A DDC Bibliography on Computers in Information Sciences. Volume II. Information Sciences Series.
ERIC Educational Resources Information Center
Defense Documentation Center, Alexandria, VA.
The unclassified and unlimited bibliography compiles references dealing specifically with the role of computers in information sciences. The volume contains 239 annotated references grouped under three major headings: Artificial and Programming Languages, Computer Processing of Analog Data, and Computer Processing of Digital Data. The references…
After-Hours Science: Microchips and Onion Dip.
ERIC Educational Resources Information Center
Brugger, Steve
1984-01-01
Computer programs were developed for a science center nutrition exhibit. The exhibit was recognized by the National Science Teachers Association Search for Excellence in Science Education as an outstanding science program. The computer programs (Apple II) and their use in the exhibit are described. (BC)
ERIC Educational Resources Information Center
Science Teacher, 1988
1988-01-01
Reviews two computer software packages for use in physical science, physics, and chemistry classes. Includes "Physics of Model Rocketry" for Apple II, and "Black Box" for Apple II and IBM compatible computers. "Black Box" is designed to help students understand the concept of indirect evidence. (CW)
ERIC Educational Resources Information Center
Tecnica Education Corp., San Carlos, CA.
This book is one of a series in Course II of the Relevant Educational Applications of Computer Technology (REACT) Project. It is designed to point out to teachers two of the major applications of computers in the social sciences: simulation and data analysis. The first section contains a variety of simulation units organized under the following…
Earth System Grid II, Turning Climate Datasets into Community Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Middleton, Don
2006-08-01
The Earth System Grid (ESG) II project, funded by the Department of Energy’s Scientific Discovery through Advanced Computing program, has transformed climate data into community resources. ESG II has accomplished this goal by creating a virtual collaborative environment that links climate centers and users around the world to models and data via a computing Grid, which is based on the Department of Energy’s supercomputing resources and the Internet. Our project’s success stems from partnerships between climate researchers and computer scientists to advance basic and applied research in the terrestrial, atmospheric, and oceanic sciences. By interfacing with other climate science projects,more » we have learned that commonly used methods to manage and remotely distribute data among related groups lack infrastructure and under-utilize existing technologies. Knowledge and expertise gained from ESG II have helped the climate community plan strategies to manage a rapidly growing data environment more effectively. Moreover, approaches and technologies developed under the ESG project have impacted datasimulation integration in other disciplines, such as astrophysics, molecular biology and materials science.« less
Roy Fraley Roy Fraley Professional II-Engineer Roy.Fraley@nrel.gov | 303-384-6468 Roy Fraley is the high-performance computing (HPC) data center engineer with the Computational Science Center's HPC
1988-05-01
for Advanced Computer Studies and Department of Computer Science University of Maryland College Park, MD 20742 4, ABSTRACT We discuss some aspects of...Computer Studies and Technology & Dept. of Compute. Scienc II. CONTROLLING OFFICE NAME AND ADDRESS Viyriyf~ 12. REPORT DATE Department of the Navy uo...number)-1/ 2.) We study the performance of CG and PCG by examining its performance for u E (0,1), for solving the two model problems with an accuracy
Yang, Chaowei; Wu, Huayi; Huang, Qunying; Li, Zhenlong; Li, Jing
2011-01-01
Contemporary physical science studies rely on the effective analyses of geographically dispersed spatial data and simulations of physical phenomena. Single computers and generic high-end computing are not sufficient to process the data for complex physical science analysis and simulations, which can be successfully supported only through distributed computing, best optimized through the application of spatial principles. Spatial computing, the computing aspect of a spatial cyberinfrastructure, refers to a computing paradigm that utilizes spatial principles to optimize distributed computers to catalyze advancements in the physical sciences. Spatial principles govern the interactions between scientific parameters across space and time by providing the spatial connections and constraints to drive the progression of the phenomena. Therefore, spatial computing studies could better position us to leverage spatial principles in simulating physical phenomena and, by extension, advance the physical sciences. Using geospatial science as an example, this paper illustrates through three research examples how spatial computing could (i) enable data intensive science with efficient data/services search, access, and utilization, (ii) facilitate physical science studies with enabling high-performance computing capabilities, and (iii) empower scientists with multidimensional visualization tools to understand observations and simulations. The research examples demonstrate that spatial computing is of critical importance to design computing methods to catalyze physical science studies with better data access, phenomena simulation, and analytical visualization. We envision that spatial computing will become a core technology that drives fundamental physical science advancements in the 21st century. PMID:21444779
Yang, Chaowei; Wu, Huayi; Huang, Qunying; Li, Zhenlong; Li, Jing
2011-04-05
Contemporary physical science studies rely on the effective analyses of geographically dispersed spatial data and simulations of physical phenomena. Single computers and generic high-end computing are not sufficient to process the data for complex physical science analysis and simulations, which can be successfully supported only through distributed computing, best optimized through the application of spatial principles. Spatial computing, the computing aspect of a spatial cyberinfrastructure, refers to a computing paradigm that utilizes spatial principles to optimize distributed computers to catalyze advancements in the physical sciences. Spatial principles govern the interactions between scientific parameters across space and time by providing the spatial connections and constraints to drive the progression of the phenomena. Therefore, spatial computing studies could better position us to leverage spatial principles in simulating physical phenomena and, by extension, advance the physical sciences. Using geospatial science as an example, this paper illustrates through three research examples how spatial computing could (i) enable data intensive science with efficient data/services search, access, and utilization, (ii) facilitate physical science studies with enabling high-performance computing capabilities, and (iii) empower scientists with multidimensional visualization tools to understand observations and simulations. The research examples demonstrate that spatial computing is of critical importance to design computing methods to catalyze physical science studies with better data access, phenomena simulation, and analytical visualization. We envision that spatial computing will become a core technology that drives fundamental physical science advancements in the 21st century.
ERIC Educational Resources Information Center
Koç, Yasemin; Yildiz, Emre; Çaliklar, Seyma; Simsek, Ümit
2016-01-01
The aim of this study is to determine the effect of Jigsaw II technique, reading-writing-presentation method, and computer animation on students' academic achievements, epistemological beliefs, attitudes towards science lesson, and the retention of knowledge in the "Light" unit covered in the 7th grade. The sample of the study consists…
ERIC Educational Resources Information Center
Olori, Abiola Lateef; Igbosanu, Adekunle Olusegun
2016-01-01
The study was carried out to determine the use of computer-based multimedia presentation on Senior Secondary School Students' Achievement in Agricultural Science. The study was a quasi-experimental, pre-test, post-test control group research design type, using intact classes. A sample of eighty (80) Senior Secondary School One (SS II) students was…
ERIC Educational Resources Information Center
Tuttle, Francis
Twenty-three instructors participated in an 8-week summer institute to develop their technical competency to teach the second year of a 2-year Technical Education Computer Science Program. Instructional material covered the following areas: (1) compiler languages and systems design, (2) cost studies, (3) business organization, (4) advanced…
Software Assurance Curriculum Project Volume 2: Undergraduate Course Outlines
2010-08-01
Contents Acknowledgments iii Abstract v 1 An Undergraduate Curriculum Focus on Software Assurance 1 2 Computer Science I 7 3 Computer Science II...confidence that can be integrated into traditional software development and acquisition process models . Thus, in addition to a technology focus...testing throughout the software development life cycle ( SDLC ) AP Security and complexity—system development challenges: security failures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houston, Johnny L; Geter, Kerry
This Project?s third year of implementation in 2007-2008, the final year, as designated by Elizabeth City State University (ECSU), in cooperation with the National Association of Mathematicians (NAM) Inc., in an effort to promote research and research training programs in computational science ? scientific visualization (CSSV). A major goal of the Project was to attract the energetic and productive faculty, graduate and upper division undergraduate students of diverse ethnicities to a program that investigates science and computational science issues of long-term interest to the Department of Energy (DoE) and the nation. The breadth and depth of computational science?scientific visualization andmore » the magnitude of resources available are enormous for permitting a variety of research activities. ECSU?s Computational Science-Science Visualization Center will serve as a conduit for directing users to these enormous resources.« less
BASIC Simulation Programs; Volumes I and II. Biology, Earth Science, Chemistry.
ERIC Educational Resources Information Center
Digital Equipment Corp., Maynard, MA.
Computer programs which teach concepts and processes related to biology, earth science, and chemistry are presented. The seven biology problems deal with aspects of genetics, evolution and natural selection, gametogenesis, enzymes, photosynthesis, and the transport of material across a membrane. Four earth science problems concern climates, the…
ERIC Educational Resources Information Center
Navarro, Aaron B.
1981-01-01
Presents a program in Level II BASIC for a TRS-80 computer that simulates a Turing machine and discusses the nature of the device. The program is run interactively and is designed to be used as an educational tool by computer science or mathematics students studying computational or automata theory. (MP)
New Editions for the Apple II of the Chelsea Science Simulations.
ERIC Educational Resources Information Center
Pipeline, 1983
1983-01-01
Ten computer simulations for the Apple II are described. Subject areas of programs include: population dynamics, plant competition, enzyme kinetics, evolution and natural selection, genetic mapping, ammonia synthesis, reaction kinetics, wave interference/diffraction, satellite orbits, and particle scattering. (JN)
ERIC Educational Resources Information Center
Erickson, Judith B.; And Others
1980-01-01
Discusses patterns resulting from the monitor of science education proposals which may reflect problems or differing perceptions of NSF. Discusses these areas: proposal submissions from two-year institutions and social and behavioral scientists, trends in project content at the academic-industrial interface and in computer technology, and…
Preservice Science Teachers' Perceptions of Their TPACK Development after Creating Digital Stories
ERIC Educational Resources Information Center
Sancar-Tokmak, Hatice; Surmeli, Hikmet; Ozgelen, Sinan
2014-01-01
The aim of this case study was to examine pre-service science teachers' (PSTs) perceptions of their Technological Pedagogical Content Knowledge (TPACK) development after creating digital stories based on science topics drawn from the national curriculum. A total of 21 PSTs enrolled in Introduction to Computers II participated in the study. Data…
Mastracchio during BASS II Setup
2014-02-12
ISS038-E-046385 (12 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, uses a computer while setting up the Microgravity Science Glovebox (MSG) for the Burning and Suppression of Solids (BASS-II) experiment in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.
Performance evaluation of the Engineering Analysis and Data Systems (EADS) 2
NASA Technical Reports Server (NTRS)
Debrunner, Linda S.
1994-01-01
The Engineering Analysis and Data System (EADS)II (1) was installed in March 1993 to provide high performance computing for science and engineering at Marshall Space Flight Center (MSFC). EADS II increased the computing capabilities over the existing EADS facility in the areas of throughput and mass storage. EADS II includes a Vector Processor Compute System (VPCS), a Virtual Memory Compute System (CFS), a Common Output System (COS), as well as Image Processing Station, Mini Super Computers, and Intelligent Workstations. These facilities are interconnected by a sophisticated network system. This work considers only the performance of the VPCS and the CFS. The VPCS is a Cray YMP. The CFS is implemented on an RS 6000 using the UniTree Mass Storage System. To better meet the science and engineering computing requirements, EADS II must be monitored, its performance analyzed, and appropriate modifications for performance improvement made. Implementing this approach requires tool(s) to assist in performance monitoring and analysis. In Spring 1994, PerfStat 2.0 was purchased to meet these needs for the VPCS and the CFS. PerfStat(2) is a set of tools that can be used to analyze both historical and real-time performance data. Its flexible design allows significant user customization. The user identifies what data is collected, how it is classified, and how it is displayed for evaluation. Both graphical and tabular displays are supported. The capability of the PerfStat tool was evaluated, appropriate modifications to EADS II to optimize throughput and enhance productivity were suggested and implemented, and the effects of these modifications on the systems performance were observed. In this paper, the PerfStat tool is described, then its use with EADS II is outlined briefly. Next, the evaluation of the VPCS, as well as the modifications made to the system are described. Finally, conclusions are drawn and recommendations for future worked are outlined.
Learning Science in Grades 3 8 Using Probeware and Computers: Findings from the TEEMSS II Project
NASA Astrophysics Data System (ADS)
Zucker, Andrew A.; Tinker, Robert; Staudt, Carolyn; Mansfield, Amie; Metcalf, Shari
2008-02-01
The Technology Enhanced Elementary and Middle School Science II project (TEEMSS), funded by the National Science Foundation, produced 15 inquiry-based instructional science units for teaching in grades 3-8. Each unit uses computers and probeware to support students' investigations of real-world phenomena using probes (e.g., for temperature or pressure) or, in one case, virtual environments based on mathematical models. TEEMSS units were used in more than 100 classrooms by over 60 teachers and thousands of students. This paper reports on cases in which groups of teachers taught science topics without TEEMSS materials in school year 2004-2005 and then the same teachers taught those topics using TEEMSS materials in 2005-2006. There are eight TEEMSS units for which such comparison data are available. Students showed significant learning gains for all eight. In four cases (sound and electricity, both for grades 3-4; temperature, grades 5-6; and motion, grades 7-8) there were significant differences in science learning favoring the students who used the TEEMSS materials. The effect sizes are 0.58, 0.94, 1.54, and 0.49, respectively. For the other four units there were no significant differences in science learning between TEEMSS and non-TEEMSS students. We discuss the implications of these results for science education.
Goscinski, Wojtek J.; McIntosh, Paul; Felzmann, Ulrich; Maksimenko, Anton; Hall, Christopher J.; Gureyev, Timur; Thompson, Darren; Janke, Andrew; Galloway, Graham; Killeen, Neil E. B.; Raniga, Parnesh; Kaluza, Owen; Ng, Amanda; Poudel, Govinda; Barnes, David G.; Nguyen, Toan; Bonnington, Paul; Egan, Gary F.
2014-01-01
The Multi-modal Australian ScienceS Imaging and Visualization Environment (MASSIVE) is a national imaging and visualization facility established by Monash University, the Australian Synchrotron, the Commonwealth Scientific Industrial Research Organization (CSIRO), and the Victorian Partnership for Advanced Computing (VPAC), with funding from the National Computational Infrastructure and the Victorian Government. The MASSIVE facility provides hardware, software, and expertise to drive research in the biomedical sciences, particularly advanced brain imaging research using synchrotron x-ray and infrared imaging, functional and structural magnetic resonance imaging (MRI), x-ray computer tomography (CT), electron microscopy and optical microscopy. The development of MASSIVE has been based on best practice in system integration methodologies, frameworks, and architectures. The facility has: (i) integrated multiple different neuroimaging analysis software components, (ii) enabled cross-platform and cross-modality integration of neuroinformatics tools, and (iii) brought together neuroimaging databases and analysis workflows. MASSIVE is now operational as a nationally distributed and integrated facility for neuroinfomatics and brain imaging research. PMID:24734019
Southerland Jennifer Southerland Professional II-Project Assistant Jennifer.Southerland@nrel.gov | 303-275-4065 Jennifer Southerland is a project assistant with the Computational Science Center where
Project Solo; Newsletter Number Seven.
ERIC Educational Resources Information Center
Pittsburgh Univ., PA. Project Solo.
The current curriculum modules under development at Project Solo are listed. The modules are grouped under the subject matter that they are designed to teach--algebra II, biology, calculus, chemistry, computer science, 12th grade math, physics, social science. Special programs written for use on the Hewlett-Packard Plotter are listed that may be…
Computational Understanding: Analysis of Sentences and Context
1974-05-01
Computer Science Department Stanford, California 9430b 10- PROGRAM ELEMENT. PROJECT. TASK AREA « WORK UNIT NUMBERS II. CONTROLLING OFFICE NAME...these is the need tor programs that can respond in useful ways to information expressed in a natural language. However a computational understanding...buying structure because "Mary" appears where it does. But the time for analysis was rarely over five seconds of computer time, when the Lisp program
Desktop Social Science: Coming of Age.
ERIC Educational Resources Information Center
Dwyer, David C.; And Others
Beginning in 1985, Apple Computer, Inc. and several school districts began a collaboration to examine the impact of intensive computer use on instruction and learning in K-12 classrooms. This paper follows the development of a Macintosh II-based management and retrieval system for text data undertaken to store and retrieve oral reflections of…
ERIC Educational Resources Information Center
Mohrman, Kathryn, Ed.
Curricular development in undergraduate programs in the biological, physical, and mathematical sciences at a number of colleges and universities are described. One common theme is the continuing interest in computers in higher education. As the student bodies of many campuses become more heterogeneous with increasing enrollments of minorities and…
75 FR 34107 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-16
... Sciences Type of Review: Revision. Title: NAEP 2011 Wave II (Writing and Math Multi-Stage Computer- based, KASA Math and PR, NIES, NAEP-TIMSS Alignment) Frequency: Affected Public: Individuals or household...
Neal Lane: Science in a Flat World
Lane, Neal
2017-12-22
Lane discusses the changes that have taken place in the world since World War II that have made it "flatter," referring to Thomas L. Friedman's book, The World is Flat. Friedman's main premise is that inexpensive telecommunications is bringing about unhampered international competition, the demise of economic stability, and a trend toward outsourcing services, such as computer programming, engineering and science research.
Quantum computation for solving linear systems
NASA Astrophysics Data System (ADS)
Cao, Yudong
Quantum computation is a subject born out of the combination between physics and computer science. It studies how the laws of quantum mechanics can be exploited to perform computations much more efficiently than current computers (termed classical computers as oppose to quantum computers). The thesis starts by introducing ideas from quantum physics and theoretical computer science and based on these ideas, introducing the basic concepts in quantum computing. These introductory discussions are intended for non-specialists to obtain the essential knowledge needed for understanding the new results presented in the subsequent chapters. After introducing the basics of quantum computing, we focus on the recently proposed quantum algorithm for linear systems. The new results include i) special instances of quantum circuits that can be implemented using current experimental resources; ii) detailed quantum algorithms that are suitable for a broader class of linear systems. We show that for some particular problems the quantum algorithm is able to achieve exponential speedup over their classical counterparts.
1975-06-01
ORGANIZATION NAME AND ADDRESS Carnegie-Mellon University Computer Science Dept Pittsburgh, Pa 15213 II. CONTROLLING OFFICE NAMF AND ADDRESS...programmer. Example 1. A communciation between two procasses is initiated by declaring a buffer which can hold a message whose interpretation is Known...words, the functions named in a path are automatically embedded in a critical region specific for that path.) The computation of the next state in
34 CFR 692.71 - What activities may be funded under the SLEAP Program?
Code of Federal Regulations, 2010 CFR
2010-07-01
... achievement; or (2) Wish to enter a program of study leading to a career in— (i) Information technology; (ii) Mathematics, computer science, or engineering; (iii) Teaching; or (iv) Other fields determined by the State to...
1981-03-01
Research Instructor of Computer Scienr-. Reviewed by: Released by: WILLIAM M. TOLLES Department puter Science Dean of Research 4c t SECURITY...Lyle A. Cox, Roger R. Schell, and Sonja L. Perdue 9. PERFORMING ORGANIZATION NAME ANO ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK AREA A WORK UNIT... Computer Networks, Operating Systems, Computer Security 20. AftUrCT (Cnthm, w v re eae old* It n..*p and idm 0 F W blk ..m.m.o’) ",A_;he security
Enlist micros: Training science teachers to use microcomputers
NASA Astrophysics Data System (ADS)
Baird, William E.; Ellis, James D.; Kuerbis, Paul J.
A National Science Foundation grant to the Biological Sciences Curriculum Study (BSCS) at The Colorado College supported the design and production of training materials to encourage literacy of science teachers in the use of microcomputers. ENLIST Micros is based on results of a national needs assessment that identified 22 compentencies needed by K-12 science teachers to use microcomputers for instruction. A writing team developed the 16-hour training program in the summer of 1985, and field-test coordinators tested it with 18 preservice or in-service groups during the 1985-86 academic year at 15 sites within the United States. The training materials consist of video programs, interactive computer disks for the Apple II series microcomputer, a training manual for participants, and a guide for the group leader. The experimental materials address major areas of educational computing: awareness, applications, implementation, evaluation, and resources. Each chapter contains activities developed for this program, such as viewing video segments of science teachers who are using computers effectively and running commercial science and training courseware. Role playing and small-group interaction help the teachers overcome their reluctance to use computers and plan for effective implementation of microcomputers in the school. This study examines the implementation of educational computing among 47 science teachers who completed the ENLIST Micros training at a southern university. We present results of formative evaluation for that site. Results indicate that both elementary and secondary teachers benefit from the training program and demonstrate gains in attitudes toward computer use. Participating teachers said that the program met its stated objectives and helped them obtain needed skills. Only 33 percent of these teachers, however, reported using computers one year after the training. In June 1986, the BSCS initiated a follow up to the ENLIST Micros curriculum to develop, evaluate, and disseminate a complete model of teacher enhancement for educational computing in the sciences. In that project, we use the ENLIST Micros curriculum as the first step in a training process. The project includes seminars that introduce additional skills: It contains provisions for sharing among participants, monitors use of computers in participants' classrooms, provides structured coaching of participants' use of computers in their classrooms, and offers planned observations of peers using computers in their science teaching.
Virtualization Shares: Feasibility and Implementation in the USNA Computer Science Department
2010-03-10
34 ,< > ~n: 0: ~ ~ ~ " H ! " qo" ~ p. r ". -H~ hHH q r~~ ii!’:- "~ ~~~": ,..a",, :: ~_ a ,, ~~ it ~~ i{ <= ~ ~ ~ ~~ ~ ~~ (~ ~ ~ 2 ~_ ;2
Analysis of a Proposed Material Handling System Using a Computer Simulation Model.
1981-06-01
the proposed MMHS were identified to assist the managers of the system in implementation and future planning. * 4 UNCLASSIFIED SRCUllTY CLASSIPICATION...the Degree of Master of Science in Logistics Management By Darwin D. Harp, BSIE GS-11. June 1981 Approved for public release; distribution unlimited...partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN LOGISTICS MANAGEMENT DATE: 17 June 1981 (( COMMITECARN ii 67- B I
Exploring Accelerating Science Applications with FPGAs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Storaasli, Olaf O; Strenski, Dave
2007-01-01
FPGA hardware and tools (VHDL, Viva, MitrionC and CHiMPS) are described. FPGA performance is evaluated on two Cray XD1 systems (Virtex-II Pro 50 and Virtex-4 LX160) for human genome (DNA and protein) sequence comparisons for a computational biology code (FASTA). Scalable FPGA speedups of 50X (Virtex-II) and 100X (Virtex-4) over a 2.2 GHz Opteron were achieved. Coding and IO issues faced for human genome data are described.
Hammond Photo of Steven Hammond Steve Hammond Center Director II-Technical Steven.Hammond@nrel.gov | 303-275-4121 Steve Hammond is director of the Computational Science Center at the National Renewable includes leading NREL's efforts in energy efficient data centers. Prior to NREL, Steve managed the
Physicists Get INSPIREd: INSPIRE Project and Grid Applications
NASA Astrophysics Data System (ADS)
Klem, Jukka; Iwaszkiewicz, Jan
2011-12-01
INSPIRE is the new high-energy physics scientific information system developed by CERN, DESY, Fermilab and SLAC. INSPIRE combines the curated and trusted contents of SPIRES database with Invenio digital library technology. INSPIRE contains the entire HEP literature with about one million records and in addition to becoming the reference HEP scientific information platform, it aims to provide new kinds of data mining services and metrics to assess the impact of articles and authors. Grid and cloud computing provide new opportunities to offer better services in areas that require large CPU and storage resources including document Optical Character Recognition (OCR) processing, full-text indexing of articles and improved metrics. D4Science-II is a European project that develops and operates an e-Infrastructure supporting Virtual Research Environments (VREs). It develops an enabling technology (gCube) which implements a mechanism for facilitating the interoperation of its e-Infrastructure with other autonomously running data e-Infrastructures. As a result, this creates the core of an e-Infrastructure ecosystem. INSPIRE is one of the e-Infrastructures participating in D4Science-II project. In the context of the D4Science-II project, the INSPIRE e-Infrastructure makes available some of its resources and services to other members of the resulting ecosystem. Moreover, it benefits from the ecosystem via a dedicated Virtual Organization giving access to an array of resources ranging from computing and storage resources of grid infrastructures to data and services.
User interfaces for computational science: A domain specific language for OOMMF embedded in Python
NASA Astrophysics Data System (ADS)
Beg, Marijan; Pepper, Ryan A.; Fangohr, Hans
2017-05-01
Computer simulations are used widely across the engineering and science disciplines, including in the research and development of magnetic devices using computational micromagnetics. In this work, we identify and review different approaches to configuring simulation runs: (i) the re-compilation of source code, (ii) the use of configuration files, (iii) the graphical user interface, and (iv) embedding the simulation specification in an existing programming language to express the computational problem. We identify the advantages and disadvantages of different approaches and discuss their implications on effectiveness and reproducibility of computational studies and results. Following on from this, we design and describe a domain specific language for micromagnetics that is embedded in the Python language, and allows users to define the micromagnetic simulations they want to carry out in a flexible way. We have implemented this micromagnetic simulation description language together with a computational backend that executes the simulation task using the Object Oriented MicroMagnetic Framework (OOMMF). We illustrate the use of this Python interface for OOMMF by solving the micromagnetic standard problem 4. All the code is publicly available and is open source.
2007-05-07
Queen Elizabeth II and Prince Philip, The Duke of Edinburgh look on as Goddard employees demonstrate “Science on a Sphere.” This system, developed by the National Oceanic and Atmospheric Administration (NOAA), uses computers and four video projectors to display animated images on the outside of a 6-foot diameter sphere. Photo Credit: (NASA/Pat Izzo)
Heterogeneous Systems for Information-Variable Environments (HIVE)
2017-05-01
ARL-TR-8027 ● May 2017 US Army Research Laboratory Heterogeneous Systems for Information - Variable Environments (HIVE) by Amar...not return it to the originator. ARL-TR-8027 ● May 2017 US Army Research Laboratory Heterogeneous Systems for Information ...Computational and Information Sciences Directorate, ARL Approved for public release; distribution is unlimited. ii REPORT
A review of small canned computer programs for survey research and demographic analysis.
Sinquefield, J C
1976-12-01
A variety of small canned computer programs for survey research and demographic analysis appropriate for use in developing countries are reviewed in this article. The programs discussed are SPSS (Statistical Package for the Social Sciences); CENTS, CO-CENTS, CENTS-AID, CENTS-AIE II; MINI-TAB EDIT, FREQUENCIES, TABLES, REGRESSION, CLIENT RECORD, DATES, MULT, LIFE, and PREGNANCY HISTORY; FIVFIV and SINSIN; DCL (Demographic Computer Library); MINI-TAB Population Projection, Functional Population Projection, and Family Planning Target Projection. A description and evaluation for each program of uses, instruction manuals, computer requirements, and procedures for obtaining manuals and programs are provided. Such information is intended to facilitate and encourage the use of the computer by data processors in developing countries.
Multilevel UQ strategies for large-scale multiphysics applications: PSAAP II solar receiver
NASA Astrophysics Data System (ADS)
Jofre, Lluis; Geraci, Gianluca; Iaccarino, Gianluca
2017-06-01
Uncertainty quantification (UQ) plays a fundamental part in building confidence in predictive science. Of particular interest is the case of modeling and simulating engineering applications where, due to the inherent complexity, many uncertainties naturally arise, e.g. domain geometry, operating conditions, errors induced by modeling assumptions, etc. In this regard, one of the pacing items, especially in high-fidelity computational fluid dynamics (CFD) simulations, is the large amount of computing resources typically required to propagate incertitude through the models. Upcoming exascale supercomputers will significantly increase the available computational power. However, UQ approaches cannot entrust their applicability only on brute force Monte Carlo (MC) sampling; the large number of uncertainty sources and the presence of nonlinearities in the solution will make straightforward MC analysis unaffordable. Therefore, this work explores the multilevel MC strategy, and its extension to multi-fidelity and time convergence, to accelerate the estimation of the effect of uncertainties. The approach is described in detail, and its performance demonstrated on a radiated turbulent particle-laden flow case relevant to solar energy receivers (PSAAP II: Particle-laden turbulence in a radiation environment). Investigation funded by DoE's NNSA under PSAAP II.
List of Publications of the U.S. Army Engineer Waterways Experiment Station. Volume 2
1993-09-01
Station List of Publications of the U.S. Army Engineer Waterways Experiment Station Volume II compiled by Research Library Information Management Division...Waterways Experiment Station for Other Agencies Air Base Survivability Systems Management Office Headquarters .............................. Z-1 Airport... manages , conducts, and coordinates research and development in the Information Management (IM) technology areas that include computer science
Design of Electronic Experiments Using Computer Generated Virtual Instruments
1994-03-01
work associated with the classical electronics laboratory experiments required in a tpical Electrical Engineering program. This thesis reports the...requiremnents for the degree of MASTER OF SCIENCE IN ELECITRICAL ENGINEERING from the NAVAL POSTGRADUATE SCHOOL March 1994 Aufhfi_...Thcdore Joseph SerbinskI Approved by: Sherif Michael, Thesis Advisor Department of Electrical and Comte Engineering ii ABSIRACT The recent availability
Understanding and Managing Causality of Change in Socio-Technical Systems II
2011-01-25
SUBJECT TERMS Cognition , Human Effectiveness, Information Science 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as Report (SAR) 18...at large taking into account the cognitive interaction between humans and technology. 8 Hussein Abbass Professor Abbass leads the...Network Centric Operations Future Air Traffic Management Systems Cognitive Engineering including Human-Computer Integration In all of the
1993-12-01
where negative charge state. The local symmetry of the Ge(I) and Ge(II) centers are CI and C2 respectively. (See also Fig. 1.) q=- 1 Ge(I) Ge(II) s p...Raymond Field: Dept. of Computer Science Dept, CEM. M•e s , PhD Laboratory: / 3200 Willow Creek Road zmbry-Riddle Aeronautical Univ Vol-Page No: 0- 0...Field: Electrical Engineering Assistant Professor, PhD Laboratory: PL/WS 2390 S . York Street University of Denver Vol-Page No: 3-35 Denver, CO 80209-0177
Extending Landauer's bound from bit erasure to arbitrary computation
NASA Astrophysics Data System (ADS)
Wolpert, David
The minimal thermodynamic work required to erase a bit, known as Landauer's bound, has been extensively investigated both theoretically and experimentally. However, when viewed as a computation that maps inputs to outputs, bit erasure has a very special property: the output does not depend on the input. Existing analyses of thermodynamics of bit erasure implicitly exploit this property, and thus cannot be directly extended to analyze the computation of arbitrary input-output maps. Here we show how to extend these earlier analyses of bit erasure to analyze the thermodynamics of arbitrary computations. Doing this establishes a formal connection between the thermodynamics of computers and much of theoretical computer science. We use this extension to analyze the thermodynamics of the canonical ``general purpose computer'' considered in computer science theory: a universal Turing machine (UTM). We consider a UTM which maps input programs to output strings, where inputs are drawn from an ensemble of random binary sequences, and prove: i) The minimal work needed by a UTM to run some particular input program X and produce output Y is the Kolmogorov complexity of Y minus the log of the ``algorithmic probability'' of Y. This minimal amount of thermodynamic work has a finite upper bound, which is independent of the output Y, depending only on the details of the UTM. ii) The expected work needed by a UTM to compute some given output Y is infinite. As a corollary, the overall expected work to run a UTM is infinite. iii) The expected work needed by an arbitrary Turing machine T (not necessarily universal) to compute some given output Y can either be infinite or finite, depending on Y and the details of T. To derive these results we must combine ideas from nonequilibrium statistical physics with fundamental results from computer science, such as Levin's coding theorem and other theorems about universal computation. I would like to ackowledge the Santa Fe Institute, Grant No. TWCF0079/AB47 from the Templeton World Charity Foundation, Grant No. FQXi-RHl3-1349 from the FQXi foundation, and Grant No. CHE-1648973 from the U.S. National Science Foundation.
Poikela, Paula; Ruokamo, Heli; Teräs, Marianne
2015-02-01
Nursing educators must ensure that nursing students acquire the necessary competencies; finding the most purposeful teaching methods and encouraging learning through meaningful learning opportunities is necessary to meet this goal. We investigated student learning in a simulated nursing practice using videography. The purpose of this paper is to examine how two different teaching methods presented students' meaningful learning in a simulated nursing experience. The 6-hour study was divided into three parts: part I, general information; part II, training; and part III, simulated nursing practice. Part II was delivered by two different methods: a computer-based simulation and a lecture. The study was carried out in the simulated nursing practice in two universities of applied sciences, in Northern Finland. The participants in parts II and I were 40 first year nursing students; 12 student volunteers continued to part III. Qualitative analysis method was used. The data were collected using video recordings and analyzed by videography. The students who used a computer-based simulation program were more likely to report meaningful learning themes than those who were first exposed to lecture method. Educators should be encouraged to use computer-based simulation teaching in conjunction with other teaching methods to ensure that nursing students are able to receive the greatest educational benefits. Copyright © 2014 Elsevier Ltd. All rights reserved.
Conceptual Modeling in the Time of the Revolution: Part II
NASA Astrophysics Data System (ADS)
Mylopoulos, John
Conceptual Modeling was a marginal research topic at the very fringes of Computer Science in the 60s and 70s, when the discipline was dominated by topics focusing on programs, systems and hardware architectures. Over the years, however, the field has moved to centre stage and has come to claim a central role both in Computer Science research and practice in diverse areas, such as Software Engineering, Databases, Information Systems, the Semantic Web, Business Process Management, Service-Oriented Computing, Multi-Agent Systems, Knowledge Management, and more. The transformation was greatly aided by the adoption of standards in modeling languages (e.g., UML), and model-based methodologies (e.g., Model-Driven Architectures) by the Object Management Group (OMG) and other standards organizations. We briefly review the history of the field over the past 40 years, focusing on the evolution of key ideas. We then note some open challenges and report on-going research, covering topics such as the representation of variability in conceptual models, capturing model intentions, and models of laws.
Kepper, Nick; Ettig, Ramona; Dickmann, Frank; Stehr, Rene; Grosveld, Frank G; Wedemann, Gero; Knoch, Tobias A
2010-01-01
Especially in the life-science and the health-care sectors the huge IT requirements are imminent due to the large and complex systems to be analysed and simulated. Grid infrastructures play here a rapidly increasing role for research, diagnostics, and treatment, since they provide the necessary large-scale resources efficiently. Whereas grids were first used for huge number crunching of trivially parallelizable problems, increasingly parallel high-performance computing is required. Here, we show for the prime example of molecular dynamic simulations how the presence of large grid clusters including very fast network interconnects within grid infrastructures allows now parallel high-performance grid computing efficiently and thus combines the benefits of dedicated super-computing centres and grid infrastructures. The demands for this service class are the highest since the user group has very heterogeneous requirements: i) two to many thousands of CPUs, ii) different memory architectures, iii) huge storage capabilities, and iv) fast communication via network interconnects, are all needed in different combinations and must be considered in a highly dedicated manner to reach highest performance efficiency. Beyond, advanced and dedicated i) interaction with users, ii) the management of jobs, iii) accounting, and iv) billing, not only combines classic with parallel high-performance grid usage, but more importantly is also able to increase the efficiency of IT resource providers. Consequently, the mere "yes-we-can" becomes a huge opportunity like e.g. the life-science and health-care sectors as well as grid infrastructures by reaching higher level of resource efficiency.
1984-06-01
TEMPERATURE MAT’LS IMAGE RECOGNITION ROCKET PROPULSION SPEECH RECOGNITION/TRANSLATION COMPUTER-AIDED DESIGN ARTIFICIAL INTELLIGENCE PRODUCTION TECHNOLOGY...planning, intelligence exchange, and logistics. While not called out in the Guidelines, any further standardization in equipments and interoperability...COST AND TIME THAN DEVELCPING THEM -ESTABLISHMENT OF PRODUCTIVE LONG-TERM BUSINESS RELATIONSH IPS WITH JAPANESE COMPAN IES * PROBLEM -POSSIBILITY OF
NASA Astrophysics Data System (ADS)
Fraser, Gordon
2006-04-01
Introduction Gordon Fraser; Part I. Matter and the Universe: 1. Cosmology Wendy Freedman and Rocky Kolb; 2. Gravity Ronald Adler; 3. Astrophysics Arnon Dar; 4. Particles and the standard model Chris Quigg; 5. Superstrings Michael Green; Part II. Quantum Matter: 6. Atoms and photons Claude Cohen-Tannoudji and Jean Dalibard; 7. The quantum world of ultra-cold atoms Christopher Foot and William Phillips; 8. Superfluidity Henry Hall; 9. Quantum phase transitions Subir Sachdev; Part III. Quanta in Action: 10. Quantum entanglement Anton Zeilinger; 11. Quanta, ciphers and computers Artur Ekert; 12. Small-scale structure and nanoscience Yoseph Imry; Part IV. Calculation and Computation: 13. Nonlinearity Henry Abarbanel; 14. Complexity Antonio Politi; 15. Collaborative physics, e-science and the grid Tony Hey and Anne Trefethen; Part V. Science in Action: 16. Biophysics Cyrus Safinya; 17. Medical physics Nicolaj Pavel; 18. Physics and materials Robert Cahn; 19. Physics and society Ugo Amaldi.
NASA Astrophysics Data System (ADS)
Fraser, Gordon
2009-08-01
Introduction Gordon Fraser; Part I. Matter and the Universe: 1. Cosmology Wendy Freedman and Rocky Kolb; 2. Gravity Ronald Adler; 3. Astrophysics Arnon Dar; 4. Particles and the standard model Chris Quigg; 5. Superstrings Michael Green; Part II. Quantum Matter: 6. Atoms and photons Claude Cohen-Tannoudji and Jean Dalibard; 7. The quantum world of ultra-cold atoms Christopher Foot and William Phillips; 8. Superfluidity Henry Hall; 9. Quantum phase transitions Subir Sachdev; Part III. Quanta in Action: 10. Quantum entanglement Anton Zeilinger; 11. Quanta, ciphers and computers Artur Ekert; 12. Small-scale structure and nanoscience Yoseph Imry; Part IV. Calculation and Computation: 13. Nonlinearity Henry Abarbanel; 14. Complexity Antonio Politi; 15. Collaborative physics, e-science and the grid Tony Hey and Anne Trefethen; Part V. Science in Action: 16. Biophysics Cyrus Safinya; 17. Medical physics Nicolaj Pavel; 18. Physics and materials Robert Cahn; 19. Physics and society Ugo Amaldi.
An Ada Object Oriented Missile Flight Simulation
1991-09-01
identify by block number) This thesis uses the Ada programming language in the design and development of an air-to-air missile flight simulation with...object oriented techniques and sound software engineering principles. The simulation is designed to be more understandable, modifiable, efficient and...Department of Computer Science ii ABSTRACT This thesis uses the Ada programming language in the design and development of an air-to-air missile flight
Modeling Laser Damage Thresholds Using the Thompson-Gerstman Model
2014-10-01
Gerstman model was intended to be a modular tool fit for integration into other computational models. This adds usability to the standalone code...Advanced Study Institute, Series A – Life Sciences, Vol. 34, pp. 77-97. New York: Plenum Press . 4. Birngruber, R., V.-P. Gabel and F. Hillenkamp...Random granule placement - varies with melnum. ; ii. Depth averaging or shadowing - varies with melnum. ; iii. T(r,t) single granule calc
MAXHELP: Needs Assessment in the Montgomery Community
1984-04-01
become motivated for satisfactory accomplishments. 12 . Orientation flights. Simplified computer simulation games in math /science. Guest attendance of...NAME AND ADDRESS 12 . REPORT DATE APRIL 1984 ACSC/EDCC, MAXWELL AFB, AL 36112 13. NUMBER OF PAGES 14. MONITORING AGENCY NAME A AOORESS(’II dllerenl...and Finance specialist course where he was a distinguished graduate. In 1968 he was recalled to active duty and was assigned to Sewart Air Force Base
Strategic Planning for Interdisciplinary Science: a Geoscience Success Story
NASA Astrophysics Data System (ADS)
Harshvardhan, D.; Harbor, J. M.
2003-12-01
The Department of Earth and Atmospheric Sciences at Purdue University has engaged in a continuous strategic planning exercise for several years, including annual retreats since 1997 as an integral part of the process. The daylong Saturday retreat at the beginning of the fall semester has been used to flesh out the faculty hiring plan for the coming year based on the prior years' plans. The finalized strategic plan is built around the choice of three signature areas, two in disciplinary fields, (i) geodynamics and active tectonics, (ii) multi-scale atmospheric interactions and one interdisciplinary area, (iii) atmosphere/surface interactions. Our experience with strategic planning and the inherently interdisciplinary nature of geoscience helped us recently when our School of Science, which consists of seven departments, announced a competition for 60 new faculty positions that would be assigned based on the following criteria, listed in order of priority - (i) scientific merit and potential for societal impact, (ii) multidisciplinary nature of topic - level of participation and leveraging potential, (iii) alignment with Purdue's strategic plan - discovery, learning, engagement, (iv) existence of critical mass at Purdue and availability of faculty and student candidate pools, (v) corporate and federal sponsor interest. Some fifty white papers promoting diverse fields were submitted to the school and seven were chosen after a school-wide retreat. The department fared exceedingly well and we now have significant representation on three of the seven school areas of coalescence - (i) climate change, (ii) computational science and (iii) science education research. We are now in the process of drawing up hiring plans and developing strategies for allocation and reallocation of resources such as laboratory space and faculty startup to accommodate the 20% growth in faculty strength that is expected over the next five years.
Mechanisms and Dynamics of Abiotic and Biotic Interactions at Environmental Interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roso, Kevin M.
