A Web of Resources for Introductory Computer Science.
ERIC Educational Resources Information Center
Rebelsky, Samuel A.
As the field of Computer Science has grown, the syllabus of the introductory Computer Science course has changed significantly. No longer is it a simple introduction to programming or a tutorial on computer concepts and applications. Rather, it has become a survey of the field of Computer Science, touching on a wide variety of topics from digital…
Increasing Diversity in Computer Science: Acknowledging, yet Moving Beyond, Gender
NASA Astrophysics Data System (ADS)
Larsen, Elizabeth A.; Stubbs, Margaret L.
Lack of diversity within the computer science field has, thus far, been examined most fully through the lens of gender. This article is based on a follow-on to Margolis and Fisher's (2002) study and includes interviews with 33 Carnegie Mellon University students from the undergraduate senior class of 2002 in the School of Computer Science. We found evidence of similarities among the perceptions of these women and men on definitions of computer science, explanations for the notoriously low proportion of women in the field, characterizations of a typical computer science student, impressions of recent curricular changes, a sense of the atmosphere/culture in the program, views of the Women@SCS campus organization, and suggestions for attracting and retaining well-rounded students in computer science. We conclude that efforts to increase diversity in the computer science field will benefit from a more broad-based approach that considers, but is not limited to, notions of gender difference.
Girls Save the World through Computer Science
ERIC Educational Resources Information Center
Murakami, Christine
2011-01-01
It's no secret that fewer and fewer women are entering computer science fields. Attracting high school girls to computer science is only part of the solution. Retaining them while they are in higher education or the workforce is also a challenge. To solve this, there is a need to show girls that computer science is a wide-open field that offers…
ERIC Educational Resources Information Center
Rose, Clare; Menninger, Sally Ann
The keynote address of a conference that focused on the future of women in science and engineering fields and the opportunities available to them in the computer sciences is presented. Women's education in the sciences and education and entry into the job market in these fields has steadily been increasing. Excellent employment opportunities are…
Experiments in Computing: A Survey
Moisseinen, Nella
2014-01-01
Experiments play a central role in science. The role of experiments in computing is, however, unclear. Questions about the relevance of experiments in computing attracted little attention until the 1980s. As the discipline then saw a push towards experimental computer science, a variety of technically, theoretically, and empirically oriented views on experiments emerged. As a consequence of those debates, today's computing fields use experiments and experiment terminology in a variety of ways. This paper analyzes experimentation debates in computing. It presents five ways in which debaters have conceptualized experiments in computing: feasibility experiment, trial experiment, field experiment, comparison experiment, and controlled experiment. This paper has three aims: to clarify experiment terminology in computing; to contribute to disciplinary self-understanding of computing; and, due to computing's centrality in other fields, to promote understanding of experiments in modern science in general. PMID:24688404
Experiments in computing: a survey.
Tedre, Matti; Moisseinen, Nella
2014-01-01
Experiments play a central role in science. The role of experiments in computing is, however, unclear. Questions about the relevance of experiments in computing attracted little attention until the 1980s. As the discipline then saw a push towards experimental computer science, a variety of technically, theoretically, and empirically oriented views on experiments emerged. As a consequence of those debates, today's computing fields use experiments and experiment terminology in a variety of ways. This paper analyzes experimentation debates in computing. It presents five ways in which debaters have conceptualized experiments in computing: feasibility experiment, trial experiment, field experiment, comparison experiment, and controlled experiment. This paper has three aims: to clarify experiment terminology in computing; to contribute to disciplinary self-understanding of computing; and, due to computing's centrality in other fields, to promote understanding of experiments in modern science in general.
A Course on Reconfigurable Processors
ERIC Educational Resources Information Center
Shoufan, Abdulhadi; Huss, Sorin A.
2010-01-01
Reconfigurable computing is an established field in computer science. Teaching this field to computer science students demands special attention due to limited student experience in electronics and digital system design. This article presents a compact course on reconfigurable processors, which was offered at the Technische Universitat Darmstadt,…
Enduring Influence of Stereotypical Computer Science Role Models on Women's Academic Aspirations
ERIC Educational Resources Information Center
Cheryan, Sapna; Drury, Benjamin J.; Vichayapai, Marissa
2013-01-01
The current work examines whether a brief exposure to a computer science role model who fits stereotypes of computer scientists has a lasting influence on women's interest in the field. One-hundred undergraduate women who were not computer science majors met a female or male peer role model who embodied computer science stereotypes in appearance…
ERIC Educational Resources Information Center
Michell, Dee; Szorenyi, Anna; Falkner, Katrina; Szabo, Claudia
2017-01-01
Computer science, like technology in general, is seen as a masculine field and the under-representation of women an intransigent problem. In this paper, we argue that the cultural belief in Australia that computer science is a domain for men results in many girls and women being chased away from that field as part of a border protection campaign…
Bonham, Kevin S; Stefan, Melanie I
2017-10-01
While women are generally underrepresented in STEM fields, there are noticeable differences between fields. For instance, the gender ratio in biology is more balanced than in computer science. We were interested in how this difference is reflected in the interdisciplinary field of computational/quantitative biology. To this end, we examined the proportion of female authors in publications from the PubMed and arXiv databases. There are fewer female authors on research papers in computational biology, as compared to biology in general. This is true across authorship position, year, and journal impact factor. A comparison with arXiv shows that quantitative biology papers have a higher ratio of female authors than computer science papers, placing computational biology in between its two parent fields in terms of gender representation. Both in biology and in computational biology, a female last author increases the probability of other authors on the paper being female, pointing to a potential role of female PIs in influencing the gender balance.
Why are some STEM fields more gender balanced than others?
Cheryan, Sapna; Ziegler, Sianna A; Montoya, Amanda K; Jiang, Lily
2017-01-01
Women obtain more than half of U.S. undergraduate degrees in biology, chemistry, and mathematics, yet they earn less than 20% of computer science, engineering, and physics undergraduate degrees (National Science Foundation, 2014a). Gender differences in interest in computer science, engineering, and physics appear even before college. Why are women represented in some science, technology, engineering, and mathematics (STEM) fields more than others? We conduct a critical review of the most commonly cited factors explaining gender disparities in STEM participation and investigate whether these factors explain differential gender participation across STEM fields. Math performance and discrimination influence who enters STEM, but there is little evidence to date that these factors explain why women's underrepresentation is relatively worse in some STEM fields. We introduce a model with three overarching factors to explain the larger gender gaps in participation in computer science, engineering, and physics than in biology, chemistry, and mathematics: (a) masculine cultures that signal a lower sense of belonging to women than men, (b) a lack of sufficient early experience with computer science, engineering, and physics, and (c) gender gaps in self-efficacy. Efforts to increase women's participation in computer science, engineering, and physics may benefit from changing masculine cultures and providing students with early experiences that signal equally to both girls and boys that they belong and can succeed in these fields. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Cheryan, Sapna; Master, Allison; Meltzoff, Andrew N
2015-01-01
Despite having made significant inroads into many traditionally male-dominated fields (e.g., biology, chemistry), women continue to be underrepresented in computer science and engineering. We propose that students' stereotypes about the culture of these fields-including the kind of people, the work involved, and the values of the field-steer girls away from choosing to enter them. Computer science and engineering are stereotyped in modern American culture as male-oriented fields that involve social isolation, an intense focus on machinery, and inborn brilliance. These stereotypes are compatible with qualities that are typically more valued in men than women in American culture. As a result, when computer science and engineering stereotypes are salient, girls report less interest in these fields than their male peers. However, altering these stereotypes-by broadening the representation of the people who do this work, the work itself, and the environments in which it occurs-significantly increases girls' sense of belonging and interest in the field. Academic stereotypes thus serve as gatekeepers, driving girls away from certain fields and constraining their learning opportunities and career aspirations.
Beyond the first "click:" Women graduate students in computer science
NASA Astrophysics Data System (ADS)
Sader, Jennifer L.
This dissertation explored the ways that constructions of gender shaped the choices and expectations of women doctoral students in computer science. Women who do graduate work in computer science still operate in an environment where they are in the minority. How much of women's underrepresentation in computer science fields results from a problem of imagining women as computer scientists? As long as women in these fields are seen as exceptions, they are exceptions that prove the "rule" that computing is a man's domain. The following questions were the focus of this inquiry: What are the career aspirations of women doctoral students in computer science? How do they feel about their chances to succeed in their chosen career and field? How do women doctoral students in computer science construct womanhood? What are their constructions of what it means to be a computer scientist? In what ways, if any, do they believe their gender has affected their experience in their graduate programs? The goal was to examine how constructions of computer science and of gender---including participants' own understanding of what it meant to be a woman, as well as the messages they received from their environment---contributed to their success as graduate students in a field where women are still greatly outnumbered by men. Ten women from four different institutions of higher education were recruited to participate in this study. These women varied in demographic characteristics like age, race, and ethnicity. Still, there were many common threads in their experiences. For example, their construction of womanhood did not limit their career prospects to traditionally female jobs. They had grown up with the expectation that they would be able to succeed in whatever field they chose. Most also had very positive constructions of programming as something that was "fun," rewarding, and intellectually stimulating. Their biggest obstacles were feelings of isolation and a resulting loss of confidence. Implications for future research are provided. There are also several implications for practice, especially the recommendation that graduate schools provide more support for all of their students. The experiences of these women also suggest ways to more effectively recruit women students to computer science. The importance of women faculty in these students' success also suggests that schools trying to counteract gender imbalances should actively recruit women faculty to teach in fields where women are underrepresented. These faculty serve as important role models and mentors to women students in their field.
2017-01-01
While women are generally underrepresented in STEM fields, there are noticeable differences between fields. For instance, the gender ratio in biology is more balanced than in computer science. We were interested in how this difference is reflected in the interdisciplinary field of computational/quantitative biology. To this end, we examined the proportion of female authors in publications from the PubMed and arXiv databases. There are fewer female authors on research papers in computational biology, as compared to biology in general. This is true across authorship position, year, and journal impact factor. A comparison with arXiv shows that quantitative biology papers have a higher ratio of female authors than computer science papers, placing computational biology in between its two parent fields in terms of gender representation. Both in biology and in computational biology, a female last author increases the probability of other authors on the paper being female, pointing to a potential role of female PIs in influencing the gender balance. PMID:29023441
Cheryan, Sapna; Master, Allison; Meltzoff, Andrew N.
2015-01-01
Despite having made significant inroads into many traditionally male-dominated fields (e.g., biology, chemistry), women continue to be underrepresented in computer science and engineering. We propose that students’ stereotypes about the culture of these fields—including the kind of people, the work involved, and the values of the field—steer girls away from choosing to enter them. Computer science and engineering are stereotyped in modern American culture as male-oriented fields that involve social isolation, an intense focus on machinery, and inborn brilliance. These stereotypes are compatible with qualities that are typically more valued in men than women in American culture. As a result, when computer science and engineering stereotypes are salient, girls report less interest in these fields than their male peers. However, altering these stereotypes—by broadening the representation of the people who do this work, the work itself, and the environments in which it occurs—significantly increases girls’ sense of belonging and interest in the field. Academic stereotypes thus serve as gatekeepers, driving girls away from certain fields and constraining their learning opportunities and career aspirations. PMID:25717308
The Role of Physicality in Rich Programming Environments
ERIC Educational Resources Information Center
Liu, Allison S.; Schunn, Christian D.; Flot, Jesse; Shoop, Robin
2013-01-01
Computer science proficiency continues to grow in importance, while the number of students entering computer science-related fields declines. Many rich programming environments have been created to motivate student interest and expertise in computer science. In the current study, we investigated whether a recently created environment, Robot…
Science Photo of person viewing 3D visualization of a wind turbine The NREL Computational Science challenges in fields ranging from condensed matter physics and nonlinear dynamics to computational fluid dynamics. NREL is also home to the most energy-efficient data center in the world, featuring Peregrine-the
Brains--Computers--Machines: Neural Engineering in Science Classrooms
ERIC Educational Resources Information Center
Chudler, Eric H.; Bergsman, Kristen Clapper
2016-01-01
Neural engineering is an emerging field of high relevance to students, teachers, and the general public. This feature presents online resources that educators and scientists can use to introduce students to neural engineering and to integrate core ideas from the life sciences, physical sciences, social sciences, computer science, and engineering…
ASIS Thesaurus of Information Science and Librarianship. ASIS Monograph Series. Second Edition.
ERIC Educational Resources Information Center
Milstead, Jessica L., Ed.
This thesaurus covers the fields of information science and librarianship to a depth that will adequately support indexing, with coverage of related and peripheral fields as warranted by the strength of their relationship to information science and librarianship. Among the related fields are computer science, linguistics, and behavioral and…
ERIC Educational Resources Information Center
Birman, Ken; Roughgarden, Tim; Seltzer, Margo; Spohrer, Jim; Stolterman, Erik; Kearsley, Greg; Koszalka, Tiffany; de Jong, Ton
2013-01-01
Scholars representing the field of computer/information science were asked to identify what they considered to be the most exciting and imaginative work currently being done in their field, as well as how that work might change our understanding. The scholars included Ken Birman, Jennifer Rexford, Tim Roughgarden, Margo Seltzer, Jim Spohrer, and…
Visualising "Junk" DNA through Bioinformatics
ERIC Educational Resources Information Center
Elwess, Nancy L.; Latourelle, Sandra M.; Cauthorn, Olivia
2005-01-01
One of the hottest areas of science today is the field in which biology, information technology,and computer science are merged into a single discipline called bioinformatics. This field enables the discovery and analysis of biological data, including nucleotide and amino acid sequences that are easily accessed through the use of computers. As…
ERIC Educational Resources Information Center
Grandell, Linda
2005-01-01
Computer science is becoming increasingly important in our society. Meta skills, such as problem solving and logical and algorithmic thinking, are emphasized in every field, not only in the natural sciences. Still, largely due to gaps in tuition, common misunderstandings exist about the true nature of computer science. These are especially…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Z.T.
2001-11-15
The objective of this project was to conduct high-performance computing research and teaching at AAMU, and to train African-American and other minority students and scientists in the computational science field for eventual employment with DOE. During the project period, eight tasks were accomplished. Student Research Assistant, Work Study, Summer Interns, Scholarship were proved to be one of the best ways for us to attract top-quality minority students. Under the support of DOE, through research, summer interns, collaborations, scholarships programs, AAMU has successfully provided research and educational opportunities to minority students in the field related to computational science.
The Computational Ecologist’s Toolbox
Computational ecology, nestled in the broader field of data science, is an interdisciplinary field that attempts to improve our understanding of complex ecological systems through the use of modern computational methods. Computational ecology is based on a union of competence in...
ERIC Educational Resources Information Center
Ruiz, Patricia Adriana
2017-01-01
Women continue to be underrepresented in computer science and technology related fields despite their significant contributions. The lack of diversity in technology related fields is problematic as it can result in the perpetuation of negative stereotypes and closed-minded, unchecked biases. As technology tools become integral to our daily lives…
Programmers, professors, and parasites: credit and co-authorship in computer science.
Solomon, Justin
2009-12-01
This article presents an in-depth analysis of past and present publishing practices in academic computer science to suggest the establishment of a more consistent publishing standard. Historical precedent for academic publishing in computer science is established through the study of anecdotes as well as statistics collected from databases of published computer science papers. After examining these facts alongside information about analogous publishing situations and standards in other scientific fields, the article concludes with a list of basic principles that should be adopted in any computer science publishing standard. These principles would contribute to the reliability and scientific nature of academic publications in computer science and would allow for more straightforward discourse in future publications.
ERIC Educational Resources Information Center
Tsagala, Evrikleia; Kordaki, Maria
2008-01-01
This study focuses on how Computer Science and Engineering Students (CSESs) of both genders address certain critical issues for gender differences in the field of Computer Science and Engineering (CSE). This case study is based on research conducted on a sample of 99 Greek CSESs, 43 of which were women. More specifically, these students were asked…
ERIC Educational Resources Information Center
Murray, A. J. S.; And Others
1988-01-01
Presents 31 science activities for use with high school or college science classes. Topics included are: chromatography, ecology, invertebrates, enzymes, genetics, botany, creep, crystals, diffusion, computer interfaces, acid rain, teaching techniques, chemical reactions, waves, electric fields, rainbows, electricity, magnetic fields, and a Pitot…
Using Pedagogical Tools to Help Hispanics be Successful in Computer Science
NASA Astrophysics Data System (ADS)
Irish, Rodger
Irish, Rodger, Using Pedagogical Tools to Help Hispanics Be Successful in Computer Science. Master of Science (MS), July 2017, 68 pp., 4 tables, 2 figures, references 48 titles. Computer science (CS) jobs are a growing field and pay a living wage, but the Hispanics are underrepresented in this field. This project seeks to give an overview of several contributing factors to this problem. It will then explore some possible solutions to this problem and how a combination of some tools (teaching methods) can create the best possible outcome. It is my belief that this approach can produce successful Hispanics to fill the needed jobs in the CS field. Then the project will test its hypothesis. I will discuss the tools used to measure progress both in the affective and the cognitive domains. I will show how the decision to run a Computer Club was reached and the results of the research. The conclusion will summarize the results and tell of future research that still needs to be done.
Women's decision to major in STEM fields
NASA Astrophysics Data System (ADS)
Conklin, Stephanie
This paper explores the lived experiences of high school female students who choose to enter into STEM fields, and describes the influencing factors which steered these women towards majors in computer science, engineering and biology. Utilizing phenomenological methodology, this study seeks to understand the essence of women's decisions to enter into STEM fields and further describe how the decision-making process varies for women in high female enrollment fields, like biology, as compared with low enrollment fields like, computer science and engineering. Using Bloom's 3-Stage Theory, this study analyzes how relationships, experiences and barriers influenced women towards, and possibly away, from STEM fields. An analysis of women's experiences highlight that support of family, sustained experience in a STEM program during high school as well as the presence of an influential teacher were all salient factors in steering women towards STEM fields. Participants explained that influential teacher worked individually with them, modified and extended assignments and also steered participants towards coursework and experiences. This study also identifies factors, like guidance counselors as well as personal challenges, which inhibited participant's path to STEM fields. Further, through analyzing all six participants' experiences, it is clear that a linear model, like Bloom's 3-Stage Model, with limited ability to include potential barriers inhibited the ability to capture the essence of each participant's decision-making process. Therefore, a revised model with no linear progression which allows for emerging factors, like personal challenges, has been proposed; this model focuses on how interest in STEM fields begins to develop and is honed and then mastered. This study also sought to identify key differences in the paths of female students pursuing different majors. The findings of this study suggest that the path to computer science and engineering is limited. Computer science majors faced few, if any, challenges, hoped to use computers as a tool to innovate and also participated in the same computer science program. For female engineering students, the essence of their experience focused on interaction at a young age with an expert in an engineering-related field as well as a strong desire to help solve world problems using engineering. These participants were able to articulate clearly future careers. In contrast, biology majors, faced more challenges and were undecided about their future career goals. These results suggest that a longitudinal study focused on women pursuing engineering and computer science fields is warranted; this will hopefully allow these findings to be substantiated and also for refinement of the revised theoretical model.
NASA Astrophysics Data System (ADS)
Wang, Jianxiong
2014-06-01
This volume of Journal of Physics: Conference Series is dedicated to scientific contributions presented at the 15th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2013) which took place on 16-21 May 2013 at the Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China. The workshop series brings together computer science researchers and practitioners, and researchers from particle physics and related fields to explore and confront the boundaries of computing and of automatic data analysis and theoretical calculation techniques. This year's edition of the workshop brought together over 120 participants from all over the world. 18 invited speakers presented key topics on the universe in computer, Computing in Earth Sciences, multivariate data analysis, automated computation in Quantum Field Theory as well as computing and data analysis challenges in many fields. Over 70 other talks and posters presented state-of-the-art developments in the areas of the workshop's three tracks: Computing Technologies, Data Analysis Algorithms and Tools, and Computational Techniques in Theoretical Physics. The round table discussions on open-source, knowledge sharing and scientific collaboration stimulate us to think over the issue in the respective areas. ACAT 2013 was generously sponsored by the Chinese Academy of Sciences (CAS), National Natural Science Foundation of China (NFSC), Brookhaven National Laboratory in the USA (BNL), Peking University (PKU), Theoretical Physics Cernter for Science facilities of CAS (TPCSF-CAS) and Sugon. We would like to thank all the participants for their scientific contributions and for the en- thusiastic participation in all its activities of the workshop. Further information on ACAT 2013 can be found at http://acat2013.ihep.ac.cn. Professor Jianxiong Wang Institute of High Energy Physics Chinese Academy of Science Details of committees and sponsors are available in the PDF
Changing a Generation's Way of Thinking: Teaching Computational Thinking through Programming
ERIC Educational Resources Information Center
Buitrago Flórez, Francisco; Casallas, Rubby; Hernández, Marcela; Reyes, Alejandro; Restrepo, Silvia; Danies, Giovanna
2017-01-01
Computational thinking (CT) uses concepts that are essential to computing and information science to solve problems, design and evaluate complex systems, and understand human reasoning and behavior. This way of thinking has important implications in computer sciences as well as in almost every other field. Therefore, we contend that CT should be…
NASA Astrophysics Data System (ADS)
Clay, Alexis; Delord, Elric; Couture, Nadine; Domenger, Gaël
We describe the joint research that we conduct in gesture-based emotion recognition and virtual augmentation of a stage, bridging together the fields of computer science and dance. After establishing a common ground for dialogue, we could conduct a research process that equally benefits both fields. As computer scientists, dance is a perfect application case. Dancer's artistic creativity orient our research choices. As dancers, computer science provides new tools for creativity, and more importantly a new point of view that forces us to reconsider dance from its fundamentals. In this paper we hence describe our scientific work and its implications on dance. We provide an overview of our system to augment a ballet stage, taking a dancer's emotion into account. To illustrate our work in both fields, we describe three events that mixed dance, emotion recognition and augmented reality.
Solving the Equation: The Variables for Women's Success in Engineering and Computing
ERIC Educational Resources Information Center
Corbett, Christianne; Hill, Catherine
2015-01-01
During the 2014 White House Science Fair, President Barack Obama used a sports metaphor to explain why we must address the shortage of women in science, technology, engineering, and mathematics (STEM), particularly in the engineering and computing fields: "Half our team, we're not even putting on the field. We've got to change those…
ERIC Educational Resources Information Center
Corbett, Christianne; Hill, Catherine
2015-01-01
During the 2014 White House Science Fair, President Barack Obama used a sports metaphor to explain why we must address the shortage of women in science, technology, engineering, and mathematics (STEM), particularly in the engineering and computing fields: "Half our team, we're not even putting on the field. We've got to change those…
ERIC Educational Resources Information Center
Linn, Marcia C.
1995-01-01
Describes a framework called scaffolded knowledge integration and illustrates how it guided the design of two successful course enhancements in the field of computer science and engineering: the LISP Knowledge Integration Environment and the spatial reasoning environment. (101 references) (Author/MKR)
An Overview of NASA's Intelligent Systems Program
NASA Technical Reports Server (NTRS)
Cooke, Daniel E.; Norvig, Peter (Technical Monitor)
2001-01-01
NASA and the Computer Science Research community are poised to enter a critical era. An era in which - it seems - that each needs the other. Market forces, driven by the immediate economic viability of computer science research results, place Computer Science in a relatively novel position. These forces impact how research is done, and could, in worst case, drive the field away from significant innovation opting instead for incremental advances that result in greater stability in the market place. NASA, however, requires significant advances in computer science research in order to accomplish the exploration and science agenda it has set out for itself. NASA may indeed be poised to advance computer science research in this century much the way it advanced aero-based research in the last.
Structural biology computing: Lessons for the biomedical research sciences.
Morin, Andrew; Sliz, Piotr
2013-11-01
The field of structural biology, whose aim is to elucidate the molecular and atomic structures of biological macromolecules, has long been at the forefront of biomedical sciences in adopting and developing computational research methods. Operating at the intersection between biophysics, biochemistry, and molecular biology, structural biology's growth into a foundational framework on which many concepts and findings of molecular biology are interpreted1 has depended largely on parallel advancements in computational tools and techniques. Without these computing advances, modern structural biology would likely have remained an exclusive pursuit practiced by few, and not become the widely practiced, foundational field it is today. As other areas of biomedical research increasingly embrace research computing techniques, the successes, failures and lessons of structural biology computing can serve as a useful guide to progress in other biomedically related research fields. Copyright © 2013 Wiley Periodicals, Inc.
Does it matter what we call it?
USDA-ARS?s Scientific Manuscript database
Agronomy, soil science, plant science, crop science, agricultural science, computer science, environmental science, environmental engineering, agricultural and irrigation engineering, hydrology, meteorology – all are names that describe fields of study relevant to agriculture and the environment in ...
Sociocultural Influences On Undergraduate Women's Entry into a Computer Science Major
NASA Astrophysics Data System (ADS)
Lyon, Louise Ann
Computer science not only displays the pattern of underrepresentation of many other science, technology, engineering, and math (STEM) fields, but has actually experienced a decline in the number of women choosing the field over the past two decades. Broken out by gender and race, the picture becomes more nuanced, with the ratio of females to males receiving bachelor's degrees in computer science higher for non-White ethnic groups than for Whites. This dissertation explores the experiences of university women differing along the axis of race, class, and culture who are considering majoring in computer science in order to highlight how well-prepared women are persuaded that they belong (or not) in the field and how the confluence of social categories plays out in their decision. This study focuses on a university seminar entitled "Women in Computer Science and Engineering" open to women concurrently enrolled in introductory programming and uses an ethnographic approach including classroom participant observation, interviews with seminar students and instructors, observations of students in other classes, and interviews with parents of students. Three stand-alone but related articles explore various aspects of the experiences of women who participated in the study using Rom Harre's positioning theory as a theoretical framework. The first article uses data from twenty-two interviews to uncover how interactions with others and patterns in society position women in relation to a computer science major, and how these women have arrived at the point of considering the major despite messages that they do not belong. The second article more deeply explores the cases of three women who vary greatly along the axes of race, class, and culture in order to uncover pattern and interaction differences for women based on their ethnic background. The final article focuses on the attitudes and expectations of the mothers of three students of contrasting ethnicities and how reported interactions between mothers and daughters either constrain or afford opportunities for the daughters to choose a computer science major.
Fiction as an Introduction to Computer Science Research
ERIC Educational Resources Information Center
Goldsmith, Judy; Mattei, Nicholas
2014-01-01
The undergraduate computer science curriculum is generally focused on skills and tools; most students are not exposed to much research in the field, and do not learn how to navigate the research literature. We describe how fiction reviews (and specifically science fiction) are used as a gateway to research reviews. Students learn a little about…
Computer Use in Research Exercises: Some Suggested Procedures for Undergraduate Political Science.
ERIC Educational Resources Information Center
Comer, John
1979-01-01
Describes some procedures designed to assist instructors in developing a research component using the computer. Benefits include development of research skills, kindling student interest in the field of political science, and recruitment potential. (Author/CK)
Integrating Mobile Robotics and Vision with Undergraduate Computer Science
ERIC Educational Resources Information Center
Cielniak, G.; Bellotto, N.; Duckett, T.
2013-01-01
This paper describes the integration of robotics education into an undergraduate Computer Science curriculum. The proposed approach delivers mobile robotics as well as covering the closely related field of Computer Vision and is directly linked to the research conducted at the authors' institution. The paper describes the most relevant details of…
Cloud Computing in the Curricula of Schools of Computer Science and Information Systems
ERIC Educational Resources Information Center
Lawler, James P.
2011-01-01
The cloud continues to be a developing area of information systems. Evangelistic literature in the practitioner field indicates benefit for business firms but disruption for technology departments of the firms. Though the cloud currently is immature in methodology, this study defines a model program by which computer science and information…
Computational thinking and thinking about computing
Wing, Jeannette M.
2008-01-01
Computational thinking will influence everyone in every field of endeavour. This vision poses a new educational challenge for our society, especially for our children. In thinking about computing, we need to be attuned to the three drivers of our field: science, technology and society. Accelerating technological advances and monumental societal demands force us to revisit the most basic scientific questions of computing. PMID:18672462
2017-12-21
rank , and computer vision. Machine learning is closely related to (and often overlaps with) computational statistics, which also focuses on...Machine learning is a field of computer science that gives computers the ability to learn without being explicitly programmed.[1] Arthur Samuel...an American pioneer in the field of computer gaming and artificial intelligence, coined the term "Machine Learning " in 1959 while at IBM[2]. Evolved
NASA Technical Reports Server (NTRS)
Ortega, J. M.
1986-01-01
Various graduate research activities in the field of computer science are reported. Among the topics discussed are: (1) failure probabilities in multi-version software; (2) Gaussian Elimination on parallel computers; (3) three dimensional Poisson solvers on parallel/vector computers; (4) automated task decomposition for multiple robot arms; (5) multi-color incomplete cholesky conjugate gradient methods on the Cyber 205; and (6) parallel implementation of iterative methods for solving linear equations.
The role of physicality in rich programming environments
NASA Astrophysics Data System (ADS)
Liu, Allison S.; Schunn, Christian D.; Flot, Jesse; Shoop, Robin
2013-12-01
Computer science proficiency continues to grow in importance, while the number of students entering computer science-related fields declines. Many rich programming environments have been created to motivate student interest and expertise in computer science. In the current study, we investigated whether a recently created environment, Robot Virtual Worlds (RVWs), can be used to teach computer science principles within a robotics context by examining its use in high-school classrooms. We also investigated whether the lack of physicality in these environments impacts student learning by comparing classrooms that used either virtual or physical robots for the RVW curriculum. Results suggest that the RVW environment leads to significant gains in computer science knowledge, that virtual robots lead to faster learning, and that physical robots may have some influence on algorithmic thinking. We discuss the implications of physicality in these programming environments for learning computer science.
Economic development evaluation based on science and patents
NASA Astrophysics Data System (ADS)
Jokanović, Bojana; Lalic, Bojan; Milovančević, Miloš; Simeunović, Nenad; Marković, Dusan
2017-09-01
Economic development could be achieved through many factors. Science and technology factors could influence economic development drastically. Therefore the main aim in this study was to apply computational intelligence methodology, artificial neural network approach, for economic development estimation based on different science and technology factors. Since economic analyzing could be very challenging task because of high nonlinearity, in this study was applied computational intelligence methodology, artificial neural network approach, to estimate the economic development based on different science and technology factors. As economic development measure, gross domestic product (GDP) was used. As the science and technology factors, patents in different field were used. It was found that the patents in electrical engineering field have the highest influence on the economic development or the GDP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, W. E.
2004-08-16
Computational Science plays a big role in research and development in mathematics, science, engineering and biomedical disciplines. The Alliance for Computational Science Collaboration (ACSC) has the goal of training African-American and other minority scientists in the computational science field for eventual employment with the Department of Energy (DOE). The involvements of Historically Black Colleges and Universities (HBCU) in the Alliance provide avenues for producing future DOE African-American scientists. Fisk University has been participating in this program through grants from the DOE. The DOE grant supported computational science activities at Fisk University. The research areas included energy related projects, distributed computing,more » visualization of scientific systems and biomedical computing. Students' involvement in computational science research included undergraduate summer research at Oak Ridge National Lab, on-campus research involving the participation of undergraduates, participation of undergraduate and faculty members in workshops, and mentoring of students. These activities enhanced research and education in computational science, thereby adding to Fisk University's spectrum of research and educational capabilities. Among the successes of the computational science activities are the acceptance of three undergraduate students to graduate schools with full scholarships beginning fall 2002 (one for master degree program and two for Doctoral degree program).« less
Bechtel, William; Abrahamsen, Adele
2010-09-01
We consider computational modeling in two fields: chronobiology and cognitive science. In circadian rhythm models, variables generally correspond to properties of parts and operations of the responsible mechanism. A computational model of this complex mechanism is grounded in empirical discoveries and contributes a more refined understanding of the dynamics of its behavior. In cognitive science, on the other hand, computational modelers typically advance de novo proposals for mechanisms to account for behavior. They offer indirect evidence that a proposed mechanism is adequate to produce particular behavioral data, but typically there is no direct empirical evidence for the hypothesized parts and operations. Models in these two fields differ in the extent of their empirical grounding, but they share the goal of achieving dynamic mechanistic explanation. That is, they augment a proposed mechanistic explanation with a computational model that enables exploration of the mechanism's dynamics. Using exemplars from circadian rhythm research, we extract six specific contributions provided by computational models. We then examine cognitive science models to determine how well they make the same types of contributions. We suggest that the modeling approach used in circadian research may prove useful in cognitive science as researchers develop procedures for experimentally decomposing cognitive mechanisms into parts and operations and begin to understand their nonlinear interactions.
Towards a Competency Model for Teaching Computer Science
ERIC Educational Resources Information Center
Bender, Elena; Hubwieser, Peter; Schaper, Niclas; Margaritis, Melanie; Berges, Marc; Ohrndorf, Laura; Magenheim, Johannes; Schubert, Sigrid
2015-01-01
To address the special challenges of teaching computer science, adequate development of teachers' competencies during their education is extremely important. In particular, pedagogical content knowledge and teachers' beliefs and motivational orientations play an important role in effective teaching. This research field has been sparsely…
Driven by major scientific advances in analytical methods, biomonitoring, computation, and a newly articulated vision for a greater impact in public health, the field of exposure science is undergoing a rapid transition from a field of observation to a field of prediction. Deploy...
ERIC Educational Resources Information Center
Benbow, Ross J.; Vivyan, Erika
2016-01-01
Building from findings showing that undergraduate computer science continues to have the highest attrition rates proportionally for women within postsecondary science, technology, engineering, and mathematics disciplines--a phenomenon that defies basic social equity goals in a high status field--this paper seeks to better understand how student…
Opportunities for Computational Discovery in Basic Energy Sciences
NASA Astrophysics Data System (ADS)
Pederson, Mark
2011-03-01
An overview of the broad-ranging support of computational physics and computational science within the Department of Energy Office of Science will be provided. Computation as the third branch of physics is supported by all six offices (Advanced Scientific Computing, Basic Energy, Biological and Environmental, Fusion Energy, High-Energy Physics, and Nuclear Physics). Support focuses on hardware, software and applications. Most opportunities within the fields of~condensed-matter physics, chemical-physics and materials sciences are supported by the Officeof Basic Energy Science (BES) or through partnerships between BES and the Office for Advanced Scientific Computing. Activities include radiation sciences, catalysis, combustion, materials in extreme environments, energy-storage materials, light-harvesting and photovoltaics, solid-state lighting and superconductivity.~ A summary of two recent reports by the computational materials and chemical communities on the role of computation during the next decade will be provided. ~In addition to materials and chemistry challenges specific to energy sciences, issues identified~include a focus on the role of the domain scientist in integrating, expanding and sustaining applications-oriented capabilities on evolving high-performance computing platforms and on the role of computation in accelerating the development of innovative technologies. ~~
ERIC Educational Resources Information Center
Roach, Ronald
2005-01-01
The Joint Educational Facilities Inc. (JEF) computer science program has as its goal to acquaint minority and socially disadvantaged K-12 students with computer science basics and the innovative subdisciplines within the field, and to reinforce the college ambitions of participants or help them consider college as an option. A non-profit…
ERIC Educational Resources Information Center
Howard, A. M.; Park, Chung Hyuk; Remy, S.
2012-01-01
The robotics field represents the integration of multiple facets of computer science and engineering. Robotics-based activities have been shown to encourage K-12 students to consider careers in computing and have even been adopted as part of core computer-science curriculum at a number of universities. Unfortunately, for students with visual…
Earth Science Informatics - Overview
NASA Technical Reports Server (NTRS)
Ramapriyan, H. K.
2015-01-01
Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes nearly 150 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies. Remote Sensing; Earth Science Informatics, Data Systems; Data Services; Metadata
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teeguarden, Justin G.; Tan, Yu-Mei; Edwards, Stephen W.
Driven by major scientific advances in analytical methods, biomonitoring, and computational exposure assessment, and a newly articulated vision for a greater impact in public health, the field of exposure science is undergoing a rapid transition from a field of observation to a field of prediction. Deployment of an organizational and predictive framework for exposure science analogous to the computationally enabled “systems approaches” used in the biological sciences is a necessary step in this evolution. Here we propose the aggregate exposure pathway (AEP) concept as the natural and complementary companion in the exposure sciences to the adverse outcome pathway (AOP) conceptmore » in the toxicological sciences. The AEP framework offers an intuitive approach to successful organization of exposure science data within individual units of prediction common to the field, setting the stage for exposure forecasting. Looking farther ahead, we envision direct linkages between aggregate exposure pathway and adverse outcome pathways, completing the source to outcome continuum and setting the stage for more efficient integration of exposure science and toxicity testing information. Together these frameworks form and inform a decision making framework with the flexibility for risk-based, hazard-based or exposure-based decisions.« less
The structural science of functional materials.
Catlow, C Richard A
2018-01-01
The growing complexity of functional materials and the major challenges this poses to structural science are discussed. The diversity of structural materials science and the contributions that computation is making to the field are highlighted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, James C. Jr.; Mason, Thomas; Guerrieri, Bruno
1997-10-01
Programs have been established at Florida A & M University to attract minority students to research careers in mathematics and computational science. The primary goal of the program was to increase the number of such students studying computational science via an interactive multimedia learning environment One mechanism used for meeting this goal was the development of educational modules. This academic year program established within the mathematics department at Florida A&M University, introduced students to computational science projects using high-performance computers. Additional activities were conducted during the summer, these included workshops, meetings, and lectures. Through the exposure provided by this programmore » to scientific ideas and research in computational science, it is likely that their successful applications of tools from this interdisciplinary field will be high.« less
Human-computer interaction: psychological aspects of the human use of computing.
Olson, Gary M; Olson, Judith S
2003-01-01
Human-computer interaction (HCI) is a multidisciplinary field in which psychology and other social sciences unite with computer science and related technical fields with the goal of making computing systems that are both useful and usable. It is a blend of applied and basic research, both drawing from psychological research and contributing new ideas to it. New technologies continuously challenge HCI researchers with new options, as do the demands of new audiences and uses. A variety of usability methods have been developed that draw upon psychological principles. HCI research has expanded beyond its roots in the cognitive processes of individual users to include social and organizational processes involved in computer usage in real environments as well as the use of computers in collaboration. HCI researchers need to be mindful of the longer-term changes brought about by the use of computing in a variety of venues.
ERIC Educational Resources Information Center
Willingham, Daniel T.
2013-01-01
Cognitive science is an interdisciplinary field of researchers from psychology, neuroscience, linguistics, philosophy, computer science, and anthropology who seek to understand the mind. This paper considers findings from this field that are strong and clear enough to merit classroom application. Although many teachers and parents worry that high…
Persistence of Undergraduate Women in STEM Fields
ERIC Educational Resources Information Center
Pedone, Maggie Helene
2016-01-01
The underrepresentation of women in science, technology, engineering, and mathematics (STEM) is a complex problem that continues to persist at the postsecondary level, particularly in computer science and engineering fields. This dissertation explored the pre-college and college level factors that influenced undergraduate women's persistence in…
A Comparison of Computer-Assisted Instruction and Field-Based Learning for Youth Rangeland Education
ERIC Educational Resources Information Center
Peterson, Jennifer; Launchbaugh, Karen; Pickering, Michael; Hollenhorst, Steven
2006-01-01
Field-based learning experiences are often used to increase the effectiveness of science curricula. However, time and financial limitations in public schools often hinder a teacher's ability to bring their students into the field for learning, despite increased demands to incorporate more science content into their curricula. In addition, federal…
Recruiting Women into Computer Science and Information Systems
ERIC Educational Resources Information Center
Broad, Steven; McGee, Meredith
2014-01-01
While many technical disciplines have reached or are moving toward gender parity in the number of bachelors degrees in those fields, the percentage of women graduating in computer science remains stubbornly low. Many recent efforts to address this situation have focused on retention of undergraduate majors or graduate students, recruiting…
Earth Science Informatics - Overview
NASA Technical Reports Server (NTRS)
Ramapriyan, H. K.
2017-01-01
Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.
Earth Science Informatics - Overview
NASA Technical Reports Server (NTRS)
Ramapriyan, H. K.
2017-01-01
Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.The talk will present an overview of current efforts in ESI, the role members of IEEE GRSS play, and discuss recent developments in data preservation and provenance.
Computers in Undergraduate Science Education. Conference Proceedings.
ERIC Educational Resources Information Center
Blum, Ronald, Ed.
Six areas of computer use in undergraduate education, particularly in the fields of mathematics and physics, are discussed in these proceedings. The areas included are: the computational mode; computer graphics; the simulation mode; analog computing; computer-assisted instruction; and the current politics and management of college level computer…
Safdari, Reza; Shahmoradi, Leila; Hosseini-Beheshti, Molouk-Sadat; Nejad, Ahmadreza Farzaneh; Hosseiniravandi, Mohammad
2015-10-01
Encyclopedias and their compilation have become so prevalent as a valid cultural medium in the world. The daily development of computer industry and the expansion of various sciences have made indispensable the compilation of electronic, specialized encyclopedias, especially the web-based ones. This is an applied-developmental study conducted in 2014. First, the main terms in the field of medical informatics were gathered using MeSH Online 2014 and the supplementary terms of each were determined, and then the tree diagram of the terms was drawn based on their relationship in MeSH. Based on the studies done by the researchers, the tree diagram of the encyclopedia was drawn with respect to the existing areas in this field, and the terms gathered were put in related domains. In MeSH, 75 preferred terms together with 249 supplementary ones were indexed. One of the informatics' sub-branches is biomedical informatics and health which itself consists of three sub-divisions of bioinformatics, clinical informatics, and health informatics. Medical informatics which is a subdivision of clinical informatics has developed from the three fields of medical sciences, management and social sciences, and computational sciences and mathematics. Medical Informatics is created of confluence and fusion and applications of the three major scientific branches include health and biological sciences, social sciences and management sciences, computing and mathematical sciences, and according to that the structure of MeSH is weak for future development of Encyclopedia of Medical Informatics.
Foreign Science and Engineering Doctoral Attainment at American Universities
ERIC Educational Resources Information Center
Hamilton, Robert V.
2010-01-01
This dissertation analyzes the nearly 100,000 foreign students who attained science and engineering (S&E) doctorates in the five fields of physical sciences, life sciences, engineering, mathematics and computer sciences, and social and behavioral sciences at American universities from 1994 to 2005. Two models are presented. In the first model…
Have Technology and Multitasking Rewired How Students Learn?
ERIC Educational Resources Information Center
Willingham, Daniel T.
2010-01-01
Cognitive science is an interdisciplinary field of researchers from psychology, neuroscience, linguistics, philosophy, computer science, and anthropology who seek to understand the mind. In this article, the author considers findings from this field that are strong and clear enough to merit classroom application. He examines how technology has…
Finding the Hook: Computer Science Education in Elementary Contexts
ERIC Educational Resources Information Center
Ozturk, Zehra; Dooley, Caitlin McMunn; Welch, Meghan
2018-01-01
The purpose of this study was to investigate how elementary teachers with little knowledge of computer science (CS) and project-based learning (PBL) experienced integrating CS through PBL as a part of a standards-based elementary curriculum in Grades 3-5. The researchers used qualitative constant comparison methods on field notes and reflections…
NASA Technical Reports Server (NTRS)
Dulikravich, George S. (Editor)
1991-01-01
Papers from the Third International Conference on Inverse Design Concepts and Optimization in Engineering Sciences (ICIDES) are presented. The papers discuss current research in the general field of inverse, semi-inverse, and direct design and optimization in engineering sciences. The rapid growth of this relatively new field is due to the availability of faster and larger computing machines.
Computational Ecology and Open Science: Tools to Help Manage Lakes for Cyanobacteria in Lakes
Computational ecology is an interdisciplinary field that takes advantage of modern computation abilities to expand our ecological understanding. As computational ecologists, we use large data sets, which often cover large spatial extents, and advanced statistical/mathematical co...
Institutional computing (IC) information session
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koch, Kenneth R; Lally, Bryan R
2011-01-19
The LANL Institutional Computing Program (IC) will host an information session about the current state of unclassified Institutional Computing at Los Alamos, exciting plans for the future, and the current call for proposals for science and engineering projects requiring computing. Program representatives will give short presentations and field questions about the call for proposals and future planned machines, and discuss technical support available to existing and future projects. Los Alamos has started making a serious institutional investment in open computing available to our science projects, and that investment is expected to increase even more.
Demystifying computer science for molecular ecologists.
Belcaid, Mahdi; Toonen, Robert J
2015-06-01
In this age of data-driven science and high-throughput biology, computational thinking is becoming an increasingly important skill for tackling both new and long-standing biological questions. However, despite its obvious importance and conspicuous integration into many areas of biology, computer science is still viewed as an obscure field that has, thus far, permeated into only a few of the biology curricula across the nation. A national survey has shown that lack of computational literacy in environmental sciences is the norm rather than the exception [Valle & Berdanier (2012) Bulletin of the Ecological Society of America, 93, 373-389]. In this article, we seek to introduce a few important concepts in computer science with the aim of providing a context-specific introduction aimed at research biologists. Our goal was to help biologists understand some of the most important mainstream computational concepts to better appreciate bioinformatics methods and trade-offs that are not obvious to the uninitiated. © 2015 John Wiley & Sons Ltd.
Journal of Undergraduate Research, Volume VIII, 2008
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stiner, K. S.; Graham, S.; Khan, M.
Th e Journal of Undergraduate Research (JUR) provides undergraduate interns the opportunity to publish their scientific innovation and to share their passion for education and research with fellow students and scientists. Fields in which these students worked include: Biology; Chemistry; Computer Science; Engineering; Environmental Science; General Sciences; Materials Sciences; Medical and Health Sciences; Nuclear Sciences; Physics; Science Policy; and Waste Management.
ERIC Educational Resources Information Center
McAnear, Anita
2006-01-01
When we planned the editorial calendar with the topic ubiquitous computing, we were thinking of ubiquitous computing as the one-to-one ratio of computers to students and teachers and 24/7 access to electronic resources. At the time, we were aware that ubiquitous computing in the computer science field had more to do with wearable computers. Our…
Scientific Computing Strategic Plan for the Idaho National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whiting, Eric Todd
Scientific computing is a critical foundation of modern science. Without innovations in the field of computational science, the essential missions of the Department of Energy (DOE) would go unrealized. Taking a leadership role in such innovations is Idaho National Laboratory’s (INL’s) challenge and charge, and is central to INL’s ongoing success. Computing is an essential part of INL’s future. DOE science and technology missions rely firmly on computing capabilities in various forms. Modeling and simulation, fueled by innovations in computational science and validated through experiment, are a critical foundation of science and engineering. Big data analytics from an increasing numbermore » of widely varied sources is opening new windows of insight and discovery. Computing is a critical tool in education, science, engineering, and experiments. Advanced computing capabilities in the form of people, tools, computers, and facilities, will position INL competitively to deliver results and solutions on important national science and engineering challenges. A computing strategy must include much more than simply computers. The foundational enabling component of computing at many DOE national laboratories is the combination of a showcase like data center facility coupled with a very capable supercomputer. In addition, network connectivity, disk storage systems, and visualization hardware are critical and generally tightly coupled to the computer system and co located in the same facility. The existence of these resources in a single data center facility opens the doors to many opportunities that would not otherwise be possible.« less
Intelligent Computer-Assisted Language Learning.
ERIC Educational Resources Information Center
Harrington, Michael
1996-01-01
Introduces the field of intelligent computer assisted language learning (ICALL) and relates them to current practice in computer assisted language learning (CALL) and second language learning. Points out that ICALL applies expertise from artificial intelligence and the computer and cognitive sciences to the development of language learning…
ERIC Educational Resources Information Center
Papastergiou, M.
2008-01-01
This study investigated Greek high school students' intentions and motivation towards and against pursuing academic studies in Computer Science (CS), the influence of the family and the scholastic environment on students' career choices, students' perceptions of CS and the Information Technology (IT) profession as well as students' attendance at…
Preparing Your Students for Careers in Science and Engineering: How Is Your State Doing?
NASA Astrophysics Data System (ADS)
White, Susan; Cottle, Paul
2011-10-01
With one glance at the starting salaries of new bachelor's degree recipients in Fig. 1, a teacher or parent can see the career fields to which their high school students interested in the best economic opportunities might aspire: several engineering fields (chemical, electrical, mechanical), computer science, physics, and mathematics.
Preparing Your Students for Careers in Science and Engineering: How Is Your State Doing?
ERIC Educational Resources Information Center
White, Susan; Cottle, Paul
2011-01-01
With one glance at the starting salaries of new bachelor's degree recipients in Fig. 1, a teacher or parent can see the career fields to which their high school students interested in the best economic opportunities might aspire: several engineering fields (chemical, electrical, mechanical), computer science, physics, and mathematics.
Intelligent Computational Systems. Opening Remarks: CFD Application Process Workshop
NASA Technical Reports Server (NTRS)
VanDalsem, William R.
