseet, Glenda G.; Varma, Roli

    2012-01-01

    While a number of challenges contribute to the American Indian population's disconnect from information technology (IT), the most glaring is the low number of American Indian students pursuing computer science (CS) studies--a degree essential to IT's entry into and diffusion across communities. Yet, research is scant on factors that contribute to…

  4. A Mathematical Sciences Program at an Upper-Division Campus.

    ERIC Educational Resources Information Center

    Swetz, Frank J.

    1978-01-01

    The conception, objectives, contents, and limitations of a degree program in the mathematical sciences at Pennsylvania State University, Capitol Campus, are discussed. Career goals that may be pursued include: managerial, science, education, actuarial, and computer. (MP)

  5. Evaluating Modern Defenses Against Control Flow Hijacking

    DTIC Science & Technology

    2015-09-01

    unsound and could introduce false negatives (opening up another possible set of attacks). CFG Construction using DSA We next evaluate the precision of CFG...Evaluating Modern Defenses Against Control Flow Hijacking by Ulziibayar Otgonbaatar Submitted to the Department of Electrical Engineering and...Computer Science in partial fulfillment of the requirements for the degree of Master of Science in Computer Science and Engineering at the MASSACHUSETTS

  6. Academic computer science and gender: A naturalistic study investigating the causes of attrition

    NASA Astrophysics Data System (ADS)

    Declue, Timothy Hall

    Far fewer women than men take computer science classes in high school, enroll in computer science programs in college, or complete advanced degrees in computer science. The computer science pipeline begins to shrink for women even before entering college, but it is at the college level that the "brain drain" is the most evident numerically, especially in the first class taken by most computer science majors called "Computer Science 1" or CS-I. The result, for both academia and industry, is a pronounced technological gender disparity in academic and industrial computer science. The study revealed the existence of several factors influencing success in CS-I. First, and most clearly, the effect of attribution processes seemed to be quite strong. These processes tend to work against success for females and in favor of success for males. Likewise, evidence was discovered which strengthens theories related to prior experience and the perception that computer science has a culture which is hostile to females. Two unanticipated themes related to the motivation and persistence of successful computer science majors. The findings did not support the belief that females have greater logistical problems in computer science than males, or that females tend to have a different programming style than males which adversely affects the females' ability to succeed in CS-I.

  7. Educational technology usage and needs of science education in Turkey

    NASA Astrophysics Data System (ADS)

    Turkmen, Hakan

    The purpose of this study was to examine Turkish science teachers and pre-service teachers' attitudes towards the use of technological tools in their science lessons in Turkish colleges of education in the assist of Turkish government projects, and how science education teachers, who have earned a science education degree from western countries, influence the use technology in Turkish higher education. The research method employed were quantitative data sources, including a technology background questionnaire, which is cross-sectional design, and qualitative historical research data sources. The study analyzed the data under a cross-section or between subjects' method with four factors: Turkish science teachers; Turkish pre-service science teachers; Turkish science teachers who have earned science degrees from western universities; and Turkish graduate students whose majors are in science education in U.S. It was anticipated that an analysis of variance (ANOVA) would be used to analyze data and "level 0.05" was established. Major findings of the study include: (1) Science education faculty members who have earned science education degrees from western countries have a positive effect on the use of technological tools in science courses in Turkish higher education. (2) Science education faculty members who have earned science degrees from Turkish universities have a limited knowledge on the use of technological tools in science courses in Turkish higher education. (3) Science education graduate students who have been studying in science education in western countries have positive attitudes for the use of technological tools in science courses have potential to impact Turkish higher education, when they return to Turkey. (4) Most Turkish pre-service teachers know very little about effective use of technology in education. Gender differences are apparent and females consistently indicated that they knew less and hence may not integrate technological tools in their teaching. (5) Turkish pre-service or new teachers are exposed to teacher educators that do not sufficiently model the appropriate use of computers for instructional purposes, either in courses or in field experiences. The technology that is used focuses more on older and simpler instructional applications of computer technology (e.g., computer assisted instruction, word processing) and older educational technologies (e.g., overhead projectors, calculators, slides). (6) Faculty rank in general, made little vis-a-vis technology use in knowledge. Integrating technology into teaching and learning in Turkish education is a slow, time-consuming process that requires substantial levels of support and encouragement and requires patience and understanding. In light of efforts by the Turkish government, Turkish faculty members who earned their degrees from western universities, and graduate students earning degrees from American universities will be leaders on the long road to change.

  8. Closing the race and gender gaps in computer science education

    NASA Astrophysics Data System (ADS)

    Robinson, John Henry

    Life in a technological society brings new paradigms and pressures to bear on education. These pressures are magnified for underrepresented students and must be addressed if they are to play a vital part in society. Educational pipelines need to be established to provide at risk students with the means and opportunity to succeed in science, technology, engineering, and mathematics (STEM) majors. STEM educational pipelines are programs consisting of components that seek to facilitate students' completion of a college degree by providing access to higher education, intervention, mentoring, support infrastructure, and programs that encourage academic success. Successes in the STEM professions mean that more educators, scientist, engineers, and researchers will be available to add diversity to the professions and to provide role models for future generations. The issues that the educational pipelines must address are improving at risk groups' perceptions and awareness of the math, science, and engineering professions. Additionally, the educational pipelines must provide intervention in math preparation, overcome gender and race socialization, and provide mentors and counseling to help students achieve better self perceptions and provide positive role models. This study was designed to explorer the underrepresentation of minorities and women in the computer science major at Rowan University through a multilayered action research methodology. The purpose of this research study was to define and understand the needs of underrepresented students in computer science, to examine current policies and enrollment data for Rowan University, to develop a historical profile of the Computer Science program from the standpoint of ethnicity and gender enrollment to ascertain trends in students' choice of computer science as a major, and an attempt to determine if raising awareness about computer science for incoming freshmen, and providing an alternate route into the computer science major will entice more women and minorities to pursue a degree in computer science at Rowan University. Finally, this study examined my espoused leadership theories and my leadership theories in use through reflective practices as I progressed through the cycles of this project. The outcomes of this study indicated a large downward trend in women enrollment in computer science and a relatively flat trend in minority enrollment. The enrollment data at Rowan University was found to follow a nationwide trend for underrepresented students' enrollment in STEM majors. The study also indicated that students' mental models are based upon their race and gender socialization and their understanding of the world and society. The mental models were shown to play a large role in the students' choice of major. Finally, a computer science pipeline was designed and piloted as part of this study in an attempt to entice more students into the major and facilitate their success. Additionally, the mental models of the participants were challenged through interactions to make them aware of what possibilities are available with a degree in computer science. The entire study was wrapped in my leadership, which was practiced and studied over the course of this work.

  9. SPILC: An expert student advisor

    NASA Technical Reports Server (NTRS)

    Read, D. R.

    1990-01-01

    The Lamar University Computer Science Department serves about 350 undergraduate C.S. majors, and 70 graduate majors. B.S. degrees are offered in Computer Science and Computer and Information Science, and an M.S. degree is offered in Computer Science. In addition, the Computer Science Department plays a strong service role, offering approximately sixteen service course sections per long semester. The department has eight regular full-time faculty members, including the Department Chairman and the Undergraduate Advisor, and from three to seven part-time faculty members. Due to the small number of regular faculty members and the resulting very heavy teaching loads, undergraduate advising has become a difficult problem for the department. There is a one week early registration period and a three-day regular registration period once each semester. The Undergraduate Advisor's regular teaching load of two classes, 6 - 8 semester hours, per semester, together with the large number of majors and small number of regular faculty, cause long queues and short tempers during these advising periods. The situation is aggravated by the fact that entering freshmen are rarely accompanied by adequate documentation containing the facts necessary for proper counselling. There has been no good method of obtaining necessary facts and documenting both the information provided by the student and the resulting advice offered by the counsellors.

  10. Experiences of Computer Science Curriculum Design: A Phenomenological Study

    ERIC Educational Resources Information Center

    Sloan, Arthur; Bowe, Brian

    2015-01-01

    This paper presents a qualitative study of 12 computer science lecturers' experiences of curriculum design of several degree programmes during a time of transition from year-long to semesterised courses, due to institutional policy change. The background to the study is outlined, as are the reasons for choosing the research methodology. The main…

  11. Computer Science Majors: Sex Role Orientation, Academic Achievement, and Social Cognitive Factors

    ERIC Educational Resources Information Center

    Brown, Chris; Garavalia, Linda S.; Fritts, Mary Lou Hines; Olson, Elizabeth A.

    2006-01-01

    This study examined the sex role orientations endorsed by 188 male and female students majoring in computer science, a male-dominated college degree program. The relations among sex role orientation and academic achievement and social cognitive factors influential in career decision-making self-efficacy were explored. Findings revealed that…

  12. A Learning Research Informed Design and Evaluation of a Web-Enhanced Object Oriented Programming Seminar

    ERIC Educational Resources Information Center

    Georgantaki, Stavroula C.; Retalis, Symeon D.

    2007-01-01

    "Object-Oriented Programming" subject is included in the ACM Curriculum Guidelines for Undergraduate and Graduate Degree Programs in Computer Science as well as in Curriculum for K-12 Computer Science. In a few research studies learning problems and difficulties have been recorded, and therefore, specific pedagogical guidelines and…

  13. Teaching Mixed-Mode: A Case Study in Remote Delivery of Computer Science in Africa

    ERIC Educational Resources Information Center

    Howell, Sheila; Harris, Michael; Wilkinson, Simon; Zuluaga, Catherine; Voutier, Paul

    2004-01-01

    In February 2003, RMIT University in Melbourne, Australia, commenced delivery of a Computer Science diploma and degree programme using mixed mode delivery to 250 university students in sub-Saharan Africa, through a World Bank funded project designed for the African Virtual University (AVU). The project is a unique experience made possible by…

  14. Understanding Student Retention in Computer Science Education: The Role of Environment, Gains, Barriers and Usefulness

    ERIC Educational Resources Information Center

    Giannakos, Michail N.; Pappas, Ilias O.; Jaccheri, Letizia; Sampson, Demetrios G.

    2017-01-01

    Researchers have been working to understand the high dropout rates in computer science (CS) education. Despite the great demand for CS professionals, little is known about what influences individuals to complete their CS studies. We identify gains of studying CS, the (learning) environment, degree's usefulness, and barriers as important predictors…

  15. Demographics of undergraduates studying games in the United States: a comparison of computer science students and the general population

    NASA Astrophysics Data System (ADS)

    McGill, Monica M.; Settle, Amber; Decker, Adrienne

    2013-06-01

    Our study gathered data to serve as a benchmark of demographics of undergraduate students in game degree programs. Due to the high number of programs that are cross-disciplinary with computer science programs or that are housed in computer science departments, the data is presented in comparison to data from computing students (where available) and the US population. Participants included students studying games at four nationally recognized postsecondary institutions. The results of the study indicate that there is no significant difference between the ratio of men to women studying in computing programs or in game degree programs, with women being severely underrepresented in both. Women, blacks, Hispanics/Latinos, and heterosexuals are underrepresented compared to the US population. Those with moderate and conservative political views and with religious affiliations are underrepresented in the game student population. Participants agree that workforce diversity is important and that their programs are adequately diverse, but only one-half of the participants indicated that diversity has been discussed in any of their courses.

  16. Sex, Class, and Physical Science Educational Attainment: Portions due to Achievement Versus Recruitment

    NASA Astrophysics Data System (ADS)

    Simon, Richard M.; Farkas, George

    Nationally representative data from the National Education Longitudinal Study are used to investigate why males (rather than females) and children of parents with advanced degrees (rather than those from less-educated parents) are more highly represented among physical science bachelor's degrees and graduate students. Parental education is measured by three categories: neither parent has a bachelor's degree, at least one parent has a bachelor's degree, or at least one parent has a degree beyond the bachelor's. Physical science is defined as students majoring in physics, engineering, mathematics, or computer science. The effects of mathematics achievement and effects not accounted for by mathematics achievement (what the authors call "recruitment" effects) are isolated for parental education categories and for sex, allowing inequality in physical science degree attainment to be decomposed into portions due to achievement and portions due to recruitment. Additionally, the results from logistic regressions predicting the attainment of a bachelor's degree in physical science as well as the pursuit of a graduate degree in physical science are presented. It is found that for parental education categories, the gaps in physical science educational attainment are nearly entirely accounted for by differences in mathematics achievement, suggesting that if achievement could be equalized, physical science educational attainment differences among parental education categories would disappear. However, the sex gap in physical science educational attainment operates almost entirely independent of achievement effects, suggesting that if the mathematics achievement distributions of males and females were identical, the sex gap in physical science educational attainment would be unchanged from what it is today.

  17. Adaptation of Magnetic Bubble Memory in a Standard Microcomputer Environment.

    DTIC Science & Technology

    1981-12-01

    UNCLASSIFIED 60WNvCLASVICY,@,U OV Two$ 06SCV%’ Req. 80"e. (continuation of abstract) 9both the civilian and military computing environments due to the...degree of MASTER OF SCIENCE IN COMPUTER SCIENCE from the NAVAL POSTGRADUATE SCHOOL December 1981 Authors: ,4i Approved by...vital and unigue role in both the civilian and military computing environments due to the combination of characteristics exhibited by magnetic domain

  18. Longitudinal effects of college type and selectivity on degrees conferred upon undergraduate females in physical science, life science, math and computer science, and social science

    NASA Astrophysics Data System (ADS)

    Stevens, Stacy Mckimm

    There has been much research to suggest that a single-sex college experience for female undergraduate students can increase self-confidence and leadership ability during the college years and beyond. The results of previous studies also suggest that these students achieve in the workforce and enter graduate school at higher rates than their female peers graduating from coeducational institutions. However, some researchers have questioned these findings, suggesting that it is the selectivity level of the colleges rather than the comprised gender of the students that causes these differences. The purpose of this study was to justify the continuation of single-sex educational opportunities for females at the post-secondary level by examining the effects that college selectivity, college type, and time have on the rate of undergraduate females pursuing majors in non-traditional fields. The study examined the percentage of physical science, life science, math and computer science, and social science degrees conferred upon females graduating from women's colleges from 1985-2001, as compared to those at comparable coeducational colleges. Sampling for this study consisted of 42 liberal arts women's (n = 21) and coeducational (n = 21) colleges. Variables included the type of college, the selectivity level of the college, and the effect of time on the percentage of female graduates. Doubly multivariate repeated measures analysis of variance testing revealed significant main effects for college selectivity on social science graduates, and time on both life science and math and computer science graduates. Significant interaction was also found between the college type and time on social science graduates, as well as the college type, selectivity level, and time on math and computer science graduates. Implications of the results and suggestions for further research are discussed.

  19. Teaching Web Application Development: A Case Study in a Computer Science Course

    ERIC Educational Resources Information Center

    Del Fabro, Marcos Didonet; de Alimeda, Eduardo Cunha; Sluzarski, Fabiano

    2012-01-01

    Teaching web development in Computer Science undergraduate courses is a difficult task. Often, there is a gap between the students' experiences and the reality in the industry. As a consequence, the students are not always well-prepared once they get the degree. This gap is due to several reasons, such as the complexity of the assignments, the…

  20. Women Planning to Major in Computer Science: Who Are They and What Makes Them Unique?

    ERIC Educational Resources Information Center

    Lehman, Kathleen J.; Sax, Linda J.; Zimmerman, Hilary B.

    2017-01-01

    Despite the current growing popularity of the computer science (CS) major, women remain sorely underrepresented in the field, continuing to earn only 18% of bachelor's degrees. Understanding women's low rates of participation in CS is important given that the demand for individuals with CS training has grown sharply in recent years. Attracting and…

  1. A Determination of the Minimum Frequency Requirements for a PATRIOT Battalion UHF Communication System.

    DTIC Science & Technology

    1982-12-01

    a computer program which simulates the PATRIOT battalion UH1F communication system. *.-.The detailed description of how the model performs this...the Degree of Master of Science .AI . j tf ti on-i by 5 , .... . :it Lard/or Gregory H. Swanson DLt Captain USA Graduate Computer Science I...5 Model Application..... . . . .. .. . . .. .. . . 6 Thesnis Overviev ....... o.000000000000000000000. .6 Previous Studies

  2. Veteran Unemployment of Transitioning Marines

    DTIC Science & Technology

    2013-11-01

    military experience. C2 Marines have high AFQT scores and work with information systems; they may pursue, for example, computer science degrees in college...i.e., they made a rational decision based on lack of information). DOD actuarial officials use the low MGIB benefit use rate to maintain program...such as computer science , to make their military skills transferable, while others may not. Marines in services, repair/maintenance, operator, and

  3. Determination of Absolute Zero Using a Computer-Based Laboratory

    ERIC Educational Resources Information Center

    Amrani, D.

    2007-01-01

    We present a simple computer-based laboratory experiment for evaluating absolute zero in degrees Celsius, which can be performed in college and undergraduate physical sciences laboratory courses. With a computer, absolute zero apparatus can help demonstrators or students to observe the relationship between temperature and pressure and use…

  4. 1+1=3: Cross-Discipline Collaboration Really Adds Up!

    ERIC Educational Resources Information Center

    Breen, Mindy

    2006-01-01

    The Department of Engineering & Design at Eastern Washington University (EWU) offers a bachelor of arts degree in visual communication design and bachelor of science degrees in mechanical engineering technology, manufacturing technology, construction technology, design technology, electrical engineering, computer engineering technology and…

  5. Analysis of a Proposed Material Handling System Using a Computer Simulation Model.

    DTIC Science & Technology

    1981-06-01

    the proposed MMHS were identified to assist the managers of the system in implementation and future planning. * 4 UNCLASSIFIED SRCUllTY CLASSIPICATION...the Degree of Master of Science in Logistics Management By Darwin D. Harp, BSIE GS-11. June 1981 Approved for public release; distribution unlimited...partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN LOGISTICS MANAGEMENT DATE: 17 June 1981 (( COMMITECARN ii 67- B I

  6. The Computing Alliance of Hispanic-Serving Institutions: Supporting Hispanics at Critical Transition Points

    ERIC Educational Resources Information Center

    Gates, Ann Quiroz; Hug, Sarah; Thiry, Heather; Alo, Richard; Beheshti, Mohsen; Fernandez, John; Rodriguez, Nestor; Adjouadi, Malek

    2011-01-01

    Hispanics have the highest growth rates among all groups in the U.S., yet they remain considerably underrepresented in computing careers and in the numbers who obtain advanced degrees. Hispanics constituted about 7% of undergraduate computer science and computer engineering graduates and 1% of doctoral graduates in 2007-2008. The small number of…

  7. Effective STEM Programs for Adolescent Girls: Three Approaches and Many Lessons Learned

    ERIC Educational Resources Information Center

    Mosatche, Harriet S.; Matloff-Nieves, Susan; Kekelis, Linda; Lawner, Elizabeth K.

    2013-01-01

    While women's participation in math and physical science continues to lag to some degree behind that of men, the disparity is much greater in engineering and computer science. Though boys may outperform girls at the highest levels on math and science standardized tests, girls tend to get better course grades in math and science than boys do.…

  8. A Clinical Evaluation Of Cone Beam Computed Tomography

    DTIC Science & Technology

    2016-06-01

    A CLINICAL EVALUATION OF CONE BEAM COMPUTED TOMOGRAPHY by Bryan James Behm, D.D.S. Lieutenant, Dental Corps United States Navy A thesis...submitted to the Faculty of the Endodontic Graduate Program Naval Postgraduate Dental School Uniformed Services University of the Health Sciences in...partial fulfillment of the requirements for the degree of Master of Science in Oral Biology June 2016 Naval Postgraduate Dental School Unif01med

  9. Community College Men and Women: A Test of Three Widely Held Beliefs about Who Pursues Computer Science

    ERIC Educational Resources Information Center

    Denner, Jill; Werner, Linda; O'Connor, Lisa; Glassman, Jill

    2014-01-01

    Efforts to increase the number of women who pursue and complete advanced degrees in computer and information sciences (CIS) have been limited, in part, by a lack of research on pathways into and out of community college CIS classes. This longitudinal study tests three widely held beliefs about how to increase the number of CIS majors at 4-year…

  10. Graduate Training at the Interface of Computational and Experimental Biology: An Outcome Report from a Partnership of Volunteers between a University and a National Laboratory

    ERIC Educational Resources Information Center

    von Arnim, Albrecht G.; Missra, Anamika

    2017-01-01

    Leading voices in the biological sciences have called for a transformation in graduate education leading to the PhD degree. One area commonly singled out for growth and innovation is cross-training in computational science. In 1998, the University of Tennessee (UT) founded an intercollegiate graduate program called the UT-ORNL Graduate School of…

  11. Intelligent Monitoring of Rocket Test Systems

    NASA Technical Reports Server (NTRS)

    Duran, Esteban; Rocha, Stephanie; Figueroa, Fernando

    2016-01-01

    Stephanie Rocha is an undergraduate student pursuing a degree in Mechanical Engineering. Esteban Duran is pursuing a degree in Computer Science. Our mentor is Fernando Figueroa. Our project involved developing Intelligent Health Monitoring at the High Pressure Gas Facility (HPGF) utilizing the software GensymG2.

  12. Enhancing Student Writing and Computer Programming with LATEX and MATLAB in Multivariable Calculus

    ERIC Educational Resources Information Center

    Sullivan, Eric; Melvin, Timothy

    2016-01-01

    Written communication and computer programming are foundational components of an undergraduate degree in the mathematical sciences. All lower-division mathematics courses at our institution are paired with computer-based writing, coding, and problem-solving activities. In multivariable calculus we utilize MATLAB and LATEX to have students explore…

  13. Restructuring Graduate Engineering Education: The M.Eng. Program at Cornell.

    ERIC Educational Resources Information Center

    Cady, K. Bingham; And Others

    1988-01-01

    Discusses the restructuring of the graduate program to accommodate emerging fields in engineering. Notes half of the graduate degrees Cornell grants each year are M.Eng. degrees. Offers 12 specialties: aerospace, agriculture, chemical, civil, electrical, mechanical and nuclear engineering; computer science, engineering physics; geological…

  14. The Computer-Job Salary Picture.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1987-01-01

    Discusses starting salaries for graduates with various degrees in computer science and electrical engineering. Summarizes the results of a recent study by the Institute of Electrical and Electronics Engineers (IEEE) which provides salary estimates for graduates in different specialties and in different geographical locations. (TW)

  15. Women of Science, Technology, Engineering, and Mathematics: A Qualitative Exploration into Factors of Success

    ERIC Educational Resources Information Center

    Olund, Jeanine K.

    2012-01-01

    Although the number of women entering science, technology, engineering, and mathematics (STEM) disciplines has increased in recent years, overall there are still more men than women completing four-year degrees in these fields, especially in physics, engineering, and computer science. At higher levels of education and within the workplace, the…

  16. Tracking Women and Minorities as They Attain Degrees in Computing and Related Fields

    ERIC Educational Resources Information Center

    Sorkin, Sylvia; Gore, Mary Elizabeth; Mento, Barbara; Stanton, Jon

    2010-01-01

    Two Maryland colleges (one a four-year liberal arts college for women, and one a public community college) have worked to increase the number of graduates, especially women and other under-represented groups, in their computer science, computer information systems, engineering, and mathematics programs over a four-year period. In August 2004, they…

  17. Experiences Using an Open Source Software Library to Teach Computer Vision Subjects

    ERIC Educational Resources Information Center

    Cazorla, Miguel; Viejo, Diego

    2015-01-01

    Machine vision is an important subject in computer science and engineering degrees. For laboratory experimentation, it is desirable to have a complete and easy-to-use tool. In this work we present a Java library, oriented to teaching computer vision. We have designed and built the library from the scratch with emphasis on readability and…

  18. The Characteristics and Experiences of Successful Undergraduate Latina Students Who Persist in Engineering

    ERIC Educational Resources Information Center

    Robinson, Carrie

    2012-01-01

    Females and underrepresented ethnic minorities earn a small percentage of engineering and computer science bachelor's degrees awarded in the United States, earn an even smaller proportion of master's and doctoral degrees, and are underrepresented in the engineering workforce (Engineering Workforce Commission, [2006], as cited in National Science…

  19. Engineering Education through the Latina Lens

    ERIC Educational Resources Information Center

    Villa, Elsa Q.; Wandermurem, Luciene; Hampton, Elaine M.; Esquinca, Alberto

    2016-01-01

    Less than 20% of undergraduates earning a degree in engineering are women, and even more alarming is minority women earn a mere 3.1% of those degrees. This paper reports on a qualitative study examining Latinas' identity development toward and in undergraduate engineering and computer science studies using a sociocultural theory of learning. Three…

  20. Analysing Student Performance Using Sparse Data of Core Bachelor Courses

    ERIC Educational Resources Information Center

    Saarela, Mirka; Karkkainen, Tommi

    2015-01-01

    Curricula for Computer Science (CS) degrees are characterized by the strong occupational orientation of the discipline. In the BSc degree structure, with clearly separate CS core studies, the learning skills for these and other required courses may vary a lot, which is shown in students' overall performance. To analyze this situation, we apply…

  1. CIS and Information Technology Certifications: Education Program Trends and Implications

    ERIC Educational Resources Information Center

    Andersson, David; Reimers, Karl

    2009-01-01

    The fields of Computer Information Systems (CIS) and Information Technology (IT) are experiencing rapid change. In 2003, an analysis of IT degree programs and those of competing disciplines at 10 post-secondary institutions concluded that an information technology program is perceived differently from information systems and computer science. In…

  2. Optimal Cost Avoidance Investment and Pricing Strategies for Performance-Based Post-Production Service Contracts

    DTIC Science & Technology

    2011-04-30

    a BS degree in Mathematics and an MS degree in Statistics and Financial and Actuarial Mathematics from Kiev National Taras Shevchenko University...degrees from Rutgers University in Industrial Engineering (PhD and MS) and Statistics (MS) and from Universidad Nacional Autonoma de Mexico in Actuarial ...Science. His research efforts focus on developing mathematical models for the analysis, computation, and optimization of system performance with

  3. Increasing Access for Economically Disadvantaged Students: The NSF/CSEM & S-STEM Programs at Louisiana State University

    ERIC Educational Resources Information Center

    Wilson, Zakiya S.; Iyengar, Sitharama S.; Pang, Su-Seng; Warner, Isiah M.; Luces, Candace A.

    2012-01-01

    Increasing college degree attainment for students from disadvantaged backgrounds is a prominent component of numerous state and federal legislation focused on higher education. In 1999, the National Science Foundation (NSF) instituted the "Computer Science, Engineering, and Mathematics Scholarships" (CSEMS) program; this initiative was designed to…

  4. Preparing Your Students for Careers in Science and Engineering: How Is Your State Doing?

    NASA Astrophysics Data System (ADS)

    White, Susan; Cottle, Paul

    2011-10-01

    With one glance at the starting salaries of new bachelor's degree recipients in Fig. 1, a teacher or parent can see the career fields to which their high school students interested in the best economic opportunities might aspire: several engineering fields (chemical, electrical, mechanical), computer science, physics, and mathematics.

  5. Preparing Your Students for Careers in Science and Engineering: How Is Your State Doing?

    ERIC Educational Resources Information Center

    White, Susan; Cottle, Paul

    2011-01-01

    With one glance at the starting salaries of new bachelor's degree recipients in Fig. 1, a teacher or parent can see the career fields to which their high school students interested in the best economic opportunities might aspire: several engineering fields (chemical, electrical, mechanical), computer science, physics, and mathematics.

  6. New & Special Grad School Programs.

    ERIC Educational Resources Information Center

    Ross, Steven S.

    1988-01-01

    Discusses some special Master of Science in engineering (MS) programs including manufacturing and quality control, safety engineering, transportation engineering, and computer related areas. Gives a table showing MS degrees, institutions, and faculty. (YP)

  7. On the Performance of the Underwater Acoustic Sensor Networks

    DTIC Science & Technology

    2015-05-01

    ABOVE ADDRESS. The University of the District of Columbia Computer Science and Informati Briana Lowe Wellman Washington, DC 20008 -1122 ABSTRACT On the...built. I would like to acknowledge the Electrical and Computer Engineering Department which has been helpful throughout my master degree, especially Dr...transmitted message, and, therefore, take advantage of the BER variation, which depends on the underwater acoustic channel environment. Several computer

  8. Design and Development of a Web-Based Interactive Software Tool for Teaching Operating Systems

    ERIC Educational Resources Information Center

    Garmpis, Aristogiannis

    2011-01-01

    Operating Systems (OS) is an important and mandatory discipline in many Computer Science, Information Systems and Computer Engineering curricula. Some of its topics require a careful and detailed explanation from the instructor as they often involve theoretical concepts and somewhat complex mechanisms, demanding a certain degree of abstraction…

  9. A Project-Based Learning Setting to Human-Computer Interaction for Teenagers

    ERIC Educational Resources Information Center

    Geyer, Cornelia; Geisler, Stefan

    2012-01-01

    Knowledge of fundamentals of human-computer interaction resp. usability engineering is getting more and more important in technical domains. However this interdisciplinary field of work and corresponding degree programs are not broadly known. Therefore at the Hochschule Ruhr West, University of Applied Sciences, a program was developed to give…

  10. Wide-angle display developments by computer graphics

    NASA Technical Reports Server (NTRS)

    Fetter, William A.

    1989-01-01

    Computer graphics can now expand its new subset, wide-angle projection, to be as significant a generic capability as computer graphics itself. Some prior work in computer graphics is presented which leads to an attractive further subset of wide-angle projection, called hemispheric projection, to be a major communication media. Hemispheric film systems have long been present and such computer graphics systems are in use in simulators. This is the leading edge of capabilities which should ultimately be as ubiquitous as CRTs (cathode-ray tubes). These assertions are not from degrees in science or only from a degree in graphic design, but in a history of computer graphics innovations, laying groundwork by demonstration. The author believes that it is timely to look at several development strategies, since hemispheric projection is now at a point comparable to the early stages of computer graphics, requiring similar patterns of development again.

  11. Approaching gender parity: Women in computer science at Afghanistan's Kabul University

    NASA Astrophysics Data System (ADS)

    Plane, Jandelyn

    This study explores the representation of women in computer science at the tertiary level through data collected about undergraduate computer science education at Kabul University in Afghanistan. Previous studies have theorized reasons for underrepresentation of women in computer science, and while many of these reasons are indeed present in Afghanistan, they appear to hinder advancement to degree to a lesser extent. Women comprise at least 36% of each graduating class from KU's Computer Science Department; however, in 2007 women were 25% of the university population. In the US, women comprise over 50% of university populations while only graduating on average 25% women in undergraduate computer science programs. Representation of women in computer science in the US is 50% below the university rate, but at KU, it is 50% above the university rate. This mixed methods study of KU was conducted in the following three stages: setting up focus groups with women computer science students, distributing surveys to all students in the CS department, and conducting a series of 22 individual interviews with fourth year CS students. The analysis of the data collected and its comparison to literature on university/department retention in Science, Technology, Engineering and Mathematics gender representation and on women's education in underdeveloped Islamic countries illuminates KU's uncharacteristic representation of women in its Computer Science Department. The retention of women in STEM through the education pipeline has several characteristics in Afghanistan that differ from countries often studied in available literature. Few Afghan students have computers in their home and few have training beyond secretarial applications before considering studying CS at university. University students in Afghanistan are selected based on placement exams and are then assigned to an area of study, and financially supported throughout their academic career, resulting in a low attrition rate from the program. Gender and STEM literature identifies parental encouragement, stereotypes and employment perceptions as influential characteristics. Afghan women in computer science received significant parental encouragement even from parents with no computer background. They do not seem to be influenced by any negative "geek" stereotypes, but they do perceive limitations when considering employment after graduation.

  12. Preparing systems engineering and computing science students in disciplined methods, quantitative, and advanced statistical techniques to improve process performance

    NASA Astrophysics Data System (ADS)

    McCray, Wilmon Wil L., Jr.

    The research was prompted by a need to conduct a study that assesses process improvement, quality management and analytical techniques taught to students in U.S. colleges and universities undergraduate and graduate systems engineering and the computing science discipline (e.g., software engineering, computer science, and information technology) degree programs during their academic training that can be applied to quantitatively manage processes for performance. Everyone involved in executing repeatable processes in the software and systems development lifecycle processes needs to become familiar with the concepts of quantitative management, statistical thinking, process improvement methods and how they relate to process-performance. Organizations are starting to embrace the de facto Software Engineering Institute (SEI) Capability Maturity Model Integration (CMMI RTM) Models as process improvement frameworks to improve business processes performance. High maturity process areas in the CMMI model imply the use of analytical, statistical, quantitative management techniques, and process performance modeling to identify and eliminate sources of variation, continually improve process-performance; reduce cost and predict future outcomes. The research study identifies and provides a detail discussion of the gap analysis findings of process improvement and quantitative analysis techniques taught in U.S. universities systems engineering and computing science degree programs, gaps that exist in the literature, and a comparison analysis which identifies the gaps that exist between the SEI's "healthy ingredients " of a process performance model and courses taught in U.S. universities degree program. The research also heightens awareness that academicians have conducted little research on applicable statistics and quantitative techniques that can be used to demonstrate high maturity as implied in the CMMI models. The research also includes a Monte Carlo simulation optimization model and dashboard that demonstrates the use of statistical methods, statistical process control, sensitivity analysis, quantitative and optimization techniques to establish a baseline and predict future customer satisfaction index scores (outcomes). The American Customer Satisfaction Index (ACSI) model and industry benchmarks were used as a framework for the simulation model.

  13. Calibrated Mid-wave Infrared (IR) (MidIR) and Long-wave IR (LWIR) Stokes and Degree-of-Liner Polarization (DOLP)

    DTIC Science & Technology

    2008-09-01

    LWIR long-wave IR MCT mercury cadmium telluride MidIR mid-wave IR NUC nonuniformity corrections ROI regions-of-interest 22 No. of Copies...Calibrated Mid-wave Infrared (IR) (MidIR) and Long-wave IR ( LWIR ) Stokes and Degree-of-Liner Polarization (DOLP) by Kristan P. Gurton and... LWIR ) Stokes and Degree-of-Liner Polarization (DOLP) Kristan P. Gurton and Melvin Felton Computational and Information Sciences Directorate

  14. A Qualitative Investigation of African Americans' Decision to Pursue Computing Science Degrees: Implications for Cultivating Career Choice and Aspiration

    ERIC Educational Resources Information Center

    Charleston, LaVar J.

    2012-01-01

    According to Pearson (2002), minority groups are not well represented in science, technology, engineering, and mathematics (STEM) occupations. Among these underrepresented groups are African Americans. To ensure the economic vitality of the STEM workforce in the United States, it is imperative to broaden participation in STEM-related fields and…

  15. The Use of Fuzzy Theory in Grading of Students in Math

    ERIC Educational Resources Information Center

    Bjelica, Momcilo; Rankovic, Dragica

    2010-01-01

    The development of computer science, statistics and other technological fields, give us more opportunities to improve the process of evaluation of degree of knowledge and achievements in a learning process of our students. More and more we are relying on the computer software to guide us in the grading process. An improved way of grading can help…

  16. Gendered Pathways: How Mathematics Ability Beliefs Shape Secondary and Postsecondary Course and Degree Field Choices

    PubMed Central

    Perez-Felkner, Lara; Nix, Samantha; Thomas, Kirby

    2017-01-01

    Do mathematics ability beliefs explain gender gaps in the physical science, engineering, mathematics, and computer science fields (PEMC) and other science fields? We leverage U.S. nationally representative longitudinal data to estimate gendered differences in girls' and boys' perceptions of mathematics ability with the most difficult or challenging material. Our analyses examine the potentially interacting effects of gender and these ability beliefs on students' pathways to scientific careers. Specifically, we study how beliefs about ability with challenging mathematics influence girls' and boys' choices to pursue PEMC degrees, evaluating educational milestones over a 6-year period: advanced science course completion in secondary school and postsecondary major retention and selection. Our findings indicate even at the same levels of observed ability, girls' mathematics ability beliefs under challenge are markedly lower than those of boys. These beliefs matter over time, potentially tripling girls' chances of majoring in PEMC sciences, over and above biological science fields, all else being equal. Implications and potential interventions are discussed. PMID:28428762

  17. Gendered Pathways: How Mathematics Ability Beliefs Shape Secondary and Postsecondary Course and Degree Field Choices.

    PubMed

    Perez-Felkner, Lara; Nix, Samantha; Thomas, Kirby

    2017-01-01

    Do mathematics ability beliefs explain gender gaps in the physical science, engineering, mathematics, and computer science fields (PEMC) and other science fields? We leverage U.S. nationally representative longitudinal data to estimate gendered differences in girls' and boys' perceptions of mathematics ability with the most difficult or challenging material. Our analyses examine the potentially interacting effects of gender and these ability beliefs on students' pathways to scientific careers. Specifically, we study how beliefs about ability with challenging mathematics influence girls' and boys' choices to pursue PEMC degrees, evaluating educational milestones over a 6-year period: advanced science course completion in secondary school and postsecondary major retention and selection. Our findings indicate even at the same levels of observed ability, girls' mathematics ability beliefs under challenge are markedly lower than those of boys. These beliefs matter over time, potentially tripling girls' chances of majoring in PEMC sciences, over and above biological science fields, all else being equal. Implications and potential interventions are discussed.

  18. Developing Data System Engineers

    NASA Astrophysics Data System (ADS)

    Behnke, J.; Byrnes, J. B.; Kobler, B.

    2011-12-01

    In the early days of general computer systems for science data processing, staff members working on NASA's data systems would most often be hired as mathematicians. Computer engineering was very often filled by those with electrical engineering degrees. Today, the Goddard Space Flight Center has special position descriptions for data scientists or as they are more commonly called: data systems engineers. These staff members are required to have very diverse skills, hence the need for a generalized position description. There is always a need for data systems engineers to develop, maintain and operate the complex data systems for Earth and space science missions. Today's data systems engineers however are not just mathematicians, they are computer programmers, GIS experts, software engineers, visualization experts, etc... They represent many different degree fields. To put together distributed systems like the NASA Earth Observing Data and Information System (EOSDIS), staff are required from many different fields. Sometimes, the skilled professional is not available and must be developed in-house. This paper will address the various skills and jobs for data systems engineers at NASA. Further it explores how to develop staff to become data scientists.

  19. Towards systemic theories in biological psychiatry.

    PubMed

    Bender, W; Albus, M; Möller, H-J; Tretter, F

    2006-02-01

    Although still rather controversial, empirical data on the neurobiology of schizophrenia have reached a degree of complexity that makes it hard to obtain a coherent picture of the malfunctions of the brain in schizophrenia. Theoretical neuropsychiatry should therefore use the tools of theoretical sciences like cybernetics, informatics, computational neuroscience or systems science. The methodology of systems science permits the modeling of complex dynamic nonlinear systems. Such procedures might help us to understand brain functions and the disorders and actions of psychiatric drugs better.

  20. Langley Aerospace Research Summer Scholars. Part 2

    NASA Technical Reports Server (NTRS)

    Schwan, Rafaela (Compiler)

    1995-01-01

    The Langley Aerospace Research Summer Scholars (LARSS) Program was established by Dr. Samuel E. Massenberg in 1986. The program has increased from 20 participants in 1986 to 114 participants in 1995. The program is LaRC-unique and is administered by Hampton University. The program was established for the benefit of undergraduate juniors and seniors and first-year graduate students who are pursuing degrees in aeronautical engineering, mechanical engineering, electrical engineering, material science, computer science, atmospheric science, astrophysics, physics, and chemistry. Two primary elements of the LARSS Program are: (1) a research project to be completed by each participant under the supervision of a researcher who will assume the role of a mentor for the summer, and (2) technical lectures by prominent engineers and scientists. Additional elements of this program include tours of LARC wind tunnels, computational facilities, and laboratories. Library and computer facilities will be available for use by the participants.

  1. Technical Reports: Langley Aerospace Research Summer Scholars. Part 1

    NASA Technical Reports Server (NTRS)

    Schwan, Rafaela (Compiler)

    1995-01-01

    The Langley Aerospace Research Summer Scholars (LARSS) Program was established by Dr. Samuel E. Massenberg in 1986. The program has increased from 20 participants in 1986 to 114 participants in 1995. The program is LaRC-unique and is administered by Hampton University. The program was established for the benefit of undergraduate juniors and seniors and first-year graduate students who are pursuing degrees in aeronautical engineering, mechanical engineering, electrical engineering, material science, computer science, atmospheric science, astrophysics, physics, and chemistry. Two primary elements of the LARSS Program are: (1) a research project to be completed by each participant under the supervision of a researcher who will assume the role of a mentor for the summer, and (2) technical lectures by prominent engineers and scientists. Additional elements of this program include tours of LARC wind tunnels, computational facilities, and laboratories. Library and computer facilities will be available for use by the participants.

  2. Educating Physicists for the 21st Century Industrial Arena

    NASA Astrophysics Data System (ADS)

    Levine, Alaina G.

    2001-03-01

    At the University of Arizona, a new Professional Master's Degree in Applied and Industrial Physics has been initiated to meet the demands of a new industrial era. A 1995 report by the National Academy of Sciences, et al, concluded, "A world of work that has become more interdisciplinary, collaborative, and global requires that we produce young people who are adaptable and flexible, as well as technically proficient." To better prepare students for this new "world of work", a new degree was launched in 2000 sponsored by the Sloan Foundation as part of a national initiative. The Professional Master's Degree in Applied and Industrial Physics educates students to 1) work in interdisciplinary teams on complex problems involving rapidly changing science and technology, 2) gain proficiency in computational techniques, 3) effectively communicate their scientific mission at all levels, and 4) understand business and legal issues associated with their scientific projects. I will discuss these goals, the roles of our industrial partners, and Arizona's parallel programs in Applied Biosciences and Mathematical Sciences.

  3. Efficiency Assessment of a Blended-Learning Educational Methodology in Engineering

    NASA Astrophysics Data System (ADS)

    Rogado, Ana Belén González; Conde, Ma José Rodríguez; Migueláñez, Susana Olmos; Riaza, Blanca García; Peñalvo, Francisco José García

    The content of this presentation highlights the importance of an active learning methodology in engineering university degrees in Spain. We present of some of the outcomes from an experimental study carried out during the academic years 2007/08 and 2008/09 with engineering students (Technical Industrial Engineering: Mechanics, Civical Design Engineering: Civical building, Technical Architecture and Technical Engineering on Computer Management.) at the University of Salamanca. In this research we select a subject which is common for the four degrees: Computer Science. This study has the aim of contributing to the improvement of education and teaching methods for a better performance of students in Engineering.

  4. Venus - Global View Centered at 180 degrees

    NASA Image and Video Library

    1996-11-26

    This global view of the surface of Venus is centered at 180 degrees east longitude. Magellan synthetic aperture radar mosaics from the first cycle of Magellan mapping, and a 5 degree latitude-longitude grid, are mapped onto a computer-simulated globe to create this image. Data gaps are filled with Pioneer-Venus Orbiter data, or a constant mid-range value. The image was produced by the Solar System Visualization project and the Magellan Science team at the JPL Multimission Image Processing Laboratory. http://photojournal.jpl.nasa.gov/catalog/PIA00478

  5. Engagement, Persistence, and Gender in Computer Science: Results of a Smartphone ESM Study.

    PubMed

    Milesi, Carolina; Perez-Felkner, Lara; Brown, Kevin; Schneider, Barbara

    2017-01-01

    While the underrepresentation of women in the fast-growing STEM field of computer science (CS) has been much studied, no consensus exists on the key factors influencing this widening gender gap. Possible suspects include gender differences in aptitude, interest, and academic environment. Our study contributes to this literature by applying student engagement research to study the experiences of college students studying CS, to assess the degree to which differences in men and women's engagement may help account for gender inequity in the field. Specifically, we use the Experience Sampling Method (ESM) to evaluate in real-time the engagement of college students during varied activities and environments. Over the course of a full week in fall semester and a full week in spring semester, 165 students majoring in CS at two Research I universities were "beeped" several times a day via a smartphone app prompting them to fill out a short questionnaire including open-ended and scaled items. These responses were paired with administrative and over 2 years of transcript data provided by their institutions. We used mean comparisons and logistic regression analysis to compare enrollment and persistence patterns among CS men and women. Results suggest that despite the obstacles associated with women's underrepresentation in computer science, women are more likely to continue taking computer science courses when they felt challenged and skilled in their initial computer science classes. We discuss implications for further research.