The Stanford EMSI (SEMSI) was established in 2004 through joint funding by the National Science Foundation and the OBER-ERSD. It encompasses a number of universities and national laboratories. The PNNL component of the SEMSI is funded by ERSD and is the focus of this report. This component has the objective of providing theory support to the SEMSI by bringing computational capabilities and expertise to bear on important electron transfer problems at mineral/water and mineral/microbe interfaces. PNNL staff member Dr. Kevin Rosso, who is also ''matrixed'' into the Environmental Molecular Sciences Laboratory (EMSL) at PNNL, is a co-PI on the SEMSImore » project and the PNNL lead. The EMSL computational facilities being applied to the SEMSI project include the 11.8 teraflop massively-parallel supercomputer. Science goals of this EMSL/SEMSI partnership include advancing our understanding of: (1) The kinetics of U(VI) and Cr(VI) reduction by aqueous and solid-phase Fe(II), (2) The structure of mineral surfaces in equilibrium with solution, and (3) Mechanisms of bacterial electron transfer to iron oxide surfaces via outer-membrane cytochromes.« less
Computationally intensive econometrics using a distributed matrix-programming language.
Doornik, Jurgen A; Hendry, David F; Shephard, Neil
2002-06-15
This paper reviews the need for powerful computing facilities in econometrics, focusing on concrete problems which arise in financial economics and in macroeconomics. We argue that the profession is being held back by the lack of easy-to-use generic software which is able to exploit the availability of cheap clusters of distributed computers. Our response is to extend, in a number of directions, the well-known matrix-programming interpreted language Ox developed by the first author. We note three possible levels of extensions: (i) Ox with parallelization explicit in the Ox code; (ii) Ox with a parallelized run-time library; and (iii) Ox with a parallelized interpreter. This paper studies and implements the first case, emphasizing the need for deterministic computing in science. We give examples in the context of financial economics and time-series modelling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fulton, John L.; Govind, Niranjan; Huthwelker, Thomas
2015-07-02
We probe, at high energy resolution, the double electron excitation (KL II&II) x-ray absorption region that lies approximately 115 eV above the main Al K-edge (1566 eV) of α-alumina and sodium aluminate. The two solid standards, α-alumina (octahedral) and sodium aluminate (tetrahedral) are compared to aqueous species that have the same Al coordination symmetries, Al³⁺•6H₂O (octahedral) and Al(OH)₄⁻ (tetrahedral). For the octahedral species, the edge height of the KL II&III-edge is approximately 10% of the main K-edge however the edge height is much weaker (3% of K-edge height) for Al species with tetrahedral symmetry. For the α-alumina and aqueous Al³⁺•6H₂Omore » the KL II&III spectra contain white line features and extended absorption fine structure (EXAFS) that mimics the K-edge spectra. The KL II&III-edge feature interferes with an important region of the extended-XAFS region of the spectra for the K-edge of the crystalline and aqueous standards. The K-edge spectra and K-edge positions are predicted using time-dependent density functional theory (TDDFT). The TDDFT calculations for the K-edge XANES spectra reproduce the observed transitions in the experimental spectra of the four Al species. The KL II&III and KL I onsets and their corresponding chemical shifts for the four standards are estimated using the delta self-consistent field (ΔSCF) method. Research by JLF, NG, EJB, AV, TDS was supported by U.S. Department of Energy’s (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. NG thanks Amity Andersen for help with the α-Al₂O₃ and tetrahedral sodium aluminate (NaAlO₂) clusters. All the calculations were performed using the Molecular Science Computing Capability at EMSL, a national scientific user facility sponsored by the U.S. Department of Energy’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated for DOE by Battelle under Contract # AC05-76RL01830.« less
Approximate Confidence Limit Procedures for Complex Systems
1991-09-01
requirements for the degree of MASTER OF SCIENCE IN OPERATIONS RESEARCH from the NAVAL POSTGRADUATE SCHOOL September 1991 A uthor...34 YEE, Kah-Chee Approved by: ? )t. 7 " ’& W. M. WOODS, Thesis Advisor R. R. READ, Second Reader P. PURDE, airman Department of Operations Research ii...cautioned that the computer programs developed in this research may not have been exercised for all cases of interest. While every effort has been made
ERIC Educational Resources Information Center
Fussler, Herman; Payne, Charles T.
Part I is a discussion of the following project tasks: A) development of an on-line, real-time bibliographic data processing system; B) implementation in library operations; C) character sets; D) Project MARC; E) circulation; and F) processing operation studies. Part II is a brief discussion of efforts to work out cooperative library systems…
Deductive Synthesis of the Unification Algorithm,
1981-06-01
DEDUCTIVE SYNTHESIS OF THE I - UNIFICATION ALGORITHM Zohar Manna Richard Waldinger I F? Computer Science Department Artificial Intelligence Center...theorem proving," Artificial Intelligence Journal, Vol. 9, No. 1, pp. 1-35. Boyer, R. S. and J S. Moore [Jan. 19751, "Proving theorems about LISP...d’Intelligence Artificielle , U.E.R. de Luminy, Universit6 d’ Aix-Marseille II. Green, C. C. [May 1969], "Application of theorem proving to problem
Performance Analysis, Modeling and Scaling of HPC Applications and Tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatele, Abhinav
2016-01-13
E cient use of supercomputers at DOE centers is vital for maximizing system throughput, mini- mizing energy costs and enabling science breakthroughs faster. This requires complementary e orts along several directions to optimize the performance of scienti c simulation codes and the under- lying runtimes and software stacks. This in turn requires providing scalable performance analysis tools and modeling techniques that can provide feedback to physicists and computer scientists developing the simulation codes and runtimes respectively. The PAMS project is using time allocations on supercomputers at ALCF, NERSC and OLCF to further the goals described above by performing research alongmore » the following fronts: 1. Scaling Study of HPC applications; 2. Evaluation of Programming Models; 3. Hardening of Performance Tools; 4. Performance Modeling of Irregular Codes; and 5. Statistical Analysis of Historical Performance Data. We are a team of computer and computational scientists funded by both DOE/NNSA and DOE/ ASCR programs such as ECRP, XStack (Traleika Glacier, PIPER), ExaOSR (ARGO), SDMAV II (MONA) and PSAAP II (XPACC). This allocation will enable us to study big data issues when analyzing performance on leadership computing class systems and to assist the HPC community in making the most e ective use of these resources.« less
Know Your Discipline: Teaching the Philosophy of Computer Science
ERIC Educational Resources Information Center
Tedre, Matti
2007-01-01
The diversity and interdisciplinarity of computer science and the multiplicity of its uses in other sciences make it hard to define computer science and to prescribe how computer science should be carried out. The diversity of computer science also causes friction between computer scientists from different branches. Computer science curricula, as…
Viewpoints on Medical Image Processing: From Science to Application
Deserno (né Lehmann), Thomas M.; Handels, Heinz; Maier-Hein (né Fritzsche), Klaus H.; Mersmann, Sven; Palm, Christoph; Tolxdorff, Thomas; Wagenknecht, Gudrun; Wittenberg, Thomas
2013-01-01
Medical image processing provides core innovation for medical imaging. This paper is focused on recent developments from science to applications analyzing the past fifteen years of history of the proceedings of the German annual meeting on medical image processing (BVM). Furthermore, some members of the program committee present their personal points of views: (i) multi-modality for imaging and diagnosis, (ii) analysis of diffusion-weighted imaging, (iii) model-based image analysis, (iv) registration of section images, (v) from images to information in digital endoscopy, and (vi) virtual reality and robotics. Medical imaging and medical image computing is seen as field of rapid development with clear trends to integrated applications in diagnostics, treatment planning and treatment. PMID:24078804
Viewpoints on Medical Image Processing: From Science to Application.
Deserno Né Lehmann, Thomas M; Handels, Heinz; Maier-Hein Né Fritzsche, Klaus H; Mersmann, Sven; Palm, Christoph; Tolxdorff, Thomas; Wagenknecht, Gudrun; Wittenberg, Thomas
2013-05-01
Medical image processing provides core innovation for medical imaging. This paper is focused on recent developments from science to applications analyzing the past fifteen years of history of the proceedings of the German annual meeting on medical image processing (BVM). Furthermore, some members of the program committee present their personal points of views: (i) multi-modality for imaging and diagnosis, (ii) analysis of diffusion-weighted imaging, (iii) model-based image analysis, (iv) registration of section images, (v) from images to information in digital endoscopy, and (vi) virtual reality and robotics. Medical imaging and medical image computing is seen as field of rapid development with clear trends to integrated applications in diagnostics, treatment planning and treatment.
1991-01-01
Auvt’r discordaint lairs . p’ f~~~Ilit’ trtthailitY if ;i Ittili x’ ii IHit’ s,;tilct sIpac.’ is fujr s~,re ’’uristartt A1 and 0t < 1, A ’tark...reconstruction algorithms, usually of the filtered back-projection type, do 99mTcIIMPAO Thallium-201 not correct for nonuniform photon attenuation and depth
NASA Astrophysics Data System (ADS)
Kurkovsky, Stan
2013-06-01
Computer games have been accepted as an engaging and motivating tool in the computer science (CS) curriculum. However, designing and implementing a playable game is challenging, and is best done in advanced courses. Games for mobile devices, on the other hand, offer the advantage of being simpler and, thus, easier to program for lower level students. Learning context of mobile game development can be used to reinforce many core programming topics, such as loops, classes, and arrays. Furthermore, it can also be used to expose students in introductory computing courses to a wide range of advanced topics in order to illustrate that CS can be much more than coding. This paper describes the author's experience with using mobile game development projects in CS I and II, how these projects were integrated into existing courses at several universities, and the lessons learned from this experience.
Cheyney University Curriculum and Infrastructure Enhamcement in STEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eva, Sakkar Ara
Cheyney University is the oldest historically Black educational institution in America. Initially established as a “normal” school emphasizing the matriculation of educators, Cheyney has become a comprehensive university, one of 14 state universities comprising the Pennsylvania State System of Higher Education (PASSHE). Cheyney University graduates still become teachers, but they also enter such fields as journalism, medicine, science, mathematics, law, communication and government. Cheyney University is a small state owned HBCU with very limited resource. At present the university has about a thousand students with 15% in STEM. The CUCIES II grant made significant contribution in saving the computer sciencemore » program from being a discontinued program in the university. The grant enabled the university to hire a temporary faculty to teach in and update the computer science program. The program is enhanced with three tracks; cyber security, human computer interaction and general. The updated and enhanced computer science program will prepare professionals in the area of computer science with the knowledge, skills, and professional ethic needed for the current market. The new curriculum was developed for a professional profile that would focus on the technologies and techniques currently used in the industry. With faculty on board, the university worked with the department to bring back the computer science program from moratorium. Once in the path of being discontinued and loosing students, the program is now growing. Currently the student number has increased from 12 to 30. University is currently in the process of hiring a tenure track faculty in the computer science program. Another product of the grant is the proposal for introductory course in nanotechnology. The course is intended to generate interest in the nanotechnology field. The Natural and Applied Science department that houses all of the STEM programs in Cheyney University, is currently working to bring back environmental science program from moratorium. The university has been working to improve minority participation in STEM and made significant stride in terms of progressing students toward graduate programs and into professoriate track. This success is due to faculty mentors who work closely with students to guiding them through the application processes for research internship and graduate programs; it is also due to the university forming collaborative agreements with research intensive institutions, federal and state agencies and industry. The grant assisted in recruiting and retaining students in STEM by offering tuition scholarship, research scholarship and travel awards. Faculty professional development was supported by the grant by funding travel to conferences, meetings and webinar. As many HBCU Cheyney University is also trying to do more with less. As the STEM programs are inherently expensive, these are the ones that suffer more when resources are scarce. One of the goals of Cheyney University strategic plan is to strengthen STEM programs that is coherent with the critical skill need of Department of Energy. All of the Cheyney University STEM programs are now located in the new science building funded by Pennsylvania state.« less
BraX-Ray: an X-ray of the Brazilian computer science graduate programs.
Digiampietri, Luciano A; Mena-Chalco, Jesús P; Vaz de Melo, Pedro O S; Malheiro, Ana P R; Meira, Dânia N O; Franco, Laryssa F; Oliveira, Leonardo B
2014-01-01
Research productivity assessment is increasingly relevant for allocation of research funds. On one hand, this assessment is challenging because it involves both qualitative and quantitative analysis of several characteristics, most of them subjective in nature. On the other hand, current tools and academic social networks make bibliometric data web-available to everyone for free. Those tools, especially when combined with other data, are able to create a rich environment from which information on research productivity can be extracted. In this context, our work aims at characterizing the Brazilian Computer Science graduate programs and the relationship among themselves. We (i) present views of the programs from different perspectives, (ii) rank the programs according to each perspective and a combination of them, (iii) show correlation between assessment metrics, (iv) discuss how programs relate to another, and (v) infer aspects that boost programs' research productivity. The results indicate that programs with a higher insertion in the coauthorship network topology also possess a higher research productivity between 2004 and 2009.
Development of stable Grid service at the next generation system of KEKCC
NASA Astrophysics Data System (ADS)
Nakamura, T.; Iwai, G.; Matsunaga, H.; Murakami, K.; Sasaki, T.; Suzuki, S.; Takase, W.
2017-10-01
A lot of experiments in the field of accelerator based science are actively running at High Energy Accelerator Research Organization (KEK) by using SuperKEKB and J-PARC accelerator in Japan. In these days at KEK, the computing demand from the various experiments for the data processing, analysis, and MC simulation is monotonically increasing. It is not only for the case with high-energy experiments, the computing requirement from the hadron and neutrino experiments and some projects of astro-particle physics is also rapidly increasing due to the very high precision measurement. Under this situation, several projects, Belle II, T2K, ILC and KAGRA experiments supported by KEK are going to utilize Grid computing infrastructure as the main computing resource. The Grid system and services in KEK, which is already in production, are upgraded for the further stable operation at the same time of whole scale hardware replacement of KEK Central Computer System (KEKCC). The next generation system of KEKCC starts the operation from the beginning of September 2016. The basic Grid services e.g. BDII, VOMS, LFC, CREAM computing element and StoRM storage element are made by the more robust hardware configuration. Since the raw data transfer is one of the most important tasks for the KEKCC, two redundant GridFTP servers are adapted to the StoRM service instances with 40 Gbps network bandwidth on the LHCONE routing. These are dedicated to the Belle II raw data transfer to the other sites apart from the servers for the data transfer usage of the other VOs. Additionally, we prepare the redundant configuration for the database oriented services like LFC and AMGA by using LifeKeeper. The LFC servers are made by two read/write servers and two read-only servers for the Belle II experiment, and all of them have an individual database for the purpose of load balancing. The FTS3 service is newly deployed as a service for the Belle II data distribution. The service of CVMFS stratum-0 is started for the Belle II software repository, and stratum-1 service is prepared for the other VOs. In this way, there are a lot of upgrade for the real production service of Grid infrastructure at KEK Computing Research Center. In this paper, we would like to introduce the detailed configuration of the hardware for Grid instance, and several mechanisms to construct the robust Grid system in the next generation system of KEKCC.
A SLAM II simulation model for analyzing space station mission processing requirements
NASA Technical Reports Server (NTRS)
Linton, D. G.
1985-01-01
Space station mission processing is modeled via the SLAM 2 simulation language on an IBM 4381 mainframe and an IBM PC microcomputer with 620K RAM, two double-sided disk drives and an 8087 coprocessor chip. Using a time phased mission (payload) schedule and parameters associated with the mission, orbiter (space shuttle) and ground facility databases, estimates for ground facility utilization are computed. Simulation output associated with the science and applications database is used to assess alternative mission schedules.
An Ada Based Expert System for the Ada Version of SAtool II. Volume 1 and 2
1991-06-06
Integrated Computer-Aided Manufacturing (ICAM) (20). In fact, IDEF 0 stands for ICAM Definition Method Zero . IDEF0 defines a subset of SA that omits...reasoning that has been programmed). An expert’s knowledge is specific to one problem domain as opposed to knowledge about general problem-solving...techniques. General problem domains are medicine, finance, science or engineering and so forth in which an expert can solve specific problems very well
Factors influencing exemplary science teachers' levels of computer use
NASA Astrophysics Data System (ADS)
Hakverdi, Meral
This study examines exemplary science teachers' use of technology in science instruction, factors influencing their level of computer use, their level of knowledge/skills in using specific computer applications for science instruction, their use of computer-related applications/tools during their instruction, and their students' use of computer applications/tools in or for their science class. After a relevant review of the literature certain variables were selected for analysis. These variables included personal self-efficacy in teaching with computers, outcome expectancy, pupil-control ideology, level of computer use, age, gender, teaching experience, personal computer use, professional computer use and science teachers' level of knowledge/skills in using specific computer applications for science instruction. The sample for this study includes middle and high school science teachers who received the Presidential Award for Excellence in Science Teaching Award (sponsored by the White House and the National Science Foundation) between the years 1997 and 2003 from all 50 states and U.S. territories. Award-winning science teachers were contacted about the survey via e-mail or letter with an enclosed return envelope. Of the 334 award-winning science teachers, usable responses were received from 92 science teachers, which made a response rate of 27.5%. Analysis of the survey responses indicated that exemplary science teachers have a variety of knowledge/skills in using computer related applications/tools. The most commonly used computer applications/tools are information retrieval via the Internet, presentation tools, online communication, digital cameras, and data collection probes. Results of the study revealed that students' use of technology in their science classroom is highly correlated with the frequency of their science teachers' use of computer applications/tools. The results of the multiple regression analysis revealed that personal self-efficacy related to the exemplary science teachers' level of computer use suggesting that computer use is dependent on perceived abilities at using computers. The teachers' use of computer-related applications/tools during class, and their personal self-efficacy, age, and gender are highly related with their level of knowledge/skills in using specific computer applications for science instruction. The teachers' level of knowledge/skills in using specific computer applications for science instruction and gender related to their use of computer-related applications/tools during class and the students' use of computer-related applications/tools in or for their science class. In conclusion, exemplary science teachers need assistance in learning and using computer-related applications/tool in their science class.
NASA Astrophysics Data System (ADS)
Chen, Goong; Wang, Yi-Ching; Perronnet, Alain; Gu, Cong; Yao, Pengfei; Bin-Mohsin, Bandar; Hajaiej, Hichem; Scully, Marlan O.
2017-03-01
Computational mathematics, physics and engineering form a major constituent of modern computational science, which now stands on an equal footing with the established branches of theoretical and experimental sciences. Computational mechanics solves problems in science and engineering based upon mathematical modeling and computing, bypassing the need for expensive and time-consuming laboratory setups and experimental measurements. Furthermore, it allows the numerical simulations of large scale systems, such as the formation of galaxies that could not be done in any earth bound laboratories. This article is written as part of the 21st Century Frontiers Series to illustrate some state-of-the-art computational science. We emphasize how to do numerical modeling and visualization in the study of a contemporary event, the pulverizing crash of the Germanwings Flight 9525 on March 24, 2015, as a showcase. Such numerical modeling and the ensuing simulation of aircraft crashes into land or mountain are complex tasks as they involve both theoretical study and supercomputing of a complex physical system. The most tragic type of crash involves ‘pulverization’ such as the one suffered by this Germanwings flight. Here, we show pulverizing airliner crashes by visualization through video animations from supercomputer applications of the numerical modeling tool LS-DYNA. A sound validation process is challenging but essential for any sophisticated calculations. We achieve this by validation against the experimental data from a crash test done in 1993 of an F4 Phantom II fighter jet into a wall. We have developed a method by hybridizing two primary methods: finite element analysis and smoothed particle hydrodynamics. This hybrid method also enhances visualization by showing a ‘debris cloud’. Based on our supercomputer simulations and the visualization, we point out that prior works on this topic based on ‘hollow interior’ modeling can be quite problematic and, thus, not likely to be correct. We discuss the effects of terrain on pulverization using the information from the recovered flight-data-recorder and show our forensics and assessments of what may have happened during the final moments of the crash. Finally, we point out that our study has potential for being made into real-time flight crash simulators to help the study of crashworthiness and survivability for future aviation safety. Some forward-looking statements are also made.
The Development of New Atmospheric Models for K and M DwarfStars with Exoplanets
NASA Astrophysics Data System (ADS)
Linsky, Jeffrey L.
2018-01-01
The ultraviolet and X-ray emissions of host stars play critical roles in the survival and chemical composition of the atmospheres of their exoplanets. The need to measure and understand this radiative output, in particular for K and M dwarfs, is the main rationale for computing a new generation of stellar models that includes magnetically heated chromospheres and coronae in addition to their photospheres. We describe our method for computing semi-empirical models that includes solutions of the statistical equilibrium equations for 52 atoms and ions and of the non-LTE radiative transfer equations for all important spectral lines. The code is an offspring of the Solar Radiation Physical Modelling system (SRPM) developed by Fontenla et al. (2007--2015) to compute one-dimensional models in hydrostatic equilibrium to fit high-resolution stellar X-ray to IR spectra. Also included are 20 diatomic molecules and their more than 2 million spectral lines. Our-proof-of-concept model is for the M1.5 V star GJ 832 (Fontenla et al. ApJ 830, 154 (2016)). We will fit the line fluxes and profiles of X-ray lines and continua observed by Chandra and XMM-Newton, UV lines observed by the COS and STIS instruments on HST (N V, C IV, Si IV, Si III, Mg II, C II, and O I), optical lines (including H$\\alpha$, Ca II, Na I), and continua. These models will allow us to compute extreme-UV spectra, which are unobservable but required to predict the hydrodynamic mass-loss rate from exoplanet atmospheres, and to predict panchromatic spectra of new exoplanet host stars discovered after the end of the HST mission.This work is supported by grant HST-GO-15038 from the Space Telescope Science Institute to the Univ. of Colorado
10 CFR Appendix II to Part 504 - Fuel Price Computation
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Fuel Price Computation II Appendix II to Part 504 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS EXISTING POWERPLANTS Pt. 504, App. II Appendix II to Part 504—Fuel Price Computation (a) Introduction. This appendix provides the equations and parameters...
Computational Approaches for Designing Protein/Inhibitor Complexes and Membrane Protein Variants
NASA Astrophysics Data System (ADS)
Vijayendran, Krishna Gajan
Drug discovery of small-molecule protein inhibitors is a vast enterprise that involves several scientific disciplines (i.e. genomics, cell biology, x-ray crystallography, chemistry, computer science, statistics), with each discipline focusing on a particular aspect of the process. In this thesis, I use computational and experimental approaches to explore the most fundamental aspect of drug discovery: the molecular interactions of small-molecules inhibitors with proteins. In Part I (Chapters I and II), I describe how computational docking approaches can be used to identify structurally diverse molecules that can inhibit multiple protein targets in the brain. I illustrate this approach using the examples of microtubule-stabilizing agents and inhibitors of cyclooxygenase(COX)-I and 5-lipoxygenase (5-LOX). In Part II (Chapters III and IV), I focus on membrane proteins, which are notoriously difficult to work with due to their low natural abundances, low yields for heterologous over expression, and propensities toward aggregation. I describe a general approach for designing water-soluble variants of membrane proteins, for the purpose of developing cell-free, label-free, detergent-free, solution-phase studies of protein structure and small-molecule binding. I illustrate this approach through the design of a water-soluble variant of the membrane protein Smoothened, wsSMO. This wsSMO stands to serve as a first-step towards developing membrane protein analogs of this important signaling protein and drug target.
Science Motivation Questionnaire II: Validation with Science Majors and Nonscience Majors
ERIC Educational Resources Information Center
Glynn, Shawn M.; Brickman, Peggy; Armstrong, Norris; Taasoobshirazi, Gita
2011-01-01
From the perspective of social cognitive theory, the motivation of students to learn science in college courses was examined. The students--367 science majors and 313 nonscience majors--responded to the Science Motivation Questionnaire II, which assessed five motivation components: intrinsic motivation, self-determination, self-efficacy, career…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sovinec, Carl R.
The University of Wisconsin-Madison component of the Plasma Science and Innovation Center (PSI Center) contributed to modeling capabilities and algorithmic efficiency of the Non-Ideal Magnetohydrodynamics with Rotation (NIMROD) Code, which is widely used to model macroscopic dynamics of magnetically confined plasma. It also contributed to the understanding of direct-current (DC) injection of electrical current for initiating and sustaining plasma in three spherical torus experiments: the Helicity Injected Torus-II (HIT-II), the Pegasus Toroidal Experiment, and the National Spherical Torus Experiment (NSTX). The effort was funded through the PSI Center's cooperative agreement with the University of Washington and Utah State University overmore » the period of March 1, 2005 - August 31, 2016. In addition to the computational and physics accomplishments, the Wisconsin effort contributed to the professional education of four graduate students and two postdoctoral research associates. The modeling for HIT-II and Pegasus was directly supported by the cooperative agreement, and contributions to the NSTX modeling were in support of work by Dr. Bickford Hooper, who was funded through a separate grant. Our primary contribution to model development is the implementation of detailed closure relations for collisional plasma. Postdoctoral associate Adam Bayliss implemented the temperature-dependent effects of Braginskii's parallel collisional ion viscosity. As a graduate student, John O'Bryan added runtime options for Braginskii's models and Ji's K2 models of thermal conduction with magnetization effects and thermal equilibration. As a postdoctoral associate, O'Bryan added the magnetization effects for ion viscosity. Another area of model development completed through the PSI-Center is the implementation of Chodura's phenomenological resistivity model. Finally, we investigated and tested linear electron parallel viscosity, leveraged by support from the Center for Extended Magnetohydrodynamic Modeling (CEMM). Work on algorithmic efficiency improved NIMROD's element-based computations. We reordered arrays and eliminated a level of looping for computations over the data points that are used for numerical integration over elements. Moreover, the reordering allows fewer and larger communication calls when using distributed-memory parallel computation, thereby avoiding a data starvation problem that limited parallel scaling over NIMROD's Fourier components for the periodic coordinate. Together with improved parallel preconditioning, work that was supported by CEMM, these developments allowed NIMROD's first scaling to over 10,000 processor cores. Another algorithm improvement supported by the PSI Center is nonlinear numerical diffusivities for implicit advection. We also developed the Stitch code to enhance the flexibility of NIMROD's preprocessing. Our simulations of HIT-II considered conditions with and without fluctuation-induced amplification of poloidal flux, but our validation efforts focused on conditions without amplification. A significant finding is that NIMROD reproduces the dependence of net plasma current as the imposed poloidal flux is varied. The modeling of Pegasus startup from localized DC injectors predicted that development of a tokamak-like configuration occurs through a sequence of current-filament merger events. Comparison of experimentally measured and numerically computed cross-power spectra enhance confidence in NIMROD's simulation of magnetic fluctuations; however, energy confinement remains an open area for further research. Our contributions to the NSTX study include adaptation of the helicity-injection boundary conditions from the HIT-II simulations and support for linear analysis and computation of 3D current-driven instabilities.« less
Conroy, M.J.; Samuel, M.D.; White, Joanne C.
1995-01-01
Statistical power (and conversely, Type II error) is often ignored by biologists. Power is important to consider in the design of studies, to ensure that sufficient resources are allocated to address a hypothesis under examination. Deter- mining appropriate sample size when designing experiments or calculating power for a statistical test requires an investigator to consider the importance of making incorrect conclusions about the experimental hypothesis and the biological importance of the alternative hypothesis (or the biological effect size researchers are attempting to measure). Poorly designed studies frequently provide results that are at best equivocal, and do little to advance science or assist in decision making. Completed studies that fail to reject Ho should consider power and the related probability of a Type II error in the interpretation of results, particularly when implicit or explicit acceptance of Ho is used to support a biological hypothesis or management decision. Investigators must consider the biological question they wish to answer (Tacha et al. 1982) and assess power on the basis of biologically significant differences (Taylor and Gerrodette 1993). Power calculations are somewhat subjective, because the author must specify either f or the minimum difference that is biologically important. Biologists may have different ideas about what values are appropriate. While determining biological significance is of central importance in power analysis, it is also an issue of importance in wildlife science. Procedures, references, and computer software to compute power are accessible; therefore, authors should consider power. We welcome comments or suggestions on this subject.
NASA Astrophysics Data System (ADS)
Stoilescu, Dorian; Egodawatte, Gunawardena
2010-12-01
Research shows that female and male students in undergraduate computer science programs view computer culture differently. Female students are interested more in the use of computers than in doing programming, whereas male students see computer science mainly as a programming activity. The overall purpose of our research was not to find new definitions for computer science culture but to see how male and female students see themselves involved in computer science practices, how they see computer science as a successful career, and what they like and dislike about current computer science practices. The study took place in a mid-sized university in Ontario. Sixteen students and two instructors were interviewed to get their views. We found that male and female views are different on computer use, programming, and the pattern of student interactions. Female and male students did not have any major issues in using computers. In computing programming, female students were not so involved in computing activities whereas male students were heavily involved. As for the opinions about successful computer science professionals, both female and male students emphasized hard working, detailed oriented approaches, and enjoying playing with computers. The myth of the geek as a typical profile of successful computer science students was not found to be true.
Haptic interface of the KAIST-Ewha colonoscopy simulator II.
Woo, Hyun Soo; Kim, Woo Seok; Ahn, Woojin; Lee, Doo Yong; Yi, Sun Young
2008-11-01
This paper presents an improved haptic interface for the Korea Advanced Institute of Science and Technology Ewha Colonoscopy Simulator II. The haptic interface enables the distal portion of the colonoscope to be freely bent while guaranteeing sufficient workspace and reflective forces for colonoscopy simulation. Its force-torque sensor measures the profiles of the user. Manipulation of the colonoscope tip is monitored by four deflection sensors and triggers computations to render accurate graphic images corresponding to the rotation of the angle knob. Tack sensors are attached to the valve-actuation buttons of the colonoscope to simulate air injection or suction as well as the corresponding deformation of the colon. A survey study for face validation was conducted, and the result shows that the developed haptic interface provides realistic haptic feedback for colonoscopy simulations.
Mishra, Bud; Daruwala, Raoul-Sam; Zhou, Yi; Ugel, Nadia; Policriti, Alberto; Antoniotti, Marco; Paxia, Salvatore; Rejali, Marc; Rudra, Archisman; Cherepinsky, Vera; Silver, Naomi; Casey, William; Piazza, Carla; Simeoni, Marta; Barbano, Paolo; Spivak, Marina; Feng, Jiawu; Gill, Ofer; Venkatesh, Mysore; Cheng, Fang; Sun, Bing; Ioniata, Iuliana; Anantharaman, Thomas; Hubbard, E Jane Albert; Pnueli, Amir; Harel, David; Chandru, Vijay; Hariharan, Ramesh; Wigler, Michael; Park, Frank; Lin, Shih-Chieh; Lazebnik, Yuri; Winkler, Franz; Cantor, Charles R; Carbone, Alessandra; Gromov, Mikhael
2003-01-01
We collaborate in a research program aimed at creating a rigorous framework, experimental infrastructure, and computational environment for understanding, experimenting with, manipulating, and modifying a diverse set of fundamental biological processes at multiple scales and spatio-temporal modes. The novelty of our research is based on an approach that (i) requires coevolution of experimental science and theoretical techniques and (ii) exploits a certain universality in biology guided by a parsimonious model of evolutionary mechanisms operating at the genomic level and manifesting at the proteomic, transcriptomic, phylogenic, and other higher levels. Our current program in "systems biology" endeavors to marry large-scale biological experiments with the tools to ponder and reason about large, complex, and subtle natural systems. To achieve this ambitious goal, ideas and concepts are combined from many different fields: biological experimentation, applied mathematical modeling, computational reasoning schemes, and large-scale numerical and symbolic simulations. From a biological viewpoint, the basic issues are many: (i) understanding common and shared structural motifs among biological processes; (ii) modeling biological noise due to interactions among a small number of key molecules or loss of synchrony; (iii) explaining the robustness of these systems in spite of such noise; and (iv) cataloging multistatic behavior and adaptation exhibited by many biological processes.
ERIC Educational Resources Information Center
Lin, Che-Li; Liang, Jyh-Chong; Su, Yi-Ching; Tsai, Chin-Chung
2013-01-01
Teacher-centered instruction has been widely adopted in college computer science classrooms and has some benefits in training computer science undergraduates. Meanwhile, student-centered contexts have been advocated to promote computer science education. How computer science learners respond to or prefer the two types of teacher authority,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barhen, Jacob; Imam, Neena
2007-01-01
Revolutionary computing technologies are defined in terms of technological breakthroughs, which leapfrog over near-term projected advances in conventional hardware and software to produce paradigm shifts in computational science. For underwater threat source localization using information provided by a dynamical sensor network, one of the most promising computational advances builds upon the emergence of digital optical-core devices. In this article, we present initial results of sensor network calculations that focus on the concept of signal wavefront time-difference-of-arrival (TDOA). The corresponding algorithms are implemented on the EnLight processing platform recently introduced by Lenslet Laboratories. This tera-scale digital optical core processor is optimizedmore » for array operations, which it performs in a fixed-point-arithmetic architecture. Our results (i) illustrate the ability to reach the required accuracy in the TDOA computation, and (ii) demonstrate that a considerable speed-up can be achieved when using the EnLight 64a prototype processor as compared to a dual Intel XeonTM processor.« less
NASA Astrophysics Data System (ADS)
Purwins, Hendrik; Herrera, Perfecto; Grachten, Maarten; Hazan, Amaury; Marxer, Ricard; Serra, Xavier
2008-09-01
We present a review on perception and cognition models designed for or applicable to music. An emphasis is put on computational implementations. We include findings from different disciplines: neuroscience, psychology, cognitive science, artificial intelligence, and musicology. The article summarizes the methodology that these disciplines use to approach the phenomena of music understanding, the localization of musical processes in the brain, and the flow of cognitive operations involved in turning physical signals into musical symbols, going from the transducers to the memory systems of the brain. We discuss formal models developed to emulate, explain and predict phenomena involved in early auditory processing, pitch processing, grouping, source separation, and music structure computation. We cover generic computational architectures of attention, memory, and expectation that can be instantiated and tuned to deal with specific musical phenomena. Criteria for the evaluation of such models are presented and discussed. Thereby, we lay out the general framework that provides the basis for the discussion of domain-specific music models in Part II.
Digital pathology in nephrology clinical trials, research, and pathology practice.
Barisoni, Laura; Hodgin, Jeffrey B
2017-11-01
In this review, we will discuss (i) how the recent advancements in digital technology and computational engineering are currently applied to nephropathology in the setting of clinical research, trials, and practice; (ii) the benefits of the new digital environment; (iii) how recognizing its challenges provides opportunities for transformation; and (iv) nephropathology in the upcoming era of kidney precision and predictive medicine. Recent studies highlighted how new standardized protocols facilitate the harmonization of digital pathology database infrastructure and morphologic, morphometric, and computer-aided quantitative analyses. Digital pathology enables robust protocols for clinical trials and research, with the potential to identify previously underused or unrecognized clinically useful parameters. The integration of digital pathology with molecular signatures is leading the way to establishing clinically relevant morpho-omic taxonomies of renal diseases. The introduction of digital pathology in clinical research and trials, and the progressive implementation of the modern software ecosystem, opens opportunities for the development of new predictive diagnostic paradigms and computer-aided algorithms, transforming the practice of renal disease into a modern computational science.
NASA Astrophysics Data System (ADS)
Semushin, I. V.; Tsyganova, J. V.; Ugarov, V. V.; Afanasova, A. I.
2018-05-01
Russian higher education institutions' tradition of teaching large-enrolled classes is impairing student striving for individual prominence, one-upmanship, and hopes for originality. Intending to converting these drawbacks into benefits, a Project-Centred Education Model (PCEM) has been introduced to deliver Computational Mathematics and Information Science courses. The model combines a Frontal Competitive Approach and a Project-Driven Learning (PDL) framework. The PDL framework has been developed by stating and solving three design problems: (i) enhance the diversity of project assignments on specific computation methods algorithmic approaches, (ii) balance similarity and dissimilarity of the project assignments, and (iii) develop a software assessment tool suitable for evaluating the technological maturity of students' project deliverables and thus reducing instructor's workload and possible overlook. The positive experience accumulated over 15 years shows that implementing the PCEM keeps students motivated to strive for success in rising to higher levels of their computational and software engineering skills.
Academic computer science and gender: A naturalistic study investigating the causes of attrition
NASA Astrophysics Data System (ADS)
Declue, Timothy Hall
Far fewer women than men take computer science classes in high school, enroll in computer science programs in college, or complete advanced degrees in computer science. The computer science pipeline begins to shrink for women even before entering college, but it is at the college level that the "brain drain" is the most evident numerically, especially in the first class taken by most computer science majors called "Computer Science 1" or CS-I. The result, for both academia and industry, is a pronounced technological gender disparity in academic and industrial computer science. The study revealed the existence of several factors influencing success in CS-I. First, and most clearly, the effect of attribution processes seemed to be quite strong. These processes tend to work against success for females and in favor of success for males. Likewise, evidence was discovered which strengthens theories related to prior experience and the perception that computer science has a culture which is hostile to females. Two unanticipated themes related to the motivation and persistence of successful computer science majors. The findings did not support the belief that females have greater logistical problems in computer science than males, or that females tend to have a different programming style than males which adversely affects the females' ability to succeed in CS-I.
Computer-Game Construction: A Gender-Neutral Attractor to Computing Science
ERIC Educational Resources Information Center
Carbonaro, Mike; Szafron, Duane; Cutumisu, Maria; Schaeffer, Jonathan
2010-01-01
Enrollment in Computing Science university programs is at a dangerously low level. A major reason for this is the general lack of interest in Computing Science by females. In this paper, we discuss our experience with using a computer game construction environment as a vehicle to encourage female participation in Computing Science. Experiments…
SAMS-II Requirements and Operations
NASA Technical Reports Server (NTRS)
Wald, Lawrence W.
1998-01-01
The Space Acceleration Measurements System (SAMS) II is the primary instrument for the measurement, storage, and communication of the microgravity environment aboard the International Space Station (ISS). SAMS-II is being developed by the NASA Lewis Research Center Microgravity Science Division to primarily support the Office of Life and Microgravity Science and Applications (OLMSA) Microgravity Science and Applications Division (MSAD) payloads aboard the ISS. The SAMS-II is currently in the test and verification phase at NASA LeRC, prior to its first hardware delivery scheduled for July 1998. This paper will provide an overview of the SAMS-II instrument, including the system requirements and topology, physical and electrical characteristics, and the Concept of Operations for SAMS-II aboard the ISS.
Cloudbus Toolkit for Market-Oriented Cloud Computing
NASA Astrophysics Data System (ADS)
Buyya, Rajkumar; Pandey, Suraj; Vecchiola, Christian
This keynote paper: (1) presents the 21st century vision of computing and identifies various IT paradigms promising to deliver computing as a utility; (2) defines the architecture for creating market-oriented Clouds and computing atmosphere by leveraging technologies such as virtual machines; (3) provides thoughts on market-based resource management strategies that encompass both customer-driven service management and computational risk management to sustain SLA-oriented resource allocation; (4) presents the work carried out as part of our new Cloud Computing initiative, called Cloudbus: (i) Aneka, a Platform as a Service software system containing SDK (Software Development Kit) for construction of Cloud applications and deployment on private or public Clouds, in addition to supporting market-oriented resource management; (ii) internetworking of Clouds for dynamic creation of federated computing environments for scaling of elastic applications; (iii) creation of 3rd party Cloud brokering services for building content delivery networks and e-Science applications and their deployment on capabilities of IaaS providers such as Amazon along with Grid mashups; (iv) CloudSim supporting modelling and simulation of Clouds for performance studies; (v) Energy Efficient Resource Allocation Mechanisms and Techniques for creation and management of Green Clouds; and (vi) pathways for future research.
Valdés, Julio J; Bonham-Carter, Graeme
2006-03-01
A computational intelligence approach is used to explore the problem of detecting internal state changes in time dependent processes; described by heterogeneous, multivariate time series with imprecise data and missing values. Such processes are approximated by collections of time dependent non-linear autoregressive models represented by a special kind of neuro-fuzzy neural network. Grid and high throughput computing model mining procedures based on neuro-fuzzy networks and genetic algorithms, generate: (i) collections of models composed of sets of time lag terms from the time series, and (ii) prediction functions represented by neuro-fuzzy networks. The composition of the models and their prediction capabilities, allows the identification of changes in the internal structure of the process. These changes are associated with the alternation of steady and transient states, zones with abnormal behavior, instability, and other situations. This approach is general, and its sensitivity for detecting subtle changes of state is revealed by simulation experiments. Its potential in the study of complex processes in earth sciences and astrophysics is illustrated with applications using paleoclimate and solar data.
ERIC Educational Resources Information Center
Zendler, Andreas; Klaudt, Dieter
2012-01-01
The significance of computer science for economics and society is undisputed. In particular, computer science is acknowledged to play a key role in schools (e.g., by opening multiple career paths). The provision of effective computer science education in schools is dependent on teachers who are able to properly represent the discipline and whose…
ERIC Educational Resources Information Center
Science and Children, 1988
1988-01-01
Reviews five software packages for use with school age children. Includes "Science Toolkit Module 2: Earthquake Lab"; "Adaptations and Identification"; "Geoworld"; "Body Systems II Series: The Blood System: A Liquid of Life," all for Apple II, and "Science Courseware: Life Science/Biology" for…
Measuring adolescent science motivation
NASA Astrophysics Data System (ADS)
Schumm, Maximiliane F.; Bogner, Franz X.
2016-02-01
To monitor science motivation, 232 tenth graders of the college preparatory level ('Gymnasium') completed the Science Motivation Questionnaire II (SMQ-II). Additionally, personality data were collected using a 10-item version of the Big Five Inventory. A subsequent exploratory factor analysis based on the eigenvalue-greater-than-one criterion, extracted a loading pattern, which in principle, followed the SMQ-II frame. Two items were dropped due to inappropriate loadings. The remaining SMQ-II seems to provide a consistent scale matching the findings in literature. Nevertheless, also possible shortcomings of the scale are discussed. Data showed a higher perceived self-determination in girls which seems compensated by their lower self-efficacy beliefs leading to equality of females and males in overall science motivation scores. Additionally, the Big Five personality traits and science motivation components show little relationship.
NASA Astrophysics Data System (ADS)
Loepp, Susan; Wootters, William K.