1994-01-01
This discussion will include a short review of the challenges that must be overcome if computational physics technology is to have a larger impact on the design cycles of U.S. aerospace companies. Some of the potential solutions to these challenges may come from the information sciences fields. A few examples of potential computational physics/information sciences synergy will be presented, as motivation and inspiration for the Improving The CFD Applications Process Workshop.
Safdari, Reza; Shahmoradi, Leila; Hosseini-beheshti, Molouk-sadat; Nejad, Ahmadreza Farzaneh; Hosseiniravandi, Mohammad
2015-01-01
Introduction: Encyclopedias and their compilation have become so prevalent as a valid cultural medium in the world. The daily development of computer industry and the expansion of various sciences have made indispensable the compilation of electronic, specialized encyclopedias, especially the web-based ones. Materials and Methods: This is an applied-developmental study conducted in 2014. First, the main terms in the field of medical informatics were gathered using MeSH Online 2014 and the supplementary terms of each were determined, and then the tree diagram of the terms was drawn based on their relationship in MeSH. Based on the studies done by the researchers, the tree diagram of the encyclopedia was drawn with respect to the existing areas in this field, and the terms gathered were put in related domains. Findings: In MeSH, 75 preferred terms together with 249 supplementary ones were indexed. One of the informatics’ sub-branches is biomedical informatics and health which itself consists of three sub-divisions of bioinformatics, clinical informatics, and health informatics. Medical informatics which is a subdivision of clinical informatics has developed from the three fields of medical sciences, management and social sciences, and computational sciences and mathematics. Results and Discussion: Medical Informatics is created of confluence and fusion and applications of the three major scientific branches include health and biological sciences, social sciences and management sciences, computing and mathematical sciences, and according to that the structure of MeSH is weak for future development of Encyclopedia of Medical Informatics. PMID:26635440
Critical thinking traits of top-tier experts and implications for computer science education
NASA Astrophysics Data System (ADS)
Bushey, Dean E.
A documented shortage of technical leadership and top-tier performers in computer science jeopardizes the technological edge, security, and economic well-being of the nation. The 2005 President's Information and Technology Advisory Committee (PITAC) Report on competitiveness in computational sciences highlights the major impact of science, technology, and innovation in keeping America competitive in the global marketplace. It stresses the fact that the supply of science, technology, and engineering experts is at the core of America's technological edge, national competitiveness and security. However, recent data shows that both undergraduate and postgraduate production of computer scientists is falling. The decline is "a quiet crisis building in the United States," a crisis that, if allowed to continue unchecked, could endanger America's well-being and preeminence among the world's nations. Past research on expert performance has shown that the cognitive traits of critical thinking, creativity, and problem solving possessed by top-tier performers can be identified, observed and measured. The studies show that the identified attributes are applicable across many domains and disciplines. Companies have begun to realize that cognitive skills are important for high-level performance and are reevaluating the traditional academic standards they have used to predict success for their top-tier performers in computer science. Previous research in the computer science field has focused either on programming skills of its experts or has attempted to predict the academic success of students at the undergraduate level. This study, on the other hand, examines the critical-thinking skills found among experts in the computer science field in order to explore the questions, "What cognitive skills do outstanding performers possess that make them successful?" and "How do currently used measures of academic performance correlate to critical-thinking skills among students?" The results of this study suggest a need to examine how critical-thinking abilities are learned in the undergraduate computer science curriculum and the need to foster these abilities in order to produce the high-level, critical-thinking professionals necessary to fill the growing need for these experts. Due to the fact that current measures of academic performance do not adequately depict students' cognitive abilities, assessment of these skills must be incorporated into existing curricula.
Engagement, Persistence, and Gender in Computer Science: Results of a Smartphone ESM Study.
Milesi, Carolina; Perez-Felkner, Lara; Brown, Kevin; Schneider, Barbara
2017-01-01
While the underrepresentation of women in the fast-growing STEM field of computer science (CS) has been much studied, no consensus exists on the key factors influencing this widening gender gap. Possible suspects include gender differences in aptitude, interest, and academic environment. Our study contributes to this literature by applying student engagement research to study the experiences of college students studying CS, to assess the degree to which differences in men and women's engagement may help account for gender inequity in the field. Specifically, we use the Experience Sampling Method (ESM) to evaluate in real-time the engagement of college students during varied activities and environments. Over the course of a full week in fall semester and a full week in spring semester, 165 students majoring in CS at two Research I universities were "beeped" several times a day via a smartphone app prompting them to fill out a short questionnaire including open-ended and scaled items. These responses were paired with administrative and over 2 years of transcript data provided by their institutions. We used mean comparisons and logistic regression analysis to compare enrollment and persistence patterns among CS men and women. Results suggest that despite the obstacles associated with women's underrepresentation in computer science, women are more likely to continue taking computer science courses when they felt challenged and skilled in their initial computer science classes. We discuss implications for further research.
Exposure Science and the US EPA National Center for Computational Toxicology
The emerging field of computational toxicology applies mathematical and computer models and molecular biological and chemical approaches to explore both qualitative and quantitative relationships between sources of environmental pollutant exposure and adverse health outcomes. The...
Undergraduate Research in Quantum Information Science
ERIC Educational Resources Information Center
Lyons, David W.
2017-01-01
Quantum Information Science (QIS) is an interdisciplinary field involving mathematics, computer science, and physics. Appealing aspects include an abundance of accessible open problems, active interest and support from government and industry, and an energetic, open, and collaborative international research culture. We describe our student-faculty…
Pioneering University/Industry Venture Explores VLSI Frontiers.
ERIC Educational Resources Information Center
Davis, Dwight B.
1983-01-01
Discusses industry-sponsored programs in semiconductor research, focusing on Stanford University's Center for Integrated Systems (CIS). CIS, while pursuing research in semiconductor very-large-scale integration, is merging the fields of computer science, information science, and physical science. Issues related to these university/industry…
European Science Notes Information Bulletin Reports on Current European/ Middle Eastern Science
1989-03-01
Palo-Oceanography, Marine Geophysics, Marine Environmental Geology, and Petrology of the Oceanic Crust. The spe- cific concerns of each of these...integration To compute numerically the expected value of an over the fermion fields, leaving an integral over the gauge operator, the configuration space...ethrough the machine (one space point per processor).In the gauge field theories of elementary particles, This is appropriate for generating gauge field
Journal of Undergraduate Research, Volume VI, 2006
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faletra, P.; Schuetz, A.; Cherkerzian, D.
Students who conducted research at DOE National Laboratories during 2005 were invited to include their research abstracts, and for a select few, their completed research papers in this Journal. This Journal is direct evidence of students collaborating with their mentors. Fields in which these students worked include: Biology; Chemistry; Computer Science; Engineering; Environmental Science; General Sciences; Materials Sciences; Medical and Health Sciences; Nuclear Sciences; Physics; and Science Policy.
Can Computers Be Used Successfully for Teaching College Mathematics?
ERIC Educational Resources Information Center
Hatfield, Steven H.
1976-01-01
Author states that the use of computers in mathematics courses tends to generate interest in course subject matter and make learning a less passive experience. Computers also introduce students to computer science as a field of study, and provide basic knowledge of computers as an important aspect of today's technology. (Author/RW)
Women Planning to Major in Computer Science: Who Are They and What Makes Them Unique?
ERIC Educational Resources Information Center
Lehman, Kathleen J.; Sax, Linda J.; Zimmerman, Hilary B.
2017-01-01
Despite the current growing popularity of the computer science (CS) major, women remain sorely underrepresented in the field, continuing to earn only 18% of bachelor's degrees. Understanding women's low rates of participation in CS is important given that the demand for individuals with CS training has grown sharply in recent years. Attracting and…
ERIC Educational Resources Information Center
Mikulecky, Larry
A study evaluated the effectiveness of a series of print materials and interactive computer-guided study programs designed to lead undergraduate students to apply basic textbook reading and concept mapping strategies to the study of science and social science textbooks. Following field testing with 25 learning skills students, 50 freshman biology…
ERIC Educational Resources Information Center
Moral, Cristian; de Antonio, Angelica; Ferre, Xavier; Lara, Graciela
2015-01-01
Introduction: In this article we propose a qualitative analysis tool--a coding system--that can support the formalisation of the information-seeking process in a specific field: research in computer science. Method: In order to elaborate the coding system, we have conducted a set of qualitative studies, more specifically a focus group and some…
ERIC Educational Resources Information Center
School Science Review, 1985
1985-01-01
Presents 23 experiments, activities, field projects and computer programs in the biological and physical sciences. Instructional procedures, experimental designs, materials, and background information are suggested. Topics include fluid mechanics, electricity, crystals, arthropods, limpets, acid neutralization, and software evaluation. (ML)
ERIC Educational Resources Information Center
Armoni, Michal; Gal-Ezer, Judith
2005-01-01
When dealing with a complex problem, solving it by reduction to simpler problems, or problems for which the solution is already known, is a common method in mathematics and other scientific disciplines, as in computer science and, specifically, in the field of computability. However, when teaching computational models (as part of computability)…
Gendered Narratives of Innovation through Competition: Lessons from Science and Technology Studies
ERIC Educational Resources Information Center
Calvert, Scout
2013-01-01
Library and information science is a technologically intensive profession with a high percentage of women, unlike computer science and other male-dominated fields. On the occasion of the 2011 ALISE conference, this essay analyzes the theme "Competitiveness and Innovation" through a review of social psychology and science and technology…
Visual analytics as a translational cognitive science.
Fisher, Brian; Green, Tera Marie; Arias-Hernández, Richard
2011-07-01
Visual analytics is a new interdisciplinary field of study that calls for a more structured scientific approach to understanding the effects of interaction with complex graphical displays on human cognitive processes. Its primary goal is to support the design and evaluation of graphical information systems that better support cognitive processes in areas as diverse as scientific research and emergency management. The methodologies that make up this new field are as yet ill defined. This paper proposes a pathway for development of visual analytics as a translational cognitive science that bridges fundamental research in human/computer cognitive systems and design and evaluation of information systems in situ. Achieving this goal will require the development of enhanced field methods for conceptual decomposition of human/computer cognitive systems that maps onto laboratory studies, and improved methods for conducting laboratory investigations that might better map onto real-world cognitive processes in technology-rich environments. Copyright © 2011 Cognitive Science Society, Inc.
Computational Science in Armenia (Invited Talk)
NASA Astrophysics Data System (ADS)
Marandjian, H.; Shoukourian, Yu.
This survey is devoted to the development of informatics and computer science in Armenia. The results in theoretical computer science (algebraic models, solutions to systems of general form recursive equations, the methods of coding theory, pattern recognition and image processing), constitute the theoretical basis for developing problem-solving-oriented environments. As examples can be mentioned: a synthesizer of optimized distributed recursive programs, software tools for cluster-oriented implementations of two-dimensional cellular automata, a grid-aware web interface with advanced service trading for linear algebra calculations. In the direction of solving scientific problems that require high-performance computing resources, examples of completed projects include the field of physics (parallel computing of complex quantum systems), astrophysics (Armenian virtual laboratory), biology (molecular dynamics study of human red blood cell membrane), meteorology (implementing and evaluating the Weather Research and Forecast Model for the territory of Armenia). The overview also notes that the Institute for Informatics and Automation Problems of the National Academy of Sciences of Armenia has established a scientific and educational infrastructure, uniting computing clusters of scientific and educational institutions of the country and provides the scientific community with access to local and international computational resources, that is a strong support for computational science in Armenia.
The Structure of Medical Informatics Journal Literature
Morris, Theodore A.; McCain, Katherine W.
1998-01-01
Abstract Objective: Medical informatics is an emergent interdisciplinary field described as drawing upon and contributing to both the health sciences and information sciences. The authors elucidate the disciplinary nature and internal structure of the field. Design: To better understand the field's disciplinary nature, the authors examine the intercitation relationships of its journal literature. To determine its internal structure, they examined its journal cocitation patterns. Measurements: The authors used data from the Science Citation Index (SCI) and Social Science Citation Index (SSCI) to perform intercitation studies among productive journal titles, and software routines from SPSS to perform multivariate data analyses on cocitation data for proposed core journals. Results: Intercitation network analysis suggests that a core literature exists, one mark of a separate discipline. Multivariate analyses of cocitation data suggest that major focus areas within the field include biomedical engineering, biomedical computing, decision support, and education. The interpretable dimensions of multidimensional scaling maps differed for the SCI and SSCI data sets. Strong links to information science literature were not found. Conclusion: The authors saw indications of a core literature and of several major research fronts. The field appears to be viewed differently by authors writing in journals indexed by SCI from those writing in journals indexed by SSCI, with more emphasis placed on computers and engineering versus decision making by the former and more emphasis on theory versus application (clinical practice) by the latter. PMID:9760393
Ehrlinger, Joyce; Plant, E Ashby; Hartwig, Marissa K; Vossen, Jordan J; Columb, Corey J; Brewer, Lauren E
2018-01-01
Women are vastly underrepresented in the fields of computer science and engineering (CS&E). We examined whether women might view the intellectual characteristics of prototypical individuals in CS&E in more stereotype-consistent ways than men might and, consequently, show less interest in CS&E. We asked 269 U.S. college students (187, 69.5% women) to describe the prototypical computer scientist (Study 1) or engineer (Study 2) through open-ended descriptions as well as through a set of trait ratings. Participants also rated themselves on the same set of traits and rated their similarity to the prototype. Finally, participants in both studies were asked to describe their likelihood of pursuing future college courses and careers in computer science (Study 1) or engineering (Study 2). Across both studies, we found that women offered more stereotype-consistent ratings than did men of the intellectual characteristics of prototypes in CS (Study 1) and engineering (Study 2). Women also perceived themselves as less similar to the prototype than men did. Further, the observed gender differences in prototype perceptions mediated the tendency for women to report lower interest in CS&E fields relative to men. Our work highlights the importance of prototype perceptions for understanding the gender gap in CS&E and suggests avenues for interventions that may increase women's representation in these vital fields.
GSDC: A Unique Data Center in Korea for HEP research
NASA Astrophysics Data System (ADS)
Ahn, Sang-Un
2017-04-01
Global Science experimental Data hub Center (GSDC) at Korea Institute of Science and Technology Information (KISTI) is a unique data center in South Korea established for promoting the fundamental research fields by supporting them with the expertise on Information and Communication Technology (ICT) and the infrastructure for High Performance Computing (HPC), High Throughput Computing (HTC) and Networking. GSDC has supported various research fields in South Korea dealing with the large scale of data, e.g. RENO experiment for neutrino research, LIGO experiment for gravitational wave detection, Genome sequencing project for bio-medical, and HEP experiments such as CDF at FNAL, Belle at KEK, and STAR at BNL. In particular, GSDC has run a Tier-1 center for ALICE experiment using the LHC at CERN since 2013. In this talk, we present the overview on computing infrastructure that GSDC runs for the research fields and we discuss on the data center infrastructure management system deployed at GSDC.
Flexible 2D RF Nanoelectronics based on Layered Semiconductor Transistor (NBIT III)
2016-11-11
Experimental and computational studies in multidisciplinary fields of electrical, mechanical engineering , and materials science were conducted to achieve...plan for this project. Experimental and computational studies in multidisciplinary fields of electrical, mechanical engineering , and materials...electrostatic or physisorption gating, defect engineering , and substitutional doping during the growth. These methods result in uniform doping or composition
10 CFR 605.5 - The Office of Energy Research Financial Assistance Program.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Scientific Computing Staff (7) Superconducting Super Collider (8) University and Science Education Programs... appendix A of this part. (b) The Program areas are: (1) Basic Energy Sciences (2) Field Operations...
10 CFR 605.5 - The Office of Energy Research Financial Assistance Program.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Scientific Computing Staff (7) Superconducting Super Collider (8) University and Science Education Programs... appendix A of this part. (b) The Program areas are: (1) Basic Energy Sciences (2) Field Operations...
10 CFR 605.5 - The Office of Energy Research Financial Assistance Program.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Scientific Computing Staff (7) Superconducting Super Collider (8) University and Science Education Programs... appendix A of this part. (b) The Program areas are: (1) Basic Energy Sciences (2) Field Operations...
10 CFR 605.5 - The Office of Energy Research Financial Assistance Program.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Scientific Computing Staff (7) Superconducting Super Collider (8) University and Science Education Programs... appendix A of this part. (b) The Program areas are: (1) Basic Energy Sciences (2) Field Operations...
Kawano, Tomonori; Bouteau, François; Mancuso, Stefano
2012-11-01
The automata theory is the mathematical study of abstract machines commonly studied in the theoretical computer science and highly interdisciplinary fields that combine the natural sciences and the theoretical computer science. In the present review article, as the chemical and biological basis for natural computing or informatics, some plants, plant cells or plant-derived molecules involved in signaling are listed and classified as natural sequential machines (namely, the Mealy machines or Moore machines) or finite state automata. By defining the actions (states and transition functions) of these natural automata, the similarity between the computational data processing and plant decision-making processes became obvious. Finally, their putative roles as the parts for plant-based computing or robotic systems are discussed.
Kawano, Tomonori; Bouteau, François; Mancuso, Stefano
2012-01-01
The automata theory is the mathematical study of abstract machines commonly studied in the theoretical computer science and highly interdisciplinary fields that combine the natural sciences and the theoretical computer science. In the present review article, as the chemical and biological basis for natural computing or informatics, some plants, plant cells or plant-derived molecules involved in signaling are listed and classified as natural sequential machines (namely, the Mealy machines or Moore machines) or finite state automata. By defining the actions (states and transition functions) of these natural automata, the similarity between the computational data processing and plant decision-making processes became obvious. Finally, their putative roles as the parts for plant-based computing or robotic systems are discussed. PMID:23336016
Montague, P. Read; Dolan, Raymond J.; Friston, Karl J.; Dayan, Peter
2013-01-01
Computational ideas pervade many areas of science and have an integrative explanatory role in neuroscience and cognitive science. However, computational depictions of cognitive function have had surprisingly little impact on the way we assess mental illness because diseases of the mind have not been systematically conceptualized in computational terms. Here, we outline goals and nascent efforts in the new field of computational psychiatry, which seeks to characterize mental dysfunction in terms of aberrant computations over multiple scales. We highlight early efforts in this area that employ reinforcement learning and game theoretic frameworks to elucidate decision-making in health and disease. Looking forwards, we emphasize a need for theory development and large-scale computational phenotyping in human subjects. PMID:22177032
Engagement, Persistence, and Gender in Computer Science: Results of a Smartphone ESM Study
Milesi, Carolina; Perez-Felkner, Lara; Brown, Kevin; Schneider, Barbara
2017-01-01
While the underrepresentation of women in the fast-growing STEM field of computer science (CS) has been much studied, no consensus exists on the key factors influencing this widening gender gap. Possible suspects include gender differences in aptitude, interest, and academic environment. Our study contributes to this literature by applying student engagement research to study the experiences of college students studying CS, to assess the degree to which differences in men and women's engagement may help account for gender inequity in the field. Specifically, we use the Experience Sampling Method (ESM) to evaluate in real-time the engagement of college students during varied activities and environments. Over the course of a full week in fall semester and a full week in spring semester, 165 students majoring in CS at two Research I universities were “beeped” several times a day via a smartphone app prompting them to fill out a short questionnaire including open-ended and scaled items. These responses were paired with administrative and over 2 years of transcript data provided by their institutions. We used mean comparisons and logistic regression analysis to compare enrollment and persistence patterns among CS men and women. Results suggest that despite the obstacles associated with women's underrepresentation in computer science, women are more likely to continue taking computer science courses when they felt challenged and skilled in their initial computer science classes. We discuss implications for further research. PMID:28487664
Hispanic women overcoming deterrents to computer science: A phenomenological study
NASA Astrophysics Data System (ADS)
Herling, Lourdes
The products of computer science are important to all aspects of society and are tools in the solution of the world's problems. It is, therefore, troubling that the United States faces a shortage in qualified graduates in computer science. The number of women and minorities in computer science is significantly lower than the percentage of the U.S. population which they represent. The overall enrollment in computer science programs has continued to decline with the enrollment of women declining at a higher rate than that of men. This study addressed three aspects of underrepresentation about which there has been little previous research: addressing computing disciplines specifically rather than embedding them within the STEM disciplines, what attracts women and minorities to computer science, and addressing the issues of race/ethnicity and gender in conjunction rather than in isolation. Since women of underrepresented ethnicities are more severely underrepresented than women in general, it is important to consider whether race and ethnicity play a role in addition to gender as has been suggested by previous research. Therefore, this study examined what attracted Hispanic women to computer science specifically. The study determines whether being subjected to multiple marginalizations---female and Hispanic---played a role in the experiences of Hispanic women currently in computer science. The study found five emergent themes within the experiences of Hispanic women in computer science. Encouragement and role models strongly influenced not only the participants' choice to major in the field, but to persist as well. Most of the participants experienced a negative atmosphere and feelings of not fitting in while in college and industry. The interdisciplinary nature of computer science was the most common aspect that attracted the participants to computer science. The aptitudes participants commonly believed are needed for success in computer science are the Twenty-First Century skills problem solving, creativity, and critical thinking. While not all the participants had experience with computers or programming prior to attending college, experience played a role in the self-confidence of those who did.
ERIC Educational Resources Information Center
Charleston, LaVar Jovan
2010-01-01
As a result of decreasing degree attainment in science, technology, engineering, and mathematics (STEM) fields, the United States is undergoing a shortage in the STEM workforce that it has not encountered since the mid-1950s (ACT, 2006; Gilbert & Jackson, 2007). Moreover, as computer usage cuts across diverse aspects of modern culture, the…
Machine learning: Trends, perspectives, and prospects.
Jordan, M I; Mitchell, T M
2015-07-17
Machine learning addresses the question of how to build computers that improve automatically through experience. It is one of today's most rapidly growing technical fields, lying at the intersection of computer science and statistics, and at the core of artificial intelligence and data science. Recent progress in machine learning has been driven both by the development of new learning algorithms and theory and by the ongoing explosion in the availability of online data and low-cost computation. The adoption of data-intensive machine-learning methods can be found throughout science, technology and commerce, leading to more evidence-based decision-making across many walks of life, including health care, manufacturing, education, financial modeling, policing, and marketing. Copyright © 2015, American Association for the Advancement of Science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dang, Liem X.; Vo, Quynh N.; Nilsson, Mikael
We report one of the first simulations using a classical rate theory approach to predict the mechanism of the exchange process between water and aqueous uranyl ions. Using our water and ion-water polarizable force fields and molecular dynamics techniques, we computed the potentials of mean force for the uranyl ion-water pair as the function of pressures at ambient temperature. Subsequently, these simulated potentials of mean force were used to calculate rate constants using the transition rate theory; the time dependent transmission coefficients were also examined using the reactive flux method and Grote-Hynes treatments of the dynamic response of the solvent.more » The computed activation volumes using transition rate theory and the corrected rate constants are positive, thus the mechanism of this particular water-exchange is a dissociative process. We discuss our rate theory results and compare them with previously studies in which non-polarizable force fields were used. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.« less
Toward Using Games to Teach Fundamental Computer Science Concepts
ERIC Educational Resources Information Center
Edgington, Jeffrey Michael
2010-01-01
Video and computer games have become an important area of study in the field of education. Games have been designed to teach mathematics, physics, raise social awareness, teach history and geography, and train soldiers in the military. Recent work has created computer games for teaching computer programming and understanding basic algorithms. …
Empowering K-12 Students with Disabilities to Learn Computational Thinking and Computer Programming
ERIC Educational Resources Information Center
Israel, Maya; Wherfel, Quentin M.; Pearson, Jamie; Shehab, Saadeddine; Tapia, Tanya
2015-01-01
This article's focus is on including computing and computational thinking in K-12 instruction within science, technology, engineering, and mathematics (STEM) education, and to provide that instruction in ways that promote access for students traditionally underrepresented in the STEM fields, such as students with disabilities. Providing computing…
Arctic Boreal Vulnerability Experiment (ABoVE) Science Cloud
NASA Astrophysics Data System (ADS)
Duffy, D.; Schnase, J. L.; McInerney, M.; Webster, W. P.; Sinno, S.; Thompson, J. H.; Griffith, P. C.; Hoy, E.; Carroll, M.
2014-12-01
The effects of climate change are being revealed at alarming rates in the Arctic and Boreal regions of the planet. NASA's Terrestrial Ecology Program has launched a major field campaign to study these effects over the next 5 to 8 years. The Arctic Boreal Vulnerability Experiment (ABoVE) will challenge scientists to take measurements in the field, study remote observations, and even run models to better understand the impacts of a rapidly changing climate for areas of Alaska and western Canada. The NASA Center for Climate Simulation (NCCS) at the Goddard Space Flight Center (GSFC) has partnered with the Terrestrial Ecology Program to create a science cloud designed for this field campaign - the ABoVE Science Cloud. The cloud combines traditional high performance computing with emerging technologies to create an environment specifically designed for large-scale climate analytics. The ABoVE Science Cloud utilizes (1) virtualized high-speed InfiniBand networks, (2) a combination of high-performance file systems and object storage, and (3) virtual system environments tailored for data intensive, science applications. At the center of the architecture is a large object storage environment, much like a traditional high-performance file system, that supports data proximal processing using technologies like MapReduce on a Hadoop Distributed File System (HDFS). Surrounding the storage is a cloud of high performance compute resources with many processing cores and large memory coupled to the storage through an InfiniBand network. Virtual systems can be tailored to a specific scientist and provisioned on the compute resources with extremely high-speed network connectivity to the storage and to other virtual systems. In this talk, we will present the architectural components of the science cloud and examples of how it is being used to meet the needs of the ABoVE campaign. In our experience, the science cloud approach significantly lowers the barriers and risks to organizations that require high performance computing solutions and provides the NCCS with the agility required to meet our customers' rapidly increasing and evolving requirements.
NASA Astrophysics Data System (ADS)
Stone, S.; Parker, M. S.; Howe, B.; Lazowska, E.
2015-12-01
Rapid advances in technology are transforming nearly every field from "data-poor" to "data-rich." The ability to extract knowledge from this abundance of data is the cornerstone of 21st century discovery. At the University of Washington eScience Institute, our mission is to engage researchers across disciplines in developing and applying advanced computational methods and tools to real world problems in data-intensive discovery. Our research team consists of individuals with diverse backgrounds in domain sciences such as astronomy, oceanography and geology, with complementary expertise in advanced statistical and computational techniques such as data management, visualization, and machine learning. Two key elements are necessary to foster careers in data science: individuals with cross-disciplinary training in both method and domain sciences, and career paths emphasizing alternative metrics for advancement. We see persistent and deep-rooted challenges for the career paths of people whose skills, activities and work patterns don't fit neatly into the traditional roles and success metrics of academia. To address these challenges the eScience Institute has developed training programs and established new career opportunities for data-intensive research in academia. Our graduate students and post-docs have mentors in both a methodology and an application field. They also participate in coursework and tutorials to advance technical skill and foster community. Professional Data Scientist positions were created to support research independence while encouraging the development and adoption of domain-specific tools and techniques. The eScience Institute also supports the appointment of faculty who are innovators in developing and applying data science methodologies to advance their field of discovery. Our ultimate goal is to create a supportive environment for data science in academia and to establish global recognition for data-intensive discovery across all fields.
20 CFR 901.11 - Enrollment procedures.
Code of Federal Regulations, 2011 CFR
2011-04-01
.... Examples include economics, computer programs, pension accounting, investment and finance, risk theory... Columbia responsible for the issuance of a license in the field of actuarial science, insurance, accounting... include economics, computer programming, pension accounting, investment and finance, risk theory...
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCoy, M; Kissel, L
2002-01-29
We are experimenting with a new computing model to be applied to a new computer dedicated to that model. Several LLNL science teams now have computational requirements, evidenced by the mature scientific applications that have been developed over the past five plus years, that far exceed the capability of the institution's computing resources. Thus, there is increased demand for dedicated, powerful parallel computational systems. Computation can, in the coming year, potentially field a capability system that is low cost because it will be based on a model that employs open source software and because it will use PC (IA32-P4) hardware.more » This incurs significant computer science risk regarding stability and system features but also presents great opportunity. We believe the risks can be managed, but the existence of risk cannot be ignored. In order to justify the budget for this system, we need to make the case that it serves science and, through serving science, serves the institution. That is the point of the meeting and the White Paper that we are proposing to prepare. The questions are listed and the responses received are in this report.« less
Business Technology Education in the Early 21st Century: The Ongoing Quest for Relevance
ERIC Educational Resources Information Center
Andriole, Stephen J.
2006-01-01
The field of information technology is changing and those responsible for educating the next generation of technology professionals have responded with a new computing curriculum, which identifies five distinct technology majors: computer engineering, computer science, software engineering, information systems and information technology.…
What is biomedical informatics?
Bernstam, Elmer V.; Smith, Jack W.; Johnson, Todd R.
2009-01-01
Biomedical informatics lacks a clear and theoretically grounded definition. Many proposed definitions focus on data, information, and knowledge, but do not provide an adequate definition of these terms. Leveraging insights from the philosophy of information, we define informatics as the science of information, where information is data plus meaning. Biomedical informatics is the science of information as applied to or studied in the context of biomedicine. Defining the object of study of informatics as data plus meaning clearly distinguishes the field from related fields, such as computer science, statistics and biomedicine, which have different objects of study. The emphasis on data plus meaning also suggests that biomedical informatics problems tend to be difficult when they deal with concepts that are hard to capture using formal, computational definitions. In other words, problems where meaning must be considered are more difficult than problems where manipulating data without regard for meaning is sufficient. Furthermore, the definition implies that informatics research, teaching, and service should focus on biomedical information as data plus meaning rather than only computer applications in biomedicine. PMID:19683067
ERIC Educational Resources Information Center
Feinstein, Mark; Stillings, Neil
Cognitive science has recently emerged as a new interdisciplinary field incorporating parts of psychology, computer science, philosophy, neuroscience, and linguistics. Its goal is to bring the theoretical and methodological resources of the contributing disciplines to bear on an integrated investigation of thought, meaning, language, perception,…
Symposium Connects Government Problems with State of the Art Network Science Research
2015-10-16
Symposium Connects Government Problems with State-of-the- Art Network Science Research By Rajmonda S. Caceres and Benjamin A. Miller Network...the US Gov- ernment, and match these with the state-of-the- art models and techniques developed in the network science research community. Since its... science has grown significantly in the last several years as a field at the intersec- tion of mathematics, computer science , social science , and engineering
Big Data: Next-Generation Machines for Big Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hack, James J.; Papka, Michael E.
Addressing the scientific grand challenges identified by the US Department of Energy’s (DOE’s) Office of Science’s programs alone demands a total leadership-class computing capability of 150 to 400 Pflops by the end of this decade. The successors to three of the DOE’s most powerful leadership-class machines are set to arrive in 2017 and 2018—the products of the Collaboration Oak Ridge Argonne Livermore (CORAL) initiative, a national laboratory–industry design/build approach to engineering nextgeneration petascale computers for grand challenge science. These mission-critical machines will enable discoveries in key scientific fields such as energy, biotechnology, nanotechnology, materials science, and high-performance computing, and servemore » as a milestone on the path to deploying exascale computing capabilities.« less
The 'Biologically-Inspired Computing' Column
NASA Technical Reports Server (NTRS)
Hinchey, Mike
2006-01-01
The field of Biology changed dramatically in 1953, with the determination by Francis Crick and James Dewey Watson of the double helix structure of DNA. This discovery changed Biology for ever, allowing the sequencing of the human genome, and the emergence of a "new Biology" focused on DNA, genes, proteins, data, and search. Computational Biology and Bioinformatics heavily rely on computing to facilitate research into life and development. Simultaneously, an understanding of the biology of living organisms indicates a parallel with computing systems: molecules in living cells interact, grow, and transform according to the "program" dictated by DNA. Moreover, paradigms of Computing are emerging based on modelling and developing computer-based systems exploiting ideas that are observed in nature. This includes building into computer systems self-management and self-governance mechanisms that are inspired by the human body's autonomic nervous system, modelling evolutionary systems analogous to colonies of ants or other insects, and developing highly-efficient and highly-complex distributed systems from large numbers of (often quite simple) largely homogeneous components to reflect the behaviour of flocks of birds, swarms of bees, herds of animals, or schools of fish. This new field of "Biologically-Inspired Computing", often known in other incarnations by other names, such as: Autonomic Computing, Pervasive Computing, Organic Computing, Biomimetics, and Artificial Life, amongst others, is poised at the intersection of Computer Science, Engineering, Mathematics, and the Life Sciences. Successes have been reported in the fields of drug discovery, data communications, computer animation, control and command, exploration systems for space, undersea, and harsh environments, to name but a few, and augur much promise for future progress.
Scaling up to address data science challenges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendelberger, Joanne R.
Statistics and Data Science provide a variety of perspectives and technical approaches for exploring and understanding Big Data. Partnerships between scientists from different fields such as statistics, machine learning, computer science, and applied mathematics can lead to innovative approaches for addressing problems involving increasingly large amounts of data in a rigorous and effective manner that takes advantage of advances in computing. Here, this article will explore various challenges in Data Science and will highlight statistical approaches that can facilitate analysis of large-scale data including sampling and data reduction methods, techniques for effective analysis and visualization of large-scale simulations, and algorithmsmore » and procedures for efficient processing.« less
Scaling up to address data science challenges
Wendelberger, Joanne R.
2017-04-27
Statistics and Data Science provide a variety of perspectives and technical approaches for exploring and understanding Big Data. Partnerships between scientists from different fields such as statistics, machine learning, computer science, and applied mathematics can lead to innovative approaches for addressing problems involving increasingly large amounts of data in a rigorous and effective manner that takes advantage of advances in computing. Here, this article will explore various challenges in Data Science and will highlight statistical approaches that can facilitate analysis of large-scale data including sampling and data reduction methods, techniques for effective analysis and visualization of large-scale simulations, and algorithmsmore » and procedures for efficient processing.« less
ERIC Educational Resources Information Center
Maurer, Hermann; Khan, Muhammad Salman
2010-01-01
Purpose: The purpose of this paper is to provide a scientometric and content analysis of the studies in the field of e-learning that were published in five Social Science Citation Index (SSCI) journals ("Journal of Computer Assisted Learning, Computers & Education, British Journal of Educational Technology, Innovations in Education and Teaching…
ERIC Educational Resources Information Center
Little, Joyce Currie
Academic computer departments, whether called by this name or by others such as the department of computer science or data programing, can be of great assistance to other departments in the two-year college. Faculty in other departments need to know about computer applications in their fields, require assistance in the development of curriculum…
Perez-Felkner, Lara; Nix, Samantha; Thomas, Kirby
2017-01-01
Do mathematics ability beliefs explain gender gaps in the physical science, engineering, mathematics, and computer science fields (PEMC) and other science fields? We leverage U.S. nationally representative longitudinal data to estimate gendered differences in girls' and boys' perceptions of mathematics ability with the most difficult or challenging material. Our analyses examine the potentially interacting effects of gender and these ability beliefs on students' pathways to scientific careers. Specifically, we study how beliefs about ability with challenging mathematics influence girls' and boys' choices to pursue PEMC degrees, evaluating educational milestones over a 6-year period: advanced science course completion in secondary school and postsecondary major retention and selection. Our findings indicate even at the same levels of observed ability, girls' mathematics ability beliefs under challenge are markedly lower than those of boys. These beliefs matter over time, potentially tripling girls' chances of majoring in PEMC sciences, over and above biological science fields, all else being equal. Implications and potential interventions are discussed. PMID:28428762
Perez-Felkner, Lara; Nix, Samantha; Thomas, Kirby
2017-01-01
Do mathematics ability beliefs explain gender gaps in the physical science, engineering, mathematics, and computer science fields (PEMC) and other science fields? We leverage U.S. nationally representative longitudinal data to estimate gendered differences in girls' and boys' perceptions of mathematics ability with the most difficult or challenging material. Our analyses examine the potentially interacting effects of gender and these ability beliefs on students' pathways to scientific careers. Specifically, we study how beliefs about ability with challenging mathematics influence girls' and boys' choices to pursue PEMC degrees, evaluating educational milestones over a 6-year period: advanced science course completion in secondary school and postsecondary major retention and selection. Our findings indicate even at the same levels of observed ability, girls' mathematics ability beliefs under challenge are markedly lower than those of boys. These beliefs matter over time, potentially tripling girls' chances of majoring in PEMC sciences, over and above biological science fields, all else being equal. Implications and potential interventions are discussed.
Curriculum Connection. Take Technology Outdoors.
ERIC Educational Resources Information Center
Dean, Bruce Robert
1992-01-01
Technology can support hands-on science as elementary students use computers to formulate field guides to nature surrounding their school. Students examine other field guides; open databases for recording information; collect, draw, and identify plants, insects, and animals; enter data into the database; then generate a computerized field guide.…
Quantum Information Science: An Update
NASA Astrophysics Data System (ADS)
Kwek, L. C.; Zen, Freddy P.
2016-08-01
It is now roughly thirty years since the incipient ideas on quantum information science was concretely formalized. Over the last three decades, there has been much development in this field, and at least one technology, namely devices for quantum cryptography, is now commercialized. Yet, the holy grail of a workable quantum computing machine still lies faraway at the horizon. In any case, it took nearly several centuries before the vacuum tubes were invented after the first mechanical calculating were constructed, and several decades later, for the transistor to bring the current computer technology to fruition. In this review, we provide a short survey of the current development and progress in quantum information science. It clearly does not do justice to the amount of work in the past thirty years. Nevertheless, despite the modest attempt, this review hopes to induce younger researchers into this exciting field.
The Computer and the Fourth Revolution.
ERIC Educational Resources Information Center
Molnar, Andrew R.
An overview is provided of the Fourth Revolution, i.e., the revolution which is taking place in education as a result of the introduction of computers into the field. The growth of computing in education, especially in higher education, is traced, and some major National Science Foundation (NSF) programs are mentioned. Following this, a few of the…
Using Computer Technology to Create a Revolutionary New Style of Biology.
ERIC Educational Resources Information Center
Monaghan, Peter
1993-01-01
A $13-million gift of William Gates III to the University of Washington has enabled establishment of the country's first department in molecular biotechnology, a combination of medicine and molecular biology to be practiced by researchers versed in a variety of fields, including computer science, computation, applied physics, and engineering. (MSE)
Enhancing Tele-robotics with Immersive Virtual Reality
2017-11-03
graduate and undergraduate students within the Digital Gaming and Simulation, Computer Science, and psychology programs have actively collaborated...investigates the use of artificial intelligence and visual computing. Numerous fields across the human-computer interaction and gaming research areas...invested in digital gaming and simulation to cognitively stimulate humans by computers, forming a $10.5B industry [1]. On the other hand, cognitive
Will Computer Engineer Barbie® Impact Young Women's Career Choices?
ERIC Educational Resources Information Center
Martincic, Cynthia J.; Bhatnagar, Neelima
2012-01-01
Controversy and fanfare accompanied the announcement in 2010 by Mattel, Inc. of the Barbie® doll's 126th career--computer engineer. Even though women have been and still are in a minority in the information technology (IT) and computer science (CS) fields, enough women voted for the computer engineer as the next career for Barbie® on Mattel's…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucas, Robert; Ang, James; Bergman, Keren
2014-02-10
Exascale computing systems are essential for the scientific fields that will transform the 21st century global economy, including energy, biotechnology, nanotechnology, and materials science. Progress in these fields is predicated on the ability to perform advanced scientific and engineering simulations, and analyze the deluge of data. On July 29, 2013, ASCAC was charged by Patricia Dehmer, the Acting Director of the Office of Science, to assemble a subcommittee to provide advice on exascale computing. This subcommittee was directed to return a list of no more than ten technical approaches (hardware and software) that will enable the development of a systemmore » that achieves the Department's goals for exascale computing. Numerous reports over the past few years have documented the technical challenges and the non¬-viability of simply scaling existing computer designs to reach exascale. The technical challenges revolve around energy consumption, memory performance, resilience, extreme concurrency, and big data. Drawing from these reports and more recent experience, this ASCAC subcommittee has identified the top ten computing technology advancements that are critical to making a capable, economically viable, exascale system.« less
The ADL Registry and CORDRA. Volume 1: General Overview
2008-08-01
and problems encountered by others in related fields, such as library science , computer and network systems design, and publishing. As ADL...in and exist in isolated islands, limiting their visibility, access, and reuse. 4 Compared to publishing and library science , the learning
Biologically Relevant Exposure Science for 21st Century Toxicity Testing
High visibility efforts in toxicity testing and computational toxicology including the recent NRC report, Toxicity Testing in the 21st Century: a Vision and Strategy (NRC, 2007), raise important research questions and opportunities for the field of exposure science. The authors ...
Education through the prism of computation
NASA Astrophysics Data System (ADS)
Kaurov, Vitaliy
2014-03-01
With the rapid development of technology, computation claims its irrevocable place among research components of modern science. Thus to foster a successful future scientist, engineer or educator we need to add computation to the foundations of scientific education. We will discuss what type of paradigm shifts it brings to these foundations on the example of Wolfram Science Summer School. It is one of the most advanced computational outreach programs run by Wolfram Foundation, welcoming participants of almost all ages and backgrounds. Centered on complexity science and physics, it also covers numerous adjacent and interdisciplinary fields such as finance, biology, medicine and even music. We will talk about educational and research experiences in this program during the 12 years of its existence. We will review statistics and outputs the program has produced. Among these are interactive electronic publications at the Wolfram Demonstrations Project and contributions to the computational knowledge engine Wolfram|Alpa.
India's Computational Biology Growth and Challenges.
Chakraborty, Chiranjib; Bandyopadhyay, Sanghamitra; Agoramoorthy, Govindasamy
2016-09-01
India's computational science is growing swiftly due to the outburst of internet and information technology services. The bioinformatics sector of India has been transforming rapidly by creating a competitive position in global bioinformatics market. Bioinformatics is widely used across India to address a wide range of biological issues. Recently, computational researchers and biologists are collaborating in projects such as database development, sequence analysis, genomic prospects and algorithm generations. In this paper, we have presented the Indian computational biology scenario highlighting bioinformatics-related educational activities, manpower development, internet boom, service industry, research activities, conferences and trainings undertaken by the corporate and government sectors. Nonetheless, this new field of science faces lots of challenges.
Emerging Nanophotonic Applications Explored with Advanced Scientific Parallel Computing
NASA Astrophysics Data System (ADS)
Meng, Xiang
The domain of nanoscale optical science and technology is a combination of the classical world of electromagnetics and the quantum mechanical regime of atoms and molecules. Recent advancements in fabrication technology allows the optical structures to be scaled down to nanoscale size or even to the atomic level, which are far smaller than the wavelength they are designed for. These nanostructures can have unique, controllable, and tunable optical properties and their interactions with quantum materials can have important near-field and far-field optical response. Undoubtedly, these optical properties can have many important applications, ranging from the efficient and tunable light sources, detectors, filters, modulators, high-speed all-optical switches; to the next-generation classical and quantum computation, and biophotonic medical sensors. This emerging research of nanoscience, known as nanophotonics, is a highly interdisciplinary field requiring expertise in materials science, physics, electrical engineering, and scientific computing, modeling and simulation. It has also become an important research field for investigating the science and engineering of light-matter interactions that take place on wavelength and subwavelength scales where the nature of the nanostructured matter controls the interactions. In addition, the fast advancements in the computing capabilities, such as parallel computing, also become as a critical element for investigating advanced nanophotonic devices. This role has taken on even greater urgency with the scale-down of device dimensions, and the design for these devices require extensive memory and extremely long core hours. Thus distributed computing platforms associated with parallel computing are required for faster designs processes. Scientific parallel computing constructs mathematical models and quantitative analysis techniques, and uses the computing machines to analyze and solve otherwise intractable scientific challenges. In particular, parallel computing are forms of computation operating on the principle that large problems can often be divided into smaller ones, which are then solved concurrently. In this dissertation, we report a series of new nanophotonic developments using the advanced parallel computing techniques. The applications include the structure optimizations at the nanoscale to control both the electromagnetic response of materials, and to manipulate nanoscale structures for enhanced field concentration, which enable breakthroughs in imaging, sensing systems (chapter 3 and 4) and improve the spatial-temporal resolutions of spectroscopies (chapter 5). We also report the investigations on the confinement study of optical-matter interactions at the quantum mechanical regime, where the size-dependent novel properties enhanced a wide range of technologies from the tunable and efficient light sources, detectors, to other nanophotonic elements with enhanced functionality (chapter 6 and 7).
ERIC Educational Resources Information Center
Olund, Jeanine K.
2012-01-01
Although the number of women entering science, technology, engineering, and mathematics (STEM) disciplines has increased in recent years, overall there are still more men than women completing four-year degrees in these fields, especially in physics, engineering, and computer science. At higher levels of education and within the workplace, the…
Gendered Expectations: Examining How Peers Shape Female Students' Intent to Pursue STEM Fields.
Riegle-Crumb, Catherine; Morton, Karisma
2017-01-01
Building on prior psychological and sociological research on the power of local environments to shape gendered outcomes in STEM fields, this study focuses on the critical stage of adolescence to explore the potential negative impact of exposure to exclusionary messages from peers within girls' science classrooms, as well as the positive potential impact of inclusionary messages. Specifically, utilizing longitudinal data from a diverse sample of adolescent youth, analyses examine how the presence of biased male peers, as well as confident female peers, shape girls' subsequent intentions to pursue different STEM fields, focusing specifically on intentions to pursue the male-dominated fields of computer science and engineering, as well as more gender equitable fields. Results reveal that exposure to a higher percentage of 8th grade male peers in the classroom who endorsed explicit gender/STEM stereotypes significantly and negatively predicted girls' later intentions to pursue a computer science/engineering (CS/E) major. Yet results also reveal that exposure to a higher percentage of confident female peers in the science classroom positively predicted such intentions. These results were specific to CS/E majors, suggesting that peers are an important source of messages regarding whether or not girls should pursue non-traditional STEM fields. This study calls attention to the importance of examining both positive and negative sources of influence within the local contexts where young people live and learn. Limitations and directions for future research are also discussed.
Gendered Expectations: Examining How Peers Shape Female Students' Intent to Pursue STEM Fields
Riegle-Crumb, Catherine; Morton, Karisma
2017-01-01
Building on prior psychological and sociological research on the power of local environments to shape gendered outcomes in STEM fields, this study focuses on the critical stage of adolescence to explore the potential negative impact of exposure to exclusionary messages from peers within girls' science classrooms, as well as the positive potential impact of inclusionary messages. Specifically, utilizing longitudinal data from a diverse sample of adolescent youth, analyses examine how the presence of biased male peers, as well as confident female peers, shape girls' subsequent intentions to pursue different STEM fields, focusing specifically on intentions to pursue the male-dominated fields of computer science and engineering, as well as more gender equitable fields. Results reveal that exposure to a higher percentage of 8th grade male peers in the classroom who endorsed explicit gender/STEM stereotypes significantly and negatively predicted girls' later intentions to pursue a computer science/engineering (CS/E) major. Yet results also reveal that exposure to a higher percentage of confident female peers in the science classroom positively predicted such intentions. These results were specific to CS/E majors, suggesting that peers are an important source of messages regarding whether or not girls should pursue non-traditional STEM fields. This study calls attention to the importance of examining both positive and negative sources of influence within the local contexts where young people live and learn. Limitations and directions for future research are also discussed. PMID:28360868
NASA Astrophysics Data System (ADS)
Shell, Duane F.; Soh, Leen-Kiat
2013-12-01
The goal of the present study was to utilize a profiling approach to understand differences in motivation and strategic self-regulation among post-secondary STEM students in major versus required non-major computer science courses. Participants were 233 students from required introductory computer science courses (194 men; 35 women; 4 unknown) at a large Midwestern state university. Cluster analysis identified five profiles: (1) a strategic profile of a highly motivated by-any-means good strategy user; (2) a knowledge-building profile of an intrinsically motivated autonomous, mastery-oriented student; (3) a surface learning profile of a utility motivated minimally engaged student; (4) an apathetic profile of an amotivational disengaged student; and (5) a learned helpless profile of a motivated but unable to effectively self-regulate student. Among CS majors and students in courses in their major field, the strategic and knowledge-building profiles were the most prevalent. Among non-CS majors and students in required non-major courses, the learned helpless, surface learning, and apathetic profiles were the most prevalent. Students in the strategic and knowledge-building profiles had significantly higher retention of computational thinking knowledge than students in other profiles. Students in the apathetic and surface learning profiles saw little instrumentality of the course for their future academic and career objectives. Findings show that students in STEM fields taking required computer science courses exhibit the same constellation of motivated strategic self-regulation profiles found in other post-secondary and K-12 settings.
Information processing, computation, and cognition.
Piccinini, Gualtiero; Scarantino, Andrea
2011-01-01
Computation and information processing are among the most fundamental notions in cognitive science. They are also among the most imprecisely discussed. Many cognitive scientists take it for granted that cognition involves computation, information processing, or both - although others disagree vehemently. Yet different cognitive scientists use 'computation' and 'information processing' to mean different things, sometimes without realizing that they do. In addition, computation and information processing are surrounded by several myths; first and foremost, that they are the same thing. In this paper, we address this unsatisfactory state of affairs by presenting a general and theory-neutral account of computation and information processing. We also apply our framework by analyzing the relations between computation and information processing on one hand and classicism, connectionism, and computational neuroscience on the other. We defend the relevance to cognitive science of both computation, at least in a generic sense, and information processing, in three important senses of the term. Our account advances several foundational debates in cognitive science by untangling some of their conceptual knots in a theory-neutral way. By leveling the playing field, we pave the way for the future resolution of the debates' empirical aspects.