  6. Galaxy Makers Exhibition: Re-engagement, Evaluation and Content Legacy through an Online Component

    NASA Astrophysics Data System (ADS)

    Borrow, J.; Harrison, C.

    2017-09-01

    For the Royal Society Summer Science Exhibition 2016, Durham University's Institute of Computational Cosmology created the Galaxy Makers exhibit to communicate our computational cosmology and astronomy research. In addition to the physical exhibit we created an online component to foster re-engagement, create a permanent home for our content and allow us to collect important information about participation and impact. Here we summarise the details of the exhibit and the degree of success attached to the online component. We also share suggestions for further uses and improvements that could be implemented for the online components of other science exhibitions.

  7. Sociocultural Influences On Undergraduate Women's Entry into a Computer Science Major

    NASA Astrophysics Data System (ADS)

    Lyon, Louise Ann

    Computer science not only displays the pattern of underrepresentation of many other science, technology, engineering, and math (STEM) fields, but has actually experienced a decline in the number of women choosing the field over the past two decades. Broken out by gender and race, the picture becomes more nuanced, with the ratio of females to males receiving bachelor's degrees in computer science higher for non-White ethnic groups than for Whites. This dissertation explores the experiences of university women differing along the axis of race, class, and culture who are considering majoring in computer science in order to highlight how well-prepared women are persuaded that they belong (or not) in the field and how the confluence of social categories plays out in their decision. This study focuses on a university seminar entitled "Women in Computer Science and Engineering" open to women concurrently enrolled in introductory programming and uses an ethnographic approach including classroom participant observation, interviews with seminar students and instructors, observations of students in other classes, and interviews with parents of students. Three stand-alone but related articles explore various aspects of the experiences of women who participated in the study using Rom Harre's positioning theory as a theoretical framework. The first article uses data from twenty-two interviews to uncover how interactions with others and patterns in society position women in relation to a computer science major, and how these women have arrived at the point of considering the major despite messages that they do not belong. The second article more deeply explores the cases of three women who vary greatly along the axes of race, class, and culture in order to uncover pattern and interaction differences for women based on their ethnic background. The final article focuses on the attitudes and expectations of the mothers of three students of contrasting ethnicities and how reported interactions between mothers and daughters either constrain or afford opportunities for the daughters to choose a computer science major.

  8. An Evaluation of the Network Efficiency Required in Order to Support Multicast and Synchronous Distributed Learning Network Traffic

    DTIC Science & Technology

    2003-09-01

    This restriction limits the deployment to small and medium sized enterprises. The Internet cannot universally use DVMRP for this reason. In addition...20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE September 2003 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE... University , 1996 Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN COMPUTER SCIENCE from

  9. Multilevel Structural Equation Models for Investigating the Effects of Computer-Based Learning in Math Classrooms on Science Technology Engineering and Math (STEM) Major Selection in 4-Year Postsecondary Institutions

    ERIC Educational Resources Information Center

    Lee, Ahlam

    2017-01-01

    Background/Context: Because of the growing concern over the decline of bachelor degree recipients in the disciplines of science, technology, engineering, and math (STEM) in the U.S., several studies have been devoted to identifying the factors that affect students' STEM major choices. A majority of these studies have focused on factors relevant to…

  10. Improving Mobile Infrastructure for Pervasive Personal Computing

    DTIC Science & Technology

    2007-11-01

    fulfillment of the requirements for the degree of Master of Science. Copyright c© 2007 Ajay Surie This research was supported by the National Science Foundation...NSF) under grant number CNS-0509004 and by the Army Research Office (ARO) through grant number DAAD19-02-1-0389 (“Perpetually Available and Secure...efforts my final project could not have been successful. Working with the members of my research group, Niraj Tolia, Benjamin Gilbert, Jan Harkes, Adam

  11. Cyber Science, Biometrics and Digital Forensics: Workshop on Emerging Cyber Techniques and Technologies

    DTIC Science & Technology

    2016-09-07

    and the University of Southern California through have been collaborating on a proposal led by Florida International University’s School of Computing...security. We will develop an action plan to identify needs, assess vulnerabilities and address disruptive technologies that could clearly provide a ...Institute of Technology and his Bachelor of Science degree in Aerospace Engineering, Polytechnic University of New York. Mr. Hurtado is a member of the

  12. Commnity Petascale Project for Accelerator Science And Simulation: Advancing Computational Science for Future Accelerators And Accelerator Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spentzouris, Panagiotis; /Fermilab; Cary, John

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessarymore » accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.« less

  13. Intertextuality and Television Discourse: The Max Headroom Story.

    ERIC Educational Resources Information Center

    Braddlee

    Max Headroom, the computer-generated media personality, presents a good opportunity for an investigation of the degree of intertextuality in television. Max combines narrative genres (science fiction and film noir), television program types (prime-time episodic narrative, made-for-TV movie, talkshows), advertising and programming, and electronic…

  14. Analysis of Defenses Against Code Reuse Attacks on Modern and New Architectures

    DTIC Science & Technology

    2015-09-01

    soundness or completeness. An incomplete analysis will produce extra edges in the CFG that might allow an attacker to slip through. An unsound analysis...Analysis of Defenses Against Code Reuse Attacks on Modern and New Architectures by Isaac Noah Evans Submitted to the Department of Electrical...Engineering and Computer Science in partial fulfillment of the requirements for the degree of Master of Engineering in Electrical Engineering and Computer

  15. miniTri Mantevo miniapp v. 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, Johathan; Stark, Dylan; Wolf, Michael

    2016-02-02

    miniTri is a miniapplication developed as part of the Mantevo project. Given a graph, miniTri enumerates all triangles in this graph and computes a metric for each triangle based on the triangle edge and vertex degree. The output of miniTri is a summary of this metric. miniTri mimics the computational requirements of an important set of data science applications. Several approaches to this problem are included in the miniTri software.

  16. Undergraduate optics program for the 21st Century

    NASA Astrophysics Data System (ADS)

    Palmer, James M.

    2002-05-01

    We have been offering a successful BS degree in optical engineering for the past ten years. We have produced more than 100 graduates, highly trained in basic optics and electronics. Our Industrial Affiliates, while very pleased with our graduates, requested that we produce some with greater mechanical engineering skills and knowledge. Our response was the creation of a new degree program, retaining the virtues of the previous one, but allowing a high degree of flexibility through the inclusion of minors within the program. The new program allows sufficient room for a variety of minors. Engineering minors identified include aerospace, computer, electrical, materials and mechanical. Science minors include astronomy, computer science, math and physics. Non-science minors accommodated include business, pre-health and pre-law. The new BSO program features: (1) Better structure and flow, more tightly coupling related classes; (2) New laboratory classes for juniors, linked to lecture classes; (3) Expanded optical deign, fabrication and testing classes; (4) New class in electronics for optics; (5) New classes in fiber optics and optical communications; (6) New capstone/senior project class for ABET compliance. This new BSO program will produce better entry-level optical scientists and engineers, and better candidates for graduate school. Our interactions with the external community will provide inputs concerning industrial needs, leading towards improved student counseling and program development. We will better serve national needs for skilled personnel in optics, and contribute even more to the optics workforce pipeline.

  17. Engagement, Persistence, and Gender in Computer Science: Results of a Smartphone ESM Study

    PubMed Central

    Milesi, Carolina; Perez-Felkner, Lara; Brown, Kevin; Schneider, Barbara

    2017-01-01

    While the underrepresentation of women in the fast-growing STEM field of computer science (CS) has been much studied, no consensus exists on the key factors influencing this widening gender gap. Possible suspects include gender differences in aptitude, interest, and academic environment. Our study contributes to this literature by applying student engagement research to study the experiences of college students studying CS, to assess the degree to which differences in men and women's engagement may help account for gender inequity in the field. Specifically, we use the Experience Sampling Method (ESM) to evaluate in real-time the engagement of college students during varied activities and environments. Over the course of a full week in fall semester and a full week in spring semester, 165 students majoring in CS at two Research I universities were “beeped” several times a day via a smartphone app prompting them to fill out a short questionnaire including open-ended and scaled items. These responses were paired with administrative and over 2 years of transcript data provided by their institutions. We used mean comparisons and logistic regression analysis to compare enrollment and persistence patterns among CS men and women. Results suggest that despite the obstacles associated with women's underrepresentation in computer science, women are more likely to continue taking computer science courses when they felt challenged and skilled in their initial computer science classes. We discuss implications for further research. PMID:28487664

  18. Distance Education: The Application of Technology to Education and Training (APTEC).

    ERIC Educational Resources Information Center

    Mizell, Al P.; And Others

    Nova University (Florida), offers off-campus undergraduate and graduate degree programs in education, business and public administration, psychology, and computer sciences. This paper describes one of these offerings, the Application of Technology to Education and Training (APTEC) specialization in the Ed.D. program in Child and Youth Studies…

  19. An On-Line Classroom for the Unix Environment.

    ERIC Educational Resources Information Center

    Scigliano, John A.; And Others

    This paper describes an electronic classroom (ECR) program that has been developed at Nova University to facilitate online real-time group instruction in graduate degree programs in information and computer science. The first section describes the educational uses of the program, including the simulation of a classroom-type educational setting…

  20. Mastering cognitive development theory in computer science education

    NASA Astrophysics Data System (ADS)

    Gluga, Richard; Kay, Judy; Lister, Raymond; Simon; Kleitman, Sabina

    2013-03-01

    To design an effective computer science curriculum, educators require a systematic method of classifying the difficulty level of learning activities and assessment tasks. This is important for curriculum design and implementation and for communication between educators. Different educators must be able to use the method consistently, so that classified activities and assessments are comparable across the subjects of a degree, and, ideally, comparable across institutions. One widespread approach to supporting this is to write learning objects in terms of Bloom's Taxonomy. This, or other such classifications, is likely to be more effective if educators can use them consistently, in the way experts would use them. To this end, we present the design and evaluation of our online interactive web-based tutorial system, which can be configured and used to offer training in different classification schemes. We report on results from three evaluations. First, 17 computer science educators complete a tutorial on using Bloom's Taxonomy to classify programming examination questions. Second, 20 computer science educators complete a Neo-Piagetian tutorial. Third evaluation was a comparison of inter-rater reliability scores of computer science educators classifying programming questions using Bloom's Taxonomy, before and after taking our tutorial. Based on the results from these evaluations, we discuss the effectiveness of our tutorial system design for teaching computer science educators how to systematically and consistently classify programming examination questions. We also discuss the suitability of Bloom's Taxonomy and Neo-Piagetian theory for achieving this goal. The Bloom's and Neo-Piagetian tutorials are made available as a community resource. The contributions of this paper are the following: the tutorial system for learning classification schemes for the purpose of coding the difficulty of computing learning materials; its evaluation; new insights into the consistency that computing educators can achieve using Bloom; and first insights into the use of Neo-Piagetian theory by a group of classifiers.

  1. The SGI/CRAY T3E: Experiences and Insights

    NASA Technical Reports Server (NTRS)

    Bernard, Lisa Hamet

    1999-01-01

    The focus of the HPCC Earth and Space Sciences (ESS) Project is capability computing - pushing highly scalable computing testbeds to their performance limits. The drivers of this focus are the Grand Challenge problems in Earth and space science: those that could not be addressed in a capacity computing environment where large jobs must continually compete for resources. These Grand Challenge codes require a high degree of communication, large memory, and very large I/O (throughout the duration of the processing, not just in loading initial conditions and saving final results). This set of parameters led to the selection of an SGI/Cray T3E as the current ESS Computing Testbed. The T3E at the Goddard Space Flight Center is a unique computational resource within NASA. As such, it must be managed to effectively support the diverse research efforts across the NASA research community yet still enable the ESS Grand Challenge Investigator teams to achieve their performance milestones, for which the system was intended. To date, all Grand Challenge Investigator teams have achieved the 10 GFLOPS milestone, eight of nine have achieved the 50 GFLOPS milestone, and three have achieved the 100 GFLOPS milestone. In addition, many technical papers have been published highlighting results achieved on the NASA T3E, including some at this Workshop. The successes enabled by the NASA T3E computing environment are best illustrated by the 512 PE upgrade funded by the NASA Earth Science Enterprise earlier this year. Never before has an HPCC computing testbed been so well received by the general NASA science community that it was deemed critical to the success of a core NASA science effort. NASA looks forward to many more success stories before the conclusion of the NASA-SGI/Cray cooperative agreement in June 1999.

  2. Polymerization and Structure of Bio-Based Plastics: A Computer Simulation

    NASA Astrophysics Data System (ADS)

    Khot, Shrikant N.; Wool, Richard P.

    2001-03-01

    We recently examined several hundred chemical pathways to convert chemically functionalized plant oil triglycerides, monoglycerides and reactive diluents into high performance plastics with a broad range of properties (US Patent No. 6,121,398). The resulting polymers had linear, branched, light- and highly-crosslinked chain architectures and could be used as pressure sensitive adhesives, elastomers and high performance rigid thermoset composite resins. To optimize the molecular design and minimize the number of chemical trials in this system with excess degrees of freedom, we developed a computer simulation of the free radical polymerization process. The triglyceride structure, degree of chemical substitution, mole fractions, fatty acid distribution function, and reaction kinetic parameters were used as initial inputs on a 3d lattice simulation. The evolution of the network fractal structure was computed and used to measure crosslink density, dangling ends, degree of reaction and defects in the lattice. The molecular connectivity was used to determine strength via a vector percolation model of fracture. The simulation permitted the optimal design of new bio-based materials with respect to monomer selection, cure reaction conditions and desired properties. Supported by the National Science Foundation

  3. Analysis of the United States Computer Emergency Readiness Team’s (U.S. CERT) EINSTEIN III Intrusion Detection System, and Its Impact on Privacy

    DTIC Science & Technology

    2013-03-01

    Arlington, VA 22202–4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704–0188) Washington DC 20503. 1. AGENCY USE ONLY...University, 2004 Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN INFORMATION TECHNOLOGY MANAGEMENT...Fulp Second Reader Dr. Dan Boger Chair, Department of Information Sciences iv THIS PAGE INTENTIONALLY LEFT BLANK v ABSTRACT To secure

  4. Training the Future - Interns Harvesting & Testing Plant Experim

    NASA Image and Video Library

    2017-07-19

    In the Space Life Sciences Laboratory at NASA's Kennedy Space Center in Florida, student interns such as Ayla Grandpre, left, and Payton Barnwell are joining agency scientists, contributing in the area of plant growth research for food production in space. Grandpre is pursuing a degree in computer science and chemistry at Rocky Mountain College in Billings, Montana. Barnwell is a mechanical engineering and nanotechnology major at Florida Polytechnic University. The agency attracts its future workforce through the NASA Internship, Fellowships and Scholarships, or NIFS, Program.

  5. Statistical mechanics of complex neural systems and high dimensional data

    NASA Astrophysics Data System (ADS)

    Advani, Madhu; Lahiri, Subhaneil; Ganguli, Surya

    2013-03-01

    Recent experimental advances in neuroscience have opened new vistas into the immense complexity of neuronal networks. This proliferation of data challenges us on two parallel fronts. First, how can we form adequate theoretical frameworks for understanding how dynamical network processes cooperate across widely disparate spatiotemporal scales to solve important computational problems? Second, how can we extract meaningful models of neuronal systems from high dimensional datasets? To aid in these challenges, we give a pedagogical review of a collection of ideas and theoretical methods arising at the intersection of statistical physics, computer science and neurobiology. We introduce the interrelated replica and cavity methods, which originated in statistical physics as powerful ways to quantitatively analyze large highly heterogeneous systems of many interacting degrees of freedom. We also introduce the closely related notion of message passing in graphical models, which originated in computer science as a distributed algorithm capable of solving large inference and optimization problems involving many coupled variables. We then show how both the statistical physics and computer science perspectives can be applied in a wide diversity of contexts to problems arising in theoretical neuroscience and data analysis. Along the way we discuss spin glasses, learning theory, illusions of structure in noise, random matrices, dimensionality reduction and compressed sensing, all within the unified formalism of the replica method. Moreover, we review recent conceptual connections between message passing in graphical models, and neural computation and learning. Overall, these ideas illustrate how statistical physics and computer science might provide a lens through which we can uncover emergent computational functions buried deep within the dynamical complexities of neuronal networks.

  6. A character network study of two Sci-Fi TV series

    NASA Astrophysics Data System (ADS)

    Tan, M. S. A.; Ujum, E. A.; Ratnavelu, K.

    2014-03-01

    This work is an analysis of the character networks in two science fiction television series: Stargate and Star Trek. These networks are constructed on the basis of scene co-occurrence between characters to indicate the presence of a connection. Global network structure measures such as the average path length, graph density, network diameter, average degree, median degree, maximum degree, and average clustering coefficient are computed as well as individual node centrality scores. The two fictional networks constructed are found to be quite similar in structure which is astonishing given that Stargate only ran for 18 years in comparison to the 48 years for Star Trek.

  7. Sundials in the shade: A study of women's persistence in the first year of a computer science program in a selective university

    NASA Astrophysics Data System (ADS)

    Powell, Rita Manco

    Currently women are underrepresented in departments of computer science, making up approximately 18% of the undergraduate enrollment in selective universities. Most attrition in computer science occurs early in this major, in the freshman and sophomore years, and women drop out in disproportionately greater numbers than their male counterparts. Taking an ethnographic approach to investigating women's experiences and progress in the first year courses in the computer science major at the University of Pennsylvania, this study examined the pre-college influences that led these women to the major and the nature of their experiences in and outside of class with faculty, peers, and academic support services. This study sought an understanding of the challenges these women faced in the first year of the major with the goal of informing institutional practice about how to best support their persistence. The research reviewed for this study included patterns of leaving majors in science, math and engineering (Seymour & Hewitt 1997), the high school preparation needed to pursue math and engineering majors in college (Strenta, Elliott, Adair, Matier, & Scott, 1994), and intervention programs that have positively impacted persistence of women in computer science (Margolis & Fisher, 2002). The research method of this study employed a series of personal interviews over the course of one calendar year with fourteen first year women who had either declared on intended to declare the computer science major in the School of Engineering and Applied Science at the University of Pennsylvania. Other data sources were focus groups and personal interviews with faculty, administrators, admissions and student life professionals, teaching assistants, female graduate students, and male first year students at the University of Pennsylvania. This study found that the women in this study group came to the University of Pennsylvania with a thorough grounding in mathematics, but many either had an inadequate background in computer science, or at least perceived inadequacies in their background, which prevented them from beginning the major on an equal footing with their mostly male peers and caused some to lose confidence and consequently interest in the major. Issues also emanated from their gender-minority status in the Computer and Information Science Department, causing them to be socially isolated from their peers and further weakening their resolve to persist. These findings suggest that female first year students could benefit from multiple pathways into the major designed for students with varying degrees of prior experience with computer science. In addition, a computer science community within the department characterized by more frequent interaction and collaboration with faculty and peers could positively impact women's persistence in the major.

  8. Revision Workshops in Elementary Mathematics Enhance Student Performance in Routine Laboratory Calculations

    ERIC Educational Resources Information Center

    Sawbridge, Jenny L.; Qureshi, Haseeb K.; Boyd, Matthew J.; Brown, Angus M.

    2014-01-01

    The ability to understand and implement calculations required for molarity and dilution computations that are routinely undertaken in the laboratory are essential skills that should be possessed by all students entering an undergraduate Life Sciences degree. However, it is increasingly recognized that the majority of these students are ill…

  9. An Achievement Degree Analysis Approach to Identifying Learning Problems in Object-Oriented Programming

    ERIC Educational Resources Information Center

    Allinjawi, Arwa A.; Al-Nuaim, Hana A.; Krause, Paul

    2014-01-01

    Students often face difficulties while learning object-oriented programming (OOP) concepts. Many papers have presented various assessment methods for diagnosing learning problems to improve the teaching of programming in computer science (CS) higher education. The research presented in this article illustrates that although max-min composition is…

  10. A Functional Programming Approach to AI Search Algorithms

    ERIC Educational Resources Information Center

    Panovics, Janos

    2012-01-01

    The theory and practice of search algorithms related to state-space represented problems form the major part of the introductory course of Artificial Intelligence at most of the universities and colleges offering a degree in the area of computer science. Students usually meet these algorithms only in some imperative or object-oriented language…

  11. Learning Styles of ICT Specialisation Students: Do Differences in Disciplines Exist?

    ERIC Educational Resources Information Center

    de Salas, Kristy; Lewis, Ian; Dermoudy, Julian

    2014-01-01

    Within existing ICT degrees there is a widely-held belief that content must be tailored for different "kinds" of students--often two differing student groups: a technical group requiring detailed Computer Science knowledge and a separate group requiring less technical, more strategic ICT knowledge and skills. Our institution has produced…

  12. Inviscid Flow Computations of the Orbital Sciences X-34 Over a Mach Number Range of 1.25 to 6.0

    NASA Technical Reports Server (NTRS)

    Prabhu, Ramadas K.

    2001-01-01

    This report documents the results of an inviscid computational study conducted on the Orbital Sciences X-34 vehicle to compute its inviscid longitudinal aerodynamic characteristics over a Mach number range of 1.25 to 6.0. The unstructured grid software FELISA was used and th e aerodynamic characteristics were computed at Mach numbers 1.25, 1.6, 2.5, 4.0, 4.63, and 6.0, and an angle of attack range of -4 to 32 degrees. These results were compared with available aerodynamic data from wind tunnel test on X-34 models. The comparison showed excellent agreement in C(sub N). The computed pitching moment compared well at Mach numbers 2.5 and higher, and at angles of attack of up to 12 deg. The agreement was not good at higher angles of attack possibly due to viscous effects. At lower Mach numbers there were significant differences between computed and measured C(sub m) values. This could not be explained. Since the present computations are inviscid, the computed C(sub A) was consistently lower than the measured values as expected.

  13. Equation-free and variable free modeling for complex/multiscale systems. Coarse-grained computation in science and engineering using fine-grained models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevrekidis, Ioannis G.

    The work explored the linking of modern developing machine learning techniques (manifold learning and in particular diffusion maps) with traditional PDE modeling/discretization/scientific computation techniques via the equation-free methodology developed by the PI. The result (in addition to several PhD degrees, two of them by CSGF Fellows) was a sequence of strong developments - in part on the algorithmic side, linking data mining with scientific computing, and in part on applications, ranging from PDE discretizations to molecular dynamics and complex network dynamics.

  14. STAIRSTEP -- a research-oriented program for undergraduate students at Lamar University

    NASA Astrophysics Data System (ADS)

    Bahrim, Cristian

    2011-03-01

    The relative low number of undergraduate STEM students in many science disciplines, and in particular in physics, represents a major concern for our faculty and the administration at Lamar University. Therefore, a collaborative effort between several science programs, including computer science, chemistry, geology, mathematics and physics was set up with the goal of increasing the number of science majors and to minimize the retention rate. Lamar's Student Advancing through Involvement in Research Student Talent Expansion Program (STAIRSTEP) is a NSF-DUE sponsored program designed to motivate STEM students to graduate with a science degree from one of these five disciplines by involving them in state-of-the-art research projects and various outreach activities organized on-campus or in road shows at the secondary and high schools. The physics program offers hands-on experience in optics, such as computer-based experiments for studying the diffraction and interference of light incident on nettings or electronic wave packets incident on crystals, with applications in optical imaging, electron microscopy, and crystallography. The impact of the various activities done in STAIRSTEP on our Physics Program will be discussed.

  15. Perceived mathematical ability under challenge: a longitudinal perspective on sex segregation among STEM degree fields.

    PubMed

    Nix, Samantha; Perez-Felkner, Lara; Thomas, Kirby

    2015-01-01

    Students' perceptions of their mathematics ability vary by gender and seem to influence science, technology, engineering, and mathematics (STEM) degree choice. Related, students' perceptions during academic difficulty are increasingly studied in educational psychology, suggesting a link between such perceptions and task persistence. Despite interest in examining the gender disparities in STEM, these concepts have not been considered in tandem. In this manuscript, we investigate how perceived ability under challenge-in particular in mathematics domains-influences entry into the most sex-segregated and mathematics-intensive undergraduate degrees: physics, engineering, mathematics, and computer science (PEMC). Using nationally representative Education Longitudinal Study of 2002 (ELS) data, we estimate the influence of perceived ability under challenging conditions on advanced high school science course taking, selection of an intended STEM major, and specific major type 2 years after high school. Demonstrating the importance of specificity when discussing how gender influences STEM career pathways, the intersecting effects of gender and perceived ability under mathematics challenge were distinct for each scientific major category. Perceived ability under challenge in secondary school varied by gender, and was highly predictive of selecting PEMC and health sciences majors. Notably, women's 12th grade perceptions of their ability under mathematics challenge increased their probability of selecting PEMC majors over and above biology. In addition, gender moderated the effect of growth mindset on students' selection of health science majors. Perceptions of ability under challenge in general and verbal domains also influenced retention in and declaration of certain STEM majors. The implications of these results are discussed, with particular attention to access to advanced scientific coursework in high school and interventions aimed at enhancing young women's perceptions of their ability, in particular in response to the potentially inhibiting influence of stereotype threat on their pathways to scientific degrees.

  16. Perceived mathematical ability under challenge: a longitudinal perspective on sex segregation among STEM degree fields

    PubMed Central

    Nix, Samantha; Perez-Felkner, Lara; Thomas, Kirby

    2015-01-01

    Students' perceptions of their mathematics ability vary by gender and seem to influence science, technology, engineering, and mathematics (STEM) degree choice. Related, students' perceptions during academic difficulty are increasingly studied in educational psychology, suggesting a link between such perceptions and task persistence. Despite interest in examining the gender disparities in STEM, these concepts have not been considered in tandem. In this manuscript, we investigate how perceived ability under challenge—in particular in mathematics domains—influences entry into the most sex-segregated and mathematics-intensive undergraduate degrees: physics, engineering, mathematics, and computer science (PEMC). Using nationally representative Education Longitudinal Study of 2002 (ELS) data, we estimate the influence of perceived ability under challenging conditions on advanced high school science course taking, selection of an intended STEM major, and specific major type 2 years after high school. Demonstrating the importance of specificity when discussing how gender influences STEM career pathways, the intersecting effects of gender and perceived ability under mathematics challenge were distinct for each scientific major category. Perceived ability under challenge in secondary school varied by gender, and was highly predictive of selecting PEMC and health sciences majors. Notably, women's 12th grade perceptions of their ability under mathematics challenge increased their probability of selecting PEMC majors over and above biology. In addition, gender moderated the effect of growth mindset on students' selection of health science majors. Perceptions of ability under challenge in general and verbal domains also influenced retention in and declaration of certain STEM majors. The implications of these results are discussed, with particular attention to access to advanced scientific coursework in high school and interventions aimed at enhancing young women's perceptions of their ability, in particular in response to the potentially inhibiting influence of stereotype threat on their pathways to scientific degrees. PMID:26113823

  17. The Potential Impact of Offshore Outsourcing on Information Systems Education Programs

    ERIC Educational Resources Information Center

    Pollack, Thomas A.

    2004-01-01

    As recently as the 1999-2000 academic year, the most sought after graduates were those completing degree requirements in a wide variety of information systems based programs. Many graduates were enticed by lucrative signing bonuses as organizations prepared for the dreaded uncertainty of Y2K. Information systems and computer science programs and…

  18. Common Database Interface for Heterogeneous Software Engineering Tools.

    DTIC Science & Technology

    1987-12-01

    SUB-GROUP Database Management Systems ;Programming(Comuters); 1e 05 Computer Files;Information Transfer;Interfaces; 19. ABSTRACT (Continue on reverse...Air Force Institute of Technology Air University In Partial Fulfillment of the Requirements for the Degree of Master of Science in Information Systems ...Literature ..... 8 System 690 Configuration ......... 8 Database Functionis ............ 14 Software Engineering Environments ... 14 Data Manager

  19. Student and Staff Perceptions of Key Aspects of Computer Science Engineering Capstone Projects

    ERIC Educational Resources Information Center

    Olarte, Juan José; Dominguez, César; Jaime, Arturo; Garcia-Izquierdo, Francisco José

    2016-01-01

    In carrying out their capstone projects, students use knowledge and skills acquired throughout their degree program to create a product or provide a technical service. An assigned advisor guides the students and supervises the work, and a committee assesses the projects. This study compares student and staff perceptions of key aspects of…

  20. Computing the Ediz eccentric connectivity index of discrete dynamic structures

    NASA Astrophysics Data System (ADS)

    Wu, Hualong; Kamran Siddiqui, Muhammad; Zhao, Bo; Gan, Jianhou; Gao, Wei

    2017-06-01

    From the earlier studies in physical and chemical sciences, it is found that the physico-chemical characteristics of chemical compounds are internally connected with their molecular structures. As a theoretical basis, it provides a new way of thinking by analyzing the molecular structure of the compounds to understand their physical and chemical properties. In our article, we study the physico-chemical properties of certain molecular structures via computing the Ediz eccentric connectivity index from mathematical standpoint. The results we yielded mainly apply to the techniques of distance and degree computation of mathematical derivation, and the conclusions have guiding significance in physical engineering.

  1. Cloud computing approaches to accelerate drug discovery value chain.

    PubMed

    Garg, Vibhav; Arora, Suchir; Gupta, Chitra

    2011-12-01

    Continued advancements in the area of technology have helped high throughput screening (HTS) evolve from a linear to parallel approach by performing system level screening. Advanced experimental methods used for HTS at various steps of drug discovery (i.e. target identification, target validation, lead identification and lead validation) can generate data of the order of terabytes. As a consequence, there is pressing need to store, manage, mine and analyze this data to identify informational tags. This need is again posing challenges to computer scientists to offer the matching hardware and software infrastructure, while managing the varying degree of desired computational power. Therefore, the potential of "On-Demand Hardware" and "Software as a Service (SAAS)" delivery mechanisms cannot be denied. This on-demand computing, largely referred to as Cloud Computing, is now transforming the drug discovery research. Also, integration of Cloud computing with parallel computing is certainly expanding its footprint in the life sciences community. The speed, efficiency and cost effectiveness have made cloud computing a 'good to have tool' for researchers, providing them significant flexibility, allowing them to focus on the 'what' of science and not the 'how'. Once reached to its maturity, Discovery-Cloud would fit best to manage drug discovery and clinical development data, generated using advanced HTS techniques, hence supporting the vision of personalized medicine.

  2. What do computer scientists tweet? Analyzing the link-sharing practice on Twitter.

    PubMed

    Schmitt, Marco; Jäschke, Robert

    2017-01-01

    Twitter communication has permeated every sphere of society. To highlight and share small pieces of information with possibly vast audiences or small circles of the interested has some value in almost any aspect of social life. But what is the value exactly for a scientific field? We perform a comprehensive study of computer scientists using Twitter and their tweeting behavior concerning the sharing of web links. Discerning the domains, hosts and individual web pages being tweeted and the differences between computer scientists and a Twitter sample enables us to look in depth at the Twitter-based information sharing practices of a scientific community. Additionally, we aim at providing a deeper understanding of the role and impact of altmetrics in computer science and give a glance at the publications mentioned on Twitter that are most relevant for the computer science community. Our results show a link sharing culture that concentrates more heavily on public and professional quality information than the Twitter sample does. The results also show a broad variety in linked sources and especially in linked publications with some publications clearly related to community-specific interests of computer scientists, while others with a strong relation to attention mechanisms in social media. This refers to the observation that Twitter is a hybrid form of social media between an information service and a social network service. Overall the computer scientists' style of usage seems to be more on the information-oriented side and to some degree also on professional usage. Therefore, altmetrics are of considerable use in analyzing computer science.

  3. What do computer scientists tweet? Analyzing the link-sharing practice on Twitter

    PubMed Central

    Schmitt, Marco

    2017-01-01

    Twitter communication has permeated every sphere of society. To highlight and share small pieces of information with possibly vast audiences or small circles of the interested has some value in almost any aspect of social life. But what is the value exactly for a scientific field? We perform a comprehensive study of computer scientists using Twitter and their tweeting behavior concerning the sharing of web links. Discerning the domains, hosts and individual web pages being tweeted and the differences between computer scientists and a Twitter sample enables us to look in depth at the Twitter-based information sharing practices of a scientific community. Additionally, we aim at providing a deeper understanding of the role and impact of altmetrics in computer science and give a glance at the publications mentioned on Twitter that are most relevant for the computer science community. Our results show a link sharing culture that concentrates more heavily on public and professional quality information than the Twitter sample does. The results also show a broad variety in linked sources and especially in linked publications with some publications clearly related to community-specific interests of computer scientists, while others with a strong relation to attention mechanisms in social media. This refers to the observation that Twitter is a hybrid form of social media between an information service and a social network service. Overall the computer scientists’ style of usage seems to be more on the information-oriented side and to some degree also on professional usage. Therefore, altmetrics are of considerable use in analyzing computer science. PMID:28636619

  4. High-Skill Training: Grants from H-1B Visa Fees Meet Specific Workforce Needs, But at Varying Skill Levels. Report to Congressional Requesters.

    ERIC Educational Resources Information Center

    General Accounting Office, Washington, DC. Education, Workforce, and Income Security Issues.

    A study examined the skill grant and scholarship grant programs. Findings indicated skill grantees offered training through various service delivery options to people needing skill upgrading; scholarship grantees provided scholarships to low income students for college degree programs in computer science, mathematics, and engineering. The skill…

  5. An Approachment to Cooperative Learning in Higher Education: Comparative Study of Teaching Methods in Engineering

    ERIC Educational Resources Information Center

    Estébanez, Raquel Pérez

    2017-01-01

    In the way of continuous improvement in teaching methods this paper explores the effects of Cooperative Learning (CL) against Traditional Learning (TL) in academic performance of students in higher education in two groups of the first course of Computer Science Degree at the university. The empirical study was conducted through an analysis of…

  6. Design of Electronic Experiments Using Computer Generated Virtual Instruments

    DTIC Science & Technology

    1994-03-01

    work associated with the classical electronics laboratory experiments required in a tpical Electrical Engineering program. This thesis reports the...requiremnents for the degree of MASTER OF SCIENCE IN ELECITRICAL ENGINEERING from the NAVAL POSTGRADUATE SCHOOL March 1994 Aufhfi_...Thcdore Joseph SerbinskI Approved by: Sherif Michael, Thesis Advisor Department of Electrical and Comte Engineering ii ABSIRACT The recent availability

  7. Does Like Seek Like?: The Formation of Working Groups in a Programming Project

    ERIC Educational Resources Information Center

    Sanou Gozalo, Eduard; Hernández-Fernández, Antoni; Arias, Marta; Ferrer-i-Cancho, Ramon

    2017-01-01

    In a course of the degree of computer science, the programming project has changed from individual to teamed work, tentatively in couples (pair programming). Students have full freedom to team up with minimum intervention from teachers. The analysis of the working groups made indicates that students do not tend to associate with students with a…

  8. Big Computing in Astronomy: Perspectives and Challenges

    NASA Astrophysics Data System (ADS)

    Pankratius, Victor

    2014-06-01

    Hardware progress in recent years has led to astronomical instruments gathering large volumes of data. In radio astronomy for instance, the current generation of antenna arrays produces data at Tbits per second, and forthcoming instruments will expand these rates much further. As instruments are increasingly becoming software-based, astronomers will get more exposed to computer science. This talk therefore outlines key challenges that arise at the intersection of computer science and astronomy and presents perspectives on how both communities can collaborate to overcome these challenges.Major problems are emerging due to increases in data rates that are much larger than in storage and transmission capacity, as well as humans being cognitively overwhelmed when attempting to opportunistically scan through Big Data. As a consequence, the generation of scientific insight will become more dependent on automation and algorithmic instrument control. Intelligent data reduction will have to be considered across the entire acquisition pipeline. In this context, the presentation will outline the enabling role of machine learning and parallel computing.BioVictor Pankratius is a computer scientist who joined MIT Haystack Observatory following his passion for astronomy. He is currently leading efforts to advance astronomy through cutting-edge computer science and parallel computing. Victor is also involved in projects such as ALMA Phasing to enhance the ALMA Observatory with Very-Long Baseline Interferometry capabilities, the Event Horizon Telescope, as well as in the Radio Array of Portable Interferometric Detectors (RAPID) to create an analysis environment using parallel computing in the cloud. He has an extensive track record of research in parallel multicore systems and software engineering, with contributions to auto-tuning, debugging, and empirical experiments studying programmers. Victor has worked with major industry partners such as Intel, Sun Labs, and Oracle. He holds a distinguished doctorate and a Habilitation degree in Computer Science from the University of Karlsruhe. Contact him at pankrat@mit.edu, victorpankratius.com, or Twitter @vpankratius.

  9. Reply to comment by Melsen et al. on "Most computational hydrology is not reproducible, so is it really science?"

    NASA Astrophysics Data System (ADS)

    Hutton, Christopher; Wagener, Thorsten; Freer, Jim; Han, Dawei; Duffy, Chris; Arheimer, Berit

    2017-03-01

    In this article, we reply to a comment made by Melsen et al. [2017] on our previous commentary regarding reproducibility in computational hydrology. Re-executing someone else's code and workflow to derive a set of published results does not by itself constitute reproducibility. However, it forms a key part of the process: it demonstrates that all the degrees of freedom and choices made by the scientist in running the experiment are contained within that code and workflow. This does not only allow us to build and extend directly from the original work, but with full knowledge of decisions made in the original experimental setup, we can then focus our attention to the degrees of freedom of interest: those that occur in hydrological systems that are ultimately our subject of study.

  10. The computationalist reformulation of the mind-body problem.

    PubMed

    Marchal, Bruno

    2013-09-01

    Computationalism, or digital mechanism, or simply mechanism, is a hypothesis in the cognitive science according to which we can be emulated by a computer without changing our private subjective feeling. We provide a weaker form of that hypothesis, weaker than the one commonly referred to in the (vast) literature and show how to recast the mind-body problem in that setting. We show that such a mechanist hypothesis does not solve the mind-body problem per se, but does help to reduce partially the mind-body problem into another problem which admits a formulation in pure arithmetic. We will explain that once we adopt the computationalist hypothesis, which is a form of mechanist assumption, we have to derive from it how our belief in the physical laws can emerge from *only* arithmetic and classical computer science. In that sense we reduce the mind-body problem to a body problem appearance in computer science, or in arithmetic. The general shape of the possible solution of that subproblem, if it exists, is shown to be closer to "Platonist or neoplatonist theology" than to the "Aristotelian theology". In Plato's theology, the physical or observable reality is only the shadow of a vaster hidden nonphysical and nonobservable, perhaps mathematical, reality. The main point is that the derivation is constructive, and it provides the technical means to derive physics from arithmetic, and this will make the computationalist hypothesis empirically testable, and thus scientific in the Popperian analysis of science. In case computationalism is wrong, the derivation leads to a procedure for measuring "our local degree of noncomputationalism". Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Creating a pipeline of talent for informatics: STEM initiative for high school students in computer science, biology, and biomedical informatics

    PubMed Central

    Dutta-Moscato, Joyeeta; Gopalakrishnan, Vanathi; Lotze, Michael T.; Becich, Michael J.

    2014-01-01

    This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM) training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical) informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC)), Richard Hersheberger, PhD (Currently, Dean at Roswell Park), and Megan Seippel, MS (the administrator) launched the University of Pittsburgh Cancer Institute (UPCI) Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI) was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical informatics will be critical to assuring their success as leaders in the era of big data and personalized medicine. PMID:24860688

  12. Creating a pipeline of talent for informatics: STEM initiative for high school students in computer science, biology, and biomedical informatics.

    PubMed

    Dutta-Moscato, Joyeeta; Gopalakrishnan, Vanathi; Lotze, Michael T; Becich, Michael J

    2014-01-01

    This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM) training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical) informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC)), Richard Hersheberger, PhD (Currently, Dean at Roswell Park), and Megan Seippel, MS (the administrator) launched the University of Pittsburgh Cancer Institute (UPCI) Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI) was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical informatics will be critical to assuring their success as leaders in the era of big data and personalized medicine.

  13. Factors that Influence the Success of Male and Female Computer Programming Students in College

    NASA Astrophysics Data System (ADS)

    Clinkenbeard, Drew A.

    As the demand for a technologically skilled work force grows, experience and skill in computer science have become increasingly valuable for college students. However, the number of students graduating with computer science degrees is not growing proportional to this need. Traditionally several groups are underrepresented in this field, notably women and students of color. This study investigated elements of computer science education that influence academic achievement in beginning computer programming courses. The goal of the study was to identify elements that increase success in computer programming courses. A 38-item questionnaire was developed and administered during the Spring 2016 semester at California State University Fullerton (CSUF). CSUF is an urban public university comprised of about 40,000 students. Data were collected from three beginning programming classes offered at CSUF. In total 411 questionnaires were collected resulting in a response rate of 58.63%. Data for the study were grouped into three broad categories of variables. These included academic and background variables; affective variables; and peer, mentor, and role-model variables. A conceptual model was developed to investigate how these variables might predict final course grade. Data were analyzed using statistical techniques such as linear regression, factor analysis, and path analysis. Ultimately this study found that peer interactions, comfort with computers, computer self-efficacy, self-concept, and perception of achievement were the best predictors of final course grade. In addition, the analyses showed that male students exhibited higher levels of computer self-efficacy and self-concept compared to female students, even when they achieved comparable course grades. Implications and explanations of these findings are explored, and potential policy changes are offered.

  14. Designing Citizen Science Projects in the Era of Mega-Information and Connected Activism

    NASA Astrophysics Data System (ADS)

    Pompea, S. M.

    2010-12-01

    The design of citizen science projects must take many factors into account in order to be successful. Currently, there are a wide variety of citizen science projects with different aims, audiences, reporting methods, and degrees of scientific rigor and usefulness. Projects function on local, national, and worldwide scales and range in time from limited campaigns to around the clock projects. For current and future projects, advanced cell phones and mobile computing allow an unprecedented degree of connectivity and data transfer. These advances will greatly influence the design of citizen science projects. An unprecedented amount of data is available for data mining by interested citizen scientists; how can projects take advantage of this? Finally, a variety of citizen scientist projects have social activism and change as part of their mission and goals. How can this be harnessed in a constructive and efficient way? The design of projects must also select the proper role for experts and novices, provide quality control, and must motivate users to encourage long-term involvement. Effective educational and instructional materials design can be used to design responsive and effective projects in a more highly connected age with access to very large amounts of information.

  15. Dropping Out of Computer Science: A Phenomenological Study of Student Lived Experiences in Community College Computer Science

    NASA Astrophysics Data System (ADS)

    Gilbert-Valencia, Daniel H.

    California community colleges contribute alarmingly few computer science degree or certificate earners. While the literature shows clear K-12 impediments to CS matriculation in higher education, very little is known about the experiences of those who overcome initial impediments to CS yet do not persist through to program completion. This phenomenological study explores insights into that specific experience by interviewing underrepresented, low income, first-generation college students who began community college intending to transfer to 4-year institutions majoring in CS but switched to another field and remain enrolled or graduated. This study explores the lived experiences of students facing barriers, their avenues for developing interest in CS, and the persistence support systems they encountered, specifically looking at how students constructed their academic choice from these experiences. The growing diversity within California's population necessitates that experiences specific to underrepresented students be considered as part of this exploration. Ten semi-structured interviews and observations were conducted, transcribed and coded. Artifacts supporting student experiences were also collected. Data was analyzed through a social-constructivist lens to provide insight into experiences and how they can be navigated to create actionable strategies for community college computer science departments wishing to increase student success. Three major themes emerged from this research: (1) students shared pre-college characteristics; (2) faced similar challenges in college CS courses; and (3) shared similar reactions to the "work" of computer science. Results of the study included (1) CS interest development hinged on computer ownership in the home; (2) participants shared characteristics that were ideal for college success but not CS success; and (3) encounters in CS departments produced unique challenges for participants. Though CS interest was and remains abundant, opportunities for learning programming skills before college were non-existent and there were few opportunities in college to build skills or establish a peer support networks. Recommendations for institutional leaders and further research are also provided.