2006-09-01
For many everyday transmissions, it is essential to protect digital information from noise or eavesdropping. This undergraduate introduction to error correction and cryptography is unique in devoting several chapters to quantum cryptography and quantum computing, thus providing a context in which ideas from mathematics and physics meet. By covering such topics as Shor's quantum factoring algorithm, this text informs the reader about current thinking in quantum information theory and encourages an appreciation of the connections between mathematics and science.Of particular interest are the potential impacts of quantum physics:(i) a quantum computer, if built, could crack our currently used public-key cryptosystems; and (ii) quantum cryptography promises to provide an alternative to these cryptosystems, basing its security on the laws of nature rather than on computational complexity. No prior knowledge of quantum mechanics is assumed, but students should have a basic knowledge of complex numbers, vectors, and matrices. Accessible to readers familiar with matrix algebra, vector spaces and complex numbers First undergraduate text to cover cryptography, error-correction, and quantum computation together Features exercises designed to enhance understanding, including a number of computational problems, available from www.cambridge.org/9780521534765
Summary Report of Working Group 2: Computation
NASA Astrophysics Data System (ADS)
Stoltz, P. H.; Tsung, R. S.
2009-01-01
The working group on computation addressed three physics areas: (i) plasma-based accelerators (laser-driven and beam-driven), (ii) high gradient structure-based accelerators, and (iii) electron beam sources and transport [1]. Highlights of the talks in these areas included new models of breakdown on the microscopic scale, new three-dimensional multipacting calculations with both finite difference and finite element codes, and detailed comparisons of new electron gun models with standard models such as PARMELA. The group also addressed two areas of advances in computation: (i) new algorithms, including simulation in a Lorentz-boosted frame that can reduce computation time orders of magnitude, and (ii) new hardware architectures, like graphics processing units and Cell processors that promise dramatic increases in computing power. Highlights of the talks in these areas included results from the first large-scale parallel finite element particle-in-cell code (PIC), many order-of-magnitude speedup of, and details of porting the VPIC code to the Roadrunner supercomputer. The working group featured two plenary talks, one by Brian Albright of Los Alamos National Laboratory on the performance of the VPIC code on the Roadrunner supercomputer, and one by David Bruhwiler of Tech-X Corporation on recent advances in computation for advanced accelerators. Highlights of the talk by Albright included the first one trillion particle simulations, a sustained performance of 0.3 petaflops, and an eight times speedup of science calculations, including back-scatter in laser-plasma interaction. Highlights of the talk by Bruhwiler included simulations of 10 GeV accelerator laser wakefield stages including external injection, new developments in electromagnetic simulations of electron guns using finite difference and finite element approaches.
Summary Report of Working Group 2: Computation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoltz, P. H.; Tsung, R. S.
2009-01-22
The working group on computation addressed three physics areas: (i) plasma-based accelerators (laser-driven and beam-driven), (ii) high gradient structure-based accelerators, and (iii) electron beam sources and transport [1]. Highlights of the talks in these areas included new models of breakdown on the microscopic scale, new three-dimensional multipacting calculations with both finite difference and finite element codes, and detailed comparisons of new electron gun models with standard models such as PARMELA. The group also addressed two areas of advances in computation: (i) new algorithms, including simulation in a Lorentz-boosted frame that can reduce computation time orders of magnitude, and (ii) newmore » hardware architectures, like graphics processing units and Cell processors that promise dramatic increases in computing power. Highlights of the talks in these areas included results from the first large-scale parallel finite element particle-in-cell code (PIC), many order-of-magnitude speedup of, and details of porting the VPIC code to the Roadrunner supercomputer. The working group featured two plenary talks, one by Brian Albright of Los Alamos National Laboratory on the performance of the VPIC code on the Roadrunner supercomputer, and one by David Bruhwiler of Tech-X Corporation on recent advances in computation for advanced accelerators. Highlights of the talk by Albright included the first one trillion particle simulations, a sustained performance of 0.3 petaflops, and an eight times speedup of science calculations, including back-scatter in laser-plasma interaction. Highlights of the talk by Bruhwiler included simulations of 10 GeV accelerator laser wakefield stages including external injection, new developments in electromagnetic simulations of electron guns using finite difference and finite element approaches.« less
A Financial Technology Entrepreneurship Program for Computer Science Students
ERIC Educational Resources Information Center
Lawler, James P.; Joseph, Anthony
2011-01-01
Education in entrepreneurship is becoming a critical area of curricula for computer science students. Few schools of computer science have a concentration in entrepreneurship in the computing curricula. The paper presents Technology Entrepreneurship in the curricula at a leading school of computer science and information systems, in which students…
ERIC Educational Resources Information Center
Menekse, Muhsin
2015-01-01
While there has been a remarkable interest to make computer science a core K-12 academic subject in the United States, there is a shortage of K-12 computer science teachers to successfully implement computer sciences courses in schools. In order to enhance computer science teacher capacity, training programs have been offered through teacher…
Computer Science | Classification | College of Engineering & Applied
EMS 1011 profile photo Adrian Dumitrescu, Ph.D.ProfessorComputer Science(414) 229-4265Eng & Math @uwm.eduEng & Math Sciences 919 profile photo Hossein Hosseini, Ph.D.ProfessorComputer Science(414) 229 -5184hosseini@uwm.eduEng & Math Sciences 1091 profile photo Amol Mali, Ph.D.Associate ProfessorComputer
Computers in Science Education: Can They Go Far Enough? Have We Gone Too Far?
ERIC Educational Resources Information Center
Schrock, John Richard
1984-01-01
Indicates that although computers may churn out creative research, science is still dependent on science education, and that science education consists of increasing human experience. Also considers uses and misuses of computers in the science classroom, examining Edgar Dale's "cone of experience" related to laboratory computer and "extended…
NASA Technical Reports Server (NTRS)
1987-01-01
Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period April, 1986 through September 30, 1986 is summarized.
78 FR 10180 - Annual Computational Science Symposium; Conference
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-13
...] Annual Computational Science Symposium; Conference AGENCY: Food and Drug Administration, HHS. ACTION... Computational Science Symposium.'' The purpose of the conference is to help the broader community align and share experiences to advance computational science. At the conference, which will bring together FDA...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hules, John
This 1998 annual report from the National Scientific Energy Research Computing Center (NERSC) presents the year in review of the following categories: Computational Science; Computer Science and Applied Mathematics; and Systems and Services. Also presented are science highlights in the following categories: Basic Energy Sciences; Biological and Environmental Research; Fusion Energy Sciences; High Energy and Nuclear Physics; and Advanced Scientific Computing Research and Other Projects.
COMPUTATION OF GLOBAL PHOTOCHEMISTRY WITH SMVGEAR II (R823186)
A computer model was developed to simulate global gas-phase photochemistry. The model solves chemical equations with SMVGEAR II, a sparse-matrix, vectorized Gear-type code. To obtain SMVGEAR II, the original SMVGEAR code was modified to allow computation of different sets of chem...
Enduring Influence of Stereotypical Computer Science Role Models on Women's Academic Aspirations
ERIC Educational Resources Information Center
Cheryan, Sapna; Drury, Benjamin J.; Vichayapai, Marissa
2013-01-01
The current work examines whether a brief exposure to a computer science role model who fits stereotypes of computer scientists has a lasting influence on women's interest in the field. One-hundred undergraduate women who were not computer science majors met a female or male peer role model who embodied computer science stereotypes in appearance…
A Web of Resources for Introductory Computer Science.
ERIC Educational Resources Information Center
Rebelsky, Samuel A.
As the field of Computer Science has grown, the syllabus of the introductory Computer Science course has changed significantly. No longer is it a simple introduction to programming or a tutorial on computer concepts and applications. Rather, it has become a survey of the field of Computer Science, touching on a wide variety of topics from digital…
Discovery informatics in biological and biomedical sciences: research challenges and opportunities.
Honavar, Vasant
2015-01-01
New discoveries in biological, biomedical and health sciences are increasingly being driven by our ability to acquire, share, integrate and analyze, and construct and simulate predictive models of biological systems. While much attention has focused on automating routine aspects of management and analysis of "big data", realizing the full potential of "big data" to accelerate discovery calls for automating many other aspects of the scientific process that have so far largely resisted automation: identifying gaps in the current state of knowledge; generating and prioritizing questions; designing studies; designing, prioritizing, planning, and executing experiments; interpreting results; forming hypotheses; drawing conclusions; replicating studies; validating claims; documenting studies; communicating results; reviewing results; and integrating results into the larger body of knowledge in a discipline. Against this background, the PSB workshop on Discovery Informatics in Biological and Biomedical Sciences explores the opportunities and challenges of automating discovery or assisting humans in discovery through advances (i) Understanding, formalization, and information processing accounts of, the entire scientific process; (ii) Design, development, and evaluation of the computational artifacts (representations, processes) that embody such understanding; and (iii) Application of the resulting artifacts and systems to advance science (by augmenting individual or collective human efforts, or by fully automating science).
NASA Technical Reports Server (NTRS)
1988-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period April l, 1988 through September 30, 1988.
NASA Technical Reports Server (NTRS)
1984-01-01
Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science during the period October 1, 1983 through March 31, 1984 is summarized.
NASA Technical Reports Server (NTRS)
1987-01-01
Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period October 1, 1986 through March 31, 1987 is summarized.
High school computer science education paves the way for higher education: the Israeli case
NASA Astrophysics Data System (ADS)
Armoni, Michal; Gal-Ezer, Judith
2014-07-01
The gap between enrollments in higher education computing programs and the high-tech industry's demands is widely reported, and is especially prominent for women. Increasing the availability of computer science education in high school is one of the strategies suggested in order to address this gap. We look at the connection between exposure to computer science in high school and pursuing computing in higher education. We also examine the gender gap, in the context of high school computer science education. We show that in Israel, students who took the high-level computer science matriculation exam were more likely to pursue computing in higher education. Regarding the issue of gender, we will show that, in general, in Israel the difference between males and females who take computer science in high school is relatively small, and a larger, though still not very large difference exists only for the highest exam level. In addition, exposing females to high-level computer science in high school has more relative impact on pursuing higher education in computing.
EBR-II high-ramp transients under computer control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forrester, R.J.; Larson, H.A.; Christensen, L.J.
1983-01-01
During reactor run 122, EBR-II was subjected to 13 computer-controlled overpower transients at ramps of 4 MWt/s to qualify the facility and fuel for transient testing of LMFBR oxide fuels as part of the EBR-II operational-reliability-testing (ORT) program. A computer-controlled automatic control-rod drive system (ACRDS), designed by EBR-II personnel, permitted automatic control on demand power during the transients.
37 CFR 201.40 - Exemption to prohibition against circumvention.
Code of Federal Regulations, 2012 CFR
2012-07-01
... security of the owner or operator of a computer, computer system, or computer network; and (ii) The... film and media studies students; (ii) Documentary filmmaking; (iii) Noncommercial videos. (2) Computer... lawfully obtained, with computer programs on the telephone handset. (3) Computer programs, in the form of...
Defining Computational Thinking for Mathematics and Science Classrooms
NASA Astrophysics Data System (ADS)
Weintrop, David; Beheshti, Elham; Horn, Michael; Orton, Kai; Jona, Kemi; Trouille, Laura; Wilensky, Uri
2016-02-01
Science and mathematics are becoming computational endeavors. This fact is reflected in the recently released Next Generation Science Standards and the decision to include "computational thinking" as a core scientific practice. With this addition, and the increased presence of computation in mathematics and scientific contexts, a new urgency has come to the challenge of defining computational thinking and providing a theoretical grounding for what form it should take in school science and mathematics classrooms. This paper presents a response to this challenge by proposing a definition of computational thinking for mathematics and science in the form of a taxonomy consisting of four main categories: data practices, modeling and simulation practices, computational problem solving practices, and systems thinking practices. In formulating this taxonomy, we draw on the existing computational thinking literature, interviews with mathematicians and scientists, and exemplary computational thinking instructional materials. This work was undertaken as part of a larger effort to infuse computational thinking into high school science and mathematics curricular materials. In this paper, we argue for the approach of embedding computational thinking in mathematics and science contexts, present the taxonomy, and discuss how we envision the taxonomy being used to bring current educational efforts in line with the increasingly computational nature of modern science and mathematics.
. Education Ph.D., Computer Science, Colorado School of Mines M.S., Computer Science, University of Queensland B.S., Computer Science, Colorado School of Mines Brunhart-Lupo Nicholas Brunhart-Lupo Computational Science Nicholas.Brunhart-Lupo@nrel.gov
ERIC Educational Resources Information Center
Margolis, Jane; Goode, Joanna; Bernier, David
2011-01-01
Broadening computer science learning to include more students is a crucial item on the United States' education agenda, these authors say. Although policymakers advocate more computer science expertise, computer science offerings in high schools are few--and actually shrinking. In addition, poorly resourced schools with a high percentage of…
NASA Technical Reports Server (NTRS)
1989-01-01
Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period October 1, 1988 through March 31, 1989 is summarized.
Measuring Adolescent Science Motivation
ERIC Educational Resources Information Center
Schumm, Maximiliane F.; Bogner, Franz X.
2016-01-01
To monitor science motivation, 232 tenth graders of the college preparatory level ("Gymnasium") completed the Science Motivation Questionnaire II (SMQ-II). Additionally, personality data were collected using a 10-item version of the Big Five Inventory. A subsequent exploratory factor analysis based on the eigenvalue-greater-than-one…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, W. E.
2004-08-16
Computational Science plays a big role in research and development in mathematics, science, engineering and biomedical disciplines. The Alliance for Computational Science Collaboration (ACSC) has the goal of training African-American and other minority scientists in the computational science field for eventual employment with the Department of Energy (DOE). The involvements of Historically Black Colleges and Universities (HBCU) in the Alliance provide avenues for producing future DOE African-American scientists. Fisk University has been participating in this program through grants from the DOE. The DOE grant supported computational science activities at Fisk University. The research areas included energy related projects, distributed computing,more » visualization of scientific systems and biomedical computing. Students' involvement in computational science research included undergraduate summer research at Oak Ridge National Lab, on-campus research involving the participation of undergraduates, participation of undergraduate and faculty members in workshops, and mentoring of students. These activities enhanced research and education in computational science, thereby adding to Fisk University's spectrum of research and educational capabilities. Among the successes of the computational science activities are the acceptance of three undergraduate students to graduate schools with full scholarships beginning fall 2002 (one for master degree program and two for Doctoral degree program).« less
NASA Astrophysics Data System (ADS)
Koch, Melissa; Gorges, Torie
2016-10-01
Underrepresented populations such as women, African-Americans, and Latinos/as often come to STEM (science, technology, engineering, and mathematics) careers by less traditional paths than White and Asian males. To better understand how and why women might shift toward STEM, particularly computer science, careers, we investigated the education and career direction of afterschool facilitators, primarily women of color in their twenties and thirties, who taught Build IT, an afterschool computer science curriculum for middle school girls. Many of these women indicated that implementing Build IT had influenced their own interest in technology and computer science and in some cases had resulted in their intent to pursue technology and computer science education. We wanted to explore the role that teaching Build IT may have played in activating or reactivating interest in careers in computer science and to see whether in the years following implementation of Build IT, these women pursued STEM education and/or careers. We reached nine facilitators who implemented the program in 2011-12 or shortly after. Many indicated that while facilitating Build IT, they learned along with the participants, increasing their interest in and confidence with technology and computer science. Seven of the nine participants pursued further STEM or computer science learning or modified their career paths to include more of a STEM or computer science focus. Through interviews, we explored what aspects of Build IT influenced these facilitators' interest and confidence in STEM and when relevant their pursuit of technology and computer science education and careers.
The NASA computer science research program plan
NASA Technical Reports Server (NTRS)
1983-01-01
A taxonomy of computer science is included, one state of the art of each of the major computer science categories is summarized. A functional breakdown of NASA programs under Aeronautics R and D, space R and T, and institutional support is also included. These areas were assessed against the computer science categories. Concurrent processing, highly reliable computing, and information management are identified.
Belle II grid computing: An overview of the distributed data management system.
NASA Astrophysics Data System (ADS)
Bansal, Vikas; Schram, Malachi; Belle Collaboration, II
2017-01-01
The Belle II experiment at the SuperKEKB collider in Tsukuba, Japan, will start physics data taking in 2018 and will accumulate 50/ab of e +e- collision data, about 50 times larger than the data set of the Belle experiment. The computing requirements of Belle II are comparable to those of a Run I LHC experiment. Computing at this scale requires efficient use of the compute grids in North America, Asia and Europe and will take advantage of upgrades to the high-speed global network. We present the architecture of data flow and data handling as a part of the Belle II computing infrastructure.
On teaching computer ethics within a computer science department.
Quinn, Michael J
2006-04-01
The author has surveyed a quarter of the accredited undergraduate computer science programs in the United States. More than half of these programs offer a 'social and ethical implications of computing' course taught by a computer science faculty member, and there appears to be a trend toward teaching ethics classes within computer science departments. Although the decision to create an 'in house' computer ethics course may sometimes be a pragmatic response to pressure from the accreditation agency, this paper argues that teaching ethics within a computer science department can provide students and faculty members with numerous benefits. The paper lists topics that can be covered in a computer ethics course and offers some practical suggestions for making the course successful.
Computational Science News | Computational Science | NREL
-Cooled High-Performance Computing Technology at the ESIF February 28, 2018 NREL Launches New Website for High-Performance Computing System Users The National Renewable Energy Laboratory (NREL) Computational Science Center has launched a revamped website for users of the lab's high-performance computing (HPC
1988-07-08
Marcus and C. Baczynski), Computer Science Press, Rockville, Maryland, 1986. 3. An Introduction to Pascal and Precalculus , Computer Science Press...Science Press, Rockville, Maryland, 1986. 35. An Introduction to Pascal and Precalculus , Computer Science Press, Rockville, Maryland, 1986. 36
Empirical Determination of Competence Areas to Computer Science Education
ERIC Educational Resources Information Center
Zendler, Andreas; Klaudt, Dieter; Seitz, Cornelia
2014-01-01
The authors discuss empirically determined competence areas to K-12 computer science education, emphasizing the cognitive level of competence. The results of a questionnaire with 120 professors of computer science serve as a database. By using multi-dimensional scaling and cluster analysis, four competence areas to computer science education…
Factors Influencing Exemplary Science Teachers' Levels of Computer Use
ERIC Educational Resources Information Center
Hakverdi, Meral; Dana, Thomas M.; Swain, Colleen
2011-01-01
The purpose of this study was to examine exemplary science teachers' use of technology in science instruction, factors influencing their level of computer use, their level of knowledge/skills in using specific computer applications for science instruction, their use of computer-related applications/tools during their instruction, and their…
Preparing Future Secondary Computer Science Educators
ERIC Educational Resources Information Center
Ajwa, Iyad
2007-01-01
Although nearly every college offers a major in computer science, many computer science teachers at the secondary level have received little formal training. This paper presents details of a project that could make a significant contribution to national efforts to improve computer science education by combining teacher education and professional…
OPENING REMARKS: SciDAC: Scientific Discovery through Advanced Computing
NASA Astrophysics Data System (ADS)
Strayer, Michael
2005-01-01
Good morning. Welcome to SciDAC 2005 and San Francisco. SciDAC is all about computational science and scientific discovery. In a large sense, computational science characterizes SciDAC and its intent is change. It transforms both our approach and our understanding of science. It opens new doors and crosses traditional boundaries while seeking discovery. In terms of twentieth century methodologies, computational science may be said to be transformational. There are a number of examples to this point. First are the sciences that encompass climate modeling. The application of computational science has in essence created the field of climate modeling. This community is now international in scope and has provided precision results that are challenging our understanding of our environment. A second example is that of lattice quantum chromodynamics. Lattice QCD, while adding precision and insight to our fundamental understanding of strong interaction dynamics, has transformed our approach to particle and nuclear science. The individual investigator approach has evolved to teams of scientists from different disciplines working side-by-side towards a common goal. SciDAC is also undergoing a transformation. This meeting is a prime example. Last year it was a small programmatic meeting tracking progress in SciDAC. This year, we have a major computational science meeting with a variety of disciplines and enabling technologies represented. SciDAC 2005 should position itself as a new corner stone for Computational Science and its impact on science. As we look to the immediate future, FY2006 will bring a new cycle to SciDAC. Most of the program elements of SciDAC will be re-competed in FY2006. The re-competition will involve new instruments for computational science, new approaches for collaboration, as well as new disciplines. There will be new opportunities for virtual experiments in carbon sequestration, fusion, and nuclear power and nuclear waste, as well as collaborations with industry and virtual prototyping. New instruments of collaboration will include institutes and centers while summer schools, workshops and outreach will invite new talent and expertise. Computational science adds new dimensions to science and its practice. Disciplines of fusion, accelerator science, and combustion are poised to blur the boundaries between pure and applied science. As we open the door into FY2006 we shall see a landscape of new scientific challenges: in biology, chemistry, materials, and astrophysics to name a few. The enabling technologies of SciDAC have been transformational as drivers of change. Planning for major new software systems assumes a base line employing Common Component Architectures and this has become a household word for new software projects. While grid algorithms and mesh refinement software have transformed applications software, data management and visualization have transformed our understanding of science from data. The Gordon Bell prize now seems to be dominated by computational science and solvers developed by TOPS ISIC. The priorities of the Office of Science in the Department of Energy are clear. The 20 year facilities plan is driven by new science. High performance computing is placed amongst the two highest priorities. Moore's law says that by the end of the next cycle of SciDAC we shall have peta-flop computers. The challenges of petascale computing are enormous. These and the associated computational science are the highest priorities for computing within the Office of Science. Our effort in Leadership Class computing is just a first step towards this goal. Clearly, computational science at this scale will face enormous challenges and possibilities. Performance evaluation and prediction will be critical to unraveling the needed software technologies. We must not lose sight of our overarching goal—that of scientific discovery. Science does not stand still and the landscape of science discovery and computing holds immense promise. In this environment, I believe it is necessary to institute a system of science based performance metrics to help quantify our progress towards science goals and scientific computing. As a final comment I would like to reaffirm that the shifting landscapes of science will force changes to our computational sciences, and leave you with the quote from Richard Hamming, 'The purpose of computing is insight, not numbers'.
NASA Astrophysics Data System (ADS)
Khalili, N.; Valliappan, S.; Li, Q.; Russell, A.
2010-07-01
The use for mathematical models of natural phenomena has underpinned science and engineering for centuries, but until the advent of modern computers and computational methods, the full utility of most of these models remained outside the reach of the engineering communities. Since World War II, advances in computational methods have transformed the way engineering and science is undertaken throughout the world. Today, theories of mechanics of solids and fluids, electromagnetism, heat transfer, plasma physics, and other scientific disciplines are implemented through computational methods in engineering analysis, design, manufacturing, and in studying broad classes of physical phenomena. The discipline concerned with the application of computational methods is now a key area of research, education, and application throughout the world. In the early 1980's, the International Association for Computational Mechanics (IACM) was founded to promote activities related to computational mechanics and has made impressive progress. The most important scientific event of IACM is the World Congress on Computational Mechanics. The first was held in Austin (USA) in 1986 and then in Stuttgart (Germany) in 1990, Chiba (Japan) in 1994, Buenos Aires (Argentina) in 1998, Vienna (Austria) in 2002, Beijing (China) in 2004, Los Angeles (USA) in 2006 and Venice, Italy; in 2008. The 9th World Congress on Computational Mechanics is held in conjunction with the 4th Asian Pacific Congress on Computational Mechanics under the auspices of Australian Association for Computational Mechanics (AACM), Asian Pacific Association for Computational Mechanics (APACM) and International Association for Computational Mechanics (IACM). The 1st Asian Pacific Congress was in Sydney (Australia) in 2001, then in Beijing (China) in 2004 and Kyoto (Japan) in 2007. The WCCM/APCOM 2010 publications consist of a printed book of abstracts given to delegates, along with 247 full length peer reviewed papers published with free access online in IOP Conference Series: Materials Science and Engineering. The editors acknowledge the help of the paper reviewers in maintaining a high standard of assessment and the co-operation of the authors in complying with the requirements of the editors and the reviewers. We also would like to take this opportunity to thank the members of the Local Organising Committee and the International Scientific Committee for helping make WCCM/APCOM 2010 a successful event. We also thank The University of New South Wales, The University of Newcastle, the Centre for Infrastructure Engineering and Safety (CIES), IACM, APCAM, AACM for their financial support, along with the United States Association for Computational Mechanics for the Travel Awards made available. N. Khalili S. Valliappan Q. Li A. Russell 19 July 2010 Sydney, Australia
ERIC Educational Resources Information Center
Wu, Pei-Chen
2010-01-01
The objectives of this study were (a) to investigate whether items of the Chinese version of Beck Depression Inventory II (BDI-II-C; "Chinese Behavioral Science Corporation" in "Manual for the Beck Depression Inventory-II" [in Chinese]. The Chinese Behavioral Science Corporation, Taiwan, 2000) exhibited DIF across adolescent…
Enabling Wide-Scale Computer Science Education through Improved Automated Assessment Tools
NASA Astrophysics Data System (ADS)
Boe, Bryce A.
There is a proliferating demand for newly trained computer scientists as the number of computer science related jobs continues to increase. University programs will only be able to train enough new computer scientists to meet this demand when two things happen: when there are more primary and secondary school students interested in computer science, and when university departments have the resources to handle the resulting increase in enrollment. To meet these goals, significant effort is being made to both incorporate computational thinking into existing primary school education, and to support larger university computer science class sizes. We contribute to this effort through the creation and use of improved automated assessment tools. To enable wide-scale computer science education we do two things. First, we create a framework called Hairball to support the static analysis of Scratch programs targeted for fourth, fifth, and sixth grade students. Scratch is a popular building-block language utilized to pique interest in and teach the basics of computer science. We observe that Hairball allows for rapid curriculum alterations and thus contributes to wide-scale deployment of computer science curriculum. Second, we create a real-time feedback and assessment system utilized in university computer science classes to provide better feedback to students while reducing assessment time. Insights from our analysis of student submission data show that modifications to the system configuration support the way students learn and progress through course material, making it possible for instructors to tailor assignments to optimize learning in growing computer science classes.
Programmers, professors, and parasites: credit and co-authorship in computer science.
Solomon, Justin
2009-12-01
This article presents an in-depth analysis of past and present publishing practices in academic computer science to suggest the establishment of a more consistent publishing standard. Historical precedent for academic publishing in computer science is established through the study of anecdotes as well as statistics collected from databases of published computer science papers. After examining these facts alongside information about analogous publishing situations and standards in other scientific fields, the article concludes with a list of basic principles that should be adopted in any computer science publishing standard. These principles would contribute to the reliability and scientific nature of academic publications in computer science and would allow for more straightforward discourse in future publications.
Increasing Diversity in Computer Science: Acknowledging, yet Moving Beyond, Gender
NASA Astrophysics Data System (ADS)
Larsen, Elizabeth A.; Stubbs, Margaret L.
Lack of diversity within the computer science field has, thus far, been examined most fully through the lens of gender. This article is based on a follow-on to Margolis and Fisher's (2002) study and includes interviews with 33 Carnegie Mellon University students from the undergraduate senior class of 2002 in the School of Computer Science. We found evidence of similarities among the perceptions of these women and men on definitions of computer science, explanations for the notoriously low proportion of women in the field, characterizations of a typical computer science student, impressions of recent curricular changes, a sense of the atmosphere/culture in the program, views of the Women@SCS campus organization, and suggestions for attracting and retaining well-rounded students in computer science. We conclude that efforts to increase diversity in the computer science field will benefit from a more broad-based approach that considers, but is not limited to, notions of gender difference.
High Resolution Nature Runs and the Big Data Challenge
NASA Technical Reports Server (NTRS)
Webster, W. Phillip; Duffy, Daniel Q.
2015-01-01
NASA's Global Modeling and Assimilation Office at Goddard Space Flight Center is undertaking a series of very computationally intensive Nature Runs and a downscaled reanalysis. The nature runs use the GEOS-5 as an Atmospheric General Circulation Model (AGCM) while the reanalysis uses the GEOS-5 in Data Assimilation mode. This paper will present computational challenges from three runs, two of which are AGCM and one is downscaled reanalysis using the full DAS. The nature runs will be completed at two surface grid resolutions, 7 and 3 kilometers and 72 vertical levels. The 7 km run spanned 2 years (2005-2006) and produced 4 PB of data while the 3 km run will span one year and generate 4 BP of data. The downscaled reanalysis (MERRA-II Modern-Era Reanalysis for Research and Applications) will cover 15 years and generate 1 PB of data. Our efforts to address the big data challenges of climate science, we are moving toward a notion of Climate Analytics-as-a-Service (CAaaS), a specialization of the concept of business process-as-a-service that is an evolving extension of IaaS, PaaS, and SaaS enabled by cloud computing. In this presentation, we will describe two projects that demonstrate this shift. MERRA Analytic Services (MERRA/AS) is an example of cloud-enabled CAaaS. MERRA/AS enables MapReduce analytics over MERRA reanalysis data collection by bringing together the high-performance computing, scalable data management, and a domain-specific climate data services API. NASA's High-Performance Science Cloud (HPSC) is an example of the type of compute-storage fabric required to support CAaaS. The HPSC comprises a high speed Infinib and network, high performance file systems and object storage, and a virtual system environments specific for data intensive, science applications. These technologies are providing a new tier in the data and analytic services stack that helps connect earthbound, enterprise-level data and computational resources to new customers and new mobility-driven applications and modes of work. In our experience, CAaaS lowers the barriers and risk to organizational change, fosters innovation and experimentation, and provides the agility required to meet our customers' increasing and changing needs
Democratizing Computer Science
ERIC Educational Resources Information Center
Margolis, Jane; Goode, Joanna; Ryoo, Jean J.
2015-01-01
Computer science programs are too often identified with a narrow stratum of the student population, often white or Asian boys who have access to computers at home. But because computers play such a huge role in our world today, all students can benefit from the study of computer science and the opportunity to build skills related to computing. The…
ERIC Educational Resources Information Center
Abuzaghleh, Omar; Goldschmidt, Kathleen; Elleithy, Yasser; Lee, Jeongkyu
2013-01-01
With the advances in computing power, high-performance computing (HPC) platforms have had an impact on not only scientific research in advanced organizations but also computer science curriculum in the educational community. For example, multicore programming and parallel systems are highly desired courses in the computer science major. However,…
Computer Science and the Liberal Arts
ERIC Educational Resources Information Center
Shannon, Christine
2010-01-01
Computer science and the liberal arts have much to offer each other. Yet liberal arts colleges, in particular, have been slow to recognize the opportunity that the study of computer science provides for achieving the goals of a liberal education. After the precipitous drop in computer science enrollments during the first decade of this century,…
Marrying Content and Process in Computer Science Education
ERIC Educational Resources Information Center
Zendler, A.; Spannagel, C.; Klaudt, D.
2011-01-01
Constructivist approaches to computer science education emphasize that as well as knowledge, thinking skills and processes are involved in active knowledge construction. K-12 computer science curricula must not be based on fashions and trends, but on contents and processes that are observable in various domains of computer science, that can be…
ERIC Educational Resources Information Center
Master, Allison; Cheryan, Sapna; Meltzoff, Andrew N.
2016-01-01
Computer science has one of the largest gender disparities in science, technology, engineering, and mathematics. An important reason for this disparity is that girls are less likely than boys to enroll in necessary "pipeline courses," such as introductory computer science. Two experiments investigated whether high-school girls' lower…
Approaching Gender Parity: Women in Computer Science at Afghanistan's Kabul University
ERIC Educational Resources Information Center
Plane, Jandelyn
2010-01-01
This study explores the representation of women in computer science at the tertiary level through data collected about undergraduate computer science education at Kabul University in Afghanistan. Previous studies have theorized reasons for underrepresentation of women in computer science, and while many of these reasons are indeed present in…
Some Hail 'Computational Science' as Biggest Advance Since Newton, Galileo.
ERIC Educational Resources Information Center
Turner, Judith Axler
1987-01-01
Computational science is defined as science done on a computer. A computer can serve as a laboratory for researchers who cannot experiment with their subjects, and as a calculator for those who otherwise might need centuries to solve some problems mathematically. The National Science Foundation's support of supercomputers is discussed. (MLW)
African-American males in computer science---Examining the pipeline for clogs
NASA Astrophysics Data System (ADS)
Stone, Daryl Bryant
The literature on African-American males (AAM) begins with a statement to the effect that "Today young Black men are more likely to be killed or sent to prison than to graduate from college." Why are the numbers of African-American male college graduates decreasing? Why are those enrolled in college not majoring in the science, technology, engineering, and mathematics (STEM) disciplines? This research explored why African-American males are not filling the well-recognized industry need for Computer Scientist/Technologists by choosing college tracks to these careers. The literature on STEM disciplines focuses largely on women in STEM, as opposed to minorities, and within minorities, there is a noticeable research gap in addressing the needs and opportunities available to African-American males. The primary goal of this study was therefore to examine the computer science "pipeline" from the African-American male perspective. The method included a "Computer Science Degree Self-Efficacy Scale" be distributed to five groups of African-American male students, to include: (1) fourth graders, (2) eighth graders, (3) eleventh graders, (4) underclass undergraduate computer science majors, and (5) upperclass undergraduate computer science majors. In addition to a 30-question self-efficacy test, subjects from each group were asked to participate in a group discussion about "African-American males in computer science." The audio record of each group meeting provides qualitative data for the study. The hypotheses include the following: (1) There is no significant difference in "Computer Science Degree" self-efficacy between fourth and eighth graders. (2) There is no significant difference in "Computer Science Degree" self-efficacy between eighth and eleventh graders. (3) There is no significant difference in "Computer Science Degree" self-efficacy between eleventh graders and lower-level computer science majors. (4) There is no significant difference in "Computer Science Degree" self-efficacy between lower-level computer science majors and upper-level computer science majors. (5) There is no significant difference in "Computer Science Degree" self-efficacy between each of the five groups of students. Finally, the researcher selected African-American male students attending six primary schools, including the predominately African-American elementary, middle and high school that the researcher attended during his own academic career. Additionally, a racially mixed elementary, middle and high school was selected from the same county in Maryland. Bowie State University provided both the underclass and upperclass computer science majors surveyed in this study. Of the five hypotheses, the sample provided enough evidence to support the claim that there are significant differences in the "Computer Science Degree" self-efficacy between each of the five groups of students. ANOVA analysis by question and total self-efficacy scores provided more results of statistical significance. Additionally, factor analysis and review of the qualitative data provide more insightful results. Overall, the data suggest 'a clog' may exist in the middle school level and students attending racially mixed schools were more confident in their computer, math and science skills. African-American males admit to spending lots of time on social networking websites and emailing, but are 'dis-aware' of the skills and knowledge needed to study in the computing disciplines. The majority of the subjects knew little, if any, AAMs in the 'computing discipline pipeline'. The collegian African-American males, in this study, agree that computer programming is a difficult area and serves as a 'major clog in the pipeline'.
Agricultural Science and Mechanics I & II. Task Analyses. Competency-Based Education.
ERIC Educational Resources Information Center
Henrico County Public Schools, Glen Allen, VA. Virginia Vocational Curriculum Center.
This task analysis guide is intended to help teachers and administrators develop instructional materials and implement competency-based education in the agricultural science and mechanics courses. Section 1 contains a validated task inventory for agricultural science and mechanics I and II. For each task, applicable information pertaining to…
Girls in computer science: A female only introduction class in high school
NASA Astrophysics Data System (ADS)
Drobnis, Ann W.
This study examined the impact of an all girls' classroom environment in a high school introductory computer science class on the student's attitudes towards computer science and their thoughts on future involvement with computer science. It was determined that an all girls' introductory class could impact the declining female enrollment and female students' efficacy towards computer science. This research was conducted in a summer school program through a regional magnet school for science and technology which these students attend during the school year. Three different groupings of students were examined for the research: female students in an all girls' class, female students in mixed-gender classes and male students in mixed-gender classes. A survey, Attitudes about Computers and Computer Science (ACCS), was designed to obtain an understanding of the students' thoughts, preconceptions, attitude, knowledge of computer science, and future intentions around computer science, both in education and career. Students in all three groups were administered the ACCS prior to taking the class and upon completion of the class. In addition, students in the all girls' class wrote in a journal throughout the course, and some of those students were also interviewed upon completion of the course. The data was analyzed using quantitative and qualitative techniques. While there were no major differences found in the quantitative data, it was determined that girls in the all girls' class were truly excited by what they had learned and were more open to the idea of computer science being a part of their future.
NASA Astrophysics Data System (ADS)
Das, K.; Clune, T.; Kuo, K. S.; Mattmann, C. A.; Huang, T.; Duffy, D.; Yang, C. P.; Habermann, T.
2015-12-01
Data containers are infrastructures that facilitate storage, retrieval, and analysis of data sets. Big data applications in Earth Science require a mix of processing techniques, data sources and storage formats that are supported by different data containers. Some of the most popular data containers used in Earth Science studies are Hadoop, Spark, SciDB, AsterixDB, and RasDaMan. These containers optimize different aspects of the data processing pipeline and are, therefore, suitable for different types of applications. These containers are expected to undergo rapid evolution and the ability to re-test, as they evolve, is very important to ensure the containers are up to date and ready to be deployed to handle large volumes of observational data and model output. Our goal is to develop an evaluation plan for these containers to assess their suitability for Earth Science data processing needs. We have identified a selection of test cases that are relevant to most data processing exercises in Earth Science applications and we aim to evaluate these systems for optimal performance against each of these test cases. The use cases identified as part of this study are (i) data fetching, (ii) data preparation for multivariate analysis, (iii) data normalization, (iv) distance (kernel) computation, and (v) optimization. In this study we develop a set of metrics for performance evaluation, define the specifics of governance, and test the plan on current versions of the data containers. The test plan and the design mechanism are expandable to allow repeated testing with both new containers and upgraded versions of the ones mentioned above, so that we can gauge their utility as they evolve.
Emergence, Agency, and Interaction-Notes from the Field.
Penny, Simon
2015-01-01
This article describes the development of several interactive installations and robotic artworks developed through the 1990s and the technological, theoretical, and discursive context in which those works arose. The main works discussed are Petit Mal (1989-1995), Sympathetic Sentience (1996-1997), Fugitive I (1996-1997), Traces (1998-1999), and Fugitive II (2001-2004)-full documentation at ( www.simonpenny.net/works ). These works were motivated by a critical analysis of cognitivist computer science, which contrasted with notions of embodied experience arising from the arts. The works address questions of agency and interaction, informed by cybernetics and artificial life.
Electrochemical Studies of Atmospheric Corrosion.
1979-01-01
d -. vi ~~ ‘ ~~~~~~~~~~~~~~~~~~~ Director , Metallurgy Programs Material Sciences Div is ion Office of Naval Research 7~ - ~~800 North Quincy...STATEMENT (of At . R.porE) Approved for Public Re l ease; distribution unlimited ‘7. OISTRISUTION STATEMENT (of A. .b.’t.c( ent.,. d lie Block 20. II...t Unclassified 20 ~~~~~~~~ C~ AUIPICAYION OP Tifil PAO*(IThoi D . S~loi.d) ‘from polarization resistance measurements using the CORFIT computer
Bringing computational science to the public.
McDonagh, James L; Barker, Daniel; Alderson, Rosanna G
2016-01-01
The increasing use of computers in science allows for the scientific analyses of large datasets at an increasing pace. We provided examples and interactive demonstrations at Dundee Science Centre as part of the 2015 Women in Science festival, to present aspects of computational science to the general public. We used low-cost Raspberry Pi computers to provide hands on experience in computer programming and demonstrated the application of computers to biology. Computer games were used as a means to introduce computers to younger visitors. The success of the event was evaluated by voluntary feedback forms completed by visitors, in conjunction with our own self-evaluation. This work builds on the original work of the 4273π bioinformatics education program of Barker et al. (2013, BMC Bioinform. 14:243). 4273π provides open source education materials in bioinformatics. This work looks at the potential to adapt similar materials for public engagement events. It appears, at least in our small sample of visitors (n = 13), that basic computational science can be conveyed to people of all ages by means of interactive demonstrations. Children as young as five were able to successfully edit simple computer programs with supervision. This was, in many cases, their first experience of computer programming. The feedback is predominantly positive, showing strong support for improving computational science education, but also included suggestions for improvement. Our conclusions are necessarily preliminary. However, feedback forms suggest methods were generally well received among the participants; "Easy to follow. Clear explanation" and "Very easy. Demonstrators were very informative." Our event, held at a local Science Centre in Dundee, demonstrates that computer games and programming activities suitable for young children can be performed alongside a more specialised and applied introduction to computational science for older visitors.
ERIC Educational Resources Information Center
Wolfle, Dael
This book recounts the many challenges and successes achieved by the American Association for the Advancement of Science (AAAS) from World War II to 1970. Included are: (1) the development of the National Science Foundation; (2) Cold War concerns about the loyalty and freedom of scientists; (3) efforts to develop an effective science curriculum…
Computer Science and Telecommunications Board summary of activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blumenthal, M.S.
1992-03-27
The Computer Science and Telecommunications Board (CSTB) considers technical and policy issues pertaining to computer science, telecommunications, and associated technologies. CSTB actively disseminates the results of its completed projects to those in a position to help implement their recommendations or otherwise use their insights. It provides a forum for the exchange of information on computer science, computing technology, and telecommunications. This report discusses the major accomplishments of CSTB.