NASA Astrophysics Data System (ADS)
Cirac, J. Ignacio; Kimble, H. Jeff
2017-01-01
Quantum optics is a well-established field that spans from fundamental physics to quantum information science. In the coming decade, areas including computation, communication and metrology are all likely to experience scientific and technological advances supported by this far-reaching research field.
GPU-computing in econophysics and statistical physics
NASA Astrophysics Data System (ADS)
Preis, T.
2011-03-01
A recent trend in computer science and related fields is general purpose computing on graphics processing units (GPUs), which can yield impressive performance. With multiple cores connected by high memory bandwidth, today's GPUs offer resources for non-graphics parallel processing. This article provides a brief introduction into the field of GPU computing and includes examples. In particular computationally expensive analyses employed in financial market context are coded on a graphics card architecture which leads to a significant reduction of computing time. In order to demonstrate the wide range of possible applications, a standard model in statistical physics - the Ising model - is ported to a graphics card architecture as well, resulting in large speedup values.
Nichols, J F; Morgan, C G; Chabot, L E; Sallis, J F; Calfas, K J
2000-03-01
Our purpose was to compare the validity of the Computer Science and Applications, (CSA) Inc., accelerometer in laboratory and field settings and establish CSA count ranges for light, moderate, and vigorous physical activity. Validity was determined in 60 adults during treadmill exercise, using oxygen consumption (VO2) as the criterion measure, while 30 adults walked and jogged outdoors on a 400-m track. The relationship between CSA counts and VO2 was linear (R2 = .89 SEE = 3.72 ml.kg-1.min-1), as was the relationship between velocity and counts in the field (R2 = .89, SEE = 0.89 mi.hr-1). However, significant differences were found (p < .05) between laboratory and field measures of CSA counts for light and vigorous intensity. We conclude that the CSA can be used to quantify walking and jogging outdoors on level ground; however, laboratory equations may not be appropriate for use in field settings, particularly for light and vigorous activity.
Toward using games to teach fundamental computer science concepts
NASA Astrophysics Data System (ADS)
Edgington, Jeffrey Michael
Video and computer games have become an important area of study in the field of education. Games have been designed to teach mathematics, physics, raise social awareness, teach history and geography, and train soldiers in the military. Recent work has created computer games for teaching computer programming and understanding basic algorithms. We present an investigation where computer games are used to teach two fundamental computer science concepts: boolean expressions and recursion. The games are intended to teach the concepts and not how to implement them in a programming language. For this investigation, two computer games were created. One is designed to teach basic boolean expressions and operators and the other to teach fundamental concepts of recursion. We describe the design and implementation of both games. We evaluate the effectiveness of these games using before and after surveys. The surveys were designed to ascertain basic understanding, attitudes and beliefs regarding the concepts. The boolean game was evaluated with local high school students and students in a college level introductory computer science course. The recursion game was evaluated with students in a college level introductory computer science course. We present the analysis of the collected survey information for both games. This analysis shows a significant positive change in student attitude towards recursion and modest gains in student learning outcomes for both topics.
NASA Astrophysics Data System (ADS)
Anderson, Paul; Evans, Charles
2017-01-01
A method to compute the stress-energy tensor for a quantized massless minimally coupled scalar field outside the event horizon of a 4-D black hole that forms from the collapse of a spherically symmetric null shell is given. The method is illustrated in the corresponding 2-D case which is mathematically similar but is simple enough that the calculations can be done analytically. The approach to the Unruh state at late times is discussed. National Science Foundation Grant No. PHY-1505875 to Wake Forest University and National Science Foundation Grant No. PHY-1506182 to the University of North Carolina, Chapel Hill
24 CFR 570.416 - Hispanic-serving institutions work study program.
Code of Federal Regulations, 2010 CFR
2010-04-01
... to pre-professional careers in these fields. (b) Definitions. The following definitions apply to HSI... such as natural sciences, computer sciences, mathematics, accounting, electronics, engineering, and the... pursuing careers in community building, and make them aware of the availability of assistance opportunities...
ERIC Educational Resources Information Center
Ennis, Lisa A.
2007-01-01
The dynamic and rapidly expanding field of neuroscience traditionally has involved the study of the nervous system from a biological/medical standpoint. In recent years, however, the science has become multidisciplinary, attracting researchers from computer science, psychology, sociology, philosophy, and even the humanities. For public and college…
Deep learning for computational chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goh, Garrett B.; Hodas, Nathan O.; Vishnu, Abhinav
The rise and fall of artificial neural networks is well documented in the scientific literature of both the fields of computer science and computational chemistry. Yet almost two decades later, we are now seeing a resurgence of interest in deep learning, a machine learning algorithm based on “deep” neural networks. Within the last few years, we have seen the transformative impact of deep learning the computer science domain, notably in speech recognition and computer vision, to the extent that the majority of practitioners in those field are now regularly eschewing prior established models in favor of deep learning models. Inmore » this review, we provide an introductory overview into the theory of deep neural networks and their unique properties as compared to traditional machine learning algorithms used in cheminformatics. By providing an overview of the variety of emerging applications of deep neural networks, we highlight its ubiquity and broad applicability to a wide range of challenges in the field, including QSAR, virtual screening, protein structure modeling, QM calculations, materials synthesis and property prediction. In reviewing the performance of deep neural networks, we observed a consistent outperformance against non neural networks state-of-the-art models across disparate research topics, and deep neural network based models often exceeded the “glass ceiling” expectations of their respective tasks. Coupled with the maturity of GPU-accelerated computing for training deep neural networks and the exponential growth of chemical data on which to train these networks on, we anticipate that deep learning algorithms will be a useful tool and may grow into a pivotal role for various challenges in the computational chemistry field.« less
The changing landscape of astrostatistics and astroinformatics
NASA Astrophysics Data System (ADS)
Feigelson, Eric D.
2017-06-01
The history and current status of the cross-disciplinary fields of astrostatistics and astroinformatics are reviewed. Astronomers need a wide range of statistical methods for both data reduction and science analysis. With the proliferation of high-throughput telescopes, efficient large scale computational methods are also becoming essential. However, astronomers receive only weak training in these fields during their formal education. Interest in the fields is rapidly growing with conferences organized by scholarly societies, textbooks and tutorial workshops, and research studies pushing the frontiers of methodology. R, the premier language of statistical computing, can provide an important software environment for the incorporation of advanced statistical and computational methodology into the astronomical community.
Information technology challenges of biodiversity and ecosystems informatics
Schnase, J.L.; Cushing, J.; Frame, M.; Frondorf, A.; Landis, E.; Maier, D.; Silberschatz, A.
2003-01-01
Computer scientists, biologists, and natural resource managers recently met to examine the prospects for advancing computer science and information technology research by focusing on the complex and often-unique challenges found in the biodiversity and ecosystem domain. The workshop and its final report reveal that the biodiversity and ecosystem sciences are fundamentally information sciences and often address problems having distinctive attributes of scale and socio-technical complexity. The paper provides an overview of the emerging field of biodiversity and ecosystem informatics and demonstrates how the demands of biodiversity and ecosystem research can advance our understanding and use of information technologies.
Human Exploration Ethnography of the Haughton-Mars Project, 1998-1999
NASA Technical Reports Server (NTRS)
Clancey, William J.; Swanson, Keith (Technical Monitor)
1999-01-01
During the past two field seasons, July 1988 and 1999, we have conducted research about the field practices of scientists and engineers at Haughton Crater on Devon Island in the Canadian Arctic, with the objective of determining how people will live and work on Mars. This broad investigation of field life and work practice, part of the Haughton-Mars Project lead by Pascal Lee, spans social and cognitive anthropology, psychology, and computer science. Our approach involves systematic observation and description of activities, places, and concepts, constituting an ethnography of field science at Haughton. Our focus is on human behaviors-what people do, where, when, with whom, and why. By locating behavior in time and place-in contrast with a purely functional or "task oriented" description of work-we find patterns constituting the choreography of interaction between people, their habitat, and their tools. As such, we view the exploration process in terms of a total system comprising a social organization, facilities, terrain/climate, personal identities, artifacts, and computer tools. Because we are computer scientists seeking to develop new kinds of tools for living and working on Mars, we focus on the existing representational tools (such as documents and measuring devices), learning and improvization (such as use of the internet or informal assistance), and prototype computational systems brought to the field. Our research is based on partnership, by which field scientists and engineers actively contribute to our findings, just as we participate in their work and life.
Science and technology camp for girls. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-12-31
This document reports on the success of Pacific University`s camp held during the summers of 1992 and 1993; ultimate goal of this summer day camp was to increase the number of women in technical and scientific fields. Some experimentation was done with the age groups (7th and 8th grade girls). The curriculum was biology, chemistry, physics, and mathematics/computer science. Laboratory work and field trips were emphasized, along with socialization.
Tracking Women and Minorities as They Attain Degrees in Computing and Related Fields
ERIC Educational Resources Information Center
Sorkin, Sylvia; Gore, Mary Elizabeth; Mento, Barbara; Stanton, Jon
2010-01-01
Two Maryland colleges (one a four-year liberal arts college for women, and one a public community college) have worked to increase the number of graduates, especially women and other under-represented groups, in their computer science, computer information systems, engineering, and mathematics programs over a four-year period. In August 2004, they…
ERIC Educational Resources Information Center
Frieze, Carol; Quesenberry, Jeria L.; Kemp, Elizabeth; Velazquez, Anthony
2012-01-01
Gender difference approaches to the participation of women in computing have not provided adequate explanations for women's declining interest in computer science (CS) and related technical fields. Indeed, the search for gender differences can work against diversity which we define as a cross-gender spectrum of characteristics, interests,…
Computational Thinking in K-12: A Review of the State of the Field
ERIC Educational Resources Information Center
Grover, Shuchi; Pea, Roy
2013-01-01
Jeannette Wing's influential article on computational thinking 6 years ago argued for adding this new competency to every child's analytical ability as a vital ingredient of science, technology, engineering, and mathematics (STEM) learning. What is computational thinking? Why did this article resonate with so many and serve as a rallying cry for…
Editorial. Festschrift on the occasion of Kurt Kremer's 60
NASA Astrophysics Data System (ADS)
Site, Luigi Delle; Deserno, Markus; Dünweg, Burkhard; Holm, Christian; Peter, Christine; Pleiner, Harald
2016-10-01
This special topics issue offers a broad perspective on recent theoretical and computational soft matter science, providing state of the art advances in many of its sub-fields. As is befitting for a discipline as diverse as soft matter, the papers collected here span a considerable range of subjects and questions, but they also illustrate numerous connections into both fundamental science and technological/industrial applications, which have accompanied the field since its earliest days. This issue is dedicated to Kurt Kremer, on the occasion of his 60th birthday, honouring his role in establishing this exciting field and consolidating its standing in the frame of current science and technology.
Dynamics of co-authorship and productivity across different fields of scientific research.
Parish, Austin J; Boyack, Kevin W; Ioannidis, John P A
2018-01-01
We aimed to assess which factors correlate with collaborative behavior and whether such behavior associates with scientific impact (citations and becoming a principal investigator). We used the R index which is defined for each author as log(Np)/log(I1), where I1 is the number of co-authors who appear in at least I1 papers written by that author and Np are his/her total papers. Higher R means lower collaborative behavior, i.e. not working much with others, or not collaborating repeatedly with the same co-authors. Across 249,054 researchers who had published ≥30 papers in 2000-2015 but had not published anything before 2000, R varied across scientific fields. Lower values of R (more collaboration) were seen in physics, medicine, infectious disease and brain sciences and higher values of R were seen for social science, computer science and engineering. Among the 9,314 most productive researchers already reaching Np ≥ 30 and I1 ≥ 4 by the end of 2006, R mostly remained stable for most fields from 2006 to 2015 with small increases seen in physics, chemistry, and medicine. Both US-based authorship and male gender were associated with higher values of R (lower collaboration), although the effect was small. Lower values of R (more collaboration) were associated with higher citation impact (h-index), and the effect was stronger in certain fields (physics, medicine, engineering, health sciences) than in others (brain sciences, computer science, infectious disease, chemistry). Finally, for a subset of 400 U.S. researchers in medicine, infectious disease and brain sciences, higher R (lower collaboration) was associated with a higher chance of being a principal investigator by 2016. Our analysis maps the patterns and evolution of collaborative behavior across scientific disciplines.
ERIC Educational Resources Information Center
Granow, Rolf; Bischoff, Michael
In 1997, the German Federal Ministry of Education and Research started an initiative to promote e-learning in Germany by installing an extensive research program. The Virtual University of Applied Sciences in Engineering, Computer Science and Economic Engineering is the most prominent and best-funded of the more than 100 projects in the field…
ERIC Educational Resources Information Center
National Science Foundation, Washington, DC. Div. of Science Resources Studies.
Data are presented on labor market conditions for science and engineering graduates based on responses of 255 firms to mail and telephone surveys conducted in late fall of 1981. Highlights presented in table, chart, and text indicate: (1) definite and likely shortages were concentrated in the computer and engineering fields; (2) chemical,…
Abstracts of Research, July 1973 through June 1974.
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Computer and Information Science Research Center.
Abstracts of research papers in the fields of computer and information science are given; 72 papers are abstracted in the areas of information storage and retrieval, information processing, linguistic analysis, artificial intelligence, mathematical techniques, systems programing, and computer networks. In addition, the Ohio State University…
29 CFR 541.304 - Practice of law or medicine.
Code of Federal Regulations, 2013 CFR
2013-07-01
... DELIMITING THE EXEMPTIONS FOR EXECUTIVE, ADMINISTRATIVE, PROFESSIONAL, COMPUTER AND OUTSIDE SALES EMPLOYEES... and other practitioners licensed and practicing in the field of medical science and healing or any of... bachelors of science in optometry). (c) Employees engaged in internship or resident programs, whether or not...
29 CFR 541.304 - Practice of law or medicine.
Code of Federal Regulations, 2014 CFR
2014-07-01
... DELIMITING THE EXEMPTIONS FOR EXECUTIVE, ADMINISTRATIVE, PROFESSIONAL, COMPUTER AND OUTSIDE SALES EMPLOYEES... and other practitioners licensed and practicing in the field of medical science and healing or any of... bachelors of science in optometry). (c) Employees engaged in internship or resident programs, whether or not...
29 CFR 541.304 - Practice of law or medicine.
Code of Federal Regulations, 2012 CFR
2012-07-01
... DELIMITING THE EXEMPTIONS FOR EXECUTIVE, ADMINISTRATIVE, PROFESSIONAL, COMPUTER AND OUTSIDE SALES EMPLOYEES... and other practitioners licensed and practicing in the field of medical science and healing or any of... bachelors of science in optometry). (c) Employees engaged in internship or resident programs, whether or not...
29 CFR 541.304 - Practice of law or medicine.
Code of Federal Regulations, 2010 CFR
2010-07-01
... DELIMITING THE EXEMPTIONS FOR EXECUTIVE, ADMINISTRATIVE, PROFESSIONAL, COMPUTER AND OUTSIDE SALES EMPLOYEES... and other practitioners licensed and practicing in the field of medical science and healing or any of... bachelors of science in optometry). (c) Employees engaged in internship or resident programs, whether or not...
29 CFR 541.304 - Practice of law or medicine.
Code of Federal Regulations, 2011 CFR
2011-07-01
... DELIMITING THE EXEMPTIONS FOR EXECUTIVE, ADMINISTRATIVE, PROFESSIONAL, COMPUTER AND OUTSIDE SALES EMPLOYEES... and other practitioners licensed and practicing in the field of medical science and healing or any of... bachelors of science in optometry). (c) Employees engaged in internship or resident programs, whether or not...
Key Facts about Higher Education in Washington
ERIC Educational Resources Information Center
Washington Higher Education Coordinating Board, 2011
2011-01-01
Since its establishment in the 1860s, Washington's higher education system has evolved rapidly to meet a myriad of state needs in fields as diverse as agriculture, bioscience, chemistry, environmental sciences, engineering, medicine, law, business, computer science, and architecture. Today, higher education, like other vital state functions, faces…
Biomanufacturing: a US-China National Science Foundation-sponsored workshop.
Sun, Wei; Yan, Yongnian; Lin, Feng; Spector, Myron
2006-05-01
A recent US-China National Science Foundation-sponsored workshop on biomanufacturing reviewed the state-of-the-art of an array of new technologies for producing scaffolds for tissue engineering, providing precision multi-scale control of material, architecture, and cells. One broad category of such techniques has been termed solid freeform fabrication. The techniques in this category include: stereolithography, selected laser sintering, single- and multiple-nozzle deposition and fused deposition modeling, and three-dimensional printing. The precise and repetitive placement of material and cells in a three-dimensional construct at the micrometer length scale demands computer control. These novel computer-controlled scaffold production techniques, when coupled with computer-based imaging and structural modeling methods for the production of the templates for the scaffolds, define an emerging field of computer-aided tissue engineering. In formulating the questions that remain to be answered and discussing the knowledge required to further advance the field, the Workshop provided a basis for recommendations for future work.
[Forensic evidence-based medicine in computer communication networks].
Qiu, Yun-Liang; Peng, Ming-Qi
2013-12-01
As an important component of judicial expertise, forensic science is broad and highly specialized. With development of network technology, increasement of information resources, and improvement of people's legal consciousness, forensic scientists encounter many new problems, and have been required to meet higher evidentiary standards in litigation. In view of this, evidence-based concept should be established in forensic medicine. We should find the most suitable method in forensic science field and other related area to solve specific problems in the evidence-based mode. Evidence-based practice can solve the problems in legal medical field, and it will play a great role in promoting the progress and development of forensic science. This article reviews the basic theory of evidence-based medicine and its effect, way, method, and evaluation in the forensic medicine in order to discuss the application value of forensic evidence-based medicine in computer communication networks.
Computational communities: African-American cultural capital in computer science education
NASA Astrophysics Data System (ADS)
Lachney, Michael
2017-10-01
Enrolling the cultural capital of underrepresented communities in PK-12 technology and curriculum design has been a primary strategy for broadening the participation of students of color in U.S. computer science (CS) fields. This article examines two ways that African-American cultural capital and computing can be bridged in CS education. The first is community representation, using cultural capital to highlight students' social identities and networks through computational thinking. The second, computational integration, locates computation in cultural capital itself. I survey two risks - the appearance of shallow computing and the reproduction of assimilationist logics - that may arise when constructing one bridge without the other. To avoid these risks, I introduce the concept of computational communities by exploring areas in CS education that employ both strategies. This concept is then grounded in qualitative data from an after school program that connected CS to African-American cosmetology.
A Spacelab Expert System for Remote Engineering and Science
NASA Technical Reports Server (NTRS)
Groleau, Nick; Colombano, Silvano; Friedland, Peter (Technical Monitor)
1994-01-01
NASA's space science program is based on strictly pre-planned activities. This approach does not always result in the best science. We describe an existing computer system that enables space science to be conducted in a more reactive manner through advanced automation techniques that have recently been used in SLS-2 October 1993 space shuttle flight. Advanced computing techniques, usually developed in the field of Artificial Intelligence, allow large portions of the scientific investigator's knowledge to be "packaged" in a portable computer to present advice to the astronaut operator. We strongly believe that this technology has wide applicability to other forms of remote science/engineering. In this brief article, we present the technology of remote science/engineering assistance as implemented for the SLS-2 space shuttle flight. We begin with a logical overview of the system (paying particular attention to the implementation details relevant to the use of the embedded knowledge for system reasoning), then describe its use and success in space, and conclude with ideas about possible earth uses of the technology in the life and medical sciences.
González-Nilo, Fernando; Pérez-Acle, Tomás; Guínez-Molinos, Sergio; Geraldo, Daniela A; Sandoval, Claudia; Yévenes, Alejandro; Santos, Leonardo S; Laurie, V Felipe; Mendoza, Hegaly; Cachau, Raúl E
2011-01-01
After the progress made during the genomics era, bioinformatics was tasked with supporting the flow of information generated by nanobiotechnology efforts. This challenge requires adapting classical bioinformatic and computational chemistry tools to store, standardize, analyze, and visualize nanobiotechnological information. Thus, old and new bioinformatic and computational chemistry tools have been merged into a new sub-discipline: nanoinformatics. This review takes a second look at the development of this new and exciting area as seen from the perspective of the evolution of nanobiotechnology applied to the life sciences. The knowledge obtained at the nano-scale level implies answers to new questions and the development of new concepts in different fields. The rapid convergence of technologies around nanobiotechnologies has spun off collaborative networks and web platforms created for sharing and discussing the knowledge generated in nanobiotechnology. The implementation of new database schemes suitable for storage, processing and integrating physical, chemical, and biological properties of nanoparticles will be a key element in achieving the promises in this convergent field. In this work, we will review some applications of nanobiotechnology to life sciences in generating new requirements for diverse scientific fields, such as bioinformatics and computational chemistry.
Why STEM Fields Still Don't Draw More Women
ERIC Educational Resources Information Center
Coger, Robin N.; Cuny, Jan; Klawe, Maria; McGann, Matt; Purcell, Karen D.
2012-01-01
There have been many efforts in recent years to draw more women into STEM fields. While women have made gains, they are still far less likely than men to major in such fields, especially engineering and computer science. Why? This article presents the responses and the thoughts of a group of scholars and experts.
Scientific Visualization and Computational Science: Natural Partners
NASA Technical Reports Server (NTRS)
Uselton, Samuel P.; Lasinski, T. A. (Technical Monitor)
1995-01-01
Scientific visualization is developing rapidly, stimulated by computational science, which is gaining acceptance as a third alternative to theory and experiment. Computational science is based on numerical simulations of mathematical models derived from theory. But each individual simulation is like a hypothetical experiment; initial conditions are specified, and the result is a record of the observed conditions. Experiments can be simulated for situations that can not really be created or controlled. Results impossible to measure can be computed.. Even for observable values, computed samples are typically much denser. Numerical simulations also extend scientific exploration where the mathematics is analytically intractable. Numerical simulations are used to study phenomena from subatomic to intergalactic scales and from abstract mathematical structures to pragmatic engineering of everyday objects. But computational science methods would be almost useless without visualization. The obvious reason is that the huge amounts of data produced require the high bandwidth of the human visual system, and interactivity adds to the power. Visualization systems also provide a single context for all the activities involved from debugging the simulations, to exploring the data, to communicating the results. Most of the presentations today have their roots in image processing, where the fundamental task is: Given an image, extract information about the scene. Visualization has developed from computer graphics, and the inverse task: Given a scene description, make an image. Visualization extends the graphics paradigm by expanding the possible input. The goal is still to produce images; the difficulty is that the input is not a scene description displayable by standard graphics methods. Visualization techniques must either transform the data into a scene description or extend graphics techniques to display this odd input. Computational science is a fertile field for visualization research because the results vary so widely and include things that have no known appearance. The amount of data creates additional challenges for both hardware and software systems. Evaluations of visualization should ultimately reflect the insight gained into the scientific phenomena. So making good visualizations requires consideration of characteristics of the user and the purpose of the visualization. Knowledge about human perception and graphic design is also relevant. It is this breadth of knowledge that stimulates proposals for multidisciplinary visualization teams and intelligent visualization assistant software. Visualization is an immature field, but computational science is stimulating research on a broad front.
NASA Astrophysics Data System (ADS)
Knappenberger, Naomi
This dissertation examines factors which may affect the educational effectiveness of science exhibits. Exhibit effectiveness is the result of a complex interaction among exhibit features, cognitive characteristics of the museum visitor, and educational outcomes. The purpose of this study was to determine the relative proportions of field-dependent and field-independent visitors in the museum audience, and to ascertain if the cognitive style of visitors interacted with instructional strategies to affect the educational outcomes for a computer-based science exhibit. Cognitive style refers to the self-consistent modes of selecting and processing information that an individual employs throughout his or her perceptual and intellectual activities. It has a broad influence on many aspects of personality and behavior, including perception, memory, problem solving, interest, and even social behaviors and self-concept. As such, it constitutes essential dimensions of individual differences among museum visitors and has important implications for instructional design in the museum. The study was conducted in the spring of 1998 at the Adler Planetarium and Astronomy Museum in Chicago. Two experimental treatments of a computer-based exhibit were tested in the study. The first experimental treatment utilized strategies designed for field-dependent visitors that limited the text and provided more structure and cueing than the baseline treatment of the computer program. The other experimental treatment utilized strategies designed for field-independent visitors that provided hypothesis-testing and more contextual information. Approximately two-thirds of the visitors were field-independent. The results of a multiple regression analysis indicated that there was a significant interaction between cognitive style and instructional strategy that affected visitors' posttest scores on a multiple-choice test of the content. Field-independent visitors out- performed the field-dependent visitors in the control, baseline, and both experimental treatments. Both field-dependent and field-independent visitor posttest scores increased in the field-dependent experimental treatment and in the field-independent treatment. The most effective treatment for all visitors was the field-independent treatment. Criteria for designing a computer-based exhibit to meet the needs of all visitors were recommended. These included organized, concise text; a structured, rather than exploratory design; and cueing in the form of questions, bold fonts, underlining of important words and concepts, and captioned images.
Artificial Intelligence and Expert Systems.
ERIC Educational Resources Information Center
Lawlor, Joseph
Artificial intelligence (AI) is the field of scientific inquiry concerned with designing machine systems that can simulate human mental processes. The field draws upon theoretical constructs from a wide variety of disciplines, including mathematics, psychology, linguistics, neurophysiology, computer science, and electronic engineering. Some of the…
Let's Use Cognitive Science to Create Collaborative Workstations.
Reicher, Murray A; Wolfe, Jeremy M
2016-05-01
When informed by an understanding of cognitive science, radiologists' workstations could become collaborative to improve radiologists' performance and job satisfaction. The authors review relevant literature and present several promising areas of research, including image toggling, eye tracking, cognitive computing, intelligently restricted messaging, work habit tracking, and innovative input devices. The authors call for more research in "perceptual design," a promising field that can complement advances in computer-aided detection. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Teeguarden, Justin G; Tan, Yu-Mei; Edwards, Stephen W; Leonard, Jeremy A; Anderson, Kim A; Corley, Richard A; Kile, Molly L; Simonich, Staci M; Stone, David; Tanguay, Robert L; Waters, Katrina M; Harper, Stacey L; Williams, David E
2016-05-03
Driven by major scientific advances in analytical methods, biomonitoring, computation, and a newly articulated vision for a greater impact in public health, the field of exposure science is undergoing a rapid transition from a field of observation to a field of prediction. Deployment of an organizational and predictive framework for exposure science analogous to the "systems approaches" used in the biological sciences is a necessary step in this evolution. Here we propose the aggregate exposure pathway (AEP) concept as the natural and complementary companion in the exposure sciences to the adverse outcome pathway (AOP) concept in the toxicological sciences. Aggregate exposure pathways offer an intuitive framework to organize exposure data within individual units of prediction common to the field, setting the stage for exposure forecasting. Looking farther ahead, we envision direct linkages between aggregate exposure pathways and adverse outcome pathways, completing the source to outcome continuum for more meaningful integration of exposure assessment and hazard identification. Together, the two frameworks form and inform a decision-making framework with the flexibility for risk-based, hazard-based, or exposure-based decision making.
Waggle: A Framework for Intelligent Attentive Sensing and Actuation
NASA Astrophysics Data System (ADS)
Sankaran, R.; Jacob, R. L.; Beckman, P. H.; Catlett, C. E.; Keahey, K.
2014-12-01
Advances in sensor-driven computation and computationally steered sensing will greatly enable future research in fields including environmental and atmospheric sciences. We will present "Waggle," an open-source hardware and software infrastructure developed with two goals: (1) reducing the separation and latency between sensing and computing and (2) improving the reliability and longevity of sensing-actuation platforms in challenging and costly deployments. Inspired by "deep-space probe" systems, the Waggle platform design includes features that can support longitudinal studies, deployments with varying communication links, and remote management capabilities. Waggle lowers the barrier for scientists to incorporate real-time data from their sensors into their computations and to manipulate the sensors or provide feedback through actuators. A standardized software and hardware design allows quick addition of new sensors/actuators and associated software in the nodes and enables them to be coupled with computational codes both insitu and on external compute infrastructure. The Waggle framework currently drives the deployment of two observational systems - a portable and self-sufficient weather platform for study of small-scale effects in Chicago's urban core and an open-ended distributed instrument in Chicago that aims to support several research pursuits across a broad range of disciplines including urban planning, microbiology and computer science. Built around open-source software, hardware, and Linux OS, the Waggle system comprises two components - the Waggle field-node and Waggle cloud-computing infrastructure. Waggle field-node affords a modular, scalable, fault-tolerant, secure, and extensible platform for hosting sensors and actuators in the field. It supports insitu computation and data storage, and integration with cloud-computing infrastructure. The Waggle cloud infrastructure is designed with the goal of scaling to several hundreds of thousands of Waggle nodes. It supports aggregating data from sensors hosted by the nodes, staging computation, relaying feedback to the nodes and serving data to end-users. We will discuss the Waggle design principles and their applicability to various observational research pursuits, and demonstrate its capabilities.
ERIC Educational Resources Information Center
Boltax, Ariana L.; Armanious, Stephanie; Kosinski-Collins, Melissa S.; Pontrello, Jason K.
2015-01-01
Modern research often requires collaboration of experts in fields, such as math, chemistry, biology, physics, and computer science to develop unique solutions to common problems. Traditional introductory undergraduate laboratory curricula in the sciences often do not emphasize connections possible between the various disciplines. We designed an…
The Minority Honors Program in Energy-Related Curricula.
ERIC Educational Resources Information Center
Kish, Evelyn Rubio; Santa Rita, Emilio
In 1984, Bronx Community College (BCC) established the Minority Honors Program in Energy Related Curricula, a partnership between their academic honors program and the U.S. Department of Energy. The program's goal is to increase the participation of minorities in the fields of Computer Science, Electrical Technology, Engineering Science, Data…
UMIST, IDN, NTUA, TUM, ULB: A Successful European Exchange Programme.
ERIC Educational Resources Information Center
Borne, Pierre; Singh, Madan G.
1989-01-01
Describes the exchange programs that existed for a decade in the fields of automatic control and computer science including the University of Manchester Institute of Science and Technology, the "Institut Industriel du Nord," the National Technical University of Athens, the Technical University of Munich, and the Free University of…
The Effectiveness of a Virtual Field Trip (VFT) Module in Learning Biology
ERIC Educational Resources Information Center
Haris, Norbaizura; Osman, Kamisah
2015-01-01
Virtual Field Trip is a computer aided module of science developed to study the Colonisation and Succession in Mangrove Swamps, as an alternative to the real field trip in Form for Biology. This study is to identify the effectiveness of the Virtual Field Trip (VFT) module towards the level of achievement in the formative test for this topic. This…
State-of-the-Art Opportunities. Hispanic Special Report: Careers in Engineering.
ERIC Educational Resources Information Center
Heller, Michele
1992-01-01
Although the demand for electrical, defense, and computer science engineers has dropped sharply, opportunities exist for Hispanics in computer communication and integration, miniaturization of electronic components, environmental, and genetic and biomedical engineering. Engineers should diversify their skills to adapt to the changing field. (KS)
Automating CapCom: Pragmatic Operations and Technology Research for Human Exploration of Mars
NASA Technical Reports Server (NTRS)
Clancey, William J.
2003-01-01
During the Apollo program, NASA and the scientific community used terrestrial analog sites for understanding planetary features and for training astronauts to be scientists. More recently, computer scientists and human factors specialists have followed geologists and biologists into the field, learning how science is actually done on expeditions in extreme environments. Research stations have been constructed by the Mars Society in the Arctic and American southwest, providing facilities for hundreds of researchers to investigate how small crews might live and work on Mars. Combining these interests-science, operations, and technology-in Mars analog field expeditions provides tremendous synergy and authenticity to speculations about Mars missions. By relating historical analyses of Apollo and field science, engineers are creating experimental prototypes that provide significant new capabilities, such as a computer system that automates some of the functions of Apollo s CapCom. Thus, analog studies have created a community of practice-a new collaboration between scientists and engineers-so that technology begins with real human needs and works incrementally towards the challenges of the human exploration of Mars.
Earth Science Informatics Comes of Age
NASA Technical Reports Server (NTRS)
Jodha, Siri; Khalsa, S.; Ramachandran, Rahul
2014-01-01
The volume and complexity of Earth science data have steadily increased, placing ever-greater demands on researchers, software developers and data managers tasked with handling such data. Additional demands arise from requirements being levied by funding agencies and governments to better manage, preserve and provide open access to data. Fortunately, over the past 10-15 years significant advances in information technology, such as increased processing power, advanced programming languages, more sophisticated and practical standards, and near-ubiquitous internet access have made the jobs of those acquiring, processing, distributing and archiving data easier. These advances have also led to an increasing number of individuals entering the field of informatics as it applies to Geoscience and Remote Sensing. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of data, information, and knowledge. Informatics also encompasses the use of computers and computational methods to support decisionmaking and other applications for societal benefits.
NASA Astrophysics Data System (ADS)
Doerr, Martin; Freitas, Fred; Guizzardi, Giancarlo; Han, Hyoil
Ontology is a cross-disciplinary field concerned with the study of concepts and theories that can be used for representing shared conceptualizations of specific domains. Ontological Engineering is a discipline in computer and information science concerned with the development of techniques, methods, languages and tools for the systematic construction of concrete artifacts capturing these representations, i.e., models (e.g., domain ontologies) and metamodels (e.g., upper-level ontologies). In recent years, there has been a growing interest in the application of formal ontology and ontological engineering to solve modeling problems in diverse areas in computer science such as software and data engineering, knowledge representation, natural language processing, information science, among many others.
XXV IUPAP Conference on Computational Physics (CCP2013): Preface
NASA Astrophysics Data System (ADS)
2014-05-01
XXV IUPAP Conference on Computational Physics (CCP2013) was held from 20-24 August 2013 at the Russian Academy of Sciences in Moscow, Russia. The annual Conferences on Computational Physics (CCP) present an overview of the most recent developments and opportunities in computational physics across a broad range of topical areas. The CCP series aims to draw computational scientists from around the world and to stimulate interdisciplinary discussion and collaboration by putting together researchers interested in various fields of computational science. It is organized under the auspices of the International Union of Pure and Applied Physics and has been in existence since 1989. The CCP series alternates between Europe, America and Asia-Pacific. The conferences are traditionally supported by European Physical Society and American Physical Society. This year the Conference host was Landau Institute for Theoretical Physics. The Conference contained 142 presentations, and, in particular, 11 plenary talks with comprehensive reviews from airbursts to many-electron systems. We would like to take this opportunity to thank our sponsors: International Union of Pure and Applied Physics (IUPAP), European Physical Society (EPS), Division of Computational Physics of American Physical Society (DCOMP/APS), Russian Foundation for Basic Research, Department of Physical Sciences of Russian Academy of Sciences, RSC Group company. Further conference information and images from the conference are available in the pdf.
CIS and Information Technology Certifications: Education Program Trends and Implications
ERIC Educational Resources Information Center
Andersson, David; Reimers, Karl
2009-01-01
The fields of Computer Information Systems (CIS) and Information Technology (IT) are experiencing rapid change. In 2003, an analysis of IT degree programs and those of competing disciplines at 10 post-secondary institutions concluded that an information technology program is perceived differently from information systems and computer science. In…
Special Section: New Ways to Detect Colon Cancer 3-D virtual screening now being used
... two together," recalls Arie Kaufman, chairman of the computer science department at New York's Stony Brook University. Dr. Kaufman is one of the world's leading researchers in the high-tech medical fields of biomedical visualization, computer graphics, virtual reality, and multimedia. The year was ...
A cross-disciplinary introduction to quantum annealing-based algorithms
NASA Astrophysics Data System (ADS)
Venegas-Andraca, Salvador E.; Cruz-Santos, William; McGeoch, Catherine; Lanzagorta, Marco
2018-04-01
A central goal in quantum computing is the development of quantum hardware and quantum algorithms in order to analyse challenging scientific and engineering problems. Research in quantum computation involves contributions from both physics and computer science; hence this article presents a concise introduction to basic concepts from both fields that are used in annealing-based quantum computation, an alternative to the more familiar quantum gate model. We introduce some concepts from computer science required to define difficult computational problems and to realise the potential relevance of quantum algorithms to find novel solutions to those problems. We introduce the structure of quantum annealing-based algorithms as well as two examples of this kind of algorithms for solving instances of the max-SAT and Minimum Multicut problems. An overview of the quantum annealing systems manufactured by D-Wave Systems is also presented.
Student science enrichment training program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandhu, S.S.
1994-08-01
This is a report on the Student Science Enrichment Training Program, with special emphasis on chemical and computer science fields. The residential summer session was held at the campus of Claflin College, Orangeburg, SC, for six weeks during 1993 summer, to run concomitantly with the college`s summer school. Fifty participants selected for this program, included high school sophomores, juniors and seniors. The students came from rural South Carolina and adjoining states which, presently, have limited science and computer science facilities. The program focused on high ability minority students, with high potential for science engineering and mathematical careers. The major objectivemore » was to increase the pool of well qualified college entering minority students who would elect to go into science, engineering and mathematical careers. The Division of Natural Sciences and Mathematics and engineering at Claflin College received major benefits from this program as it helped them to expand the Departments of Chemistry, Engineering, Mathematics and Computer Science as a result of additional enrollment. It also established an expanded pool of well qualified minority science and mathematics graduates, which were recruited by the federal agencies and private corporations, visiting Claflin College Campus. Department of Energy`s relationship with Claflin College increased the public awareness of energy related job opportunities in the public and private sectors.« less
Enlist micros: Training science teachers to use microcomputers
NASA Astrophysics Data System (ADS)
Baird, William E.; Ellis, James D.; Kuerbis, Paul J.
A National Science Foundation grant to the Biological Sciences Curriculum Study (BSCS) at The Colorado College supported the design and production of training materials to encourage literacy of science teachers in the use of microcomputers. ENLIST Micros is based on results of a national needs assessment that identified 22 compentencies needed by K-12 science teachers to use microcomputers for instruction. A writing team developed the 16-hour training program in the summer of 1985, and field-test coordinators tested it with 18 preservice or in-service groups during the 1985-86 academic year at 15 sites within the United States. The training materials consist of video programs, interactive computer disks for the Apple II series microcomputer, a training manual for participants, and a guide for the group leader. The experimental materials address major areas of educational computing: awareness, applications, implementation, evaluation, and resources. Each chapter contains activities developed for this program, such as viewing video segments of science teachers who are using computers effectively and running commercial science and training courseware. Role playing and small-group interaction help the teachers overcome their reluctance to use computers and plan for effective implementation of microcomputers in the school. This study examines the implementation of educational computing among 47 science teachers who completed the ENLIST Micros training at a southern university. We present results of formative evaluation for that site. Results indicate that both elementary and secondary teachers benefit from the training program and demonstrate gains in attitudes toward computer use. Participating teachers said that the program met its stated objectives and helped them obtain needed skills. Only 33 percent of these teachers, however, reported using computers one year after the training. In June 1986, the BSCS initiated a follow up to the ENLIST Micros curriculum to develop, evaluate, and disseminate a complete model of teacher enhancement for educational computing in the sciences. In that project, we use the ENLIST Micros curriculum as the first step in a training process. The project includes seminars that introduce additional skills: It contains provisions for sharing among participants, monitors use of computers in participants' classrooms, provides structured coaching of participants' use of computers in their classrooms, and offers planned observations of peers using computers in their science teaching.
A Human Endeavor: Lessons from Shakespeare and Beyond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bishop, Matt; Frincke, Deb A.
This article discusses human-oriented educational activities that support the study of computer security. It poses the point that technology is perhaps the least important aspect of security solutions, and that because of this, the fields of psychology, literature, business, and political science have significant value for any serious student of the science of security.
ERIC Educational Resources Information Center
Perez-Felkner, Lara; McDonald, Sarah-Kathryn; Schneider, Barbara; Grogan, Erin
2012-01-01
Although important strides toward gender parity have been made in several scientific fields, women remain underrepresented in the physical sciences, engineering, mathematics, and computer sciences (PEMCs). This study examines the effects of adolescents' subjective orientations, course taking, and academic performance on the likelihood of majoring…
Information processing, computation, and cognition
Scarantino, Andrea
2010-01-01
Computation and information processing are among the most fundamental notions in cognitive science. They are also among the most imprecisely discussed. Many cognitive scientists take it for granted that cognition involves computation, information processing, or both – although others disagree vehemently. Yet different cognitive scientists use ‘computation’ and ‘information processing’ to mean different things, sometimes without realizing that they do. In addition, computation and information processing are surrounded by several myths; first and foremost, that they are the same thing. In this paper, we address this unsatisfactory state of affairs by presenting a general and theory-neutral account of computation and information processing. We also apply our framework by analyzing the relations between computation and information processing on one hand and classicism, connectionism, and computational neuroscience on the other. We defend the relevance to cognitive science of both computation, at least in a generic sense, and information processing, in three important senses of the term. Our account advances several foundational debates in cognitive science by untangling some of their conceptual knots in a theory-neutral way. By leveling the playing field, we pave the way for the future resolution of the debates’ empirical aspects. PMID:22210958
OPENING REMARKS: SciDAC: Scientific Discovery through Advanced Computing
NASA Astrophysics Data System (ADS)
Strayer, Michael
2005-01-01
Good morning. Welcome to SciDAC 2005 and San Francisco. SciDAC is all about computational science and scientific discovery. In a large sense, computational science characterizes SciDAC and its intent is change. It transforms both our approach and our understanding of science. It opens new doors and crosses traditional boundaries while seeking discovery. In terms of twentieth century methodologies, computational science may be said to be transformational. There are a number of examples to this point. First are the sciences that encompass climate modeling. The application of computational science has in essence created the field of climate modeling. This community is now international in scope and has provided precision results that are challenging our understanding of our environment. A second example is that of lattice quantum chromodynamics. Lattice QCD, while adding precision and insight to our fundamental understanding of strong interaction dynamics, has transformed our approach to particle and nuclear science. The individual investigator approach has evolved to teams of scientists from different disciplines working side-by-side towards a common goal. SciDAC is also undergoing a transformation. This meeting is a prime example. Last year it was a small programmatic meeting tracking progress in SciDAC. This year, we have a major computational science meeting with a variety of disciplines and enabling technologies represented. SciDAC 2005 should position itself as a new corner stone for Computational Science and its impact on science. As we look to the immediate future, FY2006 will bring a new cycle to SciDAC. Most of the program elements of SciDAC will be re-competed in FY2006. The re-competition will involve new instruments for computational science, new approaches for collaboration, as well as new disciplines. There will be new opportunities for virtual experiments in carbon sequestration, fusion, and nuclear power and nuclear waste, as well as collaborations with industry and virtual prototyping. New instruments of collaboration will include institutes and centers while summer schools, workshops and outreach will invite new talent and expertise. Computational science adds new dimensions to science and its practice. Disciplines of fusion, accelerator science, and combustion are poised to blur the boundaries between pure and applied science. As we open the door into FY2006 we shall see a landscape of new scientific challenges: in biology, chemistry, materials, and astrophysics to name a few. The enabling technologies of SciDAC have been transformational as drivers of change. Planning for major new software systems assumes a base line employing Common Component Architectures and this has become a household word for new software projects. While grid algorithms and mesh refinement software have transformed applications software, data management and visualization have transformed our understanding of science from data. The Gordon Bell prize now seems to be dominated by computational science and solvers developed by TOPS ISIC. The priorities of the Office of Science in the Department of Energy are clear. The 20 year facilities plan is driven by new science. High performance computing is placed amongst the two highest priorities. Moore's law says that by the end of the next cycle of SciDAC we shall have peta-flop computers. The challenges of petascale computing are enormous. These and the associated computational science are the highest priorities for computing within the Office of Science. Our effort in Leadership Class computing is just a first step towards this goal. Clearly, computational science at this scale will face enormous challenges and possibilities. Performance evaluation and prediction will be critical to unraveling the needed software technologies. We must not lose sight of our overarching goal—that of scientific discovery. Science does not stand still and the landscape of science discovery and computing holds immense promise. In this environment, I believe it is necessary to institute a system of science based performance metrics to help quantify our progress towards science goals and scientific computing. As a final comment I would like to reaffirm that the shifting landscapes of science will force changes to our computational sciences, and leave you with the quote from Richard Hamming, 'The purpose of computing is insight, not numbers'.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Xiaoqing; Deng, Z. T.
2009-11-10
This is the final report for the Department of Energy (DOE) project DE-FG02-06ER25746, entitled, "Continuing High Performance Computing Research and Education at AAMU". This three-year project was started in August 15, 2006, and it was ended in August 14, 2009. The objective of this project was to enhance high performance computing research and education capabilities at Alabama A&M University (AAMU), and to train African-American and other minority students and scientists in the computational science field for eventual employment with DOE. AAMU has successfully completed all the proposed research and educational tasks. Through the support of DOE, AAMU was able tomore » provide opportunities to minority students through summer interns and DOE computational science scholarship program. In the past three years, AAMU (1). Supported three graduate research assistants in image processing for hypersonic shockwave control experiment and in computational science related area; (2). Recruited and provided full financial support for six AAMU undergraduate summer research interns to participate Research Alliance in Math and Science (RAMS) program at Oak Ridge National Lab (ORNL); (3). Awarded highly competitive 30 DOE High Performance Computing Scholarships ($1500 each) to qualified top AAMU undergraduate students in science and engineering majors; (4). Improved high performance computing laboratory at AAMU with the addition of three high performance Linux workstations; (5). Conducted image analysis for electromagnetic shockwave control experiment and computation of shockwave interactions to verify the design and operation of AAMU-Supersonic wind tunnel. The high performance computing research and education activities at AAMU created great impact to minority students. As praised by Accreditation Board for Engineering and Technology (ABET) in 2009, ?The work on high performance computing that is funded by the Department of Energy provides scholarships to undergraduate students as computational science scholars. This is a wonderful opportunity to recruit under-represented students.? Three ASEE papers were published in 2007, 2008 and 2009 proceedings of ASEE Annual Conferences, respectively. Presentations of these papers were also made at the ASEE Annual Conferences. It is very critical to continue the research and education activities.« less
Bethel, E. Wes [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division and Scientific Visualization Group
2018-05-07
Summer Lecture Series 2008: Scientific visualization transforms abstract data into readily comprehensible images, provide a vehicle for "seeing the unseeable," and play a central role in both experimental and computational sciences. Wes Bethel, who heads the Scientific Visualization Group in the Computational Research Division, presents an overview of visualization and computer graphics, current research challenges, and future directions for the field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tapia, Richard
1998-06-01
In June, The Center for Research on Parallel Computation (CRPC), an NSF-funded Science and Technology Center, hosted the 4th Annual Conference for African-American Reserachers in the Mathematical Sciences (CAARMS4) at Rice University. The main goal of this conference was to highlight current work by African-American researchers and graduate students in mathematics. This conference strengthened the mathematical sciences by encouraging the increased participation of African-American and underrepresented groups into the field, facilitating working relationships between them and helping to cultivate their careers. In addition to the talks there was a graduate student poster session and tutorials on topics in mathematics andmore » computer science. These talks, presentations, and discussions brought a broader perspective to the critical issues involving minority participation in mathematics.« less
Linshiz, Gregory; Goldberg, Alex; Konry, Tania; Hillson, Nathan J
2012-01-01
Synthetic biology is a nascent field that emerged in earnest only around the turn of the millennium. It aims to engineer new biological systems and impart new biological functionality, often through genetic modifications. The design and construction of new biological systems is a complex, multistep process, requiring multidisciplinary collaborative efforts from "fusion" scientists who have formal training in computer science or engineering, as well as hands-on biological expertise. The public has high expectations for synthetic biology and eagerly anticipates the development of solutions to the major challenges facing humanity. This article discusses laboratory practices and the conduct of research in synthetic biology. It argues that the fusion science approach, which integrates biology with computer science and engineering best practices, including standardization, process optimization, computer-aided design and laboratory automation, miniaturization, and systematic management, will increase the predictability and reproducibility of experiments and lead to breakthroughs in the construction of new biological systems. The article also discusses several successful fusion projects, including the development of software tools for DNA construction design automation, recursive DNA construction, and the development of integrated microfluidics systems.
Climbing the Slope of Enlightenment during NASA's Arctic Boreal Vulnerability Experiment
NASA Astrophysics Data System (ADS)
Griffith, P. C.; Hoy, E.; Duffy, D.; McInerney, M.