  16. Insights into failed lexical retrieval from network science.

    PubMed

    Vitevitch, Michael S; Chan, Kit Ying; Goldstein, Rutherford

    2014-02-01

    Previous network analyses of the phonological lexicon (Vitevitch, 2008) observed a web-like structure that exhibited assortative mixing by degree: words with dense phonological neighborhoods tend to have as neighbors words that also have dense phonological neighborhoods, and words with sparse phonological neighborhoods tend to have as neighbors words that also have sparse phonological neighborhoods. Given the role that assortative mixing by degree plays in network resilience, we examined instances of real and simulated lexical retrieval failures in computer simulations, analysis of a slips-of-the-ear corpus, and three psycholinguistic experiments for evidence of this network characteristic in human behavior. The results of the various analyses support the hypothesis that the structure of words in the mental lexicon influences lexical processing. The implications of network science for current models of spoken word recognition, language processing, and cognitive psychology more generally are discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Insights into failed lexical retrieval from network science

    PubMed Central

    Vitevitch, Michael S.; Chan, Kit Ying; Goldstein, Rutherford

    2013-01-01

    Previous network analyses of the phonological lexicon (Vitevitch, 2008) observed a web-like structure that exhibited assortative mixing by degree: words with dense phonological neighborhoods tend to have as neighbors words that also have dense phonological neighborhoods, and words with sparse phonological neighborhoods tend to have as neighbors words that also have sparse phonological neighborhoods. Given the role that assortative mixing by degree plays in network resilience, we examined instances of real and simulated lexical retrieval failures in computer simulations, analysis of a slips-of-the-ear corpus, and three psycholinguistic experiments for evidence of this network characteristic in human behavior. The results of the various analyses support the hypothesis that the structure of words in the mental lexicon influences lexical processing. The implications of network science for current models of spoken word recognition, language processing, and cognitive psychology more generally are discussed. PMID:24269488

  18. Computer programing for geosciences: Teach your students how to make tools

    NASA Astrophysics Data System (ADS)

    Grapenthin, Ronni

    2011-12-01

    When I announced my intention to pursue a Ph.D. in geophysics, some people gave me confused looks, because I was working on a master's degree in computer science at the time. My friends, like many incoming geoscience graduate students, have trouble linking these two fields. From my perspective, it is pretty straightforward: Much of geoscience evolves around novel analyses of large data sets that require custom tools—computer programs—to minimize the drudgery of manual data handling; other disciplines share this characteristic. While most faculty adapted to the need for tool development quite naturally, as they grew up around computer terminal interfaces, incoming graduate students lack intuitive understanding of programing concepts such as generalization and automation. I believe the major cause is the intuitive graphical user interfaces of modern operating systems and applications, which isolate the user from all technical details. Generally, current curricula do not recognize this gap between user and machine. For students to operate effectively, they require specialized courses teaching them the skills they need to make tools that operate on particular data sets and solve their specific problems. Courses in computer science departments are aimed at a different audience and are of limited help.

  19. Technosciences in Academia: Rethinking a Conceptual Framework for Bioinformatics Undergraduate Curricula

    NASA Astrophysics Data System (ADS)

    Symeonidis, Iphigenia Sofia

    This paper aims to elucidate guiding concepts for the design of powerful undergraduate bioinformatics degrees which will lead to a conceptual framework for the curriculum. "Powerful" here should be understood as having truly bioinformatics objectives rather than enrichment of existing computer science or life science degrees on which bioinformatics degrees are often based. As such, the conceptual framework will be one which aims to demonstrate intellectual honesty in regards to the field of bioinformatics. A synthesis/conceptual analysis approach was followed as elaborated by Hurd (1983). The approach takes into account the following: bioinfonnatics educational needs and goals as expressed by different authorities, five undergraduate bioinformatics degrees case-studies, educational implications of bioinformatics as a technoscience and approaches to curriculum design promoting interdisciplinarity and integration. Given these considerations, guiding concepts emerged and a conceptual framework was elaborated. The practice of bioinformatics was given a closer look, which led to defining tool-integration skills and tool-thinking capacity as crucial areas of the bioinformatics activities spectrum. It was argued, finally, that a process-based curriculum as a variation of a concept-based curriculum (where the concepts are processes) might be more conducive to the teaching of bioinformatics given a foundational first year of integrated science education as envisioned by Bialek and Botstein (2004). Furthermore, the curriculum design needs to define new avenues of communication and learning which bypass the traditional disciplinary barriers of academic settings as undertaken by Tador and Tidmor (2005) for graduate studies.

  20. Computer Simulated Development of Improved Command to Line-of-Sight Missile Guidance Techniques

    DTIC Science & Technology

    1979-03-01

    INaval Postgraduate School Ma//MW Monterey, CA 93940 C -" 10 6 -VA. MONITORING A41INCY MAMIE 6 AOORESS(it 011f.,.t frau Cdfltt.I01gg 01HOS). IS. SECURITY...States Navy B.S., United States Naval Academy, 1967 Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN SYSTEM4S...i i i it +P~4 to i if 1 . 1 - ztnco C3i.- Z-, a O.) Z (~VI- (M CWn4 Ul% 103 4-7 A BIBLIOGRAPHY 1. U.S. Army Foreign Science and Technology Center

  1. The Characteristics and Experiences of Successful Undergraduate Latina Students Who Persist in Engineering

    NASA Astrophysics Data System (ADS)

    Robinson, Carrie

    Females and underrepresented ethnic minorities earn a small percentage of engineering and computer science bachelor's degrees awarded in the United States, earn an even smaller proportion of master's and doctoral degrees, and are underrepresented in the engineering workforce (Engineering Workforce Commission, [2006], as cited in National Science Foundation, 2012; United States Department of Education, [2006], as cited in National Science Foundation, 2009a; United States Department of Education, [2006], as cited in National Science Foundation, 2009b). Considerable research has examined the perceptions, culture, curriculum, and pedagogy in engineering that inhibits the achievement of women and underrepresented ethnic minorities. This action research study used a qualitative approach to examine the characteristics and experiences of Latina students who pursued a bachelor's degree in the Ira A. Fulton Schools of Engineering at Arizona State University (ASU) as part of the 2008 first-time full-time freshman cohort. The researcher conducted two semi-structured individual interviews with seven undergraduate Latina students who successfully persisted to their fourth (senior) year in engineering. The researcher aimed to understand what characteristics made these students successful and how their experiences affected their persistence in an engineering major. The data collected showed that the Latina participants were motivated to persist in their engineering degree program due to their parents' expectations for success and high academic achievement; their desire to overcome the discrimination, stereotyping, and naysayers that they encountered; and their aspiration to become a role model for their family and other students interested in pursuing engineering. From the data collected, the researcher provided suggestions to implement and adapt educational activities and support systems within the Ira A. Fulton Schools of Engineering to improve the retention and graduation rates of Latinas in engineering at ASU.

  2. Utilizing Structural Equation Modeling and Social Cognitive Career Theory to Identify Factors in Choice of It as a Major

    ERIC Educational Resources Information Center

    Luse, Andy; Rursch, Julie A.; Jacobson, Doug

    2014-01-01

    In the United States, the number of students entering into and completing degrees in science, technology, engineering, and mathematics (STEM) areas has declined significantly over the past decade. Although modest increases have been shown in enrollments in computer-related majors in the past 4 years, the prediction is that even in 3 to 4 years…

  3. Implementation of Protocols to Enable Doctoral Training in Physical and Computational Chemistry of a Blind Graduate Student

    ERIC Educational Resources Information Center

    Minkara, Mona S.; Weaver, Michael N.; Gorske, Jim; Bowers, Clifford R.; Merz, Kenneth M., Jr.

    2015-01-01

    There exists a sparse representation of blind and low-vision students in science, technology, engineering and mathematics (STEM) fields. This is due in part to these individuals being discouraged from pursuing STEM degrees as well as a lack of appropriate adaptive resources in upper level STEM courses and research. Mona Minkara is a rising fifth…

  4. A Game Based e-Learning System to Teach Artificial Intelligence in the Computer Sciences Degree

    ERIC Educational Resources Information Center

    de Castro-Santos, Amable; Fajardo, Waldo; Molina-Solana, Miguel

    2017-01-01

    Our students taking the Artificial Intelligence and Knowledge Engineering courses often encounter a large number of problems to solve which are not directly related to the subject to be learned. To solve this problem, we have developed a game based e-learning system. The elected game, that has been implemented as an e-learning system, allows to…

  5. Research on application of intelligent computation based LUCC model in urbanization process

    NASA Astrophysics Data System (ADS)

    Chen, Zemin

    2007-06-01

    Global change study is an interdisciplinary and comprehensive research activity with international cooperation, arising in 1980s, with the largest scopes. The interaction between land use and cover change, as a research field with the crossing of natural science and social science, has become one of core subjects of global change study as well as the front edge and hot point of it. It is necessary to develop research on land use and cover change in urbanization process and build an analog model of urbanization to carry out description, simulation and analysis on dynamic behaviors in urban development change as well as to understand basic characteristics and rules of urbanization process. This has positive practical and theoretical significance for formulating urban and regional sustainable development strategy. The effect of urbanization on land use and cover change is mainly embodied in the change of quantity structure and space structure of urban space, and LUCC model in urbanization process has been an important research subject of urban geography and urban planning. In this paper, based upon previous research achievements, the writer systematically analyzes the research on land use/cover change in urbanization process with the theories of complexity science research and intelligent computation; builds a model for simulating and forecasting dynamic evolution of urban land use and cover change, on the basis of cellular automation model of complexity science research method and multi-agent theory; expands Markov model, traditional CA model and Agent model, introduces complexity science research theory and intelligent computation theory into LUCC research model to build intelligent computation-based LUCC model for analog research on land use and cover change in urbanization research, and performs case research. The concrete contents are as follows: 1. Complexity of LUCC research in urbanization process. Analyze urbanization process in combination with the contents of complexity science research and the conception of complexity feature to reveal the complexity features of LUCC research in urbanization process. Urban space system is a complex economic and cultural phenomenon as well as a social process, is the comprehensive characterization of urban society, economy and culture, and is a complex space system formed by society, economy and nature. It has dissipative structure characteristics, such as opening, dynamics, self-organization, non-balance etc. Traditional model cannot simulate these social, economic and natural driving forces of LUCC including main feedback relation from LUCC to driving force. 2. Establishment of Markov extended model of LUCC analog research in urbanization process. Firstly, use traditional LUCC research model to compute change speed of regional land use through calculating dynamic degree, exploitation degree and consumption degree of land use; use the theory of fuzzy set to rewrite the traditional Markov model, establish structure transfer matrix of land use, forecast and analyze dynamic change and development trend of land use, and present noticeable problems and corresponding measures in urbanization process according to research results. 3. Application of intelligent computation research and complexity science research method in LUCC analog model in urbanization process. On the basis of detailed elaboration of the theory and the model of LUCC research in urbanization process, analyze the problems of existing model used in LUCC research (namely, difficult to resolve many complexity phenomena in complex urban space system), discuss possible structure realization forms of LUCC analog research in combination with the theories of intelligent computation and complexity science research. Perform application analysis on BP artificial neural network and genetic algorithms of intelligent computation and CA model and MAS technology of complexity science research, discuss their theoretical origins and their own characteristics in detail, elaborate the feasibility of them in LUCC analog research, and bring forward improvement methods and measures on existing problems of this kind of model. 4. Establishment of LUCC analog model in urbanization process based on theories of intelligent computation and complexity science. Based on the research on abovementioned BP artificial neural network, genetic algorithms, CA model and multi-agent technology, put forward improvement methods and application assumption towards their expansion on geography, build LUCC analog model in urbanization process based on CA model and Agent model, realize the combination of learning mechanism of BP artificial neural network and fuzzy logic reasoning, express the regulation with explicit formula, and amend the initial regulation through self study; optimize network structure of LUCC analog model and methods and procedures of model parameters with genetic algorithms. In this paper, I introduce research theory and methods of complexity science into LUCC analog research and presents LUCC analog model based upon CA model and MAS theory. Meanwhile, I carry out corresponding expansion on traditional Markov model and introduce the theory of fuzzy set into data screening and parameter amendment of improved model to improve the accuracy and feasibility of Markov model in the research on land use/cover change.

  6. Degree Attainment. Snapshot™ Report, Winter 2015

    ERIC Educational Resources Information Center

    National Student Clearinghouse, 2015

    2015-01-01

    This Snapshot Report presents information on student degree attainment in science and engineering disciplines for 2004 and 2014. It offers data on the following: (1) Science and Engineering Degrees as Percentage of All Degrees; (2) Gender Distribution of Science and Engineering Degrees by Level; (3) Gender Distribution of Bachelor's Degrees in…

  7. Lincoln Advanced Science and Engineering Reinforcement (LASER) program

    NASA Technical Reports Server (NTRS)

    Williams, Willie E.

    1989-01-01

    Lincoln University, under the Lincoln Advanced Science and Engineering Reinforcement (LASER) Program, has identified and successfully recruited over 100 students for majors in technical fields. To date, over 70 percent of these students have completed or will complete technical degrees in engineering, physics, chemistry, and computer science. Of those completing the undergraduate degree, over 40 percent have gone on to graduate and professional schools. This success is attributable to well planned approaches to student recruitment, training, personal motivation, retention, and program staff. Very closely coupled to the above factors is a focus designed to achieve excellence in program services and student performance. Future contributions by the LASER Program to the pool of technical minority graduates will have a significant impact. This is already evident from the success of the students that began the first year of the program. With program plans to refine many of the already successful techniques, follow-on activities are expected to make even greater contributions to the availability of technically trained minorities. For example, undergraduate research exposure, broadened summer, and co-op work experiences will be enhanced.

  8. Factors related to the persistence and attainment of graduate degrees in the sciences by women science majors

    NASA Astrophysics Data System (ADS)

    Carl, Janet E.

    Researchers have shown that women remain underrepresented in the sciences particularly in doctorate degree attainment. This investigator aimed to extend previous research by examining possible causes of gender disparity in science graduate education using data from the Baccalaureate and Beyond Longitudinal Study, B&B.:93/03. Variables in categories of demographics, academic achievement, financial resources, degree expectations and attitudes toward educational experiences, future study and employment were analyzed by t tests and hierarchical regression to determine gender differences in graduate degree expectations and attainment by male and female science majors. Findings supported gender disparity in undergraduate and graduate fields of study. Women dominated health areas and earned terminal master's degrees, whereas men dominated the physical science field and attained a higher proportion of doctorate degrees. Results also showed no gender differences in master's degree attainment in other fields thus confirming that these graduates did not persist in science fields. Graduate degree expectation was a strong predictor for master's and doctorate degree attainment. Parent education had a significant effect on degree expectations but not on graduate degree attainment. Women tended to have lower degree expectations and earned fewer science and math credits than men. Results showed that unemployment and loans predicted doctorate degree attainment by men and women showed higher levels of employment in graduate school.

  9. Personal Information Management for Nurses Returning to School.

    PubMed

    Bowman, Katherine

    2015-12-01

    Registered nurses with a diploma or an associate's degree are encouraged to return to school to earn a Bachelor of Science in Nursing degree. Until they return to school, many RNs have little need to regularly write, store, and retrieve work-related papers, but they are expected to complete the majority of assignments using a computer when in the student role. Personal information management (PIM) is a system of organizing and managing electronic information that will reduce computer clutter, while enhancing time use, task management, and productivity. This article introduces three PIM strategies for managing school work. Nesting is the creation of a system of folders to form a hierarchy for storing and retrieving electronic documents. Each folder, subfolder, and document must be given a meaningful unique name. Numbering is used to create different versions of the same paper, while preserving the original document. Copyright 2015, SLACK Incorporated.

  10. Understanding and Improving Blind Students' Access to Visual Information in Computer Science Education

    NASA Astrophysics Data System (ADS)

    Baker, Catherine M.

    Teaching people with disabilities tech skills empowers them to create solutions to problems they encounter and prepares them for careers. However, computer science is typically taught in a highly visual manner which can present barriers for people who are blind. The goal of this dissertation is to understand and decrease those barriers. The first projects I present looked at the barriers that blind students face. I first present the results of my survey and interviews with blind students with degrees in computer science or related fields. This work highlighted the many barriers that these blind students faced. I then followed-up on one of the barriers mentioned, access to technology, by doing a preliminary accessibility evaluation of six popular integrated development environments (IDEs) and code editors. I found that half were unusable and all had some inaccessible portions. As access to visual information is a barrier in computer science education, I present three projects I have done to decrease this barrier. The first project is Tactile Graphics with a Voice (TGV). This project investigated an alternative to Braille labels for those who do not know Braille and showed that TGV was a potential alternative. The next project was StructJumper, which created a modified abstract syntax tree that blind programmers could use to navigate through code with their screen reader. The evaluation showed that users could navigate more quickly and easily determine the relationships of lines of code when they were using StructJumper compared to when they were not. Finally, I present a tool for dynamic graphs (the type with nodes and edges) which had two different modes for handling focus changes when moving between graphs. I found that the modes support different approaches for exploring the graphs and therefore preferences are mixed based on the user's preferred approach. However, both modes had similar accuracy in completing the tasks. These projects are a first step towards the goal of making computer science education more accessible to blind students. By identifying the barriers that exist and creating solutions to overcome them, we can support increasing the number of blind students in computer science.

  11. Baby, Where Did You Get Those Eyes?: IEEE Pulse talks with Mark Sagar about the new face of artificial intelligence.

    PubMed

    Campbell, Sarah

    2015-01-01

    Mark Sagar is changing the way we look at computers by giving them faces?disconcertingly realistic human faces. Sagar first gained widespread recognition for his pioneering work in rendering faces for Hollywood movies, including Avatar and King Kong. With a Ph.D. degree in bioengineering and two Academy Awards under his belt, Sagar now directs a research lab at the University of Auckland, New Zealand, a combinatorial hub where artificial intelligence (AI), neuroscience, computer science, philosophy, and cognitive psychology intersect in creating interactive, intelligent technologies.

  12. UTeach: Secondary Teacher Preparation in Science and Mathematics at the University of Texas at Austin

    NASA Astrophysics Data System (ADS)

    Marder, Michael

    2006-03-01

    The UTeach Program is a joint effort of the College of Natural Sciences, the College of Education and the Austin Independent School District to recruit, prepare and support math and science teachers for the State of Texas. UTeach uses early and on-going field experiences to capture the imagination of preservice teachers and provide a foundation for more advanced pedagogical courses. With over 400 students enrolled and over 80 graduates per year, UTeach is one of the largest programs producing secondary science, mathematics, and computer science teachers in the nation. Most UTeach students are undergraduates, but around 10% are people of many ages with strong backgrounds in mathematics or science who have decided to enter teaching. Hallmarks include: *Four-year degree plans that enable undergraduates to obtain certification at no cost in time or money. *Active recruitment and support including tuition reimbursement, paid internships, personal advising, and guidance by master teachers. *Emphasis on preparing teachers who will be knowledgeable of their discipline, experienced with involving students in scientific inquiry, and practiced in employing new technologies to enhance student learning. *A revised, streamlined professional education sequence drawing on research on learning, standards-based curricula, multiple forms of assessment, and proven strategies for achieving equity and integrating technology into math and science education. *Program flexibility with multiple entry points (from freshman to post baccalaureate), integrated degree plans, and proficiency-based assessment, including the development of individual teaching portfolios. For more information on UTeach, see http://uteach.utexas.edu

  13. COAChing Women to Succeed in Academic Careers in the Chemical Sciences

    NASA Astrophysics Data System (ADS)

    Richmond, Geraldine L.

    2005-03-01

    COAChing (Committee on the Advancement of Women Chemists) was formed in 1998 by a group of senior women chemists to address issues related to the documented disparity in hiring, promotion, and advancement of women faculty in academic chemistry departments in the United States. Several national programs have been launched by COACh that are already showing a high degree of impact on the lives and careers of many women chemists in the academic arena. As word of the effectiveness of these programs has spread, other science disciplines (including physics, biology, mathematics, and computer science) have adopted COACh programs with similar goals in mind. This article describes several opportunities that COACh is providing to help increase the number and success of women scientists in academia.

  14. Long live the Data Scientist, but can he/she persist?

    NASA Astrophysics Data System (ADS)

    Wyborn, L. A.

    2011-12-01

    In recent years the fourth paradigm of data intensive science has slowly taken hold as the increased capacity of instruments and an increasing number of instruments (in particular sensor networks) have changed how fundamental research is undertaken. Most modern scientific research is about digital capture of data direct from instruments, processing it by computers, storing the results on computers and only publishing a small fraction of data in hard copy publications. At the same time, the rapid increase in capacity of supercomputers, particularly at petascale, means that far larger data sets can be analysed and to greater resolution than previously possible. The new cloud computing paradigm which allows distributed data, software and compute resources to be linked by seamless workflows, is creating new opportunities in processing of high volumes of data to an increasingly larger number of researchers. However, to take full advantage of these compute resources, data sets for analysis have to be aggregated from multiple sources to create high performance data sets. These new technology developments require that scientists must become more skilled in data management and/or have a higher degree of computer literacy. In almost every science discipline there is now an X-informatics branch and a computational X branch (eg, Geoinformatics and Computational Geoscience): both require a new breed of researcher that has skills in both the science fundamentals and also knowledge of some ICT aspects (computer programming, data base design and development, data curation, software engineering). People that can operate in both science and ICT are increasingly known as 'data scientists'. Data scientists are a critical element of many large scale earth and space science informatics projects, particularly those that are tackling current grand challenges at an international level on issues such as climate change, hazard prediction and sustainable development of our natural resources. These projects by their very nature require the integration of multiple digital data sets from multiple sources. Often the preparation of the data for computational analysis can take months and requires painstaking attention to detail to ensure that anomalies identified are real and are not just artefacts of the data preparation and/or the computational analysis. Although data scientists are increasingly vital to successful data intensive earth and space science projects, unless they are recognised for their capabilities in both the science and the computational domains they are likely to migrate to either a science role or an ICT role as their career advances. Most reward and recognition systems do not recognise those with skills in both, hence, getting trained data scientists to persist beyond one or two projects can be challenge. Those data scientists that persist in the profession are characteristically committed and enthusiastic people who have the support of their organisations to take on this role. They also tend to be people who share developments and are critical to the success of the open source software movement. However, the fact remains that survival of the data scientist as a species is being threatened unless something is done to recognise their invaluable contributions to the new fourth paradigm of science.

  15. Incremental Centrality Algorithms for Dynamic Network Analysis

    DTIC Science & Technology

    2013-08-01

    encouragement he gave me to complete my degree. Last but not least, I would like to thank CASOS members for insightful discussions and feedback they gave me at...Systems ( CASOS ) under the Institute for Software Research within the School of Computer Science (SCS) at Carnegie Mellon University (CMU). Financial...discusses several ways of generalizing betweenness 23 centrality including scaling of values with respect to length, inclusion of end-points in the

  16. Cybersecurity Education for Military Officers

    DTIC Science & Technology

    2017-12-01

    lecture showed the math behind the possible combinations of passwords of different lengths, and made the recommendation to increase your password to...2. Math the system to the real world: Use of effective metaphors and real world language wherever possible. 3. User Control: Try to give the user...given any training on this topic outside of annual NKO courses. I was a math major for my undergraduate degree, so I have no computer science

  17. Integrating Requirements Engineering, Modeling, and Verification Technologies into Software and Systems Engineering

    DTIC Science & Technology

    2007-10-28

    Software Engineering, FASE󈧉, volume 3442 of Lecture Notes in Computer Science, pages 175--189. Springer, 2005. Andreas Bauer, Martin Leucker, and Jonathan ...of Personnel receiving masters degrees NAME Markus Strohmeier Gerrit Hanselmann Jonathan Streit Ernst Sassen 4Total Number: Names of personnel...developed and documented mainly within the master thesis by Jonathan Streit [Str06]: • Jonathan Streit. Development of a programming language like tem

  18. A Requirements Analysis Model for Selection of Personal Computer (PC) software in Air Force Organizations

    DTIC Science & Technology

    1988-09-01

    Institute of Technology Air University In Partial Fulfillment of the Requirements for the Degree of Master of Science in Systems Management Dexter R... management system software Diag/Prob Diagnosis and problem solving or problem finding GR Graphics software Int/Transp Interoperability and...language software Plan/D.S. Planning and decision support or decision making PM Program management software SC Systems for Command, Control, Communications

  19. Mars Science Laboratory Engineering Cameras

    NASA Technical Reports Server (NTRS)

    Maki, Justin N.; Thiessen, David L.; Pourangi, Ali M.; Kobzeff, Peter A.; Lee, Steven W.; Dingizian, Arsham; Schwochert, Mark A.

    2012-01-01

    NASA's Mars Science Laboratory (MSL) Rover, which launched to Mars in 2011, is equipped with a set of 12 engineering cameras. These cameras are build-to-print copies of the Mars Exploration Rover (MER) cameras, which were sent to Mars in 2003. The engineering cameras weigh less than 300 grams each and use less than 3 W of power. Images returned from the engineering cameras are used to navigate the rover on the Martian surface, deploy the rover robotic arm, and ingest samples into the rover sample processing system. The navigation cameras (Navcams) are mounted to a pan/tilt mast and have a 45-degree square field of view (FOV) with a pixel scale of 0.82 mrad/pixel. The hazard avoidance cameras (Haz - cams) are body-mounted to the rover chassis in the front and rear of the vehicle and have a 124-degree square FOV with a pixel scale of 2.1 mrad/pixel. All of the cameras utilize a frame-transfer CCD (charge-coupled device) with a 1024x1024 imaging region and red/near IR bandpass filters centered at 650 nm. The MSL engineering cameras are grouped into two sets of six: one set of cameras is connected to rover computer A and the other set is connected to rover computer B. The MSL rover carries 8 Hazcams and 4 Navcams.

  20. NEWS: Solid foundations?

    NASA Astrophysics Data System (ADS)

    2000-07-01

    Among the initiatives to be found at UK universities is a vocational award with the title `University Foundation Degree' at Nottingham Trent University. This qualification will be offered in 14 different subjects including four in the Faculty of Science and Mathematics, in the areas of applied biology, applied sciences, chemistry and physics. The courses will be available on a two-year full-time, three-year sandwich or a part-time basis. Set at a higher standard and specification than the Higher National Diplomas which it replaces, the UFD has been devised in consultation with industry and will cover the technical and specialist areas demanded by employers to combat skills shortages. The UFD in applied sciences concentrates on practical applications through laboratory, IT and project work, supported by lectures and seminars. At the end students can enter the employment market or transfer onto the second year of a degree course. Science-based careers including research and development would be the aim of those taking the UFD in physics. The first year develops the fundamentals of modern physics supported by studies in mathematics, IT and computer programming, whilst year 2 is vocational in nature with industrial problem solving and work experience as well as an academic theme associated with environmental aspects of the subject. Those who complete the UFD will be allowed automatic progression to a specified honours degree course and would normally be expected to study for a further two years for this award. However, those demonstrating an outstanding academic performance can transfer to the linked degree programme at the end of the first year via fast-track modules. Back in May the UK's Quality Assurance Agency (QAA) announced new standard benchmarks for degrees. These will be introduced into higher education institutions from 2002 to outline the knowledge, understanding and skills a student should gain from a particular higher education course. These benchmark statements should help students to make informed choices about their degree and subsequent employability, as well as informing employers about the skills and knowledge of the graduates they propose to employ. Academics from each discipline have agreed the statements for their areas of expertise to a common framework.

  1. Are UK undergraduate Forensic Science degrees fit for purpose?

    PubMed

    Welsh, Charles; Hannis, Marc

    2011-09-01

    In October 2009 Skills for Justice published the social research paper 'Fit for purpose?: Research into the provision of Forensic Science degree programmes in UK Higher Education Institutions.' The research engaged employers representing 95% of UK Forensic Science providers and 79% of UK universities offering Forensic Science or Crime Scene degree programmes. In addition to this, the research collected the views of 430 students studying these degrees. In 2008 there were approximately 9000 people working in the Forensic Science sector in the UK. The research found that the numbers of students studying Forensic Science or Crime Scene degrees in the UK have more than doubled since 2002-03, from 2191 in to 5664 in 2007-08. Over the same period there were twice as many females as males studying for these degrees. The research concluded that Forensic Science degree programmes offered by UK universities were of a good quality and they provided the student with a positive learning experience but the content was not relevant for Forensic Science employers. This echoed similar research by the former Government Department for Innovation, Universities and Skills on graduates from wider science, technology, engineering and mathematics degree programmes. The research also found that 75% of students studying Forensic Science or Crime Scene degrees expected to have a career in the Forensic Science sector, meaning that ensuring these courses are relevant for employers is a key challenge for universities. This paper reflects on the original research and discusses the implications in light of recent government policy. Copyright © 2011 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  2. Relationship among science teacher personality characteristics and degree of teacher classroom implementation after in-service workshop

    NASA Astrophysics Data System (ADS)

    Sechler, Phares Lochiel Coleman

    State departments of public instruction require that teachers periodically update their licenses throughout their teaching careers. Various professional development events such as in-service workshops, university offerings, and special innovative programs provide opportunities for novice and experienced teachers to grow professionally. The "Team Science" workshop was designed from models supported by research that described guidelines for successful workshop strategies. In evaluating the workshop, the question was asked "Why did not all teachers implement the ideas from the workshop in their science classrooms?" This study investigates the possible relationship between teacher personality characteristics and implementation of technology innovations. Team Science was an extensive workshop program planned to develop science teachers' expertise in using computer and video technology to teach in physical science, chemistry, and physics classrooms in rural school in North Carolina. Upon evaluating the four-year effort, it was found that the 23 participants implemented the technological strategies at various levels. At the higher end of the range of technology use, some teachers exhibited complete integration of the computers and interfacing devices into both the laboratory work and the classroom inquiry. At the lower end of the range, some teachers used the technology very little. The resulting question emerged from the data collected: Do specific teacher personality characteristics (independent variables) correlate with the degree of implementation (dependent variable) of the innovative ideas and tools used in the teacher's science classroom after the in-service workshop? To determine if there were any significant personality traits, each teacher was given five personality tests. The tests were Hunt's Conceptual Development Test, the Paragraph Completion Test; James Rest's Defining Issues Test; Simmons Personal Survey, an emotional tendency test; the Myers-Briggs Type Indicator; and Riggs and Enochs Self-Efficacy Test. The data were analyzed using descriptive statistics, multiple regression, and factor analysis to see what variables were predictors of implementation. The regression analysis revealed that subtests from Myers-Briggs Type Indicator, Simmons Personal Survey, Hunt's Paragraph Completion Test, and Rest's Defining Issues Test could be used to predict implementation. Factor analysis indicated teachers who implemented the technology were "risk takers" and "flexible planners."

  3. Computed tomography of subchondral bone and osteophytes in hip osteoarthritis: the shape of things to come?

    PubMed

    Turmezei, Tom D; Poole, Ken E S

    2011-01-01

    Bone is a fundamental component of the disordered joint homeostasis seen in osteoarthritis, a disease that has been primarily characterized by the breakdown of articular cartilage accompanied by local bone changes and a limited degree of joint inflammation. In this review we consider the role of computed tomography imaging and computational analysis in osteoarthritis research, focusing on subchondral bone and osteophytes in the hip. We relate what is already known in this area to what could be explored through this approach in the future in relation to both clinical research trials and the underlying cellular and molecular science of osteoarthritis. We also consider how this area of research could impact on our understanding of the genetics of osteoarthritis.

  4. Associate in Science (AS) to Bachelor of Science in Applied Science (BSAS) Transfer Students: An Analysis of Student Characteristics, Engagement, and Success

    ERIC Educational Resources Information Center

    Collins, Jerry C.

    2009-01-01

    This study sought to examine and comprehensively describe transfer students who have earned a two-year technical or occupational Associate in Science (AS) degree at the community college and entered the university to pursue the Bachelor of Science in Applied Science (BSAS). The BSAS degree is a specialized baccalaureate degree program created…

  5. Early Career Summer Interdisciplinary Team Experiences and Student Persistence in STEM Fields

    NASA Astrophysics Data System (ADS)

    Cadavid, A. C.; Pedone, V. A.; Horn, W.; Rich, H.

    2015-12-01

    STEPS (Students Targeting Engineering and Physical Science) is an NSF-funded program designed to increase the number of California State University Northridge students getting bachelor's degrees in the natural sciences, mathematics, engineering and computer science. The greatest loss of STEM majors occurs between sophomore and junior- years, so we designed Summer Interdisciplinary Team Experience (SITE) as an early career program for these students. Students work closely with a faculty mentor in teams of ten to investigate regionally relevant problems, many of which relate to sustainability efforts on campus or the community. The projects emphasize hands-on activities and team-based learning and decision making. We report data for five years of projects, qualitative assessment through entrance and exit surveys and student interviews, and in initial impact on retention of the participants.

  6. Clock Agreement Among Parallel Supercomputer Nodes

    DOE Data Explorer

    Jones, Terry R.; Koenig, Gregory A.

    2014-04-30

    This dataset presents measurements that quantify the clock synchronization time-agreement characteristics among several high performance computers including the current world's most powerful machine for open science, the U.S. Department of Energy's Titan machine sited at Oak Ridge National Laboratory. These ultra-fast machines derive much of their computational capability from extreme node counts (over 18000 nodes in the case of the Titan machine). Time-agreement is commonly utilized by parallel programming applications and tools, distributed programming application and tools, and system software. Our time-agreement measurements detail the degree of time variance between nodes and how that variance changes over time. The dataset includes empirical measurements and the accompanying spreadsheets.

  7. The First Hydrology (Geoscience) Degree at a Tribal College or University: Salish Kootenai College

    NASA Astrophysics Data System (ADS)

    Lesser, G.; Berthelote, A. R.

    2010-12-01

    A new Hydrology Degree Program was developed at Salish and Kootenai College in western Montana. This program will begin to address the fact that our nation only awards 20 to 30 Geoscience degrees annually to Native American students. Previously absent from SKC and the other 36 Tribal Colleges or Universities (TCU) Science, Technology, Engineering, and Mathematics (STEM) related programs are specific Geoscience disciplines, particularly those focusing on hydrological and water based sciences. Though 23 TCU’s offer some classes to supplement their environmental science or natural resource programs. This program is timely and essential for addressing the concerns that Native Americans have who maintain sovereignty over approximately 20% of our nation’s fresh water resources which are becoming more stressed each year. The overall objective of this new SKC Hydrology degree program is to produce students who are able to “give voice” to the perspectives of Native peoples on natural resources and particularly water-related issues, including water rights, agriculture, environmental health (related to water), beliefs and spirituality related to water, and sustainability of water resources. It will provide the opportunity for interdisciplinary study in physical, chemical, and biological water resources and their management. Students will gain theoretical, conceptual, computational, and practical knowledge/experiences in quantifying, monitoring, qualifying, and managing today’s water resource challenges with particular emphasis on Tribal lands. Completion of the Associate of Science Degree will provide the student with the necessary skills to work as a hydrology- water quality- or geo-technician within the Reservation area, the U. S. Forest Service, the Environmental Protection Agency, the Bureau of Reclamation, the United States Geological Society, and other earth science disciplines. The Bachelor’s Degree program provides students with a broad-based theoretical and technological understanding of environmental and physical sciences and prepares students to design and direct research and programs related to water resources. Graduates of the Bachelor of Science Degree program are prepared to continue their education in graduate school or obtain employment as managers or directors of programs in industry, consulting, local, state, federal and tribal programs. Graduates will find that due to sovereignty issues, most tribes either have in place or are seeking trained professionals to monitor, manage, and protect their respective water resources. Hydrology and Geoscience job openings are expected to continue to exceed the number of qualified jobseekers through the 2018 projection period. And, nationally, 1 in 4 geoscientist positions are employed as hydrologists (30% engineering related services, 30 % Government, and 20% management and technical consulting). The mission of SKC is to provide quality postsecondary educational opportunities for Native Americans, locally and from throughout the United States, and defines cultural understanding as: "The awareness of your own system of values, beliefs, traditions and history, and knowledge and respect for the systems of others, particularly those of American Indian Tribes, and specifically the Salish, Pend d'Oreille and Kootenai People".

  8. Approximate Confidence Limit Procedures for Complex Systems

    DTIC Science & Technology

    1991-09-01

    requirements for the degree of MASTER OF SCIENCE IN OPERATIONS RESEARCH from the NAVAL POSTGRADUATE SCHOOL September 1991 A uthor...34 YEE, Kah-Chee Approved by: ? )t. 7 " ’& W. M. WOODS, Thesis Advisor R. R. READ, Second Reader P. PURDE, airman Department of Operations Research ii...cautioned that the computer programs developed in this research may not have been exercised for all cases of interest. While every effort has been made

  9. Microcomputer Laboratory Design.

    DTIC Science & Technology

    1983-03-01

    Approved for public release, distribution unlimited 17. OiSTi Of OUTIO STATEMIEN (61 tile 41141f61 d "#Or d i 1806k 20. If |1 N RA""") WS. SUPPLEMENTARY...and implemented to support Airborne Digital Computation, AE 4641, a course involving a study of the methods used for digital computa- tion in...University, 1975 Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING -from the NAVAL

  10. Connecting Theory and Applications Across Complex Systems

    DTIC Science & Technology

    2004-01-01

    applications in biology and computer science. Fernando Pacanini received his Ingeniero Electricista and Licenciado en Matematica degrees from the...Carlson (pdf) (Pd ) breaks 3:30-4:00 10:30-11:00 3:30-4:00 10:30-11:00 El -Samad / Biology Arkin (ndf) Savageau (ndf) Mitra (tdf) Khammash (Pdf...including the Internet and forest ecology. Hana El -Samad is a PhD candidate at the Mechanical Engineering department of the University of California at

  11. An Integrative and Collaborative Approach to Creating a Diverse and Computationally Competent Geoscience Workforce

    NASA Astrophysics Data System (ADS)

    Moore, S. L.; Kar, A.; Gomez, R.

    2015-12-01

    A partnership between Fort Valley State University (FVSU), the Jackson School of Geosciences at The University of Texas (UT) at Austin, and the Texas Advanced Computing Center (TACC) is engaging computational geoscience faculty and researchers with academically talented underrepresented minority (URM) students, training them to solve grand challenges . These next generation computational geoscientists are being trained to solve some of the world's most challenging geoscience grand challenges requiring data intensive large scale modeling and simulation on high performance computers . UT Austin's geoscience outreach program GeoFORCE, recently awarded the Presidential Award in Excellence in Science, Mathematics and Engineering Mentoring, contributes to the collaborative best practices in engaging researchers with URM students. Collaborative efforts over the past decade are providing data demonstrating that integrative pipeline programs with mentoring and paid internship opportunities, multi-year scholarships, computational training, and communication skills development are having an impact on URMs developing middle skills for geoscience careers. Since 1997, the Cooperative Developmental Energy Program at FVSU and its collaborating universities have graduated 87 engineers, 33 geoscientists, and eight health physicists. Recruited as early as high school, students enroll for three years at FVSU majoring in mathematics, chemistry or biology, and then transfer to UT Austin or other partner institutions to complete a second STEM degree, including geosciences. A partnership with the Integrative Computational Education and Research Traineeship (ICERT), a National Science Foundation (NSF) Research Experience for Undergraduates (REU) Site at TACC provides students with a 10-week summer research experience at UT Austin. Mentored by TACC researchers, students with no previous background in computational science learn to use some of the world's most powerful high performance computing resources to address a grand geosciences problem. Students increase their ability to understand and explain the societal impact of their research and communicate the research to multidisciplinary and lay audiences via near-peer mentoring, poster presentations, and publication opportunities.

  12. A Concept for the One Degree Imager (ODI) Data Reduction Pipeline and Archiving System

    NASA Astrophysics Data System (ADS)

    Knezek, Patricia; Stobie, B.; Michael, S.; Valdes, F.; Marru, S.; Henschel, R.; Pierce, M.

    2010-05-01

    The One Degree Imager (ODI), currently being built by the WIYN Observatory, will provide tremendous possibilities for conducting diverse scientific programs. ODI will be a complex instrument, using non-conventional Orthogonal Transfer Array (OTA) detectors. Due to its large field of view, small pixel size, use of OTA technology, and expected frequent use, ODI will produce vast amounts of astronomical data. If ODI is to achieve its full potential, a data reduction pipeline must be developed. Long-term archiving must also be incorporated into the pipeline system to ensure the continued value of ODI data. This paper presents a concept for an ODI data reduction pipeline and archiving system. To limit costs and development time, our plan leverages existing software and hardware, including existing pipeline software, Science Gateways, Computational Grid & Cloud Technology, Indiana University's Data Capacitor and Massive Data Storage System, and TeraGrid compute resources. Existing pipeline software will be augmented to add functionality required to meet challenges specific to ODI, enhance end-user control, and enable the execution of the pipeline on grid resources including national grid resources such as the TeraGrid and Open Science Grid. The planned system offers consistent standard reductions and end-user flexibility when working with images beyond the initial instrument signature removal. It also gives end-users access to computational and storage resources far beyond what are typically available at most institutions. Overall, the proposed system provides a wide array of software tools and the necessary hardware resources to use them effectively.

  13. Preparing minority undergraduate students for successful science careers.

    NASA Astrophysics Data System (ADS)

    Akundi, Murty

    2008-03-01

    Xavier University of Louisiana is well known for being number one in graduating the most minority students in physical and biological sciences. The reason for this success is built on the concept of Standards with Sympathy in the Sciences (Triple S). This is an outgrowth of over twenty years of planning and development by the Xavier science faculty to devise a program for preparing and retaining students in the sciences and engineering. Xavier has been successfully conducting for over ten years, Summer Science Academy (SSA) for middle and high school students; Science Technology, Engineering and Mathematics (STEM) Scholars and Howard Hughes Biomedical programs for in-coming freshmen. Recently, through a grant from NSF, we have developed the Experiential Problem-solving and Analytical Reasoning (EPsAR) summer bridge program for in-coming freshmen who were given conditional admission to the university (i.e., those students who scored below the acceptable range for placement into degree mathematics courses). In this program, EPsAR participants will be engaged in problem-solving and critical thinking activities for eight hours per day, five days per week, for six weeks. Additionally, an interdisciplinary approach is taken to convey the mathematical skills learned to relate to physics, chemistry, biology, and computer science. Sixty-six students have participated in the last two years in the EPsAR program. During the first year 23 of 28 students successfully bi-passed the algebra review course and were placed into a degree credit course in mathematics. In the second year, thirty-one (31) of the 38 were advanced to a higher-level mathematics course. Twenty-three (23) out of 38 went on to degree credit math course. To retain students in the sciences peer tutoring in all the science disciplines are made available to students throughout the day for 5 days per week. Faculty and students are available to give guidance to the needed students. The University has established a Graduate Placement Office and a Center for Undergraduate Research to facilitate students' pursuit of gradate studies. The results of these efforts indicate a 40 percent graduation rate in four years and increased to 90 percent in six years in the natural sciences and 50 percent of these graduates pursue graduate/professional careers.

  14. Optimized Materials From First Principles Simulations: Are We There Yet?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galli, G; Gygi, F

    2005-07-26

    In the past thirty years, the use of scientific computing has become pervasive in all disciplines: collection and interpretation of most experimental data is carried out using computers, and physical models in computable form, with various degrees of complexity and sophistication, are utilized in all fields of science. However, full prediction of physical and chemical phenomena based on the basic laws of Nature, using computer simulations, is a revolution still in the making, and it involves some formidable theoretical and computational challenges. We illustrate the progress and successes obtained in recent years in predicting fundamental properties of materials in condensedmore » phases and at the nanoscale, using ab-initio, quantum simulations. We also discuss open issues related to the validation of the approximate, first principles theories used in large scale simulations, and the resulting complex interplay between computation and experiment. Finally, we describe some applications, with focus on nanostructures and liquids, both at ambient and under extreme conditions.« less

  15. Science and Engineering Degree Completion by Gender. Snapshot™ Report, Spring 2017

    ERIC Educational Resources Information Center

    National Student Clearinghouse, 2017

    2017-01-01

    From 2006 to 2016, degree completion in the so-called "hard sciences" increased in prevalence for both genders. Excluding social sciences and psychology, the percentage of bachelor's degrees accounted for by science and engineering disciplines increased five percentage points for men, and two percentage points for women. This brief…

  16. Integrating the Earth, Atmospheric, and Ocean Sciences at Millersville University

    NASA Astrophysics Data System (ADS)

    Clark, R. D.