Hispanic women overcoming deterrents to computer science: A phenomenological study
NASA Astrophysics Data System (ADS)
Herling, Lourdes
The products of computer science are important to all aspects of society and are tools in the solution of the world's problems. It is, therefore, troubling that the United States faces a shortage in qualified graduates in computer science. The number of women and minorities in computer science is significantly lower than the percentage of the U.S. population which they represent. The overall enrollment in computer science programs has continued to decline with the enrollment of women declining at a higher rate than that of men. This study addressed three aspects of underrepresentation about which there has been little previous research: addressing computing disciplines specifically rather than embedding them within the STEM disciplines, what attracts women and minorities to computer science, and addressing the issues of race/ethnicity and gender in conjunction rather than in isolation. Since women of underrepresented ethnicities are more severely underrepresented than women in general, it is important to consider whether race and ethnicity play a role in addition to gender as has been suggested by previous research. Therefore, this study examined what attracted Hispanic women to computer science specifically. The study determines whether being subjected to multiple marginalizations---female and Hispanic---played a role in the experiences of Hispanic women currently in computer science. The study found five emergent themes within the experiences of Hispanic women in computer science. Encouragement and role models strongly influenced not only the participants' choice to major in the field, but to persist as well. Most of the participants experienced a negative atmosphere and feelings of not fitting in while in college and industry. The interdisciplinary nature of computer science was the most common aspect that attracted the participants to computer science. The aptitudes participants commonly believed are needed for success in computer science are the Twenty-First Century skills problem solving, creativity, and critical thinking. While not all the participants had experience with computers or programming prior to attending college, experience played a role in the self-confidence of those who did.
Research in applied mathematics, numerical analysis, and computer science
NASA Technical Reports Server (NTRS)
1984-01-01
Research conducted at the Institute for Computer Applications in Science and Engineering (ICASE) in applied mathematics, numerical analysis, and computer science is summarized and abstracts of published reports are presented. The major categories of the ICASE research program are: (1) numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; (2) control and parameter identification; (3) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and (4) computer systems and software, especially vector and parallel computers.
10 CFR Appendix II to Part 504 - Fuel Price Computation
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Fuel Price Computation II Appendix II to Part 504 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS EXISTING POWERPLANTS Pt. 504, App. II Appendix II to Part... effects of future real price increases for each fuel. The delivered price of an alternate fuel used to...
10 CFR Appendix II to Part 504 - Fuel Price Computation
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Fuel Price Computation II Appendix II to Part 504 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS EXISTING POWERPLANTS Pt. 504, App. II Appendix II to Part... (APXi). If an alternate fuel other than coal is proposed the source or the derivation of the index must...
10 CFR Appendix II to Part 504 - Fuel Price Computation
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Fuel Price Computation II Appendix II to Part 504 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS EXISTING POWERPLANTS Pt. 504, App. II Appendix II to Part... effects of future real price increases for each fuel. The delivered price of an alternate fuel used to...
Science-Driven Computing: NERSC's Plan for 2006-2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, Horst D.; Kramer, William T.C.; Bailey, David H.
NERSC has developed a five-year strategic plan focusing on three components: Science-Driven Systems, Science-Driven Services, and Science-Driven Analytics. (1) Science-Driven Systems: Balanced introduction of the best new technologies for complete computational systems--computing, storage, networking, visualization and analysis--coupled with the activities necessary to engage vendors in addressing the DOE computational science requirements in their future roadmaps. (2) Science-Driven Services: The entire range of support activities, from high-quality operations and user services to direct scientific support, that enable a broad range of scientists to effectively use NERSC systems in their research. NERSC will concentrate on resources needed to realize the promise ofmore » the new highly scalable architectures for scientific discovery in multidisciplinary computational science projects. (3) Science-Driven Analytics: The architectural and systems enhancements and services required to integrate NERSC's powerful computational and storage resources to provide scientists with new tools to effectively manipulate, visualize, and analyze the huge data sets derived from simulations and experiments.« less
ERIC Educational Resources Information Center
Stoilescu, Dorian; Egodawatte, Gunawardena
2010-01-01
Research shows that female and male students in undergraduate computer science programs view computer culture differently. Female students are interested more in the use of computers than in doing programming, whereas male students see computer science mainly as a programming activity. The overall purpose of our research was not to find new…
Computer Science Techniques Applied to Parallel Atomistic Simulation
NASA Astrophysics Data System (ADS)
Nakano, Aiichiro
1998-03-01
Recent developments in parallel processing technology and multiresolution numerical algorithms have established large-scale molecular dynamics (MD) simulations as a new research mode for studying materials phenomena such as fracture. However, this requires large system sizes and long simulated times. We have developed: i) Space-time multiresolution schemes; ii) fuzzy-clustering approach to hierarchical dynamics; iii) wavelet-based adaptive curvilinear-coordinate load balancing; iv) multilevel preconditioned conjugate gradient method; and v) spacefilling-curve-based data compression for parallel I/O. Using these techniques, million-atom parallel MD simulations are performed for the oxidation dynamics of nanocrystalline Al. The simulations take into account the effect of dynamic charge transfer between Al and O using the electronegativity equalization scheme. The resulting long-range Coulomb interaction is calculated efficiently with the fast multipole method. Results for temperature and charge distributions, residual stresses, bond lengths and bond angles, and diffusivities of Al and O will be presented. The oxidation of nanocrystalline Al is elucidated through immersive visualization in virtual environments. A unique dual-degree education program at Louisiana State University will also be discussed in which students can obtain a Ph.D. in Physics & Astronomy and a M.S. from the Department of Computer Science in five years. This program fosters interdisciplinary research activities for interfacing High Performance Computing and Communications with large-scale atomistic simulations of advanced materials. This work was supported by NSF (CAREER Program), ARO, PRF, and Louisiana LEQSF.
Opportunities for Computational Discovery in Basic Energy Sciences
NASA Astrophysics Data System (ADS)
Pederson, Mark
2011-03-01
An overview of the broad-ranging support of computational physics and computational science within the Department of Energy Office of Science will be provided. Computation as the third branch of physics is supported by all six offices (Advanced Scientific Computing, Basic Energy, Biological and Environmental, Fusion Energy, High-Energy Physics, and Nuclear Physics). Support focuses on hardware, software and applications. Most opportunities within the fields of~condensed-matter physics, chemical-physics and materials sciences are supported by the Officeof Basic Energy Science (BES) or through partnerships between BES and the Office for Advanced Scientific Computing. Activities include radiation sciences, catalysis, combustion, materials in extreme environments, energy-storage materials, light-harvesting and photovoltaics, solid-state lighting and superconductivity.~ A summary of two recent reports by the computational materials and chemical communities on the role of computation during the next decade will be provided. ~In addition to materials and chemistry challenges specific to energy sciences, issues identified~include a focus on the role of the domain scientist in integrating, expanding and sustaining applications-oriented capabilities on evolving high-performance computing platforms and on the role of computation in accelerating the development of innovative technologies. ~~
Research | Computational Science | NREL
Research Research NREL's computational science experts use advanced high-performance computing (HPC technologies, thereby accelerating the transformation of our nation's energy system. Enabling High-Impact Research NREL's computational science capabilities enable high-impact research. Some recent examples
Student science enrichment training program. Progress report, June 1, 1991--May 31, 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandhu, S.S.
1992-04-21
Historically Black Colleges and Universities wing of the United States Department of Energy (DOE) provided funds to Claflin College, Orangeburg, S.C. To conduct a student Science Enrichment Training Program for a period of six weeks during 1991 summer. Thirty participants were selected from a pool of applicants, generated by the High School Seniors and Juniors and the Freshmen class of 1990-1991 at Claflin College. The program primarily focused on high ability students, with potential for Science, Mathematics and Engineering Careers. The major objectives of the program were W to increase the pool of well qualified college entering minority students whomore » will elect to go in Physical Sciences and Engineering and (II) to increase the enrollment in Chemistry and Preprofessional-Pre-Med, Pre-Dent, etc.-majors at Claflin College by including the Claflin students to participate in summer academic program. The summer academic program consisted of Chemistry and Computer Science training. The program placed emphasis upon laboratory experience and research. Visits to Scientific and Industrial laboratories were arranged. Guest speakers which were drawn from academia, industry and several federal agencies, addressed the participants on the future role of Science in the industrial growth of United States of America. The guest speakers also acted as role models for the participants. Several videos and films, emphasizing the role of Science in human life, were also screened.« less
1982-01-29
N - Nw .VA COMPUTER PROGRAM USER’S MANUAL FOR . 0FIREFINDER DIGITAL TOPOGRAPHIC DATA VERIFICATION LIBRARY DUBBING SYSTEM VOLUME II DUBBING 29 JANUARY...Digital Topographic Data Verification Library Dubbing System, Volume II, Dubbing 6. PERFORMING ORG. REPORT NUMER 7. AUTHOR(q) S. CONTRACT OR GRANT...Software Library FIREFINDER Dubbing 20. ABSTRACT (Continue an revWee *Ide II necessary end identify by leek mauber) PThis manual describes the computer
Experimental power density distribution benchmark in the TRIGA Mark II reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snoj, L.; Stancar, Z.; Radulovic, V.
2012-07-01
In order to improve the power calibration process and to benchmark the existing computational model of the TRIGA Mark II reactor at the Josef Stefan Inst. (JSI), a bilateral project was started as part of the agreement between the French Commissariat a l'energie atomique et aux energies alternatives (CEA) and the Ministry of higher education, science and technology of Slovenia. One of the objectives of the project was to analyze and improve the power calibration process of the JSI TRIGA reactor (procedural improvement and uncertainty reduction) by using absolutely calibrated CEA fission chambers (FCs). This is one of the fewmore » available power density distribution benchmarks for testing not only the fission rate distribution but also the absolute values of the fission rates. Our preliminary calculations indicate that the total experimental uncertainty of the measured reaction rate is sufficiently low that the experiments could be considered as benchmark experiments. (authors)« less
Code of Federal Regulations, 2012 CFR
2012-10-01
..., financial records, and automated data systems; (ii) The data are free from computational errors and are... records, financial records, and automated data systems; (ii) The data are free from computational errors... records, and automated data systems; (ii) The data are free from computational errors and are internally...
NASA Astrophysics Data System (ADS)
Bocanegra-Bahamón, T. M.; Molera Calvés, G.; Gurvits, L. I.; Duev, D. A.; Pogrebenko, S. V.; Cimò, G.; Dirkx, D.; Rosenblatt, P.
2018-01-01
Context. Closed-loop Doppler data obtained by deep space tracking networks, such as the NASA Deep Space Network (DSN) and the ESA tracking station network (Estrack), are routinely used for navigation and science applications. By shadow tracking the spacecraft signal, Earth-based radio telescopes involved in the Planetary Radio Interferometry and Doppler Experiment (PRIDE) can provide open-loop Doppler tracking data only when the dedicated deep space tracking facilities are operating in closed-loop mode. Aims: We explain the data processing pipeline in detail and discuss the capabilities of the technique and its potential applications in planetary science. Methods: We provide the formulation of the observed and computed values of the Doppler data in PRIDE tracking of spacecraft and demonstrate the quality of the results using an experiment with the ESA Mars Express spacecraft as a test case. Results: We find that the Doppler residuals and the corresponding noise budget of the open-loop Doppler detections obtained with the PRIDE stations compare to the closed-loop Doppler detections obtained with dedicated deep space tracking facilities.
BelleII@home: Integrate volunteer computing resources into DIRAC in a secure way
NASA Astrophysics Data System (ADS)
Wu, Wenjing; Hara, Takanori; Miyake, Hideki; Ueda, Ikuo; Kan, Wenxiao; Urquijo, Phillip
2017-10-01
The exploitation of volunteer computing resources has become a popular practice in the HEP computing community as the huge amount of potential computing power it provides. In the recent HEP experiments, the grid middleware has been used to organize the services and the resources, however it relies heavily on the X.509 authentication, which is contradictory to the untrusted feature of volunteer computing resources, therefore one big challenge to utilize the volunteer computing resources is how to integrate them into the grid middleware in a secure way. The DIRAC interware which is commonly used as the major component of the grid computing infrastructure for several HEP experiments proposes an even bigger challenge to this paradox as its pilot is more closely coupled with operations requiring the X.509 authentication compared to the implementations of pilot in its peer grid interware. The Belle II experiment is a B-factory experiment at KEK, and it uses DIRAC for its distributed computing. In the project of BelleII@home, in order to integrate the volunteer computing resources into the Belle II distributed computing platform in a secure way, we adopted a new approach which detaches the payload running from the Belle II DIRAC pilot which is a customized pilot pulling and processing jobs from the Belle II distributed computing platform, so that the payload can run on volunteer computers without requiring any X.509 authentication. In this approach we developed a gateway service running on a trusted server which handles all the operations requiring the X.509 authentication. So far, we have developed and deployed the prototype of BelleII@home, and tested its full workflow which proves the feasibility of this approach. This approach can also be applied on HPC systems whose work nodes do not have outbound connectivity to interact with the DIRAC system in general.
NASA's computer science research program
NASA Technical Reports Server (NTRS)
Larsen, R. L.
1983-01-01
Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.
Girls Save the World through Computer Science
ERIC Educational Resources Information Center
Murakami, Christine
2011-01-01
It's no secret that fewer and fewer women are entering computer science fields. Attracting high school girls to computer science is only part of the solution. Retaining them while they are in higher education or the workforce is also a challenge. To solve this, there is a need to show girls that computer science is a wide-open field that offers…
ERIC Educational Resources Information Center
Liang, Jyh-Chong; Su, Yi-Ching; Tsai, Chin-Chung
2015-01-01
The aim of this study was to explore Taiwanese college students' conceptions of and approaches to learning computer science and then explore the relationships between the two. Two surveys, Conceptions of Learning Computer Science (COLCS) and Approaches to Learning Computer Science (ALCS), were administered to 421 college students majoring in…
Hispanic Women Overcoming Deterrents to Computer Science: A Phenomenological Study
ERIC Educational Resources Information Center
Herling, Lourdes
2011-01-01
The products of computer science are important to all aspects of society and are tools in the solution of the world's problems. It is, therefore, troubling that the United States faces a shortage in qualified graduates in computer science. The number of women and minorities in computer science is significantly lower than the percentage of the…
ERIC Educational Resources Information Center
Payton, Jamie; Barnes, Tiffany; Buch, Kim; Rorrer, Audrey; Zuo, Huifang
2015-01-01
This study is a follow-up to one published in computer science education in 2010 that reported preliminary results showing a positive impact of service learning on student attitudes associated with success and retention in computer science. That paper described how service learning was incorporated into a computer science course in the context of…
Non-Determinism: An Abstract Concept in Computer Science Studies
ERIC Educational Resources Information Center
Armoni, Michal; Gal-Ezer, Judith
2007-01-01
Non-determinism is one of the most important, yet abstract, recurring concepts of Computer Science. It plays an important role in Computer Science areas such as formal language theory, computability theory, distributed computing, and operating systems. We conducted a series of studies on the perception of non-determinism. In the current research,…
An Investigation of Primary School Science Teachers' Use of Computer Applications
ERIC Educational Resources Information Center
Ocak, Mehmet Akif; Akdemir, Omur
2008-01-01
This study investigated the level and frequency of science teachers' use of computer applications as an instructional tool in the classroom. The manner and frequency of science teachers' use of computer, their perceptions about integration of computer applications, and other factors contributed to changes in their computer literacy are…
Methodical Approaches to Teaching of Computer Modeling in Computer Science Course
ERIC Educational Resources Information Center
Rakhimzhanova, B. Lyazzat; Issabayeva, N. Darazha; Khakimova, Tiyshtik; Bolyskhanova, J. Madina
2015-01-01
The purpose of this study was to justify of the formation technique of representation of modeling methodology at computer science lessons. The necessity of studying computer modeling is that the current trends of strengthening of general education and worldview functions of computer science define the necessity of additional research of the…
NASA Astrophysics Data System (ADS)
Brust, Gregory John
This study was designed to discover if there is a difference in the scientific attitudes and process skills between a group of students who were instructed with Living in a Material World and groups of students in non-science majors sections of introductory biology, chemistry, and geology courses at the University of Southern Mississippi (USM). Each of the four courses utilized different instructional techniques. Students' scientific attitudes were measured with the Scientific Attitudes Inventory (SAI II) and their knowledge of science process skills were measured with the Test of Integrated Process Skills (TIPS II). The Group Assessment of Logical Thinking (GALT) was also administered to determine if the cognitive levels of students are comparable. A series of four questionnaires called Qualitative Course Assessments (QCA) were also administered to students in the experimental course to evaluate subtle changes in their understanding of the nature and processes of science and attitudes towards science. Student responses to the QCA questionnaires were triangulated with results of the qualitative instruments, and students' work on the final project. Results of the GALT found a significant difference in the cognitive levels of students in the experimental course (PSC 190) and in one of the control group, the introductory biology (BSC 107). Results of the SAI II and the TIPS II found no significant difference between the experimental group and the control groups. Qualitative analyses of students' responses to selected questions from the TIPS II, selected items on the SAI II, QCA questionnaires, and Materials that Fly project reports demonstrate an improvement in the understanding of the nature and processes of science and a change to positive attitude toward science of students in the experimental group. Students indicated that hands-on, inquiry-based labs and performance assessment were the most effective methods for their learning. These results indicate that science courses for non-science majors should focus on connections to students' daily lives while utilizing an STS curriculum and inquiry-based activities. Future research could focus on long term effects of this type of course as well as the effectiveness of these teaching methods for science majors.
Climate Modeling Computing Needs Assessment
NASA Astrophysics Data System (ADS)
Petraska, K. E.; McCabe, J. D.
2011-12-01
This paper discusses early findings of an assessment of computing needs for NASA science, engineering and flight communities. The purpose of this assessment is to document a comprehensive set of computing needs that will allow us to better evaluate whether our computing assets are adequately structured to meet evolving demand. The early results are interesting, already pointing out improvements we can make today to get more out of the computing capacity we have, as well as potential game changing innovations for the future in how we apply information technology to science computing. Our objective is to learn how to leverage our resources in the best way possible to do more science for less money. Our approach in this assessment is threefold: Development of use case studies for science workflows; Creating a taxonomy and structure for describing science computing requirements; and characterizing agency computing, analysis, and visualization resources. As projects evolve, science data sets increase in a number of ways: in size, scope, timelines, complexity, and fidelity. Generating, processing, moving, and analyzing these data sets places distinct and discernable requirements on underlying computing, analysis, storage, and visualization systems. The initial focus group for this assessment is the Earth Science modeling community within NASA's Science Mission Directorate (SMD). As the assessment evolves, this focus will expand to other science communities across the agency. We will discuss our use cases, our framework for requirements and our characterizations, as well as our interview process, what we learned and how we plan to improve our materials after using them in the first round of interviews in the Earth Science Modeling community. We will describe our plans for how to expand this assessment, first into the Earth Science data analysis and remote sensing communities, and then throughout the full community of science, engineering and flight at NASA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, A.; Barnard, J. J.; Cohen, R. H.
The Heavy Ion Fusion Science Virtual National Laboratory(a collaboration of LBNL, LLNL, and PPPL) is using intense ion beams to heat thin foils to the"warm dense matter" regime at<~;; 1 eV, and is developing capabilities for studying target physics relevant to ion-driven inertial fusion energy. The need for rapid target heating led to the development of plasma-neutralized pulse compression, with current amplification factors exceeding 50 now routine on the Neutralized Drift Compression Experiment (NDCX). Construction of an improved platform, NDCX-II, has begun at LBNL with planned completion in 2012. Using refurbished induction cells from the Advanced Test Accelerator at LLNL,more » NDCX-II will compress a ~;;500 ns pulse of Li+ ions to ~;;1 ns while accelerating it to 3-4 MeV over ~;;15 m. Strong space charge forces are incorporated into the machine design at a fundamental level. We are using analysis, an interactive 1D PIC code (ASP) with optimizing capabilities and centroid tracking, and multi-dimensional Warpcode PIC simulations, to develop the NDCX-II accelerator. This paper describes the computational models employed, and the resulting physics design for the accelerator.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, A; Barnard, J J; Cohen, R H
The Heavy Ion Fusion Science Virtual National Laboratory (a collaboration of LBNL, LLNL, and PPPL) is using intense ion beams to heat thin foils to the 'warm dense matter' regime at {approx}< 1 eV, and is developing capabilities for studying target physics relevant to ion-driven inertial fusion energy. The need for rapid target heating led to the development of plasma-neutralized pulse compression, with current amplification factors exceeding 50 now routine on the Neutralized Drift Compression Experiment (NDCX). Construction of an improved platform, NDCX-II, has begun at LBNL with planned completion in 2012. Using refurbished induction cells from the Advanced Testmore » Accelerator at LLNL, NDCX-II will compress a {approx}500 ns pulse of Li{sup +} ions to {approx} 1 ns while accelerating it to 3-4 MeV over {approx} 15 m. Strong space charge forces are incorporated into the machine design at a fundamental level. We are using analysis, an interactive 1D PIC code (ASP) with optimizing capabilities and centroid tracking, and multi-dimensional Warpcode PIC simulations, to develop the NDCX-II accelerator. This paper describes the computational models employed, and the resulting physics design for the accelerator.« less
Rodriguez, Blanca; Carusi, Annamaria; Abi-Gerges, Najah; Ariga, Rina; Britton, Oliver; Bub, Gil; Bueno-Orovio, Alfonso; Burton, Rebecca A B; Carapella, Valentina; Cardone-Noott, Louie; Daniels, Matthew J; Davies, Mark R; Dutta, Sara; Ghetti, Andre; Grau, Vicente; Harmer, Stephen; Kopljar, Ivan; Lambiase, Pier; Lu, Hua Rong; Lyon, Aurore; Minchole, Ana; Muszkiewicz, Anna; Oster, Julien; Paci, Michelangelo; Passini, Elisa; Severi, Stefano; Taggart, Peter; Tinker, Andy; Valentin, Jean-Pierre; Varro, Andras; Wallman, Mikael; Zhou, Xin
2016-09-01
Both biomedical research and clinical practice rely on complex datasets for the physiological and genetic characterization of human hearts in health and disease. Given the complexity and variety of approaches and recordings, there is now growing recognition of the need to embed computational methods in cardiovascular medicine and science for analysis, integration and prediction. This paper describes a Workshop on Computational Cardiovascular Science that created an international, interdisciplinary and inter-sectorial forum to define the next steps for a human-based approach to disease supported by computational methodologies. The main ideas highlighted were (i) a shift towards human-based methodologies, spurred by advances in new in silico, in vivo, in vitro, and ex vivo techniques and the increasing acknowledgement of the limitations of animal models. (ii) Computational approaches complement, expand, bridge, and integrate in vitro, in vivo, and ex vivo experimental and clinical data and methods, and as such they are an integral part of human-based methodologies in pharmacology and medicine. (iii) The effective implementation of multi- and interdisciplinary approaches, teams, and training combining and integrating computational methods with experimental and clinical approaches across academia, industry, and healthcare settings is a priority. (iv) The human-based cross-disciplinary approach requires experts in specific methodologies and domains, who also have the capacity to communicate and collaborate across disciplines and cross-sector environments. (v) This new translational domain for human-based cardiology and pharmacology requires new partnerships supported financially and institutionally across sectors. Institutional, organizational, and social barriers must be identified, understood and overcome in each specific setting. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Cardiology.
feature extraction, human-computer interaction, and physics-based modeling. Professional Experience 2009 ., computer science, University of Colorado at Boulder M.S., computer science, University of Colorado at Boulder B.S., computer science, New Mexico Institute of Mining and Technology
Computer-aided design and computer science technology
NASA Technical Reports Server (NTRS)
Fulton, R. E.; Voigt, S. J.
1976-01-01
A description is presented of computer-aided design requirements and the resulting computer science advances needed to support aerospace design. The aerospace design environment is examined, taking into account problems of data handling and aspects of computer hardware and software. The interactive terminal is normally the primary interface between the computer system and the engineering designer. Attention is given to user aids, interactive design, interactive computations, the characteristics of design information, data management requirements, hardware advancements, and computer science developments.
NASA Astrophysics Data System (ADS)
Payton, Jamie; Barnes, Tiffany; Buch, Kim; Rorrer, Audrey; Zuo, Huifang
2015-07-01
This study is a follow-up to one published in computer science education in 2010 that reported preliminary results showing a positive impact of service learning on student attitudes associated with success and retention in computer science. That paper described how service learning was incorporated into a computer science course in the context of the Students & Technology in Academia, Research, and Service (STARS) Alliance, an NSF-supported broadening participation in computing initiative that aims to diversify the computer science pipeline through innovative pedagogy and inter-institutional partnerships. The current paper describes how the STARS Alliance has expanded to diverse institutions, all using service learning as a vehicle for broadening participation in computing and enhancing attitudes and behaviors associated with student success. Results supported the STARS model of service learning for enhancing computing efficacy and computing commitment and for providing diverse students with many personal and professional development benefits.
ICASE Computer Science Program
NASA Technical Reports Server (NTRS)
1985-01-01
The Institute for Computer Applications in Science and Engineering computer science program is discussed in outline form. Information is given on such topics as problem decomposition, algorithm development, programming languages, and parallel architectures.
Executable research compendia in geoscience research infrastructures
NASA Astrophysics Data System (ADS)
Nüst, Daniel
2017-04-01
From generation through analysis and collaboration to communication, scientific research requires the right tools. Scientists create their own software using third party libraries and platforms. Cloud computing, Open Science, public data infrastructures, and Open Source enable scientists with unprecedented opportunites, nowadays often in a field "Computational X" (e.g. computational seismology) or X-informatics (e.g. geoinformatics) [0]. This increases complexity and generates more innovation, e.g. Environmental Research Infrastructures (environmental RIs [1]). Researchers in Computational X write their software relying on both source code (e.g. from https://github.com) and binary libraries (e.g. from package managers such as APT, https://wiki.debian.org/Apt, or CRAN, https://cran.r-project.org/). They download data from domain specific (cf. https://re3data.org) or generic (e.g. https://zenodo.org) data repositories, and deploy computations remotely (e.g. European Open Science Cloud). The results themselves are archived, given persistent identifiers, connected to other works (e.g. using https://orcid.org/), and listed in metadata catalogues. A single researcher, intentionally or not, interacts with all sub-systems of RIs: data acquisition, data access, data processing, data curation, and community support [3]. To preserve computational research [3] proposes the Executable Research Compendium (ERC), a container format closing the gap of dependency preservation by encapsulating the runtime environment. ERCs and RIs can be integrated for different uses: (i) Coherence: ERC services validate completeness, integrity and results (ii) Metadata: ERCs connect the different parts of a piece of research and faciliate discovery (iii) Exchange and Preservation: ERC as usable building blocks are the shared and archived entity (iv) Self-consistency: ERCs remove dependence on ephemeral sources (v) Execution: ERC services create and execute a packaged analysis but integrate with existing platforms for display and control These integrations are vital for capturing workflows in RIs and connect key stakeholders (scientists, publishers, librarians). They are demonstrated using developments by the DFG-funded project Opening Reproducible Research (http://o2r.info). Semi-automatic creation of ERCs based on research workflows is a core goal of the project. References [0] Tony Hey, Stewart Tansley, Kristin Tolle (eds), 2009. The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft Research. [1] P. Martin et al., Open Information Linking for Environmental Research Infrastructures, 2015 IEEE 11th International Conference on e-Science, Munich, 2015, pp. 513-520. doi: 10.1109/eScience.2015.66 [2] Y. Chen et al., Analysis of Common Requirements for Environmental Science Research Infrastructures, The International Symposium on Grids and Clouds (ISGC) 2013, Taipei, 2013, http://pos.sissa.it/archive/conferences/179/032/ISGC [3] Opening Reproducible Research, Geophysical Research Abstracts Vol. 18, EGU2016-7396, 2016, http://meetingorganizer.copernicus.org/EGU2016/EGU2016-7396.pdf
NASA Astrophysics Data System (ADS)
Morikawa, Y.; Murata, K. T.; Watari, S.; Kato, H.; Yamamoto, K.; Inoue, S.; Tsubouchi, K.; Fukazawa, K.; Kimura, E.; Tatebe, O.; Shimojo, S.
2010-12-01
Main methodologies of Solar-Terrestrial Physics (STP) so far are theoretical, experimental and observational, and computer simulation approaches. Recently "informatics" is expected as a new (fourth) approach to the STP studies. Informatics is a methodology to analyze large-scale data (observation data and computer simulation data) to obtain new findings using a variety of data processing techniques. At NICT (National Institute of Information and Communications Technology, Japan) we are now developing a new research environment named "OneSpaceNet". The OneSpaceNet is a cloud-computing environment specialized for science works, which connects many researchers with high-speed network (JGN: Japan Gigabit Network). The JGN is a wide-area back-born network operated by NICT; it provides 10G network and many access points (AP) over Japan. The OneSpaceNet also provides with rich computer resources for research studies, such as super-computers, large-scale data storage area, licensed applications, visualization devices (like tiled display wall: TDW), database/DBMS, cluster computers (4-8 nodes) for data processing and communication devices. What is amazing in use of the science cloud is that a user simply prepares a terminal (low-cost PC). Once connecting the PC to JGN2plus, the user can make full use of the rich resources of the science cloud. Using communication devices, such as video-conference system, streaming and reflector servers, and media-players, the users on the OneSpaceNet can make research communications as if they belong to a same (one) laboratory: they are members of a virtual laboratory. The specification of the computer resources on the OneSpaceNet is as follows: The size of data storage we have developed so far is almost 1PB. The number of the data files managed on the cloud storage is getting larger and now more than 40,000,000. What is notable is that the disks forming the large-scale storage are distributed to 5 data centers over Japan (but the storage system performs as one disk). There are three supercomputers allocated on the cloud, one from Tokyo, one from Osaka and the other from Nagoya. One's simulation job data on any supercomputers are saved on the cloud data storage (same directory); it is a kind of virtual computing environment. The tiled display wall has 36 panels acting as one display; the pixel (resolution) size of it is as large as 18000x4300. This size is enough to preview or analyze the large-scale computer simulation data. It also allows us to take a look of multiple (e.g., 100 pictures) on one screen together with many researchers. In our talk we also present a brief report of the initial results using the OneSpaceNet for Global MHD simulations as an example of successful use of our science cloud; (i) Ultra-high time resolution visualization of Global MHD simulations on the large-scale storage and parallel processing system on the cloud, (ii) Database of real-time Global MHD simulation and statistic analyses of the data, and (iii) 3D Web service of Global MHD simulations.
Applications of Out-of-Domain Knowledge in Students' Reasoning about Computer Program State
ERIC Educational Resources Information Center
Lewis, Colleen Marie
2012-01-01
To meet a growing demand and a projected deficit in the supply of computer professionals (NCWIT, 2009), it is of vital importance to expand students' access to computer science. However, many researchers in the computer science education community unproductively assume that some students lack an innate ability for computer science and…
Scientific Computing Strategic Plan for the Idaho National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whiting, Eric Todd
Scientific computing is a critical foundation of modern science. Without innovations in the field of computational science, the essential missions of the Department of Energy (DOE) would go unrealized. Taking a leadership role in such innovations is Idaho National Laboratory’s (INL’s) challenge and charge, and is central to INL’s ongoing success. Computing is an essential part of INL’s future. DOE science and technology missions rely firmly on computing capabilities in various forms. Modeling and simulation, fueled by innovations in computational science and validated through experiment, are a critical foundation of science and engineering. Big data analytics from an increasing numbermore » of widely varied sources is opening new windows of insight and discovery. Computing is a critical tool in education, science, engineering, and experiments. Advanced computing capabilities in the form of people, tools, computers, and facilities, will position INL competitively to deliver results and solutions on important national science and engineering challenges. A computing strategy must include much more than simply computers. The foundational enabling component of computing at many DOE national laboratories is the combination of a showcase like data center facility coupled with a very capable supercomputer. In addition, network connectivity, disk storage systems, and visualization hardware are critical and generally tightly coupled to the computer system and co located in the same facility. The existence of these resources in a single data center facility opens the doors to many opportunities that would not otherwise be possible.« less
Wan, Shixiang; Zou, Quan
2017-01-01
Multiple sequence alignment (MSA) plays a key role in biological sequence analyses, especially in phylogenetic tree construction. Extreme increase in next-generation sequencing results in shortage of efficient ultra-large biological sequence alignment approaches for coping with different sequence types. Distributed and parallel computing represents a crucial technique for accelerating ultra-large (e.g. files more than 1 GB) sequence analyses. Based on HAlign and Spark distributed computing system, we implement a highly cost-efficient and time-efficient HAlign-II tool to address ultra-large multiple biological sequence alignment and phylogenetic tree construction. The experiments in the DNA and protein large scale data sets, which are more than 1GB files, showed that HAlign II could save time and space. It outperformed the current software tools. HAlign-II can efficiently carry out MSA and construct phylogenetic trees with ultra-large numbers of biological sequences. HAlign-II shows extremely high memory efficiency and scales well with increases in computing resource. THAlign-II provides a user-friendly web server based on our distributed computing infrastructure. HAlign-II with open-source codes and datasets was established at http://lab.malab.cn/soft/halign.
75 FR 64258 - Cloud Computing Forum & Workshop II
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-19
... DEPARTMENT OF COMMERCE National Institute of Standards and Technology Cloud Computing Forum... workshop. SUMMARY: NIST announces the Cloud Computing Forum & Workshop II to be held on November 4 and 5, 2010. This workshop will provide information on a Cloud Computing Roadmap Strategy as well as provide...
Railroad Classification Yard Technology Manual: Volume II : Yard Computer Systems
DOT National Transportation Integrated Search
1981-08-01
This volume (Volume II) of the Railroad Classification Yard Technology Manual documents the railroad classification yard computer systems methodology. The subjects covered are: functional description of process control and inventory computer systems,...
A Cognitive Model for Problem Solving in Computer Science
ERIC Educational Resources Information Center
Parham, Jennifer R.
2009-01-01
According to industry representatives, computer science education needs to emphasize the processes involved in solving computing problems rather than their solutions. Most of the current assessment tools used by universities and computer science departments analyze student answers to problems rather than investigating the processes involved in…
Approaches to Classroom-Based Computational Science.
ERIC Educational Resources Information Center
Guzdial, Mark
Computational science includes the use of computer-based modeling and simulation to define and test theories about scientific phenomena. The challenge for educators is to develop techniques for implementing computational science in the classroom. This paper reviews some previous work on the use of simulation alone (without modeling), modeling…
Defining Computational Thinking for Mathematics and Science Classrooms
ERIC Educational Resources Information Center
Weintrop, David; Beheshti, Elham; Horn, Michael; Orton, Kai; Jona, Kemi; Trouille, Laura; Wilensky, Uri
2016-01-01
Science and mathematics are becoming computational endeavors. This fact is reflected in the recently released Next Generation Science Standards and the decision to include "computational thinking" as a core scientific practice. With this addition, and the increased presence of computation in mathematics and scientific contexts, a new…
ERIC Educational Resources Information Center
Falleur, David M.
This presentation describes SuperPILOT, an extended version of Apple PILOT, a programming language for developing computer-assisted instruction (CAI) with the Apple II computer that includes the features of its early PILOT (Programmed Inquiry, Learning or Teaching) ancestors together with new features that make use of the Apple computer's advanced…
NASA Center for Computational Sciences: History and Resources
NASA Technical Reports Server (NTRS)
2000-01-01
The Nasa Center for Computational Sciences (NCCS) has been a leading capacity computing facility, providing a production environment and support resources to address the challenges facing the Earth and space sciences research community.
Institute for Computer Applications in Science and Engineering (ICASE)
NASA Technical Reports Server (NTRS)
1984-01-01
Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science during the period April 1, 1983 through September 30, 1983 is summarized.
Computers in Science: Thinking Outside the Discipline.
ERIC Educational Resources Information Center
Hamilton, Todd M.
2003-01-01
Describes the Computers in Science course which integrates computer-related techniques into the science disciplines of chemistry, physics, biology, and Earth science. Uses a team teaching approach and teaches students how to solve chemistry problems with spreadsheets, identify minerals with X-rays, and chemical and force analysis. (Contains 14…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-28
... NATIONAL SCIENCE FOUNDATION Advisory Committee for Computer and Information Science and Engineering; Cancellation of Meeting SUMMARY: As a result of the impact of the recent government shutdown, the... Committee for Computer and Information Science and Engineering meeting. The public notice for this committee...
Exemplary Science Teachers' Use of Technology
ERIC Educational Resources Information Center
Hakverdi-Can, Meral; Dana, Thomas M.
2012-01-01
The purpose of this study is to examine exemplary science teachers' level of computer use, their knowledge/skills in using specific computer applications for science instruction, their use of computer-related applications/tools during their instruction, how often they required their students to use those applications in or for their science class…
The Brazilian INPE-UFSM NANOSATC-BR CubeSat Development Capacity Building Program
NASA Astrophysics Data System (ADS)
Schuch, Nelson Jorge; Cupertino Durao, Otavio S.
The Brazilian INPE-UFSM NANOSATC-BR CubeSat Development Capacity Building Program (CBP) and the results of the NANOSATC-BR1, the first Brazilian CubeSat launching, expected for 2014's first semester, are presented. The CBP consists of two CubeSats, NANOSATC-BR 1 (1U) & 2 (2U) and is expected operate in orbit for at least 12 months each, with capacity building in space science, engineering and computer sciences for the development of space technologies using CubeSats satellites. The INPE-UFSM’s CBP Cooperation is basically among: (i) the Southern Regional Space Research Center (CRS), from the Brazilian INPE/MCTI, where acts the Program's General Coordinator and Projects NANOSATC-BR 1 & 2 Manager, having technical collaboration and management of the Mission’s General Coordinator for Engineering and Space Technology at INPE’s Headquarter (HQ), in São José dos Campos, São Paulo; (ii) the Santa Maria Space Science Laboratory (LACESM/CT) from the Federal University of Santa Maria - (UFSM); (iii) the Santa Maria Design House (SMDH); (iv) the Graduate Program in Microelectronics from the Federal University of Rio Grande do Sul (MG/II/UFRGS); and (v) the Aeronautic Institute of Technology (ITA/DCTA/CA-MD). The INPE-UFSM’s CBP has the involvement of UFSM' undergraduate students and graduate students from: INPE/MCTI, MG/II/UFRGS and ITA/DCTA/CA-MD. The NANOSATC-BR 1 & 2 Projects Ground Stations (GS) capacity building operation with VHF/UHF band and S-band antennas, are described in two specific papers at this COSPAR-2014. This paper focuses on the development of NANOSATC-BR 1 & 2 and on the launching of NANOSATC-BR1. The Projects' concepts were developed to: i) monitor, in real time, the Geospace, the Ionosphere, the energetic particle precipitation and the disturbances at the Earth's Magnetosphere over the Brazilian Territory, and ii) the determination of their effects on regions such as the South American Magnetic Anomaly (SAMA) and the Brazilian sector of the Equatorial Electrojet (EEJ). The Program has support from The Brazilian Space Agency (AEB).
ERIC Educational Resources Information Center
Science and Children, 1990
1990-01-01
Reviewed are seven computer software packages for IBM and/or Apple Computers. Included are "Windows on Science: Volume 1--Physical Science"; "Science Probe--Physical Science"; "Wildlife Adventures--Grizzly Bears"; "Science Skills--Development Programs"; "The Clean Machine"; "Rock Doctor";…
DOT National Transportation Integrated Search
1975-02-01
A methodology and a computer program, DYNALIST II, have been developed for computing the response of rail vehicle systems to sinusoidal or stationary random rail irregularities. The computer program represents an extension of the earlier DYNALIST pro...
DOT National Transportation Integrated Search
1975-02-01
A methodology and a computer program, DYNALIST II, have been developed for computing the response of rail vehicle systems to sinusoidal or stationary random rail irregularities. The computer program represents an extension of the earlier DYNALIST pro...
An Overview of NASA's Intelligent Systems Program
NASA Technical Reports Server (NTRS)
Cooke, Daniel E.; Norvig, Peter (Technical Monitor)
2001-01-01
NASA and the Computer Science Research community are poised to enter a critical era. An era in which - it seems - that each needs the other. Market forces, driven by the immediate economic viability of computer science research results, place Computer Science in a relatively novel position. These forces impact how research is done, and could, in worst case, drive the field away from significant innovation opting instead for incremental advances that result in greater stability in the market place. NASA, however, requires significant advances in computer science research in order to accomplish the exploration and science agenda it has set out for itself. NASA may indeed be poised to advance computer science research in this century much the way it advanced aero-based research in the last.
A Review of Models for Teacher Preparation Programs for Precollege Computer Science Education.
ERIC Educational Resources Information Center
Deek, Fadi P.; Kimmel, Howard
2002-01-01
Discusses the need for adequate precollege computer science education and focuses on the issues of teacher preparation programs and requirements needed to teach high school computer science. Presents models of teacher preparation programs and compares state requirements with Association for Computing Machinery (ACM) recommendations. (Author/LRW)
Making Advanced Computer Science Topics More Accessible through Interactive Technologies
ERIC Educational Resources Information Center
Shao, Kun; Maher, Peter
2012-01-01
Purpose: Teaching advanced technical concepts in a computer science program to students of different technical backgrounds presents many challenges. The purpose of this paper is to present a detailed experimental pedagogy in teaching advanced computer science topics, such as computer networking, telecommunications and data structures using…
Multi-fidelity uncertainty quantification in large-scale predictive simulations of turbulent flow
NASA Astrophysics Data System (ADS)
Geraci, Gianluca; Jofre-Cruanyes, Lluis; Iaccarino, Gianluca
2017-11-01
The performance characterization of complex engineering systems often relies on accurate, but computationally intensive numerical simulations. It is also well recognized that in order to obtain a reliable numerical prediction the propagation of uncertainties needs to be included. Therefore, Uncertainty Quantification (UQ) plays a fundamental role in building confidence in predictive science. Despite the great improvement in recent years, even the more advanced UQ algorithms are still limited to fairly simplified applications and only moderate parameter dimensionality. Moreover, in the case of extremely large dimensionality, sampling methods, i.e. Monte Carlo (MC) based approaches, appear to be the only viable alternative. In this talk we describe and compare a family of approaches which aim to accelerate the convergence of standard MC simulations. These methods are based on hierarchies of generalized numerical resolutions (multi-level) or model fidelities (multi-fidelity), and attempt to leverage the correlation between Low- and High-Fidelity (HF) models to obtain a more accurate statistical estimator without introducing additional HF realizations. The performance of these methods are assessed on an irradiated particle laden turbulent flow (PSAAP II solar energy receiver). This investigation was funded by the United States Department of Energy's (DoE) National Nuclear Security Administration (NNSA) under the Predicitive Science Academic Alliance Program (PSAAP) II at Stanford University.