2015-12-01
The Arctic Boreal Vulnerability Experiment (ABoVE) is a new field campaign sponsored by NASA's Terrestrial Ecology Program and designed to improve understanding of the vulnerability and resilience of Arctic and boreal social-ecological systems to environmental change (http://above.nasa.gov). ABoVE is integrating field-based studies, modeling, and data from airborne and satellite remote sensing. The NASA Center for Climate Simulation (NCCS) has partnered with the NASA Carbon Cycle and Ecosystems Office (CCEO) to create a high performance science cloud for this field campaign. The ABoVE Science Cloud combines high performance computing with emerging technologies and data management with tools for analyzing and processing geographic information to create an environment specifically designed for large-scale modeling, analysis of remote sensing data, copious disk storage for "big data" with integrated data management, and integration of core variables from in-situ networks. The ABoVE Science Cloud is a collaboration that is accelerating the pace of new Arctic science for researchers participating in the field campaign. Specific examples of the utilization of the ABoVE Science Cloud by several funded projects will be presented.
NASA Astrophysics Data System (ADS)
Cardesin Moinelo, Alejandro; Vallat, Claire; Altobelli, Nicolas; Frew, David; Llorente, Rosario; Costa, Marc; Almeida, Miguel; Witasse, Olivier
2016-10-01
JUICE is the first large mission in the framework of ESA's Cosmic Vision 2015-2025 program. JUICE will survey the Jovian system with a special focus on three of the Galilean Moons: Europa, Ganymede and Callisto.The mission has recently been adopted and big efforts are being made by the Science Operations Center (SOC) at the European Space and Astronomy Centre (ESAC) in Madrid for the development of tools to provide the necessary support to the Science Working Team (SWT) for science opportunity analysis and early assessment of science operation scenarios. This contribution will outline some of the tools being developed within ESA and in collaboration with the Navigation and Ancillary Information Facility (NAIF) at JPL.The Mission Analysis and Payload Planning Support (MAPPS) is developed by ESA and has been used by most of ESA's planetary missions to generate and validate science observation timelines for the simulation of payload and spacecraft operations. MAPPS has the capability to compute and display all the necessary geometrical information such as the distances, illumination angles and projected field-of-view of an imaging instrument on the surface of the given body and a preliminary setup is already in place for the early assessment of JUICE science operations.NAIF provides valuable SPICE support to the JUICE mission and several tools are being developed to compute and visualize science opportunities. In particular the WebGeoCalc and Cosmographia systems are provided by NAIF to compute time windows and create animations of the observation geometry available via traditional SPICE data files, such as planet orbits, spacecraft trajectory, spacecraft orientation, instrument field-of-view "cones" and instrument footprints. Other software tools are being developed by ESA and other collaborating partners to support the science opportunity analysis for all missions, like the SOLab (Science Operations Laboratory) or new interfaces for observation definitions and opportunity window databases.
Constructing Contracts: Making Discrete Mathematics Relevant to Beginning Programmers
ERIC Educational Resources Information Center
Gegg-Harrison, Timothy S.
2005-01-01
Although computer scientists understand the importance of discrete mathematics to the foundations of their field, computer science (CS) students do not always see the relevance. Thus, it is important to find a way to show students its relevance. The concept of program correctness is generally taught as an activity independent of the programming…
ERIC Educational Resources Information Center
Garneli, Varvara; Chorianopoulos, Konstantinos
2018-01-01
Various aspects of computational thinking (CT) could be supported by educational contexts such as simulations and video-games construction. In this field study, potential differences in student motivation and learning were empirically examined through students' code. For this purpose, we performed a teaching intervention that took place over five…
Development of Web-Based Examination System Using Open Source Programming Model
ERIC Educational Resources Information Center
Abass, Olalere A.; Olajide, Samuel A.; Samuel, Babafemi O.
2017-01-01
The traditional method of assessment (examination) is often characterized by examination questions leakages, human errors during marking of scripts and recording of scores. The technological advancement in the field of computer science has necessitated the need for computer usage in majorly all areas of human life and endeavors, education sector…
A Project-Based Learning Setting to Human-Computer Interaction for Teenagers
ERIC Educational Resources Information Center
Geyer, Cornelia; Geisler, Stefan
2012-01-01
Knowledge of fundamentals of human-computer interaction resp. usability engineering is getting more and more important in technical domains. However this interdisciplinary field of work and corresponding degree programs are not broadly known. Therefore at the Hochschule Ruhr West, University of Applied Sciences, a program was developed to give…
Designing a hands-on brain computer interface laboratory course.
Khalighinejad, Bahar; Long, Laura Kathleen; Mesgarani, Nima
2016-08-01
Devices and systems that interact with the brain have become a growing field of research and development in recent years. Engineering students are well positioned to contribute to both hardware development and signal analysis techniques in this field. However, this area has been left out of most engineering curricula. We developed an electroencephalography (EEG) based brain computer interface (BCI) laboratory course to educate students through hands-on experiments. The course is offered jointly by the Biomedical Engineering, Electrical Engineering, and Computer Science Departments of Columbia University in the City of New York and is open to senior undergraduate and graduate students. The course provides an effective introduction to the experimental design, neuroscience concepts, data analysis techniques, and technical skills required in the field of BCI.
Teeguarden, Justin. G.; Tan, Yu-Mei; Edwards, Stephen W.; Leonard, Jeremy A.; Anderson, Kim A.; Corley, Richard A.; Harding, Anna K; Kile, Molly L.; Simonich, Staci M; Stone, David; Tanguay, Robert L.; Waters, Katrina M.; Harper, Stacey L.; Williams, David E.
2016-01-01
Synopsis Driven by major scientific advances in analytical methods, biomonitoring, computational tools, and a newly articulated vision for a greater impact in public health, the field of exposure science is undergoing a rapid transition from a field of observation to a field of prediction. Deployment of an organizational and predictive framework for exposure science analogous to the “systems approaches” used in the biological sciences is a necessary step in this evolution. Here we propose the Aggregate Exposure Pathway (AEP) concept as the natural and complementary companion in the exposure sciences to the Adverse Outcome Pathway (AOP) concept in the toxicological sciences. Aggregate exposure pathways offer an intuitive framework to organize exposure data within individual units of prediction common to the field, setting the stage for exposure forecasting. Looking farther ahead, we envision direct linkages between aggregate exposure pathways and adverse outcome pathways, completing the source to outcome continuum for more efficient integration of exposure assessment and hazard identification. Together, the two pathways form and inform a decision-making framework with the flexibility for risk-based, hazard-based, or exposure-based decision making. PMID:26759916
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teeguarden, Justin G.; Tan, Yu -Mei; Edwards, Stephen W.
Here, driven by major scientific advances in analytical methods, biomonitoring, computation, and a newly articulated vision for a greater impact in public health, the field of exposure science is undergoing a rapid transition from a field of observation to a field of prediction. Deployment of an organizational and predictive framework for exposure science analogous to the “systems approaches” used in the biological sciences is a necessary step in this evolution. Here we propose the aggregate exposure pathway (AEP) concept as the natural and complementary companion in the exposure sciences to the adverse outcome pathway (AOP) concept in the toxicological sciences.more » Aggregate exposure pathways offer an intuitive framework to organize exposure data within individual units of prediction common to the field, setting the stage for exposure forecasting. Looking farther ahead, we envision direct linkages between aggregate exposure pathways and adverse outcome pathways, completing the source to outcome continuum for more meaningful integration of exposure assessment and hazard identification. Together, the two frameworks form and inform a decision-making framework with the flexibility for risk-based, hazard-based, or exposure-based decision making.« less
Teeguarden, Justin G.; Tan, Yu -Mei; Edwards, Stephen W.; ...
2016-01-13
Here, driven by major scientific advances in analytical methods, biomonitoring, computation, and a newly articulated vision for a greater impact in public health, the field of exposure science is undergoing a rapid transition from a field of observation to a field of prediction. Deployment of an organizational and predictive framework for exposure science analogous to the “systems approaches” used in the biological sciences is a necessary step in this evolution. Here we propose the aggregate exposure pathway (AEP) concept as the natural and complementary companion in the exposure sciences to the adverse outcome pathway (AOP) concept in the toxicological sciences.more » Aggregate exposure pathways offer an intuitive framework to organize exposure data within individual units of prediction common to the field, setting the stage for exposure forecasting. Looking farther ahead, we envision direct linkages between aggregate exposure pathways and adverse outcome pathways, completing the source to outcome continuum for more meaningful integration of exposure assessment and hazard identification. Together, the two frameworks form and inform a decision-making framework with the flexibility for risk-based, hazard-based, or exposure-based decision making.« less
NASA Astrophysics Data System (ADS)
Stevens, Stacy Mckimm
There has been much research to suggest that a single-sex college experience for female undergraduate students can increase self-confidence and leadership ability during the college years and beyond. The results of previous studies also suggest that these students achieve in the workforce and enter graduate school at higher rates than their female peers graduating from coeducational institutions. However, some researchers have questioned these findings, suggesting that it is the selectivity level of the colleges rather than the comprised gender of the students that causes these differences. The purpose of this study was to justify the continuation of single-sex educational opportunities for females at the post-secondary level by examining the effects that college selectivity, college type, and time have on the rate of undergraduate females pursuing majors in non-traditional fields. The study examined the percentage of physical science, life science, math and computer science, and social science degrees conferred upon females graduating from women's colleges from 1985-2001, as compared to those at comparable coeducational colleges. Sampling for this study consisted of 42 liberal arts women's (n = 21) and coeducational (n = 21) colleges. Variables included the type of college, the selectivity level of the college, and the effect of time on the percentage of female graduates. Doubly multivariate repeated measures analysis of variance testing revealed significant main effects for college selectivity on social science graduates, and time on both life science and math and computer science graduates. Significant interaction was also found between the college type and time on social science graduates, as well as the college type, selectivity level, and time on math and computer science graduates. Implications of the results and suggestions for further research are discussed.
Is there room for ethics within bioinformatics education?
Taneri, Bahar
2011-07-01
When bioinformatics education is considered, several issues are addressed. At the undergraduate level, the main issue revolves around conveying information from two main and different fields: biology and computer science. At the graduate level, the main issue is bridging the gap between biology students and computer science students. However, there is an educational component that is rarely addressed within the context of bioinformatics education: the ethics component. Here, a different perspective is provided on bioinformatics education, and the current status of ethics is analyzed within the existing bioinformatics programs. Analysis of the existing undergraduate and graduate programs, in both Europe and the United States, reveals the minimal attention given to ethics within bioinformatics education. Given that bioinformaticians speedily and effectively shape the biomedical sciences and hence their implications for society, here redesigning of the bioinformatics curricula is suggested in order to integrate the necessary ethics education. Unique ethical problems awaiting bioinformaticians and bioinformatics ethics as a separate field of study are discussed. In addition, a template for an "Ethics in Bioinformatics" course is provided.
NASA Technical Reports Server (NTRS)
Schulbach, Catherine H. (Editor)
2000-01-01
The purpose of the CAS workshop is to bring together NASA's scientists and engineers and their counterparts in industry, other government agencies, and academia working in the Computational Aerosciences and related fields. This workshop is part of the technology transfer plan of the NASA High Performance Computing and Communications (HPCC) Program. Specific objectives of the CAS workshop are to: (1) communicate the goals and objectives of HPCC and CAS, (2) promote and disseminate CAS technology within the appropriate technical communities, including NASA, industry, academia, and other government labs, (3) help promote synergy among CAS and other HPCC scientists, and (4) permit feedback from peer researchers on issues facing High Performance Computing in general and the CAS project in particular. This year we had a number of exciting presentations in the traditional aeronautics, aerospace sciences, and high-end computing areas and in the less familiar (to many of us affiliated with CAS) earth science, space science, and revolutionary computing areas. Presentations of more than 40 high quality papers were organized into ten sessions and presented over the three-day workshop. The proceedings are organized here for easy access: by author, title and topic.
PREFACE: IC-MSQUARE 2012: International Conference on Mathematical Modelling in Physical Sciences
NASA Astrophysics Data System (ADS)
Kosmas, Theocharis; Vagenas, Elias; Vlachos, Dimitrios
2013-02-01
The first International Conference on Mathematical Modelling in Physical Sciences (IC-MSQUARE) took place in Budapest, Hungary, from Monday 3 to Friday 7 September 2012. The conference was attended by more than 130 participants, and hosted about 290 oral, poster and virtual papers by more than 460 pre-registered authors. The first IC-MSQUARE consisted of different and diverging workshops and thus covered various research fields in which mathematical modelling is used, such as theoretical/mathematical physics, neutrino physics, non-integrable systems, dynamical systems, computational nanoscience, biological physics, computational biomechanics, complex networks, stochastic modelling, fractional statistics, DNA dynamics, and macroeconomics. The scientific program was rather heavy since after the Keynote and Invited Talks in the morning, two parallel sessions ran every day. However, according to all attendees, the program was excellent with a high level of talks and the scientific environment was fruitful; thus all attendees had a creative time. The mounting question is whether this occurred accidentally, or whether IC-MSQUARE is a necessity in the field of physical and mathematical modelling. For all of us working in the field, the existing and established conferences in this particular field suffer from two distinguished and recognized drawbacks: the first is the increasing orientation, while the second refers to the extreme specialization of the meetings. Therefore, a conference which aims to promote the knowledge and development of high-quality research in mathematical fields concerned with applications of other scientific fields as well as modern technological trends in physics, chemistry, biology, medicine, economics, sociology, environmental sciences etc., appears to be a necessity. This is the key role that IC-MSQUARE will play. We would like to thank the Keynote Speaker and the Invited Speakers for their significant contributions to IC-MSQUARE. We would also like to thank the members of the International Scientific Committee and the members of the Organizing Committee. Conference Chairmen Theocharis Kosmas Department of Physics, University of Ioannina Elias Vagenas RCAAM, Academy of Athens Dimitrios Vlachos Department of Computer Science and Technology, University of Peloponnese The PDF also contains a list of members of the International Scientific Committes and details of the Keynote and Invited Speakers.
Unconscious Bias in the Classroom: Evidence and Opportunities, 2017
ERIC Educational Resources Information Center
Dee, T.; Gershenson, S.
2017-01-01
The underrepresentation of women and racial and ethnic minorities in computer science (CS) and other fields of science, technology, engineering, and math (STEM) is a serious impediment to technological innovation as well as an affront to fundamental notions of fairness and equity. These gaps emerge in the early grades and tend to persist, if not…
Symposium Abstract: Exposure science has evolved from a time when the primary focus was on measurements of environmental and biological media and the development of enabling field and laboratory methods. The Total Exposure Assessment Method (TEAM) studies of the 1980s were class...
arXiv.org and Physics Education
ERIC Educational Resources Information Center
Ramlo, Susan
2007-01-01
The website arXiv.org (pronounced "archive") is a free online resource for full-text articles in the fields of physics, mathematics, computer science, nonlinear science, and quantitative biology that has existed for about 15 years. Available directly at http://www.arXiv.org, this e-print archive is searchable. As of Jan. 3, 2007, arXiv had open…
Density functional theory in materials science.
Neugebauer, Jörg; Hickel, Tilmann
2013-09-01
Materials science is a highly interdisciplinary field. It is devoted to the understanding of the relationship between (a) fundamental physical and chemical properties governing processes at the atomistic scale with (b) typically macroscopic properties required of materials in engineering applications. For many materials, this relationship is not only determined by chemical composition, but strongly governed by microstructure. The latter is a consequence of carefully selected process conditions (e.g., mechanical forming and annealing in metallurgy or epitaxial growth in semiconductor technology). A key task of computational materials science is to unravel the often hidden composition-structure-property relationships using computational techniques. The present paper does not aim to give a complete review of all aspects of materials science. Rather, we will present the key concepts underlying the computation of selected material properties and discuss the major classes of materials to which they are applied. Specifically, our focus will be on methods used to describe single or polycrystalline bulk materials of semiconductor, metal or ceramic form.
ERIC Educational Resources Information Center
United Nations Educational, Scientific, and Cultural Organization, Bangkok (Thailand). Regional Office for Education in Asia and the Pacific.
Third in a series, this seminar was organized to study the various uses of computer science in education and to analyze the main trends in that field, as well as to discuss problems encountered by the national education systems of 10 countries in the implementation of computer education. This report from that seminar is divided into five major…
Conceptual Modeling in the Time of the Revolution: Part II
NASA Astrophysics Data System (ADS)
Mylopoulos, John
Conceptual Modeling was a marginal research topic at the very fringes of Computer Science in the 60s and 70s, when the discipline was dominated by topics focusing on programs, systems and hardware architectures. Over the years, however, the field has moved to centre stage and has come to claim a central role both in Computer Science research and practice in diverse areas, such as Software Engineering, Databases, Information Systems, the Semantic Web, Business Process Management, Service-Oriented Computing, Multi-Agent Systems, Knowledge Management, and more. The transformation was greatly aided by the adoption of standards in modeling languages (e.g., UML), and model-based methodologies (e.g., Model-Driven Architectures) by the Object Management Group (OMG) and other standards organizations. We briefly review the history of the field over the past 40 years, focusing on the evolution of key ideas. We then note some open challenges and report on-going research, covering topics such as the representation of variability in conceptual models, capturing model intentions, and models of laws.
Completing the Link between Exposure Science and ...
Driven by major scientific advances in analytical methods, biomonitoring, computation, and a newly articulated vision for a greater impact in public health, the field of exposure science is undergoing a rapid transition from a field of observation to a field of prediction. Deployment of an organizational and predictive framework for exposure science analogous to the “systems approaches” used in the biological sciences is a necessary step in this evolution. Here we propose the aggregate exposure pathway (AEP) concept as the natural and complementary companion in the exposure sciences to the adverse outcome pathway (AOP) concept in the toxicological sciences. Aggregate exposure pathways offer an intuitive framework to organize exposure data within individual units of prediction common to the field, setting the stage for exposure forecasting. Looking farther ahead, we envision direct linkages between aggregate exposure pathways and adverse outcome pathways, completing the source to outcome continuum for more meaningful integration of exposure assessment and hazard identification. Together, the two frameworks form and inform a decision-making framework with the flexibility for risk-based, hazard-based, or exposure-based decision making. The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports G
29 CFR 541.300 - General rule for professional employees.
Code of Federal Regulations, 2011 CFR
2011-07-01
... REGULATIONS DEFINING AND DELIMITING THE EXEMPTIONS FOR EXECUTIVE, ADMINISTRATIVE, PROFESSIONAL, COMPUTER AND...) Requiring knowledge of an advanced type in a field of science or learning customarily acquired by a...
29 CFR 541.300 - General rule for professional employees.
Code of Federal Regulations, 2013 CFR
2013-07-01
... REGULATIONS DEFINING AND DELIMITING THE EXEMPTIONS FOR EXECUTIVE, ADMINISTRATIVE, PROFESSIONAL, COMPUTER AND...) Requiring knowledge of an advanced type in a field of science or learning customarily acquired by a...
29 CFR 541.3 - Scope of the section 13(a)(1) exemptions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... REGULATIONS DEFINING AND DELIMITING THE EXEMPTIONS FOR EXECUTIVE, ADMINISTRATIVE, PROFESSIONAL, COMPUTER AND... field of science or learning customarily acquired by a prolonged course of specialized intellectual...
29 CFR 541.300 - General rule for professional employees.
Code of Federal Regulations, 2010 CFR
2010-07-01
... REGULATIONS DEFINING AND DELIMITING THE EXEMPTIONS FOR EXECUTIVE, ADMINISTRATIVE, PROFESSIONAL, COMPUTER AND...) Requiring knowledge of an advanced type in a field of science or learning customarily acquired by a...
29 CFR 541.3 - Scope of the section 13(a)(1) exemptions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... REGULATIONS DEFINING AND DELIMITING THE EXEMPTIONS FOR EXECUTIVE, ADMINISTRATIVE, PROFESSIONAL, COMPUTER AND... field of science or learning customarily acquired by a prolonged course of specialized intellectual...
29 CFR 541.3 - Scope of the section 13(a)(1) exemptions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... REGULATIONS DEFINING AND DELIMITING THE EXEMPTIONS FOR EXECUTIVE, ADMINISTRATIVE, PROFESSIONAL, COMPUTER AND... field of science or learning customarily acquired by a prolonged course of specialized intellectual...
29 CFR 541.3 - Scope of the section 13(a)(1) exemptions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... REGULATIONS DEFINING AND DELIMITING THE EXEMPTIONS FOR EXECUTIVE, ADMINISTRATIVE, PROFESSIONAL, COMPUTER AND... field of science or learning customarily acquired by a prolonged course of specialized intellectual...
29 CFR 541.300 - General rule for professional employees.
Code of Federal Regulations, 2014 CFR
2014-07-01
... REGULATIONS DEFINING AND DELIMITING THE EXEMPTIONS FOR EXECUTIVE, ADMINISTRATIVE, PROFESSIONAL, COMPUTER AND...) Requiring knowledge of an advanced type in a field of science or learning customarily acquired by a...
29 CFR 541.300 - General rule for professional employees.
Code of Federal Regulations, 2012 CFR
2012-07-01
... REGULATIONS DEFINING AND DELIMITING THE EXEMPTIONS FOR EXECUTIVE, ADMINISTRATIVE, PROFESSIONAL, COMPUTER AND...) Requiring knowledge of an advanced type in a field of science or learning customarily acquired by a...
29 CFR 541.3 - Scope of the section 13(a)(1) exemptions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... REGULATIONS DEFINING AND DELIMITING THE EXEMPTIONS FOR EXECUTIVE, ADMINISTRATIVE, PROFESSIONAL, COMPUTER AND... field of science or learning customarily acquired by a prolonged course of specialized intellectual...
Apuzzo, M L; Liu, C Y
2001-10-01
THIS ARTICLE DISCUSSES elements in the definition of modernity and emerging futurism in neurological surgery. In particular, it describes evolution, discovery, and paradigm shifts in the field and forces responsible for their realization. It analyzes the cyclical reinvention of the discipline experienced during the past generation and attempts to identify apertures to the near and more remote future. Subsequently, it focuses on forces and discovery in computational science, imaging, molecular science, biomedical engineering, and information processing as they relate to the theme of minimalism that is evident in the field. These areas are explained in the light of future possibilities offered by the emerging field of nanotechnology with molecular engineering.
PREFACE: International Conference on Applied Sciences 2015 (ICAS2015)
NASA Astrophysics Data System (ADS)
Lemle, Ludovic Dan; Jiang, Yiwen
2016-02-01
The International Conference on Applied Sciences ICAS2015 took place in Wuhan, China on June 3-5, 2015 at the Military Economics Academy of Wuhan. The conference is regularly organized, alternatively in Romania and in P.R. China, by Politehnica University of Timişoara, Romania, and Military Economics Academy of Wuhan, P.R. China, with the joint aims to serve as a platform for exchange of information between various areas of applied sciences, and to promote the communication between the scientists of different nations, countries and continents. The topics of the conference cover a comprehensive spectrum of issues from: >Economical Sciences and Defense: Management Sciences, Business Management, Financial Management, Logistics, Human Resources, Crisis Management, Risk Management, Quality Control, Analysis and Prediction, Government Expenditure, Computational Methods in Economics, Military Sciences, National Security, and others... >Fundamental Sciences and Engineering: Interdisciplinary applications of physics, Numerical approximation and analysis, Computational Methods in Engineering, Metallic Materials, Composite Materials, Metal Alloys, Metallurgy, Heat Transfer, Mechanical Engineering, Mechatronics, Reliability, Electrical Engineering, Circuits and Systems, Signal Processing, Software Engineering, Data Bases, Modeling and Simulation, and others... The conference gathered qualified researchers whose expertise can be used to develop new engineering knowledge that has applicability potential in Engineering, Economics, Defense, etc. The number of participants was 120 from 11 countries (China, Romania, Taiwan, Korea, Denmark, France, Italy, Spain, USA, Jamaica, and Bosnia and Herzegovina). During the three days of the conference four invited and 67 oral talks were delivered. Based on the work presented at the conference, 38 selected papers have been included in this volume of IOP Conference Series: Materials Science and Engineering. These papers present new research in the various fields of Materials Engineering, Mechanical Engineering, Computers Engineering, and Electrical Engineering. It's our great pleasure to present this volume of IOP Conference Series: Materials Science and Engineering to the scientific community to promote further research in these areas. We sincerely hope that the papers published in this volume will contribute to the advancement of knowledge in the respective fields.
Art in Science Competition invites artworks to the annual exhibition on ISMB 2018 in Chicago.
Welch, Lonnie; Gaeta, Bruno; Kovats, Diane E; Frenkel Morgenstern, Milana
2018-01-01
The International Society of Computational Biology and Bioinformatics (ISCB) brings together scientists from a wide range of disciplines, including biology, medicine, computer science, mathematics and statistics. Practitioners in these fields are constantly dealing with information in visual form: from microscope images and photographs of gels to scatter plots, network graphs and phylogenetic trees, structural formulae and protein models to flow diagrams, visual aids for problem-solving are omnipresent. The ISCB Art in Science Competition 2017 at the ISCB/ECCB 2017 conference in Prague offered a way to show the beauty of science in art form. Past artworks in this annual exhibition at ISMB combined outstanding beauty and aesthetics with deep insight that perfectly validated the exhibit's approach or went beyond the problem's solution. Others were surprising and inspiring through the transition from science to art, opening eyes and minds to reflect on the work being undertaken.
Influence of computational domain size on the pattern formation of the phase field crystals
NASA Astrophysics Data System (ADS)
Starodumov, Ilya; Galenko, Peter; Alexandrov, Dmitri; Kropotin, Nikolai
2017-04-01
Modeling of crystallization process by the phase field crystal method (PFC) represents one of the important directions of modern computational materials science. This method makes it possible to research the formation of stable or metastable crystal structures. In this paper, we study the effect of computational domain size on the crystal pattern formation obtained as a result of computer simulation by the PFC method. In the current report, we show that if the size of a computational domain is changed, the result of modeling may be a structure in metastable phase instead of pure stable state. The authors present a possible theoretical justification for the observed effect and provide explanations on the possible modification of the PFC method to account for this phenomenon.
Duarte, Afonso M. S.; Psomopoulos, Fotis E.; Blanchet, Christophe; Bonvin, Alexandre M. J. J.; Corpas, Manuel; Franc, Alain; Jimenez, Rafael C.; de Lucas, Jesus M.; Nyrönen, Tommi; Sipos, Gergely; Suhr, Stephanie B.
2015-01-01
With the increasingly rapid growth of data in life sciences we are witnessing a major transition in the way research is conducted, from hypothesis-driven studies to data-driven simulations of whole systems. Such approaches necessitate the use of large-scale computational resources and e-infrastructures, such as the European Grid Infrastructure (EGI). EGI, one of key the enablers of the digital European Research Area, is a federation of resource providers set up to deliver sustainable, integrated and secure computing services to European researchers and their international partners. Here we aim to provide the state of the art of Grid/Cloud computing in EU research as viewed from within the field of life sciences, focusing on key infrastructures and projects within the life sciences community. Rather than focusing purely on the technical aspects underlying the currently provided solutions, we outline the design aspects and key characteristics that can be identified across major research approaches. Overall, we aim to provide significant insights into the road ahead by establishing ever-strengthening connections between EGI as a whole and the life sciences community. PMID:26157454
Duarte, Afonso M S; Psomopoulos, Fotis E; Blanchet, Christophe; Bonvin, Alexandre M J J; Corpas, Manuel; Franc, Alain; Jimenez, Rafael C; de Lucas, Jesus M; Nyrönen, Tommi; Sipos, Gergely; Suhr, Stephanie B
2015-01-01
With the increasingly rapid growth of data in life sciences we are witnessing a major transition in the way research is conducted, from hypothesis-driven studies to data-driven simulations of whole systems. Such approaches necessitate the use of large-scale computational resources and e-infrastructures, such as the European Grid Infrastructure (EGI). EGI, one of key the enablers of the digital European Research Area, is a federation of resource providers set up to deliver sustainable, integrated and secure computing services to European researchers and their international partners. Here we aim to provide the state of the art of Grid/Cloud computing in EU research as viewed from within the field of life sciences, focusing on key infrastructures and projects within the life sciences community. Rather than focusing purely on the technical aspects underlying the currently provided solutions, we outline the design aspects and key characteristics that can be identified across major research approaches. Overall, we aim to provide significant insights into the road ahead by establishing ever-strengthening connections between EGI as a whole and the life sciences community.
How Robotics Programs Influence Young Women's Career Choices: A Grounded Theory Model
ERIC Educational Resources Information Center
Craig, Cecilia Dosh-Bluhm
2014-01-01
The fields of engineering, computer science, and physics have a paucity of women despite decades of intervention by universities and organizations. Women's graduation rates in these fields continue to stagnate, posing a critical problem for society. This qualitative grounded theory (GT) study sought to understand how robotics programs influenced…
Paradigms of Evaluation in Natural Language Processing: Field Linguistics for Glass Box Testing
ERIC Educational Resources Information Center
Cohen, Kevin Bretonnel
2010-01-01
Although software testing has been well-studied in computer science, it has received little attention in natural language processing. Nonetheless, a fully developed methodology for glass box evaluation and testing of language processing applications already exists in the field methods of descriptive linguistics. This work lays out a number of…
An Analysis of the Structure and Evolution of Networks
ERIC Educational Resources Information Center
Hua, Guangying
2011-01-01
As network research receives more and more attention from both academic researchers and practitioners, network analysis has become a fast growing field attracting many researchers from diverse fields such as physics, computer science, and sociology. This dissertation provides a review of theory and research on different real data sets from the…
Motivating Computer Engineering Freshmen through Mathematical and Logical Puzzles
ERIC Educational Resources Information Center
Parhami, B.
2009-01-01
As in many other fields of science and technology, college students in computer engineering do not come into full contact with the key ideas and challenges of their chosen discipline until the third year of their studies. This situation poses a problem in terms of keeping the students motivated as they labor through their foundational, basic…
Software engineering as an engineering discipline
NASA Technical Reports Server (NTRS)
Freedman, Glenn B.
1988-01-01
The purpose of this panel is to explore the emerging field of software engineering from a variety of perspectives: university programs; industry training and definition; government development; and technology transfer. In doing this, the panel will address the issues of distinctions among software engineering, computer science, and computer hardware engineering as they relate to the challenges of large, complex systems.
New and revised fire effects tools for fire management
Robert E. Keane; Greg Dillon; Stacy Drury; Robin Innes; Penny Morgan; Duncan Lutes; Susan J. Prichard; Jane Smith; Eva Strand
2014-01-01
Announcing the release of new software packages for application in wildland fire science and management, two fields that are already fully saturated with computer technology, may seem a bit too much to many managers. However, there have been some recent releases of new computer programs and revisions of existing software and information tools that deserve mention...
Natural Language Processing in Game Studies Research: An Overview
ERIC Educational Resources Information Center
Zagal, Jose P.; Tomuro, Noriko; Shepitsen, Andriy
2012-01-01
Natural language processing (NLP) is a field of computer science and linguistics devoted to creating computer systems that use human (natural) language as input and/or output. The authors propose that NLP can also be used for game studies research. In this article, the authors provide an overview of NLP and describe some research possibilities…
ERIC Educational Resources Information Center
Snyder, Robin M.
2017-01-01
The author has attended and presented at most ASCUE meetings since 1994, and has worked professionally in research and development, industry, military, government, business, and private and public academia--moving between computer science, software engineering, and business fields at both the undergraduate and graduate level, and even running…
Yearning to Give Back: Searching for Social Purpose in Computer Science and Engineering.
Carrigan, Coleen M
2017-01-01
Computing is highly segregated and stratified by gender. While there is abundant scholarship investigating this problem, emerging evidence suggests that a hierarchy of value exists between the social and technical dimensions of Computer Science and Engineering (CSE) and this plays a role in the underrepresentation of women in the field. This ethnographic study of women's experiences in computing offers evidence of a systemic preference for the technical dimensions of computing over the social and a correlation between gender and social aspirations. Additionally, it suggests there is a gap between the exaltation of computing's social contributions and the realities of them. My participants expressed a yearning to contribute to the collective well-being of society using their computing skills. I trace moments of rupture in my participants' stories, moments when they felt these aspirations were in conflict with the cultural values in their organizations. I interpret these ruptures within a consideration of yearning, a need my participants had to contribute meaningfully to society that remained unfulfilled. The yearning to align one's altruistic values with one's careers aspirations in CSE illuminates an area for greater exploration on the path to realizing gender equity in computing. I argue that before a case can be made that careers in computing do indeed contribute to social and civil engagements, we must first address the meaning of the social within the values, ideologies and practices of CSE institutions and next, develop ways to measure and evaluate the field's contributions to society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Runnels, Scott Robert; Bachrach, Harrison Ian; Carlson, Nils
The two primary purposes of LANL’s Computational Physics Student Summer Workshop are (1) To educate graduate and exceptional undergraduate students in the challenges and applications of computational physics of interest to LANL, and (2) Entice their interest toward those challenges. Computational physics is emerging as a discipline in its own right, combining expertise in mathematics, physics, and computer science. The mathematical aspects focus on numerical methods for solving equations on the computer as well as developing test problems with analytical solutions. The physics aspects are very broad, ranging from low-temperature material modeling to extremely high temperature plasma physics, radiation transportmore » and neutron transport. The computer science issues are concerned with matching numerical algorithms to emerging architectures and maintaining the quality of extremely large codes built to perform multi-physics calculations. Although graduate programs associated with computational physics are emerging, it is apparent that the pool of U.S. citizens in this multi-disciplinary field is relatively small and is typically not focused on the aspects that are of primary interest to LANL. Furthermore, more structured foundations for LANL interaction with universities in computational physics is needed; historically interactions rely heavily on individuals’ personalities and personal contacts. Thus a tertiary purpose of the Summer Workshop is to build an educational network of LANL researchers, university professors, and emerging students to advance the field and LANL’s involvement in it.« less
Yearning to Give Back: Searching for Social Purpose in Computer Science and Engineering
Carrigan, Coleen M.
2017-01-01
Computing is highly segregated and stratified by gender. While there is abundant scholarship investigating this problem, emerging evidence suggests that a hierarchy of value exists between the social and technical dimensions of Computer Science and Engineering (CSE) and this plays a role in the underrepresentation of women in the field. This ethnographic study of women's experiences in computing offers evidence of a systemic preference for the technical dimensions of computing over the social and a correlation between gender and social aspirations. Additionally, it suggests there is a gap between the exaltation of computing's social contributions and the realities of them. My participants expressed a yearning to contribute to the collective well-being of society using their computing skills. I trace moments of rupture in my participants' stories, moments when they felt these aspirations were in conflict with the cultural values in their organizations. I interpret these ruptures within a consideration of yearning, a need my participants had to contribute meaningfully to society that remained unfulfilled. The yearning to align one's altruistic values with one's careers aspirations in CSE illuminates an area for greater exploration on the path to realizing gender equity in computing. I argue that before a case can be made that careers in computing do indeed contribute to social and civil engagements, we must first address the meaning of the social within the values, ideologies and practices of CSE institutions and next, develop ways to measure and evaluate the field's contributions to society. PMID:28790936
Building a Data Science capability for USGS water research and communication
NASA Astrophysics Data System (ADS)
Appling, A.; Read, E. K.
2015-12-01
Interpreting and communicating water issues in an era of exponentially increasing information requires a blend of domain expertise, computational proficiency, and communication skills. The USGS Office of Water Information has established a Data Science team to meet these needs, providing challenging careers for diverse domain scientists and innovators in the fields of information technology and data visualization. Here, we detail the experience of building a Data Science capability as a bridging element between traditional water resources analyses and modern computing tools and data management techniques. This approach includes four major components: 1) building reusable research tools, 2) documenting data-intensive research approaches in peer reviewed journals, 3) communicating complex water resources issues with interactive web visualizations, and 4) offering training programs for our peers in scientific computing. These components collectively improve the efficiency, transparency, and reproducibility of USGS data analyses and scientific workflows.
NASA Astrophysics Data System (ADS)
Stolyarov, I. V.
2017-01-01
The author of this article manages a project and research activity of students in the areas of computer science, physics, engineering and biology, basing on the acquired experience in these fields. Pupils constantly become winners of competitions and conferences of different levels, for example, three of the finalists of Intel ISEF in 2013 in Phoenix (Arizona, USA) and in 2014 in Los Angeles (California, USA). In 2013 A. Makarychev received the "Small Nobel prize" in Computer Science section and special award sponsors - the company's CAST. Scientific themes and methods suggested by the author and developed in joint publications of students from Russia, Germany and Austria are the patents for invention and certificates for registration in the ROSPATENT. The article presents the results of the implementation of specific software and hardware systems in physics, engineering and medicine.
Surface currents on the plasma-vacuum interface in MHD equilibria
NASA Astrophysics Data System (ADS)
Hanson, James D.
2016-10-01
The VMEC non-axisymmetric MHD equilibrium code can compute free-boundary equilibria. Since VMEC assumes that magnetic fields within the plasma form closed and nested flux surfaces, the plasma-vacuum interface is a flux surface, and the total magnetic field there has no normal component. VMEC imposes this condition of zero normal field using the potential formulation of Merkel, and solves a Neumann problem for the magnetic potential in the exterior region. This boundary condition necessarily admits the possibility of a surface current on the plasma-vacuum interface. While this current may be small in MHD equilibrium, this current may be readily computed in terms of a magnetic potential in both the interior and exterior regions. Examples of the surface current for VMEC equilibria will be shown. This material is based upon work supported by Auburn University and the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under Award Number DE-FG02-03ER54692.
Current Developments in Machine Learning Techniques in Biological Data Mining.
Dumancas, Gerard G; Adrianto, Indra; Bello, Ghalib; Dozmorov, Mikhail
2017-01-01
This supplement is intended to focus on the use of machine learning techniques to generate meaningful information on biological data. This supplement under Bioinformatics and Biology Insights aims to provide scientists and researchers working in this rapid and evolving field with online, open-access articles authored by leading international experts in this field. Advances in the field of biology have generated massive opportunities to allow the implementation of modern computational and statistical techniques. Machine learning methods in particular, a subfield of computer science, have evolved as an indispensable tool applied to a wide spectrum of bioinformatics applications. Thus, it is broadly used to investigate the underlying mechanisms leading to a specific disease, as well as the biomarker discovery process. With a growth in this specific area of science comes the need to access up-to-date, high-quality scholarly articles that will leverage the knowledge of scientists and researchers in the various applications of machine learning techniques in mining biological data.
Computer vision and augmented reality in gastrointestinal endoscopy
Mahmud, Nadim; Cohen, Jonah; Tsourides, Kleovoulos; Berzin, Tyler M.
2015-01-01
Augmented reality (AR) is an environment-enhancing technology, widely applied in the computer sciences, which has only recently begun to permeate the medical field. Gastrointestinal endoscopy—which relies on the integration of high-definition video data with pathologic correlates—requires endoscopists to assimilate and process a tremendous amount of data in real time. We believe that AR is well positioned to provide computer-guided assistance with a wide variety of endoscopic applications, beginning with polyp detection. In this article, we review the principles of AR, describe its potential integration into an endoscopy set-up, and envisage a series of novel uses. With close collaboration between physicians and computer scientists, AR promises to contribute significant improvements to the field of endoscopy. PMID:26133175
Promayon, Emmanuel; Fouard, Céline; Bailet, Mathieu; Deram, Aurélien; Fiard, Gaëlle; Hungr, Nikolai; Luboz, Vincent; Payan, Yohan; Sarrazin, Johan; Saubat, Nicolas; Selmi, Sonia Yuki; Voros, Sandrine; Cinquin, Philippe; Troccaz, Jocelyne
2013-01-01
Computer Assisted Medical Intervention (CAMI hereafter) is a complex multi-disciplinary field. CAMI research requires the collaboration of experts in several fields as diverse as medicine, computer science, mathematics, instrumentation, signal processing, mechanics, modeling, automatics, optics, etc. CamiTK is a modular framework that helps researchers and clinicians to collaborate together in order to prototype CAMI applications by regrouping the knowledge and expertise from each discipline. It is an open-source, cross-platform generic and modular tool written in C++ which can handle medical images, surgical navigation, biomedicals simulations and robot control. This paper presents the Computer Assisted Medical Intervention ToolKit (CamiTK) and how it is used in various applications in our research team.
| 303-275-4066 Dr. Travis Kemper is a post doctorate researcher in the Computational Science Center. He the University of Florida where he developed reactive force fields. During his post doctorate work at
5 CFR 551.207 - Professional exemption criteria.
Code of Federal Regulations, 2010 CFR
2010-01-01
... work requiring knowledge of an advanced type in a field of science or learning customarily acquired by... professionals, and computer employees are described in §§ 551.208, 551.209, and 551.210, respectively. ...
5 CFR 551.207 - Professional exemption criteria.
Code of Federal Regulations, 2012 CFR
2012-01-01
... work requiring knowledge of an advanced type in a field of science or learning customarily acquired by... professionals, and computer employees are described in §§ 551.208, 551.209, and 551.210, respectively. ...
5 CFR 551.207 - Professional exemption criteria.
Code of Federal Regulations, 2011 CFR
2011-01-01
... work requiring knowledge of an advanced type in a field of science or learning customarily acquired by... professionals, and computer employees are described in §§ 551.208, 551.209, and 551.210, respectively. ...
5 CFR 551.207 - Professional exemption criteria.
Code of Federal Regulations, 2014 CFR
2014-01-01
... work requiring knowledge of an advanced type in a field of science or learning customarily acquired by... professionals, and computer employees are described in §§ 551.208, 551.209, and 551.210, respectively. ...
5 CFR 551.207 - Professional exemption criteria.
Code of Federal Regulations, 2013 CFR
2013-01-01
... work requiring knowledge of an advanced type in a field of science or learning customarily acquired by... professionals, and computer employees are described in §§ 551.208, 551.209, and 551.210, respectively. ...
76 FR 36095 - Notice of Submission for OMB Review
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-21
..., mathematics, and science literacy. It was first implemented by the National Center for Education Statistics..., mathematics will be the major subject domain. The field test will also include computer-based assessments in...
Statistical physics of hard combinatorial optimization: Vertex cover problem
NASA Astrophysics Data System (ADS)
Zhao, Jin-Hua; Zhou, Hai-Jun
2014-07-01
Typical-case computation complexity is a research topic at the boundary of computer science, applied mathematics, and statistical physics. In the last twenty years, the replica-symmetry-breaking mean field theory of spin glasses and the associated message-passing algorithms have greatly deepened our understanding of typical-case computation complexity. In this paper, we use the vertex cover problem, a basic nondeterministic-polynomial (NP)-complete combinatorial optimization problem of wide application, as an example to introduce the statistical physical methods and algorithms. We do not go into the technical details but emphasize mainly the intuitive physical meanings of the message-passing equations. A nonfamiliar reader shall be able to understand to a large extent the physics behind the mean field approaches and to adjust the mean field methods in solving other optimization problems.
Designing a Hands-On Brain Computer Interface Laboratory Course
Khalighinejad, Bahar; Long, Laura Kathleen; Mesgarani, Nima
2017-01-01
Devices and systems that interact with the brain have become a growing field of research and development in recent years. Engineering students are well positioned to contribute to both hardware development and signal analysis techniques in this field. However, this area has been left out of most engineering curricula. We developed an electroencephalography (EEG) based brain computer interface (BCI) laboratory course to educate students through hands-on experiments. The course is offered jointly by the Biomedical Engineering, Electrical Engineering, and Computer Science Departments of Columbia University in the City of New York and is open to senior undergraduate and graduate students. The course provides an effective introduction to the experimental design, neuroscience concepts, data analysis techniques, and technical skills required in the field of BCI. PMID:28268946
Paradoxical Personality and Academic Achievement in College Students From Buenos Aires
Freiberg Hoffmann, Agustín; Fernández Liporace, María Mercedes
2015-01-01
This paper presents a study on paradoxical personality, defined as a distinctive feature in creative persons, developed with 350 college students from Buenos Aires. Goals aimed at describing and analysing possible significant differences of paradoxical traits in students from diverse majors representing seven different fields of study, and examining the relationship between each bipolar trait and academic achievement. The sample was composed of 7 groups (n = 50 by group) representing fields of study typically offered in public universities, Biology, Computer Science, Engineering, Law, Nutrition, Psychology, and History of Art. Analyses by career provided descriptive information about students of these majors, concerning their paradoxical personality profiles. Correlational studies verified significant associations between academic achievement and most paradoxical traits in majors such as Computer Science, Nutrition and Psychology. Results are discussed regarding practical outcomes and teaching programs. PMID:27247680
On agent-based modeling and computational social science.
Conte, Rosaria; Paolucci, Mario
2014-01-01
In the first part of the paper, the field of agent-based modeling (ABM) is discussed focusing on the role of generative theories, aiming at explaining phenomena by growing them. After a brief analysis of the major strengths of the field some crucial weaknesses are analyzed. In particular, the generative power of ABM is found to have been underexploited, as the pressure for simple recipes has prevailed and shadowed the application of rich cognitive models. In the second part of the paper, the renewal of interest for Computational Social Science (CSS) is focused upon, and several of its variants, such as deductive, generative, and complex CSS, are identified and described. In the concluding remarks, an interdisciplinary variant, which takes after ABM, reconciling it with the quantitative one, is proposed as a fundamental requirement for a new program of the CSS.
Carson, Anne; Troy, Douglas
2007-01-01
Nursing and computer science students and faculty worked with the American Red Cross to investigate the potential for information technology to provide Red Cross disaster services nurses with improved access to accurate community resources in times of disaster. Funded by a national three-year grant, this interdisciplinary partnership led to field testing of an information system to support local community disaster preparedness at seven Red Cross chapters across the United States. The field test results demonstrate the benefits of the technology and the value of interdisciplinary research. The work also created a sustainable learning and research model for the future. This paper describes the collaborative model employed in this interdisciplinary research and exemplifies the benefits to faculty and students of well-timed interdisciplinary and community collaboration. PMID:18600129
On agent-based modeling and computational social science
Conte, Rosaria; Paolucci, Mario
2014-01-01
In the first part of the paper, the field of agent-based modeling (ABM) is discussed focusing on the role of generative theories, aiming at explaining phenomena by growing them. After a brief analysis of the major strengths of the field some crucial weaknesses are analyzed. In particular, the generative power of ABM is found to have been underexploited, as the pressure for simple recipes has prevailed and shadowed the application of rich cognitive models. In the second part of the paper, the renewal of interest for Computational Social Science (CSS) is focused upon, and several of its variants, such as deductive, generative, and complex CSS, are identified and described. In the concluding remarks, an interdisciplinary variant, which takes after ABM, reconciling it with the quantitative one, is proposed as a fundamental requirement for a new program of the CSS. PMID:25071642
The Quantum Engineering Conundrum
NASA Astrophysics Data System (ADS)
Monroe, Christopher
2017-04-01
There is newfound rush and excitement in Quantum Information Science, as this field seems to be moving toward an industrial/engineering phase. However, this evolution will require that quantum science, long the domain of academics and other researchers, make the leap to sustained engineering efforts in order to fabricate practical devices. I will address the conundrum, that full-blooded engineering does not generally happen on campuses, while many in the professional engineering and computer science community do not believe in quantum physics!
12th Annual Science and Engineering Technology Conference/DoD TECH Exposition
2011-06-23
compound when planning horizons grow: long design - test - build-field-adapt lead-times exacerbate uncertain futures problems, overload designs , and...ERS Environment ERS: Tools and Technologies to Facilitate Adaptability & Trustability 4. Tying design , physical and computational testing 6...science, engineering concepts, processes, and design tools to: • Continuously coordinate design , testing , and production with warfighter review to
ERIC Educational Resources Information Center
Charleston, LaVar J.
2012-01-01
According to Pearson (2002), minority groups are not well represented in science, technology, engineering, and mathematics (STEM) occupations. Among these underrepresented groups are African Americans. To ensure the economic vitality of the STEM workforce in the United States, it is imperative to broaden participation in STEM-related fields and…
NASA Astrophysics Data System (ADS)
Kaski, K.; Salomaa, M.