    2005-12-01

    For nearly 40 years, the Department of Earth Sciences at Millersville University (MU-DES) of Pennsylvania has been preparing students for careers in the earth, atmospheric, and ocean sciences by providing a rigorous and comprehensive curricula leading to B.S. degrees in geology, meteorology, and oceanography. Undergraduate research is a hallmark of these earth sciences programs with over 30 students participating in some form of meritorious research each year. These programs are rich in applied physics, couched in mathematics, and steeped in technical computing and computer languages. Our success is measured by the number of students that find meaningful careers or go on to earn graduate degrees in their respective fields, as well as the high quality of faculty that the department has retained over the years. Student retention rates in the major have steadily increased with the introduction of a formal learning community and peer mentoring initiatives, and the number of new incoming freshmen and transfer students stands at an all-time high. Yet until recently, the disciplines have remained largely disparate with only minor inroads made into integrating courses that seek to address the Earth as a system. This is soon to change as the MU-DES unveils a new program leading to a B.S. in Integrated Earth Systems. The B.S. in Integrated Earth Systems (ISS) is not a reorganization of existing courses to form a marketable program. Instead, it is a fully integrated program two years in development that borrows from the multi-disciplinary backgrounds and experiences of faculty, while bringing in resources that are tailored to visualizing and modeling the Earth system. The result is the creation of a cross-cutting curriculum designed to prepare the 21st century student for the challenges and opportunities attending the holistic study of the Earth as a system. MU-DES will continue to offer programs leading to degrees in geology, meteorology, and ocean science, but in addition, the B.S. in Integrated Earth Systems will serve those students who find excitement at the boundaries of these disciplines, and prepare them for careers in this emerging field. The ISS program will target high school students of the highest caliber who demonstrate strong aptitude in mathematics and the physical sciences, who will need a minimum amount of remedial work. These select students will be exposed to courses in Earth Systems: Cycles and Interactions, Geophysical Fluid Dynamics, Air-Sea Interaction, Boundary Layers and Turbulence, Climate Variability and Global Change, Atmosphere-Ocean Modeling, Solar-Terrestrial Interactions, Weather Systems Science, Earth Observing Systems, Remote Sensing and more, as part of the ISS curriculum. This paper will highlight the MU-DES programs and learning initiatives and expand and elaborate on the new program in ISS.

  17. Compilation of Abstracts of Theses Submitted by Candidates for Degrees: October 1990 to September 1991

    DTIC Science & Technology

    1991-09-30

    Tool (ASSET) COMPUTER SCIENCE Vicki Sue Abel VIEWER - A User Interface for Failure 49 Lieutenant Commander, U.S. Navy Region Analysis and Medio Monti...California Current System using a Primitive Equation Model Charles C. McGlothin, Jr. Ambient Sound in the Ocean Induced by 257 Lieutenant, U.S. Navy Heavy...parameters,, and ambient flow/oscillating flow combinations using VAX-3520 and NASA’s Supercomputers. Extensive sensitivity analysis has been performed

  18. Reduction of Flow Diagrams to Unfolded Form Modulo Snarls.

    DTIC Science & Technology

    1987-04-14

    the English name of the Greek letter zeta.) 1.) An unintelligent canonical method called the Ŗ-level crossbar/pole" representation (3cp). This... Second , it will make these pictorial representations (all of which go by the name fC. Even though this is an abuse of language , it is in the spirit...received an M.S. degree In computer and communications sciences from the University of Michigan. Bs Is currently teaching a course on assembly language

  19. Queries and Views of Programs Using a Relational Database System

    DTIC Science & Technology

    1983-12-01

    look different but you have changed. I’m looking through you, you’re not the same! - from the song I’m looking through you by the Beatles Seeing...Berkeley, CA 94720 December 1983 Submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Computer Science...in the Graduate Division of the University of California, Berkeley. Copyright© 1983 by Mark A. Linton Research supported by NSF grant MCS-8010686

  20. Use of Information Technology Tools in Source Selection Decision Making: A Study on USAF’s KC-X Tanker Replacement Program

    DTIC Science & Technology

    2008-06-01

    The most common outranking methods are the preference ranking organization method for enrichment evaluation ( PROMETHEE ) and the elimination and...Brans and Ph. Vincke, “A Preference Ranking Organization Method: (The PROMETHEE Method for Multiple Criteria Decision-Making),” Management Science 31... PROMETHEE ). This method needs a preference function for each criterion to compute the degree of preference.72 “The credibility of the outranking

  1. Degrees in Science and Mathematics: National Trends and State-by-State Data.

    ERIC Educational Resources Information Center

    Harworth, Irene

    This compilation of recent statistical information on science and mathematics degrees in the United States also describes the larger environment of employment of individuals with science and mathematics degrees and provides some information on non-U.S. citizens receiving degrees in these areas. Data are derived from four survey programs of the…

  2. Know Your Discipline: Teaching the Philosophy of Computer Science

    ERIC Educational Resources Information Center

    Tedre, Matti

    2007-01-01

    The diversity and interdisciplinarity of computer science and the multiplicity of its uses in other sciences make it hard to define computer science and to prescribe how computer science should be carried out. The diversity of computer science also causes friction between computer scientists from different branches. Computer science curricula, as…

  3. Earth and Space Science Ph.D. Class of 2003 Report released

    NASA Astrophysics Data System (ADS)

    Keelor, Brad

    AGU and the American Geological Institute (AGI) released on 26 July an employment study of 180 Earth and space science Ph.D. recipients who received degrees from U.S. universities in 2003. The AGU/AGI survey asked graduates about their education and employment, efforts to find their first job after graduation, and experiences in graduate school. Key results from the study include: The vast majority (87%) of 2003 graduates found work in the Earth and space sciences, earning salaries commensurate with or slightly higher than 2001 and 2002 salary averages. Most (64%) graduates were employed within academia (including postdoctoral appointments), with the remainder in government (19%), industry (10%), and other (7%) sectors. Most graduates were positive about their employment situation and found that their work was challenging, relevant, and appropriate for someone with a Ph.D. The percentage of Ph.D. recipients accepting postdoctoral positions (58%) increased slightly from 2002. In contrast, the fields of physics and chemistry showed significant increases in postdoctoral appointments for Ph.D.s during the same time period. As in previous years, recipients of Ph.D.s in the Earth, atmospheric, and ocean sciences (median age of 32.7 years) are slightly older than Ph.D. recipients in most other natural sciences (except computer sciences), which is attributed to time taken off between undergraduate and graduate studies. Women in the Earth, atmospheric,and ocean sciences earned 33% of Ph.D.s in the class of 2003, surpassing the percentage of Ph.D.s earned by women in chemistry (32%) and well ahead of the percentage in computer sciences (20%), physics (19%), and engineering (17%). Participation of other underrepresented groups in the Earth, atmospheric, and ocean sciences remained extremely low.

  4. 360-degree videos: a new visualization technique for astrophysical simulations, applied to the Galactic Center

    NASA Astrophysics Data System (ADS)

    Russell, Christopher

    2018-01-01

    360-degree videos are a new type of movie that renders over all 4π steradian. Video sharing sites such as YouTube now allow this unique content to be shared via virtual reality (VR) goggles, hand-held smartphones/tablets, and computers. Creating 360-degree videos from astrophysical simulations not only provide a new way to view these simulations due to their immersive nature, but also yield engaging content for outreach to the public. We present our 360-degree video of an astrophysical simulation of the Galactic center: a hydrodynamics calculation of the colliding and accreting winds of the 30 Wolf-Rayet stars orbiting within the central parsec. Viewing the movie, which renders column density, from the location of the supermassive black hole gives a unique and immersive perspective of the shocked wind material inspiraling and tidally stretching as it plummets toward the black hole. We also describe how to create such movies, discuss what type of content does and does not look appealing in 360-degree format, and briefly comment on what new science can be extracted from astrophysical simulations using 360-degree videos.

  5. Policy Statements for the Associate Degree, the Associate in Applied Science Degree, and the Associate Degree in Nursing.

    ERIC Educational Resources Information Center

    American Association of Community and Junior Colleges, Washington, DC.

    The policy statements contained in this document present the position of the American Association of Community and Junior Colleges (AACJC) on the Associate Degree, the Associate in Applied Science Degree (AAS), and the Associate Degree in Nursing. In its statement on the Associate Degree, the AACJC: (1) stresses the responsibility of faculty and…

  6. E55_Inflight_Purdue_University_2018_0511_2329_651933

    NASA Image and Video Library

    2018-05-14

    SPACE STATION CREW MEMBER RECEIVES HONORARY DEGREE IN ORBIT----- Aboard the International Space Station, Expedition 55 Flight Engineer Drew Feustel of NASA received an honorary doctorate degree from his alma mater, Purdue University, during a unique ground-to-space ceremony on May 11. Feustel, who previously received a Bachelor of Science degree in Solid Earth Sciences and a Master of Science degree in Geophysics from Purdue, was hooded by his crewmate, Purdue graduate Scott Tingle of NASA, who has a Master of Science degree in Mechanical Engineering from the institution. The ceremony originated at Purdue, whose president, Mitch Daniels, introduced the crew members on orbit.

  7. Proceedings of the Workshop on The Human-Computer Partnership in Decision-Support Held in San Luis Obispo, California on May 2-4, 2000

    DTIC Science & Technology

    2000-09-01

    commission in 1979. He holds a Bachelor of Science Degree from Southwest Missouri State University and is a graduate of the US Army’s Armor Officer Advance...1195/12 TARAWA ARG / 13TH MEU ~ WARNET successfully supported VTC, chat, file transfers, whiteboard collaboration • Used regularly to conduct CPR5 staff...Novel employment of WARNET capability • Whiteboard capability supported CIWS repair • Whiteboard capability used to familiarize medical staff on

  8. A Primal DPG Method Without a First Order Reformulation

    DTIC Science & Technology

    2013-05-01

    PERFORMING ORGANIZATION NAME(S) AND ADDRESS( ES ) University of Texas at Austin,Institute for Computational Engineering and Sciences,Austin,TX,78712 8...PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS( ES ) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR...J. GOPALAKRISHNAN 100 102 104 106 10−8 10−6 10−4 10−2 100 102 Square domain: h and p convergence # Degrees of Freedom R el at iv e er ro r i n H1

  9. The Design and Implementation of a Relational to Network Query Translator for a Distributed Database Management System.

    DTIC Science & Technology

    1985-12-01

    RELATIONAL TO NETWORK QUERY TRANSLATOR FOR A DISTRIBUTED DATABASE MANAGEMENT SYSTEM TH ESI S .L Kevin H. Mahoney -- Captain, USAF AFIT/GCS/ENG/85D-7...NETWORK QUERY TRANSLATOR FOR A DISTRIBUTED DATABASE MANAGEMENT SYSTEM - THESIS Presented to the Faculty of the School of Engineering of the Air Force...Institute of Technology Air University In Partial Fulfillment of the Requirements for the Degree of Master of Science in Computer Systems - Kevin H. Mahoney

  10. Low Latency Workflow Scheduling and an Application of Hyperspectral Brightness Temperatures

    NASA Astrophysics Data System (ADS)

    Nguyen, P. T.; Chapman, D. R.; Halem, M.

    2012-12-01

    New system analytics for Big Data computing holds the promise of major scientific breakthroughs and discoveries from the exploration and mining of the massive data sets becoming available to the science community. However, such data intensive scientific applications face severe challenges in accessing, managing and analyzing petabytes of data. While the Hadoop MapReduce environment has been successfully applied to data intensive problems arising in business, there are still many scientific problem domains where limitations in the functionality of MapReduce systems prevent its wide adoption by those communities. This is mainly because MapReduce does not readily support the unique science discipline needs such as special science data formats, graphic and computational data analysis tools, maintaining high degrees of computational accuracies, and interfacing with application's existing components across heterogeneous computing processors. We address some of these limitations by exploiting the MapReduce programming model for satellite data intensive scientific problems and address scalability, reliability, scheduling, and data management issues when dealing with climate data records and their complex observational challenges. In addition, we will present techniques to support the unique Earth science discipline needs such as dealing with special science data formats (HDF and NetCDF). We have developed a Hadoop task scheduling algorithm that improves latency by 2x for a scientific workflow including the gridding of the EOS AIRS hyperspectral Brightness Temperatures (BT). This workflow processing algorithm has been tested at the Multicore Computing Center private Hadoop based Intel Nehalem cluster, as well as in a virtual mode under the Open Source Eucalyptus cloud. The 55TB AIRS hyperspectral L1b Brightness Temperature record has been gridded at the resolution of 0.5x1.0 degrees, and we have computed a 0.9 annual anti-correlation to the El Nino Southern oscillation in the Nino 4 region, as well as a 1.9 Kelvin decadal Arctic warming in the 4u and 12u spectral regions. Additionally, we will present the frequency of extreme global warming events by the use of a normalized maximum BT in a grid cell relative to its local standard deviation. A low-latency Hadoop scheduling environment maintains data integrity and fault tolerance in a MapReduce data intensive Cloud environment while improving the "time to solution" metric by 35% when compared to a more traditional parallel processing system for the same dataset. Our next step will be to improve the usability of our Hadoop task scheduling system, to enable rapid prototyping of data intensive experiments by means of processing "kernels". We will report on the performance and experience of implementing these experiments on the NEX testbed, and propose the use of a graphical directed acyclic graph (DAG) interface to help us develop on-demand scientific experiments. Our workflow system works within Hadoop infrastructure as a replacement for the FIFO or FairScheduler, thus the use of Apache "Pig" latin or other Apache tools may also be worth investigating on the NEX system to improve the usability of our workflow scheduling infrastructure for rapid experimentation.

  11. 45 CFR 2400.42 - Approval of Plan of Study.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-time basis lead to a master's degree in history or political science, the degree of Master of Arts in Teaching in history or political science, or a related master's degree in education that permits a concentration in American history, American government, social studies, or political science; (b) Include...

  12. An examination of the factors related to women's degree attainment and career goals in science, technology, and mathematics

    NASA Astrophysics Data System (ADS)

    Nitopi, Marie

    During the last 30 years, women have made tremendous advances in educational attainment especially in post-secondary education. Despite these advances, recent researchers have revealed that women continue to remain underrepresented in attainment of graduate degrees in the sciences. The researcher's purpose in this study was to extend previous research and to develop a model of variables that significantly contribute to persistence in and attainment of a graduate degree and an eventual career in the science, mathematics, or technology professions. Data were collected from the Baccalaureate and Beyond Longitudinal Study (B&B:93/03). Variables in the categories of demographics, academics, finances, values and attitudes toward educational experiences, and future employment were analyzed by t tests and logistic regressions to determine gender differences in graduate degree attainment and career goals by male and female who majored in science, technology and mathematics. Findings supported significant gender differences in expectations for a graduate degree, age at baccalaureate degree attainment, number of science and engineering credits taken, and the value of faculty interactions. Father's education had a significant effect on degree attainment. Women and men had similar expectations at the beginning of their educational career, but women tended to fall short of their degree expectations ten years later. A large proportion of women dropped out of the science pipeline by choosing different occupations after degree completion. Additionally, women earned fewer science and math credits than men. The professions of science and technology are crucial for the nation's economic growth and competitiveness; therefore, additional researchers should focus on retaining both men and women in the STEM professions.

  13. The Impact of Misspelled Words on Automated Computer Scoring: A Case Study of Scientific Explanations

    NASA Astrophysics Data System (ADS)

    Ha, Minsu; Nehm, Ross H.

    2016-06-01

    Automated computerized scoring systems (ACSSs) are being increasingly used to analyze text in many educational settings. Nevertheless, the impact of misspelled words (MSW) on scoring accuracy remains to be investigated in many domains, particularly jargon-rich disciplines such as the life sciences. Empirical studies confirm that MSW are a pervasive feature of human-generated text and that despite improvements, spell-check and auto-replace programs continue to be characterized by significant errors. Our study explored four research questions relating to MSW and text-based computer assessments: (1) Do English language learners (ELLs) produce equivalent magnitudes and types of spelling errors as non-ELLs? (2) To what degree do MSW impact concept-specific computer scoring rules? (3) What impact do MSW have on computer scoring accuracy? and (4) Are MSW more likely to impact false-positive or false-negative feedback to students? We found that although ELLs produced twice as many MSW as non-ELLs, MSW were relatively uncommon in our corpora. The MSW in the corpora were found to be important features of the computer scoring models. Although MSW did not significantly or meaningfully impact computer scoring efficacy across nine different computer scoring models, MSW had a greater impact on the scoring algorithms for naïve ideas than key concepts. Linguistic and concept redundancy in student responses explains the weak connection between MSW and scoring accuracy. Lastly, we found that MSW tend to have a greater impact on false-positive feedback. We discuss the implications of these findings for the development of next-generation science assessments.

  14. 42 CFR 136.302 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... he or she lives on or near a reservation, is a member of a tribe, band or other organized group... degree of doctor of osteopathy, a degree of bachelor of science in pharmacy or an equivalent degree, a... degree of bachelor of arts, bachelor of science, bachelor of nursing, or to an equivalent degree, or to a...

  15. 42 CFR 136.302 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... he or she lives on or near a reservation, is a member of a tribe, band or other organized group... degree of doctor of osteopathy, a degree of bachelor of science in pharmacy or an equivalent degree, a... degree of bachelor of arts, bachelor of science, bachelor of nursing, or to an equivalent degree, or to a...

  16. 42 CFR 136.302 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... he or she lives on or near a reservation, is a member of a tribe, band or other organized group... degree of doctor of osteopathy, a degree of bachelor of science in pharmacy or an equivalent degree, a... degree of bachelor of arts, bachelor of science, bachelor of nursing, or to an equivalent degree, or to a...

  17. 42 CFR 136.302 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... he or she lives on or near a reservation, is a member of a tribe, band or other organized group... degree of doctor of osteopathy, a degree of bachelor of science in pharmacy or an equivalent degree, a... degree of bachelor of arts, bachelor of science, bachelor of nursing, or to an equivalent degree, or to a...

  18. Foundations for a new science of learning.

    PubMed

    Meltzoff, Andrew N; Kuhl, Patricia K; Movellan, Javier; Sejnowski, Terrence J

    2009-07-17

    Human learning is distinguished by the range and complexity of skills that can be learned and the degree of abstraction that can be achieved compared with those of other species. Homo sapiens is also the only species that has developed formal ways to enhance learning: teachers, schools, and curricula. Human infants have an intense interest in people and their behavior and possess powerful implicit learning mechanisms that are affected by social interaction. Neuroscientists are beginning to understand the brain mechanisms underlying learning and how shared brain systems for perception and action support social learning. Machine learning algorithms are being developed that allow robots and computers to learn autonomously. New insights from many different fields are converging to create a new science of learning that may transform educational practices.

  19. Foundations for a New Science of Learning

    PubMed Central

    Meltzoff, Andrew N.; Kuhl, Patricia K.; Movellan, Javier; Sejnowski, Terrence J.

    2009-01-01

    Human learning is distinguished by the range and complexity of skills that can be learned and the degree of abstraction that can be achieved compared to other species. Humans are also the only species that has developed formal ways to enhance learning: teachers, schools, and curricula. Human infants have an intense interest in people and their behavior, and possess powerful implicit learning mechanisms that are affected by social interaction. Neuroscientists are beginning to understand the brain mechanisms underlying learning and how shared brain systems for perception and action support social learning. Machine learning algorithms are being developed that allow robots and computers to learn autonomously. New insights from many different fields are converging to create a new science of learning that may transform educational practices. PMID:19608908

  20. Factors influencing exemplary science teachers' levels of computer use

    NASA Astrophysics Data System (ADS)

    Hakverdi, Meral

    This study examines exemplary science teachers' use of technology in science instruction, factors influencing their level of computer use, their level of knowledge/skills in using specific computer applications for science instruction, their use of computer-related applications/tools during their instruction, and their students' use of computer applications/tools in or for their science class. After a relevant review of the literature certain variables were selected for analysis. These variables included personal self-efficacy in teaching with computers, outcome expectancy, pupil-control ideology, level of computer use, age, gender, teaching experience, personal computer use, professional computer use and science teachers' level of knowledge/skills in using specific computer applications for science instruction. The sample for this study includes middle and high school science teachers who received the Presidential Award for Excellence in Science Teaching Award (sponsored by the White House and the National Science Foundation) between the years 1997 and 2003 from all 50 states and U.S. territories. Award-winning science teachers were contacted about the survey via e-mail or letter with an enclosed return envelope. Of the 334 award-winning science teachers, usable responses were received from 92 science teachers, which made a response rate of 27.5%. Analysis of the survey responses indicated that exemplary science teachers have a variety of knowledge/skills in using computer related applications/tools. The most commonly used computer applications/tools are information retrieval via the Internet, presentation tools, online communication, digital cameras, and data collection probes. Results of the study revealed that students' use of technology in their science classroom is highly correlated with the frequency of their science teachers' use of computer applications/tools. The results of the multiple regression analysis revealed that personal self-efficacy related to the exemplary science teachers' level of computer use suggesting that computer use is dependent on perceived abilities at using computers. The teachers' use of computer-related applications/tools during class, and their personal self-efficacy, age, and gender are highly related with their level of knowledge/skills in using specific computer applications for science instruction. The teachers' level of knowledge/skills in using specific computer applications for science instruction and gender related to their use of computer-related applications/tools during class and the students' use of computer-related applications/tools in or for their science class. In conclusion, exemplary science teachers need assistance in learning and using computer-related applications/tool in their science class.

  1. [Opinions of a group of university students about science and technology].

    PubMed

    Lisker, Rubén; Carnevale, Alessandra; Pérez Vera, Patricia; Betancourt, Miguel

    2002-01-01

    To learn the opinions of university students of four different areas on the impact of science and technology on society. One Hundred and sixty three close to graduate students of the Universidad Autonoma Metropolitana campus Iztapalapa, distributed as follows: Administration 59, Biology 50, Social Sciences 36 and Engineering 18. For the survey we translated into spanish part of a questionnaire employed in several countries to explore ideas on the impact of science and technology on society of several groups. It contained general questions such as. Do you believe that science and technology are equally good or bad to society, or degree of knowledge of several technologies such as computation or in vitro fertilization. It includes also more specific questions, such as would your have problems with the use of genetically modified vegetables? The results suggested that Administration and Social Sciences students had less interest in Science and Technology than the other, and that in general, the knowledge of all students is rather limited including biotechnology, genetic enginering and gene therapy. We compared the results with those obtained previously in a group of Mexican Physicians and Biology students from India, Thailand and Singapor.

  2. The melting temperature of liquid water with the effective fragment potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brorsen, Kurt R.; Willow, Soohaeng Y.; Xantheas, Sotiris S.

    2015-09-17

    Direct simulation of the solid-liquid water interface with the effective fragment potential (EFP) via the constant enthalpy and pressure (NPH) ensemble was used to estimate the melting temperature (Tm) of ice-Ih. Initial configurations and velocities, taken from equilibrated constant pressure and temperature (NPT) simulations at T = 300 K, 350 K and 400 K, respectively, yielded corresponding Tm values of 378±16 K, 382±14 K and 384±15 K. These estimates are consistently higher than experiment, albeit to the same degree with previously reported estimates using density functional theory (DFT)-based Born-Oppenheimer simulations with the Becke-Lee-Yang-Parr functional plus dispersion corrections (BLYP-D). KRB wasmore » supported by a Computational Science Graduate Fellowship from the Department of Energy. MSG was supported by a U.S. National Science Foundation Software Infrastructure (SI2) grant (ACI – 1047772). SSX acknowledges support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.« less

  3. 44 CFR 19.105 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any degree in a...

  4. 31 CFR 28.105 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any degree in a...

  5. 29 CFR 36.105 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any degree in a...

  6. 10 CFR 1042.105 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any degree in a...

  7. 36 CFR 1211.105 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any degree in a...

  8. 49 CFR 25.105 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any degree in a...

  9. 31 CFR 28.105 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any degree in a...

  10. 49 CFR 25.105 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any degree in a...

  11. 29 CFR 36.105 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any degree in a...

  12. 44 CFR 19.105 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any degree in a...

  13. 10 CFR 1042.105 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any degree in a...

  14. 49 CFR 25.105 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any degree in a...

  15. 29 CFR 36.105 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any degree in a...

  16. 31 CFR 28.105 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any degree in a...

  17. 36 CFR 1211.105 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any degree in a...

  18. 10 CFR 5.105 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any degree in a professional field beyond the first...

  19. 44 CFR 19.105 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any degree in a...

  20. 10 CFR 5.105 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any degree in a professional field beyond the first...

  1. 10 CFR 1042.105 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any degree in a...

  2. 10 CFR 5.105 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any degree in a professional field beyond the first...

  3. 38 CFR 23.105 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... higher education means an institution that: (1) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any degree in a professional field beyond the first professional degree...

  4. 18 CFR 1317.105 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... higher education means an institution that: (1) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any degree in a professional field beyond the first professional degree...

  5. 18 CFR 1317.105 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... higher education means an institution that: (1) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any degree in a professional field beyond the first professional degree...

  6. 38 CFR 23.105 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... higher education means an institution that: (1) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any degree in a professional field beyond the first professional degree...

  7. 22 CFR 146.105 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... higher education means an institution that: (1) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any degree in a professional field beyond the first professional degree...

  8. 38 CFR 23.105 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... higher education means an institution that: (1) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any degree in a professional field beyond the first professional degree...

  9. 14 CFR 1253.105 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... higher education means an institution that: (1) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any degree in a professional field beyond the first professional degree...

  10. 28 CFR 54.105 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... higher education means an institution that: (1) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any degree in a professional field beyond the first professional degree...

  11. 28 CFR 54.105 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... higher education means an institution that: (1) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any degree in a professional field beyond the first professional degree...

  12. 28 CFR 54.105 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... higher education means an institution that: (1) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any degree in a professional field beyond the first professional degree...

  13. 24 CFR 3.105 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... higher education means an institution that: (1) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any degree in a professional field beyond the first professional degree...

  14. 24 CFR 3.105 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... higher education means an institution that: (1) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any degree in a professional field beyond the first professional degree...

  15. 14 CFR 1253.105 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... higher education means an institution that: (1) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any degree in a professional field beyond the first professional degree...

  16. 22 CFR 146.105 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... higher education means an institution that: (1) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any degree in a professional field beyond the first professional degree...

  17. 22 CFR 146.105 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... higher education means an institution that: (1) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any degree in a professional field beyond the first professional degree...

  18. 24 CFR 3.105 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... higher education means an institution that: (1) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any degree in a professional field beyond the first professional degree...

  19. 18 CFR 1317.105 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... higher education means an institution that: (1) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any degree in a professional field beyond the first professional degree...

  20. To What Degree Are Undergraduate Students Using Their Personal Computers to Support Their Daily Study Practices?

    ERIC Educational Resources Information Center

    Sim, KwongNui; Butson, Russell

    2014-01-01

    This scoping study examines the degree to which twenty two undergraduate students used their personal computers to support their academic study. The students were selected based on their responses to a questionnaire aimed at gauging their degree of computer skill. Computer activity data was harvested from the personal computers of eighteen…

  1. 360-degree videos: a new visualization technique for astrophysical simulations

    NASA Astrophysics Data System (ADS)

    Russell, Christopher M. P.

    2017-11-01

    360-degree videos are a new type of movie that renders over all 4π steradian. Video sharing sites such as YouTube now allow this unique content to be shared via virtual reality (VR) goggles, hand-held smartphones/tablets, and computers. Creating 360° videos from astrophysical simulations is not only a new way to view these simulations as you are immersed in them, but is also a way to create engaging content for outreach to the public. We present what we believe is the first 360° video of an astrophysical simulation: a hydrodynamics calculation of the central parsec of the Galactic centre. We also describe how to create such movies, and briefly comment on what new science can be extracted from astrophysical simulations using 360° videos.

  2. 14 CFR § 1253.105 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... higher education means an institution that: (1) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any degree in a professional field beyond the first professional degree...

  3. 7 CFR 15a.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; or (2) Awards any degree in a...

  4. 7 CFR 15a.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; or (2) Awards any degree in a...

  5. 36 CFR § 1211.105 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any degree in a...

  6. 7 CFR 15a.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; or (2) Awards any degree in a...

  7. Gender differences in the use of computers, programming, and peer interactions in computer science classrooms

    NASA Astrophysics Data System (ADS)

    Stoilescu, Dorian; Egodawatte, Gunawardena

    2010-12-01

    Research shows that female and male students in undergraduate computer science programs view computer culture differently. Female students are interested more in the use of computers than in doing programming, whereas male students see computer science mainly as a programming activity. The overall purpose of our research was not to find new definitions for computer science culture but to see how male and female students see themselves involved in computer science practices, how they see computer science as a successful career, and what they like and dislike about current computer science practices. The study took place in a mid-sized university in Ontario. Sixteen students and two instructors were interviewed to get their views. We found that male and female views are different on computer use, programming, and the pattern of student interactions. Female and male students did not have any major issues in using computers. In computing programming, female students were not so involved in computing activities whereas male students were heavily involved. As for the opinions about successful computer science professionals, both female and male students emphasized hard working, detailed oriented approaches, and enjoying playing with computers. The myth of the geek as a typical profile of successful computer science students was not found to be true.

  8. Degrees of Closure and Economic Success in the Norwegian Labour Market: Field of Study and Non-Western Immigrant Performance

    ERIC Educational Resources Information Center

    Drange, Ida

    2016-01-01

    This article compares outcomes in the Norwegian labour market for non-Western immigrants and majority colleagues with professional or master's degrees within three different fields of study: health science, social science and natural science. Professions have a higher degree of occupational closure, which may entail that non-Western immigrants…

  9. LSST Resources for the Community

    NASA Astrophysics Data System (ADS)

    Jones, R. Lynne

    2011-01-01

    LSST will generate 100 petabytes of images and 20 petabytes of catalogs, covering 18,000-20,000 square degrees of area sampled every few days, throughout a total of ten years of time -- all publicly available and exquisitely calibrated. The primary access to this data will be through Data Access Centers (DACs). DACs will provide access to catalogs of sources (single detections from individual images) and objects (associations of sources from multiple images). Simple user interfaces or direct SQL queries at the DAC can return user-specified portions of data from catalogs or images. More complex manipulations of the data, such as calculating multi-point correlation functions or creating alternative photo-z measurements on terabyte-scale data, can be completed with the DAC's own resources. Even more data-intensive computations requiring access to large numbers of image pixels on petabyte-scale could also be conducted at the DAC, using compute resources allocated in a similar manner to a TAC. DAC resources will be available to all individuals in member countries or institutes and LSST science collaborations. DACs will also assist investigators with requests for allocations at national facilities such as the Petascale Computing Facility, TeraGrid, and Open Science Grid. Using data on this scale requires new approaches to accessibility and analysis which are being developed through interactions with the LSST Science Collaborations. We are producing simulated images (as might be acquired by LSST) based on models of the universe and generating catalogs from these images (as well as from the base model) using the LSST data management framework in a series of data challenges. The resulting images and catalogs are being made available to the science collaborations to verify the algorithms and develop user interfaces. All LSST software is open source and available online, including preliminary catalog formats. We encourage feedback from the community.

  10. Perspective: Ring-polymer instanton theory

    NASA Astrophysics Data System (ADS)

    Richardson, Jeremy O.

    2018-05-01

    Since the earliest explorations of quantum mechanics, it has been a topic of great interest that quantum tunneling allows particles to penetrate classically insurmountable barriers. Instanton theory provides a simple description of these processes in terms of dominant tunneling pathways. Using a ring-polymer discretization, an efficient computational method is obtained for applying this theory to compute reaction rates and tunneling splittings in molecular systems. Unlike other quantum-dynamics approaches, the method scales well with the number of degrees of freedom, and for many polyatomic systems, the method may provide the most accurate predictions which can be practically computed. Instanton theory thus has the capability to produce useful data for many fields of low-temperature chemistry including spectroscopy, atmospheric and astrochemistry, as well as surface science. There is however still room for improvement in the efficiency of the numerical algorithms, and new theories are under development for describing tunneling in nonadiabatic transitions.

  11. Experiences with the Development of an Undergraduate Degree in Ecohydrology

    NASA Astrophysics Data System (ADS)

    Saito, L.; Walker, M.; Markee, N.

    2014-12-01

    In 2007, the Department of Natural Resources and Environmental Science established the first undergraduate degree in Ecohydrology in the United States. The degree was designed to prepare students for careers as hydrologists while also including coursework equivalent to a minor in ecology (UNR does not officially offer a minor in ecology). The development of the major was intended to provide students with useful skills and training for the job market, and also to increase enrollment in the University's water-related undergraduate majors. The Department also established an Ecohydrology minor. Since the degree was established, average enrollment in the major has been almost two times higher than the previous Watershed Science option in Environmental Science (the closest comparable degree offering at UNR). The Department has graduated 19 students as of May 2014, and an additional 8 students have graduated with the Ecohydrology minor. Several Ecohydrology graduates have gone on to graduate degrees, and most of the remainder are employed in water-related areas. The students have established an Ecohydrology Club at UNR and are active in organizing water-related activities to do together. This presentation will describe the development of the degree, its implementation, and challenges and opportunities for carrying out an undergraduate degree in Ecohydrology. It will also discuss potential development of a 5-year Bachelor of Science-Master of Science (BS-MS) degree in Ecohydrology.

  12. Evaluation in STEM Online Graduate Degree Programs in Agricultural Sciences and Engineering

    ERIC Educational Resources Information Center

    Downs, Holly A.

    2014-01-01

    Demands for online graduate degrees have increased pressure on universities to launch web degrees quickly and, at times, without attending to their quality. Scarce research exists identifying what evaluation activities are being done by science, technology, engineering, and mathematics (STEM) online graduate degree programs that are accustomed to…

  13. Exploring the Relationships between Self-Efficacy and Preference for Teacher Authority among Computer Science Majors

    ERIC Educational Resources Information Center

    Lin, Che-Li; Liang, Jyh-Chong; Su, Yi-Ching; Tsai, Chin-Chung

    2013-01-01

    Teacher-centered instruction has been widely adopted in college computer science classrooms and has some benefits in training computer science undergraduates. Meanwhile, student-centered contexts have been advocated to promote computer science education. How computer science learners respond to or prefer the two types of teacher authority,…

  14. Understanding the Factors Affecting Degree Completion of Doctoral Women in the Science and Engineering Fields

    ERIC Educational Resources Information Center

    Ampaw, Frim D.; Jaeger, Audrey J.

    2011-01-01

    The rate of doctoral degree completion, compared to all other degrees, is the lowest in the academy, with only 57 percent of doctoral students completing their degree within a ten-year period. In the science, engineering, and mathematics (SEM) fields, 62 percent of the male students complete their doctoral degree in ten years, which is better than…

  15. Transforming the Terminal Associates of Applied Science into a Four-Year Degree: A Win-Win Situation for Students, Community Colleges, Universities, and Businesses

    ERIC Educational Resources Information Center

    Batts, David L.; Pagliari, Leslie R.

    2013-01-01

    Associates of Applied Science (AAS) degrees were once considered terminal degrees and were developed for people seeking technical skills to join the workforce. This paper discusses the transformation from a transferable degree into technical four-year baccalaureate degree. It also discusses survey results of students currently in a degree…

  16. Reducing the Volume of NASA Earth-Science Data

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; Braverman, Amy J.; Guillaume, Alexandre

    2010-01-01

    A computer program reduces data generated by NASA Earth-science missions into representative clusters characterized by centroids and membership information, thereby reducing the large volume of data to a level more amenable to analysis. The program effects an autonomous data-reduction/clustering process to produce a representative distribution and joint relationships of the data, without assuming a specific type of distribution and relationship and without resorting to domain-specific knowledge about the data. The program implements a combination of a data-reduction algorithm known as the entropy-constrained vector quantization (ECVQ) and an optimization algorithm known as the differential evolution (DE). The combination of algorithms generates the Pareto front of clustering solutions that presents the compromise between the quality of the reduced data and the degree of reduction. Similar prior data-reduction computer programs utilize only a clustering algorithm, the parameters of which are tuned manually by users. In the present program, autonomous optimization of the parameters by means of the DE supplants the manual tuning of the parameters. Thus, the program determines the best set of clustering solutions without human intervention.

  17. Workshop on Incomplete Network Data Held at Sandia National Labs – Livermore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soundarajan, Sucheta; Wendt, Jeremy D.

    2016-06-01

    While network analysis is applied in a broad variety of scientific fields (including physics, computer science, biology, and the social sciences), how networks are constructed and the resulting bias and incompleteness have drawn more limited attention. For example, in biology, gene networks are typically developed via experiment -- many actual interactions are likely yet to be discovered. In addition to this incompleteness, the data-collection processes can introduce significant bias into the observed network datasets. For instance, if you observe part of the World Wide Web network through a classic random walk, then high degree nodes are more likely to bemore » found than if you had selected nodes at random. Unfortunately, such incomplete and biasing data collection methods must be often used.« less

  18. Influence of vibrational relaxation on perturbations in a shock layer on a plate

    NASA Astrophysics Data System (ADS)

    Kirilovskiy, S. V.; Maslov, A. A.; Poplavskaya, T. V.; Tsyryul'nikov, I. S.

    2015-05-01

    The influence of excitation of molecular vibrational degrees of freedom on the mean flow and perturbation development in a hypersonic (M = 6-14) viscous shock layer is studied. The layer originates on a plate placed in a flow of air, carbon dioxide, or their mixture at high stagnation temperatures (2000-3000 K). The mean flow and pressure pulsation on the surface of the plate are measured in an IT-302M pulsed wind tunnel (Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch, Russian Academy of Sciences). Numerical simulation is carried out in terms of a model of a thermally perfect gas using the ANSYS Fluent program package based on solving nonstationary two-dimensional Navier-Stokes equations. External flow perturbations are introduced into the computational domain in the form of plane monochromatic acoustic waves using UDF modules built in the computational code. It is shown that the excitation of vibrational degrees of freedom in carbon dioxide molecules considerably influences the position of the head wave and intensifies perturbations in contrast to air in which the fraction of vibrationally excited molecules is low at the same parameters of the oncoming low. The influence of the excitation of vibrational degrees of freedom is studied both for equilibrium gas and for a vibrationally nonequilibrium gas. Nonequilibrium vibrational degrees of freedom are simulated using a two-temperature model of relaxation flows in which the time variation of the vibrational energy is described by the Landau-Teller equation with regard to a finite time of energy exchange between vibrational and translational-rotational degrees of freedom of molecules. It is found that the vibrational nonequilibrium has a damping effect on perturbations.

  19. Computer-Game Construction: A Gender-Neutral Attractor to Computing Science

    ERIC Educational Resources Information Center

    Carbonaro, Mike; Szafron, Duane; Cutumisu, Maria; Schaeffer, Jonathan

    2010-01-01

    Enrollment in Computing Science university programs is at a dangerously low level. A major reason for this is the general lack of interest in Computing Science by females. In this paper, we discuss our experience with using a computer game construction environment as a vehicle to encourage female participation in Computing Science. Experiments…

  20. Tapping the Geoscience Two-Year College Student Reservoir: Factors that Influence Student Transfer Intent and Physical Science Degree Aspirations

    NASA Astrophysics Data System (ADS)

    Wolfe, Benjamin A.

    Colleges and universities are facing greater accountability to identify and implement practices that increase the number of two-year college (2YC) students who transfer to four-year institutions (4YC) and complete baccalaureate degrees. This is particularly true for physical science and geoscience disciplines, which have the lowest STEM degree completion rates of students transferring from 2YCs (Wilson, 2014a). A better understanding of how academic engagement experiences contribute to increased 2YC student interest in these disciplines and student intent to transfer is critical in strengthening the transfer pathway for the physical sciences and geosciences. The purpose of this study was to gain understanding of the influence that background characteristics, mathematics preparation, academic experiences (e.g. faculty-student interaction, undergraduate research experiences, and field experiences), and academic advisor engagement have on 2YC student intentions to transfer to a four-year institution (4YC) with physical science or geoscience degree aspirations. Incorporating the conceptual frameworks of student engagement and transfer student capital (Laanan et al., 2010), this study used Astin's (1993; 1999) input-environment-outcomes (I-E-O) model to investigate what factors predict 2YC students' intent to transfer to a 4YC and pursue physical science or geoscience degrees. This study used a quantitative research approach with data collected from 751 student respondents from 24 2YCs. Results from three sequential multiple regression models revealed advisor interaction, speaking with a transfer advisor, and visiting the intended 4YC were significant in increased 2YC student transfer intent. Student-faculty interaction and faculty and academic advisors discussing career opportunities in the physical sciences were significant in leading to increased 2YC student intent to pursue physical science degrees or geoscience degrees. The results also substantiated the significant role that field-based experiences have in increasing student intent in pursuing geoscience related majors. Surprisingly, developmental math placement was not found to be a significant predictor of transfer intent nor intent to pursue physical science or geoscience degrees. These findings reveal that developing practices focused on transfer student capital acquisition can strengthen the pipeline of physical science and geoscience degrees and supports the suggestion that 2YCs can serve as an intervention point to broaden participation in STEM related degrees.

  1. Central Computer Science Concepts to Research-Based Teacher Training in Computer Science: An Experimental Study

    ERIC Educational Resources Information Center

    Zendler, Andreas; Klaudt, Dieter

    2012-01-01

    The significance of computer science for economics and society is undisputed. In particular, computer science is acknowledged to play a key role in schools (e.g., by opening multiple career paths). The provision of effective computer science education in schools is dependent on teachers who are able to properly represent the discipline and whose…

  2. Science teachers in deaf education: A national survey of K-8 teachers

    NASA Astrophysics Data System (ADS)

    Shaw, Cynthia

    A survey was conducted with 67 science teachers who taught deaf children at the elementary school level. Teacher background variables, information about teacher preparation and certification, preferred teaching methods, communication methodologies, curriculum, and the use of technology were gathered. A purposeful, convenience sampling technique was employed. Utilizing a non-experimental, basic research design and survey methodology, the researcher reviewed both quantitative and qualitative data. The majority of science teachers in this survey at the elementary school level are female and hearing. More than half have deaf education masters degrees. Few have science degrees. The majority of teachers had less than 10 years teaching experience with deaf students. Sixty percent were highly qualified in science; only forty percent were certified in science. They were equally employed at either a state residential school or a public day school. Two-way chi-square analyses were carried out. Hearing teachers preferred to observe other teachers teaching science compared to deaf teachers chi2 (1, N = 67) = 5.39, p < .05, deaf teachers were more familiar than hearing teachers with the ASL/English Bilingual Star School program (chi2 (1, N = 67) = 8.49, p < .01). Deaf teachers participated more in the Star Schools training compared to hearing teachers (chi2 (1, N = 67) = 14.15, p < .001). Deaf teachers compared to hearing teachers were more likely to use the bilingual strategy, translanguaging than hearing teachers (chi2 (1, N = 67) = 4.54, p < .05). Hearing teachers used the computer more often in the classroom than deaf teachers (chi 2 (1, N = 67) = 4.65, p < .01). Hearing teachers had their students use the computer more regularly than deaf teachers (chi2 (1, N = 67) = 11.49, p < .01). Teachers who worked in residential schools compared to working in public schools attended more state department of education science workshops chi2 (1, N = 67) = 6.83, p < .01, attended national or state science meetings chi2 (1, N = 67) = 7.96, p < .01, were familiar with the Star Schools program chi2 (1, N=67) = 13.23, p < .01, and participated more in Star Schools programs chi 2 (1, N = 67) = 15.96, p < .01. Compared to hearing teachers, the deaf teachers used web-based science materials (chi2 (1, N = 67) = 4.65, p < .01), used codeswitching chi2 (1, N = 67) = 10.78, p < .001, used concurrent translation chi2 (1, N = 67) = 11.30, p. < .001, used the Cummins BICS model chi 2 (1, N = 67) = 5.71, p < .01, and used problem based learning chi 2 (1, N = 67) = 4.14, p < .01. Survey response revealed that science teachers in the elementary school lacked training in science, used technology infrequently and did not have access to in-service science workshops. Recommendations are made to provide higher quality science preparation at the pre-service and in-service levels. More research was also suggested to investigate the use of bilingual strategies in the teaching of science as many of the deaf teachers reported they used these strategies often.