NASA Astrophysics Data System (ADS)
Malecha, Ziemowit; Lubryka, Eliza
2017-11-01
The numerical model of thin layers, characterized by a defined wrapping pattern can be a crucial element of many computational problems related to engineering and science. A motivating example is found in multilayer electrical insulation, which is an important component of superconducting magnets and other cryogenic installations. The wrapping pattern of the insulation can significantly affect heat transport and the performance of the considered instruments. The major objective of this study is to develop the numerical boundary conditions (BC) needed to model the wrapping pattern of thin insulation. An example of the practical application of the proposed BC includes the heat transfer of Rutherford NbTi cables immersed in super-fluid helium (He II) across thin layers of electrical insulation. The proposed BC and a mathematical model of heat transfer in He II are implemented in the open source CFD toolbox OpenFOAM. The implemented mathematical model and the BC are compared in the experiments. The study confirms that the thermal resistance of electrical insulation can be lowered by implementing the proper wrapping pattern. The proposed BC can be useful in the study of new patterns for wrapping schemes. The work has been supported by statutory funds from Polish Ministry for Science and Higher Education for the year of 2017.
ASCR Workshop on Quantum Computing for Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aspuru-Guzik, Alan; Van Dam, Wim; Farhi, Edward
This report details the findings of the DOE ASCR Workshop on Quantum Computing for Science that was organized to assess the viability of quantum computing technologies to meet the computational requirements of the DOE’s science and energy mission, and to identify the potential impact of quantum technologies. The workshop was held on February 17-18, 2015, in Bethesda, MD, to solicit input from members of the quantum computing community. The workshop considered models of quantum computation and programming environments, physical science applications relevant to DOE's science mission as well as quantum simulation, and applied mathematics topics including potential quantum algorithms formore » linear algebra, graph theory, and machine learning. This report summarizes these perspectives into an outlook on the opportunities for quantum computing to impact problems relevant to the DOE’s mission as well as the additional research required to bring quantum computing to the point where it can have such impact.« less
BIOCOMPUTATION: some history and prospects.
Cull, Paul
2013-06-01
At first glance, biology and computer science are diametrically opposed sciences. Biology deals with carbon based life forms shaped by evolution and natural selection. Computer Science deals with electronic machines designed by engineers and guided by mathematical algorithms. In this brief paper, we review biologically inspired computing. We discuss several models of computation which have arisen from various biological studies. We show what these have in common, and conjecture how biology can still suggest answers and models for the next generation of computing problems. We discuss computation and argue that these biologically inspired models do not extend the theoretical limits on computation. We suggest that, in practice, biological models may give more succinct representations of various problems, and we mention a few cases in which biological models have proved useful. We also discuss the reciprocal impact of computer science on biology and cite a few significant contributions to biological science. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
A Case Study of the Introduction of Computer Science in NZ Schools
ERIC Educational Resources Information Center
Bell, Tim; Andreae, Peter; Robins, Anthony
2014-01-01
For many years computing in New Zealand schools was focused on teaching students how to use computers, and there was little opportunity for students to learn about programming and computer science as formal subjects. In this article we review a series of initiatives that occurred from 2007 to 2009 that led to programming and computer science being…
Implementing the UCSD PASCAL system on the MODCOMP computer. [deep space network
NASA Technical Reports Server (NTRS)
Wolfe, T.
1980-01-01
The implementation of an interactive software development system (UCSD PASCAL) on the MODCOMP computer is discussed. The development of an interpreter for the MODCOMP II and the MODCOMP IV computers, written in MODCOMP II assembly language, is described. The complete Pascal programming system was run successfully on a MODCOMP II and MODCOMP IV under both the MAX II/III and MAX IV operating systems. The source code for an 8080 microcomputer version of the interpreter was used as the design for the MODCOMP interpreter. A mapping of the functions within the 8080 interpreter into MODCOMP II assembly language was the method used to code the interpreter.
Research in Applied Mathematics, Fluid Mechanics and Computer Science
NASA Technical Reports Server (NTRS)
1999-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1998 through March 31, 1999.
[Research activities in applied mathematics, fluid mechanics, and computer science
NASA Technical Reports Server (NTRS)
1995-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period April 1, 1995 through September 30, 1995.
Activities of the Institute for Computer Applications in Science and Engineering
NASA Technical Reports Server (NTRS)
1985-01-01
Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period April 1, 1985 through October 2, 1985 is summarized.
A Quantitative Model for Assessing Visual Simulation Software Architecture
2011-09-01
Software Engineering Arnold Buss Research Associate Professor of MOVES LtCol Jeff Boleng, PhD Associate Professor of Computer Science U.S. Air Force Academy... science (operating and programming systems series). New York, NY, USA: Elsevier Science Ltd. Henry, S., & Kafura, D. (1984). The evaluation of software...Rudy Darken Professor of Computer Science Dissertation Supervisor Ted Lewis Professor of Computer Science Richard Riehle Professor of Practice
ERIC Educational Resources Information Center
Wofford, Jennifer
2009-01-01
Computing is anticipated to have an increasingly expansive impact on the sciences overall, becoming the third, crucial component of a "golden triangle" that includes mathematics and experimental and theoretical science. However, even more true with computing than with math and science, we are not preparing our students for this new reality. It is…
Interactive Synthesis of Code Level Security Rules
2017-04-01
Interactive Synthesis of Code-Level Security Rules A Thesis Presented by Leo St. Amour to The Department of Computer Science in partial fulfillment...of the requirements for the degree of Master of Science in Computer Science Northeastern University Boston, Massachusetts April 2017 DISTRIBUTION...Abstract of the Thesis Interactive Synthesis of Code-Level Security Rules by Leo St. Amour Master of Science in Computer Science Northeastern University
Approaching gender parity: Women in computer science at Afghanistan's Kabul University
NASA Astrophysics Data System (ADS)
Plane, Jandelyn
This study explores the representation of women in computer science at the tertiary level through data collected about undergraduate computer science education at Kabul University in Afghanistan. Previous studies have theorized reasons for underrepresentation of women in computer science, and while many of these reasons are indeed present in Afghanistan, they appear to hinder advancement to degree to a lesser extent. Women comprise at least 36% of each graduating class from KU's Computer Science Department; however, in 2007 women were 25% of the university population. In the US, women comprise over 50% of university populations while only graduating on average 25% women in undergraduate computer science programs. Representation of women in computer science in the US is 50% below the university rate, but at KU, it is 50% above the university rate. This mixed methods study of KU was conducted in the following three stages: setting up focus groups with women computer science students, distributing surveys to all students in the CS department, and conducting a series of 22 individual interviews with fourth year CS students. The analysis of the data collected and its comparison to literature on university/department retention in Science, Technology, Engineering and Mathematics gender representation and on women's education in underdeveloped Islamic countries illuminates KU's uncharacteristic representation of women in its Computer Science Department. The retention of women in STEM through the education pipeline has several characteristics in Afghanistan that differ from countries often studied in available literature. Few Afghan students have computers in their home and few have training beyond secretarial applications before considering studying CS at university. University students in Afghanistan are selected based on placement exams and are then assigned to an area of study, and financially supported throughout their academic career, resulting in a low attrition rate from the program. Gender and STEM literature identifies parental encouragement, stereotypes and employment perceptions as influential characteristics. Afghan women in computer science received significant parental encouragement even from parents with no computer background. They do not seem to be influenced by any negative "geek" stereotypes, but they do perceive limitations when considering employment after graduation.
Science-Technology Coupling: The Case of Mathematical Logic and Computer Science.
ERIC Educational Resources Information Center
Wagner-Dobler, Roland
1997-01-01
In the history of science, there have often been periods of sudden rapprochements between pure science and technology-oriented branches of science. Mathematical logic as pure science and computer science as technology-oriented science have experienced such a rapprochement, which is studied in this article in a bibliometric manner. (Author)
Marshall, Thomas; Champagne-Langabeer, Tiffiany; Castelli, Darla; Hoelscher, Deanna
2017-12-01
To present research models based on artificial intelligence and discuss the concept of cognitive computing and eScience as disruptive factors in health and life science research methodologies. The paper identifies big data as a catalyst to innovation and the development of artificial intelligence, presents a framework for computer-supported human problem solving and describes a transformation of research support models. This framework includes traditional computer support; federated cognition using machine learning and cognitive agents to augment human intelligence; and a semi-autonomous/autonomous cognitive model, based on deep machine learning, which supports eScience. The paper provides a forward view of the impact of artificial intelligence on our human-computer support and research methods in health and life science research. By augmenting or amplifying human task performance with artificial intelligence, cognitive computing and eScience research models are discussed as novel and innovative systems for developing more effective adaptive obesity intervention programs.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-04
... NATIONAL SCIENCE FOUNDATION Advisory Committee for Computer and Information Science and Engineering; Notice of Meeting In accordance with Federal Advisory Committee Act (Pub. L. 92-463, as amended... Committee for Computer and Information Science and Engineering (1115). Date/Time: Oct 31, 2013: 12:30 p.m...
Activities of the Institute for Computer Applications in Science and Engineering (ICASE)
NASA Technical Reports Server (NTRS)
1985-01-01
Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period October 1, 1984 through March 31, 1985 is summarized.
[Research Conducted at the Institute for Computer Applications in Science and Engineering
NASA Technical Reports Server (NTRS)
1997-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period 1 Oct. 1996 - 31 Mar. 1997.
Activities of the Institute for Computer Applications in Science and Engineering (ICASE)
NASA Technical Reports Server (NTRS)
1988-01-01
This report summarizes research conducted at the Institute for Computer Applications Science and Engineering in applied mathematics, numerical analysis, and computer science during the period October 2, 1987 through March 31, 1988.
[Activities of Institute for Computer Applications in Science and Engineering (ICASE)
NASA Technical Reports Server (NTRS)
1999-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics. fluid mechanics, and computer science during the period April 1, 1999 through September 30. 1999.
Practical Measurement of Complexity In Dynamic Systems
2012-01-01
policies that produce highly complex behaviors , yet yield no benefit. 21Jason B. Clark and David R. Jacques / Procedia Computer Science 8 (2012) 14... Procedia Computer Science 8 (2012) 14 – 21 1877-0509 © 2012 Published by Elsevier B.V. doi:10.1016/j.procs.2012.01.008 Available online at...www.sciencedirect.com Procedia Computer Science Procedia Computer Science 00 (2012) 000–000 www.elsevier.com/locate/ procedia Available online at
The role of physicality in rich programming environments
NASA Astrophysics Data System (ADS)
Liu, Allison S.; Schunn, Christian D.; Flot, Jesse; Shoop, Robin
2013-12-01
Computer science proficiency continues to grow in importance, while the number of students entering computer science-related fields declines. Many rich programming environments have been created to motivate student interest and expertise in computer science. In the current study, we investigated whether a recently created environment, Robot Virtual Worlds (RVWs), can be used to teach computer science principles within a robotics context by examining its use in high-school classrooms. We also investigated whether the lack of physicality in these environments impacts student learning by comparing classrooms that used either virtual or physical robots for the RVW curriculum. Results suggest that the RVW environment leads to significant gains in computer science knowledge, that virtual robots lead to faster learning, and that physical robots may have some influence on algorithmic thinking. We discuss the implications of physicality in these programming environments for learning computer science.
The Generation Challenge Programme Platform: Semantic Standards and Workbench for Crop Science
Bruskiewich, Richard; Senger, Martin; Davenport, Guy; Ruiz, Manuel; Rouard, Mathieu; Hazekamp, Tom; Takeya, Masaru; Doi, Koji; Satoh, Kouji; Costa, Marcos; Simon, Reinhard; Balaji, Jayashree; Akintunde, Akinnola; Mauleon, Ramil; Wanchana, Samart; Shah, Trushar; Anacleto, Mylah; Portugal, Arllet; Ulat, Victor Jun; Thongjuea, Supat; Braak, Kyle; Ritter, Sebastian; Dereeper, Alexis; Skofic, Milko; Rojas, Edwin; Martins, Natalia; Pappas, Georgios; Alamban, Ryan; Almodiel, Roque; Barboza, Lord Hendrix; Detras, Jeffrey; Manansala, Kevin; Mendoza, Michael Jonathan; Morales, Jeffrey; Peralta, Barry; Valerio, Rowena; Zhang, Yi; Gregorio, Sergio; Hermocilla, Joseph; Echavez, Michael; Yap, Jan Michael; Farmer, Andrew; Schiltz, Gary; Lee, Jennifer; Casstevens, Terry; Jaiswal, Pankaj; Meintjes, Ayton; Wilkinson, Mark; Good, Benjamin; Wagner, James; Morris, Jane; Marshall, David; Collins, Anthony; Kikuchi, Shoshi; Metz, Thomas; McLaren, Graham; van Hintum, Theo
2008-01-01
The Generation Challenge programme (GCP) is a global crop research consortium directed toward crop improvement through the application of comparative biology and genetic resources characterization to plant breeding. A key consortium research activity is the development of a GCP crop bioinformatics platform to support GCP research. This platform includes the following: (i) shared, public platform-independent domain models, ontology, and data formats to enable interoperability of data and analysis flows within the platform; (ii) web service and registry technologies to identify, share, and integrate information across diverse, globally dispersed data sources, as well as to access high-performance computational (HPC) facilities for computationally intensive, high-throughput analyses of project data; (iii) platform-specific middleware reference implementations of the domain model integrating a suite of public (largely open-access/-source) databases and software tools into a workbench to facilitate biodiversity analysis, comparative analysis of crop genomic data, and plant breeding decision making. PMID:18483570
Path Not Found: Disparities in Access to Computer Science Courses in California High Schools
ERIC Educational Resources Information Center
Martin, Alexis; McAlear, Frieda; Scott, Allison
2015-01-01
"Path Not Found: Disparities in Access to Computer Science Courses in California High Schools" exposes one of the foundational causes of underrepresentation in computing: disparities in access to computer science courses in California's public high schools. This report provides new, detailed data on these disparities by student body…
ERIC Educational Resources Information Center
Kortsarts, Yana; Fischbach, Adam; Rufinus, Jeff; Utell, Janine M.; Yoon, Suk-Chung
2010-01-01
Developing and applying oral and written communication skills in the undergraduate computer science and computer information systems curriculum--one of the ABET accreditation requirements - is a very challenging and, at the same time, a rewarding task that provides various opportunities to enrich the undergraduate computer science and computer…
EOS MLS Science Data Processing System: A Description of Architecture and Capabilities
NASA Technical Reports Server (NTRS)
Cuddy, David T.; Echeverri, Mark D.; Wagner, Paul A.; Hanzel, Audrey T.; Fuller, Ryan A.
2006-01-01
This paper describes the architecture and capabilities of the Science Data Processing System (SDPS) for the EOS MLS. The SDPS consists of two major components--the Science Computing Facility and the Science Investigator-led Processing System. The Science Computing Facility provides the facilities for the EOS MLS Science Team to perform the functions of scientific algorithm development, processing software development, quality control of data products, and scientific analyses. The Science Investigator-led Processing System processes and reprocesses the science data for the entire mission and delivers the data products to the Science Computing Facility and to the Goddard Space Flight Center Earth Science Distributed Active Archive Center, which archives and distributes the standard science products.
NASA Astrophysics Data System (ADS)
Thackeray, Lynn Roy
The purpose of this study is to understand the meaning that women make of the social and cultural factors that influence their reasons for entering and remaining in study of computer science. The twenty-first century presents many new challenges in career development and workforce choices for both men and women. Information technology has become the driving force behind many areas of the economy. As this trend continues, it has become essential that U.S. citizens need to pursue a career in technologies, including the computing sciences. Although computer science is a very lucrative profession, many Americans, especially women, are not choosing it as a profession. Recent studies have shown no significant differences in math, technical and science competency between men and women. Therefore, other factors, such as social, cultural, and environmental influences seem to affect women's decisions in choosing an area of study and career choices. A phenomenological method of qualitative research was used in this study, based on interviews of seven female students who are currently enrolled in a post-secondary computer science program. Their narratives provided meaning into the social and cultural environments that contribute to their persistence in their technical studies, as well as identifying barriers and challenges that are faced by female students who choose to study computer science. It is hoped that the data collected from this study may provide recommendations for the recruiting, retention and support for women in computer science departments of U.S. colleges and universities, and thereby increase the numbers of women computer scientists in industry. Keywords: gender access, self-efficacy, culture, stereotypes, computer education, diversity.
Scientific bases of human-machine communication by voice.
Schafer, R W
1995-01-01
The scientific bases for human-machine communication by voice are in the fields of psychology, linguistics, acoustics, signal processing, computer science, and integrated circuit technology. The purpose of this paper is to highlight the basic scientific and technological issues in human-machine communication by voice and to point out areas of future research opportunity. The discussion is organized around the following major issues in implementing human-machine voice communication systems: (i) hardware/software implementation of the system, (ii) speech synthesis for voice output, (iii) speech recognition and understanding for voice input, and (iv) usability factors related to how humans interact with machines. PMID:7479802
1986-10-01
34 syndrome . Five techniques for developing user self-sufficiency were discussed in-depth: (1) provide training at different proficiency levels, id provide...WY aba. 4 ’-a ’aba. @9 "a,.. I bJ~ V N- S ha. E-ii S ’a ’baa .4, .;y ’. ; . a.,. ~ ~ .: ;r YK’.- xYY I. r d’...da.4/ 4/ tq..ttf.%r./..v-./ - "cc~’ v,-r...data base, accessible through a user friendly interfaces, to correlate and deliver crime , traffic, vehicle, and personnel information to " / fixed and
77 FR 38630 - Open Internet Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-28
... Computer Science and Co-Founder of the Berkman Center for Internet and Society, Harvard University, is... of Technology Computer Science and Artificial Intelligence Laboratory, is appointed vice-chairperson... Jennifer Rexford, Professor of Computer Science, Princeton University Dennis Roberson, Vice Provost...
Research in progress at the Institute for Computer Applications in Science and Engineering
NASA Technical Reports Server (NTRS)
1987-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period April 1, 1987 through October 1, 1987.
Crane, Michael; Steinwand, Dan; Beckmann, Tim; Krpan, Greg; Liu, Shu-Guang; Nichols, Erin; Haga, Jim; Maddox, Brian; Bilderback, Chris; Feller, Mark; Homer, George
2001-01-01
The overarching goal of this project is to build a spatially distributed infrastructure for information science research by forming a team of information science researchers and providing them with similar hardware and software tools to perform collaborative research. Four geographically distributed Centers of the U.S. Geological Survey (USGS) are developing their own clusters of low-cost, personal computers into parallel computing environments that provide a costeffective way for the USGS to increase participation in the high-performance computing community. Referred to as Beowulf clusters, these hybrid systems provide the robust computing power required for conducting information science research into parallel computing systems and applications.
Enabling Earth Science Through Cloud Computing
NASA Technical Reports Server (NTRS)
Hardman, Sean; Riofrio, Andres; Shams, Khawaja; Freeborn, Dana; Springer, Paul; Chafin, Brian
2012-01-01
Cloud Computing holds tremendous potential for missions across the National Aeronautics and Space Administration. Several flight missions are already benefiting from an investment in cloud computing for mission critical pipelines and services through faster processing time, higher availability, and drastically lower costs available on cloud systems. However, these processes do not currently extend to general scientific algorithms relevant to earth science missions. The members of the Airborne Cloud Computing Environment task at the Jet Propulsion Laboratory have worked closely with the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission to integrate cloud computing into their science data processing pipeline. This paper details the efforts involved in deploying a science data system for the CARVE mission, evaluating and integrating cloud computing solutions with the system and porting their science algorithms for execution in a cloud environment.
Body talk: students' identity construction while discussing a socioscientific issue
NASA Astrophysics Data System (ADS)
Ideland, Malin; Malmberg, Claes
2012-06-01
Vision II school science is often stated to be a democratic and inclusive form of science education. But what characterizes the subject who fits into the Vision II school science? Who is the desirable student and who is constructed as ill-fitting? This article explores discourses that structure the Vision II science classroom, and how different students construct their identities inside these discourses. In the article we consider school science as an order of discourses which restricts and enables what is possible to think and say and what subject-positions those are available and non-available. The results show that students' talk about a SSI about body and health is constituted by several discourses. We have analyzed how school science discourse, body discourse and general school discourse are structuring the discussions. But these discourses are used in different ways depending on how the students construct their identities in relation to available subject positions, which are dependent on how students at the same time are "doing" gender and social class. As an example, middle class girls show resistance against SSI-work since the practice is threatening their identity as "successful students". This article uses a sociopolitical perspective in its discussions on inclusion and exclusion in the practice of Vision II. It raises critical issues about the inherited complexity of SSI with meetings and/or collisions between discourses. Even if the empirical results from this qualitative study are situated in specific cultural contexts, they contribute with new questions to ask concerning SSI and Vision II school science.
Double Super-Exchange in Silicon Quantum Dots Connected by Short-Bridged Networks
NASA Astrophysics Data System (ADS)
Li, Huashan; Wu, Zhigang; Lusk, Mark
2013-03-01
Silicon quantum dots (QDs) with diameters in the range of 1-2 nm are attractive for photovoltaic applications. They absorb photons more readily, transport excitons with greater efficiency, and show greater promise in multiple-exciton generation and hot carrier collection paradigms. However, their high excitonic binding energy makes it difficult to dissociate excitons into separate charge carriers. One possible remedy is to create dot assemblies in which a second material creates a Type-II heterojunction with the dot so that exciton dissociation occurs locally. This talk will focus on such a Type-II heterojunction paradigm in which QDs are connected via covalently bonded, short-bridge molecules. For such interpenetrating networks of dots and molecules, our first principles computational investigation shows that it is possible to rapidly and efficiently separate electrons to QDs and holes to bridge units. The bridge network serves as an efficient mediator of electron superexchange between QDs while the dots themselves play the complimentary role of efficient hole superexchange mediators. Dissociation, photoluminescence and carrier transport rates will be presented for bridge networks of silicon QDs that exhibit such double superexchange. This material is based upon work supported by the Renewable Energy Materials Research Science and Engineering Center (REMRSEC) under Grant No. DMR-0820518 and Golden Energy Computing Organization (GECO).
Teaching and Learning Methodologies Supported by ICT Applied in Computer Science
ERIC Educational Resources Information Center
Capacho, Jose
2016-01-01
The main objective of this paper is to show a set of new methodologies applied in the teaching of Computer Science using ICT. The methodologies are framed in the conceptual basis of the following sciences: Psychology, Education and Computer Science. The theoretical framework of the research is supported by Behavioral Theory, Gestalt Theory.…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-03
... Engineering; Notice of Meeting In accordance with the Federal Advisory Committee Act (Pub. L. 92- 463, as... Computer and Information Science and Engineering (1115). Date and Time: November 1, 2011 from 12 p.m.-5:30... Computer and Information Science and Engineering, National Science Foundation, 4201 Wilson Blvd., Suite...
Computer Science in High School Graduation Requirements. ECS Education Trends (Updated)
ERIC Educational Resources Information Center
Zinth, Jennifer
2016-01-01
Allowing high school students to fulfill a math or science high school graduation requirement via a computer science credit may encourage more student to pursue computer science coursework. This Education Trends report is an update to the original report released in April 2015 and explores state policies that allow or require districts to apply…
Characteristics of the Navy Laboratory Warfare Center Technical Workforce
2013-09-29
Mathematics and Information Science (M&IS) Actuarial Science 1510 Computer Science 1550 Gen. Math & Statistics 1501 Mathematics 1520 Operations...Admin. Network Systems & Data Communication Analysts Actuaries Mathematicians Operations Research Analyst Statisticians Social Science (SS...workforce was sub-divided into six broad occupational groups: Life Science , Physical Science , Engineering, Mathematics, Computer Science and Information
ERIC Educational Resources Information Center
Evaluation, Dissemination and Assessment Center, Dallas.
This guide, the second in a series of three, provides the Spanish-speaking intermediate science student and teacher an opportunity to review selected science concepts and processes through activities which emphasize the applicability of scientific knowledge in the professional world. This guide is divided into three components. The first component…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Gavin Matthew; Bettencourt, Matthew Tyler; Bova, Steven W.
2015-09-01
This report provides in-depth information and analysis to help create a technical road map for developing next- generation Orogramming mocleN and runtime systemsl that support Advanced Simulation and Computing (ASC) work- load requirements. The focus herein is on 4synchronous many-task (AMT) model and runtime systems, which are of great interest in the context of "Oriascale7 computing, as they hold the promise to address key issues associated with future extreme-scale computer architectures. This report includes a thorough qualitative and quantitative examination of three best-of-class AIM] runtime systemsHCharm-HE, Legion, and Uintah, all of which are in use as part of the Centers.more » The studies focus on each of the runtimes' programmability, performance, and mutability. Through the experiments and analysis presented, several overarching Predictive Science Academic Alliance Program II (PSAAP-II) Ascl findings emerge. From a performance perspective, AIVT11runtimes show tremendous potential for addressing extreme- scale challenges. Empirical studies show an AM11 runtime can mitigate performance heterogeneity inherent to the machine itself and that Message Passing Interface (MP1) and AM11runtimes perform comparably under balanced con- ditions. From a programmability and mutability perspective however, none of the runtimes in this study are currently ready for use in developing production-ready Sandia ASCIapplications. The report concludes by recommending a co- design path forward, wherein application, programming model, and runtime system developers work together to define requirements and solutions. Such a requirements-driven co-design approach benefits the community as a whole, with widespread community engagement mitigating risk for both application developers developers. and high-performance computing inntime systein« less
ERIC Educational Resources Information Center
Falkner, Katrina; Vivian, Rebecca
2015-01-01
To support teachers to implement Computer Science curricula into classrooms from the very first year of school, teachers, schools and organisations seek quality curriculum resources to support implementation and teacher professional development. Until now, many Computer Science resources and outreach initiatives have targeted K-12 school-age…
ERIC Educational Resources Information Center
Schwarz, Christina V.; Meyer, Jason; Sharma, Ajay
2007-01-01
This study infused computer modeling and simulation tools in a 1-semester undergraduate elementary science methods course to advance preservice teachers' understandings of computer software use in science teaching and to help them learn important aspects of pedagogy and epistemology. Preservice teachers used computer modeling and simulation tools…
Prospective Students' Reactions to the Presentation of the Computer Science Major
ERIC Educational Resources Information Center
Weaver, Daniel Scott
2010-01-01
The number of students enrolling in Computer Science in colleges and Universities has declined since its peak in the early 2000s. Some claim contributing factors that intimate that prospective students fear the lack of employment opportunities if they study computing in college. However, the lack of understanding of what Computer Science is and…
PREPARING FOR EXASCALE: ORNL Leadership Computing Application Requirements and Strategy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joubert, Wayne; Kothe, Douglas B; Nam, Hai Ah
2009-12-01
In 2009 the Oak Ridge Leadership Computing Facility (OLCF), a U.S. Department of Energy (DOE) facility at the Oak Ridge National Laboratory (ORNL) National Center for Computational Sciences (NCCS), elicited petascale computational science requirements from leading computational scientists in the international science community. This effort targeted science teams whose projects received large computer allocation awards on OLCF systems. A clear finding of this process was that in order to reach their science goals over the next several years, multiple projects will require computational resources in excess of an order of magnitude more powerful than those currently available. Additionally, for themore » longer term, next-generation science will require computing platforms of exascale capability in order to reach DOE science objectives over the next decade. It is generally recognized that achieving exascale in the proposed time frame will require disruptive changes in computer hardware and software. Processor hardware will become necessarily heterogeneous and will include accelerator technologies. Software must undergo the concomitant changes needed to extract the available performance from this heterogeneous hardware. This disruption portends to be substantial, not unlike the change to the message passing paradigm in the computational science community over 20 years ago. Since technological disruptions take time to assimilate, we must aggressively embark on this course of change now, to insure that science applications and their underlying programming models are mature and ready when exascale computing arrives. This includes initiation of application readiness efforts to adapt existing codes to heterogeneous architectures, support of relevant software tools, and procurement of next-generation hardware testbeds for porting and testing codes. The 2009 OLCF requirements process identified numerous actions necessary to meet this challenge: (1) Hardware capabilities must be advanced on multiple fronts, including peak flops, node memory capacity, interconnect latency, interconnect bandwidth, and memory bandwidth. (2) Effective parallel programming interfaces must be developed to exploit the power of emerging hardware. (3) Science application teams must now begin to adapt and reformulate application codes to the new hardware and software, typified by hierarchical and disparate layers of compute, memory and concurrency. (4) Algorithm research must be realigned to exploit this hierarchy. (5) When possible, mathematical libraries must be used to encapsulate the required operations in an efficient and useful way. (6) Software tools must be developed to make the new hardware more usable. (7) Science application software must be improved to cope with the increasing complexity of computing systems. (8) Data management efforts must be readied for the larger quantities of data generated by larger, more accurate science models. Requirements elicitation, analysis, validation, and management comprise a difficult and inexact process, particularly in periods of technological change. Nonetheless, the OLCF requirements modeling process is becoming increasingly quantitative and actionable, as the process becomes more developed and mature, and the process this year has identified clear and concrete steps to be taken. This report discloses (1) the fundamental science case driving the need for the next generation of computer hardware, (2) application usage trends that illustrate the science need, (3) application performance characteristics that drive the need for increased hardware capabilities, (4) resource and process requirements that make the development and deployment of science applications on next-generation hardware successful, and (5) summary recommendations for the required next steps within the computer and computational science communities.« less
Using the Tower of Hanoi puzzle to infuse your mathematics classroom with computer science concepts
NASA Astrophysics Data System (ADS)
Marzocchi, Alison S.
2016-07-01
This article suggests that logic puzzles, such as the well-known Tower of Hanoi puzzle, can be used to introduce computer science concepts to mathematics students of all ages. Mathematics teachers introduce their students to computer science concepts that are enacted spontaneously and subconsciously throughout the solution to the Tower of Hanoi puzzle. These concepts include, but are not limited to, conditionals, iteration, and recursion. Lessons, such as the one proposed in this article, are easily implementable in mathematics classrooms and extracurricular programmes as they are good candidates for 'drop in' lessons that do not need to fit into any particular place in the typical curriculum sequence. As an example for readers, the author describes how she used the puzzle in her own Number Sense and Logic course during the federally funded Upward Bound Math/Science summer programme for college-intending low-income high school students. The article explains each computer science term with real-life and mathematical examples, applies each term to the Tower of Hanoi puzzle solution, and describes how students connected the terms to their own solutions of the puzzle. It is timely and important to expose mathematics students to computer science concepts. Given the rate at which technology is currently advancing, and our increased dependence on technology in our daily lives, it has become more important than ever for children to be exposed to computer science. Yet, despite the importance of exposing today's children to computer science, many children are not given adequate opportunity to learn computer science in schools. In the United States, for example, most students finish high school without ever taking a computing course. Mathematics lessons, such as the one described in this article, can help to make computer science more accessible to students who may have otherwise had little opportunity to be introduced to these increasingly important concepts.
NASA Astrophysics Data System (ADS)
Priest, Richard Harding
A significant percentage of high school science teachers are not using computers to teach their students or prepare them for standardized testing. A survey of high school science teachers was conducted to determine how they are having students use computers in the classroom, why science teachers are not using computers in the classroom, which variables were relevant to their not using computers, and what are the effects of standardized testing on the use of technology in the high school science classroom. A self-administered questionnaire was developed to measure these aspects of computer integration and demographic information. A follow-up telephone interview survey of a portion of the original sample was conducted in order to clarify questions, correct misunderstandings, and to draw out more holistic descriptions from the subjects. The primary method used to analyze the quantitative data was frequency distributions. Multiple regression analysis was used to investigate the relationships between the barriers and facilitators and the dimensions of instructional use, frequency, and importance of the use of computers. All high school science teachers in a large urban/suburban school district were sent surveys. A response rate of 58% resulted from two mailings of the survey. It was found that contributing factors to why science teachers do not use computers were not enough up-to-date computers in their classrooms and other educational commitments and duties do not leave them enough time to prepare lessons that include technology. While a high percentage of science teachers thought their school and district administrations were supportive of technology, they also believed more inservice technology training and follow-up activities to support that training are needed and more software needs to be created. The majority of the science teachers do not use the computer to help students prepare for standardized tests because they believe they can prepare students more efficiently without a computer. Nearly half of the teachers, however, gave lack of time to prepare instructional materials and lack of a means to project a computer image to the whole class as reasons they do not use computers. A significant percentage thought science standardized testing was having a negative effect on computer use.
Educational NASA Computational and Scientific Studies (enCOMPASS)
NASA Technical Reports Server (NTRS)
Memarsadeghi, Nargess
2013-01-01
Educational NASA Computational and Scientific Studies (enCOMPASS) is an educational project of NASA Goddard Space Flight Center aimed at bridging the gap between computational objectives and needs of NASA's scientific research, missions, and projects, and academia's latest advances in applied mathematics and computer science. enCOMPASS achieves this goal via bidirectional collaboration and communication between NASA and academia. Using developed NASA Computational Case Studies in university computer science/engineering and applied mathematics classes is a way of addressing NASA's goals of contributing to the Science, Technology, Education, and Math (STEM) National Objective. The enCOMPASS Web site at http://encompass.gsfc.nasa.gov provides additional information. There are currently nine enCOMPASS case studies developed in areas of earth sciences, planetary sciences, and astrophysics. Some of these case studies have been published in AIP and IEEE's Computing in Science and Engineering magazines. A few university professors have used enCOMPASS case studies in their computational classes and contributed their findings to NASA scientists. In these case studies, after introducing the science area, the specific problem, and related NASA missions, students are first asked to solve a known problem using NASA data and past approaches used and often published in a scientific/research paper. Then, after learning about the NASA application and related computational tools and approaches for solving the proposed problem, students are given a harder problem as a challenge for them to research and develop solutions for. This project provides a model for NASA scientists and engineers on one side, and university students, faculty, and researchers in computer science and applied mathematics on the other side, to learn from each other's areas of work, computational needs and solutions, and the latest advances in research and development. This innovation takes NASA science and engineering applications to computer science and applied mathematics university classes, and makes NASA objectives part of the university curricula. There is great potential for growth and return on investment of this program to the point where every major university in the U.S. would use at least one of these case studies in one of their computational courses, and where every NASA scientist and engineer facing a computational challenge (without having resources or expertise to solve it) would use enCOMPASS to formulate the problem as a case study, provide it to a university, and get back their solutions and ideas.
ERIC Educational Resources Information Center
Pollard, Jim
This report reviews software packages for Apple Macintosh and Apple II computers available to secondary schools to teach computer-aided drafting (CAD). Products for the report were gathered through reviews of CAD periodicals, computers in education periodicals, advertisements, and teacher recommendations. The first section lists the primary…
NASA Technical Reports Server (NTRS)
1993-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics and computer science during the period April 1, 1993 through September 30, 1993. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustic and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science.
NASA Technical Reports Server (NTRS)
1994-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1993 through March 31, 1994. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustics and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science.
Improving student learning in calculus through applications
NASA Astrophysics Data System (ADS)
Young, C. Y.; Georgiopoulos, M.; Hagen, S. C.; Geiger, C. L.; Dagley-Falls, M. A.; Islas, A. L.; Ramsey, P. J.; Lancey, P. M.; Straney, R. A.; Forde, D. S.; Bradbury, E. E.
2011-07-01
Nationally only 40% of the incoming freshmen Science, Technology, Engineering and Mathematics (STEM) majors are successful in earning a STEM degree. The University of Central Florida (UCF) EXCEL programme is a National Science Foundation funded STEM Talent Expansion Programme whose goal is to increase the number of UCF STEM graduates. One of the key requirements for STEM majors is a strong foundation in Calculus. To improve student learning in calculus, the EXCEL programme developed two special courses at the freshman level called Applications of Calculus I (Apps I) and Applications of Calculus II (Apps II). Apps I and II are one-credit classes that are co-requisites for Calculus I and II. These classes are teams taught by science and engineering professors whose goal is to demonstrate to students where the calculus topics they are learning appear in upper level science and engineering classes as well as how faculty use calculus in their STEM research programmes. This article outlines the process used in producing the educational materials for the Apps I and II courses, and it also discusses the assessment results pertaining to this specific EXCEL activity. Pre- and post-tests conducted with experimental and control groups indicate significant improvement in student learning in Calculus II as a direct result of the application courses.
Creating Science Simulations through Computational Thinking Patterns
ERIC Educational Resources Information Center
Basawapatna, Ashok Ram
2012-01-01
Computational thinking aims to outline fundamental skills from computer science that everyone should learn. As currently defined, with help from the National Science Foundation (NSF), these skills include problem formulation, logically organizing data, automating solutions through algorithmic thinking, and representing data through abstraction.…
77 FR 65417 - Proposal Review Panel for Computing Communication Foundations; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-26
...: To assess the progress of the EIC Award, ``Collaborative Research: Computational Behavioral Science... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Computing Communication Foundations; Notice... National Science Foundation announces the following meeting: Name: Site Visit, Proposal Panel Review for...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerber, Richard; Hack, James; Riley, Katherine
The mission of the U.S. Department of Energy Office of Science (DOE SC) is the delivery of scientific discoveries and major scientific tools to transform our understanding of nature and to advance the energy, economic, and national security missions of the United States. To achieve these goals in today’s world requires investments in not only the traditional scientific endeavors of theory and experiment, but also in computational science and the facilities that support large-scale simulation and data analysis. The Advanced Scientific Computing Research (ASCR) program addresses these challenges in the Office of Science. ASCR’s mission is to discover, develop, andmore » deploy computational and networking capabilities to analyze, model, simulate, and predict complex phenomena important to DOE. ASCR supports research in computational science, three high-performance computing (HPC) facilities — the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory and Leadership Computing Facilities at Argonne (ALCF) and Oak Ridge (OLCF) National Laboratories — and the Energy Sciences Network (ESnet) at Berkeley Lab. ASCR is guided by science needs as it develops research programs, computers, and networks at the leading edge of technologies. As we approach the era of exascale computing, technology changes are creating challenges for science programs in SC for those who need to use high performance computing and data systems effectively. Numerous significant modifications to today’s tools and techniques will be needed to realize the full potential of emerging computing systems and other novel computing architectures. To assess these needs and challenges, ASCR held a series of Exascale Requirements Reviews in 2015–2017, one with each of the six SC program offices,1 and a subsequent Crosscut Review that sought to integrate the findings from each. Participants at the reviews were drawn from the communities of leading domain scientists, experts in computer science and applied mathematics, ASCR facility staff, and DOE program managers in ASCR and the respective program offices. The purpose of these reviews was to identify mission-critical scientific problems within the DOE Office of Science (including experimental facilities) and determine the requirements for the exascale ecosystem that would be needed to address those challenges. The exascale ecosystem includes exascale computing systems, high-end data capabilities, efficient software at scale, libraries, tools, and other capabilities. This effort will contribute to the development of a strategic roadmap for ASCR compute and data facility investments and will help the ASCR Facility Division establish partnerships with Office of Science stakeholders. It will also inform the Office of Science research needs and agenda. The results of the six reviews have been published in reports available on the web at http://exascaleage.org/. This report presents a summary of the individual reports and of common and crosscutting findings, and it identifies opportunities for productive collaborations among the DOE SC program offices.« less
ERIC Educational Resources Information Center
Grandell, Linda
2005-01-01
Computer science is becoming increasingly important in our society. Meta skills, such as problem solving and logical and algorithmic thinking, are emphasized in every field, not only in the natural sciences. Still, largely due to gaps in tuition, common misunderstandings exist about the true nature of computer science. These are especially…
Non-parallel processing: Gendered attrition in academic computer science
NASA Astrophysics Data System (ADS)
Cohoon, Joanne Louise Mcgrath
2000-10-01
This dissertation addresses the issue of disproportionate female attrition from computer science as an instance of gender segregation in higher education. By adopting a theoretical framework from organizational sociology, it demonstrates that the characteristics and processes of computer science departments strongly influence female retention. The empirical data identifies conditions under which women are retained in the computer science major at comparable rates to men. The research for this dissertation began with interviews of students, faculty, and chairpersons from five computer science departments. These exploratory interviews led to a survey of faculty and chairpersons at computer science and biology departments in Virginia. The data from these surveys are used in comparisons of the computer science and biology disciplines, and for statistical analyses that identify which departmental characteristics promote equal attrition for male and female undergraduates in computer science. This three-pronged methodological approach of interviews, discipline comparisons, and statistical analyses shows that departmental variation in gendered attrition rates can be explained largely by access to opportunity, relative numbers, and other characteristics of the learning environment. Using these concepts, this research identifies nine factors that affect the differential attrition of women from CS departments. These factors are: (1) The gender composition of enrolled students and faculty; (2) Faculty turnover; (3) Institutional support for the department; (4) Preferential attitudes toward female students; (5) Mentoring and supervising by faculty; (6) The local job market, starting salaries, and competitiveness of graduates; (7) Emphasis on teaching; and (8) Joint efforts for student success. This work contributes to our understanding of the gender segregation process in higher education. In addition, it contributes information that can lead to effective solutions for an economically significant issue in modern American society---gender equality in computer science.
Report on Computing and Networking in the Space Science Laboratory by the SSL Computer Committee
NASA Technical Reports Server (NTRS)
Gallagher, D. L. (Editor)
1993-01-01
The Space Science Laboratory (SSL) at Marshall Space Flight Center is a multiprogram facility. Scientific research is conducted in four discipline areas: earth science and applications, solar-terrestrial physics, astrophysics, and microgravity science and applications. Representatives from each of these discipline areas participate in a Laboratory computer requirements committee, which developed this document. The purpose is to establish and discuss Laboratory objectives for computing and networking in support of science. The purpose is also to lay the foundation for a collective, multiprogram approach to providing these services. Special recognition is given to the importance of the national and international efforts of our research communities toward the development of interoperable, network-based computer applications.