1990-01-01
These are Proceedings of the Third Nordic Symposium on Computer Simulation in Physics, Chemistry, Biology, and Mathematics, held August 25-26, 1989, at Lahti (Finland). The Symposium belongs to an annual series of Meetings, the first one of which was arranged in 1987 at Lund (Sweden) and the second one in 1988 at Kolle-Kolle near Copenhagen (Denmark). Although these Symposia have thus far been essentially Nordic events, their international character has increased significantly; the trend is vividly reflected through contributions in the present Topical Issue. The interdisciplinary nature of Computational Science is central to the activity; this fundamental aspect is also responsible, in an essential way, for its rapidly increasing impact. Crucially important to a wide spectrum of superficially disparate fields is the common need for extensive - and often quite demanding - computational modelling. For such theoretical models, no closed-form (analytical) solutions are available or they would be extremely difficult to find; hence one must rather resort to the Art of performing computational investigations. Among the unifying features in the computational research are the methods of simulation employed; methods which frequently are quite closely related with each other even for faculties of science that are quite unrelated. Computer simulation in Natural Sciences is presently apprehended as a discipline on its own right, occupying a broad region somewhere between the experimental and theoretical methods, but also partially overlapping with and complementing them. - Whichever its proper definition may be, the computational approach serves as a novel and an extremely versatile tool with which one can equally well perform "pure" experimental modelling and conduct "computational theory". Computational studies that have earlier been made possible only through supercomputers have opened unexpected, as well as exciting, novel frontiers equally in mathematics (e.g., fractals), physics (fluid-dynamical and quantum-mechanical calculations; extensive numerical simulations of various condensed-matter systems; the development of stellar constellations, even the early Universe), chemistry (quantum-chemical calculations on the structures of new chemical compounds; chemical reactions and reaction dynamics), and biology (various models, for example, in population dynamics). We succeeded in our effort to assemble several internationally recognized researchers of Computational Science to deliver invited talks on a couple of exceptionally beautiful late-summer days in the modern premises of the Adult Education Center at Lahti. Among the plenary speakers, Per Bak described his highly original work on self-organized criticality. David Ceperley discussed pioneering numerical simulations of superfluid helium in which, for the first time, Feynman's path-integral formulation of quantum mechanics has been implemented on a computer. Jim Gunton presented his comprehensive studies of the Cahn-Hilliard equation for the dynamics of ordering in a condensed-matter system far from equilibrium, while Alex Hansen explained those on nonlinear breakdown in disordered materials. Representing the important field of computational chemistry, Bo Jönsson dealt with attractive forces between polyelectrolytes. Kurt Kremer gave an interesting account on computer-simulation studies of complex polymer systems, while Ole Mouritsen reviewed studies of interfacial fluctuations in lipid membranes. Pekka Pyykkö introduced his pioneering work which has led to predictions of completely novel chemical species. Annette Zippelius gave an expert introduction to the highly active field of neural networks. It is evident from each of these intriguing plenary contributions that, indeed, the computational approach is a frontier field of science, possibly providing the most versatile research method available today. We also arranged a competition for the best Posters presented at the Symposium; the Prizes were some of the newest books on the beauty of fractals. The First Prize was won by Hanna Viertio, the Second Prize by Miguel Zendejas and the Third Prize was shared by Leo Kärkkäinen and Kari Rummukainen. As for the future of Computational Science, we identify two principal avenues: (a) big science - large centers with ultrafast supercomputers, and (b) small science - active groups utilizing personal minisupercomputers or supenvorkstations. At present, it appears that the latter already compete extremely favourably in their performance with the massive supercomputers - at least in their throughput and, especially, in tasks where a broad range of diverse software support is not absolutely necessary. In view of this important emergence of "personal supercomputing", we envisage that the role and the development of large computer centers will have to be reviewed critically and modified accordingly. Furthermore, a promise for some radically new approaches to Computational Science could be provided by massively parallel computers; among them, maybe solutions based on ideas of neural computing could be utilized, especially for restricted applications. Therefore, in order not to overlook any important advances within such a forefront field, one should rather choose the strategy of actively following each and every one of these routes. In perspective of the large variety of simultaneous developments, we want to emphasize the importance of Nordic collaboration in sharing expertise and experience in the rapidly progressing research - it ought to be cultivated and could be expanded. Therefore, we think that it is vitally important to continue with and to further promote the kind of Nordic Symposia that have been held at Lund, Kolle-Kolle, and Lahti. We want to thank most cordially the plenary and invited speakers, contributors, students, and in particular the Conference Secretary, Ms Ulla Ahlfors and Dr Milja Mäkelä, who was responsible for the local arrangements. The work that they did served to make this Symposium a scientific success and a useful and pleasant experience for all the well over 100 participants. We also thank the City of Lahti for kindly arranging a refreshing reception at the Town Hall. We wish to express our gratitude to Nordiska Kulturfonden, NORDITA, the Research Institute for Theoretical Physics at the University of Helsinki, the Finnish Ministry of Education and the Academy of Finland for their financial support. March 1990
How robotics programs influence young women's career choices : a grounded theory model
NASA Astrophysics Data System (ADS)
Craig, Cecilia Dosh-Bluhm
The fields of engineering, computer science, and physics have a paucity of women despite decades of intervention by universities and organizations. Women's graduation rates in these fields continue to stagnate, posing a critical problem for society. This qualitative grounded theory (GT) study sought to understand how robotics programs influenced young women's career decisions and the program's effect on engineering, physics, and computer science career interests. To test this, a study was mounted to explore how the FIRST (For Inspiration and Recognition of Science and Technology) Robotics Competition (FRC) program influenced young women's college major and career choices. Career theories suggested that experiential programs coupled with supportive relationships strongly influence career decisions, especially for science, technology, engineering, and mathematics careers. The study explored how and when young women made career decisions and how the experiential program and! its mentors and role models influenced career choice. Online focus groups and interviews (online and face-to-face) with 10 female FRC alumnae and GT processes (inductive analysis, open coding, categorizations using mind maps and content clouds) were used to generate a general systems theory style model of the career decision process for these young women. The study identified gender stereotypes and other career obstacles for women. The study's conclusions include recommendations to foster connections to real-world challenges, to develop training programs for mentors, and to nurture social cohesion, a mostly untapped area. Implementing these recommendations could help grow a critical mass of women in engineering, physics, and computer science careers, a social change worth pursuing.
Das, Abhiram; Schneider, Hannah; Burridge, James; Ascanio, Ana Karine Martinez; Wojciechowski, Tobias; Topp, Christopher N; Lynch, Jonathan P; Weitz, Joshua S; Bucksch, Alexander
2015-01-01
Plant root systems are key drivers of plant function and yield. They are also under-explored targets to meet global food and energy demands. Many new technologies have been developed to characterize crop root system architecture (CRSA). These technologies have the potential to accelerate the progress in understanding the genetic control and environmental response of CRSA. Putting this potential into practice requires new methods and algorithms to analyze CRSA in digital images. Most prior approaches have solely focused on the estimation of root traits from images, yet no integrated platform exists that allows easy and intuitive access to trait extraction and analysis methods from images combined with storage solutions linked to metadata. Automated high-throughput phenotyping methods are increasingly used in laboratory-based efforts to link plant genotype with phenotype, whereas similar field-based studies remain predominantly manual low-throughput. Here, we present an open-source phenomics platform "DIRT", as a means to integrate scalable supercomputing architectures into field experiments and analysis pipelines. DIRT is an online platform that enables researchers to store images of plant roots, measure dicot and monocot root traits under field conditions, and share data and results within collaborative teams and the broader community. The DIRT platform seamlessly connects end-users with large-scale compute "commons" enabling the estimation and analysis of root phenotypes from field experiments of unprecedented size. DIRT is an automated high-throughput computing and collaboration platform for field based crop root phenomics. The platform is accessible at http://www.dirt.iplantcollaborative.org/ and hosted on the iPlant cyber-infrastructure using high-throughput grid computing resources of the Texas Advanced Computing Center (TACC). DIRT is a high volume central depository and high-throughput RSA trait computation platform for plant scientists working on crop roots. It enables scientists to store, manage and share crop root images with metadata and compute RSA traits from thousands of images in parallel. It makes high-throughput RSA trait computation available to the community with just a few button clicks. As such it enables plant scientists to spend more time on science rather than on technology. All stored and computed data is easily accessible to the public and broader scientific community. We hope that easy data accessibility will attract new tool developers and spur creative data usage that may even be applied to other fields of science.
NASA Astrophysics Data System (ADS)
Grubert, Emily; Siders, Anne
2016-09-01
Digitally-aided reviews of large bodies of text-based information, such as academic literature, are growing in capability but are not yet common in environmental fields. Environmental sciences and studies can benefit from application of digital tools to create comprehensive, replicable, interdisciplinary reviews that provide rapid, up-to-date, and policy-relevant reports of existing work. This work reviews the potential for applications of computational text mining and analysis tools originating in the humanities to environmental science and policy questions. Two process-oriented case studies of digitally-aided environmental literature reviews and meta-analyses illustrate potential benefits and limitations. A medium-sized, medium-resolution review (∼8000 journal abstracts and titles) focuses on topic modeling as a rapid way to identify thematic changes over time. A small, high-resolution review (∼300 full text journal articles) combines collocation and network analysis with manual coding to synthesize and question empirical field work. We note that even small digitally-aided analyses are close to the upper limit of what can be done manually. Established computational methods developed in humanities disciplines and refined by humanities and social science scholars to interrogate large bodies of textual data are applicable and useful in environmental sciences but have not yet been widely applied. Two case studies provide evidence that digital tools can enhance insight. Two major conclusions emerge. First, digital tools enable scholars to engage large literatures rapidly and, in some cases, more comprehensively than is possible manually. Digital tools can confirm manually identified patterns or identify additional patterns visible only at a large scale. Second, digital tools allow for more replicable and transparent conclusions to be drawn from literature reviews and meta-analyses. The methodological subfields of digital humanities and computational social sciences will likely continue to create innovative tools for analyzing large bodies of text, providing opportunities for interdisciplinary collaboration with the environmental fields.
The Number of Scholarly Documents on the Public Web
Khabsa, Madian; Giles, C. Lee
2014-01-01
The number of scholarly documents available on the web is estimated using capture/recapture methods by studying the coverage of two major academic search engines: Google Scholar and Microsoft Academic Search. Our estimates show that at least 114 million English-language scholarly documents are accessible on the web, of which Google Scholar has nearly 100 million. Of these, we estimate that at least 27 million (24%) are freely available since they do not require a subscription or payment of any kind. In addition, at a finer scale, we also estimate the number of scholarly documents on the web for fifteen fields: Agricultural Science, Arts and Humanities, Biology, Chemistry, Computer Science, Economics and Business, Engineering, Environmental Sciences, Geosciences, Material Science, Mathematics, Medicine, Physics, Social Sciences, and Multidisciplinary, as defined by Microsoft Academic Search. In addition, we show that among these fields the percentage of documents defined as freely available varies significantly, i.e., from 12 to 50%. PMID:24817403
The number of scholarly documents on the public web.
Khabsa, Madian; Giles, C Lee
2014-01-01
The number of scholarly documents available on the web is estimated using capture/recapture methods by studying the coverage of two major academic search engines: Google Scholar and Microsoft Academic Search. Our estimates show that at least 114 million English-language scholarly documents are accessible on the web, of which Google Scholar has nearly 100 million. Of these, we estimate that at least 27 million (24%) are freely available since they do not require a subscription or payment of any kind. In addition, at a finer scale, we also estimate the number of scholarly documents on the web for fifteen fields: Agricultural Science, Arts and Humanities, Biology, Chemistry, Computer Science, Economics and Business, Engineering, Environmental Sciences, Geosciences, Material Science, Mathematics, Medicine, Physics, Social Sciences, and Multidisciplinary, as defined by Microsoft Academic Search. In addition, we show that among these fields the percentage of documents defined as freely available varies significantly, i.e., from 12 to 50%.
Atmospheric Science Data Center
2013-04-19
... right is the cloud-top height field derived using automated computer processing of the data from multiple MISR cameras. Relative height ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-16
... assessment of 15-year-olds which focuses on assessing students science, mathematics, and reading literacy... domain. The field test will also include computer- based assessments in reading, mathematics, and...
ERIC Educational Resources Information Center
Eirin-Lopez, Jose M.
2013-01-01
The study of chromatin constitutes one of the most active research fields in life sciences, being subject to constant revisions that continuously redefine the state of the art in its knowledge. As every other rapidly changing field, chromatin biology requires clear and straightforward educational strategies able to efficiently translate such a…
Empirical Estimation of Computer Animation as a Self-Study Material for Science Learning
ERIC Educational Resources Information Center
Tannu, Kirti
2009-01-01
The advent of technology is almost in the field of education for teaching -- learning and cannot be ignored. Students are exposed to superior quality product of advance technologies in other fields around them. In such a scenario whether chalk and black board education is relevant in today's multicoloured and multidimensional digital age? The…
User manual for semi-circular compact range reflector code: Version 2
NASA Technical Reports Server (NTRS)
Gupta, Inder J.; Burnside, Walter D.
1987-01-01
A computer code has been developed at the Ohio State University ElectroScience Laboratory to analyze a semi-circular paraboloidal reflector with or without a rolled edge at the top and a skirt at the bottom. The code can be used to compute the total near field of the reflector or its individual components at a given distance from the center of the paraboloid. The code computes the fields along a radial, horizontal, vertical or axial cut at that distance. Thus, it is very effective in computing the size of the sweet spot for a semi-circular compact range reflector. This report describes the operation of the code. Various input and output statements are explained. Some results obtained using the computer code are presented to illustrate the code's capability as well as being samples of input/output sets.
Computed tomography: Will the slices reveal the truth
Haridas, Harish; Mohan, Abarajithan; Papisetti, Sravanthi; Ealla, Kranti K. R.
2016-01-01
With the advances in the field of imaging sciences, new methods have been developed in dental radiology. These include digital radiography, density analyzing methods, cone beam computed tomography (CBCT), magnetic resonance imaging, ultrasound, and nuclear imaging techniques, which provide high-resolution detailed images of oral structures. The current review aims to critically elaborate the use of CBCT in endodontics. PMID:27652253
The Use of Fuzzy Theory in Grading of Students in Math
ERIC Educational Resources Information Center
Bjelica, Momcilo; Rankovic, Dragica
2010-01-01
The development of computer science, statistics and other technological fields, give us more opportunities to improve the process of evaluation of degree of knowledge and achievements in a learning process of our students. More and more we are relying on the computer software to guide us in the grading process. An improved way of grading can help…
ERIC Educational Resources Information Center
Eastman, Susan Tyler
In a study designed to see how students accommodated a new technology, 27 eighth graders used a microcomputer in a middle school science class to access a commercial videotex service containing an electronic encyclopedia as part of an assignment to write a theme. Field observations of computer use and student interviews were used to collect data.…
1993-03-01
Marshall's wirner of a Research Technology Award, worked with the Fourier telescope. This project has developed new technology with the aid of today's advanced computers by allowing an object to be x-rayed using an absorption pattern, then sending this data to the computer where it calculates the data into pixels which inturn develops an image. This new technology is being used in fields like astronomy, astrophysics and medicine.
From Self-Flying Helicopters to Classrooms of the Future
ERIC Educational Resources Information Center
Young, Jeffrey R.
2012-01-01
On a summer day four years ago, a Stanford University computer-science professor named Andrew Ng held an unusual air show on a field near the campus. His fleet of small helicopter drones flew under computer control, piloted by artificial-intelligence software that could teach itself to fly after watching a human operator. By the end of the day,…
Using text analysis to quantify the similarity and evolution of scientific disciplines
Dias, Laércio; Scharloth, Joachim
2018-01-01
We use an information-theoretic measure of linguistic similarity to investigate the organization and evolution of scientific fields. An analysis of almost 20 M papers from the past three decades reveals that the linguistic similarity is related but different from experts and citation-based classifications, leading to an improved view on the organization of science. A temporal analysis of the similarity of fields shows that some fields (e.g. computer science) are becoming increasingly central, but that on average the similarity between pairs of disciplines has not changed in the last decades. This suggests that tendencies of convergence (e.g. multi-disciplinarity) and divergence (e.g. specialization) of disciplines are in balance. PMID:29410857
Using text analysis to quantify the similarity and evolution of scientific disciplines.
Dias, Laércio; Gerlach, Martin; Scharloth, Joachim; Altmann, Eduardo G
2018-01-01
We use an information-theoretic measure of linguistic similarity to investigate the organization and evolution of scientific fields. An analysis of almost 20 M papers from the past three decades reveals that the linguistic similarity is related but different from experts and citation-based classifications, leading to an improved view on the organization of science. A temporal analysis of the similarity of fields shows that some fields (e.g. computer science) are becoming increasingly central, but that on average the similarity between pairs of disciplines has not changed in the last decades. This suggests that tendencies of convergence (e.g. multi-disciplinarity) and divergence (e.g. specialization) of disciplines are in balance.
NASA Astrophysics Data System (ADS)
Jalili, Mahdi
2018-03-01
I enjoyed reading Gosak et al. review on analysing biological systems from network science perspective [1]. Network science, first started within Physics community, is now a mature multidisciplinary field of science with many applications ranging from Ecology to biology, medicine, social sciences, engineering and computer science. Gosak et al. discussed how biological systems can be modelled and described by complex network theory which is an important application of network science. Although there has been considerable progress in network biology over the past two decades, this is just the beginning and network science has a great deal to offer to biology and medical sciences.
Cheyney University Curriculum and Infrastructure Enhamcement in STEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eva, Sakkar Ara
Cheyney University is the oldest historically Black educational institution in America. Initially established as a “normal” school emphasizing the matriculation of educators, Cheyney has become a comprehensive university, one of 14 state universities comprising the Pennsylvania State System of Higher Education (PASSHE). Cheyney University graduates still become teachers, but they also enter such fields as journalism, medicine, science, mathematics, law, communication and government. Cheyney University is a small state owned HBCU with very limited resource. At present the university has about a thousand students with 15% in STEM. The CUCIES II grant made significant contribution in saving the computer sciencemore » program from being a discontinued program in the university. The grant enabled the university to hire a temporary faculty to teach in and update the computer science program. The program is enhanced with three tracks; cyber security, human computer interaction and general. The updated and enhanced computer science program will prepare professionals in the area of computer science with the knowledge, skills, and professional ethic needed for the current market. The new curriculum was developed for a professional profile that would focus on the technologies and techniques currently used in the industry. With faculty on board, the university worked with the department to bring back the computer science program from moratorium. Once in the path of being discontinued and loosing students, the program is now growing. Currently the student number has increased from 12 to 30. University is currently in the process of hiring a tenure track faculty in the computer science program. Another product of the grant is the proposal for introductory course in nanotechnology. The course is intended to generate interest in the nanotechnology field. The Natural and Applied Science department that houses all of the STEM programs in Cheyney University, is currently working to bring back environmental science program from moratorium. The university has been working to improve minority participation in STEM and made significant stride in terms of progressing students toward graduate programs and into professoriate track. This success is due to faculty mentors who work closely with students to guiding them through the application processes for research internship and graduate programs; it is also due to the university forming collaborative agreements with research intensive institutions, federal and state agencies and industry. The grant assisted in recruiting and retaining students in STEM by offering tuition scholarship, research scholarship and travel awards. Faculty professional development was supported by the grant by funding travel to conferences, meetings and webinar. As many HBCU Cheyney University is also trying to do more with less. As the STEM programs are inherently expensive, these are the ones that suffer more when resources are scarce. One of the goals of Cheyney University strategic plan is to strengthen STEM programs that is coherent with the critical skill need of Department of Energy. All of the Cheyney University STEM programs are now located in the new science building funded by Pennsylvania state.« less
Challenges in Computational Social Modeling and Simulation for National Security Decision Making
2011-06-01
This study is grounded within a system-activity theory , a logico-philosophical model of interdisciplinary research [13, 14], the concepts of social...often a difficult challenge. Ironically, social science research methods , such as ethnography , may be tremendously helpful in designing these...social sciences. Moreover, CSS projects draw on knowledge and methods from other fields of study , including graph theory , information visualization
NASA Astrophysics Data System (ADS)
Nelson, Mathew
In today's age of exponential change and technological advancement, awareness of any gender gap in technology and computer science-related fields is crucial, but further research must be done in an effort to better understand the complex interacting factors contributing to the gender gap. This study utilized a survey to investigate specific gender differences relating to computing self-efficacy, computer usage, and environmental factors of exposure, personal interests, and parental influence that impact gender differences of high school students within a one-to-one computing environment in South Dakota. The population who completed the One-to-One High School Computing Survey for this study consisted of South Dakota high school seniors who had been involved in a one-to-one computing environment for two or more years. The data from the survey were analyzed using descriptive and inferential statistics for the determined variables. From the review of literature and data analysis several conclusions were drawn from the findings. Among them are that overall, there was very little difference in perceived computing self-efficacy and computing anxiety between male and female students within the one-to-one computing initiative. The study supported the current research that males and females utilized computers similarly, but males spent more time using their computers to play online games. Early exposure to computers, or the age at which the student was first exposed to a computer, and the number of computers present in the home (computer ownership) impacted computing self-efficacy. The results also indicated parental encouragement to work with computers also contributed positively to both male and female students' computing self-efficacy. Finally the study also found that both mothers and fathers encouraged their male children more than their female children to work with computing and pursue careers in computing science fields.
Living on an Active Earth: Perspectives on Earthquake Science
NASA Astrophysics Data System (ADS)
Lay, Thorne
2004-02-01
The annualized long-term loss due to earthquakes in the United States is now estimated at $4.4 billion per year. A repeat of the 1923 Kanto earthquake, near Tokyo, could cause direct losses of $2-3 trillion. With such grim numbers, which are guaranteed to make you take its work seriously, the NRC Committee on the Science of Earthquakes begins its overview of the emerging multidisciplinary field of earthquake science. An up-to-date and forward-looking survey of scientific investigation of earthquake phenomena and engineering response to associated hazards is presented at a suitable level for a general educated audience. Perspectives from the fields of seismology, geodesy, neo-tectonics, paleo-seismology, rock mechanics, earthquake engineering, and computer modeling of complex dynamic systems are integrated into a balanced definition of earthquake science that has never before been adequately articulated.
Probabilistic models of cognition: conceptual foundations.
Chater, Nick; Tenenbaum, Joshua B; Yuille, Alan
2006-07-01
Remarkable progress in the mathematics and computer science of probability has led to a revolution in the scope of probabilistic models. In particular, 'sophisticated' probabilistic methods apply to structured relational systems such as graphs and grammars, of immediate relevance to the cognitive sciences. This Special Issue outlines progress in this rapidly developing field, which provides a potentially unifying perspective across a wide range of domains and levels of explanation. Here, we introduce the historical and conceptual foundations of the approach, explore how the approach relates to studies of explicit probabilistic reasoning, and give a brief overview of the field as it stands today.
The progress on time & frequency during the past 5 decades
NASA Astrophysics Data System (ADS)
Wang, Zheng-Ming
2002-06-01
The number and variety of applications using precise timing are astounding and increasing along with the new technology in communication, computer science, space science as well as in other fields. The world has evolved into the information age, and precise timing is at the heart of managing the flow of that information, which prompts the progress on precise timing itself rapidly. The development of time scales, UT1 determination, frequency standards, time transfer and the time dissemination for the past half century in the world and in China are described in this paper. The expectation in this field is discussed.
Ultracold-atom quantum simulator for attosecond science
NASA Astrophysics Data System (ADS)
Sala, Simon; Förster, Johann; Saenz, Alejandro
2017-01-01
A quantum simulator based on ultracold optically trapped atoms for simulating the physics of atoms and molecules in ultrashort intense laser fields is introduced. The slowing down by about 13 orders of magnitude allows one to watch in slow motion the tunneling and recollision processes that form the heart of attosecond science. The extreme flexibility of the simulator promises a deeper understanding of strong-field physics, especially for many-body systems beyond the reach of classical computers. The quantum simulator can experimentally straightforwardly be realized and is shown to recover the ionization characteristics of atoms in the different regimes of laser-matter interaction.
NASA Astrophysics Data System (ADS)
Thapa, Ranjit; Kawazoe, Yoshiyuki
2017-10-01
The main objective of this meeting was to provide a platform for theoreticians and experimentalists working in the area of materials to come together and carry out cutting edge research in the field of energy by showcasing their ideas and innovations. The theme meeting was successful in attracting young researchers from both fields, sharing common research interests. Participation of more than 250 researchers in ACCMS-TM 2016 has successfully paved the way towards exchange of mutual research insights and establishment of promising research collaborations. To encourage the young participants' research efforts, three best posters, each named as ;KAWAZOE PRIZE; in theoretical category and two best posters named ;ACCMS-TM 2016 POSTER AWARD; for experimental contributions was selected. A new award named ;ACCMS MID-CAREER AWARD; for outstanding scientific contribution in the area of Computational Materials Science was constituted.
Computational Social Science: Exciting Progress and Future Challenges
NASA Astrophysics Data System (ADS)
Watts, Duncan
The past 15 years have witnessed a remarkable increase in both the scale and scope of social and behavioral data available to researchers, leading some to herald the emergence of a new field: ``computational social science.'' Against these exciting developments stands a stubborn fact: that in spite of many thousands of published papers, there has been surprisingly little progress on the ``big'' questions that motivated the field in the first place--questions concerning systemic risk in financial systems, problem solving in complex organizations, and the dynamics of epidemics or social movements, among others. In this talk I highlight some examples of research that would not have been possible just a handful of years ago and that illustrate the promise of CSS. At the same time, they illustrate its limitations. I then conclude with some thoughts on how CSS can bridge the gap between its current state and its potential.
An information technology emphasis in biomedical informatics education.
Kane, Michael D; Brewer, Jeffrey L
2007-02-01
Unprecedented growth in the interdisciplinary domain of biomedical informatics reflects the recent advancements in genomic sequence availability, high-content biotechnology screening systems, as well as the expectations of computational biology to command a leading role in drug discovery and disease characterization. These forces have moved much of life sciences research almost completely into the computational domain. Importantly, educational training in biomedical informatics has been limited to students enrolled in the life sciences curricula, yet much of the skills needed to succeed in biomedical informatics involve or augment training in information technology curricula. This manuscript describes the methods and rationale for training students enrolled in information technology curricula in the field of biomedical informatics, which augments the existing information technology curriculum and provides training on specific subjects in Biomedical Informatics not emphasized in bioinformatics courses offered in life science programs, and does not require prerequisite courses in the life sciences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Runnels, Scott Robert; Caldwell, Wendy; Brown, Barton Jed
The two primary purposes of LANL’s Computational Physics Student Summer Workshop are (1) To educate graduate and exceptional undergraduate students in the challenges and applications of computational physics of interest to LANL, and (2) Entice their interest toward those challenges. Computational physics is emerging as a discipline in its own right, combining expertise in mathematics, physics, and computer science. The mathematical aspects focus on numerical methods for solving equations on the computer as well as developing test problems with analytical solutions. The physics aspects are very broad, ranging from low-temperature material modeling to extremely high temperature plasma physics, radiation transportmore » and neutron transport. The computer science issues are concerned with matching numerical algorithms to emerging architectures and maintaining the quality of extremely large codes built to perform multi-physics calculations. Although graduate programs associated with computational physics are emerging, it is apparent that the pool of U.S. citizens in this multi-disciplinary field is relatively small and is typically not focused on the aspects that are of primary interest to LANL. Furthermore, more structured foundations for LANL interaction with universities in computational physics is needed; historically interactions rely heavily on individuals’ personalities and personal contacts. Thus a tertiary purpose of the Summer Workshop is to build an educational network of LANL researchers, university professors, and emerging students to advance the field and LANL’s involvement in it. This report includes both the background for the program and the reports from the students.« less
An introduction to metabolomics and its potential application in veterinary science.
Jones, Oliver A H; Cheung, Victoria L
2007-10-01
Metabolomics has been found to be applicable to a wide range of fields, including the study of gene function, toxicology, plant sciences, environmental analysis, clinical diagnostics, nutrition, and the discrimination of organism genotypes. This approach combines high-throughput sample analysis with computer-assisted multivariate pattern-recognition techniques. It is increasingly being deployed in toxico- and pharmacokinetic studies in the pharmaceutical industry, especially during the safety assessment of candidate drugs in human medicine. However, despite the potential of this technique to reduce both costs and the numbers of animals used for research, examples of the application of metabolomics in veterinary research are, thus far, rare. Here we give an introduction to metabolomics and discuss its potential in the field of veterinary science.
Women planning to major in computer science: Who are they and what makes them unique?
NASA Astrophysics Data System (ADS)
Lehman, Kathleen J.; Sax, Linda J.; Zimmerman, Hilary B.
2016-12-01
Despite the current growing popularity of the computer science (CS) major, women remain sorely underrepresented in the field, continuing to earn only 18% of bachelor's degrees. Understanding women's low rates of participation in CS is important given that the demand for individuals with CS training has grown sharply in recent years. Attracting and retaining more women to high-paying fields like CS may also help narrow the gender pay gap. Further, it is important that women participate in developing new technology so that technology advances serve the needs of both women and men. This paper explores the background characteristics, career aspirations, and self-perceptions of 1636 female first-year college students in the United States who intend to major in CS and compares them with 4402 male CS aspirants as well as with 26,642 women planning to major in other STEM sub-fields. The findings reveal a unique profile of women who pursue the CS major and notes many significant differences between men and women in CS and between women in CS and those in other STEM fields. For instance, women in CS tend to earn lower high school grades than women in other STEM fields, but earn higher SAT verbal scores. They also rate themselves higher than men in CS and women in other STEM fields on measures of their artistic ability, but rate themselves lower on other self-ratings, including academic and leadership ability. Further, women in CS are more likely to be undecided in their career plans than men in CS and women in other STEM fields. Understanding the unique characteristics of women in CS will help inform policies and recruitment programs designed to address the gender gap in computing.
[Activities of Research Institute for Advanced Computer Science
NASA Technical Reports Server (NTRS)
Gross, Anthony R. (Technical Monitor); Leiner, Barry M.
2001-01-01
The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administrations missions. RIACS is located at the NASA Ames Research Center, Moffett Field, California. RIACS research focuses on the three cornerstones of IT research necessary to meet the future challenges of NASA missions: 1. Automated Reasoning for Autonomous Systems Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth. 2. Human-Centered Computing Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities. 3. High Performance Computing and Networking Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to analysis of large scientific datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply IT research to a variety of NASA application domains. RIACS also engages in other activities, such as workshops, seminars, visiting scientist programs and student summer programs, designed to encourage and facilitate collaboration between the university and NASA IT research communities.
Developing Data System Engineers
NASA Astrophysics Data System (ADS)
Behnke, J.; Byrnes, J. B.; Kobler, B.
2011-12-01
In the early days of general computer systems for science data processing, staff members working on NASA's data systems would most often be hired as mathematicians. Computer engineering was very often filled by those with electrical engineering degrees. Today, the Goddard Space Flight Center has special position descriptions for data scientists or as they are more commonly called: data systems engineers. These staff members are required to have very diverse skills, hence the need for a generalized position description. There is always a need for data systems engineers to develop, maintain and operate the complex data systems for Earth and space science missions. Today's data systems engineers however are not just mathematicians, they are computer programmers, GIS experts, software engineers, visualization experts, etc... They represent many different degree fields. To put together distributed systems like the NASA Earth Observing Data and Information System (EOSDIS), staff are required from many different fields. Sometimes, the skilled professional is not available and must be developed in-house. This paper will address the various skills and jobs for data systems engineers at NASA. Further it explores how to develop staff to become data scientists.
Structures and Statistics of Citation Networks
2011-05-01
the citations among them. The papers are in the field of high- energy physics, and they were added to the online library between 1992-2003. Each paper... energy , physics:astrophysics, mathematics, computer science, statistics and many others. The value of the setSpec field can be any of these. However...the value of the categories field might contain multiple set names listed. For instance, a paper can primarily be considered as a high- energy physics
ERIC Educational Resources Information Center
Shih, M.; Feng, J.; Tsai, C. C.
2008-01-01
This paper provided a content analysis of studies in the field of cognition in e-learning that were published in five Social Sciences Citation Index (SSCI) journals (i.e. Computers and Education, British Journal of Educational Technology, Innovations in Education and Teaching International, Educational Technology Research & Development, and…
Computational cost of two alternative formulations of Cahn-Hilliard equations
NASA Astrophysics Data System (ADS)
Paszyński, Maciej; Gurgul, Grzegorz; Łoś, Marcin; Szeliga, Danuta
2018-05-01
In this paper we propose two formulations of Cahn-Hilliard equations, which have several applications in cancer growth modeling and material science phase-field simulations. The first formulation uses one C4 partial differential equations (PDEs) the second one uses two C2 PDEs. Finally, we compare the computational costs of direct solvers for both formulations, using the refined isogeometric analysis (rIGA) approach.
Moving Forward with Computational Red Teaming
2012-07-01
scoping study of one targeted task within the division. This study would apply the taxonomy developed in this report, in 1 Functional elements are...into the study and development of Computational Red Teaming, following earlier work presented by Gowlett (2011). Gowlett called for the development of...implements the recommendation of Gowlett (2011). It will provide a scoping study of CRT to advance the science in this field. UNCLASSIFIED 1
Space and Earth Sciences, Computer Systems, and Scientific Data Analysis Support, Volume 1
NASA Technical Reports Server (NTRS)
Estes, Ronald H. (Editor)
1993-01-01
This Final Progress Report covers the specific technical activities of Hughes STX Corporation for the last contract triannual period of 1 June through 30 Sep. 1993, in support of assigned task activities at Goddard Space Flight Center (GSFC). It also provides a brief summary of work throughout the contract period of performance on each active task. Technical activity is presented in Volume 1, while financial and level-of-effort data is presented in Volume 2. Technical support was provided to all Division and Laboratories of Goddard's Space Sciences and Earth Sciences Directorates. Types of support include: scientific programming, systems programming, computer management, mission planning, scientific investigation, data analysis, data processing, data base creation and maintenance, instrumentation development, and management services. Mission and instruments supported include: ROSAT, Astro-D, BBXRT, XTE, AXAF, GRO, COBE, WIND, UIT, SMM, STIS, HEIDI, DE, URAP, CRRES, Voyagers, ISEE, San Marco, LAGEOS, TOPEX/Poseidon, Pioneer-Venus, Galileo, Cassini, Nimbus-7/TOMS, Meteor-3/TOMS, FIFE, BOREAS, TRMM, AVHRR, and Landsat. Accomplishments include: development of computing programs for mission science and data analysis, supercomputer applications support, computer network support, computational upgrades for data archival and analysis centers, end-to-end management for mission data flow, scientific modeling and results in the fields of space and Earth physics, planning and design of GSFC VO DAAC and VO IMS, fabrication, assembly, and testing of mission instrumentation, and design of mission operations center.
NASA aerospace database subject scope: An overview
NASA Technical Reports Server (NTRS)
1993-01-01
Outlined here is the subject scope of the NASA Aerospace Database, a publicly available subset of the NASA Scientific and Technical (STI) Database. Topics of interest to NASA are outlined and placed within the framework of the following broad aerospace subject categories: aeronautics, astronautics, chemistry and materials, engineering, geosciences, life sciences, mathematical and computer sciences, physics, social sciences, space sciences, and general. A brief discussion of the subject scope is given for each broad area, followed by a similar explanation of each of the narrower subject fields that follow. The subject category code is listed for each entry.
Roles and applications of biomedical ontologies in experimental animal science.
Masuya, Hiroshi
2012-01-01
A huge amount of experimental data from past studies has played a vital role in the development of new knowledge and technologies in biomedical science. The importance of computational technologies for the reuse of data, data integration, and knowledge discoveries has also increased, providing means of processing large amounts of data. In recent years, information technologies related to "ontologies" have played more significant roles in the standardization, integration, and knowledge representation of biomedical information. This review paper outlines the history of data integration in biomedical science and its recent trends in relation to the field of experimental animal science.
NASA Astrophysics Data System (ADS)
Skrzypek, Josef; Mesrobian, Edmond; Gungner, David J.
1989-03-01
The development of autonomous land vehicles (ALV) capable of operating in an unconstrained environment has proven to be a formidable research effort. The unpredictability of events in such an environment calls for the design of a robust perceptual system, an impossible task requiring the programming of a system bases on the expectation of future, unconstrained events. Hence, the need for a "general purpose" machine vision system that is capable of perceiving and understanding images in an unconstrained environment in real-time. The research undertaken at the UCLA Machine Perception Laboratory addresses this need by focusing on two specific issues: 1) the long term goals for machine vision research as a joint effort between the neurosciences and computer science; and 2) a framework for evaluating progress in machine vision. In the past, vision research has been carried out independently within different fields including neurosciences, psychology, computer science, and electrical engineering. Our interdisciplinary approach to vision research is based on the rigorous combination of computational neuroscience, as derived from neurophysiology and neuropsychology, with computer science and electrical engineering. The primary motivation behind our approach is that the human visual system is the only existing example of a "general purpose" vision system and using a neurally based computing substrate, it can complete all necessary visual tasks in real-time.
Alford, Rebecca F.; Dolan, Erin L.
2017-01-01
Computational biology is an interdisciplinary field, and many computational biology research projects involve distributed teams of scientists. To accomplish their work, these teams must overcome both disciplinary and geographic barriers. Introducing new training paradigms is one way to facilitate research progress in computational biology. Here, we describe a new undergraduate program in biomolecular structure prediction and design in which students conduct research at labs located at geographically-distributed institutions while remaining connected through an online community. This 10-week summer program begins with one week of training on computational biology methods development, transitions to eight weeks of research, and culminates in one week at the Rosetta annual conference. To date, two cohorts of students have participated, tackling research topics including vaccine design, enzyme design, protein-based materials, glycoprotein modeling, crowd-sourced science, RNA processing, hydrogen bond networks, and amyloid formation. Students in the program report outcomes comparable to students who participate in similar in-person programs. These outcomes include the development of a sense of community and increases in their scientific self-efficacy, scientific identity, and science values, all predictors of continuing in a science research career. Furthermore, the program attracted students from diverse backgrounds, which demonstrates the potential of this approach to broaden the participation of young scientists from backgrounds traditionally underrepresented in computational biology. PMID:29216185
Alford, Rebecca F; Leaver-Fay, Andrew; Gonzales, Lynda; Dolan, Erin L; Gray, Jeffrey J
2017-12-01
Computational biology is an interdisciplinary field, and many computational biology research projects involve distributed teams of scientists. To accomplish their work, these teams must overcome both disciplinary and geographic barriers. Introducing new training paradigms is one way to facilitate research progress in computational biology. Here, we describe a new undergraduate program in biomolecular structure prediction and design in which students conduct research at labs located at geographically-distributed institutions while remaining connected through an online community. This 10-week summer program begins with one week of training on computational biology methods development, transitions to eight weeks of research, and culminates in one week at the Rosetta annual conference. To date, two cohorts of students have participated, tackling research topics including vaccine design, enzyme design, protein-based materials, glycoprotein modeling, crowd-sourced science, RNA processing, hydrogen bond networks, and amyloid formation. Students in the program report outcomes comparable to students who participate in similar in-person programs. These outcomes include the development of a sense of community and increases in their scientific self-efficacy, scientific identity, and science values, all predictors of continuing in a science research career. Furthermore, the program attracted students from diverse backgrounds, which demonstrates the potential of this approach to broaden the participation of young scientists from backgrounds traditionally underrepresented in computational biology.
Introduction to the Space Physics Analysis Network (SPAN)
NASA Technical Reports Server (NTRS)
Green, J. L. (Editor); Peters, D. J. (Editor)
1985-01-01
The Space Physics Analysis Network or SPAN is emerging as a viable method for solving an immediate communication problem for the space scientist. SPAN provides low-rate communication capability with co-investigators and colleagues, and access to space science data bases and computational facilities. The SPAN utilizes up-to-date hardware and software for computer-to-computer communications allowing binary file transfer and remote log-on capability to over 25 nationwide space science computer systems. SPAN is not discipline or mission dependent with participation from scientists in such fields as magnetospheric, ionospheric, planetary, and solar physics. Basic information on the network and its use are provided. It is anticipated that SPAN will grow rapidly over the next few years, not only from the standpoint of more network nodes, but as scientists become more proficient in the use of telescience, more capability will be needed to satisfy the demands.
Morimoto, Jun; Kawato, Mitsuo
2015-03-06
In the past two decades, brain science and robotics have made gigantic advances in their own fields, and their interactions have generated several interdisciplinary research fields. First, in the 'understanding the brain by creating the brain' approach, computational neuroscience models have been applied to many robotics problems. Second, such brain-motivated fields as cognitive robotics and developmental robotics have emerged as interdisciplinary areas among robotics, neuroscience and cognitive science with special emphasis on humanoid robots. Third, in brain-machine interface research, a brain and a robot are mutually connected within a closed loop. In this paper, we review the theoretical backgrounds of these three interdisciplinary fields and their recent progress. Then, we introduce recent efforts to reintegrate these research fields into a coherent perspective and propose a new direction that integrates brain science and robotics where the decoding of information from the brain, robot control based on the decoded information and multimodal feedback to the brain from the robot are carried out in real time and in a closed loop. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Creating the brain and interacting with the brain: an integrated approach to understanding the brain
Morimoto, Jun; Kawato, Mitsuo
2015-01-01
In the past two decades, brain science and robotics have made gigantic advances in their own fields, and their interactions have generated several interdisciplinary research fields. First, in the ‘understanding the brain by creating the brain’ approach, computational neuroscience models have been applied to many robotics problems. Second, such brain-motivated fields as cognitive robotics and developmental robotics have emerged as interdisciplinary areas among robotics, neuroscience and cognitive science with special emphasis on humanoid robots. Third, in brain–machine interface research, a brain and a robot are mutually connected within a closed loop. In this paper, we review the theoretical backgrounds of these three interdisciplinary fields and their recent progress. Then, we introduce recent efforts to reintegrate these research fields into a coherent perspective and propose a new direction that integrates brain science and robotics where the decoding of information from the brain, robot control based on the decoded information and multimodal feedback to the brain from the robot are carried out in real time and in a closed loop. PMID:25589568
Crop improvement using life cycle datasets acquired under field conditions.
Mochida, Keiichi; Saisho, Daisuke; Hirayama, Takashi
2015-01-01
Crops are exposed to various environmental stresses in the field throughout their life cycle. Modern plant science has provided remarkable insights into the molecular networks of plant stress responses in laboratory conditions, but the responses of different crops to environmental stresses in the field need to be elucidated. Recent advances in omics analytical techniques and information technology have enabled us to integrate data from a spectrum of physiological metrics of field crops. The interdisciplinary efforts of plant science and data science enable us to explore factors that affect crop productivity and identify stress tolerance-related genes and alleles. Here, we describe recent advances in technologies that are key components for data driven crop design, such as population genomics, chronological omics analyses, and computer-aided molecular network prediction. Integration of the outcomes from these technologies will accelerate our understanding of crop phenology under practical field situations and identify key characteristics to represent crop stress status. These elements would help us to genetically engineer "designed crops" to prevent yield shortfalls because of environmental fluctuations due to future climate change.
Interdisciplinary Introductory Course in Bioinformatics
ERIC Educational Resources Information Center
Kortsarts, Yana; Morris, Robert W.; Utell, Janine M.
2010-01-01
Bioinformatics is a relatively new interdisciplinary field that integrates computer science, mathematics, biology, and information technology to manage, analyze, and understand biological, biochemical and biophysical information. We present our experience in teaching an interdisciplinary course, Introduction to Bioinformatics, which was developed…
Today's Business Simulation Industry
ERIC Educational Resources Information Center
Summers, Gary J.
2004-01-01
New technologies are transforming the business simulation industry. The technologies come from research in computational fields of science, and they endow simulations with new capabilities and qualities. These capabilities and qualities include computerized behavioral simulations, online feedback and coaching, advanced interfaces, learning on…
Innovation in robotic surgery: the Indian scenario.
Deshpande, Suresh V
2015-01-01
Robotics is the science. In scientific words a "Robot" is an electromechanical arm device with a computer interface, a combination of electrical, mechanical, and computer engineering. It is a mechanical arm that performs tasks in Industries, space exploration, and science. One such idea was to make an automated arm - A robot - In laparoscopy to control the telescope-camera unit electromechanically and then with a computer interface using voice control. It took us 5 long years from 2004 to bring it to the level of obtaining a patent. That was the birth of the Swarup Robotic Arm (SWARM) which is the first and the only Indian contribution in the field of robotics in laparoscopy as a total voice controlled camera holding robotic arm developed without any support by industry or research institutes.
How to build better memory training games
Deveau, Jenni; Jaeggi, Susanne M.; Zordan, Victor; Phung, Calvin; Seitz, Aaron R.
2015-01-01
Can we create engaging training programs that improve working memory (WM) skills? While there are numerous procedures that attempt to do so, there is a great deal of controversy regarding their efficacy. Nonetheless, recent meta-analytic evidence shows consistent improvements across studies on lab-based tasks generalizing beyond the specific training effects (Au et al., 2014; Karbach and Verhaeghen, 2014), however, there is little research into how WM training aids participants in their daily life. Here we propose that incorporating design principles from the fields of Perceptual Learning (PL) and Computer Science might augment the efficacy of WM training, and ultimately lead to greater learning and transfer. In particular, the field of PL has identified numerous mechanisms (including attention, reinforcement, multisensory facilitation and multi-stimulus training) that promote brain plasticity. Also, computer science has made great progress in the scientific approach to game design that can be used to create engaging environments for learning. We suggest that approaches integrating knowledge across these fields may lead to a more effective WM interventions and better reflect real world conditions. PMID:25620916
Comparing Lanes in the Pulsed-Field Gel Electrophoresis (PFGE) Images
2001-10-25
Department of Computer and Information Science, National Chiao Tung University, Hsin Chu Taiwan 2 Department of Biological Science and Technology, National...Chiao Tung University Hsin Chu Taiwan Performing Organization Report Number Sponsoring/Monitoring Agency Name(s) and Address(es) US Army Research...image contains several lanes. And each lane consists of bands. Two lanes are identical if the relative positions of bands are the same. We present a
What is bioinformatics? A proposed definition and overview of the field.
Luscombe, N M; Greenbaum, D; Gerstein, M
2001-01-01
The recent flood of data from genome sequences and functional genomics has given rise to new field, bioinformatics, which combines elements of biology and computer science. Here we propose a definition for this new field and review some of the research that is being pursued, particularly in relation to transcriptional regulatory systems. Our definition is as follows: Bioinformatics is conceptualizing biology in terms of macromolecules (in the sense of physical-chemistry) and then applying "informatics" techniques (derived from disciplines such as applied maths, computer science, and statistics) to understand and organize the information associated with these molecules, on a large-scale. Analyses in bioinformatics predominantly focus on three types of large datasets available in molecular biology: macromolecular structures, genome sequences, and the results of functional genomics experiments (e.g. expression data). Additional information includes the text of scientific papers and "relationship data" from metabolic pathways, taxonomy trees, and protein-protein interaction networks. Bioinformatics employs a wide range of computational techniques including sequence and structural alignment, database design and data mining, macromolecular geometry, phylogenetic tree construction, prediction of protein structure and function, gene finding, and expression data clustering. The emphasis is on approaches integrating a variety of computational methods and heterogeneous data sources. Finally, bioinformatics is a practical discipline. We survey some representative applications, such as finding homologues, designing drugs, and performing large-scale censuses. Additional information pertinent to the review is available over the web at http://bioinfo.mbb.yale.edu/what-is-it.
Journal of Undergraduate Research, Volume IX, 2009
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stiner, K. S.; Graham, S.; Khan, M.
Each year more than 600 undergraduate students are awarded paid internships at the Department of Energy’s (DOE) National Laboratories. Th ese interns are paired with research scientists who serve as mentors in authentic research projects. All participants write a research abstract and present at a poster session and/or complete a fulllength research paper. Abstracts and selected papers from our 2007–2008 interns that represent the breadth and depth of undergraduate research performed each year at our National Laboratories are published here in the Journal of Undergraduate Research. The fields in which these students worked included: Biology; Chemistry; Computer Science; Engineering; Environmentalmore » Science; General Science; Materials Science; Medical and Health Sciences; Nuclear Science; Physics; Science Policy; and Waste Management.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bland, Arthur S Buddy; Hack, James J; Baker, Ann E
Oak Ridge National Laboratory's (ORNL's) Cray XT5 supercomputer, Jaguar, kicked off the era of petascale scientific computing in 2008 with applications that sustained more than a thousand trillion floating point calculations per second - or 1 petaflop. Jaguar continues to grow even more powerful as it helps researchers broaden the boundaries of knowledge in virtually every domain of computational science, including weather and climate, nuclear energy, geosciences, combustion, bioenergy, fusion, and materials science. Their insights promise to broaden our knowledge in areas that are vitally important to the Department of Energy (DOE) and the nation as a whole, particularly energymore » assurance and climate change. The science of the 21st century, however, will demand further revolutions in computing, supercomputers capable of a million trillion calculations a second - 1 exaflop - and beyond. These systems will allow investigators to continue attacking global challenges through modeling and simulation and to unravel longstanding scientific questions. Creating such systems will also require new approaches to daunting challenges. High-performance systems of the future will need to be codesigned for scientific and engineering applications with best-in-class communications networks and data-management infrastructures and teams of skilled researchers able to take full advantage of these new resources. The Oak Ridge Leadership Computing Facility (OLCF) provides the nation's most powerful open resource for capability computing, with a sustainable path that will maintain and extend national leadership for DOE's Office of Science (SC). The OLCF has engaged a world-class team to support petascale science and to take a dramatic step forward, fielding new capabilities for high-end science. This report highlights the successful delivery and operation of a petascale system and shows how the OLCF fosters application development teams, developing cutting-edge tools and resources for next-generation systems.« less
Data handling and visualization for NASA's science programs
NASA Technical Reports Server (NTRS)
Bredekamp, Joseph H. (Editor)
1995-01-01
Advanced information systems capabilities are essential to conducting NASA's scientific research mission. Access to these capabilities is no longer a luxury for a select few within the science community, but rather an absolute necessity for carrying out scientific investigations. The dependence on high performance computing and networking, as well as ready and expedient access to science data, metadata, and analysis tools is the fundamental underpinning for the entire research endeavor. At the same time, advances in the whole range of information technologies continues on an almost explosive growth path, reaching beyond the research community to affect the population as a whole. Capitalizing on and exploiting these advances are critical to the continued success of space science investigations. NASA must remain abreast of developments in the field and strike an appropriate balance between being a smart buyer and a direct investor in the technology which serves its unique requirements. Another key theme deals with the need for the space and computer science communities to collaborate as partners to more fully realize the potential of information technology in the space science research environment.