  3. Report on enhancing young scholars in science and technology the Center for Excellence in Education

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The present stock and flow of highly talented young persons engaged in the global discovery and application of science and technology are critical to the future pace of innovation. Historically, the world`s largest reservoirs of scientists and engineers have been in the Western economies. Overtime, however, Asia has begun to build equivalent pools of scientists and engineers among their university graduates. According to 1993 data from the National Science Foundation and the UNESCO World Science Report, Germany leads all economies with a 67% ratio of science and engineering degrees to total first university degrees compared to the United States withmore » a distant fifth place at 32% behind Italy, Mexico and Poland. If the nation is to keep its scientific and technological prowess, it must capture its very best talent in the science and technology fields. The question is then raised as to the source within the United States of the science and technology talent pool. While between 1978 and 1991 there was an overall decline in male participation in undergraduate (-9%) and graduate degrees (-12%), the number of women receiving undergraduate (+8%) and graduate degrees (+34%) rose dramatically. These numbers are encouraging for women`s participation overall, however, women earn only a small percentage of physical science and engineering degrees. Why are there so few women in mathematics, engineering, and the physical sciences? The answers are complex and begin early in a woman`s exposure to science and mathematics. This report presents results on a study of careers of alumni from the Research Science Institute. Investigations were concerned with the timing of decision processes concerned with the sciences and math and factors that influenced people to turn away from or proceed with careers in science and math.« less

  4. Executive Support Systems: An Innovation Decision Perspective

    DTIC Science & Technology

    1990-01-01

    of the requirements for the degree of Master of Science Department of Management Science and Information Systems 1990 0 4 28 071 This thesis for the...Master of Science degree by Vern Edwin Hasenstein has been approved for the Department of Management Science and -formation Systems by James C...Dist Speolal Hasenstein, Vern Edwin (M.S., Management Science and Information Systems) Executive Support Systems: An Innovation-decision Perspective

  5. Using spatial principles to optimize distributed computing for enabling the physical science discoveries

    PubMed Central

    Yang, Chaowei; Wu, Huayi; Huang, Qunying; Li, Zhenlong; Li, Jing

    2011-01-01

    Contemporary physical science studies rely on the effective analyses of geographically dispersed spatial data and simulations of physical phenomena. Single computers and generic high-end computing are not sufficient to process the data for complex physical science analysis and simulations, which can be successfully supported only through distributed computing, best optimized through the application of spatial principles. Spatial computing, the computing aspect of a spatial cyberinfrastructure, refers to a computing paradigm that utilizes spatial principles to optimize distributed computers to catalyze advancements in the physical sciences. Spatial principles govern the interactions between scientific parameters across space and time by providing the spatial connections and constraints to drive the progression of the phenomena. Therefore, spatial computing studies could better position us to leverage spatial principles in simulating physical phenomena and, by extension, advance the physical sciences. Using geospatial science as an example, this paper illustrates through three research examples how spatial computing could (i) enable data intensive science with efficient data/services search, access, and utilization, (ii) facilitate physical science studies with enabling high-performance computing capabilities, and (iii) empower scientists with multidimensional visualization tools to understand observations and simulations. The research examples demonstrate that spatial computing is of critical importance to design computing methods to catalyze physical science studies with better data access, phenomena simulation, and analytical visualization. We envision that spatial computing will become a core technology that drives fundamental physical science advancements in the 21st century. PMID:21444779

  6. Using spatial principles to optimize distributed computing for enabling the physical science discoveries.

    PubMed

    Yang, Chaowei; Wu, Huayi; Huang, Qunying; Li, Zhenlong; Li, Jing

    2011-04-05

    Contemporary physical science studies rely on the effective analyses of geographically dispersed spatial data and simulations of physical phenomena. Single computers and generic high-end computing are not sufficient to process the data for complex physical science analysis and simulations, which can be successfully supported only through distributed computing, best optimized through the application of spatial principles. Spatial computing, the computing aspect of a spatial cyberinfrastructure, refers to a computing paradigm that utilizes spatial principles to optimize distributed computers to catalyze advancements in the physical sciences. Spatial principles govern the interactions between scientific parameters across space and time by providing the spatial connections and constraints to drive the progression of the phenomena. Therefore, spatial computing studies could better position us to leverage spatial principles in simulating physical phenomena and, by extension, advance the physical sciences. Using geospatial science as an example, this paper illustrates through three research examples how spatial computing could (i) enable data intensive science with efficient data/services search, access, and utilization, (ii) facilitate physical science studies with enabling high-performance computing capabilities, and (iii) empower scientists with multidimensional visualization tools to understand observations and simulations. The research examples demonstrate that spatial computing is of critical importance to design computing methods to catalyze physical science studies with better data access, phenomena simulation, and analytical visualization. We envision that spatial computing will become a core technology that drives fundamental physical science advancements in the 21st century.

  7. Science Majors and Degrees among Asian-American Students: Influences of Race and Sex in "model Minority" Experiences

    NASA Astrophysics Data System (ADS)

    Meng, Yu; Hanson, Sandra L.

    Both race and sex continue to be factors that stratify entry into science education and occupations in the United States. Asian-Americans (men and women) have experienced considerable success in the sciences and have earned the label of "model minority." The complexities and patterns involved in this success remain elusive. We use several concepts coming out of the status attainment framework and a multicultural gender perspective to explore the way in which race and sex come together to influence choices of science major and degree. Our sample consists of Asian-American and white students in the National Educational Longitudinal Study. Findings suggest that being male and being Asian-American are both associated with higher chances of pursuing majors and degrees in science. The male advantage is greater than the Asian-American advantage. Findings also suggest that race and sex interact in the science decision. For example, race differences (with an Asian-American advantage) in choice of science major are significant for women but not men. Sex differences (with a male advantage) in choice of science major are significant in the white, but not the Asian-American sample. A different set of race and sex patterns is revealed in the science degree models. Processes associated with family socioeconomic status and student characteristics help to explain race and sex patterns. Findings suggest that when Asian-American youths have closer ties to the Asian culture, they are more likely to choose science majors and degrees. Implications for policy, practice, and research in science education are discussed.

  8. A Financial Technology Entrepreneurship Program for Computer Science Students

    ERIC Educational Resources Information Center

    Lawler, James P.; Joseph, Anthony

    2011-01-01

    Education in entrepreneurship is becoming a critical area of curricula for computer science students. Few schools of computer science have a concentration in entrepreneurship in the computing curricula. The paper presents Technology Entrepreneurship in the curricula at a leading school of computer science and information systems, in which students…

  9. Computer Science Teacher Professional Development in the United States: A Review of Studies Published between 2004 and 2014

    ERIC Educational Resources Information Center

    Menekse, Muhsin

    2015-01-01

    While there has been a remarkable interest to make computer science a core K-12 academic subject in the United States, there is a shortage of K-12 computer science teachers to successfully implement computer sciences courses in schools. In order to enhance computer science teacher capacity, training programs have been offered through teacher…

  10. Women in Physics in Perú

    NASA Astrophysics Data System (ADS)

    Loayza, María Luisa Cerón; Vásquez, Yezeña Huaypar; Cabrejos, Jorge Aurelio Bravo

    2009-04-01

    The numbers of women receiving undergraduate and master's degrees in physics from San Marcos National University and undergraduate physics degrees from San Luis Gonzaga National University in Perú are reported. The number of undergraduate degrees in physics has increased for women in San Marcos University, but not for women earning master's degrees. Why don't women complete their post-degree studies? Economics and gender stereotypes are factors that women in Perú have to fight each day. Perú does not have a good scholar program in science, so few students are interested in beginning their university careers in science. Improvements in science education are needed for our country to reach its potential.

  11. Information technology industry certification's impact on undergraduate student perception of instructor effectiveness

    NASA Astrophysics Data System (ADS)

    Andersson, David L.

    The field of Computer Information Systems (CIS) or Information Technology (IT) is experiencing rapid change. A 2003 study analyzing the IT degree programs and those of competing disciplines at 10 post-secondary institutions concluded that information technology programs are perceived differently from information systems and computer science programs and are significantly less focused on both math and pure science subjects. In Information Technology programs, voluntary professional certifications, generally known in the Information Technology field as "IT" certifications, are used as indicators of professional skill. A descriptive study noting one subject group's responses to items that were nearly identical except for IT certification information was done to investigate undergraduate CIS/IT student perceptions of IT industry certified instructors. The subject group was comprised of undergraduate CIS/IT students from a regionally accredited private institution and a public institution. The methodology was descriptive, based on a previous model by Dr. McKillip, Professor of Psychology, Southern Illinois University at Carbondale, utilizing a web-based survey instrument with a Likert scale, providing for voluntary anonymous responses outside the classroom over a ten day window. The results indicated that IT certification affected student perceptions of instructor effectiveness, teaching methodology, and student engagement in the class, and to a lesser degree, instructor technical qualifications. The implications suggest that additional research on this topic is merited. Although the study was not designed to examine the precise cause and effect, an important implication is that students may be motivated to attend classes taught by instructors they view as more confident and effective and that teachers with IT industry certification can better engage their students.

  12. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spentzouris, P.; /Fermilab; Cary, J.

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessarymore » accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization for software development and applications accounts for the natural domain areas (beam dynamics, electromagnetics, and advanced acceleration), and all areas depend on the enabling technologies activities, such as solvers and component technology, to deliver the desired performance and integrated simulation environment. The ComPASS applications focus on computationally challenging problems important for design or performance optimization to all major HEP, NP, and BES accelerator facilities. With the cost and complexity of particle accelerators rising, the use of computation to optimize their designs and find improved operating regimes becomes essential, potentially leading to significant cost savings with modest investment.« less

  13. Computer Science | Classification | College of Engineering & Applied

    Science.gov Websites

    EMS 1011 profile photo Adrian Dumitrescu, Ph.D.ProfessorComputer Science(414) 229-4265Eng & Math @uwm.eduEng & Math Sciences 919 profile photo Hossein Hosseini, Ph.D.ProfessorComputer Science(414) 229 -5184hosseini@uwm.eduEng & Math Sciences 1091 profile photo Amol Mali, Ph.D.Associate ProfessorComputer

  14. Computers in Science Education: Can They Go Far Enough? Have We Gone Too Far?

    ERIC Educational Resources Information Center

    Schrock, John Richard

    1984-01-01

    Indicates that although computers may churn out creative research, science is still dependent on science education, and that science education consists of increasing human experience. Also considers uses and misuses of computers in the science classroom, examining Edgar Dale's "cone of experience" related to laboratory computer and "extended…

  15. Using evolutionary computations to understand the design and evolution of gene and cell regulatory networks.

    PubMed

    Spirov, Alexander; Holloway, David

    2013-07-15

    This paper surveys modeling approaches for studying the evolution of gene regulatory networks (GRNs). Modeling of the design or 'wiring' of GRNs has become increasingly common in developmental and medical biology, as a means of quantifying gene-gene interactions, the response to perturbations, and the overall dynamic motifs of networks. Drawing from developments in GRN 'design' modeling, a number of groups are now using simulations to study how GRNs evolve, both for comparative genomics and to uncover general principles of evolutionary processes. Such work can generally be termed evolution in silico. Complementary to these biologically-focused approaches, a now well-established field of computer science is Evolutionary Computations (ECs), in which highly efficient optimization techniques are inspired from evolutionary principles. In surveying biological simulation approaches, we discuss the considerations that must be taken with respect to: (a) the precision and completeness of the data (e.g. are the simulations for very close matches to anatomical data, or are they for more general exploration of evolutionary principles); (b) the level of detail to model (we proceed from 'coarse-grained' evolution of simple gene-gene interactions to 'fine-grained' evolution at the DNA sequence level); (c) to what degree is it important to include the genome's cellular context; and (d) the efficiency of computation. With respect to the latter, we argue that developments in computer science EC offer the means to perform more complete simulation searches, and will lead to more comprehensive biological predictions. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. A unique degree program for pre-pharmacy education: An undergraduate degree in pharmaceutical sciences.

    PubMed

    Jafari, Mahtab

    2018-02-01

    Within the coming decade, the demand for well-trained pharmacists is expected to only increase, especially with the aging of the United States (US) population. To help fill this growing demand, the University of California, Irvine (UCI) aims to offer a unique pre-pharmacy degree program and has developed a Bachelor of Science (BS) degree in Pharmaceutical Sciences to help achieve this goal. In this commentary, we share our experience with our curriculum and highlight its features in an effort to encourage other institutions to enhance the learning experience of their pre-pharmacy students. The efforts of the UCI Department of Pharmaceutical Sciences has resulted in UCI being consistently ranked as one of the top feeder institutions by the Pharmacy College Application Service (PharmCAS) in recent years. The UCI Pharmaceutical Sciences Bachelor of Science offers a unique pre-pharmacy educational experience in an effort to better prepare undergraduates for the rigors of the doctorate of pharmacy curriculum. Copyright © 2017. Published by Elsevier Inc.

  17. Earth Science Education in Zimbabwe

    NASA Astrophysics Data System (ADS)

    Walsh, Kevin L.

    1999-05-01

    Zimbabwe is a mineral-rich country with a long history of Earth Science Education. The establishment of a University Geology Department in 1960 allowed the country to produce its own earth science graduates. These graduates are readily absorbed by the mining industry and few are without work. Demand for places at the University is high and entry standards reflect this. Students enter the University after GCE A levels in three science subjects and most go on to graduate. Degree programmes include B.Sc. General in Geology (plus another science), B.Sc. Honours in Geology and M.Sc. in Exploration Geology and in Geophysics. The undergraduate curriculum is broad-based and increasingly vocationally orientated. A well-equipped building caters for relatively large student numbers and also houses analytical facilities used for research and teaching. Computers are used in teaching from the first year onwards. Staff are on average poorly qualified compared to other universities, but there is an impressive research element. The Department has good links with many overseas universities and external funding agencies play a strong supporting role. That said, financial constraints remain the greatest barrier to future development, although increasing links with the mining industry may cushion this.

  18. Experience the natural sciences: Programs for teachers at the University of Hawaii at Hilo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hapai, M.N.

    1994-12-31

    Since 1988, the University of Hawaii at Hilo Science and Education faculty have jointly created programs for pre- and in-service teachers, and to improve science teaching, to increase the number of science teachers, and to improve scientific literacy in the general population. The National Sciences major, approved in 1991, with both elementary and secondary teaching options, has gone from three degree seeking candidates in the fall of 1991 to fifty-nine in the spring of 1994. The major provides elementary teachers with a general science degree and teaching certification; and secondary teachers with a more intense general science degree, a specializedmore » minor, and teaching certification. Additionally, a new 18 credit Natural Sciences Certificate for in-service elementary teachers, designed to enhance their scientific background and classroom methodology, has already attracted over 250 teachers within the last year.« less

  19. Characterization of Aerodynamic Interactions with the Mars Science Laboratory Reaction Control System Using Computation and Experiment

    NASA Technical Reports Server (NTRS)

    Schoenenberger, Mark; VanNorman, John; Rhode, Matthew; Paulson, John

    2013-01-01

    On August 5 , 2012, the Mars Science Laboratory (MSL) entry capsule successfully entered Mars' atmosphere and landed the Curiosity rover in Gale Crater. The capsule used a reaction control system (RCS) consisting of four pairs of hydrazine thrusters to fly a guided entry. The RCS provided bank control to fly along a flight path commanded by an onboard computer and also damped unwanted rates due to atmospheric disturbances and any dynamic instabilities of the capsule. A preliminary assessment of the MSL's flight data from entry showed that the capsule flew much as predicted. This paper will describe how the MSL aerodynamics team used engineering analyses, computational codes and wind tunnel testing in concert to develop the RCS system and certify it for flight. Over the course of MSL's development, the RCS configuration underwent a number of design iterations to accommodate mechanical constraints, aeroheating concerns and excessive aero/RCS interactions. A brief overview of the MSL RCS configuration design evolution is provided. Then, a brief description is presented of how the computational predictions of RCS jet interactions were validated. The primary work to certify that the RCS interactions were acceptable for flight was centered on validating computational predictions at hypersonic speeds. A comparison of computational fluid dynamics (CFD) predictions to wind tunnel force and moment data gathered in the NASA Langley 31-Inch Mach 10 Tunnel was the lynch pin to validating the CFD codes used to predict aero/RCS interactions. Using the CFD predictions and experimental data, an interaction model was developed for Monte Carlo analyses using 6-degree-of-freedom trajectory simulation. The interaction model used in the flight simulation is presented.

  20. Diversity of Approaches to Structuring University-Based Earth System Science Education

    NASA Astrophysics Data System (ADS)

    Aron, J.; Ruzek, M.; Johnson, D. R.

    2004-12-01

    Over the past quarter century, the "Earth system science" paradigm has emerged among the interdisciplinary science community, emphasizing interactions among components hitherto considered within separate disciplines: atmosphere (air); hydrosphere (water); biosphere (life); lithosphere (land); anthroposphere (human dimension); and exosphere (solar system and beyond). How should the next generation of Earth system scientists learn to contribute to this interdisciplinary endeavor? There is no one simple answer. The Earth System Science Education program, funded by NASA, has addressed this question by supporting faculty at U.S. universities who develop new courses, curricula and degree programs in their institutional contexts. This report demonstrates the diversity of approaches to structuring university-based Earth system science education, focusing on the 18 current grantees of the Earth System Science Education Program for the 21st Century (ESSE21). One of the most fundamental characteristics is the departmental structure for teaching Earth system science. The "home" departments of the Earth system science faculty range from Earth sciences and physics to agronomy and social work. A brand-new institution created an interdisciplinary Institute for Earth Systems Science and Policy without traditional "parent" departments. Some institutions create new degree programs as majors or as minors while others work within existing degree programs to add or revise courses. A university may also offer multiple strands, such as a degree in the Science of the Earth System and a degree in the Human Dimensions of the Earth System. Defining a career path is extremely important to students considering Earth system science programs and a major institutional challenge for all programs in Earth system science education. How will graduate programs assess prospective students? How will universities and government agencies assess prospective faculty and scientists? How will government agencies allocate funds to interdisciplinary Earth system science and technology? Finally, how should the Earth system science education community evolve?

  1. Assessment of the Mars Science Laboratory Entry, Descent, and Landing Simulation

    NASA Technical Reports Server (NTRS)

    Way, David W.; Davis, J. L.; Shidner, Jeremy D.

    2013-01-01

    On August 5, 2012, the Mars Science Laboratory rover, Curiosity, successfully landed inside Gale Crater. This landing was only the seventh successful landing and fourth rover to be delivered to Mars. Weighing nearly one metric ton, Curiosity is the largest and most complex rover ever sent to investigate another planet. Safely landing such a large payload required an innovative Entry, Descent, and Landing system, which included the first guided entry at Mars, the largest supersonic parachute ever flown at Mars, and a novel and untested Sky Crane landing system. A complete, end-to-end, six degree-of-freedom, multi-body computer simulation of the Mars Science Laboratory Entry, Descent, and Landing sequence was developed at the NASA Langley Research Center. In-flight data gathered during the successful landing is compared to pre-flight statistical distributions, predicted by the simulation. These comparisons provide insight into both the accuracy of the simulation and the overall performance of the vehicle.

  2. Preliminary assessment of the Mars Science Laboratory entry, descent, and landing simulation

    NASA Astrophysics Data System (ADS)

    Way, David W.

    On August 5, 2012, the Mars Science Laboratory rover, Curiosity, successfully landed inside Gale Crater. This landing was the seventh successful landing and fourth rover to be delivered to Mars. Weighing nearly one metric ton, Curiosity is the largest and most complex rover ever sent to investigate another planet. Safely landing such a large payload required an innovative Entry, Descent, and Landing system, which included the first guided entry at Mars, the largest supersonic parachute ever flown at Mars, and the novel Sky Crane landing system. A complete, end-to-end, six degree-of-freedom, multi-body computer simulation of the Mars Science Laboratory Entry, Descent, and Landing sequence was developed at the NASA Langley Research Center. In-flight data gathered during the successful landing is compared to pre-flight statistical distributions, predicted by the simulation. These comparisons provide insight into both the accuracy of the simulation and the overall performance of the Entry, Descent, and Landing system.

  3. Preliminary Assessment of the Mars Science Laboratory Entry, Descent, and Landing Simulation

    NASA Technical Reports Server (NTRS)

    Way, David W.

    2013-01-01

    On August 5, 2012, the Mars Science Laboratory rover, Curiosity, successfully landed inside Gale Crater. This landing was only the seventh successful landing and fourth rover to be delivered to Mars. Weighing nearly one metric ton, Curiosity is the largest and most complex rover ever sent to investigate another planet. Safely landing such a large payload required an innovative Entry, Descent, and Landing system, which included the first guided entry at Mars, the largest supersonic parachute ever flown at Mars, and a novel and untested Sky Crane landing system. A complete, end-to-end, six degree-of-freedom, multibody computer simulation of the Mars Science Laboratory Entry, Descent, and Landing sequence was developed at the NASA Langley Research Center. In-flight data gathered during the successful landing is compared to pre-flight statistical distributions, predicted by the simulation. These comparisons provide insight into both the accuracy of the simulation and the overall performance of the vehicle.

  4. Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period April, 1986 through September 30, 1986 is summarized.

  5. 78 FR 10180 - Annual Computational Science Symposium; Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-13

    ...] Annual Computational Science Symposium; Conference AGENCY: Food and Drug Administration, HHS. ACTION... Computational Science Symposium.'' The purpose of the conference is to help the broader community align and share experiences to advance computational science. At the conference, which will bring together FDA...

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hules, John

    This 1998 annual report from the National Scientific Energy Research Computing Center (NERSC) presents the year in review of the following categories: Computational Science; Computer Science and Applied Mathematics; and Systems and Services. Also presented are science highlights in the following categories: Basic Energy Sciences; Biological and Environmental Research; Fusion Energy Sciences; High Energy and Nuclear Physics; and Advanced Scientific Computing Research and Other Projects.

  7. 75 FR 8409 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ... have completed bachelor's and master's degrees in science, engineering and health from U.S... on the new entrants into the science and engineering workforce and to provide estimates on the characteristics of recent bachelor's and master's graduates with science, engineering and health degrees. The...

  8. Enduring Influence of Stereotypical Computer Science Role Models on Women's Academic Aspirations

    ERIC Educational Resources Information Center

    Cheryan, Sapna; Drury, Benjamin J.; Vichayapai, Marissa

    2013-01-01

    The current work examines whether a brief exposure to a computer science role model who fits stereotypes of computer scientists has a lasting influence on women's interest in the field. One-hundred undergraduate women who were not computer science majors met a female or male peer role model who embodied computer science stereotypes in appearance…

  9. A Web of Resources for Introductory Computer Science.

    ERIC Educational Resources Information Center

    Rebelsky, Samuel A.

    As the field of Computer Science has grown, the syllabus of the introductory Computer Science course has changed significantly. No longer is it a simple introduction to programming or a tutorial on computer concepts and applications. Rather, it has become a survey of the field of Computer Science, touching on a wide variety of topics from digital…

  10. Optimizing contrast agents with respect to reducing beam hardening in nonmedical X-ray computed tomography experiments.

    PubMed

    Nakashima, Yoshito; Nakano, Tsukasa

    2014-01-01

    Iodine is commonly used as a contrast agent in nonmedical science and engineering, for example, to visualize Darcy flow in porous geological media using X-ray computed tomography (CT). Undesirable beam hardening artifacts occur when a polychromatic X-ray source is used, which makes the quantitative analysis of CT images difficult. To optimize the chemistry of a contrast agent in terms of the beam hardening reduction, we performed computer simulations and generated synthetic CT images of a homogeneous cylindrical sand-pack (diameter, 28 or 56 mm; porosity, 39 vol.% saturated with aqueous suspensions of heavy elements assuming the use of a polychromatic medical CT scanner. The degree of cupping derived from the beam hardening was assessed using the reconstructed CT images to find the chemistry of the suspension that induced the least cupping. The results showed that (i) the degree of cupping depended on the position of the K absorption edge of the heavy element relative to peak of the polychromatic incident X-ray spectrum, (ii) (53)I was not an ideal contrast agent because it causes marked cupping, and (iii) a single element much heavier than (53)I ((64)Gd to (79)Au) reduced the cupping artifact significantly, and a four-heavy-element mixture of elements from (64)Gd to (79)Au reduced the artifact most significantly.

  11. Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period April l, 1988 through September 30, 1988.

  12. Summary of research in applied mathematics, numerical analysis and computer science at the Institute for Computer Applications in Science and Engineering

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science during the period October 1, 1983 through March 31, 1984 is summarized.

  13. Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period October 1, 1986 through March 31, 1987 is summarized.

  14. High school computer science education paves the way for higher education: the Israeli case

    NASA Astrophysics Data System (ADS)

    Armoni, Michal; Gal-Ezer, Judith

    2014-07-01

    The gap between enrollments in higher education computing programs and the high-tech industry's demands is widely reported, and is especially prominent for women. Increasing the availability of computer science education in high school is one of the strategies suggested in order to address this gap. We look at the connection between exposure to computer science in high school and pursuing computing in higher education. We also examine the gender gap, in the context of high school computer science education. We show that in Israel, students who took the high-level computer science matriculation exam were more likely to pursue computing in higher education. Regarding the issue of gender, we will show that, in general, in Israel the difference between males and females who take computer science in high school is relatively small, and a larger, though still not very large difference exists only for the highest exam level. In addition, exposing females to high-level computer science in high school has more relative impact on pursuing higher education in computing.

  15. A new monthly gravity field model based on GRACE observations computed by the modified dynamic approach

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Luo, Z.; Li, Q.; Zhong, B.

    2016-12-01

    The monthly gravity field model can be used to compute the information about the mass variation within the system Earth, i.e., the relationship between mass variation in the oceans, land hydrology, and ice sheets. For more than ten years, GRACE has provided valuable information for recovering monthly gravity field model. In this study, a new time series of GRACE monthly solution, which is truncated to degree and order 60, is computed by the modified dynamic approach. Compared with the traditional dynamic approach, the major difference of our modified approach is the way to process the nuisance parameters. This type of parameters is mainly used to absorb low-frequency errors in KBRR data. One way is to remove the nuisance parameters before estimating the geo-potential coefficients, called Pure Predetermined Strategy (PPS). The other way is to determine the nuisance parameters and geo-potential coefficients simultaneously, called Pure Simultaneous Strategy (PSS). It is convenient to detect the gross error by PPS, while there is also obvious signal loss compared with the solutions derived from PSS. After comparing the difference of practical calculation formulas between PPS and PSS, we create the Filter Predetermine Strategy (FPS), which can combine the advantages of PPS and PSS efficiently. With FPS, a new monthly gravity field model entitled HUST-Grace2016s is developed. The comparisons of geoid degree powers and mass change signals in the Amazon basin, the Greenland and the Antarctic demonstrate that our model is comparable with the other published models, e.g., the CSR RL05, JPL RL05 and GFZ RL05 models. Acknowledgements: This work is supported by China Postdoctoral Science Foundation (Grant No.2016M592337), the National Natural Science Foundation of China (Grant Nos. 41131067, 41504014), the Open Research Fund Program of the State Key Laboratory of Geodesy and Earth's Dynamics (Grant No. SKLGED2015-1-3-E).

  16. Defining Computational Thinking for Mathematics and Science Classrooms

    NASA Astrophysics Data System (ADS)

    Weintrop, David; Beheshti, Elham; Horn, Michael; Orton, Kai; Jona, Kemi; Trouille, Laura; Wilensky, Uri

    2016-02-01

    Science and mathematics are becoming computational endeavors. This fact is reflected in the recently released Next Generation Science Standards and the decision to include "computational thinking" as a core scientific practice. With this addition, and the increased presence of computation in mathematics and scientific contexts, a new urgency has come to the challenge of defining computational thinking and providing a theoretical grounding for what form it should take in school science and mathematics classrooms. This paper presents a response to this challenge by proposing a definition of computational thinking for mathematics and science in the form of a taxonomy consisting of four main categories: data practices, modeling and simulation practices, computational problem solving practices, and systems thinking practices. In formulating this taxonomy, we draw on the existing computational thinking literature, interviews with mathematicians and scientists, and exemplary computational thinking instructional materials. This work was undertaken as part of a larger effort to infuse computational thinking into high school science and mathematics curricular materials. In this paper, we argue for the approach of embedding computational thinking in mathematics and science contexts, present the taxonomy, and discuss how we envision the taxonomy being used to bring current educational efforts in line with the increasingly computational nature of modern science and mathematics.

  17. Mercury: Photomosaic of the Shakespeare Quadrangle of Mercury (Southern Half) H-3

    NASA Technical Reports Server (NTRS)

    1974-01-01

    This computer generated photomosaic from Mariner 10 is of the southern half of Mercury's Shakespeare Quadrangle, named for the ancient Shakespeare crater located on the upper edge to the left of center. This portion of the quadrangle covers the geographic region from 20 to 45 degrees north latitude and from 90 to 180 degrees longitude. The photomosaic was produced using computer techniques and software developed in the Image Processing Laboratory of NASA's Jet Propulsion Laboratory. The pictures have been high-pass filtered and contrast enhanced to accentuate surface detail, and geometrically transformed into a Lambert conformal projection.

    Well defined bright streaks or ray systems radiating away from craters constitute another distinctive feature of the Mercurian surface, remarkably similar to the Moon. The rays cut across and are superimposed on all other surface features, indicating that the source craters are the youngest topographic features on the surface of Mercury.

    The above material was taken from the following publication... Davies, M. E., S. E. Dwornik, D. E. Gault, and R. G. Strom, Atlas of Mercury,NASA SP-423 (1978).

    The Mariner 10 mission was managed by the Jet Propulsion Laboratory for NASA's Office of Space Science.

  18. Master's Degree Programs for the Preparation of Secondary Earth Science Teachers.

    ERIC Educational Resources Information Center

    Passero, Richard Nicholas

    Investigated were master's degree programs for the preparation of secondary school earth science teachers. Programs studied were classified as: (1) noninstitute college programs, and (2) National Science Foundation (NSF) institute programs. A total of 289 students enrolled in noninstitute programs contributed data by personal visits and…

  19. Nicholas Brunhart-Lupo | NREL

    Science.gov Websites

    . Education Ph.D., Computer Science, Colorado School of Mines M.S., Computer Science, University of Queensland B.S., Computer Science, Colorado School of Mines Brunhart-Lupo Nicholas Brunhart-Lupo Computational Science Nicholas.Brunhart-Lupo@nrel.gov

  20. The Need for Computer Science

    ERIC Educational Resources Information Center

    Margolis, Jane; Goode, Joanna; Bernier, David

    2011-01-01

    Broadening computer science learning to include more students is a crucial item on the United States' education agenda, these authors say. Although policymakers advocate more computer science expertise, computer science offerings in high schools are few--and actually shrinking. In addition, poorly resourced schools with a high percentage of…

  1. Summary of research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period October 1, 1988 through March 31, 1989 is summarized.

  2. CaTs Lab (CHAOS and Thermal Sciences Laboratory)

    NASA Technical Reports Server (NTRS)

    Teate, Anthony A.

    2002-01-01

    The CHAOS and Thermal Sciences Laboratory (CaTs) at James Madison University evolved into a noteworthy effort to increase minority representation in the sciences and mathematics. Serving ten students and faculty directly, and nearly 50 students indirectly, CaTs, through recruitment efforts, workshops, mentoring programs, tutorial services and research and computational laboratories, fulfilled its intent to initiate an academically enriched research program aimed at strengthening the academic and self-actualization skills of undergraduate students with potential to pursue doctoral study in the sciences. The stated goal of the program was to increase by 5% the number of enrolled mathematics and science students into the program. Success far exceeded the program goals by producing 100% graduation rate of all supported recipients during its tenure, with 30% of the students subsequently in pursuit of graduate degrees. Student retention in the program exceeded 90% and faculty participation exceeded the three members involved in mentoring and tutoring, gaining multi-disciplinary support. Aggressive marketing of the program resulted in several paid summer internships and commitments from NASA and an ongoing relationship with CHROME, a nationally recognized organization which focuses on developing minority students in the sciences and mathematics. Success of the program was only limited by the limited fiscal resources at NASA which resulted in phasing out of the program.

  3. A Shifting Baseline: Higher Degrees and Career Options for Ocean Scientists

    NASA Astrophysics Data System (ADS)

    Yoder, J. A.; Briscoe, M. G.; Glickson, D.; Roberts, S.; Spinrad, R. W.

    2016-02-01

    As for other fields of science, a Ph.D. degree in the ocean sciences no longer guarantees an academic position. In fact, recent studies show that while most earning a Ph.D. in the ocean sciences today may start in academia as a postdoc, an undetermined number of postdocs may not move into university faculty positions or comparable positions at basic research institutions. Although the data are few, some believe that most of those now earning Ph.D. degrees in ocean science are eventually employed outside of academia. Changes to the career path for those entering ocean science graduate programs today is both a challenge and an opportunity for graduate programs. Some graduates of course do continue in academia. For those students who are determined to follow that path, graduate programs need to prepare them for that choice. On the other hand, graduate programs also have an obligation to provide students with the information they need to make educated career decisions - there are interesting career choices other than academia for those earning a Ph.D. or finishing with a terminal M.S. degree. Furthermore, graduate programs need to encourage students to think hard about their career expectations early in their graduate program to ensure they acquire the skills needed to keep career options open. This talk will briefly review some of the recent studies related to the career paths of those who recently acquired a Ph.D. in ocean sciences and other fields; describe possible career options for those who enter ocean science graduate programs; encourage more attention on the career possibilities of a terminal ocean science M.S. degree perhaps combined with another higher degree in a different field; and discuss the skills a graduate student can acquire that increase the breadth of career path opportunities.

  4. Curricular Influences on Female Afterschool Facilitators' Computer Science Interests and Career Choices

    NASA Astrophysics Data System (ADS)

    Koch, Melissa; Gorges, Torie

    2016-10-01

    Underrepresented populations such as women, African-Americans, and Latinos/as often come to STEM (science, technology, engineering, and mathematics) careers by less traditional paths than White and Asian males. To better understand how and why women might shift toward STEM, particularly computer science, careers, we investigated the education and career direction of afterschool facilitators, primarily women of color in their twenties and thirties, who taught Build IT, an afterschool computer science curriculum for middle school girls. Many of these women indicated that implementing Build IT had influenced their own interest in technology and computer science and in some cases had resulted in their intent to pursue technology and computer science education. We wanted to explore the role that teaching Build IT may have played in activating or reactivating interest in careers in computer science and to see whether in the years following implementation of Build IT, these women pursued STEM education and/or careers. We reached nine facilitators who implemented the program in 2011-12 or shortly after. Many indicated that while facilitating Build IT, they learned along with the participants, increasing their interest in and confidence with technology and computer science. Seven of the nine participants pursued further STEM or computer science learning or modified their career paths to include more of a STEM or computer science focus. Through interviews, we explored what aspects of Build IT influenced these facilitators' interest and confidence in STEM and when relevant their pursuit of technology and computer science education and careers.

  5. The NASA computer science research program plan

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A taxonomy of computer science is included, one state of the art of each of the major computer science categories is summarized. A functional breakdown of NASA programs under Aeronautics R and D, space R and T, and institutional support is also included. These areas were assessed against the computer science categories. Concurrent processing, highly reliable computing, and information management are identified.

  6. On teaching computer ethics within a computer science department.

    PubMed

    Quinn, Michael J

    2006-04-01

    The author has surveyed a quarter of the accredited undergraduate computer science programs in the United States. More than half of these programs offer a 'social and ethical implications of computing' course taught by a computer science faculty member, and there appears to be a trend toward teaching ethics classes within computer science departments. Although the decision to create an 'in house' computer ethics course may sometimes be a pragmatic response to pressure from the accreditation agency, this paper argues that teaching ethics within a computer science department can provide students and faculty members with numerous benefits. The paper lists topics that can be covered in a computer ethics course and offers some practical suggestions for making the course successful.

  7. Computational Science News | Computational Science | NREL

    Science.gov Websites

    -Cooled High-Performance Computing Technology at the ESIF February 28, 2018 NREL Launches New Website for High-Performance Computing System Users The National Renewable Energy Laboratory (NREL) Computational Science Center has launched a revamped website for users of the lab's high-performance computing (HPC

  8. Stability Analysis of Finite Difference Approximations to Hyperbolic Systems, and Problems in Applied and Computational Matrix Theory

    DTIC Science & Technology

    1988-07-08

    Marcus and C. Baczynski), Computer Science Press, Rockville, Maryland, 1986. 3. An Introduction to Pascal and Precalculus , Computer Science Press...Science Press, Rockville, Maryland, 1986. 35. An Introduction to Pascal and Precalculus , Computer Science Press, Rockville, Maryland, 1986. 36

  9. Empirical Determination of Competence Areas to Computer Science Education

    ERIC Educational Resources Information Center

    Zendler, Andreas; Klaudt, Dieter; Seitz, Cornelia

    2014-01-01

    The authors discuss empirically determined competence areas to K-12 computer science education, emphasizing the cognitive level of competence. The results of a questionnaire with 120 professors of computer science serve as a database. By using multi-dimensional scaling and cluster analysis, four competence areas to computer science education…

  10. Factors Influencing Exemplary Science Teachers' Levels of Computer Use

    ERIC Educational Resources Information Center

    Hakverdi, Meral; Dana, Thomas M.; Swain, Colleen

    2011-01-01

    The purpose of this study was to examine exemplary science teachers' use of technology in science instruction, factors influencing their level of computer use, their level of knowledge/skills in using specific computer applications for science instruction, their use of computer-related applications/tools during their instruction, and their…

  11. Preparing Future Secondary Computer Science Educators

    ERIC Educational Resources Information Center

    Ajwa, Iyad

    2007-01-01

    Although nearly every college offers a major in computer science, many computer science teachers at the secondary level have received little formal training. This paper presents details of a project that could make a significant contribution to national efforts to improve computer science education by combining teacher education and professional…

  12. OPENING REMARKS: SciDAC: Scientific Discovery through Advanced Computing

    NASA Astrophysics Data System (ADS)

    Strayer, Michael

    2005-01-01

    Good morning. Welcome to SciDAC 2005 and San Francisco. SciDAC is all about computational science and scientific discovery. In a large sense, computational science characterizes SciDAC and its intent is change. It transforms both our approach and our understanding of science. It opens new doors and crosses traditional boundaries while seeking discovery. In terms of twentieth century methodologies, computational science may be said to be transformational. There are a number of examples to this point. First are the sciences that encompass climate modeling. The application of computational science has in essence created the field of climate modeling. This community is now international in scope and has provided precision results that are challenging our understanding of our environment. A second example is that of lattice quantum chromodynamics. Lattice QCD, while adding precision and insight to our fundamental understanding of strong interaction dynamics, has transformed our approach to particle and nuclear science. The individual investigator approach has evolved to teams of scientists from different disciplines working side-by-side towards a common goal. SciDAC is also undergoing a transformation. This meeting is a prime example. Last year it was a small programmatic meeting tracking progress in SciDAC. This year, we have a major computational science meeting with a variety of disciplines and enabling technologies represented. SciDAC 2005 should position itself as a new corner stone for Computational Science and its impact on science. As we look to the immediate future, FY2006 will bring a new cycle to SciDAC. Most of the program elements of SciDAC will be re-competed in FY2006. The re-competition will involve new instruments for computational science, new approaches for collaboration, as well as new disciplines. There will be new opportunities for virtual experiments in carbon sequestration, fusion, and nuclear power and nuclear waste, as well as collaborations with industry and virtual prototyping. New instruments of collaboration will include institutes and centers while summer schools, workshops and outreach will invite new talent and expertise. Computational science adds new dimensions to science and its practice. Disciplines of fusion, accelerator science, and combustion are poised to blur the boundaries between pure and applied science. As we open the door into FY2006 we shall see a landscape of new scientific challenges: in biology, chemistry, materials, and astrophysics to name a few. The enabling technologies of SciDAC have been transformational as drivers of change. Planning for major new software systems assumes a base line employing Common Component Architectures and this has become a household word for new software projects. While grid algorithms and mesh refinement software have transformed applications software, data management and visualization have transformed our understanding of science from data. The Gordon Bell prize now seems to be dominated by computational science and solvers developed by TOPS ISIC. The priorities of the Office of Science in the Department of Energy are clear. The 20 year facilities plan is driven by new science. High performance computing is placed amongst the two highest priorities. Moore's law says that by the end of the next cycle of SciDAC we shall have peta-flop computers. The challenges of petascale computing are enormous. These and the associated computational science are the highest priorities for computing within the Office of Science. Our effort in Leadership Class computing is just a first step towards this goal. Clearly, computational science at this scale will face enormous challenges and possibilities. Performance evaluation and prediction will be critical to unraveling the needed software technologies. We must not lose sight of our overarching goal—that of scientific discovery. Science does not stand still and the landscape of science discovery and computing holds immense promise. In this environment, I believe it is necessary to institute a system of science based performance metrics to help quantify our progress towards science goals and scientific computing. As a final comment I would like to reaffirm that the shifting landscapes of science will force changes to our computational sciences, and leave you with the quote from Richard Hamming, 'The purpose of computing is insight, not numbers'.

  13. A review of forensic science higher education programs in the United States: bachelor's and master's degrees.

    PubMed

    Tregar, Kristen L; Proni, Gloria

    2010-11-01

    As the number of forensic science programs offered at higher education institutions rises, and more students express an interest in them, it is important to gain information regarding the offerings in terms of courses, equipment available to students, degree requirements, and other important aspects of the programs. A survey was conducted examining the existing bachelor's and master's forensic science programs in the U.S. Of the responding institutions, relatively few were, at the time of the survey, accredited by the forensic science Education Programs Accreditation Commission (FEPAC). In general, the standards of the responding programs vary considerably primarily in terms of their size and subjects coverage. While it is clear that the standards for the forensic science programs investigated are not homogeneous, the majority of the programs provide a strong science curriculum, faculties with advanced degrees, and interesting forensic-oriented courses. © 2010 American Academy of Forensic Sciences.

  14. Undergraduate Research Participation and STEM Graduate Degree Aspirations among Students of Color

    ERIC Educational Resources Information Center

    Strayhorn, Terrell L.

    2010-01-01

    Increasing the number of students who complete advanced degrees in science, technology, engineering, and mathematics (STEM) fields is a compelling national interest. Although college science and engineering degree completion rates have improved considerably over the past few decades, significant gaps persist among women and students of color. Gaps…

  15. Science and Engineering Doctorate Production among Minorities with Non-Traditional Backgrounds.

    ERIC Educational Resources Information Center

    Brazziel, William F.; Brazziel, Marian E.

    This study examined the extent to which minority individuals with baccalaureate origins as non-traditional students (baccalaureates completed at age 25 or over) completed doctoral degrees in science and engineering. It compared the efficacy of their degree completion, i.e., elapsed time and registered time to degree, with that of counterparts with…

  16. Redefining Science, Technology, Engineering, and Mathematics (STEM) Educational Opportunities for Underserved and Underrepresented Students at NASA

    ERIC Educational Resources Information Center

    Hackler, Amanda Smith

    2011-01-01

    Underserved and underrepresented students consistently leave science, technology, engineering, and mathematics (STEM) degree fields to pursue less demanding majors. This perpetual problem slowed the growth in STEM degree fields (United States Department of Labor, 2007). Declining enrollment in STEM degree fields among underserved and…

  17. Space Science

    NASA Image and Video Library

    2003-01-01

    These banana-shaped loops are part of a computer-generated snapshot of our sun's magnetic field. The solar magnetic-field lines loop through the sun's corona, break through the sun's surface, and cornect regions of magnetic activity, such as sunspots. This image --part of a magnetic-field study of the sun by NASA's Allen Gary -- shows the outer portion (skins) of interconnecting systems of hot (2 million degrees Kelvin) coronal loops within and between two active magnetic regions on opposite sides of the sun's equator. The diameter of these coronal loops at their foot points is approximately the same size as the Earth's radius (about 6,000 kilometers).