NASA Astrophysics Data System (ADS)
Falkner, Katrina; Vivian, Rebecca
2015-10-01
To support teachers to implement Computer Science curricula into classrooms from the very first year of school, teachers, schools and organisations seek quality curriculum resources to support implementation and teacher professional development. Until now, many Computer Science resources and outreach initiatives have targeted K-12 school-age children, with the intention to engage children and increase interest, rather than to formally teach concepts and skills. What is the educational quality of existing Computer Science resources and to what extent are they suitable for classroom learning and teaching? In this paper, an assessment framework is presented to evaluate the quality of online Computer Science resources. Further, a semi-systematic review of available online Computer Science resources was conducted to evaluate resources available for classroom learning and teaching and to identify gaps in resource availability, using the Australian curriculum as a case study analysis. The findings reveal a predominance of quality resources, however, a number of critical gaps were identified. This paper provides recommendations and guidance for the development of new and supplementary resources and future research.
Ambient belonging: how stereotypical cues impact gender participation in computer science.
Cheryan, Sapna; Plaut, Victoria C; Davies, Paul G; Steele, Claude M
2009-12-01
People can make decisions to join a group based solely on exposure to that group's physical environment. Four studies demonstrate that the gender difference in interest in computer science is influenced by exposure to environments associated with computer scientists. In Study 1, simply changing the objects in a computer science classroom from those considered stereotypical of computer science (e.g., Star Trek poster, video games) to objects not considered stereotypical of computer science (e.g., nature poster, phone books) was sufficient to boost female undergraduates' interest in computer science to the level of their male peers. Further investigation revealed that the stereotypical broadcast a masculine stereotype that discouraged women's sense of ambient belonging and subsequent interest in the environment (Studies 2, 3, and 4) but had no similar effect on men (Studies 3, 4). This masculine stereotype prevented women's interest from developing even in environments entirely populated by other women (Study 2). Objects can thus come to broadcast stereotypes of a group, which in turn can deter people who do not identify with these stereotypes from joining that group.
ERIC Educational Resources Information Center
Buczynski, James Andrew
2005-01-01
Developing a library collection to support the curriculum of Canada's largest computer studies school has debunked many myths about collecting computer science and technology information resources. Computer science students are among the heaviest print book and e-book users in the library. Circulation statistics indicate that the demand for print…
Snatching Defeat from the Jaws of Victory: When Good Projects Go Bad. Girls and Computer Science.
ERIC Educational Resources Information Center
Sanders, Jo
In week-long semesters in the summers of 1997, 1998, and 1999, the 6APT (Summer Institute in Computer Science for Advanced Placement Teachers) project taught 240 high school teachers of Advanced Placement Computer Science (APCS) about gender equity in computers. Teachers were then followed through 2000. Results indicated that while teachers, did…
77 FR 12823 - Advanced Scientific Computing Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-02
... Exascale ARRA projects--Magellan final report, Advanced Networking update Status from Computer Science COV Early Career technical talks Summary of Applied Math and Computer Science Workshops ASCR's new SBIR..., Office of Science. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the...
75 FR 18407 - Investing in Innovation Fund
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-12
... include computer science rather than science. To correct this error, the Department makes the following..., in footnote number eight, in line six, ``including science'' is replaced with ``including computer... obtain this document in an accessible format (e.g., Braille, large print, audiotape, or computer diskette...
Innovative Science Experiments Using Phoenix
ERIC Educational Resources Information Center
Kumar, B. P. Ajith; Satyanarayana, V. V. V.; Singh, Kundan; Singh, Parmanand
2009-01-01
A simple, flexible and very low cost hardware plus software framework for developing computer-interfaced science experiments is presented. It can be used for developing computer-interfaced science experiments without getting into the details of electronics or computer programming. For developing experiments this is a middle path between…
The Metamorphosis of an Introduction to Computer Science.
ERIC Educational Resources Information Center
Ben-Jacob, Marion G.
1997-01-01
Introductory courses in computer science at colleges and universities have undergone significant changes in 20 years. This article provides an overview of the history of introductory computer science (FORTRAN, ANSI flowchart symbols, BASIC, data processing concepts, and PASCAL) and its future (robotics and C++). (PEN)
ERIC Educational Resources Information Center
Brady, Corey; Orton, Kai; Weintrop, David; Anton, Gabriella; Rodriguez, Sebastian; Wilensky, Uri
2017-01-01
Computer science (CS) is becoming an increasingly diverse domain. This paper reports on an initiative designed to introduce underrepresented populations to computing using an eclectic, multifaceted approach. As part of a yearlong computing course, students engage in Maker activities, participatory simulations, and computing projects that…
Machine Learning in the Big Data Era: Are We There Yet?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sukumar, Sreenivas Rangan
In this paper, we discuss the machine learning challenges of the Big Data era. We observe that recent innovations in being able to collect, access, organize, integrate, and query massive amounts of data from a wide variety of data sources have brought statistical machine learning under more scrutiny and evaluation for gleaning insights from the data than ever before. In that context, we pose and debate the question - Are machine learning algorithms scaling with the ability to store and compute? If yes, how? If not, why not? We survey recent developments in the state-of-the-art to discuss emerging and outstandingmore » challenges in the design and implementation of machine learning algorithms at scale. We leverage experience from real-world Big Data knowledge discovery projects across domains of national security and healthcare to suggest our efforts be focused along the following axes: (i) the data science challenge - designing scalable and flexible computational architectures for machine learning (beyond just data-retrieval); (ii) the science of data challenge the ability to understand characteristics of data before applying machine learning algorithms and tools; and (iii) the scalable predictive functions challenge the ability to construct, learn and infer with increasing sample size, dimensionality, and categories of labels. We conclude with a discussion of opportunities and directions for future research.« less
Computing Education in Korea--Current Issues and Endeavors
ERIC Educational Resources Information Center
Choi, Jeongwon; An, Sangjin; Lee, Youngjun
2015-01-01
Computer education has been provided for a long period of time in Korea. Starting as a vocational program, the content of computer education for students evolved to include content on computer literacy, Information Communication Technology (ICT) literacy, and brand-new computer science. While a new curriculum related to computer science was…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunn, W.N.
1998-03-01
LUG and Sway brace ANalysis (LUGSAN) II is an analysis and database computer program that is designed to calculate store lug and sway brace loads for aircraft captive carriage. LUGSAN II combines the rigid body dynamics code, SWAY85, with a Macintosh Hypercard database to function both as an analysis and archival system. This report describes the LUGSAN II application program, which operates on the Macintosh System (Hypercard 2.2 or later) and includes function descriptions, layout examples, and sample sessions. Although this report is primarily a user`s manual, a brief overview of the LUGSAN II computer code is included with suggestedmore » resources for programmers.« less
75 FR 18492 - Investing in Innovation Fund; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-12
... those disciplines, we intended to include computer science rather than science. To correct this error... ``including computer science.'' Program Authority: Section 14007 of division A of the American Recovery and....g., braille, large print, audiotape, or computer diskette) on request to the contact listed in this...
Process-Based Development of Competence Models to Computer Science Education
ERIC Educational Resources Information Center
Zendler, Andreas; Seitz, Cornelia; Klaudt, Dieter
2016-01-01
A process model ("cpm.4.CSE") is introduced that allows the development of competence models in computer science education related to curricular requirements. It includes eight subprocesses: (a) determine competence concept, (b) determine competence areas, (c) identify computer science concepts, (d) assign competence dimensions to…
The Role of Physicality in Rich Programming Environments
ERIC Educational Resources Information Center
Liu, Allison S.; Schunn, Christian D.; Flot, Jesse; Shoop, Robin
2013-01-01
Computer science proficiency continues to grow in importance, while the number of students entering computer science-related fields declines. Many rich programming environments have been created to motivate student interest and expertise in computer science. In the current study, we investigated whether a recently created environment, Robot…
Studies in Mathematics, Volume 22. Studies in Computer Science.
ERIC Educational Resources Information Center
Pollack, Seymour V., Ed.
The nine articles in this collection were selected because they represent concerns central to computer science, emphasize topics of particular interest to mathematicians, and underscore the wide range of areas deeply and continually affected by computer science. The contents consist of: "Introduction" (S. V. Pollack), "The…
Effectiveness of Kanban Approaches in Systems Engineering within Rapid Response Environments
2012-01-01
Procedia Computer Science Procedia Computer Science 00 (2012) 000–000 www.elsevier.com/locate/ procedia New Challenges in Systems...Author name / Procedia Computer Science 00 (2011) 000–000 inefficient use of resources. The move from ―one step to glory‖ system initiatives to...University of Science and Technology Effectiveness of kanban approaches in systems engineering within rapid response environments Richard Turner
ERIC Educational Resources Information Center
Çetin, Nagihan Imer
2016-01-01
The purpose of this study was to examine science teachers' level of using computers in teaching and the impact of a teacher professional development program (TPDP) on their views regarding utilizing computers in science education. Forty-three in-service science teachers from different regions of Turkey attended a 5 day TPDP. The TPDP was…
Computational perspectives in the history of science: to the memory of Peter Damerow.
Laubichler, Manfred D; Maienschein, Jane; Renn, Jürgen
2013-03-01
Computational methods and perspectives can transform the history of science by enabling the pursuit of novel types of questions, dramatically expanding the scale of analysis (geographically and temporally), and offering novel forms of publication that greatly enhance access and transparency. This essay presents a brief summary of a computational research system for the history of science, discussing its implications for research, education, and publication practices and its connections to the open-access movement and similar transformations in the natural and social sciences that emphasize big data. It also argues that computational approaches help to reconnect the history of science to individual scientific disciplines.
A spline-based approach for computing spatial impulse responses.
Ellis, Michael A; Guenther, Drake; Walker, William F
2007-05-01
Computer simulations are an essential tool for the design of phased-array ultrasonic imaging systems. FIELD II, which determines the two-way temporal response of a transducer at a point in space, is the current de facto standard for ultrasound simulation tools. However, the need often arises to obtain two-way spatial responses at a single point in time, a set of dimensions for which FIELD II is not well optimized. This paper describes an analytical approach for computing the two-way, far-field, spatial impulse response from rectangular transducer elements under arbitrary excitation. The described approach determines the response as the sum of polynomial functions, making computational implementation quite straightforward. The proposed algorithm, named DELFI, was implemented as a C routine under Matlab and results were compared to those obtained under similar conditions from the well-established FIELD II program. Under the specific conditions tested here, the proposed algorithm was approximately 142 times faster than FIELD II for computing spatial sensitivity functions with similar amounts of error. For temporal sensitivity functions with similar amounts of error, the proposed algorithm was about 1.7 times slower than FIELD II using rectangular elements and 19.2 times faster than FIELD II using triangular elements. DELFI is shown to be an attractive complement to FIELD II, especially when spatial responses are needed at a specific point in time.
Computer Instrumentation and the New Tools of Science.
ERIC Educational Resources Information Center
Snyder, H. David
1990-01-01
The impact and uses of new technologies in science teaching are discussed. Included are computers, software, sensors, integrated circuits, computer signal access, and computer interfaces. Uses and advantages of these new technologies are suggested. (CW)
NASA Astrophysics Data System (ADS)
Rothman, Alan H.
This study reports the results of research designed to examine the impact of computer-based science instruction on elementary school level students' science content achievement, their attitude about science learning, their level of critical thinking-inquiry skills, and their level of cognitive and English language development. The study compared these learning outcomes resulting from a computer-based approach compared to the learning outcomes from a traditional, textbook-based approach to science instruction. The computer-based approach was inherent in a curriculum titled The Voyage of the Mimi , published by The Bank Street College Project in Science and Mathematics (1984). The study sample included 209 fifth-grade students enrolled in three schools in a suburban school district. This sample was divided into three groups, each receiving one of the following instructional treatments: (a) Mixed-instruction primarily based on the use of a hardcopy textbook in conjunction with computer-based instructional materials as one component of the science course; (b) Non-Traditional, Technology-Based -instruction fully utilizing computer-based material; and (c) Traditional, Textbook-Based-instruction utilizing only the textbook as the basis for instruction. Pre-test, or pre-treatment, data related to each of the student learning outcomes was collected at the beginning of the school year and post-test data was collected at the end of the school year. Statistical analyses of pre-test data were used as a covariate to account for possible pre-existing differences with regard to the variables examined among the three student groups. This study concluded that non-traditional, computer-based instruction in science significantly improved students' attitudes toward science learning and their level of English language development. Non-significant, positive trends were found for the following student learning outcomes: overall science achievement and development of critical thinking-inquiry skills. These conclusions support the value of a non-traditional, computer-based approach to instruction, such as exemplified by The Voyage of the Mimi curriculum, and a recommendation for reform in science teaching that has recommended the use of computer technology to enhance learning outcomes from science instruction to assist in reversing the trend toward what has been perceived to be relatively poor science performance by American students, as documented by the 1996 Third International Mathematics and Science Study (TIMSS).
A Study into Advanced Guidance Laws Using Computational Methods
2011-12-01
0; for ii = 2:index integral = integral+(t(ii)-t(ii-1))*u2(ii-1); end J = 20*min(range)^2+integral/1000; 73 outtxt = [’Time (s...0.67*LN; % nose CP XCPW = LN+XW+0.7*CRW-0.2*CTW; % wing CP AN = 0.67*LN*DIAM...0.5*(LENGTH-LN)))/(AN+AB); % body CP %--- Area computations ------------------------------------- SW = 0.5*HW*(CTW+CRW)+CRW*WXT; % wing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, James C. Jr.; Mason, Thomas; Guerrieri, Bruno
1997-10-01
Programs have been established at Florida A & M University to attract minority students to research careers in mathematics and computational science. The primary goal of the program was to increase the number of such students studying computational science via an interactive multimedia learning environment One mechanism used for meeting this goal was the development of educational modules. This academic year program established within the mathematics department at Florida A&M University, introduced students to computational science projects using high-performance computers. Additional activities were conducted during the summer, these included workshops, meetings, and lectures. Through the exposure provided by this programmore » to scientific ideas and research in computational science, it is likely that their successful applications of tools from this interdisciplinary field will be high.« less
Multilinear Computing and Multilinear Algebraic Geometry
2016-08-10
landmark paper titled “Most tensor problems are NP-hard” (see [14] in Section 3) in the Journal of the ACM, the premier journal in Computer Science ...Higher-order cone programming,” Machine Learning Thematic Trimester, International Centre for Mathematics and Computer Science , Toulouse, France...geometry-and-data-analysis • 2014 SIMONS INSTITUTE WORKSHOP: Workshop on Tensors in Computer Science and Geometry, University of California, Berkeley, CA
ERIC Educational Resources Information Center
Tsagala, Evrikleia; Kordaki, Maria
2008-01-01
This study focuses on how Computer Science and Engineering Students (CSESs) of both genders address certain critical issues for gender differences in the field of Computer Science and Engineering (CSE). This case study is based on research conducted on a sample of 99 Greek CSESs, 43 of which were women. More specifically, these students were asked…
The grand challenge of managing the petascale facility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aiken, R. J.; Mathematics and Computer Science
2007-02-28
This report is the result of a study of networks and how they may need to evolve to support petascale leadership computing and science. As Dr. Ray Orbach, director of the Department of Energy's Office of Science, says in the spring 2006 issue of SciDAC Review, 'One remarkable example of growth in unexpected directions has been in high-end computation'. In the same article Dr. Michael Strayer states, 'Moore's law suggests that before the end of the next cycle of SciDAC, we shall see petaflop computers'. Given the Office of Science's strong leadership and support for petascale computing and facilities, wemore » should expect to see petaflop computers in operation in support of science before the end of the decade, and DOE/SC Advanced Scientific Computing Research programs are focused on making this a reality. This study took its lead from this strong focus on petascale computing and the networks required to support such facilities, but it grew to include almost all aspects of the DOE/SC petascale computational and experimental science facilities, all of which will face daunting challenges in managing and analyzing the voluminous amounts of data expected. In addition, trends indicate the increased coupling of unique experimental facilities with computational facilities, along with the integration of multidisciplinary datasets and high-end computing with data-intensive computing; and we can expect these trends to continue at the petascale level and beyond. Coupled with recent technology trends, they clearly indicate the need for including capability petascale storage, networks, and experiments, as well as collaboration tools and programming environments, as integral components of the Office of Science's petascale capability metafacility. The objective of this report is to recommend a new cross-cutting program to support the management of petascale science and infrastructure. The appendices of the report document current and projected DOE computation facilities, science trends, and technology trends, whose combined impact can affect the manageability and stewardship of DOE's petascale facilities. This report is not meant to be all-inclusive. Rather, the facilities, science projects, and research topics presented are to be considered examples to clarify a point.« less
Analysis of a Multi-Fidelity Surrogate for Handling Real Gas Equations of State
NASA Astrophysics Data System (ADS)
Ouellet, Frederick; Park, Chanyoung; Rollin, Bertrand; Balachandar, S.
2017-06-01
The explosive dispersal of particles is a complex multiphase and multi-species fluid flow problem. In these flows, the detonation products of the explosive must be treated as real gas while the ideal gas equation of state is used for the surrounding air. As the products expand outward from the detonation point, they mix with ambient air and create a mixing region where both state equations must be satisfied. One of the most accurate, yet computationally expensive, methods to handle this problem is an algorithm that iterates between both equations of state until pressure and thermal equilibrium are achieved inside of each computational cell. This work aims to use a multi-fidelity surrogate model to replace this process. A Kriging model is used to produce a curve fit which interpolates selected data from the iterative algorithm using Bayesian statistics. We study the model performance with respect to the iterative method in simulations using a finite volume code. The model's (i) computational speed, (ii) memory requirements and (iii) computational accuracy are analyzed to show the benefits of this novel approach. Also, optimizing the combination of model accuracy and computational speed through the choice of sampling points is explained. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program as a Cooperative Agreement under the Predictive Science Academic Alliance Program under Contract No. DE-NA0002378.
Theory-Guided Technology in Computer Science.
ERIC Educational Resources Information Center
Ben-Ari, Mordechai
2001-01-01
Examines the history of major achievements in computer science as portrayed by winners of the prestigious Turing award and identifies a possibly unique activity called Theory-Guided Technology (TGT). Researchers develop TGT by using theoretical results to create practical technology. Discusses reasons why TGT is practical in computer science and…
Teaching Computer Science: A Problem Solving Approach that Works.
ERIC Educational Resources Information Center
Allan, V. H.; Kolesar, M. V.
The typical introductory programming course is not an appropriate first computer science course for many students. Initial experiences with programming are often frustrating, resulting in a low rate of successful completion, and focus on syntax rather than providing a representative picture of computer science as a discipline. The paper discusses…
Science Photo of person viewing 3D visualization of a wind turbine The NREL Computational Science challenges in fields ranging from condensed matter physics and nonlinear dynamics to computational fluid dynamics. NREL is also home to the most energy-efficient data center in the world, featuring Peregrine-the
New Pedagogies on Teaching Science with Computer Simulations
ERIC Educational Resources Information Center
Khan, Samia
2011-01-01
Teaching science with computer simulations is a complex undertaking. This case study examines how an experienced science teacher taught chemistry using computer simulations and the impact of his teaching on his students. Classroom observations over 3 semesters, teacher interviews, and student surveys were collected. The data was analyzed for (1)…
Tutor Training in Computer Science: Tutor Opinions and Student Results.
ERIC Educational Resources Information Center
Carbone, Angela; Mitchell, Ian
Edproj, a project team of faculty from the departments of computer science, software development and education at Monash University (Australia) investigated the quality of teaching and student learning and understanding in the computer science and software development departments. Edproj's research led to the development of a training program to…
Case Studies of Liberal Arts Computer Science Programs
ERIC Educational Resources Information Center
Baldwin, D.; Brady, A.; Danyluk, A.; Adams, J.; Lawrence, A.
2010-01-01
Many undergraduate liberal arts institutions offer computer science majors. This article illustrates how quality computer science programs can be realized in a wide variety of liberal arts settings by describing and contrasting the actual programs at five liberal arts colleges: Williams College, Kalamazoo College, the State University of New York…
Collaboration, Collusion and Plagiarism in Computer Science Coursework
ERIC Educational Resources Information Center
Fraser, Robert
2014-01-01
We present an overview of the nature of academic dishonesty with respect to computer science coursework. We discuss the efficacy of various policies for collaboration with regard to student education, and we consider a number of strategies for mitigating dishonest behaviour on computer science coursework by addressing some common causes. Computer…
Entrepreneurial Health Informatics for Computer Science and Information Systems Students
ERIC Educational Resources Information Center
Lawler, James; Joseph, Anthony; Narula, Stuti
2014-01-01
Corporate entrepreneurship is a critical area of curricula for computer science and information systems students. Few institutions of computer science and information systems have entrepreneurship in the curricula however. This paper presents entrepreneurial health informatics as a course in a concentration of Technology Entrepreneurship at a…
Assessment of Examinations in Computer Science Doctoral Education
ERIC Educational Resources Information Center
Straub, Jeremy
2014-01-01
This article surveys the examination requirements for attaining degree candidate (candidacy) status in computer science doctoral programs at all of the computer science doctoral granting institutions in the United States. It presents a framework for program examination requirement categorization, and categorizes these programs by the type or types…
NASA Technical Reports Server (NTRS)
Bushnell, Dennis M. (Technical Monitor)
2000-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, computer science, fluid mechanics, and structures and materials during the period October 1, 1999 through March 31, 2000.
Representing, Running, and Revising Mental Models: A Computational Model
ERIC Educational Resources Information Center
Friedman, Scott; Forbus, Kenneth; Sherin, Bruce
2018-01-01
People use commonsense science knowledge to flexibly explain, predict, and manipulate the world around them, yet we lack computational models of how this commonsense science knowledge is represented, acquired, utilized, and revised. This is an important challenge for cognitive science: Building higher order computational models in this area will…
Gender Digital Divide and Challenges in Undergraduate Computer Science Programs
ERIC Educational Resources Information Center
Stoilescu, Dorian; McDougall, Douglas
2011-01-01
Previous research revealed a reduced number of female students registered in computer science studies. In addition, the female students feel isolated, have reduced confidence, and underperform. This article explores differences between female and male students in undergraduate computer science programs in a mid-size university in Ontario. Based on…
ERIC Educational Resources Information Center
Cheryan, Sapna; Meltzoff, Andrew N.; Kim, Saenam
2011-01-01
Three experiments examined whether the design of virtual learning environments influences undergraduates' enrollment intentions and anticipated success in introductory computer science courses. Changing the design of a virtual classroom--from one that conveys current computer science stereotypes to one that does not--significantly increased…
NASA Astrophysics Data System (ADS)
Baiotti, Luca; Takabe, Hideaki
2013-08-01
The PDF contains the speech of journalist Atsuko Tsuji (Asahi Shimbun) with the title 'Requests and expectations for computational science' and the record of the following discussion on: 'Will computational science be able to provide answers to important problems of human society?'
"Computer Science Can Feed a Lot of Dreams"
ERIC Educational Resources Information Center
Educational Horizons, 2014
2014-01-01
Pat Yongpradit is the director of education at Code.org. He leads all education efforts, including professional development and curriculum creation, and he builds relationships with school districts. Pat joined "Educational Horizons" to talk about why it is important to teach computer science--even for non-computer science teachers. This…
Berkeley Lab - Materials Sciences Division
Computational Study of Excited-State Phenomena in Energy Materials Center for X-ray Optics MSD Facilities Ion and Materials Physics Scattering and Instrumentation Science Centers Center for Computational Study of Sciences Centers Center for Computational Study of Excited-State Phenomena in Energy Materials Center for X
NASA Technical Reports Server (NTRS)
1992-01-01
Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, fluid mechanics including fluid dynamics, acoustics, and combustion, aerodynamics, and computer science during the period 1 Apr. 1992 - 30 Sep. 1992 is summarized.
Computers as learning resources in the health sciences: impact and issues.
Ellis, L B; Hannigan, G G
1986-01-01
Starting with two computer terminals in 1972, the Health Sciences Learning Resources Center of the University of Minnesota Bio-Medical Library expanded its instructional facilities to ten terminals and thirty-five microcomputers by 1985. Computer use accounted for 28% of total center circulation. The impact of these resources on health sciences curricula is described and issues related to use, support, and planning are raised and discussed. Judged by their acceptance and educational value, computers are successful health sciences learning resources at the University of Minnesota. PMID:3518843
Computational Science and Innovation
NASA Astrophysics Data System (ADS)
Dean, D. J.
2011-09-01
Simulations - utilizing computers to solve complicated science and engineering problems - are a key ingredient of modern science. The U.S. Department of Energy (DOE) is a world leader in the development of high-performance computing (HPC), the development of applied math and algorithms that utilize the full potential of HPC platforms, and the application of computing to science and engineering problems. An interesting general question is whether the DOE can strategically utilize its capability in simulations to advance innovation more broadly. In this article, I will argue that this is certainly possible.
Applied Information Systems Research Program (AISRP). Workshop 2: Meeting Proceedings
NASA Technical Reports Server (NTRS)
1992-01-01
The Earth and space science participants were able to see where the current research can be applied in their disciplines and computer science participants could see potential areas for future application of computer and information systems research. The Earth and Space Science research proposals for the High Performance Computing and Communications (HPCC) program were under evaluation. Therefore, this effort was not discussed at the AISRP Workshop. OSSA's other high priority area in computer science is scientific visualization, with the entire second day of the workshop devoted to it.
ERIC Educational Resources Information Center
Gambari, Isiaka Amosa; Yusuf, Mudasiru Olalere
2016-01-01
This study investigated the effects of computer-assisted Jigsaw II cooperative strategy on physics achievement and retention. The study also determined how moderating variables of achievement levels as it affects students' performance in physics when Jigsaw II cooperative learning is used as an instructional strategy. Purposive sampling technique…
26 CFR 1.163-10T - Qualified residence interest (temporary).
Code of Federal Regulations, 2010 CFR
2010-04-01
... general. (ii)Example. (g)Selection of method. (h)Average balance. (1)Average balance defined. (2)Average balance reported by lender. (3)Average balance computed on a daily basis. (i)In general. (ii)Example. (4)Average balance computed using the interest rate. (i)In general. (ii)Points and prepaid interest. (iii...
Applying service learning to computer science: attracting and engaging under-represented students
NASA Astrophysics Data System (ADS)
Dahlberg, Teresa; Barnes, Tiffany; Buch, Kim; Bean, Karen
2010-09-01
This article describes a computer science course that uses service learning as a vehicle to accomplish a range of pedagogical and BPC (broadening participation in computing) goals: (1) to attract a diverse group of students and engage them in outreach to younger students to help build a diverse computer science pipeline, (2) to develop leadership and team skills using experiential techniques, and (3) to develop student attitudes associated with success and retention in computer science. First, we describe the course and how it was designed to incorporate good practice in service learning. We then report preliminary results showing a positive impact of the course on all pedagogical goals and discuss the implications of the results for broadening participation in computing.
Brains--Computers--Machines: Neural Engineering in Science Classrooms
ERIC Educational Resources Information Center
Chudler, Eric H.; Bergsman, Kristen Clapper
2016-01-01
Neural engineering is an emerging field of high relevance to students, teachers, and the general public. This feature presents online resources that educators and scientists can use to introduce students to neural engineering and to integrate core ideas from the life sciences, physical sciences, social sciences, computer science, and engineering…
NASA Astrophysics Data System (ADS)
Onuoha, Cajetan O.
The purpose of this research study was to determine the overall effectiveness of computer-based laboratory compared with the traditional hands-on laboratory for improving students' science academic achievement and attitudes towards science subjects at the college and pre-college levels of education in the United States. Meta-analysis was used to synthesis the findings from 38 primary research studies conducted and/or reported in the United States between 1996 and 2006 that compared the effectiveness of computer-based laboratory with the traditional hands-on laboratory on measures related to science academic achievements and attitudes towards science subjects. The 38 primary research studies, with total subjects of 3,824 generated a total of 67 weighted individual effect sizes that were used in this meta-analysis. The study found that computer-based laboratory had small positive effect sizes over the traditional hands-on laboratory (ES = +0.26) on measures related to students' science academic achievements and attitudes towards science subjects (ES = +0.22). It was also found that computer-based laboratory produced more significant effects on physical science subjects compared to biological sciences (ES = +0.34, +0.17).
Neuroengineering control and regulation of behavior
NASA Astrophysics Data System (ADS)
Wróbel, A.; Radzewicz, C.; Mankiewicz, L.; Hottowy, P.; Knapska, E.; Konopka, W.; Kublik, E.; Radwańska, K.; Waleszczyk, W. J.; Wójcik, D. K.
2014-11-01
To monitor neuronal circuits involved in emotional modulation of sensory processing we proposed a plan to establish novel research techniques combining recent biological, technical and analytical discoveries. The project was granted by National Science Center and we started to build a new experimental model for studying the selected circuits of genetically marked and behaviorally activated neurons. To achieve this goal we will combine the pioneering, interdisciplinary expertise of four Polish institutions: (i) the Nencki Institute of Experimental Biology (Polish Academy of Sciences) will deliver the expertise on genetically modified mice and rats, mapping of the neuronal circuits activated by behavior, monitoring complex behaviors measured in the IntelliCage system, electrophysiological brain activity recordings by multielectrodes in behaving animals, analysis and modeling of behavioral and electrophysiological data; (ii) the AGH University of Science and Technology (Faculty of Physics and Applied Computer Sciences) will use its experience in high-throughput electronics to build multichannel systems for recording the brain activity of behaving animals; (iii) the University of Warsaw (Faculty of Physics) and (iv) the Center for Theoretical Physics (Polish Academy of Sciences) will construct optoelectronic device for remote control of opto-animals produced in the Nencki Institute based on the unique experience in laser sources, studies of light propagation and its interaction with condensed media, wireless medical robotic systems, fast readout opto-electronics with control software and micromechanics.
Smolinski, Tomasz G
2010-01-01
Computer literacy plays a critical role in today's life sciences research. Without the ability to use computers to efficiently manipulate and analyze large amounts of data resulting from biological experiments and simulations, many of the pressing questions in the life sciences could not be answered. Today's undergraduates, despite the ubiquity of computers in their lives, seem to be largely unfamiliar with how computers are being used to pursue and answer such questions. This article describes an innovative undergraduate-level course, titled Computer Literacy for Life Sciences, that aims to teach students the basics of a computerized scientific research pursuit. The purpose of the course is for students to develop a hands-on working experience in using standard computer software tools as well as computer techniques and methodologies used in life sciences research. This paper provides a detailed description of the didactical tools and assessment methods used in and outside of the classroom as well as a discussion of the lessons learned during the first installment of the course taught at Emory University in fall semester 2009.
ERIC Educational Resources Information Center
Wielard, Valerie Michelle
2013-01-01
The primary objective of this project was to learn what effect a computer program would have on academic achievement and attitude toward science of college students enrolled in a biology class for non-science majors. It became apparent that the instructor also had an effect on attitudes toward science. The researcher designed a computer program,…
A Heterogeneous High-Performance System for Computational and Computer Science
2016-11-15
Patents Submitted Patents Awarded Awards Graduate Students Names of Post Doctorates Names of Faculty Supported Names of Under Graduate students supported...team of research faculty from the departments of computer science and natural science at Bowie State University. The supercomputer is not only to...accelerated HPC systems. The supercomputer is also ideal for the research conducted in the Department of Natural Science, as research faculty work on
ERIC Educational Resources Information Center
Kite, Vance; Park, Soonhye
2018-01-01
In 2006 Jeanette Wing, a professor of computer science at Carnegie Mellon University, proposed computational thinking (CT) as a literacy just as important as reading, writing, and mathematics. Wing defined CT as a set of skills and strategies computer scientists use to solve complex, computational problems (Wing 2006). The computer science and…
Circus: A Replicated Procedure Call Facility
1984-08-01
Computer Science Laboratory, Xerox PARC, July 1082 . [24) Bruce Ja.y Nelson. Remote Procedure Ctdl. Ph.D. dissertation, Computer Science Department...t. Ph.D. dissertation, Computer Science Division, University of California, Berkeley, Xerox PARC report number CSIF 82-7, December 1082 . [30...Tandem Computers Inc. GUARDIAN Opet’ating Sy•tem Programming Mt~nulll, Volumu 1 11nd 2. C upertino, California, 1082 . [31) R. H. Thoma.s. A majority
ERIC Educational Resources Information Center
Fernandez, Anne, Ed.; Sproats, Lee, Ed.; Sorensen, Stacey, Ed.
2000-01-01
The science community has been trying to use computers in teaching for many years. There has been much conformity in how this was to be achieved, and the wheel has been re-invented again and again as enthusiast after enthusiast has "done their bit" towards getting computers accepted. Computers are now used by science undergraduates (as well as…
Teaching Bioinformatics in Concert
Goodman, Anya L.; Dekhtyar, Alex
2014-01-01
Can biology students without programming skills solve problems that require computational solutions? They can if they learn to cooperate effectively with computer science students. The goal of the in-concert teaching approach is to introduce biology students to computational thinking by engaging them in collaborative projects structured around the software development process. Our approach emphasizes development of interdisciplinary communication and collaboration skills for both life science and computer science students. PMID:25411792
A DDC Bibliography on Computers in Information Sciences. Volume I. Information Sciences Series.
ERIC Educational Resources Information Center
Defense Documentation Center, Alexandria, VA.
The unclassified and unlimited bibliography compiles references dealing specifically with the role of computers in information sciences. The volume contains 249 annotated references grouped under two major headings: Time Shared, On-Line, and Real Time Systems, and Computer Components. The references are arranged in accesion number (AD-number)…
Business Administration and Computer Science Degrees: Earnings, Job Security, and Job Satisfaction
ERIC Educational Resources Information Center
Mehta, Kamlesh; Uhlig, Ronald
2017-01-01
This paper examines the potential of business administration vs. computer science degrees in terms of earnings, job security, and job satisfaction. The paper focuses on earnings potential five years and ten years after the completion of business administration and computer science degrees. Moreover, the paper presents the income changes with…
Evolution of an Intelligent Deductive Logic Tutor Using Data-Driven Elements
ERIC Educational Resources Information Center
Mostafavi, Behrooz; Barnes, Tiffany
2017-01-01
Deductive logic is essential to a complete understanding of computer science concepts, and is thus fundamental to computer science education. Intelligent tutoring systems with individualized instruction have been shown to increase learning gains. We seek to improve the way deductive logic is taught in computer science by developing an intelligent,…
The Case for Improving U.S. Computer Science Education
ERIC Educational Resources Information Center
Nager, Adams; Atkinson, Robert
2016-01-01
Despite the growing use of computers and software in every facet of our economy, not until recently has computer science education begun to gain traction in American school systems. The current focus on improving science, technology, engineering, and mathematics (STEM) education in the U.S. School system has disregarded differences within STEM…
Computer Science and the Liberal Arts: A Philosophical Examination
ERIC Educational Resources Information Center
Walker, Henry M.; Kelemen, Charles
2010-01-01
This article explores the philosophy and position of the discipline of computer science within the liberal arts, based upon a discussion of the nature of computer science and a review of the characteristics of the liberal arts. A liberal arts environment provides important opportunities for undergraduate programs, but also presents important…
Arguing for Computer Science in the School Curriculum
ERIC Educational Resources Information Center
Fluck, Andrew; Webb, Mary; Cox, Margaret; Angeli, Charoula; Malyn-Smith, Joyce; Voogt, Joke; Zagami, Jason
2016-01-01
Computer science has been a discipline for some years, and its position in the school curriculum has been contested differently in several countries. This paper looks at its role in three countries to illustrate these differences. A reconsideration of computer science as a separate subject both in primary and secondary education is suggested. At…
ERIC Educational Resources Information Center
Benda, Klara; Bruckman, Amy; Guzdial, Mark
2012-01-01
We present the results of an interview study investigating student experiences in two online introductory computer science courses. Our theoretical approach is situated at the intersection of two research traditions: "distance and adult education research," which tends to be sociologically oriented, and "computer science education…
ERIC Educational Resources Information Center
Boyer, Kristy Elizabeth; Phillips, Robert; Wallis, Michael D.; Vouk, Mladen A.; Lester, James C.
2009-01-01
The majority of computer science education research to date has focused on purely cognitive student outcomes. Understanding the "motivational" states experienced by students may enhance our understanding of the computer science learning process, and may reveal important instructional interventions that could benefit student engagement and…
Stateless Programming as a Motif for Teaching Computer Science
ERIC Educational Resources Information Center
Cohen, Avi
2004-01-01
With the development of XML Web Services, the Internet could become an integral part of and the basis for teaching computer science and software engineering. The approach has been applied to a university course for students studying introduction to computer science from the point of view of software development in a stateless, Internet…
What Do Computer Science Students Think about Software Piracy?
ERIC Educational Resources Information Center
Konstantakis, Nikos I.; Palaigeorgiou, George E.; Siozos, Panos D.; Tsoukalas, Ioannis A.
2010-01-01
Today, software piracy is an issue of global importance. Computer science students are the future information and communication technologies professionals and it is important to study the way they approach this issue. In this article, we attempt to study attitudes, behaviours and the corresponding reasoning of computer science students in Greece…
Recent Advances and Issues in Computers. Oryx Frontiers of Science Series.
ERIC Educational Resources Information Center
Gay, Martin K.
Discussing recent issues in computer science, this book contains 11 chapters covering: (1) developments that have the potential for changing the way computers operate, including microprocessors, mass storage systems, and computing environments; (2) the national computational grid for high-bandwidth, high-speed collaboration among scientists, and…
NASA Technical Reports Server (NTRS)
Smith, Paul H.
1988-01-01
The Computer Science Program provides advanced concepts, techniques, system architectures, algorithms, and software for both space and aeronautics information sciences and computer systems. The overall goal is to provide the technical foundation within NASA for the advancement of computing technology in aerospace applications. The research program is improving the state of knowledge of fundamental aerospace computing principles and advancing computing technology in space applications such as software engineering and information extraction from data collected by scientific instruments in space. The program includes the development of special algorithms and techniques to exploit the computing power provided by high performance parallel processors and special purpose architectures. Research is being conducted in the fundamentals of data base logic and improvement techniques for producing reliable computing systems.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-30
... in physics, chemistry, mathematics, computer science, or engineering. Institutions should have a 4..., mathematics, computer science, or engineering with work experiences in laboratories or other settings...-0141-01] Professional Research Experience Program in Chemical Science and Technology Laboratory...
NASA Tech Briefs, August 1993. Volume 17, No. 8
NASA Technical Reports Server (NTRS)
1993-01-01
Topics include: Computer Graphics; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences; Books and Reports.
NASA Tech Briefs, March 1993. Volume 17, No. 3
NASA Technical Reports Server (NTRS)
1993-01-01
Topics include: Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences;
Wiseman working with BASS-II Experiment
2014-06-26
ISS040-E-021546 (26 June 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, conducts a combustion experiment known as the Burning and Suppression of Solids (BASS) inside the Microgravity Science Glovebox (MSG) located in the International Space Station?s Destiny laboratory. Without gravity, materials burn quite differently, with a spherical flame instead of the conical shape seen on Earth. BASS is studying the hypothesis that some materials may actually become more flammable in space. Results from BASS will help guide spacecraft materials selection and improve strategies for putting out accidental fires aboard spacecraft. The research also provides scientists with improved computational models that will aid in the design of fire detection and suppression systems here on Earth.
A Fractional PDE Approach to Turbulent Mixing; Part II: Numerical Simulation
NASA Astrophysics Data System (ADS)
Samiee, Mehdi; Zayernouri, Mohsen
2016-11-01
We propose a generalizing fractional order transport model of advection-diffusion kind with fractional time- and space-derivatives, governing the evolution of passive scalar turbulence. This approach allows one to incorporate the nonlocal and memory effects in the underlying anomalous diffusion i.e., sub-to-standard diffusion to model the trapping of particles inside the eddied, and super-diffusion associated with the sudden jumps of particles from one coherent region to another. For this nonlocal model, we develop a high order numerical (spectral) method in addition to a fast solver, examined in the context of some canonical problems. PhD student, Department of Mechanical Engineering, & Department Computational Mathematics, Science, and Engineering.
Recent Economic Perspectives on Political Economy, Part II*
Dewan, Torun; Shepsle, Kenneth A.
2013-01-01
In recent years some of the best theoretical work on the political economy of political institutions and processes has begun surfacing outside the political science mainstream in high quality economics journals. This two-part paper surveys these contributions from a recent five-year period. In Part I, the focus is on elections, voting and information aggregation, followed by treatments of parties, candidates, and coalitions. In Part II, papers on economic performance and redistribution, constitutional design, and incentives, institutions, and the quality of political elites are discussed. Part II concludes with a discussion of the methodological bases common to economics and political science, the way economists have used political science research, and some new themes and arbitrage opportunities. PMID:23606754
ERIC Educational Resources Information Center
Bruce, Lucy
This volume is one of three in a self-paced computer literacy course that gives allied health students a firm base of knowledge concerning computer usage in the hospital environment. It also develops skill in several applications software packages. Volume II contains materials for three one-hour courses on word processing applications, spreadsheet…
Computer Programs in Marine Science
1976-04-01
AD-A279 795 U.S. DEPARTMENT OF COMMERCE National Technical Information Service PB-258 082 Computer Programs in Marine Science National Ocearncgraphic...NO. 5 fo r- Computer nPrograms in ’StlrSO " Marine Science U.S. DEPARTMENT OF COMMERCE National Oceanic and AtmosPheric AdmInistration Environmental...N0,AA?76062212 I I 4. TITLE A?.’D.UBTITLE S. REPORT DATE Comnuter Progrims in Marine Science April 1976 Koy tc Oceanographic Records Documentation No
2005-12-01
Computational Learning in the Department of Brain & Cognitive Sciences and in the Computer Science and Artificial Intelligence Laboratory at the Massachusetts...physiology and cognitive science . . . . . . . . . . . . . . . . . . . . . 67 2 CONTENTS A Appendices 68 A.1 Detailed model implementation and...physiol- ogy to cognitive science. The original model [Riesenhuber and Poggio, 1999b] made also a few predictions ranging from biophysics to psychophysics
Examination and Implementation of a Proposal for a Ph.D. Program in Administrative Sciences
1992-03-01
Review of two proposals recently approved by the Academic Council (i.e., Computer Science and Mathematics Departments). C. SCOPE OF THE STUDY Since WWII...and through the computer age, the application of administrative science theory and methodologies from the behavioral sciences and quantitative...roles in the U.S. Navy and DoD, providing people who firmly understand the technical and organizational aspects of computer -based systems which support
2006-06-16
MILITARY ART AND SCIENCE General Studies by JONATHAN A. BLAKE, MAJ, USA B.A., University of Maryland, College Park, Maryland, 1989...Standard Form 298 (Re . 8-98) v Prescribed by ANSI Std. Z39.18 ii MASTER OF MILITARY ART AND SCIENCE THESIS APPROVAL PAGE Name of Candidate...Justice UW Unconventional Warfare vi TABLE OF CONTENTS Page MASTER OF MILITARY ART AND SCIENCE THESIS APPROVAL PAGE ............. ii ABSTRACT
NASA Tech Briefs, August 1994. Volume 18, No. 8
NASA Technical Reports Server (NTRS)
1994-01-01
Topics covered include: Computer Hardware; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences; Books and Reports.