Gait biomechanics in the era of data science.
Ferber, Reed; Osis, Sean T; Hicks, Jennifer L; Delp, Scott L
2016-12-08
Data science has transformed fields such as computer vision and economics. The ability of modern data science methods to extract insights from large, complex, heterogeneous, and noisy datasets is beginning to provide a powerful complement to the traditional approaches of experimental motion capture and biomechanical modeling. The purpose of this article is to provide a perspective on how data science methods can be incorporated into our field to advance our understanding of gait biomechanics and improve treatment planning procedures. We provide examples of how data science approaches have been applied to biomechanical data. We then discuss the challenges that remain for effectively using data science approaches in clinical gait analysis and gait biomechanics research, including the need for new tools, better infrastructure and incentives for sharing data, and education across the disciplines of biomechanics and data science. By addressing these challenges, we can revolutionize treatment planning and biomechanics research by capitalizing on the wealth of knowledge gained by gait researchers over the past decades and the vast, but often siloed, data that are collected in clinical and research laboratories around the world. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
McFall, Steve
1994-03-01
With the increase in business automation and the widespread availability and low cost of computer systems, law enforcement agencies have seen a corresponding increase in criminal acts involving computers. The examination of computer evidence is a new field of forensic science with numerous opportunities for research and development. Research is needed to develop new software utilities to examine computer storage media, expert systems capable of finding criminal activity in large amounts of data, and to find methods of recovering data from chemically and physically damaged computer storage media. In addition, defeating encryption and password protection of computer files is also a topic requiring more research and development.
34 CFR 692.71 - What activities may be funded under the SLEAP Program?
Code of Federal Regulations, 2010 CFR
2010-07-01
... achievement; or (2) Wish to enter a program of study leading to a career in— (i) Information technology; (ii) Mathematics, computer science, or engineering; (iii) Teaching; or (iv) Other fields determined by the State to...
Varieties of noise: analogical reasoning in synthetic biology.
Knuuttila, Tarja; Loettgers, Andrea
2014-12-01
The picture of synthetic biology as a kind of engineering science has largely created the public understanding of this novel field, covering both its promises and risks. In this paper, we will argue that the actual situation is more nuanced and complex. Synthetic biology is a highly interdisciplinary field of research located at the interface of physics, chemistry, biology, and computational science. All of these fields provide concepts, metaphors, mathematical tools, and models, which are typically utilized by synthetic biologists by drawing analogies between the different fields of inquiry. We will study analogical reasoning in synthetic biology through the emergence of the functional meaning of noise, which marks an important shift in how engineering concepts are employed in this field. The notion of noise serves also to highlight the differences between the two branches of synthetic biology: the basic science-oriented branch and the engineering-oriented branch, which differ from each other in the way they draw analogies to various other fields of study. Moreover, we show that fixing the mapping between a source domain and the target domain seems not to be the goal of analogical reasoning in actual scientific practice.
BIM-Sim: Interactive Simulation of Broadband Imaging Using Mie Theory
NASA Astrophysics Data System (ADS)
Berisha, Sebastian; van Dijk, Thomas; Bhargava, Rohit; Carney, P. Scott; Mayerich, David
2017-02-01
Understanding the structure of a scattered electromagnetic (EM) field is critical to improving the imaging process. Mechanisms such as diffraction, scattering, and interference affect an image, limiting the resolution and potentially introducing artifacts. Simulation and visualization of scattered fields thus plays an important role in imaging science. However, the calculation of scattered fields is extremely time-consuming on desktop systems and computationally challenging on task-parallel systems such as supercomputers and cluster systems. In addition, EM fields are high-dimensional, making them difficult to visualize. In this paper, we present a framework for interactively computing and visualizing EM fields scattered by micro and nano-particles. Our software uses graphics hardware for evaluating the field both inside and outside of these particles. We then use Monte-Carlo sampling to reconstruct and visualize the three-dimensional structure of the field, spectral profiles at individual points, the structure of the field at the surface of the particle, and the resulting image produced by an optical system.
ERIC Educational Resources Information Center
Fadel, Sahar; Rajab, Hussam
2017-01-01
In the field of computer science, specific English language skills are needed to facilitate the students' academic progress. Needs analysis is generally believed to be an important element in ESP/EAP context because it enables the practitioners and curriculum designers determine the learners' needs in a particular academic context. In this regard,…
PREFACE: ELC International Meeting on Inference, Computation, and Spin Glasses (ICSG2013)
NASA Astrophysics Data System (ADS)
Kabashima, Yoshiyuki; Hukushima, Koji; Inoue, Jun-ichi; Tanaka, Toshiyuki; Watanabe, Osamu
2013-12-01
The close relationship between probability-based inference and statistical mechanics of disordered systems has been noted for some time. This relationship has provided researchers with a theoretical foundation in various fields of information processing for analytical performance evaluation and construction of efficient algorithms based on message-passing or Monte Carlo sampling schemes. The ELC International Meeting on 'Inference, Computation, and Spin Glasses (ICSG2013)', was held in Sapporo 28-30 July 2013. The meeting was organized as a satellite meeting of STATPHYS25 in order to offer a forum where concerned researchers can assemble and exchange information on the latest results and newly established methodologies, and discuss future directions of the interdisciplinary studies between statistical mechanics and information sciences. Financial support from Grant-in-Aid for Scientific Research on Innovative Areas, MEXT, Japan 'Exploring the Limits of Computation (ELC)' is gratefully acknowledged. We are pleased to publish 23 papers contributed by invited speakers of ICSG2013 in this volume of Journal of Physics: Conference Series. We hope that this volume will promote further development of this highly vigorous interdisciplinary field between statistical mechanics and information/computer science. Editors and ICSG2013 Organizing Committee: Koji Hukushima Jun-ichi Inoue (Local Chair of ICSG2013) Yoshiyuki Kabashima (Editor-in-Chief) Toshiyuki Tanaka Osamu Watanabe (General Chair of ICSG2013)
What is the current state of the science of Cyber defense?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurd, Alan J.
My overall sense of the cyber defense field is one of an adolescent discipline currently bogged down in a cloud of issues, the most iconic of which is the great diversity of approaches that are being aggregated to form a coherent field. Because my own expertise is complex systems and materials physics research, I have limited direct experience in cyber security sciences except as a user of secure networks and computing resources. However, in producing this report, I have found with certainty that there exists no calculus for cyber risk assessment, mitigation, and response, although some hopeful precepts toward thismore » end are emerging.« less
Perez-Felkner, Lara; McDonald, Sarah-Kathryn; Schneider, Barbara; Grogan, Erin
2012-11-01
Although important strides toward gender parity have been made in several scientific fields, women remain underrepresented in the physical sciences, engineering, mathematics, and computer sciences (PEMCs). This study examines the effects of adolescents' subjective orientations, course taking, and academic performance on the likelihood of majoring in PEMC in college. Results indicate that racial-ethnic and gender underrepresentation in science, technology, engineering, and mathematics (STEM) fields are interrelated and should be examined with attention to the intersecting factors influencing female and racial-ethnic minority adolescents' pathways toward careers in these fields. Among those who major in PEMC fields, women closely resemble men with respect to their subjective orientations. The effects of subjective orientations on women's chances of majoring in PEMC vary by their secondary school mathematics course completion levels. Women who take more mathematics courses are more likely to major in PEMC; however, course taking alone does not attenuate gender disparities in declaring these majors. High mathematics ability (as measured by standardized test scores in the 10th grade) appears to be positively associated with women's selection of social, behavioral, clinical, and health science majors. This association is less robust (and slightly negative) for women in PEMC. While advanced course taking appears to assist women in selecting PEMC majors, women who enter these fields may not be as strong as those who select other, less male-dominated scientific fields.
Palm, Günther
2016-01-01
Research in neural information processing has been successful in the past, providing useful approaches both to practical problems in computer science and to computational models in neuroscience. Recent developments in the area of cognitive neuroscience present new challenges for a computational or theoretical understanding asking for neural information processing models that fulfill criteria or constraints from cognitive psychology, neuroscience and computational efficiency. The most important of these criteria for the evaluation of present and future contributions to this new emerging field are listed at the end of this article. PMID:26858632
NASA Astrophysics Data System (ADS)
Orr, C. H.; Mcfadden, R. R.; Manduca, C. A.; Kempler, L. A.
2016-12-01
Teaching with data, simulations, and models in the geosciences can increase many facets of student success in the classroom, and in the workforce. Teaching undergraduates about programming and improving students' quantitative and computational skills expands their perception of Geoscience beyond field-based studies. Processing data and developing quantitative models are critically important for Geoscience students. Students need to be able to perform calculations, analyze data, create numerical models and visualizations, and more deeply understand complex systems—all essential aspects of modern science. These skills require students to have comfort and skill with languages and tools such as MATLAB. To achieve comfort and skill, computational and quantitative thinking must build over a 4-year degree program across courses and disciplines. However, in courses focused on Geoscience content it can be challenging to get students comfortable with using computational methods to answers Geoscience questions. To help bridge this gap, we have partnered with MathWorks to develop two workshops focused on collecting and developing strategies and resources to help faculty teach students to incorporate data, simulations, and models into the curriculum at the course and program levels. We brought together faculty members from the sciences, including Geoscience and allied fields, who teach computation and quantitative thinking skills using MATLAB to build a resource collection for teaching. These materials, and the outcomes of the workshops are freely available on our website. The workshop outcomes include a collection of teaching activities, essays, and course descriptions that can help faculty incorporate computational skills at the course or program level. The teaching activities include in-class assignments, problem sets, labs, projects, and toolboxes. These activities range from programming assignments to creating and using models. The outcomes also include workshop syntheses that highlights best practices, a set of webpages to support teaching with software such as MATLAB, and an interest group actively discussing aspects these issues in Geoscience and allied fields. Learn more and view the resources at http://serc.carleton.edu/matlab_computation2016/index.html
24th IUPAP Conference on Computational Physics (2012): Introduction, acknowledgements, program
NASA Astrophysics Data System (ADS)
Baiotti, Luca; Takabe, Hideaki
2013-08-01
Welcome to CCP2012, held next to the K computer site in Kobe and in Japan's best season. The Conference on Computational Physics (CCP) is organized annually under the auspices of Commission 20 of the IUPAP (International Union of Pure and Applied Physics). This is the first time it has been held in Japan. I was asked to be the chairman about two and half years ago and when I accepted the request I decided to make the conference very unique and different from the traditional style of CCP. I was not satisfied when I attended big conferences where the parallel sessions are classified with the name of the research field. These days we have many opportunities to attend domestic and international conferences, where it is possible to listen to many talks on the same topics. If the topics are very new, then the conference is very useful for my research. However, I wanted to have a conference where I could listen to a variety of topics carried out with the same method. Computational science is very unique and it is easy to organize a new type of conference with the classification in the horizontal direction of the matrix made of the names of research fields and the name of numerical methods. You may be able to list the names of methods easily; finite difference, Monte Carlo, particle, molecular dynamics and so on. I was dissatisfied to find that most conferences focus solely on research fields and the method that brings to the scientific research is not highlighted as much. I wanted to listen to topics from fundamental physics to industrial science in a systematic way. In order to create such a conference, a small number of experts is not enough, so I asked for the help of more than 100 Japanese computer scientists, in a variety of fields. We called this group the Japan Advisory Board (JAB). I asked them to recommend a member of the International Advisory Board (IAB). Then, we could start making the list of plenary and invited speakers. This was almost the end of March last year. CCP2012 is organized also to celebrate the shared use of the K computer and we selected a venue next to it. Its use is of course open to the public and started on 28 September, one month earlier than had been scheduled. I hope you also enjoy the guided tour of the K computer. Throughout CCP2012, I hope new collaborations start among scientists in different fields. It would be also my great pleasure if such an inter-disciplinary conference encouraged young scientists (with their fresh energy and skills) to challenge new topics in different fields, particularly emerging ones like bio-computing, industrial applications, social sciences and so on. Finally, allow me to express my sincere thanks to all members of the local organizing committee (LOC). Twenty scientists from three universities and one institute voluntarily worked very hard to prepare CCP2012. Hideaki Takabe (Aki) The Chairman, CCP2012
State-space receptive fields of semicircular canal afferent neurons in the bullfrog
NASA Technical Reports Server (NTRS)
Paulin, M. G.; Hoffman, L. F.
2001-01-01
Receptive fields are commonly used to describe spatial characteristics of sensory neuron responses. They can be extended to characterize temporal or dynamical aspects by mapping neural responses in dynamical state spaces. The state-space receptive field of a neuron is the probability distribution of the dynamical state of the stimulus-generating system conditioned upon the occurrence of a spike. We have computed state-space receptive fields for semicircular canal afferent neurons in the bullfrog (Rana catesbeiana). We recorded spike times during broad-band Gaussian noise rotational velocity stimuli, computed the frequency distribution of head states at spike times, and normalized these to obtain conditional pdfs for the state. These state-space receptive fields quantify what the brain can deduce about the dynamical state of the head when a single spike arrives from the periphery. c2001 Elsevier Science B.V. All rights reserved.
ERIC Educational Resources Information Center
Balajthy, Ernest
A study examined a new collaborative consultation process to enhance the classroom implementation of whole language science units that make use of computers and multimedia resources. The overall program was divided into three projects, two at the fifth-grade level and one at the third grade level. Each project was staffed by a team of one…
New research on women's low participation in science and technology
NASA Astrophysics Data System (ADS)
Stout, Jane
It is well known that women have historically been and continue to be grossly underrepresented in technical fields (i.e., the physical sciences, engineering, and computing). This presentation will address the following research questions: What dissuades women from entering into a technical career track, and what are women's experiences like within technical fields? At the same time, this presentation will acknowledge a shortcoming of decades of social science research and interventions designed to improve women's interest and persistence in technical fields: a narrow definition of ``women''. Given that the majority of women in colleges and universities (i.e., the typical sites of social science research) tend to be affluent and/or White, STEM education research that relies on convenience samples at colleges and universities paints a skewed picture of gender issues in technical fields. This presentation will showcase research findings that call into question conventional conceptions of gender disparities in technical fields. Specifically, the presentation will emphasize the importance of recognizing that women constitute more than their gender; women come from a diverse array of backgrounds, which no doubt play a role in the experience of being a woman in technical fields. By understanding the experiences of women from a broad array of demographics groups, the STEM education community can develop a corresponding set of strategies to recruit and retain women with diverse interests, experiences, and values (e.g., first generation versus second college students; women of different racial/ethnic backgrounds). The aim of this presentation is to promote social science research and interventions that acknowledge the nuanced experiences of diverse women in technical fields, in order to address the seemingly intractable problem of women's underrepresentation in technical fields. NSF DUE-1431112, NSF CNS-1246649.
Information Architecture: Notes toward a New Curriculum.
ERIC Educational Resources Information Center
Latham, Don
2002-01-01
Considers the evolution of information architectures as a field of professional education. Topics include the need for an interdisciplinary approach; balancing practical skills with theoretical concepts; and key content areas, including information organization, graphic design, computer science, user and usability studies, and communication.…
High Throughput Screening of Toxicity Pathways Perturbed by Environmental Chemicals
Toxicology, a field largely unchanged over the past several decades, is undergoing a significant transformation driven by a number of forces – the increasing number of chemicals needing assessment, changing legal requirements, advances in biology and computer science, and concern...
Terascale Computing in Accelerator Science and Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ko, Kwok
2002-08-21
We have entered the age of ''terascale'' scientific computing. Processors and system architecture both continue to evolve; hundred-teraFLOP computers are expected in the next few years, and petaFLOP computers toward the end of this decade are conceivable. This ever-increasing power to solve previously intractable numerical problems benefits almost every field of science and engineering and is revolutionizing some of them, notably including accelerator physics and technology. At existing accelerators, it will help us optimize performance, expand operational parameter envelopes, and increase reliability. Design decisions for next-generation machines will be informed by unprecedented comprehensive and accurate modeling, as well as computer-aidedmore » engineering; all this will increase the likelihood that even their most advanced subsystems can be commissioned on time, within budget, and up to specifications. Advanced computing is also vital to developing new means of acceleration and exploring the behavior of beams under extreme conditions. With continued progress it will someday become reasonable to speak of a complete numerical model of all phenomena important to a particular accelerator.« less
The OSG open facility: A sharing ecosystem
Jayatilaka, B.; Levshina, T.; Rynge, M.; ...
2015-12-23
The Open Science Grid (OSG) ties together individual experiments’ computing power, connecting their resources to create a large, robust computing grid, this computing infrastructure started primarily as a collection of sites associated with large HEP experiments such as ATLAS, CDF, CMS, and DZero. In the years since, the OSG has broadened its focus to also address the needs of other US researchers and increased delivery of Distributed High Through-put Computing (DHTC) to users from a wide variety of disciplines via the OSG Open Facility. Presently, the Open Facility delivers about 100 million computing wall hours per year to researchers whomore » are not already associated with the owners of the computing sites, this is primarily accomplished by harvesting and organizing the temporarily unused capacity (i.e. opportunistic cycles) from the sites in the OSG. Using these methods, OSG resource providers and scientists share computing hours with researchers in many other fields to enable their science, striving to make sure that these computing power used with maximal efficiency. Furthermore, we believe that expanded access to DHTC is an essential tool for scientific innovation and work continues in expanding this service.« less
ISMB 2016 offers outstanding science, networking, and celebration
Fogg, Christiana
2016-01-01
The annual international conference on Intelligent Systems for Molecular Biology (ISMB) is the major meeting of the International Society for Computational Biology (ISCB). Over the past 23 years the ISMB conference has grown to become the world's largest bioinformatics/computational biology conference. ISMB 2016 will be the year's most important computational biology event globally. The conferences provide a multidisciplinary forum for disseminating the latest developments in bioinformatics/computational biology. ISMB brings together scientists from computer science, molecular biology, mathematics, statistics and related fields. Its principal focus is on the development and application of advanced computational methods for biological problems. ISMB 2016 offers the strongest scientific program and the broadest scope of any international bioinformatics/computational biology conference. Building on past successes, the conference is designed to cater to variety of disciplines within the bioinformatics/computational biology community. ISMB 2016 takes place July 8 - 12 at the Swan and Dolphin Hotel in Orlando, Florida, United States. For two days preceding the conference, additional opportunities including Satellite Meetings, Student Council Symposium, and a selection of Special Interest Group Meetings and Applied Knowledge Exchange Sessions (AKES) are all offered to enable registered participants to learn more on the latest methods and tools within specialty research areas. PMID:27347392
ISMB 2016 offers outstanding science, networking, and celebration.
Fogg, Christiana
2016-01-01
The annual international conference on Intelligent Systems for Molecular Biology (ISMB) is the major meeting of the International Society for Computational Biology (ISCB). Over the past 23 years the ISMB conference has grown to become the world's largest bioinformatics/computational biology conference. ISMB 2016 will be the year's most important computational biology event globally. The conferences provide a multidisciplinary forum for disseminating the latest developments in bioinformatics/computational biology. ISMB brings together scientists from computer science, molecular biology, mathematics, statistics and related fields. Its principal focus is on the development and application of advanced computational methods for biological problems. ISMB 2016 offers the strongest scientific program and the broadest scope of any international bioinformatics/computational biology conference. Building on past successes, the conference is designed to cater to variety of disciplines within the bioinformatics/computational biology community. ISMB 2016 takes place July 8 - 12 at the Swan and Dolphin Hotel in Orlando, Florida, United States. For two days preceding the conference, additional opportunities including Satellite Meetings, Student Council Symposium, and a selection of Special Interest Group Meetings and Applied Knowledge Exchange Sessions (AKES) are all offered to enable registered participants to learn more on the latest methods and tools within specialty research areas.
NASA Astrophysics Data System (ADS)
Heilbronner, Nancy N.
Many men and women who are talented in science, technology, engineering, and/or mathematics (STEM) choose not to pursue undergraduate majors or careers in these fields. To develop talents in STEM, educators must understand the factors that contribute to an individual's retention in STEM domains, as well as the factors that act as barriers to success, such as the role that gender plays in the underrepresentation of women in certain STEM fields (e.g., computer science and engineering) and changes in recent decades in the process of selecting STEM majors and careers. The purpose of this study was to explore the influences that guide decisions related to the selection of majors and occupations during high school, post-secondary education, and early careers. Survey methodology was used to explore the perceptions of 360 Science Talent Search (STS) semifinalists and finalists during the years 1987-1989 and 1997-1999, and quantitative procedures were used to analyze the data. A majority (74.2%) of STS participants majored in a STEM field in college, and most (68.6%) currently work in a STEM field. A greater percentage of men selected computer science, engineering, physics, and mathematics majors, and a greater percentage of women selected biological science and chemistry. Belief in one's ability to achieve in STEM was a predictor of STEM majors in college and STEM concentrations in graduate school, but differences were found between men's and women's self-efficacy in STEM during high school and in college, as women had lower self-efficacy. Sex was a predictor of STEM majors in college, but perceived quality of academic courses was not. STEM majors also reported more satisfaction with their STEM courses in high school and college than non-STEM majors. In a departure from the results of previous research, the reasons that men and women selected occupations were similar, as were the reasons they chose to leave or not to enter STEM. The most frequently cited reason for attrition was interest in another (non-STEM) field. Participants placed little importance on other reasons for leaving STEM that were identified in previous research, such as competition, social isolation, or financial considerations.
Undergraduate Research in Physics as a course for Engineering and Computer Science Majors
NASA Astrophysics Data System (ADS)
O'Brien, James; Rueckert, Franz; Sirokman, Greg
2017-01-01
Undergraduate research has become more and more integral to the functioning of higher educational institutions. At many institutions undergraduate research is conducted as capstone projects in the pure sciences, however, science faculty at some schools (including that of the authors) face the challenge of not having science majors. Even at these institutions, a select population of high achieving engineering students will often express a keen interest in conducting pure science research. Since a foray into science research provides the student the full exposure to the scientific method and scientific collaboration, the experience can be quite rewarding and beneficial to the development of the student as a professional. To this end, the authors have been working to find new contexts in which to offer research experiences to non- science majors, including a new undergraduate research class conducted by physics and chemistry faculty. An added benefit is that these courses are inherently interdisciplinary. Students in the engineering and computer science fields step into physics and chemistry labs to solve science problems, often invoking their own relevant expertise. In this paper we start by discussing the common themes and outcomes of the course. We then discuss three particular projects that were conducted with engineering students and focus on how the undergraduate research experience enhanced their already rigorous engineering curriculum.
NASA Astrophysics Data System (ADS)
Linn, Marcia C.
1995-06-01
Designing effective curricula for complex topics and incorporating technological tools is an evolving process. One important way to foster effective design is to synthesize successful practices. This paper describes a framework called scaffolded knowledge integration and illustrates how it guided the design of two successful course enhancements in the field of computer science and engineering. One course enhancement, the LISP Knowledge Integration Environment, improved learning and resulted in more gender-equitable outcomes. The second course enhancement, the spatial reasoning environment, addressed spatial reasoning in an introductory engineering course. This enhancement minimized the importance of prior knowledge of spatial reasoning and helped students develop a more comprehensive repertoire of spatial reasoning strategies. Taken together, the instructional research programs reinforce the value of the scaffolded knowledge integration framework and suggest directions for future curriculum reformers.
The kids got game: Computer/video games, gender and learning outcomes in science classrooms
NASA Astrophysics Data System (ADS)
Anderson, Janice Lyn
In recent years educators have begun to explore how to purposively design computer/video games to support student learning. This interest in video games has arisen in part because educational video games appear to have the potential to improve student motivation and interest in technology, and engage students in learning through the use of a familiar medium (Squire, 2005; Shaffer, 2006; Gee, 2005). The purpose of this dissertation research is to specifically address the issue of student learning through the use of educational computer/video games. Using the Quest Atlantis computer game, this study involved a mixed model research strategy that allowed for both broad understandings of classroom practices and specific analysis of outcomes through the themes that emerged from the case studies of the gendered groups using the game. Specifically, this study examined how fifth-grade students learning about science concepts, such as water quality and ecosystems, unfolds over time as they participate in the Quest Atlantis computer game. Data sources included classroom observations and video, pre- and post-written assessments, pre- and post- student content interviews, student field notebooks, field reports and the field notes of the researcher. To make sense of how students learning unfolded, video was analyzed using a framework of interaction analysis and small group interactions (Jordan & Henderson, 1995; Webb, 1995). These coded units were then examined with respect to student artifacts and assessments and patterns of learning trajectories analyzed. The analysis revealed that overall, student learning outcomes improved from pre- to post-assessments for all students. While there were no observable gendered differences with respect to the test scores and content interviews, there were gendered differences with respect to game play. Implications for game design, use of external scaffolds, games as tools for learning and gendered findings are discussed.
Understanding human visual systems and its impact on our intelligent instruments
NASA Astrophysics Data System (ADS)
Strojnik Scholl, Marija; Páez, Gonzalo; Scholl, Michelle K.
2013-09-01
We review the evolution of machine vision and comment on the cross-fertilization from the neural sciences onto flourishing fields of neural processing, parallel processing, and associative memory in optical sciences and computing. Then we examine how the intensive efforts in mapping the human brain have been influenced by concepts in computer sciences, control theory, and electronic circuits. We discuss two neural paths that employ the input from the vision sense to determine the navigational options and object recognition. They are ventral temporal pathway for object recognition (what?) and dorsal parietal pathway for navigation (where?), respectively. We describe the reflexive and conscious decision centers in cerebral cortex involved with visual attention and gaze control. Interestingly, these require return path though the midbrain for ocular muscle control. We find that the cognitive psychologists currently study human brain employing low-spatial-resolution fMRI with temporal response on the order of a second. In recent years, the life scientists have concentrated on insect brains to study neural processes. We discuss how reflexive and conscious gaze-control decisions are made in the frontal eye field and inferior parietal lobe, constituting the fronto-parietal attention network. We note that ethical and experiential learnings impact our conscious decisions.
Evolution and convergence of the patterns of international scientific collaboration.
Coccia, Mario; Wang, Lili
2016-02-23
International research collaboration plays an important role in the social construction and evolution of science. Studies of science increasingly analyze international collaboration across multiple organizations for its impetus in improving research quality, advancing efficiency of the scientific production, and fostering breakthroughs in a shorter time. However, long-run patterns of international research collaboration across scientific fields and their structural changes over time are hardly known. Here we show the convergence of international scientific collaboration across research fields over time. Our study uses a dataset by the National Science Foundation and computes the fraction of papers that have international institutional coauthorships for various fields of science. We compare our results with pioneering studies carried out in the 1970s and 1990s by applying a standardization method that transforms all fractions of internationally coauthored papers into a comparable framework. We find, over 1973-2012, that the evolution of collaboration patterns across scientific disciplines seems to generate a convergence between applied and basic sciences. We also show that the general architecture of international scientific collaboration, based on the ranking of fractions of international coauthorships for different scientific fields per year, has tended to be unchanged over time, at least until now. Overall, this study shows, to our knowledge for the first time, the evolution of the patterns of international scientific collaboration starting from initial results described by literature in the 1970s and 1990s. We find a convergence of these long-run collaboration patterns between the applied and basic sciences. This convergence might be one of contributing factors that supports the evolution of modern scientific fields.
Know Your Discipline: Teaching the Philosophy of Computer Science
ERIC Educational Resources Information Center
Tedre, Matti
2007-01-01
The diversity and interdisciplinarity of computer science and the multiplicity of its uses in other sciences make it hard to define computer science and to prescribe how computer science should be carried out. The diversity of computer science also causes friction between computer scientists from different branches. Computer science curricula, as…
Computational Material Processing in Microgravity
NASA Technical Reports Server (NTRS)
2005-01-01
Working with Professor David Matthiesen at Case Western Reserve University (CWRU) a computer model of the DPIMS (Diffusion Processes in Molten Semiconductors) space experiment was developed that is able to predict the thermal field, flow field and concentration profile within a molten germanium capillary under both ground-based and microgravity conditions as illustrated. These models are coupled with a novel nonlinear statistical methodology for estimating the diffusion coefficient from measured concentration values after a given time that yields a more accurate estimate than traditional methods. This code was integrated into a web-based application that has become a standard tool used by engineers in the Materials Science Department at CWRU.
Why cognitive science needs philosophy and vice versa.
Thagard, Paul
2009-04-01
Contrary to common views that philosophy is extraneous to cognitive science, this paper argues that philosophy has a crucial role to play in cognitive science with respect to generality and normativity. General questions include the nature of theories and explanations, the role of computer simulation in cognitive theorizing, and the relations among the different fields of cognitive science. Normative questions include whether human thinking should be Bayesian, whether decision making should maximize expected utility, and how norms should be established. These kinds of general and normative questions make philosophical reflection an important part of progress in cognitive science. Philosophy operates best, however, not with a priori reasoning or conceptual analysis, but rather with empirically informed reflection on a wide range of findings in cognitive science. Copyright © 2009 Cognitive Science Society, Inc.
Avenues for crowd science in Hydrology.
NASA Astrophysics Data System (ADS)
Koch, Julian; Stisen, Simon
2016-04-01
Crowd science describes research that is conducted with the participation of the general public (the crowd) and gives the opportunity to involve the crowd in research design, data collection and analysis. In various fields, scientists have already drawn on underused human resources to advance research at low cost, with high transparency and large acceptance of the public due to the bottom up structure and the participatory process. Within the hydrological sciences, crowd research has quite recently become more established in the form of crowd observatories to generate hydrological data on water quality, precipitation or river flow. These innovative observatories complement more traditional ways of monitoring hydrological data and strengthen a community-based environmental decision making. However, the full potential of crowd science lies in internet based participation of the crowd and it is not yet fully exploited in the field of Hydrology. New avenues that are not primarily based on the outsourcing of labor, but instead capitalize the full potential of human capabilities have to emerge. In multiple realms of solving complex problems, like image detection, optimization tasks, narrowing of possible solutions, humans still remain more effective than computer algorithms. The most successful online crowd science projects Foldit and Galaxy Zoo have proven that the collective of tens of thousands users could clearly outperform traditional computer based science approaches. Our study takes advantage of the well trained human perception to conduct a spatial sensitivity analysis of land-surface variables of a distributed hydrological model to identify the most sensitive spatial inputs. True spatial performance metrics, that quantitatively compare patterns, are not trivial to choose and their applicability is often not universal. On the other hand humans can quickly integrate spatial information at various scales and are therefore a trusted competence. We selected zooniverse, the most popular crowd science platform where over a million registered users contribute to various research projects, to build a survey of the human perception. The survey will be shown during the interactive discussion, but moreover for building future avenues of crowd science in Hydrology the following questions should be discussed: (1) What hydrological problems are suitable for an internet based crowd science application? (2) How to abstract the complex problem to a medium that appeals to the crowd? (3) How to secure good science with reliable results? (4) Can the crowd replace existing and established computer based applications like parameter optimization or forecasting at all?
Programming experience promotes higher STEM motivation among first-grade girls.
Master, Allison; Cheryan, Sapna; Moscatelli, Adriana; Meltzoff, Andrew N
2017-08-01
The gender gap in science, technology, engineering, and math (STEM) engagement is large and persistent. This gap is significantly larger in technological fields such as computer science and engineering than in math and science. Gender gaps begin early; young girls report less interest and self-efficacy in technology compared with boys in elementary school. In the current study (N=96), we assessed 6-year-old children's stereotypes about STEM fields and tested an intervention to develop girls' STEM motivation despite these stereotypes. First-grade children held stereotypes that boys were better than girls at robotics and programming but did not hold these stereotypes about math and science. Girls with stronger stereotypes about robotics and programming reported lower interest and self-efficacy in these domains. We experimentally tested whether positive experience with programming robots would lead to greater interest and self-efficacy among girls despite these stereotypes. Children were randomly assigned either to a treatment group that was given experience in programming a robot using a smartphone or to control groups (no activity or other activity). Girls given programming experience reported higher technology interest and self-efficacy compared with girls without this experience and did not exhibit a significant gender gap relative to boys' interest and self-efficacy. These findings show that children's views mirror current American cultural messages about who excels at computer science and engineering and show the benefit of providing young girls with chances to experience technological activities. Copyright © 2017 Elsevier Inc. All rights reserved.
Scientific Visualization, Seeing the Unseeable
LBNL
2017-12-09
June 24, 2008 Berkeley Lab lecture: Scientific visualization transforms abstract data into readily comprehensible images, provide a vehicle for "seeing the unseeable," and play a central role in bo... June 24, 2008 Berkeley Lab lecture: Scientific visualization transforms abstract data into readily comprehensible images, provide a vehicle for "seeing the unseeable," and play a central role in both experimental and computational sciences. Wes Bethel, who heads the Scientific Visualization Group in the Computational Research Division, presents an overview of visualization and computer graphics, current research challenges, and future directions for the field.
NASA Astrophysics Data System (ADS)
Kashansky, Vladislav V.; Kaftannikov, Igor L.
2018-02-01
Modern numerical modeling experiments and data analytics problems in various fields of science and technology reveal a wide variety of serious requirements for distributed computing systems. Many scientific computing projects sometimes exceed the available resource pool limits, requiring extra scalability and sustainability. In this paper we share the experience and findings of our own on combining the power of SLURM, BOINC and GlusterFS as software system for scientific computing. Especially, we suggest a complete architecture and highlight important aspects of systems integration.
The rise of information science: a changing landscape for soil science
NASA Astrophysics Data System (ADS)
Roudier, Pierre; Ritchie, Alistair; Hedley, Carolyn; Medyckyj-Scott, David
2015-07-01
The last 15 years have seen the rapid development of a wide range of information technologies. Those developments have been impacting all fields of science, at every step of the scientific method: data collection, data analysis, inference, science communication and outreach. The rate at which data is being generated is increasing exponentially, giving opportunities to improve our understanding of soils. Parallel developments in computing hardware and methods, such as machine learning, open ways to not only harness the '”data deluge”, but also offer a new way to generate knowledge. Finally, emerging data and information delivery protocols are leveraging the outreach power of the World Wide Web to disseminate scientific data and information, and increase their use and understanding outside the boundaries of a given scientific field. However, the nature of this data is mostly new to soil science, and requires adaptation to its diversity and volume. In particular, the integration of the significant amount of legacy soil data collected throughout decades of soil science can be problematic when all necessary metadata is not available. Likewise, knowledge accumulated by our scientific field needs to be acknowledged by - rather than opposed to - numerical methods. While the introduction of this set of emerging technologies is enabling soil science from different points of view, its successful implementation depends on the ability of soil scientists to act as knowledge brokers and support numerical methods.
Boucher, Kathryn L.; Fuesting, Melissa A.; Diekman, Amanda B.; Murphy, Mary C.
2017-01-01
Although science, technology, engineering, and mathematics (STEM) disciplines as a whole have made advances in gender parity and greater inclusion for women, these increases have been smaller or nonexistent in computing and engineering compared to other fields. In this focused review, we discuss how stereotypic perceptions of computing and engineering influence who enters, stays, and excels in these fields. We focus on communal goal incongruity–the idea that some STEM disciplines like engineering and computing are perceived as less aligned with people's communal goals of collaboration and helping others. In Part 1, we review the empirical literature that demonstrates how perceptions that these disciplines are incongruent with communal goals can especially deter women and girls, who highly endorse communal goals. In Part 2, we extend this perspective by reviewing accumulating evidence that perceived communal goal incongruity can deter any individual who values communal goals. Communal opportunities within computing and engineering have the potential to benefit first generation college students, underrepresented minority students, and communally-oriented men (as well as communally-oriented women). We describe the implications of this body of literature: describing how opting out of STEM in order to pursue fields perceived to encourage the pursuit of communal goals leave the stereotypic (mis)perceptions of computing and engineering unchanged and exacerbate female underrepresentation. In Part 3, we close with recommendations for how communal opportunities in computing and engineering can be highlighted to increase interest and motivation. By better integrating and publically acknowledging communal opportunities, the stereotypic perceptions of these fields could gradually change, making computing and engineering more inclusive and welcoming to all. PMID:28620330
Effect of Numerical Error on Gravity Field Estimation for GRACE and Future Gravity Missions
NASA Astrophysics Data System (ADS)
McCullough, Christopher; Bettadpur, Srinivas
2015-04-01
In recent decades, gravity field determination from low Earth orbiting satellites, such as the Gravity Recovery and Climate Experiment (GRACE), has become increasingly more effective due to the incorporation of high accuracy measurement devices. Since instrumentation quality will only increase in the near future and the gravity field determination process is computationally and numerically intensive, numerical error from the use of double precision arithmetic will eventually become a prominent error source. While using double-extended or quadruple precision arithmetic will reduce these errors, the numerical limitations of current orbit determination algorithms and processes must be accurately identified and quantified in order to adequately inform the science data processing techniques of future gravity missions. The most obvious numerical limitation in the orbit determination process is evident in the comparison of measured observables with computed values, derived from mathematical models relating the satellites' numerically integrated state to the observable. Significant error in the computed trajectory will corrupt this comparison and induce error in the least squares solution of the gravitational field. In addition, errors in the numerically computed trajectory propagate into the evaluation of the mathematical measurement model's partial derivatives. These errors amalgamate in turn with numerical error from the computation of the state transition matrix, computed using the variational equations of motion, in the least squares mapping matrix. Finally, the solution of the linearized least squares system, computed using a QR factorization, is also susceptible to numerical error. Certain interesting combinations of each of these numerical errors are examined in the framework of GRACE gravity field determination to analyze and quantify their effects on gravity field recovery.
Advances in free-energy-based simulations of protein folding and ligand binding.
Perez, Alberto; Morrone, Joseph A; Simmerling, Carlos; Dill, Ken A
2016-02-01
Free-energy-based simulations are increasingly providing the narratives about the structures, dynamics and biological mechanisms that constitute the fabric of protein science. Here, we review two recent successes. It is becoming practical: first, to fold small proteins with free-energy methods without knowing substructures and second, to compute ligand-protein binding affinities, not just their binding poses. Over the past 40 years, the timescales that can be simulated by atomistic MD are doubling every 1.3 years--which is faster than Moore's law. Thus, these advances are not simply due to the availability of faster computers. Force fields, solvation models and simulation methodology have kept pace with computing advancements, and are now quite good. At the tip of the spear recently are GPU-based computing, improved fast-solvation methods, continued advances in force fields, and conformational sampling methods that harness external information. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ethical Guidelines for Computer Security Researchers: "Be Reasonable"
NASA Astrophysics Data System (ADS)
Sassaman, Len
For most of its existence, the field of computer science has been lucky enough to avoid ethical dilemmas by virtue of its relatively benign nature. The subdisciplines of programming methodology research, microprocessor design, and so forth have little room for the greater questions of human harm. Other, more recently developed sub-disciplines, such as data mining, social network analysis, behavioral profiling, and general computer security, however, open the door to abuse of users by practitioners and researchers. It is therefore the duty of the men and women who chart the course of these fields to set rules for themselves regarding what sorts of actions on their part are to be considered acceptable and what should be avoided or handled with caution out of ethical concerns. This paper deals solely with the issues faced by computer security researchers, be they vulnerability analysts, privacy system designers, malware experts, or reverse engineers.
Eisler, Matthew N
Historians of science and technology have generally ignored the role of power sources in the development of consumer electronics. In this they have followed the predilections of historical actors. Research, development, and manufacturing of batteries has historically occurred at a social and intellectual distance from the research, development, and manufacturing of the devices they power. Nevertheless, power source technoscience should properly be understood as an allied yet estranged field of electronics. The separation between the fields has had important consequences for the design and manufacturing of mobile consumer electronics. This paper explores these dynamics in the co-construction of notebook batteries and computers. In so doing, it challenges assumptions of historians and industrial engineers and planners about the nature of computer systems in particular and the development of technological systems. The co-construction of notebook computers and batteries, and the occasional catastrophic failure of their compatibility, challenges systems thinking more generally.
Density functional theory in the solid state
Hasnip, Philip J.; Refson, Keith; Probert, Matt I. J.; Yates, Jonathan R.; Clark, Stewart J.; Pickard, Chris J.
2014-01-01
Density functional theory (DFT) has been used in many fields of the physical sciences, but none so successfully as in the solid state. From its origins in condensed matter physics, it has expanded into materials science, high-pressure physics and mineralogy, solid-state chemistry and more, powering entire computational subdisciplines. Modern DFT simulation codes can calculate a vast range of structural, chemical, optical, spectroscopic, elastic, vibrational and thermodynamic phenomena. The ability to predict structure–property relationships has revolutionized experimental fields, such as vibrational and solid-state NMR spectroscopy, where it is the primary method to analyse and interpret experimental spectra. In semiconductor physics, great progress has been made in the electronic structure of bulk and defect states despite the severe challenges presented by the description of excited states. Studies are no longer restricted to known crystallographic structures. DFT is increasingly used as an exploratory tool for materials discovery and computational experiments, culminating in ex nihilo crystal structure prediction, which addresses the long-standing difficult problem of how to predict crystal structure polymorphs from nothing but a specified chemical composition. We present an overview of the capabilities of solid-state DFT simulations in all of these topics, illustrated with recent examples using the CASTEP computer program. PMID:24516184
Critical Thinking Traits of Top-Tier Experts and Implications for Computer Science Education
2007-08-01
field of cognitive theory ," [Papert 1999] used his work while developing the Logo programming language. 19 Although other researchers had developed ...of computer expert systems influenced the development of current theories dealing with cognitive abilities. One of the most important initiatives by...multitude of factors involved. He also builds on the cognitive development work of Piaget and is not ready to abandon the generalist approach. Instead, he
NASA Technical Reports Server (NTRS)
Craig, Douglas F.
1992-01-01
This presentation gives a brief history of the field of materials sciences and goes on to expound the advantages of the fastest growing area in that field, namely ceramics. Since ceramics are moving to fill the demand for lighter, stronger, more corrosion resistant materials, advancements will rely more on processing and modeling from the atomic scale up which is made possible by advanced analytical, computer, and processing techniques. All information is presented in viewgraph format.
A Multidimensional Software Engineering Course
ERIC Educational Resources Information Center
Barzilay, O.; Hazzan, O.; Yehudai, A.
2009-01-01
Software engineering (SE) is a multidimensional field that involves activities in various areas and disciplines, such as computer science, project management, and system engineering. Though modern SE curricula include designated courses that address these various subjects, an advanced summary course that synthesizes them is still missing. Such a…
Scientific conferences: A big hello to halogen bonding
NASA Astrophysics Data System (ADS)
Erdelyi, Mate
2014-09-01
Halogen bonding connects a wide range of subjects -- from materials science to structural biology, from computation to crystal engineering, and from synthesis to spectroscopy. The 1st International Symposium on Halogen Bonding explored the state of the art in this fast-growing field of research.
Scenarios for Evolution of Air Traffic Control,
1981-11-01
decisionmaking systems. We have thus approached it from the perspectives of computer science, engineering, human-factors psychology , and the emerging field of...assurance monitor or indepen- dent collision-avoidance system like ATARS could prevent the acci- 35 dent), but there will undoubtedly be other situations
Annual symposium on Frontiers in Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metzger, N.; Fulton, K.R.
This final report summarizes activities conducted for the National Academy of Sciences' Annual Symposium on Frontiers of Science with support from the US Department of Energy for the period July 1, 1993 through May 31, 1998. During the report period, five Frontiers of Science symposia were held at the Arnold and Mabel Beckman Center of the National Academies of Sciences and Engineering. For each Symposium, an organizing committee appointed by the NAS President selected and planned the eight sessions for the Symposium and identified general participants for invitation by the NAS President. These Symposia accomplished their goal of bringing togethermore » outstanding younger (age 45 or less) scientists to hear presentations in disciplines outside their own and to discuss exciting advances and opportunities in their fields in a format that encourages, and allows adequate time for, informal one-on-one discussions among participants. Of the 458 younger scientists who participated, over a quarter (124) were women. Participant lists for all symposia (1993--1997) are attached. The scientific participants were leaders in basic research from academic, industrial, and federal laboratories in such disciplines as astronomy, astrophysics, atmospheric science, biochemistry, cell biology, chemistry, computer science, earth sciences, engineering, genetics, material sciences, mathematics, microbiology, neuroscience, physics, and physiology. For each symposia, the 24 speakers and discussants on the program were urged to focus their presentations on current cutting-edge research in their field for a scientifically sophisticated but non-specialist audience, and to provide a sense of the experimental data--what is actually measured and seen in the various fields. They were also asked to address questions such as: What are the major research problems and unique tools in their field? What are the current limitations on advances as well as the frontiers? Speakers were asked to provide a 2500- to 3000-word synopsis of their speech in advance, so that participants, particularly those in other fields, could familiarize themselves with the topic.« less
Sign use and cognition in automated scientific discovery: are computers only special kinds of signs?
NASA Astrophysics Data System (ADS)
Giza, Piotr
2018-04-01
James Fetzer criticizes the computational paradigm, prevailing in cognitive science by questioning, what he takes to be, its most elementary ingredient: that cognition is computation across representations. He argues that if cognition is taken to be a purposive, meaningful, algorithmic problem solving activity, then computers are incapable of cognition. Instead, they appear to be signs of a special kind, that can facilitate computation. He proposes the conception of minds as semiotic systems as an alternative paradigm for understanding mental phenomena, one that seems to overcome the difficulties of computationalism. Now, I argue, that with computer systems dealing with scientific discovery, the matter is not so simple as that. The alleged superiority of humans using signs to stand for something other over computers being merely "physical symbol systems" or "automatic formal systems" is only easy to establish in everyday life, but becomes far from obvious when scientific discovery is at stake. In science, as opposed to everyday life, the meaning of symbols is, apart from very low-level experimental investigations, defined implicitly by the way the symbols are used in explanatory theories or experimental laws relevant to the field, and in consequence, human and machine discoverers are much more on a par. Moreover, the great practical success of the genetic programming method and recent attempts to apply it to automatic generation of cognitive theories seem to show, that computer systems are capable of very efficient problem solving activity in science, which is neither purposive nor meaningful, nor algorithmic. This, I think, undermines Fetzer's argument that computer systems are incapable of cognition because computation across representations is bound to be a purposive, meaningful, algorithmic problem solving activity.
Lefor, Alan T
2011-08-01
Oncology research has traditionally been conducted using techniques from the biological sciences. The new field of computational oncology has forged a new relationship between the physical sciences and oncology to further advance research. By applying physics and mathematics to oncologic problems, new insights will emerge into the pathogenesis and treatment of malignancies. One major area of investigation in computational oncology centers around the acquisition and analysis of data, using improved computing hardware and software. Large databases of cellular pathways are being analyzed to understand the interrelationship among complex biological processes. Computer-aided detection is being applied to the analysis of routine imaging data including mammography and chest imaging to improve the accuracy and detection rate for population screening. The second major area of investigation uses computers to construct sophisticated mathematical models of individual cancer cells as well as larger systems using partial differential equations. These models are further refined with clinically available information to more accurately reflect living systems. One of the major obstacles in the partnership between physical scientists and the oncology community is communications. Standard ways to convey information must be developed. Future progress in computational oncology will depend on close collaboration between clinicians and investigators to further the understanding of cancer using these new approaches.
What Physicists Should Know About High Performance Computing - Circa 2002
NASA Astrophysics Data System (ADS)
Frederick, Donald
2002-08-01
High Performance Computing (HPC) is a dynamic, cross-disciplinary field that traditionally has involved applied mathematicians, computer scientists, and others primarily from the various disciplines that have been major users of HPC resources - physics, chemistry, engineering, with increasing use by those in the life sciences. There is a technological dynamic that is powered by economic as well as by technical innovations and developments. This talk will discuss practical ideas to be considered when developing numerical applications for research purposes. Even with the rapid pace of development in the field, the author believes that these concepts will not become obsolete for a while, and will be of use to scientists who either are considering, or who have already started down the HPC path. These principles will be applied in particular to current parallel HPC systems, but there will also be references of value to desktop users. The talk will cover such topics as: computing hardware basics, single-cpu optimization, compilers, timing, numerical libraries, debugging and profiling tools and the emergence of Computational Grids.
Towards Large-area Field-scale Operational Evapotranspiration for Water Use Mapping
NASA Astrophysics Data System (ADS)
Senay, G. B.; Friedrichs, M.; Morton, C.; Huntington, J. L.; Verdin, J.