  18. Science as a general education: Conceptual science should constitute the compulsory core of multi-disciplinary undergraduate degrees.

    PubMed

    Charlton, Bruce G

    2006-01-01

    It is plausible to assume that in the future science will form the compulsory core element both of school curricula and multi-disciplinary undergraduate degrees. But for this to happen entails a shift in the emphasis and methods of science teaching, away from the traditional concern with educating specialists and professionals. Traditional science teaching was essentially vocational, designed to provide precise and comprehensive scientific knowledge for practical application. By contrast, future science teaching will be a general education, hence primarily conceptual. Its aim should be to provide an education in flexible rationality. Vocational science teaching was focused on a single-discipline undergraduate degree, but a general education in abstract systematic thinking is best inculcated by studying several scientific disciplines. In this sense, 'science' is understood as mathematics and the natural sciences, but also the abstract and systematic aspects of disciplines such as economics, linguistics, music theory, history, sociology, political science and management science. Such a wide variety of science options in a multi-disciplinary degree will increase the possibility of student motivation and aptitude. Specialist vocational science education will progressively be shifted to post-graduate level, in Masters and Doctoral programs. A multi-disciplinary and conceptually-based science core curriculum should provide an appropriate preparation for dealing with the demands of modern societies; their complex and rapidly changing social systems; and the need for individual social and professional mobility. Training in rational conceptual thinking also has potential benefits to human health and happiness, since it allows people to over-ride inappropriate instincts, integrate conflicting desires and pursue long-term goals.

  19. Spiral and Project-Based Learning with Peer Assessment in a Computer Science Project Management Course

    NASA Astrophysics Data System (ADS)

    Jaime, Arturo; Blanco, José Miguel; Domínguez, César; Sánchez, Ana; Heras, Jónathan; Usandizaga, Imanol

    2016-06-01

    Different learning methods such as project-based learning, spiral learning and peer assessment have been implemented in science disciplines with different outcomes. This paper presents a proposal for a project management course in the context of a computer science degree. Our proposal combines three well-known methods: project-based learning, spiral learning and peer assessment. Namely, the course is articulated during a semester through the structured (progressive and incremental) development of a sequence of four projects, whose duration, scope and difficulty of management increase as the student gains theoretical and instrumental knowledge related to planning, monitoring and controlling projects. Moreover, the proposal is complemented using peer assessment. The proposal has already been implemented and validated for the last 3 years in two different universities. In the first year, project-based learning and spiral learning methods were combined. Such a combination was also employed in the other 2 years; but additionally, students had the opportunity to assess projects developed by university partners and by students of the other university. A total of 154 students have participated in the study. We obtain a gain in the quality of the subsequently projects derived from the spiral project-based learning. Moreover, this gain is significantly bigger when peer assessment is introduced. In addition, high-performance students take advantage of peer assessment from the first moment, whereas the improvement in poor-performance students is delayed.

  20. Enabling Wide-Scale Computer Science Education through Improved Automated Assessment Tools

    NASA Astrophysics Data System (ADS)

    Boe, Bryce A.

    There is a proliferating demand for newly trained computer scientists as the number of computer science related jobs continues to increase. University programs will only be able to train enough new computer scientists to meet this demand when two things happen: when there are more primary and secondary school students interested in computer science, and when university departments have the resources to handle the resulting increase in enrollment. To meet these goals, significant effort is being made to both incorporate computational thinking into existing primary school education, and to support larger university computer science class sizes. We contribute to this effort through the creation and use of improved automated assessment tools. To enable wide-scale computer science education we do two things. First, we create a framework called Hairball to support the static analysis of Scratch programs targeted for fourth, fifth, and sixth grade students. Scratch is a popular building-block language utilized to pique interest in and teach the basics of computer science. We observe that Hairball allows for rapid curriculum alterations and thus contributes to wide-scale deployment of computer science curriculum. Second, we create a real-time feedback and assessment system utilized in university computer science classes to provide better feedback to students while reducing assessment time. Insights from our analysis of student submission data show that modifications to the system configuration support the way students learn and progress through course material, making it possible for instructors to tailor assignments to optimize learning in growing computer science classes.

  1. Computational modeling and real-time control of patient-specific laser treatment of cancer.

    PubMed

    Fuentes, D; Oden, J T; Diller, K R; Hazle, J D; Elliott, A; Shetty, A; Stafford, R J

    2009-04-01

    An adaptive feedback control system is presented which employs a computational model of bioheat transfer in living tissue to guide, in real-time, laser treatments of prostate cancer monitored by magnetic resonance thermal imaging. The system is built on what can be referred to as cyberinfrastructure-a complex structure of high-speed network, large-scale parallel computing devices, laser optics, imaging, visualizations, inverse-analysis algorithms, mesh generation, and control systems that guide laser therapy to optimally control the ablation of cancerous tissue. The computational system has been successfully tested on in vivo, canine prostate. Over the course of an 18 min laser-induced thermal therapy performed at M.D. Anderson Cancer Center (MDACC) in Houston, Texas, the computational models were calibrated to intra-operative real-time thermal imaging treatment data and the calibrated models controlled the bioheat transfer to within 5 degrees C of the predetermined treatment plan. The computational arena is in Austin, Texas and managed at the Institute for Computational Engineering and Sciences (ICES). The system is designed to control the bioheat transfer remotely while simultaneously providing real-time remote visualization of the on-going treatment. Post-operative histology of the canine prostate reveal that the damage region was within the targeted 1.2 cm diameter treatment objective.

  2. Programmers, professors, and parasites: credit and co-authorship in computer science.

    PubMed

    Solomon, Justin

    2009-12-01

    This article presents an in-depth analysis of past and present publishing practices in academic computer science to suggest the establishment of a more consistent publishing standard. Historical precedent for academic publishing in computer science is established through the study of anecdotes as well as statistics collected from databases of published computer science papers. After examining these facts alongside information about analogous publishing situations and standards in other scientific fields, the article concludes with a list of basic principles that should be adopted in any computer science publishing standard. These principles would contribute to the reliability and scientific nature of academic publications in computer science and would allow for more straightforward discourse in future publications.

  3. Careers and people

    NASA Astrophysics Data System (ADS)

    2008-09-01

    Use your degree The UK's Training and Development Agency is seeking to persuade science and maths graduates who are unhappy in their current jobs to consider switching to teaching. According to their research, 75% of recent science and maths graduates expected to be able to use their degree in their profession, but 46% are dissatisfied because they cannot now use the knowledge and skills gained during their degree in their day-to-day work. This research, which comprised interviews with 200 maths and science graduates who graduated up to three years ago, forms part of a campaign to recruit up to 6000 science and maths teachers for the new school year.

  4. Increasing Diversity in Computer Science: Acknowledging, yet Moving Beyond, Gender

    NASA Astrophysics Data System (ADS)

    Larsen, Elizabeth A.; Stubbs, Margaret L.

    Lack of diversity within the computer science field has, thus far, been examined most fully through the lens of gender. This article is based on a follow-on to Margolis and Fisher's (2002) study and includes interviews with 33 Carnegie Mellon University students from the undergraduate senior class of 2002 in the School of Computer Science. We found evidence of similarities among the perceptions of these women and men on definitions of computer science, explanations for the notoriously low proportion of women in the field, characterizations of a typical computer science student, impressions of recent curricular changes, a sense of the atmosphere/culture in the program, views of the Women@SCS campus organization, and suggestions for attracting and retaining well-rounded students in computer science. We conclude that efforts to increase diversity in the computer science field will benefit from a more broad-based approach that considers, but is not limited to, notions of gender difference.

  5. Democratizing Computer Science

    ERIC Educational Resources Information Center

    Margolis, Jane; Goode, Joanna; Ryoo, Jean J.

    2015-01-01

    Computer science programs are too often identified with a narrow stratum of the student population, often white or Asian boys who have access to computers at home. But because computers play such a huge role in our world today, all students can benefit from the study of computer science and the opportunity to build skills related to computing. The…

  6. Implementing an Affordable High-Performance Computing for Teaching-Oriented Computer Science Curriculum

    ERIC Educational Resources Information Center

    Abuzaghleh, Omar; Goldschmidt, Kathleen; Elleithy, Yasser; Lee, Jeongkyu

    2013-01-01

    With the advances in computing power, high-performance computing (HPC) platforms have had an impact on not only scientific research in advanced organizations but also computer science curriculum in the educational community. For example, multicore programming and parallel systems are highly desired courses in the computer science major. However,…

  7. An evaluation of pharmacology curricula in Australian science and health-related degree programs.

    PubMed

    Lloyd, Hilary; Hinton, Tina; Bullock, Shane; Babey, Anna-Marie; Davis, Elizabeth; Fernandes, Lynette; Hart, Joanne; Musgrave, Ian; Ziogas, James

    2013-11-19

    Pharmacology is a biomedical discipline taught in basic science and professional degree programs. In order to provide information that would facilitate pharmacology curricula to be refined and developed, and approaches to teaching to be updated, a national survey was undertaken in Australia that investigated pharmacology course content, teaching and summative assessment methods. Twenty-two institutions participated in a purpose-built online questionnaire, which enabled an evaluation of 147 courses taught in 10 different degrees. To enable comparison, degrees were grouped into four major degree programs, namely science, pharmacy, medicine and nursing. The pharmacology content was then classified into 16 lecture themes, with 2-21 lecture topics identified per theme. The resultant data were analysed for similarities and differences in pharmacology curricula across the degree programs. While all lecture themes were taught across degree programs, curriculum content differed with respect to the breadth and hours of coverage. Overall, lecture themes were taught most broadly in medicine and with greatest coverage in pharmacy. Reflecting a more traditional approach, lectures were a dominant teaching method (at least 90% of courses). Sixty-three percent of science courses provided practical classes but such sessions occurred much less frequently in other degree programs, while tutorials were much more common in pharmacy degree programs (70%). Notably, problem-based learning was common across medical programs. Considerable diversity was found in the types of summative assessment tasks employed. In science courses the most common form of in-semester assessment was practical reports, whereas in other programs pen-and-paper quizzes predominated. End-of-semester assessment contributed 50-80% to overall assessment across degree programs. The similarity in lecture themes taught across the four different degree programs shows that common knowledge- and competency-based learning outcomes can be defined for pharmacology. The authors contend that it is the differences in breadth and coverage of material for each lecture theme, and the differing teaching modes and assessment that characterise particular degree programs. Adoption of pharmacology knowledge-based learning outcomes that could be tailored to suit individual degree programs would better facilitate the sharing of expertise and teaching practice than the current model where pharmacology curricula are degree-specific.

  8. Computer Science and the Liberal Arts

    ERIC Educational Resources Information Center

    Shannon, Christine

    2010-01-01

    Computer science and the liberal arts have much to offer each other. Yet liberal arts colleges, in particular, have been slow to recognize the opportunity that the study of computer science provides for achieving the goals of a liberal education. After the precipitous drop in computer science enrollments during the first decade of this century,…

  9. Marrying Content and Process in Computer Science Education

    ERIC Educational Resources Information Center

    Zendler, A.; Spannagel, C.; Klaudt, D.

    2011-01-01

    Constructivist approaches to computer science education emphasize that as well as knowledge, thinking skills and processes are involved in active knowledge construction. K-12 computer science curricula must not be based on fashions and trends, but on contents and processes that are observable in various domains of computer science, that can be…

  10. Computing Whether She Belongs: Stereotypes Undermine Girls' Interest and Sense of Belonging in Computer Science

    ERIC Educational Resources Information Center

    Master, Allison; Cheryan, Sapna; Meltzoff, Andrew N.

    2016-01-01

    Computer science has one of the largest gender disparities in science, technology, engineering, and mathematics. An important reason for this disparity is that girls are less likely than boys to enroll in necessary "pipeline courses," such as introductory computer science. Two experiments investigated whether high-school girls' lower…

  11. Approaching Gender Parity: Women in Computer Science at Afghanistan's Kabul University

    ERIC Educational Resources Information Center

    Plane, Jandelyn

    2010-01-01

    This study explores the representation of women in computer science at the tertiary level through data collected about undergraduate computer science education at Kabul University in Afghanistan. Previous studies have theorized reasons for underrepresentation of women in computer science, and while many of these reasons are indeed present in…

  12. Some Hail 'Computational Science' as Biggest Advance Since Newton, Galileo.

    ERIC Educational Resources Information Center

    Turner, Judith Axler

    1987-01-01

    Computational science is defined as science done on a computer. A computer can serve as a laboratory for researchers who cannot experiment with their subjects, and as a calculator for those who otherwise might need centuries to solve some problems mathematically. The National Science Foundation's support of supercomputers is discussed. (MLW)

  13. Teaching Scientists to Communicate: Evidence-Based Assessment for Undergraduate Science Education

    ERIC Educational Resources Information Center

    Mercer-Mapstone, Lucy; Kuchel, Louise

    2015-01-01

    Communication skills are one of five nationally recognised learning outcomes for an Australian Bachelor of Science (BSc) degree. Previous evidence indicates that communication skills taught in Australian undergraduate science degrees are not developed sufficiently to meet the requirements of the modern-day workplace--a problem faced in the UK and…

  14. The Increasingly Important Role of Science Competency Beliefs for Science Learning in Girls

    ERIC Educational Resources Information Center

    Vincent-Ruz, Paulette; Schunn, Christian D.

    2017-01-01

    The number of women studying STEM careers and pursuing graduate degrees has not changed in the last decade (National Student Clearinghouse Research Center, 2015; Science & Engineering Degree Attainment: 2004-2014). Most prior research to explain this problem has focused on the topics of identity, access, pedagogy, and choice (Brotman &…

  15. Degrees Awarded by Canadian Universities by Level and Discipline, During the Sixties and Early Seventies. Part I.

    ERIC Educational Resources Information Center

    von Zur-Muehlen, Max

    Data are provided on degrees awarded by Canadian universities by level (bachelor's and first professional, master's, and doctoral) and discipline (education, fine and applied arts, humanities and related, social science and related, agricultural and biological sciences, engineering and applied sciences, health professions and occupations, and…

  16. And the Survey Says…

    ERIC Educational Resources Information Center

    White, Susan C.

    2016-01-01

    Between 2002 and 2012, the number of bachelor's degrees earned in the physical sciences grew by 47%; in engineering, the number increased by 33%. The number of Hispanics earning degrees in these disciplines grew even faster: 78% in the physical sciences and 64% in engineering. Though the growth in the physical sciences was larger, about five times…

  17. Marketing an Alternate Model for Science and Mathematics Initial Teacher Education

    ERIC Educational Resources Information Center

    Seen, Andrew; Fraser, Sharon P.; Beswick, Kim; Penson, Margaret; Whannell, Robert

    2016-01-01

    An innovative initial teacher education undergraduate degree has been offered for the first time in 2016 at an Australian University. The degree provides for qualification as a secondary science and mathematics teacher through the completion of a four-year-integrated science, mathematics and education program of study where the synergies available…

  18. Implementation of Protocols To Enable Doctoral Training in Physical and Computational Chemistry of a Blind Graduate Student.

    PubMed

    Minkara, Mona S; Weaver, Michael N; Gorske, Jim; Bowers, Clifford R; Merz, Kenneth M

    2015-08-11

    There exists a sparse representation of blind and low-vision students in science, technology, engineering and mathematics (STEM) fields. This is due in part to these individuals being discouraged from pursuing STEM degrees as well as a lack of appropriate adaptive resources in upper level STEM courses and research. Mona Minkara is a rising fifth year graduate student in computational chemistry at the University of Florida. She is also blind. This account presents efforts conducted by an expansive team of university and student personnel in conjunction with Mona to adapt different portions of the graduate student curriculum to meet Mona's needs. The most important consideration is prior preparation of materials to assist with coursework and cumulative exams. Herein we present an account of the first four years of Mona's graduate experience hoping this will assist in the development of protocols for future blind and low-vision graduate students in computational chemistry.

  19. Model reduction for agent-based social simulation: coarse-graining a civil violence model.

    PubMed

    Zou, Yu; Fonoberov, Vladimir A; Fonoberova, Maria; Mezic, Igor; Kevrekidis, Ioannis G

    2012-06-01

    Agent-based modeling (ABM) constitutes a powerful computational tool for the exploration of phenomena involving emergent dynamic behavior in the social sciences. This paper demonstrates a computer-assisted approach that bridges the significant gap between the single-agent microscopic level and the macroscopic (coarse-grained population) level, where fundamental questions must be rationally answered and policies guiding the emergent dynamics devised. Our approach will be illustrated through an agent-based model of civil violence. This spatiotemporally varying ABM incorporates interactions between a heterogeneous population of citizens [active (insurgent), inactive, or jailed] and a population of police officers. Detailed simulations exhibit an equilibrium punctuated by periods of social upheavals. We show how to effectively reduce the agent-based dynamics to a stochastic model with only two coarse-grained degrees of freedom: the number of jailed citizens and the number of active ones. The coarse-grained model captures the ABM dynamics while drastically reducing the computation time (by a factor of approximately 20).

  20. Model reduction for agent-based social simulation: Coarse-graining a civil violence model

    NASA Astrophysics Data System (ADS)

    Zou, Yu; Fonoberov, Vladimir A.; Fonoberova, Maria; Mezic, Igor; Kevrekidis, Ioannis G.

    2012-06-01

    Agent-based modeling (ABM) constitutes a powerful computational tool for the exploration of phenomena involving emergent dynamic behavior in the social sciences. This paper demonstrates a computer-assisted approach that bridges the significant gap between the single-agent microscopic level and the macroscopic (coarse-grained population) level, where fundamental questions must be rationally answered and policies guiding the emergent dynamics devised. Our approach will be illustrated through an agent-based model of civil violence. This spatiotemporally varying ABM incorporates interactions between a heterogeneous population of citizens [active (insurgent), inactive, or jailed] and a population of police officers. Detailed simulations exhibit an equilibrium punctuated by periods of social upheavals. We show how to effectively reduce the agent-based dynamics to a stochastic model with only two coarse-grained degrees of freedom: the number of jailed citizens and the number of active ones. The coarse-grained model captures the ABM dynamics while drastically reducing the computation time (by a factor of approximately 20).

  1. Computational analysis of unmanned aerial vehicle (UAV)

    NASA Astrophysics Data System (ADS)

    Abudarag, Sakhr; Yagoub, Rashid; Elfatih, Hassan; Filipovic, Zoran

    2017-01-01

    A computational analysis has been performed to verify the aerodynamics properties of Unmanned Aerial Vehicle (UAV). The UAV-SUST has been designed and fabricated at the Department of Aeronautical Engineering at Sudan University of Science and Technology in order to meet the specifications required for surveillance and reconnaissance mission. It is classified as a medium range and medium endurance UAV. A commercial CFD solver is used to simulate steady and unsteady aerodynamics characteristics of the entire UAV. In addition to Lift Coefficient (CL), Drag Coefficient (CD), Pitching Moment Coefficient (CM) and Yawing Moment Coefficient (CN), the pressure and velocity contours are illustrated. The aerodynamics parameters are represented a very good agreement with the design consideration at angle of attack ranging from zero to 26 degrees. Moreover, the visualization of the velocity field and static pressure contours is indicated a satisfactory agreement with the proposed design. The turbulence is predicted by enhancing K-ω SST turbulence model within the computational fluid dynamics code.

  2. Getting and Holding a Job with an Astronomy Degree

    NASA Astrophysics Data System (ADS)

    Guinan, E. F.

    1995-12-01

    This panel session will focus on a realistic assessment of the current and future employment opportunities for trained Astronomers. The development of strategies for finding worthwhile employment in today's \\it challenging\\ job market. Opportunities both within and without the traditional astronomy fields will be explored. Astronomy degrees can provide a broad training in related physical sciences, mathematics, computers, and innovative, new technologies while honing a person's ability to solve a wide spectrum of difficult and complex problems. With these skills, a number of past and present AAS members have found interesting and rewarding employment outside of mainstream Astronomy and in fields unrelated to Astronomy. This session will: \\hang 1. Summarize the results of the recent job survey conducted among AAS members. \\hang 2. Provide job search information from people who have recently found jobs and from experts who assist people with scientific and technical backgrounds to find jobs. \\hang 3. Focus attention on possible alternative careers.

  3. Southern Durchmusterung (Schoenfeld 1886): Documentation for the machine-readable version

    NASA Technical Reports Server (NTRS)

    Warren, Wayne H., Jr.; Ochsenbein, Francois

    1989-01-01

    The machine-readable version of the catalog, as it is currently being distributed from the Astronomical Data Center, is described. The Southern Durchmusterung (SD) was computerized at the Centre de Donnees Astronomiques de Strasbourg and at the Astronomical Data Center at the National Space Science Data Center, NASA/Goddard Space Flight Center. Corrigenda listed in the original SD volume and published by Kuenster and Sticker were incorporated into the machine file. In addition, one star indicated to be missing in a published list, and later verified, is flagged so that it can be omitted from computer plotted charts if desired. Stars deleted in the various errata lists were similarly flagged, while those with revised data are flagged and listed in a separate table. This catalog covers the zones -02 to -23 degrees; zones +89 to -01 degrees (the Bonner Durchmusterung) are included in a separate catalog available in machine-readable form.

  4. Towards automatic computer-aided knee surgery by innovative methods for processing the femur surface model.

    PubMed

    Cerveri, Pietro; Marchente, Mario; Bartels, Ward; Corten, Kristoff; Simon, Jean-Pierre; Manzotti, Alfonso

    2010-09-01

    The femoral shaft (FDA) and transepicondylar (TA), anterior-posterior (WL) and posterior condylar (PCL) axes are fundamental quantities in planning knee arthroplasty surgery. As an alternative to the TA, we introduce the anatomical flexion axis (AFA). Obtaining such axes from image data without any manual supervision remains a practical objective. We propose a novel method that automatically computes the axes of the distal femur by processing the femur mesh surface. Surface data were processed by exploiting specific geometric, anatomical and functional properties. Robust ellipse fitting of the two-dimensional (2D) condylar profiles was utilized to determine the AFA alternative to the TA. The repeatability of the method was tested upon 20 femur surfaces reconstructed from CT scans taken on cadavers. At the highest surface resolutions, the relative median error in the direction of the FDA, AFA, PCL, WL and TA was < 0.50 degrees, 1.20 degrees, 1.0 degrees, 1.30 degrees and 1.50 degrees, respectively. As expected, at the lowest surface resolution, the repeatability decreased to 1.20 degrees, 2.70 degrees, 3.30 degrees, 3.0 degrees and 4.70 degrees, respectively. The computed directions of the FDA, PCL, WL and TA were in agreement (0.60 degrees, 1.55 degrees, 1.90 degrees, 2.40 degrees) with the corresponding reference parameters manually identified in the original CT images by medical experts and with the literature. The proposed method proved that: (a) the AFA can be robustly computed by a geometrical analysis of the posterior profiles of the two condyles and can be considered a useful alternative to the TA; (b) higher surface resolutions leads to higher repeatability of all computed quantities; (c) the TA is less repeatable than the other axes. Copyright 2010 John Wiley & Sons, Ltd.

  5. Girls in computer science: A female only introduction class in high school

    NASA Astrophysics Data System (ADS)

    Drobnis, Ann W.

    This study examined the impact of an all girls' classroom environment in a high school introductory computer science class on the student's attitudes towards computer science and their thoughts on future involvement with computer science. It was determined that an all girls' introductory class could impact the declining female enrollment and female students' efficacy towards computer science. This research was conducted in a summer school program through a regional magnet school for science and technology which these students attend during the school year. Three different groupings of students were examined for the research: female students in an all girls' class, female students in mixed-gender classes and male students in mixed-gender classes. A survey, Attitudes about Computers and Computer Science (ACCS), was designed to obtain an understanding of the students' thoughts, preconceptions, attitude, knowledge of computer science, and future intentions around computer science, both in education and career. Students in all three groups were administered the ACCS prior to taking the class and upon completion of the class. In addition, students in the all girls' class wrote in a journal throughout the course, and some of those students were also interviewed upon completion of the course. The data was analyzed using quantitative and qualitative techniques. While there were no major differences found in the quantitative data, it was determined that girls in the all girls' class were truly excited by what they had learned and were more open to the idea of computer science being a part of their future.

  6. Clinical brain MR imaging prescriptions in Talairach space: technologist- and computer-driven methods.

    PubMed

    Weiss, Kenneth L; Pan, Hai; Storrs, Judd; Strub, William; Weiss, Jane L; Jia, Li; Eldevik, O Petter

    2003-05-01

    Variability in patient head positioning may yield substantial interstudy image variance in the clinical setting. We describe and test three-step technologist and computer-automated algorithms designed to image the brain in a standard reference system and reduce variance. Triple oblique axial images obtained parallel to the Talairach anterior commissure (AC)-posterior commissure (PC) plane were reviewed in a prospective analysis of 126 consecutive patients. Requisite roll, yaw, and pitch correction, as three authors determined independently and subsequently by consensus, were compared with the technologists' actual graphical prescriptions and those generated by a novel computer automated three-step (CATS) program. Automated pitch determinations generated with Statistical Parametric Mapping '99 (SPM'99) were also compared. Requisite pitch correction (15.2 degrees +/- 10.2 degrees ) far exceeded that for roll (-0.6 degrees +/- 3.7 degrees ) and yaw (-0.9 degrees +/- 4.7 degrees ) in terms of magnitude and variance (P <.001). Technologist and computer-generated prescriptions substantially reduced interpatient image variance with regard to roll (3.4 degrees and 3.9 degrees vs 13.5 degrees ), yaw (0.6 degrees and 2.5 degrees vs 22.3 degrees ), and pitch (28.6 degrees, 18.5 degrees with CATS, and 59.3 degrees with SPM'99 vs 104 degrees ). CATS performed worse than the technologists in yaw prescription, and it was equivalent in roll and pitch prescriptions. Talairach prescriptions better approximated standard CT canthomeatal angulations (9 degrees vs 24 degrees ) and provided more efficient brain coverage than that of routine axial imaging. Brain MR prescriptions corrected for direct roll, yaw, and Talairach AC-PC pitch can be readily achieved by trained technologists or automated computer algorithms. This ability will substantially reduce interpatient variance, allow better approximation of standard CT angulation, and yield more efficient brain coverage than that of routine clinical axial imaging.

  7. Applying ``intelligent`` materials for materials education: The Labless Lab{trademark}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrade, J.D.; Scheer, R.

    1994-12-31

    A very large number of science and engineering courses taught in colleges and universities today do not involve laboratories. Although good instructors incorporate class demonstrations, hands on homework, and various teaching aids, including computer simulations, the fact is that students in such courses often accept key concepts and experimental results without discovering them for themselves. The only partial solution to this problem has been increasing use of class demonstrations and computer simulations. The authors feel strongly that many complex concepts can be observed and assimilated through experimentation with properly designed materials. They propose the development of materials and specimens designedmore » specifically for education purposes. Intelligent and communicative materials are ideal for this purpose. Specimens which respond in an observable fashion to new environments and situations provided by the students/experimenter provide a far more effective materials science and engineering experience than readouts and data generated by complex and expensive machines, particularly in an introductory course. Modern materials can be designed to literally communicate with the observer. The authors embarked on a project to develop a series of Labless Labs{trademark} utilizing various degrees and levels of intelligence in materials. It is expected that such Labless Labs{trademark} would be complementary to textbooks and computer simulations and to be used to provide a reality for students in courses and other learning situations where access to a laboratory is non-existent or limited.« less

  8. Computer Science Techniques Applied to Parallel Atomistic Simulation

    NASA Astrophysics Data System (ADS)

    Nakano, Aiichiro

    1998-03-01

    Recent developments in parallel processing technology and multiresolution numerical algorithms have established large-scale molecular dynamics (MD) simulations as a new research mode for studying materials phenomena such as fracture. However, this requires large system sizes and long simulated times. We have developed: i) Space-time multiresolution schemes; ii) fuzzy-clustering approach to hierarchical dynamics; iii) wavelet-based adaptive curvilinear-coordinate load balancing; iv) multilevel preconditioned conjugate gradient method; and v) spacefilling-curve-based data compression for parallel I/O. Using these techniques, million-atom parallel MD simulations are performed for the oxidation dynamics of nanocrystalline Al. The simulations take into account the effect of dynamic charge transfer between Al and O using the electronegativity equalization scheme. The resulting long-range Coulomb interaction is calculated efficiently with the fast multipole method. Results for temperature and charge distributions, residual stresses, bond lengths and bond angles, and diffusivities of Al and O will be presented. The oxidation of nanocrystalline Al is elucidated through immersive visualization in virtual environments. A unique dual-degree education program at Louisiana State University will also be discussed in which students can obtain a Ph.D. in Physics & Astronomy and a M.S. from the Department of Computer Science in five years. This program fosters interdisciplinary research activities for interfacing High Performance Computing and Communications with large-scale atomistic simulations of advanced materials. This work was supported by NSF (CAREER Program), ARO, PRF, and Louisiana LEQSF.

  9. 45 CFR 2555.105 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... that: (1) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any...

  10. 43 CFR 41.105 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... that: (1) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any...

  11. 15 CFR 8a.105 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... that: (1) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any...

  12. 40 CFR 5.105 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... that: (1) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any...

  13. 45 CFR 2555.105 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... that: (1) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any...

  14. 6 CFR 17.105 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... institution that: (1) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any...

  15. 40 CFR 5.105 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... that: (1) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any...

  16. 43 CFR 41.105 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... that: (1) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any...

  17. 45 CFR 2555.105 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... that: (1) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any...

  18. 6 CFR 17.105 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... institution that: (1) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any...

  19. 6 CFR 17.105 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... institution that: (1) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any...

  20. 22 CFR 229.105 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... that: (1) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any...

  1. 22 CFR 229.105 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... that: (1) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any...

  2. 15 CFR 8a.105 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... that: (1) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any...

  3. 22 CFR 229.105 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... that: (1) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any...

  4. 43 CFR 41.105 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... that: (1) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any...

  5. 40 CFR 5.105 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... that: (1) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any...

  6. 15 CFR 8a.105 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... that: (1) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any...

  7. Exposing the Science in Citizen Science: Fitness to Purpose and Intentional Design.

    PubMed

    Parrish, Julia K; Burgess, Hillary; Weltzin, Jake F; Fortson, Lucy; Wiggins, Andrea; Simmons, Brooke

    2018-05-21

    Citizen science is a growing phenomenon. With millions of people involved and billions of in-kind dollars contributed annually, this broad extent, fine grain approach to data collection should be garnering enthusiastic support in the mainstream science and higher education communities. However, many academic researchers demonstrate distinct biases against the use of citizen science as a source of rigorous information. To engage the public in scientific research, and the research community in the practice of citizen science, a mutual understanding is needed of accepted quality standards in science, and the corresponding specifics of project design and implementation when working with a broad public base. We define a science-based typology focused on the degree to which projects deliver the type(s) and quality of data/work needed to produce valid scientific outcomes directly useful in science and natural resource management. Where project intent includes direct contribution to science and the public is actively involved either virtually or hands-on, we examine the measures of quality assurance (methods to increase data quality during the design and implementation phases of a project) and quality control (post hoc methods to increase the quality of scientific outcomes). We suggest that high quality science can be produced with massive, largely one-off, participation if data collection is simple and quality control includes algorithm voting, statistical pruning and/or computational modeling. Small to mid-scale projects engaging participants in repeated, often complex, sampling can advance quality through expert-led training and well-designed materials, and through independent verification. Both approaches - simplification at scale and complexity with care - generate more robust science outcomes.

  8. Bringing computational science to the public.

    PubMed

    McDonagh, James L; Barker, Daniel; Alderson, Rosanna G

    2016-01-01

    The increasing use of computers in science allows for the scientific analyses of large datasets at an increasing pace. We provided examples and interactive demonstrations at Dundee Science Centre as part of the 2015 Women in Science festival, to present aspects of computational science to the general public. We used low-cost Raspberry Pi computers to provide hands on experience in computer programming and demonstrated the application of computers to biology. Computer games were used as a means to introduce computers to younger visitors. The success of the event was evaluated by voluntary feedback forms completed by visitors, in conjunction with our own self-evaluation. This work builds on the original work of the 4273π bioinformatics education program of Barker et al. (2013, BMC Bioinform. 14:243). 4273π provides open source education materials in bioinformatics. This work looks at the potential to adapt similar materials for public engagement events. It appears, at least in our small sample of visitors (n = 13), that basic computational science can be conveyed to people of all ages by means of interactive demonstrations. Children as young as five were able to successfully edit simple computer programs with supervision. This was, in many cases, their first experience of computer programming. The feedback is predominantly positive, showing strong support for improving computational science education, but also included suggestions for improvement. Our conclusions are necessarily preliminary. However, feedback forms suggest methods were generally well received among the participants; "Easy to follow. Clear explanation" and "Very easy. Demonstrators were very informative." Our event, held at a local Science Centre in Dundee, demonstrates that computer games and programming activities suitable for young children can be performed alongside a more specialised and applied introduction to computational science for older visitors.

  9. Computer Science and Telecommunications Board summary of activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blumenthal, M.S.

    1992-03-27

    The Computer Science and Telecommunications Board (CSTB) considers technical and policy issues pertaining to computer science, telecommunications, and associated technologies. CSTB actively disseminates the results of its completed projects to those in a position to help implement their recommendations or otherwise use their insights. It provides a forum for the exchange of information on computer science, computing technology, and telecommunications. This report discusses the major accomplishments of CSTB.

  10. Differences in STEM degree attainment by region, ethnicity, and degree type

    NASA Astrophysics Data System (ADS)

    Koledoye, Kimberly A.

    Purpose One purpose of this study was to determine the extent to which a difference was present in the STEM degree attainment of all students and particularly of URMs between the 2001 and the 2009 academic year. The second purpose of this study was to determine the extent to which a difference was present in the attainment of STEM associate degrees and bachelor degrees of all students and particularly of URMs awarded between the 2001 and the 2009 academic year. Another purpose of this study was to determine the extent to which a difference existed in STEM associate degree and STEM bachelor degree attainment among geographic regions between the 2001 and the 2009 academic years. The extent to which a difference existed in the STEM bachelor degree and associate degree attainment of URMs among geographic regions between the 2001 to the 2009 academic year was ascertained. The final purpose of this study was to determine the extent to which a difference was present in STEM associate degree and bachelor degree attainment of all students and particularly URMs as a function of degree type between the 2001 academic year and the 2009 academic year. Methodology Archival data from the Integrated Postsecondary Education Data System were utilized to compare STEM degree attainment for regions, regions for URMs, STEM degree attainment overall and for URMs, STEM degree attainment classified by associate degrees and bachelor degrees for all students and URMs, and STEM degree attainment of associate degrees and bachelor degrees for all students and URMs by specific degree type between 2001 and 2009. Findings In this non-experimental causal comparative investigation, statistically significant differences were revealed in 95 of the 165 comparisons. Declining associate degree attainment was concerning, particularly in the computer and information sciences and engineering and engineering technologies. Moderate increases were determined in bachelor degree attainment with statistically significant differences identified in all STEM degree areas. Women had more increases than other URMs, and degree attainment by geographic region varied widely. Given the strong national need for more STEM graduates, reason for concerns are raised by the results of this investigation. KEY WORDS: STEM degrees, Associate, Bachelor, IPEDS

  11. Revision workshops in elementary mathematics enhance student performance in routine laboratory calculations.

    PubMed

    Sawbridge, Jenny L; Qureshi, Haseeb K; Boyd, Matthew J; Brown, Angus M

    2014-09-01

    The ability to understand and implement calculations required for molarity and dilution computations that are routinely undertaken in the laboratory are essential skills that should be possessed by all students entering an undergraduate Life Sciences degree. However, it is increasingly recognized that the majority of these students are ill equipped to reliably carry out such calculations. There are several factors that conspire against students' understanding of this topic, with the alien concept of the mole in relation to the mass of compounds and the engineering notation required when expressing the relatively small quantities typically involved being two key examples. In this report, we highlight teaching methods delivered via revision workshops to undergraduate Life Sciences students at the University of Nottingham. Workshops were designed to 1) expose student deficiencies in basic numeracy skills and remedy these deficiencies, 2) introduce molarity and dilution calculations and illustrate their workings in a step-by-step manner, and 3) allow students to appreciate the magnitude of numbers. Preworkshop to postworkshop comparisons demonstrated a considerable improvement in students' performance, which attenuated with time. The findings of our study suggest that an ability to carry out laboratory calculations cannot be assumed in students entering Life Sciences degrees in the United Kingdom but that explicit instruction in the form of workshops improves proficiency to a level of competence that allows students to prosper in the laboratory environment. Copyright © 2014 The American Physiological Society.

  12. Hispanic women overcoming deterrents to computer science: A phenomenological study

    NASA Astrophysics Data System (ADS)

    Herling, Lourdes

    The products of computer science are important to all aspects of society and are tools in the solution of the world's problems. It is, therefore, troubling that the United States faces a shortage in qualified graduates in computer science. The number of women and minorities in computer science is significantly lower than the percentage of the U.S. population which they represent. The overall enrollment in computer science programs has continued to decline with the enrollment of women declining at a higher rate than that of men. This study addressed three aspects of underrepresentation about which there has been little previous research: addressing computing disciplines specifically rather than embedding them within the STEM disciplines, what attracts women and minorities to computer science, and addressing the issues of race/ethnicity and gender in conjunction rather than in isolation. Since women of underrepresented ethnicities are more severely underrepresented than women in general, it is important to consider whether race and ethnicity play a role in addition to gender as has been suggested by previous research. Therefore, this study examined what attracted Hispanic women to computer science specifically. The study determines whether being subjected to multiple marginalizations---female and Hispanic---played a role in the experiences of Hispanic women currently in computer science. The study found five emergent themes within the experiences of Hispanic women in computer science. Encouragement and role models strongly influenced not only the participants' choice to major in the field, but to persist as well. Most of the participants experienced a negative atmosphere and feelings of not fitting in while in college and industry. The interdisciplinary nature of computer science was the most common aspect that attracted the participants to computer science. The aptitudes participants commonly believed are needed for success in computer science are the Twenty-First Century skills problem solving, creativity, and critical thinking. While not all the participants had experience with computers or programming prior to attending college, experience played a role in the self-confidence of those who did.

  13. Coordination of Teachers in New Undergraduate Degrees Adapted to European Higher Education Area

    ERIC Educational Resources Information Center

    Mondéjar-Jiménez, Juan-Antonio; Cordente-Rodríguez, María; Meseguer-Santamaría, María-Leticia; Vargas-Vargas, Manuel; Mondéjar-Jiménez, José

    2010-01-01

    The introduction of new undergraduate degrees adapted to the European Higher Education Area (EHEA) requires a coordinated effort by teachers, because the different subjects are based on a new methodology of teaching and learning. The Social Sciences School of Cuenca offers degrees in Business Administration, Law and Labor Sciences. The progressive…

  14. Methodological approach to crime scene investigation: the dangers of technology

    NASA Astrophysics Data System (ADS)

    Barnett, Peter D.

    1997-02-01

    The visitor to any modern forensic science laboratory is confronted with equipment and processes that did not exist even 10 years ago: thermocyclers to allow genetic typing of nanogram amounts of DNA isolated from a few spermatozoa; scanning electron microscopes that can nearly automatically detect submicrometer sized particles of molten lead, barium and antimony produced by the discharge of a firearm and deposited on the hands of the shooter; and computers that can compare an image of a latent fingerprint with millions of fingerprints stored in the computer memory. Analysis of populations of physical evidence has permitted statistically minded forensic scientists to use Bayesian inference to draw conclusions based on a priori assumptions which are often poorly understood, irrelevant, or misleading. National commissions who are studying quality control in DNA analysis propose that people with barely relevant graduate degrees and little forensic science experience be placed in charge of forensic DNA laboratories. It is undeniable that high- tech has reversed some miscarriages of justice by establishing the innocence of a number of people who were imprisoned for years for crimes that they did not commit. However, this papers deals with the dangers of technology in criminal investigations.

  15. Research in applied mathematics, numerical analysis, and computer science

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering (ICASE) in applied mathematics, numerical analysis, and computer science is summarized and abstracts of published reports are presented. The major categories of the ICASE research program are: (1) numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; (2) control and parameter identification; (3) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and (4) computer systems and software, especially vector and parallel computers.

  16. Science-Driven Computing: NERSC's Plan for 2006-2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, Horst D.; Kramer, William T.C.; Bailey, David H.

    NERSC has developed a five-year strategic plan focusing on three components: Science-Driven Systems, Science-Driven Services, and Science-Driven Analytics. (1) Science-Driven Systems: Balanced introduction of the best new technologies for complete computational systems--computing, storage, networking, visualization and analysis--coupled with the activities necessary to engage vendors in addressing the DOE computational science requirements in their future roadmaps. (2) Science-Driven Services: The entire range of support activities, from high-quality operations and user services to direct scientific support, that enable a broad range of scientists to effectively use NERSC systems in their research. NERSC will concentrate on resources needed to realize the promise ofmore » the new highly scalable architectures for scientific discovery in multidisciplinary computational science projects. (3) Science-Driven Analytics: The architectural and systems enhancements and services required to integrate NERSC's powerful computational and storage resources to provide scientists with new tools to effectively manipulate, visualize, and analyze the huge data sets derived from simulations and experiments.« less

  17. Gender Differences in the Use of Computers, Programming, and Peer Interactions in Computer Science Classrooms

    ERIC Educational Resources Information Center

    Stoilescu, Dorian; Egodawatte, Gunawardena

    2010-01-01

    Research shows that female and male students in undergraduate computer science programs view computer culture differently. Female students are interested more in the use of computers than in doing programming, whereas male students see computer science mainly as a programming activity. The overall purpose of our research was not to find new…

  18. Computed Temperature Distribution and Cooling of Solid Gas-Turbine Blades

    NASA Technical Reports Server (NTRS)

    Reuter, J. George; Gazley, Carl, Jr.

    1947-01-01

    Computations were made to determine the temperature distribution and cooling of solid gas-turbine blades.A range of temperatures was used from 1500 degrees to 2500 degrees F, blade-root temperatures from 100 degrees to 1000 degrees F, blade thermal conductivity from 8 to 220 BTU/(hr)(sq ft)(degrees F/ft), and net gas to metal heat transfer coefficients from 75 to 250 BTU/(hr)(sq ft)(degrees F).

  19. Case Study: Creation of a Degree Program in Computer Security. White Paper.

    ERIC Educational Resources Information Center

    Belon, Barbara; Wright, Marie

    This paper reports on research into the field of computer security, and undergraduate degrees offered in that field. Research described in the paper reveals only one computer security program at the associate's degree level in the entire country. That program, at Texas State Technical College in Waco, is a 71-credit-hour program leading to an…

  20. Opportunities for Computational Discovery in Basic Energy Sciences

    NASA Astrophysics Data System (ADS)

    Pederson, Mark

    2011-03-01

    An overview of the broad-ranging support of computational physics and computational science within the Department of Energy Office of Science will be provided. Computation as the third branch of physics is supported by all six offices (Advanced Scientific Computing, Basic Energy, Biological and Environmental, Fusion Energy, High-Energy Physics, and Nuclear Physics). Support focuses on hardware, software and applications. Most opportunities within the fields of~condensed-matter physics, chemical-physics and materials sciences are supported by the Officeof Basic Energy Science (BES) or through partnerships between BES and the Office for Advanced Scientific Computing. Activities include radiation sciences, catalysis, combustion, materials in extreme environments, energy-storage materials, light-harvesting and photovoltaics, solid-state lighting and superconductivity.~ A summary of two recent reports by the computational materials and chemical communities on the role of computation during the next decade will be provided. ~In addition to materials and chemistry challenges specific to energy sciences, issues identified~include a focus on the role of the domain scientist in integrating, expanding and sustaining applications-oriented capabilities on evolving high-performance computing platforms and on the role of computation in accelerating the development of innovative technologies. ~~

  1. Research | Computational Science | NREL

    Science.gov Websites

    Research Research NREL's computational science experts use advanced high-performance computing (HPC technologies, thereby accelerating the transformation of our nation's energy system. Enabling High-Impact Research NREL's computational science capabilities enable high-impact research. Some recent examples

  2. The formation and analysis of a 5 deg equal area block terrestrial gravity field

    NASA Technical Reports Server (NTRS)

    Rapp, R. H.