NASA Astrophysics Data System (ADS)
Podrasky, A.; Covitt, B. A.; Woessner, W.
2017-12-01
The availability of clean water to support human uses and ecological integrity has become an urgent interest for many scientists, decision makers and citizens. Likewise, as computational capabilities increasingly revolutionize and become integral to the practice of science, technology, engineering and math (STEM) disciplines, the STEM+ Computing (STEM+C) Partnerships program seeks to integrate the use of computational approaches in K-12 STEM teaching and learning. The Comp Hydro project, funded by a STEM+C grant from the National Science Foundation, brings together a diverse team of scientists, educators, professionals and citizens at sites in Arizona, Colorado, Maryland and Montana to foster water literacy, as well as computational science literacy, by integrating authentic, place- and data- based learning using physical, mathematical, computational and conceptual models. This multi-state project is currently engaging four teams of six teachers who work during two academic years with educators and scientists at each site. Teams work to develop instructional units specific to their region that integrate hydrologic science and computational modeling. The units, currently being piloted in high school earth and environmental science classes, provide a classroom context to investigate student understanding of how computation is used in Earth systems science. To develop effective science instruction that is rich in place- and data- based learning, effective collaborations between researchers, educators, scientists, professionals and citizens are crucial. In this poster, we focus on project implementation in Montana, where an instructional unit has been developed and is being tested through collaboration among University scientists, researchers and educators, high school teachers and agency and industry scientists and engineers. In particular, we discuss three characteristics of effective collaborative science education design for developing and implementing place- and data- based science education to support students in developing socio-scientific and computational literacy sufficient for making decisions about real world issues such as groundwater contamination. These characteristics include that science education experiences are real, responsive/accessible and rigorous.
Computer Analogies: Teaching Molecular Biology and Ecology.
ERIC Educational Resources Information Center
Rice, Stanley; McArthur, John
2002-01-01
Suggests that computer science analogies can aid the understanding of gene expression, including the storage of genetic information on chromosomes. Presents a matrix of biology and computer science concepts. (DDR)
ERIC Educational Resources Information Center
Kurland, Michael
1984-01-01
Science fiction writers' perceptions of the "thinking machine" are examined through a review of Baum's Oz books, Heinlein's "Beyond This Horizon," science fiction magazine articles, and works about robots including Asimov's "I, Robot." The future of computers in science fiction is discussed and suggested readings are listed. (MBR)
77 FR 40589 - Notice of Proposed Information Collection Requests; Institute of Education Sciences...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-10
... Sciences; Implementation of Title I/II Program Initiatives SUMMARY: This evaluation will examine the implementation of core policies promoted by Title I and Title II at the state district, and school levels in four...- 401-0920. Please specify the complete title of the information collection and OMB Control Number when...
NASA Technical Reports Server (NTRS)
Ostrogorsky, A.; Marin, C.; Volz, M. P.; Bonner, W. A.
2005-01-01
Solidification Using a Baffle in Sealed Ampoules (SUBSA) is the first investigation conducted in the Microgravity Science Glovebox (MSG) Facility at the International Space Station (ISS) Alpha. 8 single crystals of InSb, doped with Te and Zn, were directionally solidified in microgravity. The experiments were conducted in a furnace with a transparent gradient section, and a video camera, sending images to the earth. The real time images (i) helped seeding, (ii) allowed a direct measurement of the solidification rate. The post-flight characterization of the crystals includes: computed x-ray tomography, Secondary Ion Mass Spectroscopy (SIMS), Hall measurements, Atomic Absorption (AA), and 4 point probe analysis. For the first time in microgravity, several crystals having nearly identical initial transients were grown. Reproducible initial transients were obtained with Te-doped InSb. Furthermore, the diffusion controlled end-transient was demonstrated experimentally (SUBSA 02). From the initial transients, the diffusivity of Te and Zn in InSb was determined.
MarsSedEx III: linking Computational Fluid Dynamics (CFD) and reduced gravity experiments
NASA Astrophysics Data System (ADS)
Kuhn, N. J.; Kuhn, B.; Gartmann, A.
2015-12-01
Nikolaus J. Kuhn (1), Brigitte Kuhn (1), and Andres Gartmann (2) (1) University of Basel, Physical Geography, Environmental Sciences, Basel, Switzerland (nikolaus.kuhn@unibas.ch), (2) Meteorology, Climatology, Remote Sensing, Environmental Sciences, University of Basel, Switzerland Experiments conducted during the MarsSedEx I and II reduced gravity experiments showed that using empirical models for sediment transport on Mars developed for Earth violates fluid dynamics. The error is caused by the interaction between runing water and sediment particles, which affect each other in a positive feedback loop. As a consequence, the actual flow conditions around a particle cannot be represented by drag coefficients derived on Earth. This study exmines the implications of such gravity effects on sediment movement on Mars, with special emphasis on the limits of sandstones and conglomerates formed on Earth as analogues for sedimentation on Mars. Furthermore, options for correctiong the errors using a combination of CFD and recent experiments conducted during the MarsSedEx III campaign are presented.
ERIC Educational Resources Information Center
Kolata, Gina
1984-01-01
Examines social influences which discourage women from pursuing studies in computer science, including monopoly of computer time by boys at the high school level, sexual harassment in college, movies, and computer games. Describes some initial efforts to encourage females of all ages to study computer science. (JM)
Advanced Computing for Science.
ERIC Educational Resources Information Center
Hut, Piet; Sussman, Gerald Jay
1987-01-01
Discusses some of the contributions that high-speed computing is making to the study of science. Emphasizes the use of computers in exploring complicated systems without the simplification required in traditional methods of observation and experimentation. Provides examples of computer assisted investigations in astronomy and physics. (TW)
Cloud Computing: Virtual Clusters, Data Security, and Disaster Recovery
NASA Astrophysics Data System (ADS)
Hwang, Kai
Dr. Kai Hwang is a Professor of Electrical Engineering and Computer Science and Director of Internet and Cloud Computing Lab at the Univ. of Southern California (USC). He received the Ph.D. in Electrical Engineering and Computer Science from the Univ. of California, Berkeley. Prior to joining USC, he has taught at Purdue Univ. for many years. He has also served as a visiting Chair Professor at Minnesota, Hong Kong Univ., Zhejiang Univ., and Tsinghua Univ. He has published 8 books and over 210 scientific papers in computer science/engineering.
Demystifying computer science for molecular ecologists.
Belcaid, Mahdi; Toonen, Robert J
2015-06-01
In this age of data-driven science and high-throughput biology, computational thinking is becoming an increasingly important skill for tackling both new and long-standing biological questions. However, despite its obvious importance and conspicuous integration into many areas of biology, computer science is still viewed as an obscure field that has, thus far, permeated into only a few of the biology curricula across the nation. A national survey has shown that lack of computational literacy in environmental sciences is the norm rather than the exception [Valle & Berdanier (2012) Bulletin of the Ecological Society of America, 93, 373-389]. In this article, we seek to introduce a few important concepts in computer science with the aim of providing a context-specific introduction aimed at research biologists. Our goal was to help biologists understand some of the most important mainstream computational concepts to better appreciate bioinformatics methods and trade-offs that are not obvious to the uninitiated. © 2015 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Wooley; Herbert S. Lin
This study is the first comprehensive NRC study that suggests a high-level intellectual structure for Federal agencies for supporting work at the biology/computing interface. The report seeks to establish the intellectual legitimacy of a fundamentally cross-disciplinary collaboration between biologists and computer scientists. That is, while some universities are increasingly favorable to research at the intersection, life science researchers at other universities are strongly impeded in their efforts to collaborate. This report addresses these impediments and describes proven strategies for overcoming them. An important feature of the report is the use of well-documented examples that describe clearly to individuals not trainedmore » in computer science the value and usage of computing across the biological sciences, from genes and proteins to networks and pathways, from organelles to cells, and from individual organisms to populations and ecosystems. It is hoped that these examples will be useful to students in the life sciences to motivate (continued) study in computer science that will enable them to be more facile users of computing in their future biological studies.« less
The future of scientific workflows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deelman, Ewa; Peterka, Tom; Altintas, Ilkay
Today’s computational, experimental, and observational sciences rely on computations that involve many related tasks. The success of a scientific mission often hinges on the computer automation of these workflows. In April 2015, the US Department of Energy (DOE) invited a diverse group of domain and computer scientists from national laboratories supported by the Office of Science, the National Nuclear Security Administration, from industry, and from academia to review the workflow requirements of DOE’s science and national security missions, to assess the current state of the art in science workflows, to understand the impact of emerging extreme-scale computing systems on thosemore » workflows, and to develop requirements for automated workflow management in future and existing environments. This article is a summary of the opinions of over 50 leading researchers attending this workshop. We highlight use cases, computing systems, workflow needs and conclude by summarizing the remaining challenges this community sees that inhibit large-scale scientific workflows from becoming a mainstream tool for extreme-scale science.« less
ERIC Educational Resources Information Center
Charleston, LaVar J.; Gilbert, Juan E.; Escobar, Barbara; Jackson, Jerlando F. L.
2014-01-01
African Americans represent 1.3% of all computing sciences faculty in PhD-granting departments, underscoring the severe underrepresentation of Black/African American tenure-track faculty in computing (CRA, 2012). The Future Faculty/Research Scientist Mentoring (FFRM) program, funded by the National Science Foundation, was found to be an effective…
A Review of Resources for Evaluating K-12 Computer Science Education Programs
ERIC Educational Resources Information Center
Randolph, Justus J.; Hartikainen, Elina
2004-01-01
Since computer science education is a key to preparing students for a technologically-oriented future, it makes sense to have high quality resources for conducting summative and formative evaluation of those programs. This paper describes the results of a critical analysis of the resources for evaluating K-12 computer science education projects.…
Cognitive Correlates of Performance in Algorithms in a Computer Science Course for High School
ERIC Educational Resources Information Center
Avancena, Aimee Theresa; Nishihara, Akinori
2014-01-01
Computer science for high school faces many challenging issues. One of these is whether the students possess the appropriate cognitive ability for learning the fundamentals of computer science. Online tests were created based on known cognitive factors and fundamental algorithms and were implemented among the second grade students in the…
Computer Science Education in French Secondary Schools: Historical and Didactical Perspectives
ERIC Educational Resources Information Center
Baron, Georges-Louis; Drot-Delange, Beatrice; Grandbastien, Monique; Tort, Françoise
2014-01-01
Computer science as a school subject in France is characterized by a succession of promising starts that have not yet been transformed into perennial solutions. The main goal of this article is to analyze this complex situation from a historical perspective, and describe the current rebirth of an optional Computer Science course in the last year…
Computer Science (CS) in the Compulsory Education Curriculum: Implications for Future Research
ERIC Educational Resources Information Center
Passey, Don
2017-01-01
The subject of computer science (CS) and computer science education (CSE) has relatively recently arisen as a subject for inclusion within the compulsory school curriculum. Up to this present time, a major focus of technologies in the school curriculum has in many countries been on applications of existing technologies into subject practice (both…
Alice in Oman: A Study on Object-First Approaches in Computer Science Education
ERIC Educational Resources Information Center
Hayat, Khizar; Al-Shukaili, Naeem Ali; Sultan, Khalid
2017-01-01
The success of university-level education depends on the quality of underlying school education and any deficiency therein may be detrimental to a student's career. This may be more glaring with Computer Science education, given its mercurial nature. In the developing countries, the Computer Science school curricula are usually stuffed with…
ERIC Educational Resources Information Center
Brandell, Gerd; Carlsson, Svante; Eklbom, Hakan; Nord, Ann-Charlotte
1997-01-01
Describes the process of starting a new program in computer science and engineering that is heavily based on applied mathematics and only open to women. Emphasizes that success requires considerable interest in mathematics and curiosity about computer science among female students at the secondary level and the acceptance of the single-sex program…
ERIC Educational Resources Information Center
Smetana, Lara Kathleen; Bell, Randy L.
2012-01-01
Researchers have explored the effectiveness of computer simulations for supporting science teaching and learning during the past four decades. The purpose of this paper is to provide a comprehensive, critical review of the literature on the impact of computer simulations on science teaching and learning, with the goal of summarizing what is…
ERIC Educational Resources Information Center
Smolinski, Tomasz G.
2010-01-01
Computer literacy plays a critical role in today's life sciences research. Without the ability to use computers to efficiently manipulate and analyze large amounts of data resulting from biological experiments and simulations, many of the pressing questions in the life sciences could not be answered. Today's undergraduates, despite the ubiquity of…
ERIC Educational Resources Information Center
Kautz, Karlheinz; Kofoed, Uffe
2004-01-01
Teachers at universities are facing an increasing disparity in students' prior IT knowledge and, at the same time, experience a growing disengagement of the students with regard to involvement in study activities. As computer science teachers in a joint programme in computer science and business administration, we made a number of similar…
The Effect of Teacher Involvement on Student Performance in a Computer-Based Science Simulation.
ERIC Educational Resources Information Center
Waugh, Michael L.
Designed to investigate whether or not science teachers can positively influence student achievement in, and attitude toward, science, this study focused on a specific teaching strategy and utilization of a computer-based simulation. The software package used in the study was the simulation, Volcanoes, by Earthware Computer Services. The sample…
Introducing Molecular Life Science Students to Model Building Using Computer Simulations
ERIC Educational Resources Information Center
Aegerter-Wilmsen, Tinri; Kettenis, Dik; Sessink, Olivier; Hartog, Rob; Bisseling, Ton; Janssen, Fred
2006-01-01
Computer simulations can facilitate the building of models of natural phenomena in research, such as in the molecular life sciences. In order to introduce molecular life science students to the use of computer simulations for model building, a digital case was developed in which students build a model of a pattern formation process in…
ERIC Educational Resources Information Center
Ryoo, Jean J.; Margolis, Jane; Lee, Clifford H.; Sandoval, Cueponcaxochitl D. M.; Goode, Joanna
2013-01-01
Despite the fact that computer science (CS) is the driver of technological innovations across all disciplines and aspects of our lives, including participatory media, high school CS too commonly fails to incorporate the perspectives and concerns of low-income students of color. This article describes a partnership program -- Exploring Computer…
Correlation Educational Model in Primary Education Curriculum of Mathematics and Computer Science
ERIC Educational Resources Information Center
Macinko Kovac, Maja; Eret, Lidija
2012-01-01
This article gives insight into methodical correlation model of teaching mathematics and computer science. The model shows the way in which the related areas of computer science and mathematics can be supplemented, if it transforms the way of teaching and creates a "joint" lessons. Various didactic materials are designed, in which all…
Using the Tower of Hanoi Puzzle to Infuse Your Mathematics Classroom with Computer Science Concepts
ERIC Educational Resources Information Center
Marzocchi, Alison S.
2016-01-01
This article suggests that logic puzzles, such as the well-known Tower of Hanoi puzzle, can be used to introduce computer science concepts to mathematics students of all ages. Mathematics teachers introduce their students to computer science concepts that are enacted spontaneously and subconsciously throughout the solution to the Tower of Hanoi…
ERIC Educational Resources Information Center
An, Yun-Jo; Haynes, Linda; D'Alba, Adriana; Chumney, Frances
2016-01-01
Science teachers' experiences, attitudes, perceptions, concerns, and support needs related to the use of educational computer games were investigated in this study. Data were collected from an online survey, which was completed by 111 science teachers. The results showed that 73% of participants had used computer games in teaching. Participants…
NASA Tech Briefs, December 1993. Volume 17, No. 12
NASA Technical Reports Server (NTRS)
1993-01-01
Topics covered include: High-Performance Computing; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports.
[Activities of Institute for Computer Applications in Science and Engineering (ICASE)
NASA Technical Reports Server (NTRS)
Bushnell, Dennis M. (Technical Monitor)
2001-01-01
This report summarizes research conducted at ICASE in applied mathematics, fluid mechanics, computer science, and structures and material sciences during the period April 1, 2000 through September 30, 2000.
NASA Tech Briefs, March 1994. Volume 18, No. 3
NASA Technical Reports Server (NTRS)
1994-01-01
Topics include: Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports
NASA Tech Briefs, March 2000. Volume 24, No. 3
NASA Technical Reports Server (NTRS)
2000-01-01
Topics include: Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports.
NASA Tech Briefs, March 1997. Volume 21, No. 3
NASA Technical Reports Server (NTRS)
1997-01-01
Topics: Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports.
Is There Such a Thing as Gender and Ethnicity of Computing?
ERIC Educational Resources Information Center
Turner, Eva
2000-01-01
Discussion of the absence of women and minority groups in computer science and information technology focuses on a study conducted at Middlesex University (England) that investigated how gender and ethnicity connected to computing are perceived by computing science students and how this may influence their decision as future computer scientists…
Computational Science in Armenia (Invited Talk)
NASA Astrophysics Data System (ADS)
Marandjian, H.; Shoukourian, Yu.
This survey is devoted to the development of informatics and computer science in Armenia. The results in theoretical computer science (algebraic models, solutions to systems of general form recursive equations, the methods of coding theory, pattern recognition and image processing), constitute the theoretical basis for developing problem-solving-oriented environments. As examples can be mentioned: a synthesizer of optimized distributed recursive programs, software tools for cluster-oriented implementations of two-dimensional cellular automata, a grid-aware web interface with advanced service trading for linear algebra calculations. In the direction of solving scientific problems that require high-performance computing resources, examples of completed projects include the field of physics (parallel computing of complex quantum systems), astrophysics (Armenian virtual laboratory), biology (molecular dynamics study of human red blood cell membrane), meteorology (implementing and evaluating the Weather Research and Forecast Model for the territory of Armenia). The overview also notes that the Institute for Informatics and Automation Problems of the National Academy of Sciences of Armenia has established a scientific and educational infrastructure, uniting computing clusters of scientific and educational institutions of the country and provides the scientific community with access to local and international computational resources, that is a strong support for computational science in Armenia.
Implicit Theories of Creativity in Computer Science in the United States and China
ERIC Educational Resources Information Center
Tang, Chaoying; Baer, John; Kaufman, James C.
2015-01-01
To study implicit concepts of creativity in computer science in the United States and mainland China, we first asked 308 Chinese computer scientists for adjectives that would describe a creative computer scientist. Computer scientists and non-computer scientists from China (N = 1069) and the United States (N = 971) then rated how well those…
A primer for biomedical scientists on how to execute model II linear regression analysis.
Ludbrook, John
2012-04-01
1. There are two very different ways of executing linear regression analysis. One is Model I, when the x-values are fixed by the experimenter. The other is Model II, in which the x-values are free to vary and are subject to error. 2. I have received numerous complaints from biomedical scientists that they have great difficulty in executing Model II linear regression analysis. This may explain the results of a Google Scholar search, which showed that the authors of articles in journals of physiology, pharmacology and biochemistry rarely use Model II regression analysis. 3. I repeat my previous arguments in favour of using least products linear regression analysis for Model II regressions. I review three methods for executing ordinary least products (OLP) and weighted least products (WLP) regression analysis: (i) scientific calculator and/or computer spreadsheet; (ii) specific purpose computer programs; and (iii) general purpose computer programs. 4. Using a scientific calculator and/or computer spreadsheet, it is easy to obtain correct values for OLP slope and intercept, but the corresponding 95% confidence intervals (CI) are inaccurate. 5. Using specific purpose computer programs, the freeware computer program smatr gives the correct OLP regression coefficients and obtains 95% CI by bootstrapping. In addition, smatr can be used to compare the slopes of OLP lines. 6. When using general purpose computer programs, I recommend the commercial programs systat and Statistica for those who regularly undertake linear regression analysis and I give step-by-step instructions in the Supplementary Information as to how to use loss functions. © 2011 The Author. Clinical and Experimental Pharmacology and Physiology. © 2011 Blackwell Publishing Asia Pty Ltd.
Semiotics, Information Science, Documents and Computers.
ERIC Educational Resources Information Center
Warner, Julian
1990-01-01
Discusses the relationship and value of semiotics to the established domains of information science. Highlights include documentation; computer operations; the language of computing; automata theory; linguistics; speech and writing; and the written language as a unifying principle for the document and the computer. (93 references) (LRW)
NASA Astrophysics Data System (ADS)
Papa, Mauricio; Shenoi, Sujeet
The information infrastructure -- comprising computers, embedded devices, networks and software systems -- is vital to day-to-day operations in every sector: information and telecommunications, banking and finance, energy, chemicals and hazardous materials, agriculture, food, water, public health, emergency services, transportation, postal and shipping, government and defense. Global business and industry, governments, indeed society itself, cannot function effectively if major components of the critical information infrastructure are degraded, disabled or destroyed. Critical Infrastructure Protection II describes original research results and innovative applications in the interdisciplinary field of critical infrastructure protection. Also, it highlights the importance of weaving science, technology and policy in crafting sophisticated, yet practical, solutions that will help secure information, computer and network assets in the various critical infrastructure sectors. Areas of coverage include: - Themes and Issues - Infrastructure Security - Control Systems Security - Security Strategies - Infrastructure Interdependencies - Infrastructure Modeling and Simulation This book is the second volume in the annual series produced by the International Federation for Information Processing (IFIP) Working Group 11.10 on Critical Infrastructure Protection, an international community of scientists, engineers, practitioners and policy makers dedicated to advancing research, development and implementation efforts focused on infrastructure protection. The book contains a selection of twenty edited papers from the Second Annual IFIP WG 11.10 International Conference on Critical Infrastructure Protection held at George Mason University, Arlington, Virginia, USA in the spring of 2008.
Geospatial Data Science Research Staff | Geospatial Data Science | NREL
Oliveira, Ricardo Researcher II-Geospatial Science Ricardo.Oliveira@nrel.gov 303-275-3272 Gilroy, Nicholas Specialist Pamela.Gray.hann@nrel.gov 303-275-4626 Grue, Nicholas Researcher III-Geospatial Science Nick.Grue
NASA Astrophysics Data System (ADS)
Ryoo, Jean; Goode, Joanna; Margolis, Jane
2015-10-01
This article describes the importance that high school computer science teachers place on a teachers' professional learning community designed around an inquiry- and equity-oriented approach for broadening participation in computing. Using grounded theory to analyze four years of teacher surveys and interviews from the Exploring Computer Science (ECS) program in the Los Angeles Unified School District, this article describes how participating in professional development activities purposefully aimed at fostering a teachers' professional learning community helps ECS teachers make the transition to an inquiry-based classroom culture and break professional isolation. This professional learning community also provides experiences that challenge prevalent deficit notions and stereotypes about which students can or cannot excel in computer science.
NASA Tech Briefs, February 2000. Volume 24, No. 2
NASA Technical Reports Server (NTRS)
2000-01-01
Topics covered include: Test and Measurement; Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Bio-Medical; Mathematics and Information Sciences; Computers and Peripherals.
ERIC Educational Resources Information Center
Science Teacher, 1989
1989-01-01
Reviews seven software programs: (1) "Science Baseball: Biology" (testing a variety of topics); (2) "Wildways: Understanding Wildlife Conservation"; (3) "Earth Science Computer Test Bank"; (4) "Biology Computer Test Bank"; (5) "Computer Play & Learn Series" (a series of drill and test…
NASA Astrophysics Data System (ADS)
Smetana, Lara Kathleen; Bell, Randy L.
2012-06-01
Researchers have explored the effectiveness of computer simulations for supporting science teaching and learning during the past four decades. The purpose of this paper is to provide a comprehensive, critical review of the literature on the impact of computer simulations on science teaching and learning, with the goal of summarizing what is currently known and providing guidance for future research. We report on the outcomes of 61 empirical studies dealing with the efficacy of, and implications for, computer simulations in science instruction. The overall findings suggest that simulations can be as effective, and in many ways more effective, than traditional (i.e. lecture-based, textbook-based and/or physical hands-on) instructional practices in promoting science content knowledge, developing process skills, and facilitating conceptual change. As with any other educational tool, the effectiveness of computer simulations is dependent upon the ways in which they are used. Thus, we outline specific research-based guidelines for best practice. Computer simulations are most effective when they (a) are used as supplements; (b) incorporate high-quality support structures; (c) encourage student reflection; and (d) promote cognitive dissonance. Used appropriately, computer simulations involve students in inquiry-based, authentic science explorations. Additionally, as educational technologies continue to evolve, advantages such as flexibility, safety, and efficiency deserve attention.
NASA Astrophysics Data System (ADS)
Paris, Elizabeth
The ``November Revolution'' of 1974 and the experiments that followed consolidated the place of the Standard Model in modern particle physics. Much of the evidence on which these conclusions depended was generated by a new type of tool: colliding beam storage rings, which had been considered physically unfeasible twenty years earlier. In 1956 a young experimentalist named Gerry O'Neill dedicated himself to demonstrating that such an apparatus could do useful physics. The storage ring movement encountered numerous obstacles before generating one of the standard machines for high energy research. In fact, it wasn't until 1970 that the U.S. finally broke ground on its first electron-positron collider. Drawing extensively on archival sources and supplementing them with the personal accounts of many of the individuals who took part, Ringing in the New Physics examines this instance of post-World War II techno-science and the new social, political and scientific tensions that characterize it. The motivations are twofold: first, that the chronicle of storage rings may take its place beside mathematical group theory, computer simulations, magnetic spark chambers, and the like as an important contributor to a view of matter and energy which has been the dominant model for the last twenty-five years. In addition, the account provides a case study for the integration of the personal, professional, institutional, and material worlds when examining an episode in the history or sociology of twentieth century science. The story behind the technological development of storage rings holds fascinating insights into the relationship between theory and experiment, collaboration and competition in the physics community, the way scientists obtain funding and their responsibilities to it, and the very nature of what constitutes ``successful'' science in the post- World War II era.
NASA Tech Briefs, July 1994. Volume 18, No. 7
NASA Technical Reports Server (NTRS)
1994-01-01
Topics covered include: Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports
NASA Tech Briefs, October 1994. Volume 18, No. 10
NASA Technical Reports Server (NTRS)
1994-01-01
Topics: Data Acquisition and Analysis; Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences; Books and Reports
Research in progress in applied mathematics, numerical analysis, and computer science
NASA Technical Reports Server (NTRS)
1990-01-01
Research conducted at the Institute in Science and Engineering in applied mathematics, numerical analysis, and computer science is summarized. The Institute conducts unclassified basic research in applied mathematics in order to extend and improve problem solving capabilities in science and engineering, particularly in aeronautics and space.
ERIC Educational Resources Information Center
Gonczi, Amanda L.; Chiu, Jennifer L.; Maeng, Jennifer L.; Bell, Randy L.
2016-01-01
This investigation sought to identify patterns in elementary science teachers' computer simulation use, particularly implementation structures and instructional supports commonly employed by teachers. Data included video-recorded science lessons of 96 elementary teachers who used computer simulations in one or more science lessons. Results…
ERIC Educational Resources Information Center
Lee, Aimee T.; Hairston, Rosalina V.; Thames, Rachel; Lawrence, Tonya; Herron, Sherry S.
2002-01-01
Describes the Lateblight computer simulation implemented in the general biology laboratory and science methods course for elementary teachers to reinforce the processes of science and allow students to engage, explore, explain, elaborate, and evaluate the methods of building concepts in science. (Author/KHR)
ERIC Educational Resources Information Center
Rose, Clare; Menninger, Sally Ann
The keynote address of a conference that focused on the future of women in science and engineering fields and the opportunities available to them in the computer sciences is presented. Women's education in the sciences and education and entry into the job market in these fields has steadily been increasing. Excellent employment opportunities are…
Experiments in Computing: A Survey
Moisseinen, Nella
2014-01-01
Experiments play a central role in science. The role of experiments in computing is, however, unclear. Questions about the relevance of experiments in computing attracted little attention until the 1980s. As the discipline then saw a push towards experimental computer science, a variety of technically, theoretically, and empirically oriented views on experiments emerged. As a consequence of those debates, today's computing fields use experiments and experiment terminology in a variety of ways. This paper analyzes experimentation debates in computing. It presents five ways in which debaters have conceptualized experiments in computing: feasibility experiment, trial experiment, field experiment, comparison experiment, and controlled experiment. This paper has three aims: to clarify experiment terminology in computing; to contribute to disciplinary self-understanding of computing; and, due to computing's centrality in other fields, to promote understanding of experiments in modern science in general. PMID:24688404
Experiments in computing: a survey.
Tedre, Matti; Moisseinen, Nella
2014-01-01
Experiments play a central role in science. The role of experiments in computing is, however, unclear. Questions about the relevance of experiments in computing attracted little attention until the 1980s. As the discipline then saw a push towards experimental computer science, a variety of technically, theoretically, and empirically oriented views on experiments emerged. As a consequence of those debates, today's computing fields use experiments and experiment terminology in a variety of ways. This paper analyzes experimentation debates in computing. It presents five ways in which debaters have conceptualized experiments in computing: feasibility experiment, trial experiment, field experiment, comparison experiment, and controlled experiment. This paper has three aims: to clarify experiment terminology in computing; to contribute to disciplinary self-understanding of computing; and, due to computing's centrality in other fields, to promote understanding of experiments in modern science in general.
An Analysis of Cloud Computing with Amazon Web Services for the Atmospheric Science Data Center
NASA Astrophysics Data System (ADS)
Gleason, J. L.; Little, M. M.
2013-12-01
NASA science and engineering efforts rely heavily on compute and data handling systems. The nature of NASA science data is such that it is not restricted to NASA users, instead it is widely shared across a globally distributed user community including scientists, educators, policy decision makers, and the public. Therefore NASA science computing is a candidate use case for cloud computing where compute resources are outsourced to an external vendor. Amazon Web Services (AWS) is a commercial cloud computing service developed to use excess computing capacity at Amazon, and potentially provides an alternative to costly and potentially underutilized dedicated acquisitions whenever NASA scientists or engineers require additional data processing. AWS desires to provide a simplified avenue for NASA scientists and researchers to share large, complex data sets with external partners and the public. AWS has been extensively used by JPL for a wide range of computing needs and was previously tested on a NASA Agency basis during the Nebula testing program. Its ability to support the Langley Science Directorate needs to be evaluated by integrating it with real world operational needs across NASA and the associated maturity that would come with that. The strengths and weaknesses of this architecture and its ability to support general science and engineering applications has been demonstrated during the previous testing. The Langley Office of the Chief Information Officer in partnership with the Atmospheric Sciences Data Center (ASDC) has established a pilot business interface to utilize AWS cloud computing resources on a organization and project level pay per use model. This poster discusses an effort to evaluate the feasibility of the pilot business interface from a project level perspective by specifically using a processing scenario involving the Clouds and Earth's Radiant Energy System (CERES) project.
An analysis of science versus pseudoscience
NASA Astrophysics Data System (ADS)
Hooten, James T.
2011-12-01
This quantitative study identified distinctive features in archival datasets commissioned by the National Science Foundation (NSF) for Science and Engineering Indicators reports. The dependent variables included education level, and scores for science fact knowledge, science process knowledge, and pseudoscience beliefs. The dependent variables were aggregated into nine NSF-defined geographic regions and examined for the years 2004 and 2006. The variables were also examined over all years available in the dataset. Descriptive statistics were determined and tests for normality and homogeneity of variances were performed using Statistical Package for the Social Sciences. Analysis of Variance was used to test for statistically significant differences between the nine geographic regions for each of the four dependent variables. Statistical significance of 0.05 was used. Tukey post-hoc analysis was used to compute practical significance of differences between regions. Post-hoc power analysis using G*Power was used to calculate the probability of Type II errors. Tests for correlations across all years of the dependent variables were also performed. Pearson's r was used to indicate the strength of the relationship between the dependent variables. Small to medium differences in science literacy and education level were observed between many of the nine U.S. geographic regions. The most significant differences occurred when the West South Central region was compared to the New England and the Pacific regions. Belief in pseudoscience appeared to be distributed evenly across all U.S. geographic regions. Education level was a strong indicator of science literacy regardless of a respondent's region of residence. Recommendations for further study include more in-depth investigation to uncover the nature of the relationship between education level and belief in pseudoscience.
Computer Science and Technology Publications. NBS Publications List 84.
ERIC Educational Resources Information Center
National Bureau of Standards (DOC), Washington, DC. Inst. for Computer Sciences and Technology.
This bibliography lists publications of the Institute for Computer Sciences and Technology of the National Bureau of Standards. Publications are listed by subject in the areas of computer security, computer networking, and automation technology. Sections list publications of: (1) current Federal Information Processing Standards; (2) computer…
The Information Science Experiment System - The computer for science experiments in space
NASA Technical Reports Server (NTRS)
Foudriat, Edwin C.; Husson, Charles
1989-01-01
The concept of the Information Science Experiment System (ISES), potential experiments, and system requirements are reviewed. The ISES is conceived as a computer resource in space whose aim is to assist computer, earth, and space science experiments, to develop and demonstrate new information processing concepts, and to provide an experiment base for developing new information technology for use in space systems. The discussion covers system hardware and architecture, operating system software, the user interface, and the ground communication link.
ERIC Educational Resources Information Center
Batey, Anne
Computers are integrated into science education when they are used as the most appropriate tool or delivery system to support the goals of science education. The goals of science education can be condensed into two general areas. One area concerns the preparation of a science-literate citizenry; the second area concerns understanding the…
Data Science and its Relationship to Big Data and Data-Driven Decision Making.
Provost, Foster; Fawcett, Tom
2013-03-01
Companies have realized they need to hire data scientists, academic institutions are scrambling to put together data-science programs, and publications are touting data science as a hot-even "sexy"-career choice. However, there is confusion about what exactly data science is, and this confusion could lead to disillusionment as the concept diffuses into meaningless buzz. In this article, we argue that there are good reasons why it has been hard to pin down exactly what is data science. One reason is that data science is intricately intertwined with other important concepts also of growing importance, such as big data and data-driven decision making. Another reason is the natural tendency to associate what a practitioner does with the definition of the practitioner's field; this can result in overlooking the fundamentals of the field. We believe that trying to define the boundaries of data science precisely is not of the utmost importance. We can debate the boundaries of the field in an academic setting, but in order for data science to serve business effectively, it is important (i) to understand its relationships to other important related concepts, and (ii) to begin to identify the fundamental principles underlying data science. Once we embrace (ii), we can much better understand and explain exactly what data science has to offer. Furthermore, only once we embrace (ii) should we be comfortable calling it data science. In this article, we present a perspective that addresses all these concepts. We close by offering, as examples, a partial list of fundamental principles underlying data science.
CMSC-130 Introductory Computer Science, Lecture Notes
1993-07-01
Introductory Computer Science lecture notes are used in the classroom for teaching CMSC 130, an introductory computer science course , using the ...Unit Testing 2. The Syntax Of Subunits Will Be Studied In The Subsequent Course CMSC130 -5- Lecture 11 TOP-DOWN TESTING Data Processor Procedure...used in the preparation of these lecture notes: Reference Manual For The Ada Prosramming Language, ANSI/MIL-STD
ERIC Educational Resources Information Center
Repenning, Alexander; Webb, David C.; Koh, Kyu Han; Nickerson, Hilarie; Miller, Susan B.; Brand, Catharine; Her Many Horses, Ian; Basawapatna, Ashok; Gluck, Fred; Grover, Ryan; Gutierrez, Kris; Repenning, Nadia
2015-01-01
An educated citizenry that participates in and contributes to science technology engineering and mathematics innovation in the 21st century will require broad literacy and skills in computer science (CS). School systems will need to give increased attention to opportunities for students to engage in computational thinking and ways to promote a…
ERIC Educational Resources Information Center
Pon-Barry, Heather; Packard, Becky Wai-Ling; St. John, Audrey
2017-01-01
A dilemma within computer science departments is developing sustainable ways to expand capacity within introductory computer science courses while remaining committed to inclusive practices. Training near-peer mentors for peer code review is one solution. This paper describes the preparation of near-peer mentors for their role, with a focus on…
ERIC Educational Resources Information Center
Tibi, Moanes H.
2018-01-01
This study aims to investigate and analyze the attitudes and opinions of computer science students at two academic colleges of education with regards to the use of structured and unstructured discussion forums in computer science courses conducted entirely online. Fifty-two students participated in two online courses. The students in each course…
ERIC Educational Resources Information Center
Paraskevas, Michael; Zarouchas, Thomas; Angelopoulos, Panagiotis; Perikos, Isidoros
2013-01-01
Now days the growing need for highly qualified computer science educators in modern educational environments is commonplace. This study examines the potential use of Greek School Network (GSN) to provide a robust and comprehensive e-training course for computer science educators in order to efficiently exploit advanced IT services and establish a…
ERIC Educational Resources Information Center
Demetriadis, Stavros; Egerter, Tina; Hanisch, Frank; Fischer, Frank
2011-01-01
This study investigates the effectiveness of using peer review in the context of scripted collaboration to foster both domain-specific and domain-general knowledge acquisition in the computer science domain. Using a one-factor design with a script and a control condition, students worked in small groups on a series of computer science problems…
ERIC Educational Resources Information Center
Sykes, Edward R.
2007-01-01
Student retention in Computer Science is becoming a serious concern among Educators in many colleges and universities. Most institutions currently face a significant drop in enrollment in Computer Science. A number of different tools and strategies have emerged to address this problem (e.g., BlueJ, Karel Robot, etc.). Although these tools help to…
ERIC Educational Resources Information Center
Sesn, Burcin Acar
2013-01-01
The purpose of this study was to investigate pre-service science teachers' understanding of surface tension, cohesion and adhesion forces by using computer-mediated predict-observe-explain tasks. 22 third-year pre-service science teachers participated in this study. Three computer-mediated predict-observe-explain tasks were developed and applied…
Need Assessment of Computer Science and Engineering Graduates
ERIC Educational Resources Information Center
Surakka, Sami; Malmi, Lauri
2005-01-01
This case study considered the syllabus of the first and second year studies in computer science. The aim of the study was to reveal which topics covered in the syllabi were really needed during the following years of study or in working life. The program that was assessed in the study was a Masters program in computer science and engineering at a…
ERIC Educational Resources Information Center
Shell, Duane F.; Soh, Leen-Kiat
2013-01-01
The goal of the present study was to utilize a profiling approach to understand differences in motivation and strategic self-regulation among post-secondary STEM students in major versus required non-major computer science courses. Participants were 233 students from required introductory computer science courses (194 men; 35 women; 4 unknown) at…
Predicting Computer Science Ph.D. Completion: A Case Study
ERIC Educational Resources Information Center
Cox, G. W.; Hughes, W. E., Jr.; Etzkorn, L. H.; Weisskopf, M. E.
2009-01-01
This paper presents the results of an analysis of indicators that can be used to predict whether a student will succeed in a Computer Science Ph.D. program. The analysis was conducted by studying the records of 75 students who have been in the Computer Science Ph.D. program of the University of Alabama in Huntsville. Seventy-seven variables were…
Research on Young Women in Computer Science: Promoting High Technology for Girls.
ERIC Educational Resources Information Center
Crombie, Gail
When the public school system of Ontario, Canada, began offering an all-female computer science course for girls in grade 11, female enrollment in computer science increased to approximately 40%. This increased enrollment level has been maintained for 3 years. The new course's effects on girls' attitudes were examined in a survey of 184 grade 11…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livny, Miron; Shank, James; Ernst, Michael
Under this SciDAC-2 grant the project’s goal w a s t o stimulate new discoveries by providing scientists with effective and dependable access to an unprecedented national distributed computational facility: the Open Science Grid (OSG). We proposed to achieve this through the work of the Open Science Grid Consortium: a unique hands-on multi-disciplinary collaboration of scientists, software developers and providers of computing resources. Together the stakeholders in this consortium sustain and use a shared distributed computing environment that transforms simulation and experimental science in the US. The OSG consortium is an open collaboration that actively engages new research communities. Wemore » operate an open facility that brings together a broad spectrum of compute, storage, and networking resources and interfaces to other cyberinfrastructures, including the US XSEDE (previously TeraGrid), the European Grids for ESciencE (EGEE), as well as campus and regional grids. We leverage middleware provided by computer science groups, facility IT support organizations, and computing programs of application communities for the benefit of consortium members and the US national CI.« less
Report of Programme Commission II (Natural Sciences), Annex - Recommendations.
ERIC Educational Resources Information Center
United Nations Educational, Scientific, and Cultural Organization, Paris (France). General Conference.
As the second part of the report of the Programme Commission II, a summary of recommendations on plans for natural sciences and their applications is presented in this document. Resolutions and budgetary appropriations are two major concerns in the document. The topics are related to the 1973-74 draft program and budget, the 1973-78 draft…
Report of Programme Commission II (Natural Sciences).
ERIC Educational Resources Information Center
United Nations Educational, Scientific, and Cultural Organization, Paris (France). General Conference.