2017-12-01
Field-scale evapotranspiration (ET) estimates are needed for improving surface and groundwater use and water budget studies. Ideally, field-scale ET estimates would be at regional to national levels and cover long time periods. As a result of large data storage and computational requirements associated with processing field-scale satellite imagery such as Landsat, numerous challenges remain to develop operational ET estimates over large areas for detailed water use and availability studies. However, the combination of new science, data availability, and cloud computing technology is enabling unprecedented capabilities for ET mapping. To demonstrate this capability, we used Google's Earth Engine cloud computing platform to create nationwide annual ET estimates with 30-meter resolution Landsat ( 16,000 images) and gridded weather data using the Operational Simplified Surface Energy Balance (SSEBop) model in support of the National Water Census, a USGS research program designed to build decision support capacity for water management agencies and other natural resource managers. By leveraging Google's Earth Engine Application Programming Interface (API) and developing software in a collaborative, open-platform environment, we rapidly advance from research towards applications for large-area field-scale ET mapping. Cloud computing of the Landsat image archive combined with other satellite, climate, and weather data, is creating never imagined opportunities for assessing ET model behavior and uncertainty, and ultimately providing the ability for more robust operational monitoring and assessment of water use at field-scales.
Computer Applications in Health Science Education.
Juanes, Juan A; Ruisoto, Pablo
2015-09-01
In recent years, computer application development has experienced exponential growth, not only in the number of publications but also in the scope or contexts that have benefited from its use. In health science training, and medicine specifically, the gradual incorporation of technological developments has transformed the teaching and learning process, resulting in true "educational technology". The goal of this paper is to review the main features involved in these applications and highlight the main lines of research for the future. The results of peer reviewed literature published recently indicate the following features shared by the key technological developments in the field of health science education: first, development of simulation and visualization systems for a more complete and realistic representation of learning material over traditional paper format; second, portability and versatility of the applications, adapted for an increasing number of devices and operative systems; third, increasing focus on open source applications such as Massive Open Online Course (MOOC).
Smart Payload Development for High Data Rate Instrument Systems
NASA Technical Reports Server (NTRS)
Pingree, Paula J.; Norton, Charles D.
2007-01-01
This slide presentation reviews the development of smart payloads instruments systems with high data rates. On-board computation has become a bottleneck for advanced science instrument and engineering capabilities. In order to improve the computation capability on board, smart payloads have been proposed. A smart payload is a Localized instrument, that can offload the flight processor of extensive computing cycles, simplify the interfaces, and minimize the dependency of the instrument on the flight system. This has been proposed for the Mars mission, Mars Atmospheric Trace Molecule Spectroscopy (MATMOS). The design of this system is discussed; the features of the Virtex-4, are discussed, and the technical approach is reviewed. The proposed Hybrid Field Programmable Gate Array (FPGA) technology has been shown to deliver breakthrough performance by tightly coupling hardware and software. Smart Payload designs for instruments such as MATMOS can meet science data return requirements with more competitive use of available on-board resources and can provide algorithm acceleration in hardware leading to implementation of better (more advanced) algorithms in on-board systems for improved science data return
Perspectives on the Future of CFD
NASA Technical Reports Server (NTRS)
Kwak, Dochan
2000-01-01
This viewgraph presentation gives an overview of the future of computational fluid dynamics (CFD), which in the past has pioneered the field of flow simulation. Over time CFD has progressed as computing power. Numerical methods have been advanced as CPU and memory capacity increases. Complex configurations are routinely computed now and direct numerical simulations (DNS) and large eddy simulations (LES) are used to study turbulence. As the computing resources changed to parallel and distributed platforms, computer science aspects such as scalability (algorithmic and implementation) and portability and transparent codings have advanced. Examples of potential future (or current) challenges include risk assessment, limitations of the heuristic model, and the development of CFD and information technology (IT) tools.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Windus, Theresa; Banda, Michael; Devereaux, Thomas
Computers have revolutionized every aspect of our lives. Yet in science, the most tantalizing applications of computing lie just beyond our reach. The current quest to build an exascale computer with one thousand times the capability of today’s fastest machines (and more than a million times that of a laptop) will take researchers over the next horizon. The field of materials, chemical reactions, and compounds is inherently complex. Imagine millions of new materials with new functionalities waiting to be discovered — while researchers also seek to extend those materials that are known to a dizzying number of new forms. Wemore » could translate massive amounts of data from high precision experiments into new understanding through data mining and analysis. We could have at our disposal the ability to predict the properties of these materials, to follow their transformations during reactions on an atom-by-atom basis, and to discover completely new chemical pathways or physical states of matter. Extending these predictions from the nanoscale to the mesoscale, from the ultrafast world of reactions to long-time simulations to predict the lifetime performance of materials, and to the discovery of new materials and processes will have a profound impact on energy technology. In addition, discovery of new materials is vital to move computing beyond Moore’s law. To realize this vision, more than hardware is needed. New algorithms to take advantage of the increase in computing power, new programming paradigms, and new ways of mining massive data sets are needed as well. This report summarizes the opportunities and the requisite computing ecosystem needed to realize the potential before us. In addition to pursuing new and more complete physical models and theoretical frameworks, this review found that the following broadly grouped areas relevant to the U.S. Department of Energy (DOE) Office of Advanced Scientific Computing Research (ASCR) would directly affect the Basic Energy Sciences (BES) mission need. Simulation, visualization, and data analysis are crucial for advances in energy science and technology. Revolutionary mathematical, software, and algorithm developments are required in all areas of BES science to take advantage of exascale computing architectures and to meet data analysis, management, and workflow needs. In partnership with ASCR, BES has an emerging and pressing need to develop new and disruptive capabilities in data science. More capable and larger high-performance computing (HPC) and data ecosystems are required to support priority research in BES. Continued success in BES research requires developing the next-generation workforce through education and training and by providing sustained career opportunities.« less
NASA Technical Reports Server (NTRS)
Meyer, J. D.
1977-01-01
Space technology transfer is discussed as applied to the field of materials science. Advances made in processing include improved computer techniques, and structural analysis. Technology transfer is shown to have an important impact potential in the overall productivity of the United States.
Scientists at Work. Final Report.
ERIC Educational Resources Information Center
Education Turnkey Systems, Inc., Falls Church, VA.
This report summarizes activities related to the development, field testing, evaluation, and marketing of the "Scientists at Work" program which combines computer assisted instruction with database tools to aid cognitively impaired middle and early high school children in learning and applying thinking skills to science. The brief report reviews…
Restructuring Graduate Engineering Education: The M.Eng. Program at Cornell.
ERIC Educational Resources Information Center
Cady, K. Bingham; And Others
1988-01-01
Discusses the restructuring of the graduate program to accommodate emerging fields in engineering. Notes half of the graduate degrees Cornell grants each year are M.Eng. degrees. Offers 12 specialties: aerospace, agriculture, chemical, civil, electrical, mechanical and nuclear engineering; computer science, engineering physics; geological…
The Role of Technology in Supporting Learning Communities.
ERIC Educational Resources Information Center
Riel, Margaret; Fulton, Kathleen
2001-01-01
In a learning community, students learn to cooperate and make teams work. Past technologies (print, photography, film, and computers) have enabled idea sharing, but are one-way communication modes. Broader learning communities have been made possible through electronic field trips, online mentoring, science investigations, and humanities…
77 FR 43286 - Agency Forms Undergoing Paperwork Reduction Act Review
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-24
... information are broken into nine separate questions (data fields) for computer entry. General information... Questions. Kimberly S. Lane, Deputy Director, Office of Science Integrity, Office of the Associate Director... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention [30-Day-12-0040...
The Development of the Administrative Sciences Personal Computer Network Tutorial.
1987-09-01
much attention being paid recently to the field of user interface design. No longer is it important to just design systems that meet the market demand...4 8 9. The Netw ork Status ................... ............. . 55 10. A pplications and O nline Help .. .......................... 62 11. Leavin
Stepping into the omics era: Opportunities and challenges for biomaterials science and engineering.
Groen, Nathalie; Guvendiren, Murat; Rabitz, Herschel; Welsh, William J; Kohn, Joachim; de Boer, Jan
2016-04-01
The research paradigm in biomaterials science and engineering is evolving from using low-throughput and iterative experimental designs towards high-throughput experimental designs for materials optimization and the evaluation of materials properties. Computational science plays an important role in this transition. With the emergence of the omics approach in the biomaterials field, referred to as materiomics, high-throughput approaches hold the promise of tackling the complexity of materials and understanding correlations between material properties and their effects on complex biological systems. The intrinsic complexity of biological systems is an important factor that is often oversimplified when characterizing biological responses to materials and establishing property-activity relationships. Indeed, in vitro tests designed to predict in vivo performance of a given biomaterial are largely lacking as we are not able to capture the biological complexity of whole tissues in an in vitro model. In this opinion paper, we explain how we reached our opinion that converging genomics and materiomics into a new field would enable a significant acceleration of the development of new and improved medical devices. The use of computational modeling to correlate high-throughput gene expression profiling with high throughput combinatorial material design strategies would add power to the analysis of biological effects induced by material properties. We believe that this extra layer of complexity on top of high-throughput material experimentation is necessary to tackle the biological complexity and further advance the biomaterials field. In this opinion paper, we postulate that converging genomics and materiomics into a new field would enable a significant acceleration of the development of new and improved medical devices. The use of computational modeling to correlate high-throughput gene expression profiling with high throughput combinatorial material design strategies would add power to the analysis of biological effects induced by material properties. We believe that this extra layer of complexity on top of high-throughput material experimentation is necessary to tackle the biological complexity and further advance the biomaterials field. Copyright © 2016. Published by Elsevier Ltd.
Computational methods to extract meaning from text and advance theories of human cognition.
McNamara, Danielle S
2011-01-01
Over the past two decades, researchers have made great advances in the area of computational methods for extracting meaning from text. This research has to a large extent been spurred by the development of latent semantic analysis (LSA), a method for extracting and representing the meaning of words using statistical computations applied to large corpora of text. Since the advent of LSA, researchers have developed and tested alternative statistical methods designed to detect and analyze meaning in text corpora. This research exemplifies how statistical models of semantics play an important role in our understanding of cognition and contribute to the field of cognitive science. Importantly, these models afford large-scale representations of human knowledge and allow researchers to explore various questions regarding knowledge, discourse processing, text comprehension, and language. This topic includes the latest progress by the leading researchers in the endeavor to go beyond LSA. Copyright © 2010 Cognitive Science Society, Inc.
The quantum computer game: citizen science
NASA Astrophysics Data System (ADS)
Damgaard, Sidse; Mølmer, Klaus; Sherson, Jacob
2013-05-01
Progress in the field of quantum computation is hampered by daunting technical challenges. Here we present an alternative approach to solving these by enlisting the aid of computer players around the world. We have previously examined a quantum computation architecture involving ultracold atoms in optical lattices and strongly focused tweezers of light. In The Quantum Computer Game (see http://www.scienceathome.org/), we have encapsulated the time-dependent Schrödinger equation for the problem in a graphical user interface allowing for easy user input. Players can then search the parameter space with real-time graphical feedback in a game context with a global high-score that rewards short gate times and robustness to experimental errors. The game which is still in a demo version has so far been tried by several hundred players. Extensions of the approach to other models such as Gross-Pitaevskii and Bose-Hubbard are currently under development. The game has also been incorporated into science education at high-school and university level as an alternative method for teaching quantum mechanics. Initial quantitative evaluation results are very positive. AU Ideas Center for Community Driven Research, CODER.
What do computer scientists tweet? Analyzing the link-sharing practice on Twitter.
Schmitt, Marco; Jäschke, Robert
2017-01-01
Twitter communication has permeated every sphere of society. To highlight and share small pieces of information with possibly vast audiences or small circles of the interested has some value in almost any aspect of social life. But what is the value exactly for a scientific field? We perform a comprehensive study of computer scientists using Twitter and their tweeting behavior concerning the sharing of web links. Discerning the domains, hosts and individual web pages being tweeted and the differences between computer scientists and a Twitter sample enables us to look in depth at the Twitter-based information sharing practices of a scientific community. Additionally, we aim at providing a deeper understanding of the role and impact of altmetrics in computer science and give a glance at the publications mentioned on Twitter that are most relevant for the computer science community. Our results show a link sharing culture that concentrates more heavily on public and professional quality information than the Twitter sample does. The results also show a broad variety in linked sources and especially in linked publications with some publications clearly related to community-specific interests of computer scientists, while others with a strong relation to attention mechanisms in social media. This refers to the observation that Twitter is a hybrid form of social media between an information service and a social network service. Overall the computer scientists' style of usage seems to be more on the information-oriented side and to some degree also on professional usage. Therefore, altmetrics are of considerable use in analyzing computer science.
What do computer scientists tweet? Analyzing the link-sharing practice on Twitter
Schmitt, Marco
2017-01-01
Twitter communication has permeated every sphere of society. To highlight and share small pieces of information with possibly vast audiences or small circles of the interested has some value in almost any aspect of social life. But what is the value exactly for a scientific field? We perform a comprehensive study of computer scientists using Twitter and their tweeting behavior concerning the sharing of web links. Discerning the domains, hosts and individual web pages being tweeted and the differences between computer scientists and a Twitter sample enables us to look in depth at the Twitter-based information sharing practices of a scientific community. Additionally, we aim at providing a deeper understanding of the role and impact of altmetrics in computer science and give a glance at the publications mentioned on Twitter that are most relevant for the computer science community. Our results show a link sharing culture that concentrates more heavily on public and professional quality information than the Twitter sample does. The results also show a broad variety in linked sources and especially in linked publications with some publications clearly related to community-specific interests of computer scientists, while others with a strong relation to attention mechanisms in social media. This refers to the observation that Twitter is a hybrid form of social media between an information service and a social network service. Overall the computer scientists’ style of usage seems to be more on the information-oriented side and to some degree also on professional usage. Therefore, altmetrics are of considerable use in analyzing computer science. PMID:28636619
The Synthetic Aperture Radar Science Data Processing Foundry Concept for Earth Science
NASA Astrophysics Data System (ADS)
Rosen, P. A.; Hua, H.; Norton, C. D.; Little, M. M.
2015-12-01
Since 2008, NASA's Earth Science Technology Office and the Advanced Information Systems Technology Program have invested in two technology evolutions to meet the needs of the community of scientists exploiting the rapidly growing database of international synthetic aperture radar (SAR) data. JPL, working with the science community, has developed the InSAR Scientific Computing Environment (ISCE), a next-generation interferometric SAR processing system that is designed to be flexible and extensible. ISCE currently supports many international space borne data sets but has been primarily focused on geodetic science and applications. A second evolutionary path, the Advanced Rapid Imaging and Analysis (ARIA) science data system, uses ISCE as its core science data processing engine and produces automated science and response products, quality assessments and metadata. The success of this two-front effort has been demonstrated in NASA's ability to respond to recent events with useful disaster support. JPL has enabled high-volume and low latency data production by the re-use of the hybrid cloud computing science data system (HySDS) that runs ARIA, leveraging on-premise cloud computing assets that are able to burst onto the Amazon Web Services (AWS) services as needed. Beyond geodetic applications, needs have emerged to process large volumes of time-series SAR data collected for estimation of biomass and its change, in such campaigns as the upcoming AfriSAR field campaign. ESTO is funding JPL to extend the ISCE-ARIA model to a "SAR Science Data Processing Foundry" to on-ramp new data sources and to produce new science data products to meet the needs of science teams and, in general, science community members. An extension of the ISCE-ARIA model to support on-demand processing will permit PIs to leverage this Foundry to produce data products from accepted data sources when they need them. This paper will describe each of the elements of the SAR SDP Foundry and describe their integration into a new conceptual approach to enable more effective use of SAR instruments.
NASA Astrophysics Data System (ADS)
Perfors, Amy
2014-09-01
There is much to approve of in this provocative and interesting paper. I strongly agree in many parts, especially the point that dichotomies like nature/nurture are actively detrimental to the field. I also appreciate the idea that cognitive scientists should take the "biological wetware" of the cell (rather than the network) more seriously.
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. House Committee on Science and Technology.
Hearings on the use of computer technology in the health care field are presented to provide information needed by Congress and the Food and Drug Administration to make future policies. Medical computing systems can make interpretations of data on the patient's health and can generate diagnostic recommendations to the physician. Included are…
Noel, Jean-Paul; Blanke, Olaf; Serino, Andrea
2018-06-06
Integrating information across sensory systems is a critical step toward building a cohesive representation of the environment and one's body, and as illustrated by numerous illusions, scaffolds subjective experience of the world and self. In the last years, classic principles of multisensory integration elucidated in the subcortex have been translated into the language of statistical inference understood by the neocortical mantle. Most importantly, a mechanistic systems-level description of multisensory computations via probabilistic population coding and divisive normalization is actively being put forward. In parallel, by describing and understanding bodily illusions, researchers have suggested multisensory integration of bodily inputs within the peripersonal space as a key mechanism in bodily self-consciousness. Importantly, certain aspects of bodily self-consciousness, although still very much a minority, have been recently casted under the light of modern computational understandings of multisensory integration. In doing so, we argue, the field of bodily self-consciousness may borrow mechanistic descriptions regarding the neural implementation of inference computations outlined by the multisensory field. This computational approach, leveraged on the understanding of multisensory processes generally, promises to advance scientific comprehension regarding one of the most mysterious questions puzzling humankind, that is, how our brain creates the experience of a self in interaction with the environment. © 2018 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.
Topics in computational physics
NASA Astrophysics Data System (ADS)
Monville, Maura Edelweiss
Computational Physics spans a broad range of applied fields extending beyond the border of traditional physics tracks. Demonstrated flexibility and capability to switch to a new project, and pick up the basics of the new field quickly, are among the essential requirements for a computational physicist. In line with the above mentioned prerequisites, my thesis described the development and results of two computational projects belonging to two different applied science areas. The first project is a Materials Science application. It is a prescription for an innovative nano-fabrication technique that is built out of two other known techniques. The preliminary results of the simulation of this novel nano-patterning fabrication method show an average improvement, roughly equal to 18%, with respect to the single techniques it draws on. The second project is a Homeland Security application aimed at preventing smuggling of nuclear material at ports of entry. It is concerned with a simulation of an active material interrogation system based on the analysis of induced photo-nuclear reactions. This project consists of a preliminary evaluation of the photo-fission implementation in the more robust radiation transport Monte Carlo codes, followed by the customization and extension of MCNPX, a Monte Carlo code developed in Los Alamos National Laboratory, and MCNP-PoliMi. The final stage of the project consists of testing the interrogation system against some real world scenarios, for the purpose of determining the system's reliability, material discrimination power, and limitations.
GES DISC Data Recipes in Jupyter Notebooks
NASA Astrophysics Data System (ADS)
Li, A.; Banavige, B.; Garimella, K.; Rice, J.; Shen, S.; Liu, Z.
2017-12-01
The Earth Science Data and Information System (ESDIS) Project manages twelve Distributed Active Archive Centers (DAACs) which are geographically dispersed across the United States. The DAACs are responsible for ingesting, processing, archiving, and distributing Earth science data produced from various sources (satellites, aircraft, field measurements, etc.). In response to projections of an exponential increase in data production, there has been a recent effort to prototype various DAAC activities in the cloud computing environment. This, in turn, led to the creation of an initiative, called the Cloud Analysis Toolkit to Enable Earth Science (CATEES), to develop a Python software package in order to transition Earth science data processing to the cloud. This project, in particular, supports CATEES and has two primary goals. One, transition data recipes created by the Goddard Earth Science Data and Information Service Center (GES DISC) DAAC into an interactive and educational environment using Jupyter Notebooks. Two, acclimate Earth scientists to cloud computing. To accomplish these goals, we create Jupyter Notebooks to compartmentalize the different steps of data analysis and help users obtain and parse data from the command line. We also develop a Docker container, comprised of Jupyter Notebooks, Python library dependencies, and command line tools, and configure it into an easy to deploy package. The end result is an end-to-end product that simulates the use case of end users working in the cloud computing environment.
NASA Astrophysics Data System (ADS)
Genoways, Sharon K.
STEM (Science, Technology, Engineering and Math) education creates critical thinkers, increases science literacy, and enables the next generation of innovators, which leads to new products and processes that sustain our economy (Hossain & Robinson, 2012). We have been hearing the warnings for several years, that there simply are not enough young scientists entering into the STEM professional pathways to replace all of the retiring professionals (Brown, Brown, Reardon, & Merrill, 2011; Harsh, Maltese, & Tai, 2012; Heilbronner, 2011; Scott, 2012). The problem is not necessarily due to a lack of STEM skills and concept proficiency. There also appears to be a lack of interest in these fields. Recent evidence suggests that many of the most proficient students, especially minority students and women, have been gravitating away from science and engineering toward other professions. (President's Council of Advisors on Science and Technology, 2010). The purpose of this qualitative research study was an attempt to determine how high schools can best prepare and encourage young women for a career in engineering or computer science. This was accomplished by interviewing a pool of 21 women, 5 recent high school graduates planning to major in STEM, 5 college students who had completed at least one full year of coursework in an engineering or computer science major and 11 professional women who had been employed as an engineer or computer scientist for at least one full year. These women were asked to share the high school courses, activities, and experiences that best prepared them to pursue an engineering or computer science major. Five central themes emerged from this study; coursework in physics and calculus, promotion of STEM camps and clubs, teacher encouragement of STEM capabilities and careers, problem solving, critical thinking and confidence building activities in the classroom, and allowing students the opportunity to fail and ask questions in a safe environment. These themes may be implemented by any instructor, in any course, who wishes to provide students with the means to success in their quest for a STEM career.
Mobile economics and pricing of health care services.
Huttin, Christine C
2012-01-01
This paper presents tools and concepts to analyze the business environment of the biopharmaceutical industry. It was presented at MEDETEL 2010. Emerging paradigms appear in that industry and new ways to value life science technologies are developed especially using mobile economics analysis. At a time, mobile computing technologies revolutionize the field of health care, this paper contributes to show how the value chain concept can be useful to analyze the value system in a mobile computing environment. It is also a milestone for the designs of future technology platforms and of health care infrastructure, in order to retain enough value between innovators, new and traditionnal players from life science, IT and other new comers, in a fragmented global competitive environment.
Mission leverage education: NSU/NASA innovative undergraduate model
NASA Technical Reports Server (NTRS)
Chaudhury, S. Raj; Shaw, Paula R. D.
2005-01-01
The BEST Lab (Center for Excellence in Science Education), the Center for Materials Research (CMR), and the Chemistry, Mathematics, Physics, and Computer Science (CS) Departments at Norfolk State University (NSU) joined forces to implement MiLEN(2) IUM - an innovative approach tu integrate current and emerging research into the undergraduate curricula and train students on NASA-related fields. An Earth Observing System (EOS) mission was simulated where students are educated and trained in many aspects of Remote Sensing: detector physics and spectroscopy; signal processing; data conditioning, analysis, visualization; and atmospheric science. This model and its continued impact is expected to significantly enhance the quality of the Mathematics, Science, Engineering and Technology (MSET or SMET) educational experience and to inspire students from historically underrepresented groups to pursue careers in NASA-related fields. MiLEN(2) IUM will be applicable to other higher education institutions that are willing to make the commitment to this endeavor in terms of faculty interest and space.
Rigorous derivation of porous-media phase-field equations
NASA Astrophysics Data System (ADS)
Schmuck, Markus; Kalliadasis, Serafim
2017-11-01
The evolution of interfaces in Complex heterogeneous Multiphase Systems (CheMSs) plays a fundamental role in a wide range of scientific fields such as thermodynamic modelling of phase transitions, materials science, or as a computational tool for interfacial flow studies or material design. Here, we focus on phase-field equations in CheMSs such as porous media. To the best of our knowledge, we present the first rigorous derivation of error estimates for fourth order, upscaled, and nonlinear evolution equations. For CheMs with heterogeneity ɛ, we obtain the convergence rate ɛ 1 / 4 , which governs the error between the solution of the new upscaled formulation and the solution of the microscopic phase-field problem. This error behaviour has recently been validated computationally in. Due to the wide range of application of phase-field equations, we expect this upscaled formulation to allow for new modelling, analytic, and computational perspectives for interfacial transport and phase transformations in CheMSs. This work was supported by EPSRC, UK, through Grant Nos. EP/H034587/1, EP/L027186/1, EP/L025159/1, EP/L020564/1, EP/K008595/1, and EP/P011713/1 and from ERC via Advanced Grant No. 247031.
The evolution and future of minimalism in neurological surgery.
Liu, Charles Y; Wang, Michael Y; Apuzzo, Michael L J
2004-11-01
The evolution of the field of neurological surgery has been marked by a progressive minimalism. This has been evident in the development of an entire arsenal of modern neurosurgical enterprises, including microneurosurgery, neuroendoscopy, stereotactic neurosurgery, endovascular techniques, radiosurgical systems, intraoperative and navigational devices, and in the last decade, cellular and molecular adjuvants. In addition to reviewing the major developments and paradigm shifts in the cyclic reinvention of the field as it currently stands, this paper attempts to identify forces and developments that are likely to fuel the irresistible escalation of minimalism into the future. These forces include discoveries in computational science, imaging, molecular science, biomedical engineering, and information processing as they relate to the theme of minimalism. These areas are explained in the light of future possibilities offered by the emerging field of nanotechnology with molecular engineering.
Stepping into the omics era: Opportunities and challenges for biomaterials science and engineering☆
Rabitz, Herschel; Welsh, William J.; Kohn, Joachim; de Boer, Jan
2016-01-01
The research paradigm in biomaterials science and engineering is evolving from using low-throughput and iterative experimental designs towards high-throughput experimental designs for materials optimization and the evaluation of materials properties. Computational science plays an important role in this transition. With the emergence of the omics approach in the biomaterials field, referred to as materiomics, high-throughput approaches hold the promise of tackling the complexity of materials and understanding correlations between material properties and their effects on complex biological systems. The intrinsic complexity of biological systems is an important factor that is often oversimplified when characterizing biological responses to materials and establishing property-activity relationships. Indeed, in vitro tests designed to predict in vivo performance of a given biomaterial are largely lacking as we are not able to capture the biological complexity of whole tissues in an in vitro model. In this opinion paper, we explain how we reached our opinion that converging genomics and materiomics into a new field would enable a significant acceleration of the development of new and improved medical devices. The use of computational modeling to correlate high-throughput gene expression profiling with high throughput combinatorial material design strategies would add power to the analysis of biological effects induced by material properties. We believe that this extra layer of complexity on top of high-throughput material experimentation is necessary to tackle the biological complexity and further advance the biomaterials field. PMID:26876875
Dynamic Learning Style Prediction Method Based on a Pattern Recognition Technique
ERIC Educational Resources Information Center
Yang, Juan; Huang, Zhi Xing; Gao, Yue Xiang; Liu, Hong Tao
2014-01-01
During the past decade, personalized e-learning systems and adaptive educational hypermedia systems have attracted much attention from researchers in the fields of computer science Aand education. The integration of learning styles into an intelligent system is a possible solution to the problems of "learning deviation" and…
The Application of Peer Teaching in Digital Forensics Education
ERIC Educational Resources Information Center
Govan, Michelle
2016-01-01
The field of digital forensics requires a multidisciplinary understanding of a range of diverse subjects, but is interdisciplinary (in using principles, techniques and theories from other disciplines) encompassing both computer and forensic science. This requires that practitioners have a deep technical knowledge and understanding, but that they…
An Empirical Investigation into Programming Language Syntax
ERIC Educational Resources Information Center
Stefik, Andreas; Siebert, Susanna
2013-01-01
Recent studies in the literature have shown that syntax remains a significant barrier to novice computer science students in the field. While this syntax barrier is known to exist, whether and how it varies across programming languages has not been carefully investigated. For this article, we conducted four empirical studies on programming…
A Framework for Teaching Software Development Methods
ERIC Educational Resources Information Center
Dubinsky, Yael; Hazzan, Orit
2005-01-01
This article presents a study that aims at constructing a teaching framework for software development methods in higher education. The research field is a capstone project-based course, offered by the Technion's Department of Computer Science, in which Extreme Programming is introduced. The research paradigm is an Action Research that involves…
Making STEM Accessible and Effective through NASA Robotics Programs
ERIC Educational Resources Information Center
West, Jonathan; Vadiee, Nader; Sutherland, Emery; Kaye, Bradley; Baker, Kyle
2018-01-01
There is no question that Science, Math, Engineering, and Technology (STEM) education is critical to the future of our students and workforce. As technology advances, computer programming skills are becoming a necessity in almost all fields. However, teaching programming and other advanced technologies is very difficult, especially in…
Exchanging Education and Culture.
ERIC Educational Resources Information Center
Gustafson, Christine; Knowlton, Leslie
1993-01-01
An eight-week residential program at the University of California at Irvine aims to increase representation of Native American students in high-tech fields and to encourage transfer of Native American students to four-year programs. Students spend four weeks in intensive computer science classes and four weeks serving as interns at sponsoring…
Teaching Mathematics to Non-Mathematics Majors through Applications
ERIC Educational Resources Information Center
Abramovich, Sergei; Grinshpan, Arcadii Z.
2008-01-01
This article focuses on the important role of applications in teaching mathematics to students with career paths other than mathematics. These include the fields as diverse as education, engineering, business, and life sciences. Particular attention is given to instructional computing as a means for concept development in mathematics education…
ERIC Educational Resources Information Center
Kitts, Christopher; Quinn, Neil
2004-01-01
Santa Clara University's Robotic Systems Laboratory conducts an aggressive robotic development and operations program in which interdisciplinary teams of undergraduate students build and deploy a wide range of robotic systems, ranging from underwater vehicles to spacecraft. These year-long projects expose students to the breadth of and…
ERIC Educational Resources Information Center
Stowe, Ryan; Elvey, Jacob
2016-01-01
Chemistry in high school is often presented as a jumbled mass of topics drawn from inorganic, analytical, and physical sub-disciplines. With no central theme to build on, students may have trouble grasping the chemical sciences as a coherent field. In this article, Stowe and Elvey describe an activity that integrates different facets of chemistry…
Software Development Outsourcing Decision Support Tool with Neural Network Learning
2004-03-01
science, the first neuro-computer was built in 1954 by Marvin Minsky . In 1956, Dartmouth established a new research field of NN. Shortly after...04-16 50 This system was capable of recognizing letters and received much attention until 1969 when the Minsky and Papert paper discussed the
Community College Users' Report, Fall 1975.
ERIC Educational Resources Information Center
Zimmer, A. L., Ed.
This report was compiled from information supplied by instructors participating in the National Science Foundation's community college field test of PLATO IV--a computer-based system developed at the University of Illinois--during the fall semester of 1975. Represented here are the responses of instructors at five Illinois community colleges to…
Moore, Jason H
2007-11-01
Bioinformatics is an interdisciplinary field that blends computer science and biostatistics with biological and biomedical sciences such as biochemistry, cell biology, developmental biology, genetics, genomics, and physiology. An important goal of bioinformatics is to facilitate the management, analysis, and interpretation of data from biological experiments and observational studies. The goal of this review is to introduce some of the important concepts in bioinformatics that must be considered when planning and executing a modern biological research study. We review database resources as well as data mining software tools.
The Critical Path Institute's approach to precompetitive sharing and advancing regulatory science.
Woosley, R L; Myers, R T; Goodsaid, F
2010-05-01
Many successful large industries, such as computer-chip manufacturers, the cable television industry, and high-definition television developers,(1) have established successful precompetitive collaborations focusing on standards, applied science, and technology that advance the field for all stakeholders and benefit the public.(2) The pharmaceutical industry, however, has a well-earned reputation for fierce competition and did not demonstrate willingness to share data or knowledge until the US Food and Drug Administration (FDA) launched the Critical Path Initiative in 2004 (ref. 3).
Federal Technology Catalog 1982: Summaries of practical technology
NASA Astrophysics Data System (ADS)
The catalog presents summaries of practical technology selected for commercial potential and/or promising applications to the fields of computer technology, electrotechnology, energy, engineering, life sciences, machinery and tools, manufacturing, materials, physical sciences, and testing and instrumentation. Each summary not only describes a technology, but gives a source for further information. This publication describes some 1,100 new processes, inventions, equipment, software, and techniques developed by and for dozens of Federal agencies during 1982. Included is coverage of NASA Tech Briefs, DOE Energygrams, and Army Manufacturing Notes.
Current status and future direction of NASA's Space Life Sciences Program
NASA Technical Reports Server (NTRS)
White, Ronald J.; Lujan, Barbara F.
1989-01-01
The elements of the NASA Life Sciences Program that are related to manned space flight and biological scientific studies in space are reviewed. Projects included in the current program are outlined and the future direction of the program is discussed. Consideration is given to issues such as long-duration spaceflight, medical support in space, readaptation to the gravity field of earth, considerations for the Space Station, radiation hazards, environmental standards for space habitation, and human operator interaction with computers, robots, and telepresence systems.
Factors influencing exemplary science teachers' levels of computer use
NASA Astrophysics Data System (ADS)
Hakverdi, Meral
This study examines exemplary science teachers' use of technology in science instruction, factors influencing their level of computer use, their level of knowledge/skills in using specific computer applications for science instruction, their use of computer-related applications/tools during their instruction, and their students' use of computer applications/tools in or for their science class. After a relevant review of the literature certain variables were selected for analysis. These variables included personal self-efficacy in teaching with computers, outcome expectancy, pupil-control ideology, level of computer use, age, gender, teaching experience, personal computer use, professional computer use and science teachers' level of knowledge/skills in using specific computer applications for science instruction. The sample for this study includes middle and high school science teachers who received the Presidential Award for Excellence in Science Teaching Award (sponsored by the White House and the National Science Foundation) between the years 1997 and 2003 from all 50 states and U.S. territories. Award-winning science teachers were contacted about the survey via e-mail or letter with an enclosed return envelope. Of the 334 award-winning science teachers, usable responses were received from 92 science teachers, which made a response rate of 27.5%. Analysis of the survey responses indicated that exemplary science teachers have a variety of knowledge/skills in using computer related applications/tools. The most commonly used computer applications/tools are information retrieval via the Internet, presentation tools, online communication, digital cameras, and data collection probes. Results of the study revealed that students' use of technology in their science classroom is highly correlated with the frequency of their science teachers' use of computer applications/tools. The results of the multiple regression analysis revealed that personal self-efficacy related to the exemplary science teachers' level of computer use suggesting that computer use is dependent on perceived abilities at using computers. The teachers' use of computer-related applications/tools during class, and their personal self-efficacy, age, and gender are highly related with their level of knowledge/skills in using specific computer applications for science instruction. The teachers' level of knowledge/skills in using specific computer applications for science instruction and gender related to their use of computer-related applications/tools during class and the students' use of computer-related applications/tools in or for their science class. In conclusion, exemplary science teachers need assistance in learning and using computer-related applications/tool in their science class.
NASA Astrophysics Data System (ADS)
Beggrow, Elizabeth P.; Ha, Minsu; Nehm, Ross H.; Pearl, Dennis; Boone, William J.
2014-02-01
The landscape of science education is being transformed by the new Framework for Science Education (National Research Council, A framework for K-12 science education: practices, crosscutting concepts, and core ideas. The National Academies Press, Washington, DC, 2012), which emphasizes the centrality of scientific practices—such as explanation, argumentation, and communication—in science teaching, learning, and assessment. A major challenge facing the field of science education is developing assessment tools that are capable of validly and efficiently evaluating these practices. Our study examined the efficacy of a free, open-source machine-learning tool for evaluating the quality of students' written explanations of the causes of evolutionary change relative to three other approaches: (1) human-scored written explanations, (2) a multiple-choice test, and (3) clinical oral interviews. A large sample of undergraduates (n = 104) exposed to varying amounts of evolution content completed all three assessments: a clinical oral interview, a written open-response assessment, and a multiple-choice test. Rasch analysis was used to compute linear person measures and linear item measures on a single logit scale. We found that the multiple-choice test displayed poor person and item fit (mean square outfit >1.3), while both oral interview measures and computer-generated written response measures exhibited acceptable fit (average mean square outfit for interview: person 0.97, item 0.97; computer: person 1.03, item 1.06). Multiple-choice test measures were more weakly associated with interview measures (r = 0.35) than the computer-scored explanation measures (r = 0.63). Overall, Rasch analysis indicated that computer-scored written explanation measures (1) have the strongest correspondence to oral interview measures; (2) are capable of capturing students' normative scientific and naive ideas as accurately as human-scored explanations, and (3) more validly detect understanding than the multiple-choice assessment. These findings demonstrate the great potential of machine-learning tools for assessing key scientific practices highlighted in the new Framework for Science Education.
NASA Astrophysics Data System (ADS)
Chang, S. S. L.
State of the art technology in circuits, fields, and electronics is discussed. The principles and applications of these technologies to industry, digital processing, microwave semiconductors, and computer-aided design are explained. Important concepts and methodologies in mathematics and physics are reviewed, and basic engineering sciences and associated design methods are dealt with, including: circuit theory and the design of magnetic circuits and active filter synthesis; digital signal processing, including FIR and IIR digital filter design; transmission lines, electromagnetic wave propagation and surface acoustic wave devices. Also considered are: electronics technologies, including power electronics, microwave semiconductors, GaAs devices, and magnetic bubble memories; digital circuits and logic design.
Templet Web: the use of volunteer computing approach in PaaS-style cloud
NASA Astrophysics Data System (ADS)
Vostokin, Sergei; Artamonov, Yuriy; Tsarev, Daniil
2018-03-01
This article presents the Templet Web cloud service. The service is designed for high-performance scientific computing automation. The use of high-performance technology is specifically required by new fields of computational science such as data mining, artificial intelligence, machine learning, and others. Cloud technologies provide a significant cost reduction for high-performance scientific applications. The main objectives to achieve this cost reduction in the Templet Web service design are: (a) the implementation of "on-demand" access; (b) source code deployment management; (c) high-performance computing programs development automation. The distinctive feature of the service is the approach mainly used in the field of volunteer computing, when a person who has access to a computer system delegates his access rights to the requesting user. We developed an access procedure, algorithms, and software for utilization of free computational resources of the academic cluster system in line with the methods of volunteer computing. The Templet Web service has been in operation for five years. It has been successfully used for conducting laboratory workshops and solving research problems, some of which are considered in this article. The article also provides an overview of research directions related to service development.
NASA Astrophysics Data System (ADS)
Teodorescu, Liliana; Britton, David; Glover, Nigel; Heinrich, Gudrun; Lauret, Jérôme; Naumann, Axel; Speer, Thomas; Teixeira-Dias, Pedro
2012-06-01
ACAT2011 This volume of Journal of Physics: Conference Series is dedicated to scientific contributions presented at the 14th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2011) which took place on 5-7 September 2011 at Brunel University, UK. The workshop series, which began in 1990 in Lyon, France, brings together computer science researchers and practitioners, and researchers from particle physics and related fields in order to explore and confront the boundaries of computing and of automatic data analysis and theoretical calculation techniques. It is a forum for the exchange of ideas among the fields, exploring and promoting cutting-edge computing, data analysis and theoretical calculation techniques in fundamental physics research. This year's edition of the workshop brought together over 100 participants from all over the world. 14 invited speakers presented key topics on computing ecosystems, cloud computing, multivariate data analysis, symbolic and automatic theoretical calculations as well as computing and data analysis challenges in astrophysics, bioinformatics and musicology. Over 80 other talks and posters presented state-of-the art developments in the areas of the workshop's three tracks: Computing Technologies, Data Analysis Algorithms and Tools, and Computational Techniques in Theoretical Physics. Panel and round table discussions on data management and multivariate data analysis uncovered new ideas and collaboration opportunities in the respective areas. This edition of ACAT was generously sponsored by the Science and Technology Facility Council (STFC), the Institute for Particle Physics Phenomenology (IPPP) at Durham University, Brookhaven National Laboratory in the USA and Dell. We would like to thank all the participants of the workshop for the high level of their scientific contributions and for the enthusiastic participation in all its activities which were, ultimately, the key factors in the success of the workshop. Further information on ACAT 2011 can be found at http://acat2011.cern.ch Dr Liliana Teodorescu Brunel University ACATgroup The PDF also contains details of the workshop's committees and sponsors.
The space physics analysis network
NASA Astrophysics Data System (ADS)
Green, James L.
1988-04-01
The Space Physics Analysis Network, or SPAN, is emerging as a viable method for solving an immediate communication problem for space and Earth scientists and has been operational for nearly 7 years. SPAN and its extension into Europe, utilizes computer-to-computer communications allowing mail, binary and text file transfer, and remote logon capability to over 1000 space science computer systems. The network has been used to successfully transfer real-time data to remote researchers for rapid data analysis but its primary function is for non-real-time applications. One of the major advantages for using SPAN is its spacecraft mission independence. Space science researchers using SPAN are located in universities, industries and government institutions all across the United States and Europe. These researchers are in such fields as magnetospheric physics, astrophysics, ionosperic physics, atmospheric physics, climatology, meteorology, oceanography, planetary physics and solar physics. SPAN users have access to space and Earth science data bases, mission planning and information systems, and computational facilities for the purposes of facilitating correlative space data exchange, data analysis and space research. For example, the National Space Science Data Center (NSSDC), which manages the network, is providing facilities on SPAN such as the Network Information Center (SPAN NIC). SPAN has interconnections with several national and international networks such as HEPNET and TEXNET forming a transparent DECnet network. The combined total number of computers now reachable over these combined networks is about 2000. In addition, SPAN supports full function capabilities over the international public packet switched networks (e.g. TELENET) and has mail gateways to ARPANET, BITNET and JANET.
NASA Astrophysics Data System (ADS)
Gilbert-Valencia, Daniel H.
California community colleges contribute alarmingly few computer science degree or certificate earners. While the literature shows clear K-12 impediments to CS matriculation in higher education, very little is known about the experiences of those who overcome initial impediments to CS yet do not persist through to program completion. This phenomenological study explores insights into that specific experience by interviewing underrepresented, low income, first-generation college students who began community college intending to transfer to 4-year institutions majoring in CS but switched to another field and remain enrolled or graduated. This study explores the lived experiences of students facing barriers, their avenues for developing interest in CS, and the persistence support systems they encountered, specifically looking at how students constructed their academic choice from these experiences. The growing diversity within California's population necessitates that experiences specific to underrepresented students be considered as part of this exploration. Ten semi-structured interviews and observations were conducted, transcribed and coded. Artifacts supporting student experiences were also collected. Data was analyzed through a social-constructivist lens to provide insight into experiences and how they can be navigated to create actionable strategies for community college computer science departments wishing to increase student success. Three major themes emerged from this research: (1) students shared pre-college characteristics; (2) faced similar challenges in college CS courses; and (3) shared similar reactions to the "work" of computer science. Results of the study included (1) CS interest development hinged on computer ownership in the home; (2) participants shared characteristics that were ideal for college success but not CS success; and (3) encounters in CS departments produced unique challenges for participants. Though CS interest was and remains abundant, opportunities for learning programming skills before college were non-existent and there were few opportunities in college to build skills or establish a peer support networks. Recommendations for institutional leaders and further research are also provided.
Factors that Influence the Success of Male and Female Computer Programming Students in College
NASA Astrophysics Data System (ADS)
Clinkenbeard, Drew A.
As the demand for a technologically skilled work force grows, experience and skill in computer science have become increasingly valuable for college students. However, the number of students graduating with computer science degrees is not growing proportional to this need. Traditionally several groups are underrepresented in this field, notably women and students of color. This study investigated elements of computer science education that influence academic achievement in beginning computer programming courses. The goal of the study was to identify elements that increase success in computer programming courses. A 38-item questionnaire was developed and administered during the Spring 2016 semester at California State University Fullerton (CSUF). CSUF is an urban public university comprised of about 40,000 students. Data were collected from three beginning programming classes offered at CSUF. In total 411 questionnaires were collected resulting in a response rate of 58.63%. Data for the study were grouped into three broad categories of variables. These included academic and background variables; affective variables; and peer, mentor, and role-model variables. A conceptual model was developed to investigate how these variables might predict final course grade. Data were analyzed using statistical techniques such as linear regression, factor analysis, and path analysis. Ultimately this study found that peer interactions, comfort with computers, computer self-efficacy, self-concept, and perception of achievement were the best predictors of final course grade. In addition, the analyses showed that male students exhibited higher levels of computer self-efficacy and self-concept compared to female students, even when they achieved comparable course grades. Implications and explanations of these findings are explored, and potential policy changes are offered.
Applying colour science in colour design
NASA Astrophysics Data System (ADS)
Luo, Ming Ronnier
2006-06-01
Although colour science has been widely used in a variety of industries over the years, it has not been fully explored in the field of product design. This paper will initially introduce the three main application fields of colour science: colour specification, colour-difference evaluation and colour appearance modelling. By integrating these advanced colour technologies together with modern colour imaging devices such as display, camera, scanner and printer, some computer systems have been recently developed to assist designers for designing colour palettes through colour selection by means of a number of widely used colour order systems, for creating harmonised colour schemes via a categorical colour system, for generating emotion colours using various colour emotional scales and for facilitating colour naming via a colour-name library. All systems are also capable of providing accurate colour representation on displays and output to different imaging devices such as printers.
Challenges and opportunities of cloud computing for atmospheric sciences
NASA Astrophysics Data System (ADS)
Pérez Montes, Diego A.; Añel, Juan A.; Pena, Tomás F.; Wallom, David C. H.
2016-04-01
Cloud computing is an emerging technological solution widely used in many fields. Initially developed as a flexible way of managing peak demand it has began to make its way in scientific research. One of the greatest advantages of cloud computing for scientific research is independence of having access to a large cyberinfrastructure to fund or perform a research project. Cloud computing can avoid maintenance expenses for large supercomputers and has the potential to 'democratize' the access to high-performance computing, giving flexibility to funding bodies for allocating budgets for the computational costs associated with a project. Two of the most challenging problems in atmospheric sciences are computational cost and uncertainty in meteorological forecasting and climate projections. Both problems are closely related. Usually uncertainty can be reduced with the availability of computational resources to better reproduce a phenomenon or to perform a larger number of experiments. Here we expose results of the application of cloud computing resources for climate modeling using cloud computing infrastructures of three major vendors and two climate models. We show how the cloud infrastructure compares in performance to traditional supercomputers and how it provides the capability to complete experiments in shorter periods of time. The monetary cost associated is also analyzed. Finally we discuss the future potential of this technology for meteorological and climatological applications, both from the point of view of operational use and research.
The emergence of cognitive hearing science.
Arlinger, Stig; Lunner, Thomas; Lyxell, Björn; Pichora-Fuller, M Kathleen
2009-10-01
Cognitive Hearing Science or Auditory Cognitive Science is an emerging field of interdisciplinary research concerning the interactions between hearing and cognition. It follows a trend over the last half century for interdisciplinary fields to develop, beginning with Neuroscience, then Cognitive Science, then Cognitive Neuroscience, and then Cognitive Vision Science. A common theme is that an interdisciplinary approach is necessary to understand complex human behaviors, to develop technologies incorporating knowledge of these behaviors, and to find solutions for individuals with impairments that undermine typical behaviors. Accordingly, researchers in traditional academic disciplines, such as Psychology, Physiology, Linguistics, Philosophy, Anthropology, and Sociology benefit from collaborations with each other, and with researchers in Computer Science and Engineering working on the design of technologies, and with health professionals working with individuals who have impairments. The factors that triggered the emergence of Cognitive Hearing Science include the maturation of the component disciplines of Hearing Science and Cognitive Science, new opportunities to use complex digital signal-processing to design technologies suited to performance in challenging everyday environments, and increasing social imperatives to help people whose communication problems span hearing and cognition. Cognitive Hearing Science is illustrated in research on three general topics: (1) language processing in challenging listening conditions; (2) use of auditory communication technologies or the visual modality to boost performance; (3) changes in performance with development, aging, and rehabilitative training. Future directions for modeling and the translation of research into practice are suggested.
GeoPad: Innovative Applications of Information Technology in Field Science Education
NASA Astrophysics Data System (ADS)
Knoop, P. A.; van der Pluijm, B.
2003-12-01
A core requirement for most undergraduate degrees in the Earth sciences is a course in field geology, which provides students with training in field science methodologies, including geologic mapping. The University of Michigan Geological Sciences' curriculum includes a seven-week, summer field course, GS-440, based out of the university's Camp Davis Geologic Field Station, near Jackson, WY. Such field-based courses stand to benefit tremendously from recent innovations in Information Technology \\(IT\\), especially in the form of increasing portability, new haptic interfaces for personal computers, and advancements in Geographic Information System \\(GIS\\) software. Such innovations are enabling in-the-field, real-time access to powerful data collection, analysis, visualization, and interpretation tools. The benefits of these innovations, however, can only be realized on a broad basis when the IT reaches a level of maturity at which users can easily employ it to enhance their learning experience and scientific activities, rather than the IT itself being a primary focus of the curriculum or a constraint on field activities. The GeoPad represents a combination of these novel technologies that achieves that goal. The GeoPad concept integrates a ruggedized Windows XP TabletPC equipped with wireless networking, a portable GPS receiver, digital camera, microphone-headset, voice-recognition software, GIS, and supporting, digital, geo-referenced data-sets. A key advantage of the GeoPad is enabling field-based usage of visualization software and data focusing on \\(3D\\) geospatial relationships \\(developed as part of the complementary GeoWall initiative\\), which provides a powerful new tool for enhancing and facilitating undergraduate field geology education, as demonstrated during the summer 2003 session of GS-440. In addition to an education in field methodologies, students also gain practical experience using IT that they will encounter during their continued educational, research, or professional careers. This approach is immediately applicable to field geology courses elsewhere and indeed to other field-oriented programs \\(e.g., in biology, archeology, ecology\\), given similar needs.