    1972-01-01

    A set of 23,355 1 degree x 1 degree mean free air anomalies were used to predict a set of 5 degree equal area anomalies and their standard errors. Using the 1 degree data incorporating geophysically predicted values of ACIC, 1283 5 degree blocks were computed. Excluding the geophysically predicted anomalies 1249 blocks were computed. The 1 degree data were also used to compute covariance functions and the equatorial gravity and flattening implied by this data. The predicted anomalies were supplemented by model anomalies to form a complete 1654 global anomaly field. These data were used in a weighted least squares to determine potential coefficients to degree 15, and in a summation type formulation to determine potential coefficients to degree 25. These potential coefficients sets are compared to recent satellite determinations.

  3. Notebook computer use on a desk, lap and lap support: effects on posture, performance and comfort.

    PubMed

    Asundi, Krishna; Odell, Dan; Luce, Adam; Dennerlein, Jack T

    2010-01-01

    This study quantified postures of users working on a notebook computer situated in their lap and tested the effect of using a device designed to increase the height of the notebook when placed on the lap. A motion analysis system measured head, neck and upper extremity postures of 15 adults as they worked on a notebook computer placed on a desk (DESK), the lap (LAP) and a commercially available lapdesk (LAPDESK). Compared with the DESK, the LAP increased downwards head tilt 6 degrees and wrist extension 8 degrees . Shoulder flexion and ulnar deviation decreased 13 degrees and 9 degrees , respectively. Compared with the LAP, the LAPDESK decreased downwards head tilt 4 degrees , neck flexion 2 degrees , and wrist extension 9 degrees. Users reported less discomfort and difficulty in the DESK configuration. Use of the lapdesk improved postures compared with the lap; however, all configurations resulted in high values of wrist extension, wrist deviation and downwards head tilt. STATEMENT OF RELEVANCE: This study quantifies postures of users working with a notebook computer in typical portable configurations. A better understanding of the postures assumed during notebook computer use can improve usage guidelines to reduce the risk of musculoskeletal injuries.

  4. Multi-school collaboration to develop and test nutrition computer modules for pediatric residents.

    PubMed

    Roche, Patricia L; Ciccarelli, Mary R; Gupta, Sandeep K; Hayes, Barbara M; Molleston, Jean P

    2007-09-01

    The provision of essential nutrition-related content in US medical education has been deficient, despite efforts of the federal government and multiple professional organizations. Novel and efficient approaches are needed. A multi-department project was developed to create and pilot a computer-based compact disc instructional program covering the nutrition topics of oral rehydration therapy, calcium, and vitamins. Funded by an internal medical school grant, the content of the modules was written by Department of Pediatrics faculty. The modules were built by School of Informatics faculty and students, and were tested on a convenience sampling of 38 pediatric residents in a randomized controlled trial performed by a registered dietitian/School of Health and Rehabilitation Sciences Master's degree candidate. The modules were reviewed for content by the pediatric faculty principal investigator and the registered dietitian/School of Health and Rehabilitation Sciences graduate student. Residents completed a pretest of nutrition knowledge and attitude toward nutrition and Web-based instruction. Half the group was given three programs (oral rehydration therapy, calcium, and vitamins) on compact disc for study over 6 weeks. Both study and control groups completed a posttest. Pre- and postintervention objective test results in study vs control groups and attitudinal survey results before and after intervention in the study group were compared. The experimental group demonstrated significantly better posttrial objective test performance compared to the control group (P=0.0005). The study group tended toward improvement, whereas the control group performance declined substantially between pre- and posttests. Study group resident attitudes toward computer-based instruction improved. Use of these computer modules prompted almost half of the residents in the study group to independently pursue relevant nutrition-related information. This inexpensive, collaborative, multi-department effort to design a computer-based nutrition curriculum positively impacted both resident knowledge and attitudes.

  5. Review of the National Defense Intelligence College's Master's Degree in Science and Technology Intelligence

    ERIC Educational Resources Information Center

    National Academies Press, 2011

    2011-01-01

    The National Research Council (NRC) was asked by the National Defense Intelligence College (NDIC) to convene a committee to review the curriculum and syllabi for their proposed master of science degree in science and technology intelligence. The NRC was asked to review the material provided by the NDIC and offer advice and recommendations…

  6. Next-Generation Climate Modeling Science Challenges for Simulation, Workflow and Analysis Systems

    NASA Astrophysics Data System (ADS)

    Koch, D. M.; Anantharaj, V. G.; Bader, D. C.; Krishnan, H.; Leung, L. R.; Ringler, T.; Taylor, M.; Wehner, M. F.; Williams, D. N.

    2016-12-01

    We will present two examples of current and future high-resolution climate-modeling research that are challenging existing simulation run-time I/O, model-data movement, storage and publishing, and analysis. In each case, we will consider lessons learned as current workflow systems are broken by these large-data science challenges, as well as strategies to repair or rebuild the systems. First we consider the science and workflow challenges to be posed by the CMIP6 multi-model HighResMIP, involving around a dozen modeling groups performing quarter-degree simulations, in 3-member ensembles for 100 years, with high-frequency (1-6 hourly) diagnostics, which is expected to generate over 4PB of data. An example of science derived from these experiments will be to study how resolution affects the ability of models to capture extreme-events such as hurricanes or atmospheric rivers. Expected methods to transfer (using parallel Globus) and analyze (using parallel "TECA" software tools) HighResMIP data for such feature-tracking by the DOE CASCADE project will be presented. A second example will be from the Accelerated Climate Modeling for Energy (ACME) project, which is currently addressing challenges involving multiple century-scale coupled high resolution (quarter-degree) climate simulations on DOE Leadership Class computers. ACME is anticipating production of over 5PB of data during the next 2 years of simulations, in order to investigate the drivers of water cycle changes, sea-level-rise, and carbon cycle evolution. The ACME workflow, from simulation to data transfer, storage, analysis and publication will be presented. Current and planned methods to accelerate the workflow, including implementing run-time diagnostics, and implementing server-side analysis to avoid moving large datasets will be presented.

  7. Family Structure, Psychosocial Factors, and Cardiovascular Risk Factors in the NHLBI CARDIA Study

    DTIC Science & Technology

    2013-11-21

    Sciences In partial fulfillment of the requirements for the degree of Master of Science 2013 UNH’ORMIED SlERVlCES UNIVERSHY OF THE HEAL TH scrnNClES...IF. lEDW ARD HEBERT SCHOOL OF MEDKCJNE GRADUATE PROGRAMS IN nm lBiOMEDICAL SCIENCES AND PUBUC HEAL TH Ph.D. Degrees lnterdisci pl inary...Emerging Infectious Diseases -Molecular & Cell Biology -Neuroscience Departmental -Clinical Psychology -Environmental Health Sciences -Medical

  8. NASA's computer science research program

    NASA Technical Reports Server (NTRS)

    Larsen, R. L.

    1983-01-01

    Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.

  9. Girls Save the World through Computer Science

    ERIC Educational Resources Information Center

    Murakami, Christine

    2011-01-01

    It's no secret that fewer and fewer women are entering computer science fields. Attracting high school girls to computer science is only part of the solution. Retaining them while they are in higher education or the workforce is also a challenge. To solve this, there is a need to show girls that computer science is a wide-open field that offers…

  10. The Assessment of Taiwanese College Students' Conceptions of and Approaches to Learning Computer Science and Their Relationships

    ERIC Educational Resources Information Center

    Liang, Jyh-Chong; Su, Yi-Ching; Tsai, Chin-Chung

    2015-01-01

    The aim of this study was to explore Taiwanese college students' conceptions of and approaches to learning computer science and then explore the relationships between the two. Two surveys, Conceptions of Learning Computer Science (COLCS) and Approaches to Learning Computer Science (ALCS), were administered to 421 college students majoring in…

  11. Hispanic Women Overcoming Deterrents to Computer Science: A Phenomenological Study

    ERIC Educational Resources Information Center

    Herling, Lourdes

    2011-01-01

    The products of computer science are important to all aspects of society and are tools in the solution of the world's problems. It is, therefore, troubling that the United States faces a shortage in qualified graduates in computer science. The number of women and minorities in computer science is significantly lower than the percentage of the…

  12. The Effects of Integrating Service Learning into Computer Science: An Inter-Institutional Longitudinal Study

    ERIC Educational Resources Information Center

    Payton, Jamie; Barnes, Tiffany; Buch, Kim; Rorrer, Audrey; Zuo, Huifang

    2015-01-01

    This study is a follow-up to one published in computer science education in 2010 that reported preliminary results showing a positive impact of service learning on student attitudes associated with success and retention in computer science. That paper described how service learning was incorporated into a computer science course in the context of…

  13. Non-Determinism: An Abstract Concept in Computer Science Studies

    ERIC Educational Resources Information Center

    Armoni, Michal; Gal-Ezer, Judith

    2007-01-01

    Non-determinism is one of the most important, yet abstract, recurring concepts of Computer Science. It plays an important role in Computer Science areas such as formal language theory, computability theory, distributed computing, and operating systems. We conducted a series of studies on the perception of non-determinism. In the current research,…

  14. An Investigation of Primary School Science Teachers' Use of Computer Applications

    ERIC Educational Resources Information Center

    Ocak, Mehmet Akif; Akdemir, Omur

    2008-01-01

    This study investigated the level and frequency of science teachers' use of computer applications as an instructional tool in the classroom. The manner and frequency of science teachers' use of computer, their perceptions about integration of computer applications, and other factors contributed to changes in their computer literacy are…

  15. Methodical Approaches to Teaching of Computer Modeling in Computer Science Course

    ERIC Educational Resources Information Center

    Rakhimzhanova, B. Lyazzat; Issabayeva, N. Darazha; Khakimova, Tiyshtik; Bolyskhanova, J. Madina

    2015-01-01

    The purpose of this study was to justify of the formation technique of representation of modeling methodology at computer science lessons. The necessity of studying computer modeling is that the current trends of strengthening of general education and worldview functions of computer science define the necessity of additional research of the…

  16. Physics Studies at the University of Havana

    NASA Astrophysics Data System (ADS)

    de Melo Pereira, Osvaldo; Sánchez Colina, María

    The licenciatura en física degree course was created as part of the 1962 University Reform. It started at the Physics School within the Science Faculty of the University of Havana, also including the Schools of Mathematics, Chemistry, Biological Sciences, Geography and Psychology (Henriques Rodríguez, Daisy, R, Revista Cubana de Educación Superior XXI(8), 2001). The degree of licenciado had replaced that of baciller since 1880, but only the physico-mathematical sciences and physico-chemical sciences degree courses existed prior to the 1962 university reform. In this paper, we will analyze some data concerning the undergraduate and graduate studies during the 46 years elapsed since the creation of the physics degree course at the University of Havana. Several related issues, such as the development of scientific research and the influence of international collaboration, are dealt with in other contributions to this volume.

  17. Climate Modeling Computing Needs Assessment

    NASA Astrophysics Data System (ADS)

    Petraska, K. E.; McCabe, J. D.

    2011-12-01

    This paper discusses early findings of an assessment of computing needs for NASA science, engineering and flight communities. The purpose of this assessment is to document a comprehensive set of computing needs that will allow us to better evaluate whether our computing assets are adequately structured to meet evolving demand. The early results are interesting, already pointing out improvements we can make today to get more out of the computing capacity we have, as well as potential game changing innovations for the future in how we apply information technology to science computing. Our objective is to learn how to leverage our resources in the best way possible to do more science for less money. Our approach in this assessment is threefold: Development of use case studies for science workflows; Creating a taxonomy and structure for describing science computing requirements; and characterizing agency computing, analysis, and visualization resources. As projects evolve, science data sets increase in a number of ways: in size, scope, timelines, complexity, and fidelity. Generating, processing, moving, and analyzing these data sets places distinct and discernable requirements on underlying computing, analysis, storage, and visualization systems. The initial focus group for this assessment is the Earth Science modeling community within NASA's Science Mission Directorate (SMD). As the assessment evolves, this focus will expand to other science communities across the agency. We will discuss our use cases, our framework for requirements and our characterizations, as well as our interview process, what we learned and how we plan to improve our materials after using them in the first round of interviews in the Earth Science Modeling community. We will describe our plans for how to expand this assessment, first into the Earth Science data analysis and remote sensing communities, and then throughout the full community of science, engineering and flight at NASA.

  18. Kenny Gruchalla | NREL

    Science.gov Websites

    feature extraction, human-computer interaction, and physics-based modeling. Professional Experience 2009 ., computer science, University of Colorado at Boulder M.S., computer science, University of Colorado at Boulder B.S., computer science, New Mexico Institute of Mining and Technology

  19. Life Stories of Graduate Students in Chile and the United States: Becoming a Scientist from Childhood to Adulthood

    NASA Astrophysics Data System (ADS)

    Silva Fernandez, Marta A.

    The purpose of this cross-national study was to gain a more comprehensive understanding about doctoral students in the United States and Chile and how their decisions to pursue a career in the life sciences field occurred throughout their lives. . I interviewed 15 doctoral students from the Seven Lakes University (Chile) and 15 students from the West Coast University (US), using a life history approach. Analyses revealed that the degree of flexibility in the schooling system and the degree of individualism and collectivism of the social groups in which the students were learning science seemed to influence the informants' vocational decisions in three interrelated processes: (1) Deciding the informants' degree of interest and ability in science by the opportunity of choosing science classes and activities. The highly tracked Chilean system socializes students to science at an early age. The more flexible school system in the US enabled the interviewees to gradually decide about pursuing their interest in science; (2) Experiencing science as a collective learning process for the Chilean informants and an individualistic learning process for the US students; (3) Perceiving science differently at each life stage for both groups of interviewees including: Playing science, Studying science, Doing science, Working in science, Practicing Science in their doctoral programs.

  20. Non-invasive imaging methods applied to neo- and paleo-ontological cephalopod research

    NASA Astrophysics Data System (ADS)

    Hoffmann, R.; Schultz, J. A.; Schellhorn, R.; Rybacki, E.; Keupp, H.; Gerden, S. R.; Lemanis, R.; Zachow, S.

    2014-05-01

    Several non-invasive methods are common practice in natural sciences today. Here we present how they can be applied and contribute to current topics in cephalopod (paleo-) biology. Different methods will be compared in terms of time necessary to acquire the data, amount of data, accuracy/resolution, minimum/maximum size of objects that can be studied, the degree of post-processing needed and availability. The main application of the methods is seen in morphometry and volumetry of cephalopod shells. In particular we present a method for precise buoyancy calculation. Therefore, cephalopod shells were scanned together with different reference bodies, an approach developed in medical sciences. It is necessary to know the volume of the reference bodies, which should have similar absorption properties like the object of interest. Exact volumes can be obtained from surface scanning. Depending on the dimensions of the study object different computed tomography techniques were applied.

  1. 32 CFR 68.3 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Academic skills. Competencies in English, reading, writing, speaking, mathematics, and computer skills that..., degree competencies (e.g., foreign language, computer literacy), and elective course options that... course requirements, degree competencies (e.g., foreign language, computer literacy), and elective course...

  2. 32 CFR 68.3 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Academic skills. Competencies in English, reading, writing, speaking, mathematics, and computer skills that..., degree competencies (e.g., foreign language, computer literacy), and elective course options that... course requirements, degree competencies (e.g., foreign language, computer literacy), and elective course...

  3. Analysis of South African graduate degrees in science education: 1930-2000

    NASA Astrophysics Data System (ADS)

    Laugksch, Rüdiger C.

    2005-05-01

    This analysis of research conducted by graduate students at South African universities over the last 70 years is an attempt to identify the foci of South African science education research. Appropriate graduate degrees were systematically identified by interrogating electronic databases and verifying details. Title and abstract were then used to assign keywords. Overall 23% and 77% of the 469 graduate degrees identified are doctoral and master's degrees, respectively. The activity of graduate work suggests that science education as a discipline was comparatively well established in South Africa by the 1980s, although 59% of all degrees were conferred between 1991 and 2000. Following the methodology of White [2001, in V. Richardson (Ed.), Handbook of research on teaching (4th ed., pp. 457-471)]. Washington, DC: American Educational Research Association), trends in the relative frequency of keywords indicate that South African science education is broadly in line with worldwide trends in the discipline but that some differences exist. However, South African science education research appears to focus relatively more on attitudes, classrooms, curriculum issues, STS-related issues, and laboratories, and relatively less on assessment, reflection, teachers' or students' conceptions, and informal learning. Research on identified national priorities is being conducted, albeit with variable prevalence. Future opportunities in science education research lie in following a research agenda more closely matched to local contexts, and in the diversification of research focused largely on the secondary-tertiary interface.

  4. Computer-aided design and computer science technology

    NASA Technical Reports Server (NTRS)

    Fulton, R. E.; Voigt, S. J.

    1976-01-01

    A description is presented of computer-aided design requirements and the resulting computer science advances needed to support aerospace design. The aerospace design environment is examined, taking into account problems of data handling and aspects of computer hardware and software. The interactive terminal is normally the primary interface between the computer system and the engineering designer. Attention is given to user aids, interactive design, interactive computations, the characteristics of design information, data management requirements, hardware advancements, and computer science developments.

  5. The effects of integrating service learning into computer science: an inter-institutional longitudinal study

    NASA Astrophysics Data System (ADS)

    Payton, Jamie; Barnes, Tiffany; Buch, Kim; Rorrer, Audrey; Zuo, Huifang

    2015-07-01

    This study is a follow-up to one published in computer science education in 2010 that reported preliminary results showing a positive impact of service learning on student attitudes associated with success and retention in computer science. That paper described how service learning was incorporated into a computer science course in the context of the Students & Technology in Academia, Research, and Service (STARS) Alliance, an NSF-supported broadening participation in computing initiative that aims to diversify the computer science pipeline through innovative pedagogy and inter-institutional partnerships. The current paper describes how the STARS Alliance has expanded to diverse institutions, all using service learning as a vehicle for broadening participation in computing and enhancing attitudes and behaviors associated with student success. Results supported the STARS model of service learning for enhancing computing efficacy and computing commitment and for providing diverse students with many personal and professional development benefits.

  6. ODI - Portal, Pipeline, and Archive (ODI-PPA): a web-based astronomical compute archive, visualization, and analysis service

    NASA Astrophysics Data System (ADS)

    Gopu, Arvind; Hayashi, Soichi; Young, Michael D.; Harbeck, Daniel R.; Boroson, Todd; Liu, Wilson; Kotulla, Ralf; Shaw, Richard; Henschel, Robert; Rajagopal, Jayadev; Stobie, Elizabeth; Knezek, Patricia; Martin, R. Pierre; Archbold, Kevin

    2014-07-01

    The One Degree Imager-Portal, Pipeline, and Archive (ODI-PPA) is a web science gateway that provides astronomers a modern web interface that acts as a single point of access to their data, and rich computational and visualization capabilities. Its goal is to support scientists in handling complex data sets, and to enhance WIYN Observatory's scientific productivity beyond data acquisition on its 3.5m telescope. ODI-PPA is designed, with periodic user feedback, to be a compute archive that has built-in frameworks including: (1) Collections that allow an astronomer to create logical collations of data products intended for publication, further research, instructional purposes, or to execute data processing tasks (2) Image Explorer and Source Explorer, which together enable real-time interactive visual analysis of massive astronomical data products within an HTML5 capable web browser, and overlaid standard catalog and Source Extractor-generated source markers (3) Workflow framework which enables rapid integration of data processing pipelines on an associated compute cluster and users to request such pipelines to be executed on their data via custom user interfaces. ODI-PPA is made up of several light-weight services connected by a message bus; the web portal built using Twitter/Bootstrap, AngularJS and jQuery JavaScript libraries, and backend services written in PHP (using the Zend framework) and Python; it leverages supercomputing and storage resources at Indiana University. ODI-PPA is designed to be reconfigurable for use in other science domains with large and complex datasets, including an ongoing offshoot project for electron microscopy data.

  7. ICASE Computer Science Program

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Institute for Computer Applications in Science and Engineering computer science program is discussed in outline form. Information is given on such topics as problem decomposition, algorithm development, programming languages, and parallel architectures.

  8. Science Language Accommodation in Elementary School Read-Alouds

    NASA Astrophysics Data System (ADS)

    Glass, Rory; Oliveira, Alandeom W.

    2014-03-01

    This study examines the pedagogical functions of accommodation (i.e. provision of simplified science speech) in science read-aloud sessions facilitated by five elementary teachers. We conceive of read-alouds as communicative events wherein teachers, faced with the task of orally delivering a science text of relatively high linguistic complexity, open up an alternate channel of communication, namely oral discussion. By doing so, teachers grant students access to a simplified linguistic input, a strategy designed to promote student comprehension of the textual contents of children's science books. It was found that nearly half (46%) of the read-aloud time was allotted to discussions with an increased percentage of less sophisticated words and reduced use of more sophisticated vocabulary than found in the books through communicative strategies such as simplified rewording, simplified definition, and simplified questioning. Further, aloud reading of more linguistically complex books required longer periods of discussion and an increased degree of teacher oral input and accommodation. We also found evidence of reversed simplification (i.e. sophistication), leading to student uptake of scientific language. The main significance of this study is that it reveals that teacher talk serves two often competing pedagogical functions (accessible communication of scientific information to students and promotion of student acquisition of the specialized language of science). It also underscores the importance of giving analytical consideration to the simplification-sophistication dimension of science classroom discourse as well as the potential of computer-based analysis of classroom discourse to inform science teaching.

  9. Representing the nature of science in a science textbook: Exploring author-editor-publisher interactions

    NASA Astrophysics Data System (ADS)

    Digiuseppe, Maurizio

    Current reforms in elementary and secondary science education call for students and teachers to develop more informed views of the nature of science---a process in which learning materials like science textbooks play a significant role. This dissertation reports on a case study of the development of representations of the nature of science in one unit of a senior high school chemistry textbook by the book's author, editor, and publisher. The study examines the multiple discourses that arose as the developers reflected on their personal and shared understandings of the nature of science; squared these understandings with mandated curricula, the educational needs of chemistry students and teachers, and the exigencies of large-scale commercial textbook publishing; and developed and incorporated into the textbook representations of the nature of science they believed were the most suitable. Analyses of the data in this study indicate that a number of factors significantly influenced the development of representations of the nature of science, including representational accuracy (the degree to which suggested representations of the nature of science conformed to what the developers believed were contemporary understandings of the nature of science), representational consistency (the degree to which similar representations of the nature of science in different parts of the textbook conveyed the same meaning), representational appropriateness (the age-, grade-, and reading-level suitability of the suggested nature of science representations), representational alignment (the degree to which suggested representations of the nature of science addressed the requirements of mandated curricula), representational marketability (the degree to which textbook developers believed suggested representations of the nature of science would affect sales of the textbook in the marketplace), and a number of "Workplace Resources" factors such as the availability of time, relevant expertise, effective channels of communication, and opportunities for professional development. The developers of the unit of the textbook studied in this thesis made judicious decisions in the face of competing interests as they endeavoured to represent the nature of science in their science textbook.

  10. Bachelor's Degree in Library and Information Science Field: A Comparative Analysis Study Performed on Distinguished American Universities

    ERIC Educational Resources Information Center

    Abouserie, Hossam Eldin Mohamed Refaat

    2009-01-01

    This study explored the state of bachelor's degree offered at top Library and Information Science schools in the United States in 2009. Schools selected were accredited on the Master's level and ranked as top five Library and Information Science schools by the American Library Association, ALA. The study embraced the comparative analysis…

  11. What Works! Encouraging Diversity in Science, Mathematics, Engineering, and Technology through Effective Mentoring. A 5-Year Overview of the Research Careers for Minority Scholars Program.

    ERIC Educational Resources Information Center

    National Science Foundation, Arlington, VA. Directorate for Education and Human Resources.

    The National Science Foundation's (NSF) Research Careers for Minority Scholars (RCMS) program was initiated to encourage individuals from underrepresented groups in science, mathematics, engineering and technology (SMET) disciplines to complete undergraduate degree programs and matriculate to SMET graduate degree programs. This report describes…

  12. The Foreign Born with Science and Engineering Degrees: 2010. American Community Survey Briefs. ACSBR/10-06

    ERIC Educational Resources Information Center

    Gambino, Christine; Gryn, Thomas

    2011-01-01

    This brief will discuss patterns of science and engineering educational attainment within the foreign-born population living in the United States, using data from the 2010 American Community Survey (ACS). The analysis is restricted to the population aged 25 and older, and the results are presented on science and engineering degree attainment by…

  13. Native American Participation among Bachelors in Physical Sciences and Engineering: Results from 2003-13 Data of the National Center for Education Statistics. Focus On

    ERIC Educational Resources Information Center

    Merner, Laura; Tyler, John

    2017-01-01

    Using the National Center of Education Statistics' Integrated Postsecondary Education Data System (IPEDS), this report analyzes data on Native American recipients of bachelor's degrees among 16 physical science and engineering fields. Overall, Native Americans are earning physical science and engineering bachelor's degrees at lower rates than the…

  14. "Publish SCI Papers or No Degree": Practices of Chinese Doctoral Supervisors in Response to the Publication Pressure on Science Students

    ERIC Educational Resources Information Center

    Li, Yongyan

    2016-01-01

    Publishing English papers in journals listed in Science Citation Index (SCI) has become a requirement for degree conferment for doctoral science students at many universities in China. The publication requirement engenders high pressure for doctoral students and their supervisors and shapes the politics of the relationship between the two parties.…

  15. Applications of Out-of-Domain Knowledge in Students' Reasoning about Computer Program State

    ERIC Educational Resources Information Center

    Lewis, Colleen Marie

    2012-01-01

    To meet a growing demand and a projected deficit in the supply of computer professionals (NCWIT, 2009), it is of vital importance to expand students' access to computer science. However, many researchers in the computer science education community unproductively assume that some students lack an innate ability for computer science and…

  16. Scientific Computing Strategic Plan for the Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiting, Eric Todd

    Scientific computing is a critical foundation of modern science. Without innovations in the field of computational science, the essential missions of the Department of Energy (DOE) would go unrealized. Taking a leadership role in such innovations is Idaho National Laboratory’s (INL’s) challenge and charge, and is central to INL’s ongoing success. Computing is an essential part of INL’s future. DOE science and technology missions rely firmly on computing capabilities in various forms. Modeling and simulation, fueled by innovations in computational science and validated through experiment, are a critical foundation of science and engineering. Big data analytics from an increasing numbermore » of widely varied sources is opening new windows of insight and discovery. Computing is a critical tool in education, science, engineering, and experiments. Advanced computing capabilities in the form of people, tools, computers, and facilities, will position INL competitively to deliver results and solutions on important national science and engineering challenges. A computing strategy must include much more than simply computers. The foundational enabling component of computing at many DOE national laboratories is the combination of a showcase like data center facility coupled with a very capable supercomputer. In addition, network connectivity, disk storage systems, and visualization hardware are critical and generally tightly coupled to the computer system and co located in the same facility. The existence of these resources in a single data center facility opens the doors to many opportunities that would not otherwise be possible.« less

  17. Hybrid 3-D rocket trajectory program. Part 1: Formulation and analysis. Part 2: Computer programming and user's instruction. [computerized simulation using three dimensional motion analysis

    NASA Technical Reports Server (NTRS)

    Huang, L. C. P.; Cook, R. A.

    1973-01-01

    Models utilizing various sub-sets of the six degrees of freedom are used in trajectory simulation. A 3-D model with only linear degrees of freedom is especially attractive, since the coefficients for the angular degrees of freedom are the most difficult to determine and the angular equations are the most time consuming for the computer to evaluate. A computer program is developed that uses three separate subsections to predict trajectories. A launch rail subsection is used until the rocket has left its launcher. The program then switches to a special 3-D section which computes motions in two linear and one angular degrees of freedom. When the rocket trims out, the program switches to the standard, three linear degrees of freedom model.

  18. Examining sexism in the geosciences

    NASA Astrophysics Data System (ADS)

    Simarski, Lynn Teo

    Do women geoscientists face worse obstacles because of their gender than women in other sciences? A recent survey by the Committee on Professionals in Science and Technology showed that women with geoscience bachelor's degrees start off at only 68% of their male colleagues' salaries, much lower than women in biology (92%), engineering (102%), chemistry (103%), and physics (111%).Women still lag behind men in geoscience degrees as well. In 1990, women received about one-third of geoscience bachelor's degrees, one-quarter of masters, and about one-fifth of Ph.D.'s, reports the American Geological Institute. In the sciences overall, women received about half of bachelor's degrees, 42% of masters, and about a third of Ph.D.'s in 1989, according to the National Research Council.

  19. A Cognitive Model for Problem Solving in Computer Science

    ERIC Educational Resources Information Center

    Parham, Jennifer R.

    2009-01-01

    According to industry representatives, computer science education needs to emphasize the processes involved in solving computing problems rather than their solutions. Most of the current assessment tools used by universities and computer science departments analyze student answers to problems rather than investigating the processes involved in…

  20. Approaches to Classroom-Based Computational Science.

    ERIC Educational Resources Information Center

    Guzdial, Mark

    Computational science includes the use of computer-based modeling and simulation to define and test theories about scientific phenomena. The challenge for educators is to develop techniques for implementing computational science in the classroom. This paper reviews some previous work on the use of simulation alone (without modeling), modeling…

  1. Defining Computational Thinking for Mathematics and Science Classrooms

    ERIC Educational Resources Information Center

    Weintrop, David; Beheshti, Elham; Horn, Michael; Orton, Kai; Jona, Kemi; Trouille, Laura; Wilensky, Uri

    2016-01-01

    Science and mathematics are becoming computational endeavors. This fact is reflected in the recently released Next Generation Science Standards and the decision to include "computational thinking" as a core scientific practice. With this addition, and the increased presence of computation in mathematics and scientific contexts, a new…

  2. Nurses' attitudes towards computers: cross sectional questionnaire study.

    PubMed

    Brumini, Gordan; Kovic, Ivor; Zombori, Dejvid; Lulic, Ileana; Petrovecki, Mladen

    2005-02-01

    To estimate the attitudes of hospital nurses towards computers and the influence of gender, age, education, and computer usage on these attitudes. The study was conducted in two Croatian hospitals where integrated hospital information system is being implemented. There were 1,081 nurses surveyed by an anonymous questionnaire consisting of 8 questions about demographic data, education, and computer usage, and 30 statements on attitudes towards computers. The statements were adapted to a Likert type scale. Differences in attitudes towards computers were compared using one-way ANOVA and Tukey-b post-hoc test. The total score was 120+/-15 (mean+/-standard deviation) out of maximal 150. Nurses younger than 30 years had a higher total score than those older than 30 years (124+/-13 vs 119+/-16 for 30-39 age groups and 117+/-15 for>39 age groups, P<0.001). Nurses with a bachelor's degree (119+/-16 vs 122+/-14, P=0.002) and nurses who had attended computer science courses had a higher total score compared to the others (124+/-13 vs 118+/-16, P<0.001). Nurses using computers more than 5 hours per week had higher total score than those who used computers less than 5 hours (127+/-13 vs 124+/-12 for 1-5 h and and 119+/-14 for <1 hour per day, P<0.001, post-hoc test). Nurses in general have positive attitudes towards computers. These results are important for the planning and implementing an integrated hospital information system.

  3. Glacial isostatic adjustment using GNSS permanent stations and GIA modelling tools

    NASA Astrophysics Data System (ADS)

    Kollo, Karin; Spada, Giorgio; Vermeer, Martin

    2013-04-01

    Glacial Isostatic Adjustment (GIA) affects the Earth's mantle in areas which were once ice covered and the process is still ongoing. In this contribution we focus on GIA processes in Fennoscandian and North American uplift regions. In this contribution we use horizontal and vertical uplift rates from Global Navigation Satellite System (GNSS) permanent stations. For Fennoscandia the BIFROST dataset (Lidberg, 2010) and North America the dataset from Sella, 2007 were used respectively. We perform GIA modelling with the SELEN program (Spada and Stocchi, 2007) and we vary ice model parameters in space in order to find ice model which suits best with uplift values obtained from GNSS time series analysis. In the GIA modelling, the ice models ICE-5G (Peltier, 2004) and the ice model denoted as ANU05 ((Fleming and Lambeck, 2004) and references therein) were used. As reference, the velocity field from GNSS permanent station time series was used for both target areas. Firstly the sensitivity to the harmonic degree was tested in order to reduce the computation time. In the test, nominal viscosity values and pre-defined lithosphere thicknesses models were used, varying maximum harmonic degree values. Main criteria for choosing the suitable harmonic degree was chi-square fit - if the error measure does not differ more than 10%, then one might use as well lower harmonic degree value. From this test, maximum harmonic degree of 72 was chosen to perform calculations, as the larger value did not significantly modify the results obtained, as well the computational time for observations was kept reasonable. Secondly the GIA computations were performed to find the model, which could fit with highest probability to the GNSS-based velocity field in the target areas. In order to find best fitting Earth viscosity parameters, different viscosity profiles for the Earth models were tested and their impact on horizontal and vertical velocity rates from GIA modelling was studied. For every tested model the chi-square misfit for horizontal, vertical and three-dimensional velocity rates from the reference model was found (Milne, 2001). Finally, the best fitting models from GIA modelling were compared with rates obtained from GNSS data. Keywords: Fennoscandia, North America, land uplift, glacial isostatic adjustment, visco-elastic modelling, BIFROST. References Lidberg, M., Johannson, J., Scherneck, H.-G. and Milne, G. (2010). Recent results based on continuous GPS observations of the GIA process in Fennoscandia from BIFROST. Journal of Geodynamics, 50. pp. 8-18. Sella, G. F., Stein, S., Dixon, T. H., Craymer, M., James, T. S., Mazotti, S. and Dokka, R. K. (2007). Observations of glacial isostatic adjustment in "stable" North America with GPS. Geophysical Research Letters, 34, L02306. Spada, G., Stocchi, P. (2007). SELEN: A Fortran 90 program for solving the "sea-level equation". Computers & Geosciences, 33:538-562, 2007. Peltier, W. R. (2004). Global glacial isostasy and the surface of the ice-age Earth: The Ice-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci., 32:111-149, 2004. Fleming, K. and Lambeck, K. (2004). Constraints on the Greenland Ice Sheet since the Last Glacial Maximum from sea-level observations and glacial-rebound models. Quaternary Science Reviews 23 (2004), pp. 1053-1077. Milne, G. A. and Davis, J. L. and Mitrovica, J. X. and Scherneck, H.-G. and Johansson, J. M. and Vermeer, M. and Koivula, H. (2001). Space-geodetic constraints on glacial isostatic adjustment in Fennoscandia. Science 291 (2001), pp. 2381-2385.

  4. NASA Center for Computational Sciences: History and Resources

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Nasa Center for Computational Sciences (NCCS) has been a leading capacity computing facility, providing a production environment and support resources to address the challenges facing the Earth and space sciences research community.

  5. Institute for Computer Applications in Science and Engineering (ICASE)

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science during the period April 1, 1983 through September 30, 1983 is summarized.

  6. Computers in Science: Thinking Outside the Discipline.

    ERIC Educational Resources Information Center

    Hamilton, Todd M.

    2003-01-01

    Describes the Computers in Science course which integrates computer-related techniques into the science disciplines of chemistry, physics, biology, and Earth science. Uses a team teaching approach and teaches students how to solve chemistry problems with spreadsheets, identify minerals with X-rays, and chemical and force analysis. (Contains 14…

  7. 78 FR 64255 - Advisory Committee for Computer and Information Science and Engineering; Cancellation of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-28

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for Computer and Information Science and Engineering; Cancellation of Meeting SUMMARY: As a result of the impact of the recent government shutdown, the... Committee for Computer and Information Science and Engineering meeting. The public notice for this committee...

  8. Exemplary Science Teachers' Use of Technology

    ERIC Educational Resources Information Center

    Hakverdi-Can, Meral; Dana, Thomas M.

    2012-01-01

    The purpose of this study is to examine exemplary science teachers' level of computer use, their knowledge/skills in using specific computer applications for science instruction, their use of computer-related applications/tools during their instruction, how often they required their students to use those applications in or for their science class…

  9. Software Reviews.

    ERIC Educational Resources Information Center

    Science and Children, 1990

    1990-01-01

    Reviewed are seven computer software packages for IBM and/or Apple Computers. Included are "Windows on Science: Volume 1--Physical Science"; "Science Probe--Physical Science"; "Wildlife Adventures--Grizzly Bears"; "Science Skills--Development Programs"; "The Clean Machine"; "Rock Doctor";…

  10. An Overview of NASA's Intelligent Systems Program

    NASA Technical Reports Server (NTRS)

    Cooke, Daniel E.; Norvig, Peter (Technical Monitor)

    2001-01-01

    NASA and the Computer Science Research community are poised to enter a critical era. An era in which - it seems - that each needs the other. Market forces, driven by the immediate economic viability of computer science research results, place Computer Science in a relatively novel position. These forces impact how research is done, and could, in worst case, drive the field away from significant innovation opting instead for incremental advances that result in greater stability in the market place. NASA, however, requires significant advances in computer science research in order to accomplish the exploration and science agenda it has set out for itself. NASA may indeed be poised to advance computer science research in this century much the way it advanced aero-based research in the last.

  11. A Review of Models for Teacher Preparation Programs for Precollege Computer Science Education.

    ERIC Educational Resources Information Center

    Deek, Fadi P.; Kimmel, Howard

    2002-01-01

    Discusses the need for adequate precollege computer science education and focuses on the issues of teacher preparation programs and requirements needed to teach high school computer science. Presents models of teacher preparation programs and compares state requirements with Association for Computing Machinery (ACM) recommendations. (Author/LRW)

  12. A DDC Bibliography on Computers in Information Sciences. Volume II. Information Sciences Series.

    ERIC Educational Resources Information Center

    Defense Documentation Center, Alexandria, VA.

    The unclassified and unlimited bibliography compiles references dealing specifically with the role of computers in information sciences. The volume contains 239 annotated references grouped under three major headings: Artificial and Programming Languages, Computer Processing of Analog Data, and Computer Processing of Digital Data. The references…

  13. Making Advanced Computer Science Topics More Accessible through Interactive Technologies

    ERIC Educational Resources Information Center

    Shao, Kun; Maher, Peter

    2012-01-01

    Purpose: Teaching advanced technical concepts in a computer science program to students of different technical backgrounds presents many challenges. The purpose of this paper is to present a detailed experimental pedagogy in teaching advanced computer science topics, such as computer networking, telecommunications and data structures using…

  14. ASCR Workshop on Quantum Computing for Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aspuru-Guzik, Alan; Van Dam, Wim; Farhi, Edward

    This report details the findings of the DOE ASCR Workshop on Quantum Computing for Science that was organized to assess the viability of quantum computing technologies to meet the computational requirements of the DOE’s science and energy mission, and to identify the potential impact of quantum technologies. The workshop was held on February 17-18, 2015, in Bethesda, MD, to solicit input from members of the quantum computing community. The workshop considered models of quantum computation and programming environments, physical science applications relevant to DOE's science mission as well as quantum simulation, and applied mathematics topics including potential quantum algorithms formore » linear algebra, graph theory, and machine learning. This report summarizes these perspectives into an outlook on the opportunities for quantum computing to impact problems relevant to the DOE’s mission as well as the additional research required to bring quantum computing to the point where it can have such impact.« less

  15. BIOCOMPUTATION: some history and prospects.

    PubMed

    Cull, Paul

    2013-06-01

    At first glance, biology and computer science are diametrically opposed sciences. Biology deals with carbon based life forms shaped by evolution and natural selection. Computer Science deals with electronic machines designed by engineers and guided by mathematical algorithms. In this brief paper, we review biologically inspired computing. We discuss several models of computation which have arisen from various biological studies. We show what these have in common, and conjecture how biology can still suggest answers and models for the next generation of computing problems. We discuss computation and argue that these biologically inspired models do not extend the theoretical limits on computation. We suggest that, in practice, biological models may give more succinct representations of various problems, and we mention a few cases in which biological models have proved useful. We also discuss the reciprocal impact of computer science on biology and cite a few significant contributions to biological science. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Dynamics of cortical dendritic membrane potential and spikes in freely behaving rats.

    PubMed

    Moore, Jason J; Ravassard, Pascal M; Ho, David; Acharya, Lavanya; Kees, Ashley L; Vuong, Cliff; Mehta, Mayank R

    2017-03-24

    Neural activity in vivo is primarily measured using extracellular somatic spikes, which provide limited information about neural computation. Hence, it is necessary to record from neuronal dendrites, which can generate dendritic action potentials (DAPs) in vitro, which can profoundly influence neural computation and plasticity. We measured neocortical sub- and suprathreshold dendritic membrane potential (DMP) from putative distal-most dendrites using tetrodes in freely behaving rats over multiple days with a high degree of stability and submillisecond temporal resolution. DAP firing rates were several-fold larger than somatic rates. DAP rates were also modulated by subthreshold DMP fluctuations, which were far larger than DAP amplitude, indicating hybrid, analog-digital coding in the dendrites. Parietal DAP and DMP exhibited egocentric spatial maps comparable to pyramidal neurons. These results have important implications for neural coding and plasticity. Copyright © 2017, American Association for the Advancement of Science.

  17. Behavioral and computational aspects of language and its acquisition

    NASA Astrophysics Data System (ADS)

    Edelman, Shimon; Waterfall, Heidi

    2007-12-01

    One of the greatest challenges facing the cognitive sciences is to explain what it means to know a language, and how the knowledge of language is acquired. The dominant approach to this challenge within linguistics has been to seek an efficient characterization of the wealth of documented structural properties of language in terms of a compact generative grammar-ideally, the minimal necessary set of innate, universal, exception-less, highly abstract rules that jointly generate all and only the observed phenomena and are common to all human languages. We review developmental, behavioral, and computational evidence that seems to favor an alternative view of language, according to which linguistic structures are generated by a large, open set of constructions of varying degrees of abstraction and complexity, which embody both form and meaning and are acquired through socially situated experience in a given language community, by probabilistic learning algorithms that resemble those at work in other cognitive modalities.

  18. Hadron electric polarizability from lattice QCD

    NASA Astrophysics Data System (ADS)

    Alexandru, Andrei

    2017-09-01

    Electromagnetic polarizabilities are important parameters for hadron structure, describing the response of the charge and current distributions inside the hadron to an external electromagnetic field. For most hadrons these quantities are poorly constrained experimentally since they can only be measured indirectly. Lattice QCD can be used to compute these quantities directly in terms of quark and gluons degrees of freedom, using the background field method. We present results for the neutron electric polarizability for two different quark masses, light enough to connect to chiral perturbation theory. These are currently the lightest quark masses used in polarizability studies. For each pion mass we compute the polarizability at four different volumes and perform an infinite volume extrapolation. We also discuss the effect of turning on the coupling between the background field and the sea quarks. A.A. is supported in part by the National Science Foundation CAREER Grant PHY-1151648 and by U.S. DOE Grant No. DE-FG02-95ER40907.

  19. A Case Study of the Introduction of Computer Science in NZ Schools

    ERIC Educational Resources Information Center

    Bell, Tim; Andreae, Peter; Robins, Anthony

    2014-01-01

    For many years computing in New Zealand schools was focused on teaching students how to use computers, and there was little opportunity for students to learn about programming and computer science as formal subjects. In this article we review a series of initiatives that occurred from 2007 to 2009 that led to programming and computer science being…

  20. Electricity in the treatment of nervous system disease.

    PubMed

    Fodstad, H; Hariz, M

    2007-01-01

    Electricity has been used in medicine for almost two millenniums beginning with electrical chocks from the torpedo fish and ending with the implantation of neuromodulators and neuroprostheses. These implantable stimulators aim to improve functional independence and quality of life in various groups of disabled people. New indications for neuromodulation are still evolving and the field is rapidly advancing. Thanks to modern science and computer technology, electrotherapy has reached a degree of sophistication where it can be applied relatively safely and effectively in a variety of nervous system diseases, including pain, movement disorders, epilepsy, Tourette syndrome, psychiatric disease, addiction, coma, urinary incontinence, impotence, infertility, respiratory paralysis, tinnitus and blindness.

  1. Technical innovations in international e-nursing.

    PubMed

    Carty, Rita M; Principato, Jerold J

    2002-01-01

    Saudi Arabia faces a severe shortage of nurses. An online nursing degree is being introduced as one approach to this problem. In 1999, the College of Nursing and Health Science at George Mason University formed a strategic partnership with IMED Link, a private telehealth company, to deliver online nursing education. Nine courses have been developed so far, including nursing assessment. The educational material will be distributed via Saudi Arabia's telemedicine network. The courses will be led by professors of nursing at George Mason University using videoconferencing, coupled with online computer classes and Internet tools. Both nursing content and expertise in Web technologies are necessary to develop a successful e-nursing programme.

  2. Research in Applied Mathematics, Fluid Mechanics and Computer Science

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1998 through March 31, 1999.

  3. [Research activities in applied mathematics, fluid mechanics, and computer science

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period April 1, 1995 through September 30, 1995.

  4. Activities of the Institute for Computer Applications in Science and Engineering

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period April 1, 1985 through October 2, 1985 is summarized.

  5. Addressing an Overlooked Science Outreach Audience: Development of a Science Mentorship Program Focusing on Critical Thinking Skills for Adults Working toward a High School Equivalency Degree

    ERIC Educational Resources Information Center

    Gagnon, Nicole L.; Komor, Anna J.

    2017-01-01

    Adult learners seeking a high school equivalency degree are a highly motivated group of students that almost universally meet outreach audience goals of serving minority, low-income, and other disadvantaged populations. Despite the demonstrated need of this population, these students are not commonly served by university-sponsored science outreach…

  6. MSU Medical Colleges Blended Learning for First Year Science Courses: Uniting Pedagogy to Maximize Experience and Real World Limitations

    ERIC Educational Resources Information Center

    Lovell, Kathryn; Vignare, Karen

    2009-01-01

    At Michigan State University the two medical schools, College of Human Medicine (CHM; M.D. degree) and College of Osteopathic Medicine (COM; D.O. degree), have offered the same science courses to first year students for many years. Science departments report to both colleges, and the same faculty can effectively teach the content required in the…

  7. Missed Opportunities: Origin, Growth, and Decline of Community College Fire Science Degree Programs in Alabama, 1977 to 2002

    ERIC Educational Resources Information Center

    Laughlin, Jerry W.

    2007-01-01

    There was rapid growth of Alabama community colleges in the late 1960s. At the same time, there was rapid growth nationally of fire science associate degree programs. With these concurrent events, one would expect fire department personnel in Alabama to benefit from new community college opportunities in fire science and fire administration.…

  8. The Effects of Cognitive Styles on Naïve Impetus Theory Application Degrees of Pre-Service Science Teachers

    ERIC Educational Resources Information Center

    Cataloglu, Erdat; Ates, Salih

    2014-01-01

    The purpose of this study was to determine whether there is a relationship between pre-service science teachers' Field Dependent or Field Independent (FD/FI) cognitive styles and the application of degrees of naive impetus theory. The sample consisted of 122 pre-service science teachers (97 females and 25 males) who were enrolled in the…

  9. A Quantitative Model for Assessing Visual Simulation Software Architecture

    DTIC Science & Technology

    2011-09-01

    Software Engineering Arnold Buss Research Associate Professor of MOVES LtCol Jeff Boleng, PhD Associate Professor of Computer Science U.S. Air Force Academy... science (operating and programming systems series). New York, NY, USA: Elsevier Science Ltd. Henry, S., & Kafura, D. (1984). The evaluation of software...Rudy Darken Professor of Computer Science Dissertation Supervisor Ted Lewis Professor of Computer Science Richard Riehle Professor of Practice

  10. K-16 Computationally Rich Science Education: A Ten-Year Review of the "Journal of Science Education and Technology" (1998-2008)

    ERIC Educational Resources Information Center

    Wofford, Jennifer

    2009-01-01

    Computing is anticipated to have an increasingly expansive impact on the sciences overall, becoming the third, crucial component of a "golden triangle" that includes mathematics and experimental and theoretical science. However, even more true with computing than with math and science, we are not preparing our students for this new reality. It is…

  11. I Have a Degree in Geosciences. Now What? How to Make a Career Out of Science Writing

    NASA Astrophysics Data System (ADS)

    Sever, M.

    2013-12-01

    Many geoscience students pursue their degrees thinking that they will remain in academia or will become researchers at other public or private ventures. By the time they graduate, however, some students have re-evaluated their initial career ideas and are looking for alternatives that meld their scientific backgrounds with other interests. When those interests include communicating the novelty, excitement and value of a wide scope of modern science to the public, science writing can be an extremely rewarding path for geoscience graduates. But how does one become a science writer? What skills does someone need to possess or develop to be an effective writer, reporter and editor? Does someone need a graduate degree in journalism, in science, both, or neither to get a job in science writing? And what kinds of jobs are even available for those interested in science writing? This talk will primarily discuss how to incorporate one's skills, interests and training to land a job in science writing. Additionally, it will touch on what someone entering the important field of science writing can expect to encounter, coming from the perspective of an editor and writer at EARTH Magazine.

  12. Science-Technology Coupling: The Case of Mathematical Logic and Computer Science.

    ERIC Educational Resources Information Center

    Wagner-Dobler, Roland

    1997-01-01

    In the history of science, there have often been periods of sudden rapprochements between pure science and technology-oriented branches of science. Mathematical logic as pure science and computer science as technology-oriented science have experienced such a rapprochement, which is studied in this article in a bibliometric manner. (Author)

  13. Cognitive computing and eScience in health and life science research: artificial intelligence and obesity intervention programs.

    PubMed

    Marshall, Thomas; Champagne-Langabeer, Tiffiany; Castelli, Darla; Hoelscher, Deanna

    2017-12-01

    To present research models based on artificial intelligence and discuss the concept of cognitive computing and eScience as disruptive factors in health and life science research methodologies. The paper identifies big data as a catalyst to innovation and the development of artificial intelligence, presents a framework for computer-supported human problem solving and describes a transformation of research support models. This framework includes traditional computer support; federated cognition using machine learning and cognitive agents to augment human intelligence; and a semi-autonomous/autonomous cognitive model, based on deep machine learning, which supports eScience. The paper provides a forward view of the impact of artificial intelligence on our human-computer support and research methods in health and life science research. By augmenting or amplifying human task performance with artificial intelligence, cognitive computing and eScience research models are discussed as novel and innovative systems for developing more effective adaptive obesity intervention programs.

  14. 78 FR 61870 - Advisory Committee for Computer and Information Science and Engineering; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-04

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for Computer and Information Science and Engineering; Notice of Meeting In accordance with Federal Advisory Committee Act (Pub. L. 92-463, as amended... Committee for Computer and Information Science and Engineering (1115). Date/Time: Oct 31, 2013: 12:30 p.m...

  15. From Supernovae To Equatorial Ionosphere, Following a Tortuous Path Through Computer Sciences, Oceanography, and Much, Much More

    NASA Astrophysics Data System (ADS)

    de La Beaujardiere, O.

    2002-12-01

    From as early as I can remember, I always wanted to be a scientist. My interests were oriented towards cataclysmic and catastrophic events. I first wanted to study volcanoes, then earthquakes. As I ended my PhD, my interests had gone a little higher, towards supernovae and the Crab Nebula. This was in Paris. I then immigrated to the US. My first job in the US was in computer sciences. I joined a team who made one of the first computer movies. I then switched fields once more. I went into ionospheric physics, where I stayed for more than 2 decades. I then did two "tours of duty" at National Sciences Foundation. I was first in the Magnetospheric Program. Then I started a multidisciplinary program that covered all sciences related to the arctic - from the bottom o f the ocean to the confines of the magnetosphere, passing through biology, glaciology, etc. Presently, I lead a team of about 20 scientists at the Air Force Research Laboratory. We work on basic and applied ionospheric sciences problems as they relate to communications and navigation. As a woman scientist, the hardest obstacle I had to overcome was probably the permanent guilt of not staying home with my children. I raised 3 boys, and, although they are happy, successful and well adjusted, I continue to feel guilt about not staying home for them, and working so long hours and with so much intensity. When they were small, society was not too accepting of working mothers. In one of my kids' first grade class, he was the only child whose mother was working. As a teenager I also had to overcome rejection from boys who "could not stand" girls who studied science. My own father was not too encouraging to continue studies, warning me that women who are too bright have a hard time finding husbands. One University professor told the class that women were wasting taxpayers' money since they would never put their degree to use. My greatest support was my husband, always there, sharing chores, and understanding my ups and downs. The saying that the difficult period in a woman's life is only between the ages of 7 and 70 gives me solace. I can't wait to be 70.

  16. Activities of the Institute for Computer Applications in Science and Engineering (ICASE)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period October 1, 1984 through March 31, 1985 is summarized.

  17. [Research Conducted at the Institute for Computer Applications in Science and Engineering

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period 1 Oct. 1996 - 31 Mar. 1997.

  18. Activities of the Institute for Computer Applications in Science and Engineering (ICASE)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This report summarizes research conducted at the Institute for Computer Applications Science and Engineering in applied mathematics, numerical analysis, and computer science during the period October 2, 1987 through March 31, 1988.

  19. [Activities of Institute for Computer Applications in Science and Engineering (ICASE)

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics. fluid mechanics, and computer science during the period April 1, 1999 through September 30. 1999.

  20. Practical Measurement of Complexity In Dynamic Systems

    DTIC Science & Technology

    2012-01-01

    policies that produce highly complex behaviors , yet yield no benefit. 21Jason B. Clark and David R. Jacques / Procedia Computer Science 8 (2012) 14... Procedia Computer Science 8 (2012) 14 – 21 1877-0509 © 2012 Published by Elsevier B.V. doi:10.1016/j.procs.2012.01.008 Available online at...www.sciencedirect.com Procedia Computer Science Procedia Computer Science 00 (2012) 000–000 www.elsevier.com/locate/ procedia Available online at

  1. The role of physicality in rich programming environments

    NASA Astrophysics Data System (ADS)

    Liu, Allison S.; Schunn, Christian D.; Flot, Jesse; Shoop, Robin

    2013-12-01

    Computer science proficiency continues to grow in importance, while the number of students entering computer science-related fields declines. Many rich programming environments have been created to motivate student interest and expertise in computer science. In the current study, we investigated whether a recently created environment, Robot Virtual Worlds (RVWs), can be used to teach computer science principles within a robotics context by examining its use in high-school classrooms. We also investigated whether the lack of physicality in these environments impacts student learning by comparing classrooms that used either virtual or physical robots for the RVW curriculum. Results suggest that the RVW environment leads to significant gains in computer science knowledge, that virtual robots lead to faster learning, and that physical robots may have some influence on algorithmic thinking. We discuss the implications of physicality in these programming environments for learning computer science.

  2. Path Not Found: Disparities in Access to Computer Science Courses in California High Schools

    ERIC Educational Resources Information Center

    Martin, Alexis; McAlear, Frieda; Scott, Allison

    2015-01-01

    "Path Not Found: Disparities in Access to Computer Science Courses in California High Schools" exposes one of the foundational causes of underrepresentation in computing: disparities in access to computer science courses in California's public high schools. This report provides new, detailed data on these disparities by student body…

  3. Developing Oral and Written Communication Skills in Undergraduate Computer Science and Information Systems Curriculum

    ERIC Educational Resources Information Center

    Kortsarts, Yana; Fischbach, Adam; Rufinus, Jeff; Utell, Janine M.; Yoon, Suk-Chung

    2010-01-01

    Developing and applying oral and written communication skills in the undergraduate computer science and computer information systems curriculum--one of the ABET accreditation requirements - is a very challenging and, at the same time, a rewarding task that provides various opportunities to enrich the undergraduate computer science and computer…

  4. EOS MLS Science Data Processing System: A Description of Architecture and Capabilities

    NASA Technical Reports Server (NTRS)

    Cuddy, David T.; Echeverri, Mark D.; Wagner, Paul A.; Hanzel, Audrey T.; Fuller, Ryan A.

    2006-01-01

    This paper describes the architecture and capabilities of the Science Data Processing System (SDPS) for the EOS MLS. The SDPS consists of two major components--the Science Computing Facility and the Science Investigator-led Processing System. The Science Computing Facility provides the facilities for the EOS MLS Science Team to perform the functions of scientific algorithm development, processing software development, quality control of data products, and scientific analyses. The Science Investigator-led Processing System processes and reprocesses the science data for the entire mission and delivers the data products to the Science Computing Facility and to the Goddard Space Flight Center Earth Science Distributed Active Archive Center, which archives and distributes the standard science products.

  5. Women in computer science: An interpretative phenomenological analysis exploring common factors contributing to women's selection and persistence in computer science as an academic major

    NASA Astrophysics Data System (ADS)

    Thackeray, Lynn Roy

    The purpose of this study is to understand the meaning that women make of the social and cultural factors that influence their reasons for entering and remaining in study of computer science. The twenty-first century presents many new challenges in career development and workforce choices for both men and women. Information technology has become the driving force behind many areas of the economy. As this trend continues, it has become essential that U.S. citizens need to pursue a career in technologies, including the computing sciences. Although computer science is a very lucrative profession, many Americans, especially women, are not choosing it as a profession. Recent studies have shown no significant differences in math, technical and science competency between men and women. Therefore, other factors, such as social, cultural, and environmental influences seem to affect women's decisions in choosing an area of study and career choices. A phenomenological method of qualitative research was used in this study, based on interviews of seven female students who are currently enrolled in a post-secondary computer science program. Their narratives provided meaning into the social and cultural environments that contribute to their persistence in their technical studies, as well as identifying barriers and challenges that are faced by female students who choose to study computer science. It is hoped that the data collected from this study may provide recommendations for the recruiting, retention and support for women in computer science departments of U.S. colleges and universities, and thereby increase the numbers of women computer scientists in industry. Keywords: gender access, self-efficacy, culture, stereotypes, computer education, diversity.

  6. 77 FR 38630 - Open Internet Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ... Computer Science and Co-Founder of the Berkman Center for Internet and Society, Harvard University, is... of Technology Computer Science and Artificial Intelligence Laboratory, is appointed vice-chairperson... Jennifer Rexford, Professor of Computer Science, Princeton University Dennis Roberson, Vice Provost...

  7. Research in progress at the Institute for Computer Applications in Science and Engineering

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period April 1, 1987 through October 1, 1987.

  8. A parallel-processing approach to computing for the geographic sciences; applications and systems enhancements

    USGS Publications Warehouse

    Crane, Michael; Steinwand, Dan; Beckmann, Tim; Krpan, Greg; Liu, Shu-Guang; Nichols, Erin; Haga, Jim; Maddox, Brian; Bilderback, Chris; Feller, Mark; Homer, George

    2001-01-01

    The overarching goal of this project is to build a spatially distributed infrastructure for information science research by forming a team of information science researchers and providing them with similar hardware and software tools to perform collaborative research. Four geographically distributed Centers of the U.S. Geological Survey (USGS) are developing their own clusters of low-cost, personal computers into parallel computing environments that provide a costeffective way for the USGS to increase participation in the high-performance computing community. Referred to as Beowulf clusters, these hybrid systems provide the robust computing power required for conducting information science research into parallel computing systems and applications.

  9. Enabling Earth Science Through Cloud Computing

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Riofrio, Andres; Shams, Khawaja; Freeborn, Dana; Springer, Paul; Chafin, Brian

    2012-01-01

    Cloud Computing holds tremendous potential for missions across the National Aeronautics and Space Administration. Several flight missions are already benefiting from an investment in cloud computing for mission critical pipelines and services through faster processing time, higher availability, and drastically lower costs available on cloud systems. However, these processes do not currently extend to general scientific algorithms relevant to earth science missions. The members of the Airborne Cloud Computing Environment task at the Jet Propulsion Laboratory have worked closely with the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission to integrate cloud computing into their science data processing pipeline. This paper details the efforts involved in deploying a science data system for the CARVE mission, evaluating and integrating cloud computing solutions with the system and porting their science algorithms for execution in a cloud environment.

  10. Educational aspects of molecular simulation

    NASA Astrophysics Data System (ADS)

    Allen, Michael P.

    This article addresses some aspects of teaching simulation methods to undergraduates and graduate students. Simulation is increasingly a cross-disciplinary activity, which means that the students who need to learn about simulation methods may have widely differing backgrounds. Also, they may have a wide range of views on what constitutes an interesting application of simulation methods. Almost always, a successful simulation course includes an element of practical, hands-on activity: a balance always needs to be struck between treating the simulation software as a 'black box', and becoming bogged down in programming issues. With notebook computers becoming widely available, students often wish to take away the programs to run themselves, and access to raw computer power is not the limiting factor that it once was; on the other hand, the software should be portable and, if possible, free. Examples will be drawn from the author's experience in three different contexts. (1) An annual simulation summer school for graduate students, run by the UK CCP5 organization, in which practical sessions are combined with an intensive programme of lectures describing the methodology. (2) A molecular modelling module, given as part of a doctoral training centre in the Life Sciences at Warwick, for students who might not have a first degree in the physical sciences. (3) An undergraduate module in Physics at Warwick, also taken by students from other disciplines, teaching high performance computing, visualization, and scripting in the context of a physical application such as Monte Carlo simulation.

  11. 42 CFR 493.1405 - Standard; Laboratory director qualifications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... degree in a chemical, physical, biological, or clinical laboratory science from an accredited institution... Chemistry, the American Board of Bioanalysis, or the American Board of Medical Laboratory Immunology; or (ii...) Have earned a master's degree in a chemical, physical, biological or clinical laboratory science or...

  12. 42 CFR 493.1405 - Standard; Laboratory director qualifications.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... degree in a chemical, physical, biological, or clinical laboratory science from an accredited institution... Chemistry, the American Board of Bioanalysis, or the American Board of Medical Laboratory Immunology; or (ii...) Have earned a master's degree in a chemical, physical, biological or clinical laboratory science or...

  13. Computer analysis of digital sky surveys using citizen science and manual classification

    NASA Astrophysics Data System (ADS)

    Kuminski, Evan; Shamir, Lior

    2015-01-01

    As current and future digital sky surveys such as SDSS, LSST, DES, Pan-STARRS and Gaia create increasingly massive databases containing millions of galaxies, there is a growing need to be able to efficiently analyze these data. An effective way to do this is through manual analysis, however, this may be insufficient considering the extremely vast pipelines of astronomical images generated by the present and future surveys. Some efforts have been made to use citizen science to classify galaxies by their morphology on a larger scale than individual or small groups of scientists can. While these citizen science efforts such as Zooniverse have helped obtain reasonably accurate morphological information about large numbers of galaxies, they cannot scale to provide complete analysis of billions of galaxy images that will be collected by future ventures such as LSST. Since current forms of manual classification cannot scale to the masses of data collected by digital sky surveys, it is clear that in order to keep up with the growing databases some form of automation of the data analysis will be required, and will work either independently or in combination with human analysis such as citizen science. Here we describe a computer vision method that can automatically analyze galaxy images and deduce galaxy morphology. Experiments using Galaxy Zoo 2 data show that the performance of the method increases as the degree of agreement between the citizen scientists gets higher, providing a cleaner dataset. For several morphological features, such as the spirality of the galaxy, the algorithm agreed with the citizen scientists on around 95% of the samples. However, the method failed to analyze some of the morphological features such as the number of spiral arms, and provided accuracy of just ~36%.

  14. Teaching and Learning Methodologies Supported by ICT Applied in Computer Science

    ERIC Educational Resources Information Center

    Capacho, Jose

    2016-01-01

    The main objective of this paper is to show a set of new methodologies applied in the teaching of Computer Science using ICT. The methodologies are framed in the conceptual basis of the following sciences: Psychology, Education and Computer Science. The theoretical framework of the research is supported by Behavioral Theory, Gestalt Theory.…

  15. 76 FR 61118 - Advisory Committee for Computer and Information Science and Engineering; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-03

    ... Engineering; Notice of Meeting In accordance with the Federal Advisory Committee Act (Pub. L. 92- 463, as... Computer and Information Science and Engineering (1115). Date and Time: November 1, 2011 from 12 p.m.-5:30... Computer and Information Science and Engineering, National Science Foundation, 4201 Wilson Blvd., Suite...

  16. Computer Science in High School Graduation Requirements. ECS Education Trends (Updated)

    ERIC Educational Resources Information Center

    Zinth, Jennifer

    2016-01-01

    Allowing high school students to fulfill a math or science high school graduation requirement via a computer science credit may encourage more student to pursue computer science coursework. This Education Trends report is an update to the original report released in April 2015 and explores state policies that allow or require districts to apply…

  17. Characteristics of the Navy Laboratory Warfare Center Technical Workforce

    DTIC Science & Technology

    2013-09-29

    Mathematics and Information Science (M&IS) Actuarial Science 1510 Computer Science 1550 Gen. Math & Statistics 1501 Mathematics 1520 Operations...Admin. Network Systems & Data Communication Analysts Actuaries Mathematicians Operations Research Analyst Statisticians Social Science (SS...workforce was sub-divided into six broad occupational groups: Life Science , Physical Science , Engineering, Mathematics, Computer Science and Information

  18. A Department of Atmospheric and Planetary Sciences at Hampton University

    NASA Astrophysics Data System (ADS)

    Paterson, W. R.; McCormick, M. P.; Russell, J. M.; Anderson, J.; Kireev, S.; Loughman, R. P.; Smith, W. L.

    2006-12-01

    With this presentation we discuss the status of plans for a Department of Atmospheric and Planetary Sciences at Hampton University. Hampton University is a privately endowed, non-profit, non-sectarian, co-educational, and historically black university with 38 baccalaureate, 14 masters, and 4 doctoral degree programs. The graduate program in physics currently offers advanced degrees with concentration in Atmospheric Science. The 10 students now enrolled benefit substantially from the research experience and infrastructure resident in the university's Center for Atmospheric Sciences (CAS), which is celebrating its tenth anniversary. Promoting a greater diversity of participants in geosciences is an important objective for CAS. To accomplish this, we require reliable pipelines of students into the program. One such pipeline is our undergraduate minor in Space, Earth, and Atmospheric Sciences (SEAS minor). This minor concentraton of study is contributing to awareness of geosciences on the Hampton University campus, and beyond, as our students matriculate and join the workforce, or pursue higher degrees. However, the current graduate program, with its emphasis on physics, is not necessarily optimal for atmospheric scientists, and it limits our ability to recruit students who do not have a physics degree. To increase the base of candidate students, we have proposed creation of a Department of Atmospheric and Planetary Sciences, which could attract students from a broader range of academic disciplines. The revised curriculum would provide for greater concentration in atmospheric and planetary sciences, yet maintain a degree of flexibility to allow for coursework in physics or other areas to meet the needs of individual students. The department would offer the M.S. and Ph.D. degrees, and maintain the SEAS minor. The university's administration and faculty have approved our plan for this new department pending authorization by the university's board of trustees, which will consider the matter during their October, 2006 meeting.

  19. Leading Edge. Volume 7, Number 3. Systems Safety Engineering

    DTIC Science & Technology

    2010-01-01

    solvents during manu- facturing • Toxic gas and noise resulting from weapon firing • Cadmium exposure associated with han- dling of corroded equipment...California • System Safety certificate ◆ University of Southern California • Master of Science degree in Safety Sciences ◆ Indiana University of...Master of Science degree program in Health and Safety, with a Specialization in Occupa- tional Safety Management ◆ Indiana State University, Distance

  20. A Novel Supercritical Fluid-Assisted Fabrication Technique for Producing Transparent Nanocomposites

    DTIC Science & Technology

    2013-10-03

    period with a degree in science, mathematics, engineering, or technology fields: The number of undergraduates funded by your agreement who graduated...during this period and will continue to pursue a graduate or Ph.D. degree in science, mathematics, engineering, or technology fields: Number of...fellowships for further studies in science, mathematics, engineering or technology fields: 1.00 0.00 1.00 0.00 0.00 0.00

  1. Method and system for benchmarking computers

    DOEpatents

    Gustafson, John L.

    1993-09-14

    A testing system and method for benchmarking computer systems. The system includes a store containing a scalable set of tasks to be performed to produce a solution in ever-increasing degrees of resolution as a larger number of the tasks are performed. A timing and control module allots to each computer a fixed benchmarking interval in which to perform the stored tasks. Means are provided for determining, after completion of the benchmarking interval, the degree of progress through the scalable set of tasks and for producing a benchmarking rating relating to the degree of progress for each computer.

  2. A Review of Computer Science Resources for Learning and Teaching with K-12 Computing Curricula: An Australian Case Study

    ERIC Educational Resources Information Center

    Falkner, Katrina; Vivian, Rebecca

    2015-01-01

    To support teachers to implement Computer Science curricula into classrooms from the very first year of school, teachers, schools and organisations seek quality curriculum resources to support implementation and teacher professional development. Until now, many Computer Science resources and outreach initiatives have targeted K-12 school-age…

  3. Technology, Pedagogy, and Epistemology: Opportunities and Challenges of Using Computer Modeling and Simulation Tools in Elementary Science Methods

    ERIC Educational Resources Information Center

    Schwarz, Christina V.; Meyer, Jason; Sharma, Ajay

    2007-01-01

    This study infused computer modeling and simulation tools in a 1-semester undergraduate elementary science methods course to advance preservice teachers' understandings of computer software use in science teaching and to help them learn important aspects of pedagogy and epistemology. Preservice teachers used computer modeling and simulation tools…

  4. Prospective Students' Reactions to the Presentation of the Computer Science Major

    ERIC Educational Resources Information Center

    Weaver, Daniel Scott

    2010-01-01

    The number of students enrolling in Computer Science in colleges and Universities has declined since its peak in the early 2000s. Some claim contributing factors that intimate that prospective students fear the lack of employment opportunities if they study computing in college. However, the lack of understanding of what Computer Science is and…

  5. Fall 1991 Ocean Sciences Student Papers

    NASA Astrophysics Data System (ADS)

    1992-04-01

    Michele Okihiro received an Outstanding Student Paper Award for a paper she presented at the AGU Fall 1991 Meeting entitled “Infragravity Bound Waves in Shallow and Deep Water.” Okihiro received a Bachelor of Arts degree in mathematics from Pomona College in 1980, a Bachelor of Science degree in civil engineering from the University of Hawaii in 1988, and a Master of Science degree in oceanography from the University of California at San Diego in 1986. Okihiro is currently working toward her doctorate in oceanography at the University of California at San Diego. Her research at Scripps Institution concerns infragravity waves and their role in forcing resonant harbor oscillations.

  6. Computer Forensics Education - the Open Source Approach

    NASA Astrophysics Data System (ADS)

    Huebner, Ewa; Bem, Derek; Cheung, Hon

    In this chapter we discuss the application of the open source software tools in computer forensics education at tertiary level. We argue that open source tools are more suitable than commercial tools, as they provide the opportunity for students to gain in-depth understanding and appreciation of the computer forensic process as opposed to familiarity with one software product, however complex and multi-functional. With the access to all source programs the students become more than just the consumers of the tools as future forensic investigators. They can also examine the code, understand the relationship between the binary images and relevant data structures, and in the process gain necessary background to become the future creators of new and improved forensic software tools. As a case study we present an advanced subject, Computer Forensics Workshop, which we designed for the Bachelor's degree in computer science at the University of Western Sydney. We based all laboratory work and the main take-home project in this subject on open source software tools. We found that without exception more than one suitable tool can be found to cover each topic in the curriculum adequately. We argue that this approach prepares students better for forensic field work, as they gain confidence to use a variety of tools, not just a single product they are familiar with.

  7. PREPARING FOR EXASCALE: ORNL Leadership Computing Application Requirements and Strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joubert, Wayne; Kothe, Douglas B; Nam, Hai Ah

    2009-12-01

    In 2009 the Oak Ridge Leadership Computing Facility (OLCF), a U.S. Department of Energy (DOE) facility at the Oak Ridge National Laboratory (ORNL) National Center for Computational Sciences (NCCS), elicited petascale computational science requirements from leading computational scientists in the international science community. This effort targeted science teams whose projects received large computer allocation awards on OLCF systems. A clear finding of this process was that in order to reach their science goals over the next several years, multiple projects will require computational resources in excess of an order of magnitude more powerful than those currently available. Additionally, for themore » longer term, next-generation science will require computing platforms of exascale capability in order to reach DOE science objectives over the next decade. It is generally recognized that achieving exascale in the proposed time frame will require disruptive changes in computer hardware and software. Processor hardware will become necessarily heterogeneous and will include accelerator technologies. Software must undergo the concomitant changes needed to extract the available performance from this heterogeneous hardware. This disruption portends to be substantial, not unlike the change to the message passing paradigm in the computational science community over 20 years ago. Since technological disruptions take time to assimilate, we must aggressively embark on this course of change now, to insure that science applications and their underlying programming models are mature and ready when exascale computing arrives. This includes initiation of application readiness efforts to adapt existing codes to heterogeneous architectures, support of relevant software tools, and procurement of next-generation hardware testbeds for porting and testing codes. The 2009 OLCF requirements process identified numerous actions necessary to meet this challenge: (1) Hardware capabilities must be advanced on multiple fronts, including peak flops, node memory capacity, interconnect latency, interconnect bandwidth, and memory bandwidth. (2) Effective parallel programming interfaces must be developed to exploit the power of emerging hardware. (3) Science application teams must now begin to adapt and reformulate application codes to the new hardware and software, typified by hierarchical and disparate layers of compute, memory and concurrency. (4) Algorithm research must be realigned to exploit this hierarchy. (5) When possible, mathematical libraries must be used to encapsulate the required operations in an efficient and useful way. (6) Software tools must be developed to make the new hardware more usable. (7) Science application software must be improved to cope with the increasing complexity of computing systems. (8) Data management efforts must be readied for the larger quantities of data generated by larger, more accurate science models. Requirements elicitation, analysis, validation, and management comprise a difficult and inexact process, particularly in periods of technological change. Nonetheless, the OLCF requirements modeling process is becoming increasingly quantitative and actionable, as the process becomes more developed and mature, and the process this year has identified clear and concrete steps to be taken. This report discloses (1) the fundamental science case driving the need for the next generation of computer hardware, (2) application usage trends that illustrate the science need, (3) application performance characteristics that drive the need for increased hardware capabilities, (4) resource and process requirements that make the development and deployment of science applications on next-generation hardware successful, and (5) summary recommendations for the required next steps within the computer and computational science communities.« less

  8. Using the Tower of Hanoi puzzle to infuse your mathematics classroom with computer science concepts

    NASA Astrophysics Data System (ADS)

    Marzocchi, Alison S.

    2016-07-01

    This article suggests that logic puzzles, such as the well-known Tower of Hanoi puzzle, can be used to introduce computer science concepts to mathematics students of all ages. Mathematics teachers introduce their students to computer science concepts that are enacted spontaneously and subconsciously throughout the solution to the Tower of Hanoi puzzle. These concepts include, but are not limited to, conditionals, iteration, and recursion. Lessons, such as the one proposed in this article, are easily implementable in mathematics classrooms and extracurricular programmes as they are good candidates for 'drop in' lessons that do not need to fit into any particular place in the typical curriculum sequence. As an example for readers, the author describes how she used the puzzle in her own Number Sense and Logic course during the federally funded Upward Bound Math/Science summer programme for college-intending low-income high school students. The article explains each computer science term with real-life and mathematical examples, applies each term to the Tower of Hanoi puzzle solution, and describes how students connected the terms to their own solutions of the puzzle. It is timely and important to expose mathematics students to computer science concepts. Given the rate at which technology is currently advancing, and our increased dependence on technology in our daily lives, it has become more important than ever for children to be exposed to computer science. Yet, despite the importance of exposing today's children to computer science, many children are not given adequate opportunity to learn computer science in schools. In the United States, for example, most students finish high school without ever taking a computing course. Mathematics lessons, such as the one described in this article, can help to make computer science more accessible to students who may have otherwise had little opportunity to be introduced to these increasingly important concepts.

  9. The Top STEM Degree Producers

    ERIC Educational Resources Information Center

    Diverse: Issues in Higher Education, 2012

    2012-01-01

    This article presents a list of the top Science, Technology, Engineering, and Mathematics (STEM) degree producers in the U.S. This list is broken down into seven categories: (1) Total Minority Research/Scholarship and Other Doctoral: Mathematics and Statistics; (2) Total Minority Bachelors: Biological and Biomedical Sciences; (3) Total Minority…

  10. ASSOCIATE IN APPLIED SCIENCE IN NURSING.

    ERIC Educational Resources Information Center

    Milwaukee Inst. of Tech., WI.

    THE PROGRAM FOR ESTABLISHING AN ASSOCIATE IN APPLIED SCIENCE DEGREE IN NURSING AT THE MILWAUKEE INSTITUTE OF TECHNOLOGY IS DESCRIBED. INFORMATION COVERS--(1) REASONS FOR ESTABLISHING THE PROGRAM, (2) THE NEED FOR ADDITIONAL PROGRAMS IN NURSING, (3) CHARACTERISTICS, ADVANTAGES, AND GENERAL PHILOSOPHY OF ASSOCIATE DEGREE PROGRAMS, (3) THE PHILOSOPHY…

  11. Utilization of computer technology by science teachers in public high schools and the impact of standardized testing

    NASA Astrophysics Data System (ADS)

    Priest, Richard Harding

    A significant percentage of high school science teachers are not using computers to teach their students or prepare them for standardized testing. A survey of high school science teachers was conducted to determine how they are having students use computers in the classroom, why science teachers are not using computers in the classroom, which variables were relevant to their not using computers, and what are the effects of standardized testing on the use of technology in the high school science classroom. A self-administered questionnaire was developed to measure these aspects of computer integration and demographic information. A follow-up telephone interview survey of a portion of the original sample was conducted in order to clarify questions, correct misunderstandings, and to draw out more holistic descriptions from the subjects. The primary method used to analyze the quantitative data was frequency distributions. Multiple regression analysis was used to investigate the relationships between the barriers and facilitators and the dimensions of instructional use, frequency, and importance of the use of computers. All high school science teachers in a large urban/suburban school district were sent surveys. A response rate of 58% resulted from two mailings of the survey. It was found that contributing factors to why science teachers do not use computers were not enough up-to-date computers in their classrooms and other educational commitments and duties do not leave them enough time to prepare lessons that include technology. While a high percentage of science teachers thought their school and district administrations were supportive of technology, they also believed more inservice technology training and follow-up activities to support that training are needed and more software needs to be created. The majority of the science teachers do not use the computer to help students prepare for standardized tests because they believe they can prepare students more efficiently without a computer. Nearly half of the teachers, however, gave lack of time to prepare instructional materials and lack of a means to project a computer image to the whole class as reasons they do not use computers. A significant percentage thought science standardized testing was having a negative effect on computer use.

  12. Educational NASA Computational and Scientific Studies (enCOMPASS)

    NASA Technical Reports Server (NTRS)

    Memarsadeghi, Nargess

    2013-01-01

    Educational NASA Computational and Scientific Studies (enCOMPASS) is an educational project of NASA Goddard Space Flight Center aimed at bridging the gap between computational objectives and needs of NASA's scientific research, missions, and projects, and academia's latest advances in applied mathematics and computer science. enCOMPASS achieves this goal via bidirectional collaboration and communication between NASA and academia. Using developed NASA Computational Case Studies in university computer science/engineering and applied mathematics classes is a way of addressing NASA's goals of contributing to the Science, Technology, Education, and Math (STEM) National Objective. The enCOMPASS Web site at http://encompass.gsfc.nasa.gov provides additional information. There are currently nine enCOMPASS case studies developed in areas of earth sciences, planetary sciences, and astrophysics. Some of these case studies have been published in AIP and IEEE's Computing in Science and Engineering magazines. A few university professors have used enCOMPASS case studies in their computational classes and contributed their findings to NASA scientists. In these case studies, after introducing the science area, the specific problem, and related NASA missions, students are first asked to solve a known problem using NASA data and past approaches used and often published in a scientific/research paper. Then, after learning about the NASA application and related computational tools and approaches for solving the proposed problem, students are given a harder problem as a challenge for them to research and develop solutions for. This project provides a model for NASA scientists and engineers on one side, and university students, faculty, and researchers in computer science and applied mathematics on the other side, to learn from each other's areas of work, computational needs and solutions, and the latest advances in research and development. This innovation takes NASA science and engineering applications to computer science and applied mathematics university classes, and makes NASA objectives part of the university curricula. There is great potential for growth and return on investment of this program to the point where every major university in the U.S. would use at least one of these case studies in one of their computational courses, and where every NASA scientist and engineer facing a computational challenge (without having resources or expertise to solve it) would use enCOMPASS to formulate the problem as a case study, provide it to a university, and get back their solutions and ideas.

  13. Research in progress and other activities of the Institute for Computer Applications in Science and Engineering

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics and computer science during the period April 1, 1993 through September 30, 1993. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustic and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science.

  14. Research in progress in applied mathematics, numerical analysis, fluid mechanics, and computer science

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1993 through March 31, 1994. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustics and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science.

  15. Understanding the factors that influence high science achievers' academic choices and intent to pursue or opt out of the hard sciences

    NASA Astrophysics Data System (ADS)

    Quihuis, Gisell

    Drawing on Eccles and her colleagues' Expectancy-Value model of academic behavior and choice, this dissertation study set out to serve three purposes: (1) to understand how high achieving high school students who aspire to science college degrees compare, in terms of motivational beliefs and social experiences, with other high achievers who do not aspire to science college degrees; (2) to understand why some high school students who excel in the hard sciences are unsure about pursuing a science degree in college; and (3) to examine whether gender differences in motivational beliefs and social experiences found in previous research on math (see Eccles 1984) exist for science among high achieving high school students. Survey and interview data showed that gender differences previously found in Eccles' research on math exist for science among a select group of high achieving high school students. Yet, these gender differences did not explain students' aspirations for science. Motivation, classroom perceptions, science engagement, as well as other science-related experiences at home and school, including parent and teacher influences, were also important factors associated with students' aspirations for science. Results and implications for this study are encouraging because they suggest that both parents and educators can help more high achievers become interested in science. Parents can expose their children, male and female alike, to science at home early on in their childhood and teachers can help students sustain and further develop an interest in science at school. In this manner, both parents and teachers can work together as a team to encourage more high achievers to aspire to science degrees in their future. Lastly, it is important to note that this study found Eccles' model of motivation and choice helpful in understanding not only gender differences in math and the hard sciences, but also aspiration differences that cut across gender among students. Researchers interested in understanding students' motivation and academic-related choices may want to consider the applicability of Eccles' Expectancy-Value model to studies that do not focus on gender differences and that include academic domains aside from mathematics.

  16. Creating Science Simulations through Computational Thinking Patterns

    ERIC Educational Resources Information Center

    Basawapatna, Ashok Ram

    2012-01-01

    Computational thinking aims to outline fundamental skills from computer science that everyone should learn. As currently defined, with help from the National Science Foundation (NSF), these skills include problem formulation, logically organizing data, automating solutions through algorithmic thinking, and representing data through abstraction.…

  17. 77 FR 65417 - Proposal Review Panel for Computing Communication Foundations; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-26

    ...: To assess the progress of the EIC Award, ``Collaborative Research: Computational Behavioral Science... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Computing Communication Foundations; Notice... National Science Foundation announces the following meeting: Name: Site Visit, Proposal Panel Review for...

  18. Building Multi-Discipline, Multi-Format Digital Libraries Using Clusters and Buckets. Degree rewarded by Old Dominion Univ. on Aug. 1997

    NASA Technical Reports Server (NTRS)

    Nelson, Michael L.

    1997-01-01

    Our objective was to study the feasibility of extending the Dienst protocol to enable a multi-discipline, multi-format digital library. We implemented two new technologies: cluster functionality and publishing buckets. We have designed a possible implementation of clusters and buckets, and have prototyped some aspects of the resultant digital library. Currently, digital libraries are segregated by the disciplines they serve (computer science, aeronautics, etc.), and by the format of their holdings (reports, software, datasets, etc.). NCSTRL+ is a multi-discipline, multi-format digital library (DL) prototype created to explore the feasibility of the design and implementation issues involved with created a unified, canonical scientific and technical information (STI) DL. NCSTRL+ is based on the Networked Computer Science Technical Report Library (NCSTRL), a World Wide Web (WWW) accessible DL that provides access to over 80 university departments and laboratories. We have extended the Dienst protocol (version 4.1.8), the protocol underlying NCSTRL, to provide the ability to cluster independent collections into a logically centralized DL based upon subject category classification, type of organization, and genre of material. The concept of buckets provides a mechanism for publishing and managing logically linked entities with multiple data formats.

  19. Generating a desired state for master's degree programs in science education through grounded theory research

    NASA Astrophysics Data System (ADS)

    Spector, Barbara S.

    This is the report of a two-year study using qualitative research methods to assess the training needs of science teachers in southern Florida. The respondents included individuals and groups comprising the educational enterprise and those outside the enterprise with the ability to influence policy in science education and implementation of that policy in Florida. The study resulted in recommendations describing the desired state for graduate training leading to a master's degree in science education and has implications for noncredit inservice activities.

  20. Crosscut report: Exascale Requirements Reviews, March 9–10, 2017 – Tysons Corner, Virginia. An Office of Science review sponsored by: Advanced Scientific Computing Research, Basic Energy Sciences, Biological and Environmental Research, Fusion Energy Sciences, High Energy Physics, Nuclear Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, Richard; Hack, James; Riley, Katherine

    The mission of the U.S. Department of Energy Office of Science (DOE SC) is the delivery of scientific discoveries and major scientific tools to transform our understanding of nature and to advance the energy, economic, and national security missions of the United States. To achieve these goals in today’s world requires investments in not only the traditional scientific endeavors of theory and experiment, but also in computational science and the facilities that support large-scale simulation and data analysis. The Advanced Scientific Computing Research (ASCR) program addresses these challenges in the Office of Science. ASCR’s mission is to discover, develop, andmore » deploy computational and networking capabilities to analyze, model, simulate, and predict complex phenomena important to DOE. ASCR supports research in computational science, three high-performance computing (HPC) facilities — the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory and Leadership Computing Facilities at Argonne (ALCF) and Oak Ridge (OLCF) National Laboratories — and the Energy Sciences Network (ESnet) at Berkeley Lab. ASCR is guided by science needs as it develops research programs, computers, and networks at the leading edge of technologies. As we approach the era of exascale computing, technology changes are creating challenges for science programs in SC for those who need to use high performance computing and data systems effectively. Numerous significant modifications to today’s tools and techniques will be needed to realize the full potential of emerging computing systems and other novel computing architectures. To assess these needs and challenges, ASCR held a series of Exascale Requirements Reviews in 2015–2017, one with each of the six SC program offices,1 and a subsequent Crosscut Review that sought to integrate the findings from each. Participants at the reviews were drawn from the communities of leading domain scientists, experts in computer science and applied mathematics, ASCR facility staff, and DOE program managers in ASCR and the respective program offices. The purpose of these reviews was to identify mission-critical scientific problems within the DOE Office of Science (including experimental facilities) and determine the requirements for the exascale ecosystem that would be needed to address those challenges. The exascale ecosystem includes exascale computing systems, high-end data capabilities, efficient software at scale, libraries, tools, and other capabilities. This effort will contribute to the development of a strategic roadmap for ASCR compute and data facility investments and will help the ASCR Facility Division establish partnerships with Office of Science stakeholders. It will also inform the Office of Science research needs and agenda. The results of the six reviews have been published in reports available on the web at http://exascaleage.org/. This report presents a summary of the individual reports and of common and crosscutting findings, and it identifies opportunities for productive collaborations among the DOE SC program offices.« less

Top