Introduction to Computational Physics for Undergraduates
NASA Astrophysics Data System (ADS)
Zubairi, Omair; Weber, Fridolin
2018-03-01
This is an introductory textbook on computational methods and techniques intended for undergraduates at the sophomore or junior level in the fields of science, mathematics, and engineering. It provides an introduction to programming languages such as FORTRAN 90/95/2000 and covers numerical techniques such as differentiation, integration, root finding, and data fitting. The textbook also entails the use of the Linux/Unix operating system and other relevant software such as plotting programs, text editors, and mark up languages such as LaTeX. It includes multiple homework assignments.
Open Science in the Cloud: Towards a Universal Platform for Scientific and Statistical Computing
NASA Astrophysics Data System (ADS)
Chine, Karim
The UK, through the e-Science program, the US through the NSF-funded cyber infrastructure and the European Union through the ICT Calls aimed to provide "the technological solution to the problem of efficiently connecting data, computers, and people with the goal of enabling derivation of novel scientific theories and knowledge".1 The Grid (Foster, 2002; Foster; Kesselman, Nick, & Tuecke, 2002), foreseen as a major accelerator of discovery, didn't meet the expectations it had excited at its beginnings and was not adopted by the broad population of research professionals. The Grid is a good tool for particle physicists and it has allowed them to tackle the tremendous computational challenges inherent to their field. However, as a technology and paradigm for delivering computing on demand, it doesn't work and it can't be fixed. On one hand, "the abstractions that Grids expose - to the end-user, to the deployers and to application developers - are inappropriate and they need to be higher level" (Jha, Merzky, & Fox), and on the other hand, academic Grids are inherently economically unsustainable. They can't compete with a service outsourced to the Industry whose quality and price would be driven by market forces. The virtualization technologies and their corollary, the Infrastructure-as-a-Service (IaaS) style cloud, hold the promise to enable what the Grid failed to deliver: a sustainable environment for computational sciences that would lower the barriers for accessing federated computational resources, software tools and data; enable collaboration and resources sharing and provide the building blocks of a ubiquitous platform for traceable and reproducible computational research.
Charting a Course for Precision Oncology
Kusnezov, Dimitri; Paragas, Jason
2017-02-09
Here, the fields of science have undergone dramatic reorganizations as they have come to terms with the realities of the growing complexities of their problem set, the costs, and the breadth of skills needed to make major progress. A field such as particle physics transformed from principal investigator-driven research supported by an electron synchrotron in the basement of your physics building in the 1950s, to regional centers when costs became prohibitive to refresh technology everywhere, driving larger teams of scientists to cooperate in the 1970s, to international centers where multinational teams work together to achieve progress. The 2013 Nobel Prizemore » winning discovery of the Higgs boson would have been unlikely without such team science. Other fields such as the computational sciences are well on their way through such a transformation. Today, we see precision medicine as a field that will need to come to terms with new organizational principles in order to make major progress, including everyone from individual medical researchers to pharma. Interestingly, the Cancer Moonshot has helped move thinking in that direction for part of the community and now the initiative has been transformed into law.« less
Charting a Course for Precision Oncology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kusnezov, Dimitri; Paragas, Jason
Here, the fields of science have undergone dramatic reorganizations as they have come to terms with the realities of the growing complexities of their problem set, the costs, and the breadth of skills needed to make major progress. A field such as particle physics transformed from principal investigator-driven research supported by an electron synchrotron in the basement of your physics building in the 1950s, to regional centers when costs became prohibitive to refresh technology everywhere, driving larger teams of scientists to cooperate in the 1970s, to international centers where multinational teams work together to achieve progress. The 2013 Nobel Prizemore » winning discovery of the Higgs boson would have been unlikely without such team science. Other fields such as the computational sciences are well on their way through such a transformation. Today, we see precision medicine as a field that will need to come to terms with new organizational principles in order to make major progress, including everyone from individual medical researchers to pharma. Interestingly, the Cancer Moonshot has helped move thinking in that direction for part of the community and now the initiative has been transformed into law.« less
NASA Technical Reports Server (NTRS)
Leiner, Barry M.; Gross, Anthony R. (Technical Monitor)
2002-01-01
The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administration's missions. Operated by the Universities Space Research Association (a non-profit university consortium), RIACS is located at the NASA Ames Research Center, Moffett Field, California. It currently operates under a multiple year grant/cooperative agreement that began on October 1, 1997 and is up for renewal in September 2003. Ames has been designated NASA's Center of Excellence in Information Technology. In this capacity, Ames is charged with the responsibility to build an Information Technology (IT) Research Program that is preeminent within NASA. RIACS serves as a bridge between NASA Ames and the academic community, and RIACS scientists and visitors work in close collaboration with NASA scientists. RIACS has the additional goal of broadening the base of researchers in these areas of importance to the nation's space and aeronautics enterprises. RIACS research focuses on the three cornerstones of IT research necessary to meet the future challenges of NASA missions: 1) Automated Reasoning for Autonomous Systems; 2) Human-Centered Computing; and 3) High Performance Computing and Networking. In addition, RIACS collaborates with NASA scientists to apply IT research to a variety of NASA application domains including aerospace technology, earth science, life sciences, and astrobiology. RIACS also engages in other activities, such as workshops, seminars, visiting scientist programs and student summer programs, designed to encourage and facilitate collaboration between the university and NASA IT research communities.
On the design of computer-based models for integrated environmental science.
McIntosh, Brian S; Jeffrey, Paul; Lemon, Mark; Winder, Nick
2005-06-01
The current research agenda in environmental science is dominated by calls to integrate science and policy to better understand and manage links between social (human) and natural (nonhuman) processes. Freshwater resource management is one area where such calls can be heard. Designing computer-based models for integrated environmental science poses special challenges to the research community. At present it is not clear whether such tools, or their outputs, receive much practical policy or planning application. It is argued that this is a result of (1) a lack of appreciation within the research modeling community of the characteristics of different decision-making processes including policy, planning, and (2) participation, (3) a lack of appreciation of the characteristics of different decision-making contexts, (4) the technical difficulties in implementing the necessary support tool functionality, and (5) the socio-technical demands of designing tools to be of practical use. This article presents a critical synthesis of ideas from each of these areas and interprets them in terms of design requirements for computer-based models being developed to provide scientific information support for policy and planning. Illustrative examples are given from the field of freshwater resources management. Although computer-based diagramming and modeling tools can facilitate processes of dialogue, they lack adequate simulation capabilities. Component-based models and modeling frameworks provide such functionality and may be suited to supporting problematic or messy decision contexts. However, significant technical (implementation) and socio-technical (use) challenges need to be addressed before such ambition can be realized.
NASA Astrophysics Data System (ADS)
Baker, Catherine M.
Teaching people with disabilities tech skills empowers them to create solutions to problems they encounter and prepares them for careers. However, computer science is typically taught in a highly visual manner which can present barriers for people who are blind. The goal of this dissertation is to understand and decrease those barriers. The first projects I present looked at the barriers that blind students face. I first present the results of my survey and interviews with blind students with degrees in computer science or related fields. This work highlighted the many barriers that these blind students faced. I then followed-up on one of the barriers mentioned, access to technology, by doing a preliminary accessibility evaluation of six popular integrated development environments (IDEs) and code editors. I found that half were unusable and all had some inaccessible portions. As access to visual information is a barrier in computer science education, I present three projects I have done to decrease this barrier. The first project is Tactile Graphics with a Voice (TGV). This project investigated an alternative to Braille labels for those who do not know Braille and showed that TGV was a potential alternative. The next project was StructJumper, which created a modified abstract syntax tree that blind programmers could use to navigate through code with their screen reader. The evaluation showed that users could navigate more quickly and easily determine the relationships of lines of code when they were using StructJumper compared to when they were not. Finally, I present a tool for dynamic graphs (the type with nodes and edges) which had two different modes for handling focus changes when moving between graphs. I found that the modes support different approaches for exploring the graphs and therefore preferences are mixed based on the user's preferred approach. However, both modes had similar accuracy in completing the tasks. These projects are a first step towards the goal of making computer science education more accessible to blind students. By identifying the barriers that exist and creating solutions to overcome them, we can support increasing the number of blind students in computer science.
NASA Technical Reports Server (NTRS)
Hussaini, M. Y. (Editor); Kumar, A. (Editor); Salas, M. D. (Editor)
1993-01-01
The purpose here is to assess the state of the art in the areas of numerical analysis that are particularly relevant to computational fluid dynamics (CFD), to identify promising new developments in various areas of numerical analysis that will impact CFD, and to establish a long-term perspective focusing on opportunities and needs. Overviews are given of discretization schemes, computational fluid dynamics, algorithmic trends in CFD for aerospace flow field calculations, simulation of compressible viscous flow, and massively parallel computation. Also discussed are accerelation methods, spectral and high-order methods, multi-resolution and subcell resolution schemes, and inherently multidimensional schemes.
TOPICAL REVIEW: Advances and challenges in computational plasma science
NASA Astrophysics Data System (ADS)
Tang, W. M.; Chan, V. S.
2005-02-01
Scientific simulation, which provides a natural bridge between theory and experiment, is an essential tool for understanding complex plasma behaviour. Recent advances in simulations of magnetically confined plasmas are reviewed in this paper, with illustrative examples, chosen from associated research areas such as microturbulence, magnetohydrodynamics and other topics. Progress has been stimulated, in particular, by the exponential growth of computer speed along with significant improvements in computer technology. The advances in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics have produced increasingly good agreement between experimental observations and computational modelling. This was enabled by two key factors: (a) innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales and (b) access to powerful new computational resources. Excellent progress has been made in developing codes for which computer run-time and problem-size scale well with the number of processors on massively parallel processors (MPPs). Examples include the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPPs to produce three-dimensional, general geometry, nonlinear particle simulations that have accelerated advances in understanding the nature of turbulence self-regulation by zonal flows. These calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In looking towards the future, the current results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. This should produce the scientific excitement which will help to (a) stimulate enhanced cross-cutting collaborations with other fields and (b) attract the bright young talent needed for the future health of the field of plasma science.
Advances and challenges in computational plasma science
NASA Astrophysics Data System (ADS)
Tang, W. M.
2005-02-01
Scientific simulation, which provides a natural bridge between theory and experiment, is an essential tool for understanding complex plasma behaviour. Recent advances in simulations of magnetically confined plasmas are reviewed in this paper, with illustrative examples, chosen from associated research areas such as microturbulence, magnetohydrodynamics and other topics. Progress has been stimulated, in particular, by the exponential growth of computer speed along with significant improvements in computer technology. The advances in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics have produced increasingly good agreement between experimental observations and computational modelling. This was enabled by two key factors: (a) innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales and (b) access to powerful new computational resources. Excellent progress has been made in developing codes for which computer run-time and problem-size scale well with the number of processors on massively parallel processors (MPPs). Examples include the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPPs to produce three-dimensional, general geometry, nonlinear particle simulations that have accelerated advances in understanding the nature of turbulence self-regulation by zonal flows. These calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In looking towards the future, the current results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. This should produce the scientific excitement which will help to (a) stimulate enhanced cross-cutting collaborations with other fields and (b) attract the bright young talent needed for the future health of the field of plasma science.
Networking Technologies Enable Advances in Earth Science
NASA Technical Reports Server (NTRS)
Johnson, Marjory; Freeman, Kenneth; Gilstrap, Raymond; Beck, Richard
2004-01-01
This paper describes an experiment to prototype a new way of conducting science by applying networking and distributed computing technologies to an Earth Science application. A combination of satellite, wireless, and terrestrial networking provided geologists at a remote field site with interactive access to supercomputer facilities at two NASA centers, thus enabling them to validate and calibrate remotely sensed geological data in near-real time. This represents a fundamental shift in the way that Earth scientists analyze remotely sensed data. In this paper we describe the experiment and the network infrastructure that enabled it, analyze the data flow during the experiment, and discuss the scientific impact of the results.
Network-based statistical comparison of citation topology of bibliographic databases
Šubelj, Lovro; Fiala, Dalibor; Bajec, Marko
2014-01-01
Modern bibliographic databases provide the basis for scientific research and its evaluation. While their content and structure differ substantially, there exist only informal notions on their reliability. Here we compare the topological consistency of citation networks extracted from six popular bibliographic databases including Web of Science, CiteSeer and arXiv.org. The networks are assessed through a rich set of local and global graph statistics. We first reveal statistically significant inconsistencies between some of the databases with respect to individual statistics. For example, the introduced field bow-tie decomposition of DBLP Computer Science Bibliography substantially differs from the rest due to the coverage of the database, while the citation information within arXiv.org is the most exhaustive. Finally, we compare the databases over multiple graph statistics using the critical difference diagram. The citation topology of DBLP Computer Science Bibliography is the least consistent with the rest, while, not surprisingly, Web of Science is significantly more reliable from the perspective of consistency. This work can serve either as a reference for scholars in bibliometrics and scientometrics or a scientific evaluation guideline for governments and research agencies. PMID:25263231
Interfacing with in-Situ Data Networks during the Arctic Boreal Vulnerability Experiment (ABoVE)
NASA Astrophysics Data System (ADS)
McInerney, M.; Griffith, P. C.; Duffy, D.; Hoy, E.; Schnase, J. L.; Sinno, S.; Thompson, J. H.
2014-12-01
The Arctic Boreal Vulnerability Experiment (ABoVE) is designed to improve understanding of the causes and impacts of ecological changes in Arctic/boreal regions, and will integrate field-based studies, modeling, and data from airborne and satellite remote sensing. ABoVE will result in a fuller understanding of ecosystem vulnerability and resilience to environmental change in the Arctic and boreal regions of western North America, and provide scientific information required to develop options for societal responses to the impacts of these changes. The studies sponsored by NASA during ABoVE will be coordinated with research and in-situ monitoring activities being sponsored by a number of national and international partners. The NASA Center for Climate Simulation at the Goddard Space Flight Center has partnered with the NASA Carbon Cycle & Ecosystems Office to create a science cloud designed for this field campaign - the ABoVE Science Cloud (ASC). The ASC combines high performance computing with emerging technologies to create an environment specifically designed for large-scale modeling, analysis of remote sensing data, copious disk storage with integrated data management, and integration of core variables from in-situ networks identified by the ABoVE Science Definition Team. In this talk, we will present the scientific requirements driving the development of the ABoVE Science Cloud, discuss the necessary interfaces, both computational and human, with in-situ monitoring networks, and show examples of how the ASC is being used to meet the needs of the ABoVE campaign.
Science in the Eyes of Preschool Children: Findings from an Innovative Research Tool
NASA Astrophysics Data System (ADS)
Dubosarsky, Mia D.
How do young children view science? Do these views reflect cultural stereotypes? When do these views develop? These fundamental questions in the field of science education have rarely been studied with the population of preschool children. One main reason is the lack of an appropriate research instrument that addresses preschool children's developmental competencies. Extensive body of research has pointed at the significance of early childhood experiences in developing positive attitudes and interests toward learning in general and the learning of science in particular. Theoretical and empirical research suggests that stereotypical views of science may be replaced by authentic views following inquiry science experience. However, no preschool science intervention program could be designed without a reliable instrument that provides baseline information about preschool children's current views of science. The current study presents preschool children's views of science as gathered from a pioneering research tool. This tool, in the form of a computer "game," does not require reading, writing, or expressive language skills and is operated by the children. The program engages children in several simple tasks involving picture recognition and yes/no answers in order to reveal their views about science. The study was conducted with 120 preschool children in two phases and found that by the age of 4 years, participants possess an emergent concept of science. Gender and school differences were detected. Findings from this interdisciplinary study will contribute to the fields of early childhood, science education, learning technologies, program evaluation, and early childhood curriculum development.
NASA Astrophysics Data System (ADS)
Stoilescu, Dorian; Egodawatte, Gunawardena
2010-12-01
Research shows that female and male students in undergraduate computer science programs view computer culture differently. Female students are interested more in the use of computers than in doing programming, whereas male students see computer science mainly as a programming activity. The overall purpose of our research was not to find new definitions for computer science culture but to see how male and female students see themselves involved in computer science practices, how they see computer science as a successful career, and what they like and dislike about current computer science practices. The study took place in a mid-sized university in Ontario. Sixteen students and two instructors were interviewed to get their views. We found that male and female views are different on computer use, programming, and the pattern of student interactions. Female and male students did not have any major issues in using computers. In computing programming, female students were not so involved in computing activities whereas male students were heavily involved. As for the opinions about successful computer science professionals, both female and male students emphasized hard working, detailed oriented approaches, and enjoying playing with computers. The myth of the geek as a typical profile of successful computer science students was not found to be true.
Implementation of Multispectral Image Classification on a Remote Adaptive Computer
NASA Technical Reports Server (NTRS)
Figueiredo, Marco A.; Gloster, Clay S.; Stephens, Mark; Graves, Corey A.; Nakkar, Mouna
1999-01-01
As the demand for higher performance computers for the processing of remote sensing science algorithms increases, the need to investigate new computing paradigms its justified. Field Programmable Gate Arrays enable the implementation of algorithms at the hardware gate level, leading to orders of m a,gnitude performance increase over microprocessor based systems. The automatic classification of spaceborne multispectral images is an example of a computation intensive application, that, can benefit from implementation on an FPGA - based custom computing machine (adaptive or reconfigurable computer). A probabilistic neural network is used here to classify pixels of of a multispectral LANDSAT-2 image. The implementation described utilizes Java client/server application programs to access the adaptive computer from a remote site. Results verify that a remote hardware version of the algorithm (implemented on an adaptive computer) is significantly faster than a local software version of the same algorithm implemented on a typical general - purpose computer).
Toward integration of in vivo molecular computing devices: successes and challenges
Hayat, Sikander; Hinze, Thomas
2008-01-01
The computing power unleashed by biomolecule based massively parallel computational units has been the focus of many interdisciplinary studies that couple state of the art ideas from mathematical logic, theoretical computer science, bioengineering, and nanotechnology to fulfill some computational task. The output can influence, for instance, release of a drug at a specific target, gene expression, cell population, or be a purely mathematical entity. Analysis of the results of several studies has led to the emergence of a general set of rules concerning the implementation and optimization of in vivo computational units. Taking two recent studies on in vivo computing as examples, we discuss the impact of mathematical modeling and simulation in the field of synthetic biology and on in vivo computing. The impact of the emergence of gene regulatory networks and the potential of proteins acting as “circuit wires” on the problem of interconnecting molecular computing device subunits is also highlighted. PMID:19404433
Interactive visualization of Earth and Space Science computations
NASA Technical Reports Server (NTRS)
Hibbard, William L.; Paul, Brian E.; Santek, David A.; Dyer, Charles R.; Battaiola, Andre L.; Voidrot-Martinez, Marie-Francoise
1994-01-01
Computers have become essential tools for scientists simulating and observing nature. Simulations are formulated as mathematical models but are implemented as computer algorithms to simulate complex events. Observations are also analyzed and understood in terms of mathematical models, but the number of these observations usually dictates that we automate analyses with computer algorithms. In spite of their essential role, computers are also barriers to scientific understanding. Unlike hand calculations, automated computations are invisible and, because of the enormous numbers of individual operations in automated computations, the relation between an algorithm's input and output is often not intuitive. This problem is illustrated by the behavior of meteorologists responsible for forecasting weather. Even in this age of computers, many meteorologists manually plot weather observations on maps, then draw isolines of temperature, pressure, and other fields by hand (special pads of maps are printed for just this purpose). Similarly, radiologists use computers to collect medical data but are notoriously reluctant to apply image-processing algorithms to that data. To these scientists with life-and-death responsibilities, computer algorithms are black boxes that increase rather than reduce risk. The barrier between scientists and their computations can be bridged by techniques that make the internal workings of algorithms visible and that allow scientists to experiment with their computations. Here we describe two interactive systems developed at the University of Wisconsin-Madison Space Science and Engineering Center (SSEC) that provide these capabilities to Earth and space scientists.
Hydrogen Technology and Energy Curriculum (HyTEC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagle, Barbara
The Lawrence Hall of Science of the University of California, Berkeley has collaborated with scientists and engineers, a local transit agency, school districts, and a commercial curriculum publisher to develop, field-test nationally, and publish a two-week curriculum module on hydrogen and fuel cells for high school science. Key partners in this project are the Schatz Energy Research Center (SERC) of Humboldt State University, the Alameda-Contra Costa Transit District (AC Transit), FilmSight Productions, Lab-Aids, Inc., and 32 teachers and 2,370 students in field-test classrooms in California, Connecticut, Ohio, New York, South Carolina, and Washington. Field-test teachers received two to three daysmore » of professional development before teaching the curriculum and providing feedback used for revision of the curriculum. The curriculum, titled Investigating Alternative Energy: Hydrogen and Fuel Cells and published by Lab-Aids, Inc., includes a teachers guide (with lesson plans, resources, and student handout pages), two interactive computer animations, a video, a website, and a laboratory materials kit. The project has been disseminated to over 950 teachers through awareness workshops at state, regional, and national science teacher conferences.« less
A Logic Programming Testbed for Inductive Thought and Specification.
ERIC Educational Resources Information Center
Neff, Norman D.
This paper describes applications of logic programming technology to the teaching of the inductive method in computer science and mathematics. It discusses the nature of inductive thought and its place in those fields of inquiry, arguing that a complete logic programming system for supporting inductive inference is not only feasible but necessary.…
Studying Students' Attitudes on Using Examples of Game Source Code for Learning Programming
ERIC Educational Resources Information Center
Theodoraki, Aristea; Xinogalos, Stelios
2014-01-01
Games for learning are currently used in several disciplines for motivating students and enhancing their learning experience. This new approach of technology-enhanced learning has attracted researchers' and instructors' attention in the area of programming that is one of the most cognitively demanding fields in Computer Science. Several…
NASA Technical Reports Server (NTRS)
1981-01-01
The Voyager spacecraft and experiments are described. The spacecraft description includes the structure and configuration, communications systems, power supplies, computer command subsystems, and the science platform. The experiments discussed are investigations of cosmic rays, low-energy charged particles, magnetic fields, and plasma waves, along with studies in radio astronomy photopolarimetry. The tracking and data acquisition procedures for the missions are presented.
Small business innovation research. Abstracts of 1988 phase 1 awards
NASA Technical Reports Server (NTRS)
1990-01-01
Non-proprietary proposal abstracts of Phase 1 Small Business Innovation Research (SBIR) projects supported by NASA are presented. Projects in the fields of aeronautical propulsion, aerodynamics, acoustics, aircraft systems, materials and structures, teleoperators and robots, computer sciences, information systems, data processing, spacecraft propulsion, bioastronautics, satellite communication, and space processing are covered.
Graduates', University Lecturers' and Employers' Perceptions towards Employability Skills
ERIC Educational Resources Information Center
Wickramasinghe, Vathsala; Perera, Lasantha
2010-01-01
Purpose: The purpose of this study is to explore employability skills that employers, university lecturers and graduates value to bring to the workplace, when graduates are applying for entry-level graduate jobs in the field of computer science in Sri Lanka. Design/methodology/approach: A total of three samples were selected for this exploratory…
ERIC Educational Resources Information Center
Furner, Jonathan
2017-01-01
Philosophy of data should not be dismissed as a cluster of scholastic puzzles whose solutions are of limited practical value. On the contrary, philosophy of data should be recognized as constituting the core of a field of data studies that is informed by, but far from equivalent to, statistics, computer science, and library and information studies.
Neural Network Research: A Personal Perspective,
1988-03-01
problems in computer science and technology today. Still others do both. Whatever the focus, here isafidred to adre efforts of a wide variety of gifted ...Still others do both. Whatever the focus, here is a field ready to challenge and reward the sustained efforts of a wide variety of gifted people. 14 7eN. a rcb
A Project-Based Biologically-Inspired Robotics Module
ERIC Educational Resources Information Center
Crowder, R. M.; Zauner, K.-P.
2013-01-01
The design of any robotic system requires input from engineers from a variety of technical fields. This paper describes a project-based module, "Biologically-Inspired Robotics," that is offered to Electronics and Computer Science students at the University of Southampton, U.K. The overall objective of the module is for student groups to…
Integrating Health Information Systems into a Database Course: A Case Study
ERIC Educational Resources Information Center
Anderson, Nicole; Zhang, Mingrui; McMaster, Kirby
2011-01-01
Computer Science is a rich field with many growing application areas, such as Health Information Systems. What we suggest here is that multi-disciplinary threads can be introduced to supplement, enhance, and strengthen the primary area of study in a course. We call these supplementary materials "threads," because they are executed…
INFORMATION STORAGE AND RETRIEVAL, REPORTS ON EVALUATION PROCEDURES AND RESULTS 1965-1967.
ERIC Educational Resources Information Center
SALTON, GERALD
A DETAILED ANALYSIS OF THE RETRIEVAL EVALUATION RESULTS OBTAINED WITH THE AUTOMATIC SMART DOCUMENT RETRIEVAL SYSTEM FOR DOCUMENT COLLECTIONS IN THE FIELDS OF AERODYNAMICS, COMPUTER SCIENCE, AND DOCUMENTATION IS GIVEN IN THIS REPORT. THE VARIOUS COMPONENTS OF FULLY AUTOMATIC DOCUMENT RETRIEVAL SYSTEMS ARE DISCUSSED IN DETAIL, INCLUDING THE FORMS OF…
Problem Solving Skills of Hispanic College Students.
ERIC Educational Resources Information Center
Gerace, William J.; Mestre, Jose P.
Minorities have for some time been underrepresented in the technical fields, such as engineering and computer science. This development is known to be caused by a variety of factors, but the primary purpose of this report is to help identify those factors that adversely affect the cognitive development of the technical bilingual student in terms…
Biomimetic robots using EAP as artificial muscles - progress and challenges
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph
2004-01-01
Biology offers a great model for emulation in areas ranging from tools, computational algorithms, materials science, mechanisms and information technology. In recent years, the field of biomimetics, namely mimicking biology, has blossomed with significant advances enabling the reverse engineering of many animals' functions and implementation of some of these capabilities.
Statistical Physics in the Era of Big Data
ERIC Educational Resources Information Center
Wang, Dashun
2013-01-01
With the wealth of data provided by a wide range of high-throughout measurement tools and technologies, statistical physics of complex systems is entering a new phase, impacting in a meaningful fashion a wide range of fields, from cell biology to computer science to economics. In this dissertation, by applying tools and techniques developed in…
NASA Technical Reports Server (NTRS)
Arnold, Steven M. (Editor); Wong, Terry T. (Editor)
2011-01-01
Topics covered include: An Annotative Review of Multiscale Modeling and its Application to Scales Inherent in the Field of ICME; and A Multiscale, Nonlinear, Modeling Framework Enabling the Design and Analysis of Composite Materials and Structures.
Use Your Head: Neuroscience Research and Teaching
ERIC Educational Resources Information Center
Hunter, William J.
2011-01-01
Brain science is a new and complex field. It has emerged with the application of new technologies for brain imaging like Magnetic Resonance Images (MRIs) and Computer Axial Tomography (CAT) scans. Since the brain is the site for learning, educators stand to benefit from this knowledge when it is applied to improving methods of teaching or…
Fortran Programs for Weapon Systems Analysis
1990-06-01
interested in ballistics and related work. The programs include skeletal combat models , a set of discrete-event timing routines, mathematical and...32 4.3 LinEqs: Solve Linear Equations Like a Textbook ........................................................................... 34...military applications as it is of computer science. This crisis occurs in all fields, including the modeling of logistics, mobility, ballistics, and combat
NASA Astrophysics Data System (ADS)
Masson, Steve; Vázquez-Abad, Jesús
2006-10-01
This paper proposes a new way to integrate history of science in science education to promote conceptual change by introducing the notion of historical microworld, which is a computer-based interactive learning environment respecting historic conceptions. In this definition, "interactive" means that the user can act upon the virtual environment by changing some parameters to see what ensues. "Environment respecting historic conceptions" means that the "world" has been programmed to respect the conceptions of past scientists or philosophers. Three historical microworlds in the field of mechanics are presented in this article: an Aristotelian microworld respecting Aristotle's conceptions about movement, a Buridanian microworld respecting the theory of impetus and, finally, a Newtonian microworld respecting Galileo's conceptions and Newton's laws of movement.
Optimization of knowledge-based systems and expert system building tools
NASA Technical Reports Server (NTRS)
Yasuda, Phyllis; Mckellar, Donald
1993-01-01
The objectives of the NASA-AMES Cooperative Agreement were to investigate, develop, and evaluate, via test cases, the system parameters and processing algorithms that constrain the overall performance of the Information Sciences Division's Artificial Intelligence Research Facility. Written reports covering various aspects of the grant were submitted to the co-investigators for the grant. Research studies concentrated on the field of artificial intelligence knowledge-based systems technology. Activities included the following areas: (1) AI training classes; (2) merging optical and digital processing; (3) science experiment remote coaching; (4) SSF data management system tests; (5) computer integrated documentation project; (6) conservation of design knowledge project; (7) project management calendar and reporting system; (8) automation and robotics technology assessment; (9) advanced computer architectures and operating systems; and (10) honors program.
ERIC Educational Resources Information Center
Lin, Che-Li; Liang, Jyh-Chong; Su, Yi-Ching; Tsai, Chin-Chung
2013-01-01
Teacher-centered instruction has been widely adopted in college computer science classrooms and has some benefits in training computer science undergraduates. Meanwhile, student-centered contexts have been advocated to promote computer science education. How computer science learners respond to or prefer the two types of teacher authority,…
Pitfalls of Ontology in Medicine.
Aldosari, Bakheet; Alanazi, Abdullah; Househ, Mowafa
2017-01-01
Much research has been done in the last few decades in clinical research, medicine, life sciences, etc. leading to an exponential increase in the generation of data. Managing this vast information not only requires integration of the data, but also a means to analyze, relate, and retrieve it. Ontology, in the field of medicine, describes the concepts of medical terminologies and the relation between them, thus, enabling the sharing of medical knowledge. Ontology-based analyses are associated with a risk that errors in modeling may deteriorate the results' quality. Identifying flawed practices or anomalies in ontologies is a crucial issue to be addressed by researchers. In this paper, we review the negative sides of ontology in the field of medicine. Our study results show that ontologies are perceived as a mere tool to represent medical knowledge, thus relying more on the computer science-based understanding of medical terms. While this approach may be sufficient for data entry systems, in which the users merely need to browse the hierarchy and select relevant terms, it may not suffice the real-world scenario of dealing with complex patient records, which are not only grammatically complex, but also are sometimes documented in many native languages. In conclusion, more research is required in identifying poor practices and anomalies in the development of ontologies by computer scientists within the field of medicine.
Scalco, Andrea; Ceschi, Andrea; Sartori, Riccardo
2018-01-01
It is likely that computer simulations will assume a greater role in the next future to investigate and understand reality (Rand & Rust, 2011). Particularly, agent-based models (ABMs) represent a method of investigation of social phenomena that blend the knowledge of social sciences with the advantages of virtual simulations. Within this context, the development of algorithms able to recreate the reasoning engine of autonomous virtual agents represents one of the most fragile aspects and it is indeed crucial to establish such models on well-supported psychological theoretical frameworks. For this reason, the present work discusses the application case of the theory of planned behavior (TPB; Ajzen, 1991) in the context of agent-based modeling: It is argued that this framework might be helpful more than others to develop a valid representation of human behavior in computer simulations. Accordingly, the current contribution considers issues related with the application of the model proposed by the TPB inside computer simulations and suggests potential solutions with the hope to contribute to shorten the distance between the fields of psychology and computer science.
Computational biology and bioinformatics in Nigeria.
Fatumo, Segun A; Adoga, Moses P; Ojo, Opeolu O; Oluwagbemi, Olugbenga; Adeoye, Tolulope; Ewejobi, Itunuoluwa; Adebiyi, Marion; Adebiyi, Ezekiel; Bewaji, Clement; Nashiru, Oyekanmi
2014-04-01
Over the past few decades, major advances in the field of molecular biology, coupled with advances in genomic technologies, have led to an explosive growth in the biological data generated by the scientific community. The critical need to process and analyze such a deluge of data and turn it into useful knowledge has caused bioinformatics to gain prominence and importance. Bioinformatics is an interdisciplinary research area that applies techniques, methodologies, and tools in computer and information science to solve biological problems. In Nigeria, bioinformatics has recently played a vital role in the advancement of biological sciences. As a developing country, the importance of bioinformatics is rapidly gaining acceptance, and bioinformatics groups comprised of biologists, computer scientists, and computer engineers are being constituted at Nigerian universities and research institutes. In this article, we present an overview of bioinformatics education and research in Nigeria. We also discuss professional societies and academic and research institutions that play central roles in advancing the discipline in Nigeria. Finally, we propose strategies that can bolster bioinformatics education and support from policy makers in Nigeria, with potential positive implications for other developing countries.
Computational Biology and Bioinformatics in Nigeria
Fatumo, Segun A.; Adoga, Moses P.; Ojo, Opeolu O.; Oluwagbemi, Olugbenga; Adeoye, Tolulope; Ewejobi, Itunuoluwa; Adebiyi, Marion; Adebiyi, Ezekiel; Bewaji, Clement; Nashiru, Oyekanmi
2014-01-01
Over the past few decades, major advances in the field of molecular biology, coupled with advances in genomic technologies, have led to an explosive growth in the biological data generated by the scientific community. The critical need to process and analyze such a deluge of data and turn it into useful knowledge has caused bioinformatics to gain prominence and importance. Bioinformatics is an interdisciplinary research area that applies techniques, methodologies, and tools in computer and information science to solve biological problems. In Nigeria, bioinformatics has recently played a vital role in the advancement of biological sciences. As a developing country, the importance of bioinformatics is rapidly gaining acceptance, and bioinformatics groups comprised of biologists, computer scientists, and computer engineers are being constituted at Nigerian universities and research institutes. In this article, we present an overview of bioinformatics education and research in Nigeria. We also discuss professional societies and academic and research institutions that play central roles in advancing the discipline in Nigeria. Finally, we propose strategies that can bolster bioinformatics education and support from policy makers in Nigeria, with potential positive implications for other developing countries. PMID:24763310
Computer programing for geosciences: Teach your students how to make tools
NASA Astrophysics Data System (ADS)
Grapenthin, Ronni
2011-12-01
When I announced my intention to pursue a Ph.D. in geophysics, some people gave me confused looks, because I was working on a master's degree in computer science at the time. My friends, like many incoming geoscience graduate students, have trouble linking these two fields. From my perspective, it is pretty straightforward: Much of geoscience evolves around novel analyses of large data sets that require custom tools—computer programs—to minimize the drudgery of manual data handling; other disciplines share this characteristic. While most faculty adapted to the need for tool development quite naturally, as they grew up around computer terminal interfaces, incoming graduate students lack intuitive understanding of programing concepts such as generalization and automation. I believe the major cause is the intuitive graphical user interfaces of modern operating systems and applications, which isolate the user from all technical details. Generally, current curricula do not recognize this gap between user and machine. For students to operate effectively, they require specialized courses teaching them the skills they need to make tools that operate on particular data sets and solve their specific problems. Courses in computer science departments are aimed at a different audience and are of limited help.
NASA Astrophysics Data System (ADS)
Heilmann, B. Z.; Vallenilla Ferrara, A. M.
2009-04-01
The constant growth of contaminated sites, the unsustainable use of natural resources, and, last but not least, the hydrological risk related to extreme meteorological events and increased climate variability are major environmental issues of today. Finding solutions for these complex problems requires an integrated cross-disciplinary approach, providing a unified basis for environmental science and engineering. In computer science, grid computing is emerging worldwide as a formidable tool allowing distributed computation and data management with administratively-distant resources. Utilizing these modern High Performance Computing (HPC) technologies, the GRIDA3 project bundles several applications from different fields of geoscience aiming to support decision making for reasonable and responsible land use and resource management. In this abstract we present a geophysical application called EIAGRID that uses grid computing facilities to perform real-time subsurface imaging by on-the-fly processing of seismic field data and fast optimization of the processing workflow. Even though, seismic reflection profiling has a broad application range spanning from shallow targets in a few meters depth to targets in a depth of several kilometers, it is primarily used by the hydrocarbon industry and hardly for environmental purposes. The complexity of data acquisition and processing poses severe problems for environmental and geotechnical engineering: Professional seismic processing software is expensive to buy and demands large experience from the user. In-field processing equipment needed for real-time data Quality Control (QC) and immediate optimization of the acquisition parameters is often not available for this kind of studies. As a result, the data quality will be suboptimal. In the worst case, a crucial parameter such as receiver spacing, maximum offset, or recording time turns out later to be inappropriate and the complete acquisition campaign has to be repeated. The EIAGRID portal provides an innovative solution to this problem combining state-of-the-art data processing methods and modern remote grid computing technology. In field-processing equipment is substituted by remote access to high performance grid computing facilities. The latter can be ubiquitously controlled by a user-friendly web-browser interface accessed from the field by any mobile computer using wireless data transmission technology such as UMTS (Universal Mobile Telecommunications System) or HSUPA/HSDPA (High-Speed Uplink/Downlink Packet Access). The complexity of data-manipulation and processing and thus also the time demanding user interaction is minimized by a data-driven, and highly automated velocity analysis and imaging approach based on the Common-Reflection-Surface (CRS) stack. Furthermore, the huge computing power provided by the grid deployment allows parallel testing of alternative processing sequences and parameter settings, a feature which considerably reduces the turn-around times. A shared data storage using georeferencing tools and data grid technology is under current development. It will allow to publish already accomplished projects, making results, processing workflows and parameter settings available in a transparent and reproducible way. Creating a unified database shared by all users will facilitate complex studies and enable the use of data-crossing techniques to incorporate results of other environmental applications hosted on the GRIDA3 portal.
Spacecube: A Family of Reconfigurable Hybrid On-Board Science Data Processors
NASA Technical Reports Server (NTRS)
Flatley, Thomas P.
2015-01-01
SpaceCube is a family of Field Programmable Gate Array (FPGA) based on-board science data processing systems developed at the NASA Goddard Space Flight Center (GSFC). The goal of the SpaceCube program is to provide 10x to 100x improvements in on-board computing power while lowering relative power consumption and cost. SpaceCube is based on the Xilinx Virtex family of FPGAs, which include processor, FPGA logic and digital signal processing (DSP) resources. These processing elements are leveraged to produce a hybrid science data processing platform that accelerates the execution of algorithms by distributing computational functions to the most suitable elements. This approach enables the implementation of complex on-board functions that were previously limited to ground based systems, such as on-board product generation, data reduction, calibration, classification, eventfeature detection, data mining and real-time autonomous operations. The system is fully reconfigurable in flight, including data parameters, software and FPGA logic, through either ground commanding or autonomously in response to detected eventsfeatures in the instrument data stream.
Algorithmic psychometrics and the scalable subject.
Stark, Luke
2018-04-01
Recent public controversies, ranging from the 2014 Facebook 'emotional contagion' study to psychographic data profiling by Cambridge Analytica in the 2016 American presidential election, Brexit referendum and elsewhere, signal watershed moments in which the intersecting trajectories of psychology and computer science have become matters of public concern. The entangled history of these two fields grounds the application of applied psychological techniques to digital technologies, and an investment in applying calculability to human subjectivity. Today, a quantifiable psychological subject position has been translated, via 'big data' sets and algorithmic analysis, into a model subject amenable to classification through digital media platforms. I term this position the 'scalable subject', arguing it has been shaped and made legible by algorithmic psychometrics - a broad set of affordances in digital platforms shaped by psychology and the behavioral sciences. In describing the contours of this 'scalable subject', this paper highlights the urgent need for renewed attention from STS scholars on the psy sciences, and on a computational politics attentive to psychology, emotional expression, and sociality via digital media.
Academic computer science and gender: A naturalistic study investigating the causes of attrition
NASA Astrophysics Data System (ADS)
Declue, Timothy Hall
Far fewer women than men take computer science classes in high school, enroll in computer science programs in college, or complete advanced degrees in computer science. The computer science pipeline begins to shrink for women even before entering college, but it is at the college level that the "brain drain" is the most evident numerically, especially in the first class taken by most computer science majors called "Computer Science 1" or CS-I. The result, for both academia and industry, is a pronounced technological gender disparity in academic and industrial computer science. The study revealed the existence of several factors influencing success in CS-I. First, and most clearly, the effect of attribution processes seemed to be quite strong. These processes tend to work against success for females and in favor of success for males. Likewise, evidence was discovered which strengthens theories related to prior experience and the perception that computer science has a culture which is hostile to females. Two unanticipated themes related to the motivation and persistence of successful computer science majors. The findings did not support the belief that females have greater logistical problems in computer science than males, or that females tend to have a different programming style than males which adversely affects the females' ability to succeed in CS-I.
From computer-assisted intervention research to clinical impact: The need for a holistic approach.
Ourselin, Sébastien; Emberton, Mark; Vercauteren, Tom
2016-10-01
The early days of the field of medical image computing (MIC) and computer-assisted intervention (CAI), when publishing a strong self-contained methodological algorithm was enough to produce impact, are over. As a community, we now have substantial responsibility to translate our scientific progresses into improved patient care. In the field of computer-assisted interventions, the emphasis is also shifting from the mere use of well-known established imaging modalities and position trackers to the design and combination of innovative sensing, elaborate computational models and fine-grained clinical workflow analysis to create devices with unprecedented capabilities. The barriers to translating such devices in the complex and understandably heavily regulated surgical and interventional environment can seem daunting. Whether we leave the translation task mostly to our industrial partners or welcome, as researchers, an important share of it is up to us. We argue that embracing the complexity of surgical and interventional sciences is mandatory to the evolution of the field. Being able to do so requires large-scale infrastructure and a critical mass of expertise that very few research centres have. In this paper, we emphasise the need for a holistic approach to computer-assisted interventions where clinical, scientific, engineering and regulatory expertise are combined as a means of moving towards clinical impact. To ensure that the breadth of infrastructure and expertise required for translational computer-assisted intervention research does not lead to a situation where the field advances only thanks to a handful of exceptionally large research centres, we also advocate that solutions need to be designed to lower the barriers to entry. Inspired by fields such as particle physics and astronomy, we claim that centralised very large innovation centres with state of the art technology and health technology assessment capabilities backed by core support staff and open interoperability standards need to be accessible to the wider computer-assisted intervention research community. Copyright © 2016. Published by Elsevier B.V.
Toward a Big Data Science: A challenge of "Science Cloud"
NASA Astrophysics Data System (ADS)
Murata, Ken T.; Watanabe, Hidenobu
2013-04-01
During these 50 years, along with appearance and development of high-performance computers (and super-computers), numerical simulation is considered to be a third methodology for science, following theoretical (first) and experimental and/or observational (second) approaches. The variety of data yielded by the second approaches has been getting more and more. It is due to the progress of technologies of experiments and observations. The amount of the data generated by the third methodologies has been getting larger and larger. It is because of tremendous development and programming techniques of super computers. Most of the data files created by both experiments/observations and numerical simulations are saved in digital formats and analyzed on computers. The researchers (domain experts) are interested in not only how to make experiments and/or observations or perform numerical simulations, but what information (new findings) to extract from the data. However, data does not usually tell anything about the science; sciences are implicitly hidden in the data. Researchers have to extract information to find new sciences from the data files. This is a basic concept of data intensive (data oriented) science for Big Data. As the scales of experiments and/or observations and numerical simulations get larger, new techniques and facilities are required to extract information from a large amount of data files. The technique is called as informatics as a fourth methodology for new sciences. Any methodologies must work on their facilities: for example, space environment are observed via spacecraft and numerical simulations are performed on super-computers, respectively in space science. The facility of the informatics, which deals with large-scale data, is a computational cloud system for science. This paper is to propose a cloud system for informatics, which has been developed at NICT (National Institute of Information and Communications Technology), Japan. The NICT science cloud, we named as OneSpaceNet (OSN), is the first open cloud system for scientists who are going to carry out their informatics for their own science. The science cloud is not for simple uses. Many functions are expected to the science cloud; such as data standardization, data collection and crawling, large and distributed data storage system, security and reliability, database and meta-database, data stewardship, long-term data preservation, data rescue and preservation, data mining, parallel processing, data publication and provision, semantic web, 3D and 4D visualization, out-reach and in-reach, and capacity buildings. Figure (not shown here) is a schematic picture of the NICT science cloud. Both types of data from observation and simulation are stored in the storage system in the science cloud. It should be noted that there are two types of data in observation. One is from archive site out of the cloud: this is a data to be downloaded through the Internet to the cloud. The other one is data from the equipment directly connected to the science cloud. They are often called as sensor clouds. In the present talk, we first introduce the NICT science cloud. We next demonstrate the efficiency of the science cloud, showing several scientific results which we achieved with this cloud system. Through the discussions and demonstrations, the potential performance of sciences cloud will be revealed for any research fields.
2003-01-01
These banana-shaped loops are part of a computer-generated snapshot of our sun's magnetic field. The solar magnetic-field lines loop through the sun's corona, break through the sun's surface, and cornect regions of magnetic activity, such as sunspots. This image --part of a magnetic-field study of the sun by NASA's Allen Gary -- shows the outer portion (skins) of interconnecting systems of hot (2 million degrees Kelvin) coronal loops within and between two active magnetic regions on opposite sides of the sun's equator. The diameter of these coronal loops at their foot points is approximately the same size as the Earth's radius (about 6,000 kilometers).
NASA's Technology Transfer Program for the Early Detection of Breast Cancer
NASA Technical Reports Server (NTRS)
Schmidt, Gregory; Frey, Mary Anne; Vernikos, Joan; Winfield, Daniel; Dalton, Bonnie P. (Technical Monitor)
1996-01-01
The National Aeronautics and Space Administration (NASA) has led the development of advanced imaging sensors and image processing technologies for space science and Earth science missions. NASA considers the transfer and commercialization of such technologies a fundamental mission of the agency. Over the last two years, efforts have been focused on the application of aerospace imaging and computing to the field of diagnostic imaging, specifically to breast cancer imaging. These technology transfer efforts offer significant promise in helping in the national public health priority of the early detection of breast cancer.
Opportunities in plant synthetic biology.
Cook, Charis; Martin, Lisa; Bastow, Ruth
2014-05-01
Synthetic biology is an emerging field uniting scientists from all disciplines with the aim of designing or re-designing biological processes. Initially, synthetic biology breakthroughs came from microbiology, chemistry, physics, computer science, materials science, mathematics, and engineering disciplines. A transition to multicellular systems is the next logical step for synthetic biologists and plants will provide an ideal platform for this new phase of research. This meeting report highlights some of the exciting plant synthetic biology projects, and tools and resources, presented and discussed at the 2013 GARNet workshop on plant synthetic biology.
Graphics Processing Units for HEP trigger systems
NASA Astrophysics Data System (ADS)
Ammendola, R.; Bauce, M.; Biagioni, A.; Chiozzi, S.; Cotta Ramusino, A.; Fantechi, R.; Fiorini, M.; Giagu, S.; Gianoli, A.; Lamanna, G.; Lonardo, A.; Messina, A.; Neri, I.; Paolucci, P. S.; Piandani, R.; Pontisso, L.; Rescigno, M.; Simula, F.; Sozzi, M.; Vicini, P.
2016-07-01
General-purpose computing on GPUs (Graphics Processing Units) is emerging as a new paradigm in several fields of science, although so far applications have been tailored to the specific strengths of such devices as accelerator in offline computation. With the steady reduction of GPU latencies, and the increase in link and memory throughput, the use of such devices for real-time applications in high-energy physics data acquisition and trigger systems is becoming ripe. We will discuss the use of online parallel computing on GPU for synchronous low level trigger, focusing on CERN NA62 experiment trigger system. The use of GPU in higher level trigger system is also briefly considered.
Situation resolution with context-sensitive fuzzy relations
NASA Astrophysics Data System (ADS)
Jakobson, Gabriel; Buford, John; Lewis, Lundy
2009-05-01
Context plays a significant role in situation resolution by intelligent agents (human or machine) by affecting how the situations are recognized, interpreted, acted upon or predicted. Many definitions and formalisms for the notion of context have emerged in various research fields including psychology, economics and computer science (computational linguistics, data management, control theory, artificial intelligence and others). In this paper we examine the role of context in situation management, particularly how to resolve situations that are described by using fuzzy (inexact) relations among their components. We propose a language for describing context sensitive inexact constraints and an algorithm for interpreting relations using inexact (fuzzy) computations.
Computer-Game Construction: A Gender-Neutral Attractor to Computing Science
ERIC Educational Resources Information Center
Carbonaro, Mike; Szafron, Duane; Cutumisu, Maria; Schaeffer, Jonathan
2010-01-01
Enrollment in Computing Science university programs is at a dangerously low level. A major reason for this is the general lack of interest in Computing Science by females. In this paper, we discuss our experience with using a computer game construction environment as a vehicle to encourage female participation in Computing Science. Experiments…