As the first part of the report of the Programme Commission II, a summary of discussions on plans for natural sciences and their applications is presented in this document. The two agenda items are: (1) detailed consideration of the 1973-74 draft program and budget and of the 1973-78 draft medium-term outline, and (2) desirability of adopting an…
ERIC Educational Resources Information Center
Przybylla, Mareen; Romeike, Ralf
2014-01-01
Physical computing covers the design and realization of interactive objects and installations and allows students to develop concrete, tangible products of the real world, which arise from the learners' imagination. This can be used in computer science education to provide students with interesting and motivating access to the different topic…
Bringing Computational Thinking into the High School Science and Math Classroom
NASA Astrophysics Data System (ADS)
Trouille, Laura; Beheshti, E.; Horn, M.; Jona, K.; Kalogera, V.; Weintrop, D.; Wilensky, U.; University CT-STEM Project, Northwestern; University CenterTalent Development, Northwestern
2013-01-01
Computational thinking (for example, the thought processes involved in developing algorithmic solutions to problems that can then be automated for computation) has revolutionized the way we do science. The Next Generation Science Standards require that teachers support their students’ development of computational thinking and computational modeling skills. As a result, there is a very high demand among teachers for quality materials. Astronomy provides an abundance of opportunities to support student development of computational thinking skills. Our group has taken advantage of this to create a series of astronomy-based computational thinking lesson plans for use in typical physics, astronomy, and math high school classrooms. This project is funded by the NSF Computing Education for the 21st Century grant and is jointly led by Northwestern University’s Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), the Computer Science department, the Learning Sciences department, and the Office of STEM Education Partnerships (OSEP). I will also briefly present the online ‘Astro Adventures’ courses for middle and high school students I have developed through NU’s Center for Talent Development. The online courses take advantage of many of the amazing online astronomy enrichment materials available to the public, including a range of hands-on activities and the ability to take images with the Global Telescope Network. The course culminates with an independent computational research project.
NASA Astrophysics Data System (ADS)
Mary, D.; Ferrari, A.; Ferrari, C.; Deguignet, J.; Vannier, M.
2016-12-01
With millions of receivers leading to TerraByte data cubes, the story of the giant SKA telescope is also that of collaborative efforts from radioastronomy, signal processing, optimization and computer sciences. Reconstructing SKA cubes poses two challenges. First, the majority of existing algorithms work in 2D and cannot be directly translated into 3D. Second, the reconstruction implies solving an inverse problem and it is not clear what ultimate limit we can expect on the error of this solution. This study addresses (of course partially) both challenges. We consider an extremely simple data acquisition model, and we focus on strategies making it possible to implement 3D reconstruction algorithms that use state-of-the-art image/spectral regularization. The proposed approach has two main features: (i) reduced memory storage with respect to a previous approach; (ii) efficient parallelization and ventilation of the computational load over the spectral bands. This work will allow to implement and compare various 3D reconstruction approaches in a large scale framework.
2017 The 7th International Conference on Computer Engineering and Networks
NASA Astrophysics Data System (ADS)
This conference proceeding is a collection of the papers accepted by the CENet 2017 - the 7th International Conference on Computer Engineering and Networks held on Shanghai from 22-23 July, 2017. This proceeding contains the five parts: Part I focuses on Machine learning (21 papers); Part II Wireless communication (21 papers); Part III Information theory (21 papers), Part IV Cloud science (14 papers) and Part V Data analysis (21 papers). Each part can be used as an excellent reference by industry practitioners, university faculty, and undergraduate as well as graduate students who need to build a knowledge base of the most current advances and state-of-practice in the topics covered by this conference proceedings. This will enable them to produce, maintain, and manage systems with high levels of trustworthiness and complexity Thanks go to the authors for their hard work and dedication as well as the reviewers for ensuring the selection of only the highest quality papers; their efforts made this proceedings possible.
A Method for Transferring Photoelectric Photometry Data from Apple II+ to IBM PC
NASA Astrophysics Data System (ADS)
Powell, Harry D.; Miller, James R.; Stephenson, Kipp
1989-06-01
A method is presented for transferring photoelectric photometry data files from an Apple II computer to an IBM PC computer in a form which is compatible with the AAVSO Photoelectric Photometry data collection process.
2017-06-09
those with talent in the computer sciences. Upon graduation from high school, computer -proficient teenagers are selected for an elite cyber force and...Arguably, the Massachusetts Institute of Technology (M.I.T.) is the premiere institution for computer science. M.I.T. graduates make, on average, $83,455...study specific to computer science and provide certification in programs like ethical hacking, cyber security, and programing. As with the other
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Xiaoqing; Deng, Z. T.
2009-11-10
This is the final report for the Department of Energy (DOE) project DE-FG02-06ER25746, entitled, "Continuing High Performance Computing Research and Education at AAMU". This three-year project was started in August 15, 2006, and it was ended in August 14, 2009. The objective of this project was to enhance high performance computing research and education capabilities at Alabama A&M University (AAMU), and to train African-American and other minority students and scientists in the computational science field for eventual employment with DOE. AAMU has successfully completed all the proposed research and educational tasks. Through the support of DOE, AAMU was able tomore » provide opportunities to minority students through summer interns and DOE computational science scholarship program. In the past three years, AAMU (1). Supported three graduate research assistants in image processing for hypersonic shockwave control experiment and in computational science related area; (2). Recruited and provided full financial support for six AAMU undergraduate summer research interns to participate Research Alliance in Math and Science (RAMS) program at Oak Ridge National Lab (ORNL); (3). Awarded highly competitive 30 DOE High Performance Computing Scholarships ($1500 each) to qualified top AAMU undergraduate students in science and engineering majors; (4). Improved high performance computing laboratory at AAMU with the addition of three high performance Linux workstations; (5). Conducted image analysis for electromagnetic shockwave control experiment and computation of shockwave interactions to verify the design and operation of AAMU-Supersonic wind tunnel. The high performance computing research and education activities at AAMU created great impact to minority students. As praised by Accreditation Board for Engineering and Technology (ABET) in 2009, ?The work on high performance computing that is funded by the Department of Energy provides scholarships to undergraduate students as computational science scholars. This is a wonderful opportunity to recruit under-represented students.? Three ASEE papers were published in 2007, 2008 and 2009 proceedings of ASEE Annual Conferences, respectively. Presentations of these papers were also made at the ASEE Annual Conferences. It is very critical to continue the research and education activities.« less
Reconfigurable Computing for Computational Science: A New Focus in High Performance Computing
2006-11-01
in the past decade. Researchers are regularly employing the power of large computing systems and parallel processing to tackle larger and more...complex problems in all of the physical sciences. For the past decade or so, most of this growth in computing power has been “free” with increased...the scientific computing community as a means to continued growth in computing capability. This paper offers a glimpse of the hardware and
Computational Thinking Patterns
ERIC Educational Resources Information Center
Ioannidou, Andri; Bennett, Vicki; Repenning, Alexander; Koh, Kyu Han; Basawapatna, Ashok
2011-01-01
The iDREAMS project aims to reinvent Computer Science education in K-12 schools, by using game design and computational science for motivating and educating students through an approach we call Scalable Game Design, starting at the middle school level. In this paper we discuss the use of Computational Thinking Patterns as the basis for our…
On Evaluating Human Problem Solving of Computationally Hard Problems
ERIC Educational Resources Information Center
Carruthers, Sarah; Stege, Ulrike
2013-01-01
This article is concerned with how computer science, and more exactly computational complexity theory, can inform cognitive science. In particular, we suggest factors to be taken into account when investigating how people deal with computational hardness. This discussion will address the two upper levels of Marr's Level Theory: the computational…
Wusor II: A Computer Aided Instruction Program with Student Modelling Capabilities. AI Memo 417.
ERIC Educational Resources Information Center
Carr, Brian
Wusor II is the second intelligent computer aided instruction (ICAI) program that has been developed to monitor the progress of, and offer suggestions to, students playing Wumpus, a computer game designed to teach logical thinking and problem solving. From the earlier efforts with Wusor I, it was possible to produce a rule-based expert which…
Computational Exposure Science: An Emerging Discipline to ...
Background: Computational exposure science represents a frontier of environmental science that is emerging and quickly evolving.Objectives: In this commentary, we define this burgeoning discipline, describe a framework for implementation, and review some key ongoing research elements that are advancing the science with respect to exposure to chemicals in consumer products.Discussion: The fundamental elements of computational exposure science include the development of reliable, computationally efficient predictive exposure models; the identification, acquisition, and application of data to support and evaluate these models; and generation of improved methods for extrapolating across chemicals. We describe our efforts in each of these areas and provide examples that demonstrate both progress and potential.Conclusions: Computational exposure science, linked with comparable efforts in toxicology, is ushering in a new era of risk assessment that greatly expands our ability to evaluate chemical safety and sustainability and to protect public health. The National Exposure Research Laboratory’s (NERL’s) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA’s mission to protect human health and the environment. HEASD’s research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA’s strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source
Closing the race and gender gaps in computer science education
NASA Astrophysics Data System (ADS)
Robinson, John Henry
Life in a technological society brings new paradigms and pressures to bear on education. These pressures are magnified for underrepresented students and must be addressed if they are to play a vital part in society. Educational pipelines need to be established to provide at risk students with the means and opportunity to succeed in science, technology, engineering, and mathematics (STEM) majors. STEM educational pipelines are programs consisting of components that seek to facilitate students' completion of a college degree by providing access to higher education, intervention, mentoring, support infrastructure, and programs that encourage academic success. Successes in the STEM professions mean that more educators, scientist, engineers, and researchers will be available to add diversity to the professions and to provide role models for future generations. The issues that the educational pipelines must address are improving at risk groups' perceptions and awareness of the math, science, and engineering professions. Additionally, the educational pipelines must provide intervention in math preparation, overcome gender and race socialization, and provide mentors and counseling to help students achieve better self perceptions and provide positive role models. This study was designed to explorer the underrepresentation of minorities and women in the computer science major at Rowan University through a multilayered action research methodology. The purpose of this research study was to define and understand the needs of underrepresented students in computer science, to examine current policies and enrollment data for Rowan University, to develop a historical profile of the Computer Science program from the standpoint of ethnicity and gender enrollment to ascertain trends in students' choice of computer science as a major, and an attempt to determine if raising awareness about computer science for incoming freshmen, and providing an alternate route into the computer science major will entice more women and minorities to pursue a degree in computer science at Rowan University. Finally, this study examined my espoused leadership theories and my leadership theories in use through reflective practices as I progressed through the cycles of this project. The outcomes of this study indicated a large downward trend in women enrollment in computer science and a relatively flat trend in minority enrollment. The enrollment data at Rowan University was found to follow a nationwide trend for underrepresented students' enrollment in STEM majors. The study also indicated that students' mental models are based upon their race and gender socialization and their understanding of the world and society. The mental models were shown to play a large role in the students' choice of major. Finally, a computer science pipeline was designed and piloted as part of this study in an attempt to entice more students into the major and facilitate their success. Additionally, the mental models of the participants were challenged through interactions to make them aware of what possibilities are available with a degree in computer science. The entire study was wrapped in my leadership, which was practiced and studied over the course of this work.
NASA Astrophysics Data System (ADS)
Doppke, Max George
This non-experimental, quantitative exploratory study examined the relationship between genders, student residency status, acculturation, worldviews, and the motivation towards science education for a group of 291 undergraduate students in the United States. As all demographic variables were nominal, and all survey variables were ordinal, associations and differences utilized non-parametric statistical procedures. The overall design was descriptive, comparative, and correlational. Spearman's rho signified that there was a moderate positive correlation between the total scores on the Worldview Analysis Scale (WAS) and the total scores on the Science Motivation Questionnaire-II (SMQ-II; rs = .393, *p< .01, two-tailed). A Goodman and Kruskal's Gamma was conducted to determine the association between the seven subscales of the Worldview Assessment Survey (WAS) and the five subscales of the Science Motivation Questionnaire -II (SMQ-II). The results showed a moderate to strongly moderate, positive association between WAS Communalism (WASCOM) and the SMQ-II subscales of intrinsic motivation (SMQINTR; G = .322, p<.0005); self-efficacy (SMQSELF; G = .350, p< .0005); career motivation (SMQCAR; G = .307, p< .0005); and self-determination (SMQSELFDET; G = .364, p< .0005). A Mann-Whitney U test was run on the Worldview Analysis Scale (WAS) and the Science Motivation Questionnaire-II (SMQ-II) to determine if differences in score were based on gender. The WAS score was statistically significantly higher in males (Median = 180.00) than in females ( Median = 164.00, U = 8521.500, z = -2.840, p = .005). . The SMQ-II score was statistically insignificantly higher in males (Median = 152.56) than in females (Median = 140.08, U = 9652.500, z = -1.263, p = .207). In following the fundamental dictates of social research, this study offered a thorough description of a situation that ultimately provokes various possible explanations as necessary conclusions to intellectually stimulating thought, without the burden of propagating dubious inferences through unwarranted deterministic or probabilistic causality. Recommendations for future work include mixed-method studies with interviews, longitudinal studies, instructor-student studies, and gender vs. sexual orientation studies.
A Microcomputer-Based Computer Science Program.
ERIC Educational Resources Information Center
Compeau, Larry D.
1984-01-01
Examines the use of the microcomputer in computer science programs as an alternative to time-sharing computers at North Country Community College. Discusses factors contributing to the program's success, security problems, outside application possibilities, and program implementation concerns. (DMM)
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-27
... NATIONAL SCIENCE FOUNDATION Advisory Committee for Computer and Information Science and Engineering Notice of Meeting In accordance with Federal Advisory Committee Act (Pub. L. 92-463, as amended... and Information Science and Engineering (1115) DATE/TIME: January 14, 2014, 3:00 p.m. to 5:00 p.m...
A Computer-Based Instrument That Identifies Common Science Misconceptions
ERIC Educational Resources Information Center
Larrabee, Timothy G.; Stein, Mary; Barman, Charles
2006-01-01
This article describes the rationale for and development of a computer-based instrument that helps identify commonly held science misconceptions. The instrument, known as the Science Beliefs Test, is a 47-item instrument that targets topics in chemistry, physics, biology, earth science, and astronomy. The use of an online data collection system…
Computational Science at the Argonne Leadership Computing Facility
NASA Astrophysics Data System (ADS)
Romero, Nichols
2014-03-01
The goal of the Argonne Leadership Computing Facility (ALCF) is to extend the frontiers of science by solving problems that require innovative approaches and the largest-scale computing systems. ALCF's most powerful computer - Mira, an IBM Blue Gene/Q system - has nearly one million cores. How does one program such systems? What software tools are available? Which scientific and engineering applications are able to utilize such levels of parallelism? This talk will address these questions and describe a sampling of projects that are using ALCF systems in their research, including ones in nanoscience, materials science, and chemistry. Finally, the ways to gain access to ALCF resources will be presented. This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357.
ICASE semiannual report, April 1 - September 30, 1989
NASA Technical Reports Server (NTRS)
1990-01-01
The Institute conducts unclassified basic research in applied mathematics, numerical analysis, and computer science in order to extend and improve problem-solving capabilities in science and engineering, particularly in aeronautics and space. The major categories of the current Institute for Computer Applications in Science and Engineering (ICASE) research program are: (1) numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; (2) control and parameter identification problems, with emphasis on effective numerical methods; (3) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and (4) computer systems and software, especially vector and parallel computers. ICASE reports are considered to be primarily preprints of manuscripts that have been submitted to appropriate research journals or that are to appear in conference proceedings.
Partly cloudy with a chance of migration: Weather, radars, and aeroecology
USDA-ARS?s Scientific Manuscript database
Aeroecology is an emerging scientific discipline that integrates atmospheric science, terrestrial science, geography, ecology, computer science, computational biology, and engineering to further the understanding of ecological patterns and processes. The unifying concept underlying this new transdis...
NASA Tech Briefs, July 2000. Volume 24, No. 7
NASA Technical Reports Server (NTRS)
2000-01-01
Topics covered include: Data Acquisition; Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Test and Measurement; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports.
ERIC Educational Resources Information Center
Abelson, Harold; diSessa, Andy
During the summer of 1976, the MIT Artificial Intelligence Laboratory sponsored a Student Science Training Program in Mathematics, Physics, and Computer Science for high ability secondary school students. This report describes, in some detail, the style of the program, the curriculum and the projects the students under-took. It is hoped that this…
Interpretive computer simulator for the NASA Standard Spacecraft Computer-2 (NSSC-2)
NASA Technical Reports Server (NTRS)
Smith, R. S.; Noland, M. S.
1979-01-01
An Interpretive Computer Simulator (ICS) for the NASA Standard Spacecraft Computer-II (NSSC-II) was developed as a code verification and testing tool for the Annular Suspension and Pointing System (ASPS) project. The simulator is written in the higher level language PASCAL and implented on the CDC CYBER series computer system. It is supported by a metal assembler, a linkage loader for the NSSC-II, and a utility library to meet the application requirements. The architectural design of the NSSC-II is that of an IBM System/360 (S/360) and supports all but four instructions of the S/360 standard instruction set. The structural design of the ICS is described with emphasis on the design differences between it and the NSSC-II hardware. The program flow is diagrammed, with the function of each procedure being defined; the instruction implementation is discussed in broad terms; and the instruction timings used in the ICS are listed. An example of the steps required to process an assembly level language program on the ICS is included. The example illustrates the control cards necessary to assemble, load, and execute assembly language code; the sample program to to be executed; the executable load module produced by the loader; and the resulting output produced by the ICS.
Perspectives and Visions of Computer Science Education in Primary and Secondary (K-12) Schools
ERIC Educational Resources Information Center
Hubwieser, Peter; Armoni, Michal; Giannakos, Michail N.; Mittermeir, Roland T.
2014-01-01
In view of the recent developments in many countries, for example, in the USA and in the UK, it appears that computer science education (CSE) in primary or secondary schools (K-12) has reached a significant turning point, shifting its focus from ICT-oriented to rigorous computer science concepts. The goal of this special issue is to offer a…
ERIC Educational Resources Information Center
Michell, Dee; Szorenyi, Anna; Falkner, Katrina; Szabo, Claudia
2017-01-01
Computer science, like technology in general, is seen as a masculine field and the under-representation of women an intransigent problem. In this paper, we argue that the cultural belief in Australia that computer science is a domain for men results in many girls and women being chased away from that field as part of a border protection campaign…
ERIC Educational Resources Information Center
Bennedsen, Jens; Caspersen, Michael E.
2008-01-01
In order to better understand predictors of success and, when possible, improve the design of the first year computer science courses at university to increase the likelihood of success, we study a number of factors that may potentially indicate students' computer science aptitude. Based on findings in general education, we have studied the…
Understanding System of Systems Development Using an Agent-Based Wave Model
2012-01-01
Procedia Computer Science Procedia Computer Science 00 (2012) 000–000 www.elsevier.com/locate/ procedia Complex Adaptive Systems...integration of technical systems as well as cognitive and social processes, which alter system behavior [6]. As mentioned before * Corresponding...Prescribed by ANSI Std Z39-18 Acheson/ Procedia Computer Science 00 (2012) 000–000 most system architects assume that SoS participants exhibit
Scaling Bulk Data Analysis with Mapreduce
2017-09-01
Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN COMPUTER SCIENCE from the NAVAL POSTGRADUATE SCHOOL September...2017 Approved by: Michael McCarrin Thesis Co-Advisor Marcus S. Stefanou Thesis Co-Advisor Peter J. Denning Chair, Department of Computer Science iii...98 xiii THIS PAGE INTENTIONALLY LEFT BLANK xiv List of Acronyms and Abbreviations CART Computer Analysis and Response Team DELV Distributed Environment
ERIC Educational Resources Information Center
Srisupawong, Yuwarat; Koul, Ravinder; Neanchaleay, Jariya; Murphy, Elizabeth; Francois, Emmanuel Jean
2018-01-01
Motivation and success in computer-science courses are influenced by the strength of students' self-efficacy (SE) beliefs in their learning abilities. Students with weak SE may struggle to be successful in a computer-science course. This study investigated the factors that enhance or impede the computer self-efficacy (CSE) of computer-science…
ERIC Educational Resources Information Center
Haberman, Bruria; Yehezkel, Cecile
2008-01-01
The rapid evolvement of the computing domain has posed challenges in attempting to bridge the gap between school and the contemporary world of computing, which is related to content, learning culture, and professional norms. We believe that the interaction of high-school students who major in computer science or software engineering with leading…
ERIC Educational Resources Information Center
Berg, A. I.; And Others
Five articles which were selected from a Russian language book on cybernetics and then translated are presented here. They deal with the topics of: computer-developed computers, heuristics and modern sciences, linguistics and practice, cybernetics and moral-ethical considerations, and computer chess programs. (Author/JY)
Open Research Challenges with Big Data - A Data-Scientist s Perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sukumar, Sreenivas R
In this paper, we discuss data-driven discovery challenges of the Big Data era. We observe that recent innovations in being able to collect, access, organize, integrate, and query massive amounts of data from a wide variety of data sources have brought statistical data mining and machine learning under more scrutiny and evaluation for gleaning insights from the data than ever before. In that context, we pose and debate the question - Are data mining algorithms scaling with the ability to store and compute? If yes, how? If not, why not? We survey recent developments in the state-of-the-art to discuss emergingmore » and outstanding challenges in the design and implementation of machine learning algorithms at scale. We leverage experience from real-world Big Data knowledge discovery projects across domains of national security, healthcare and manufacturing to suggest our efforts be focused along the following axes: (i) the data science challenge - designing scalable and flexible computational architectures for machine learning (beyond just data-retrieval); (ii) the science of data challenge the ability to understand characteristics of data before applying machine learning algorithms and tools; and (iii) the scalable predictive functions challenge the ability to construct, learn and infer with increasing sample size, dimensionality, and categories of labels. We conclude with a discussion of opportunities and directions for future research.« less
Tadmor, Brigitta; Tidor, Bruce
2005-09-01
Progress in the life sciences, including genome sequencing and high-throughput experimentation, offers an opportunity for understanding biology and medicine from a systems perspective. This 'new view', which complements the more traditional component-based approach, involves the integration of biological research with approaches from engineering disciplines and computer science. The result is more than a new set of technologies. Rather, it promises a fundamental reconceptualization of the life sciences based on the development of quantitative and predictive models to describe crucial processes. To achieve this change, learning communities are being formed at the interface of the life sciences, engineering and computer science. Through these communities, research and education will be integrated across disciplines and the challenges associated with multidisciplinary team-based science will be addressed.
Teachers' Organization of Participation Structures for Teaching Science with Computer Technology
NASA Astrophysics Data System (ADS)
Subramaniam, Karthigeyan
2016-08-01
This paper describes a qualitative study that investigated the nature of the participation structures and how the participation structures were organized by four science teachers when they constructed and communicated science content in their classrooms with computer technology. Participation structures focus on the activity structures and processes in social settings like classrooms thereby providing glimpses into the complex dynamics of teacher-students interactions, configurations, and conventions during collective meaning making and knowledge creation. Data included observations, interviews, and focus group interviews. Analysis revealed that the dominant participation structure evident within participants' instruction with computer technology was ( Teacher) initiation-( Student and Teacher) response sequences-( Teacher) evaluate participation structure. Three key events characterized the how participants organized this participation structure in their classrooms: setting the stage for interactive instruction, the joint activity, and maintaining accountability. Implications include the following: (1) teacher educators need to tap into the knowledge base that underscores science teachers' learning to teach philosophies when computer technology is used in instruction. (2) Teacher educators need to emphasize the essential idea that learning and cognition is not situated within the computer technology but within the pedagogical practices, specifically the participation structures. (3) The pedagogical practices developed with the integration or with the use of computer technology underscored by the teachers' own knowledge of classroom contexts and curriculum needs to be the focus for how students learn science content with computer technology instead of just focusing on how computer technology solely supports students learning of science content.
Theoretical computer science and the natural sciences
NASA Astrophysics Data System (ADS)
Marchal, Bruno
2005-12-01
I present some fundamental theorems in computer science and illustrate their relevance in Biology and Physics. I do not assume prerequisites in mathematics or computer science beyond the set N of natural numbers, functions from N to N, the use of some notational conveniences to describe functions, and at some point, a minimal amount of linear algebra and logic. I start with Cantor's transcendental proof by diagonalization of the non enumerability of the collection of functions from natural numbers to the natural numbers. I explain why this proof is not entirely convincing and show how, by restricting the notion of function in terms of discrete well defined processes, we are led to the non algorithmic enumerability of the computable functions, but also-through Church's thesis-to the algorithmic enumerability of partial computable functions. Such a notion of function constitutes, with respect to our purpose, a crucial generalization of that concept. This will make easy to justify deep and astonishing (counter-intuitive) incompleteness results about computers and similar machines. The modified Cantor diagonalization will provide a theory of concrete self-reference and I illustrate it by pointing toward an elementary theory of self-reproduction-in the Amoeba's way-and cellular self-regeneration-in the flatworm Planaria's way. To make it easier, I introduce a very simple and powerful formal system known as the Schoenfinkel-Curry combinators. I will use the combinators to illustrate in a more concrete way the notion introduced above. The combinators, thanks to their low-level fine grained design, will also make it possible to make a rough but hopefully illuminating description of the main lessons gained by the careful observation of nature, and to describe some new relations, which should exist between computer science, the science of life and the science of inert matter, once some philosophical, if not theological, hypotheses are made in the cognitive sciences. In the last section, I come back to self-reference and I give an exposition of its modal logics. This is used to show that theoretical computer science makes those “philosophical hypotheses” in theoretical cognitive science experimentally and mathematically testable.
Computer Science Research at Langley
NASA Technical Reports Server (NTRS)
Voigt, S. J. (Editor)
1982-01-01
A workshop was held at Langley Research Center, November 2-5, 1981, to highlight ongoing computer science research at Langley and to identify additional areas of research based upon the computer user requirements. A panel discussion was held in each of nine application areas, and these are summarized in the proceedings. Slides presented by the invited speakers are also included. A survey of scientific, business, data reduction, and microprocessor computer users helped identify areas of focus for the workshop. Several areas of computer science which are of most concern to the Langley computer users were identified during the workshop discussions. These include graphics, distributed processing, programmer support systems and tools, database management, and numerical methods.
An Overview of the Computational Physics and Methods Group at Los Alamos National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Randal Scott
CCS Division was formed to strengthen the visibility and impact of computer science and computational physics research on strategic directions for the Laboratory. Both computer science and computational science are now central to scientific discovery and innovation. They have become indispensable tools for all other scientific missions at the Laboratory. CCS Division forms a bridge between external partners and Laboratory programs, bringing new ideas and technologies to bear on today’s important problems and attracting high-quality technical staff members to the Laboratory. The Computational Physics and Methods Group CCS-2 conducts methods research and develops scientific software aimed at the latest andmore » emerging HPC systems.« less
NASA Astrophysics Data System (ADS)
Wang, Jianxiong
2014-06-01
This volume of Journal of Physics: Conference Series is dedicated to scientific contributions presented at the 15th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2013) which took place on 16-21 May 2013 at the Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China. The workshop series brings together computer science researchers and practitioners, and researchers from particle physics and related fields to explore and confront the boundaries of computing and of automatic data analysis and theoretical calculation techniques. This year's edition of the workshop brought together over 120 participants from all over the world. 18 invited speakers presented key topics on the universe in computer, Computing in Earth Sciences, multivariate data analysis, automated computation in Quantum Field Theory as well as computing and data analysis challenges in many fields. Over 70 other talks and posters presented state-of-the-art developments in the areas of the workshop's three tracks: Computing Technologies, Data Analysis Algorithms and Tools, and Computational Techniques in Theoretical Physics. The round table discussions on open-source, knowledge sharing and scientific collaboration stimulate us to think over the issue in the respective areas. ACAT 2013 was generously sponsored by the Chinese Academy of Sciences (CAS), National Natural Science Foundation of China (NFSC), Brookhaven National Laboratory in the USA (BNL), Peking University (PKU), Theoretical Physics Cernter for Science facilities of CAS (TPCSF-CAS) and Sugon. We would like to thank all the participants for their scientific contributions and for the en- thusiastic participation in all its activities of the workshop. Further information on ACAT 2013 can be found at http://acat2013.ihep.ac.cn. Professor Jianxiong Wang Institute of High Energy Physics Chinese Academy of Science Details of committees and sponsors are available in the PDF
NASA Astrophysics Data System (ADS)
Powell, Rita Manco
Currently women are underrepresented in departments of computer science, making up approximately 18% of the undergraduate enrollment in selective universities. Most attrition in computer science occurs early in this major, in the freshman and sophomore years, and women drop out in disproportionately greater numbers than their male counterparts. Taking an ethnographic approach to investigating women's experiences and progress in the first year courses in the computer science major at the University of Pennsylvania, this study examined the pre-college influences that led these women to the major and the nature of their experiences in and outside of class with faculty, peers, and academic support services. This study sought an understanding of the challenges these women faced in the first year of the major with the goal of informing institutional practice about how to best support their persistence. The research reviewed for this study included patterns of leaving majors in science, math and engineering (Seymour & Hewitt 1997), the high school preparation needed to pursue math and engineering majors in college (Strenta, Elliott, Adair, Matier, & Scott, 1994), and intervention programs that have positively impacted persistence of women in computer science (Margolis & Fisher, 2002). The research method of this study employed a series of personal interviews over the course of one calendar year with fourteen first year women who had either declared on intended to declare the computer science major in the School of Engineering and Applied Science at the University of Pennsylvania. Other data sources were focus groups and personal interviews with faculty, administrators, admissions and student life professionals, teaching assistants, female graduate students, and male first year students at the University of Pennsylvania. This study found that the women in this study group came to the University of Pennsylvania with a thorough grounding in mathematics, but many either had an inadequate background in computer science, or at least perceived inadequacies in their background, which prevented them from beginning the major on an equal footing with their mostly male peers and caused some to lose confidence and consequently interest in the major. Issues also emanated from their gender-minority status in the Computer and Information Science Department, causing them to be socially isolated from their peers and further weakening their resolve to persist. These findings suggest that female first year students could benefit from multiple pathways into the major designed for students with varying degrees of prior experience with computer science. In addition, a computer science community within the department characterized by more frequent interaction and collaboration with faculty and peers could positively impact women's persistence in the major.
An empirical analysis of journal policy effectiveness for computational reproducibility.
Stodden, Victoria; Seiler, Jennifer; Ma, Zhaokun
2018-03-13
A key component of scientific communication is sufficient information for other researchers in the field to reproduce published findings. For computational and data-enabled research, this has often been interpreted to mean making available the raw data from which results were generated, the computer code that generated the findings, and any additional information needed such as workflows and input parameters. Many journals are revising author guidelines to include data and code availability. This work evaluates the effectiveness of journal policy that requires the data and code necessary for reproducibility be made available postpublication by the authors upon request. We assess the effectiveness of such a policy by ( i ) requesting data and code from authors and ( ii ) attempting replication of the published findings. We chose a random sample of 204 scientific papers published in the journal Science after the implementation of their policy in February 2011. We found that we were able to obtain artifacts from 44% of our sample and were able to reproduce the findings for 26%. We find this policy-author remission of data and code postpublication upon request-an improvement over no policy, but currently insufficient for reproducibility.
An empirical analysis of journal policy effectiveness for computational reproducibility
Seiler, Jennifer; Ma, Zhaokun
2018-01-01
A key component of scientific communication is sufficient information for other researchers in the field to reproduce published findings. For computational and data-enabled research, this has often been interpreted to mean making available the raw data from which results were generated, the computer code that generated the findings, and any additional information needed such as workflows and input parameters. Many journals are revising author guidelines to include data and code availability. This work evaluates the effectiveness of journal policy that requires the data and code necessary for reproducibility be made available postpublication by the authors upon request. We assess the effectiveness of such a policy by (i) requesting data and code from authors and (ii) attempting replication of the published findings. We chose a random sample of 204 scientific papers published in the journal Science after the implementation of their policy in February 2011. We found that we were able to obtain artifacts from 44% of our sample and were able to reproduce the findings for 26%. We find this policy—author remission of data and code postpublication upon request—an improvement over no policy, but currently insufficient for reproducibility. PMID:29531050
CDM: Teaching Discrete Mathematics to Computer Science Majors
ERIC Educational Resources Information Center
Sutner, Klaus
2005-01-01
CDM, for computational discrete mathematics, is a course that attempts to teach a number of topics in discrete mathematics to computer science majors. The course abandons the classical definition-theorem-proof model, and instead relies heavily on computation as a source of motivation and also for experimentation and illustration. The emphasis on…
Designing Educational Games for Computer Programming: A Holistic Framework
ERIC Educational Resources Information Center
Malliarakis, Christos; Satratzemi, Maya; Xinogalos, Stelios
2014-01-01
Computer science is continuously evolving during the past decades. This has also brought forth new knowledge that should be incorporated and new learning strategies must be adopted for the successful teaching of all sub-domains. For example, computer programming is a vital knowledge area within computer science with constantly changing curriculum…
Changing a Generation's Way of Thinking: Teaching Computational Thinking through Programming
ERIC Educational Resources Information Center
Buitrago Flórez, Francisco; Casallas, Rubby; Hernández, Marcela; Reyes, Alejandro; Restrepo, Silvia; Danies, Giovanna
2017-01-01
Computational thinking (CT) uses concepts that are essential to computing and information science to solve problems, design and evaluate complex systems, and understand human reasoning and behavior. This way of thinking has important implications in computer sciences as well as in almost every other field. Therefore, we contend that CT should be…
The Learning Effects of Computer Simulations in Science Education
ERIC Educational Resources Information Center
Rutten, Nico; van Joolingen, Wouter R.; van der Veen, Jan T.
2012-01-01
This article reviews the (quasi)experimental research of the past decade on the learning effects of computer simulations in science education. The focus is on two questions: how use of computer simulations can enhance traditional education, and how computer simulations are best used in order to improve learning processes and outcomes. We report on…
Report of a Workshop on the Pedagogical Aspects of Computational Thinking
ERIC Educational Resources Information Center
National Academies Press, 2011
2011-01-01
In 2008, the Computer and Information Science and Engineering Directorate of the National Science Foundation asked the National Research Council (NRC) to conduct two workshops to explore the nature of computational thinking and its cognitive and educational implications. The first workshop focused on the scope and nature of computational thinking…
ERIC Educational Resources Information Center
Castillo, Antonio S.; Berenguer, Isabel A.; Sánchez, Alexander G.; Álvarez, Tomás R. R.
2017-01-01
This paper analyzes the results of a diagnostic study carried out with second year students of the computational sciences majors at University of Oriente, Cuba, to determine the limitations that they present in computational algorithmization. An exploratory research was developed using quantitative and qualitative methods. The results allowed…
Computers and Computation. Readings from Scientific American.
ERIC Educational Resources Information Center
Fenichel, Robert R.; Weizenbaum, Joseph
A collection of articles from "Scientific American" magazine has been put together at this time because the current period in computer science is one of consolidation rather than innovation. A few years ago, computer science was moving so swiftly that even the professional journals were more archival than informative; but today it is…
ERIC Educational Resources Information Center
Science, 1976
1976-01-01
Lists the 66 symposia constituting the second half of a forthcoming meeting of the American Association for the Advancement of Science (AAAS), divided into the following categories: medicine and health, anthropology, technological implications, behavioral science, education, economic and social science, science and public policy, and history and…
NASA Technical Reports Server (NTRS)
1990-01-01
Optacon II uses the same basic technique of converting printed information into a tactile image as did Optacon. Optacon II can also be connected directly to a personal computer, which opens up a new range of job opportunities for the blind. Optacon II is not limited to reading printed words, it can convert any graphic image viewed by the camera. Optacon II demands extensive training for blind operators. TSI provides 60-hour training courses at its Mountain View headquarters and at training centers around the world. TeleSensory discontinued production of the Optacon as of December 1996.
1984-12-01
Appendix D: CPESIM II Student Manual .........D-1 Appendix E: CPESIM II Instructor Manual .......E-1 Appendix F: The Abridged Report..........F-i Bibliography...operating system is implemented on. A student and instructor user’s manual is provided. vii I • - Development of a User Support Package for CPESIM II (a...was a manual one. The student changes should be collected into a database to ease the instructor workload and to provide a "history" of the evolution of
ERIC Educational Resources Information Center
Turkmen, Lutfullah
2013-01-01
The purpose of this study is to reveal Turkish elementary teachers' and science teachers' attitudes toward science and science teaching. The sample of the study, 138 in-service elementary level science teachers from a province of Turkey, was selected by a clustered sampling method. The Science Teaching Attitude Scale-II was employed to measure the…
NASA Astrophysics Data System (ADS)
Pon-Barry, Heather; Packard, Becky Wai-Ling; St. John, Audrey
2017-01-01
A dilemma within computer science departments is developing sustainable ways to expand capacity within introductory computer science courses while remaining committed to inclusive practices. Training near-peer mentors for peer code review is one solution. This paper describes the preparation of near-peer mentors for their role, with a focus on regular, consistent feedback via peer code review and inclusive pedagogy. Introductory computer science students provided consistently high ratings of the peer mentors' knowledge, approachability, and flexibility, and credited peer mentor meetings for their strengthened self-efficacy and understanding. Peer mentors noted the value of videotaped simulations with reflection, discussions of inclusion, and the cohort's weekly practicum for improving practice. Adaptations of peer mentoring for different types of institutions are discussed. Computer science educators, with hopes of improving the recruitment and retention of underrepresented groups, can benefit from expanding their peer support infrastructure and improving the quality of peer mentor preparation.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-24
... Engineering; Notice of Meeting In accordance with the Federal Advisory Committee Act (Pub. L. 92- 463, as... Computer and Information Science and Engineering (1115). Date and Time: May 10, 2012 12 p.m.-5:30 p.m., May... Science and Engineering, National Science Foundation, 4201 Wilson Blvd., Suite 1105, Arlington VA 22230...
1987-10-01
include Security Classification) Instrumentation for scientific computing in neural networks, information science, artificial intelligence, and...instrumentation grant to purchase equipment for support of research in neural networks, information science, artificail intellignece , and applied mathematics...in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics Contract AFOSR 86-0282 Principal Investigator: Stephen
ERIC Educational Resources Information Center
Foley, Brian J.; Reveles, John M.
2014-01-01
The prevalence of computers in the classroom is compelling teachers to develop new instructional skills. This paper provides a theoretical perspective on an innovative pedagogical approach to science teaching that takes advantage of technology to create a connected classroom. In the connected classroom, students collaborate and share ideas in…
Earth Science Informatics - Overview
NASA Technical Reports Server (NTRS)
Ramapriyan, H. K.
2015-01-01
Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes nearly 150 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies. Remote Sensing; Earth Science Informatics, Data Systems; Data Services; Metadata
ERIC Educational Resources Information Center
Al Sarhan, Khaled Ali; AlZboon, Saleem Odeh; Olimat, Khalaf Mufleh; Al-Zboon, Mohammad Saleem
2013-01-01
The study aims at introducing the features of the computerized educational games in sciences at the elementary school in Jordan according to the specialists in teaching science and computer subjects, through answering some questions such as: What are the features of the computerized educational games in sciences at the elementary schools in Jordan…
Army Science Planning and Strategy Meeting: The Fog of Cyber War
2016-12-01
computing , which, depending upon the situation, some refer to as a fog rather than a cloud . These seemingly disparate notions of fog merge when one...Chiang M. CYRUS: towards client- defined cloud storage. Proceedings of the Tenth European Conference on Computer Systems; 2015 Apr 21; Bordeaux...Army Science Planning and Strategy Meeting: The Fog of Cyber War by Alexander Kott and Ananthram Swami Computational and Information Sciences
A Fuzzy Evaluation Method for System of Systems Meta-architectures
2013-03-01
Procedia Computer Science Procedia Computer Science 00 (2013) 000–000 www.elsevier.com/locate/ procedia Conference on Systems Engineering...boundary includes integration of technical systems as well as cognitive and social processes, which alter system behavior [2]. Most system architects...unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Pape/ Procedia Computer Science 00 (2013) 000
Ada in Introductory Computer Science Courses
1993-01-01
Ada by Daniel F. Stubbs and Neil W. Webre Course Objective: To introduce the students to the basic classical data structures of computer science...Introduction to Ada, Chapman & Hall, 1993, London Dale/Weems/McCormick, Programming and Problem Solving with Ada, D. C. Heath and Company, 1994, MA Feldman...Daniel F. Stubbs and Neil W. Webre - Course Objective: To introduce the students to the basic classical data structures of computer science
The Handicap Principle for Trust in Computer Security, the Semantic Web and Social Networking
NASA Astrophysics Data System (ADS)
Ma, Zhanshan (Sam); Krings, Axel W.; Hung, Chih-Cheng
Communication is a fundamental function of life, and it exists in almost all living things: from single-cell bacteria to human beings. Communication, together with competition and cooperation,arethree fundamental processes in nature. Computer scientists are familiar with the study of competition or 'struggle for life' through Darwin's evolutionary theory, or even evolutionary computing. They may be equally familiar with the study of cooperation or altruism through the Prisoner's Dilemma (PD) game. However, they are likely to be less familiar with the theory of animal communication. The objective of this article is three-fold: (i) To suggest that the study of animal communication, especially the honesty (reliability) of animal communication, in which some significant advances in behavioral biology have been achieved in the last three decades, should be on the verge to spawn important cross-disciplinary research similar to that generated by the study of cooperation with the PD game. One of the far-reaching advances in the field is marked by the publication of "The Handicap Principle: a Missing Piece of Darwin's Puzzle" by Zahavi (1997). The 'Handicap' principle [34][35], which states that communication signals must be costly in some proper way to be reliable (honest), is best elucidated with evolutionary games, e.g., Sir Philip Sidney (SPS) game [23]. Accordingly, we suggest that the Handicap principle may serve as a fundamental paradigm for trust research in computer science. (ii) To suggest to computer scientists that their expertise in modeling computer networks may help behavioral biologists in their study of the reliability of animal communication networks. This is largely due to the historical reason that, until the last decade, animal communication was studied with the dyadic paradigm (sender-receiver) rather than with the network paradigm. (iii) To pose several open questions, the answers to which may bear some refreshing insights to trust research in computer science, especially secure and resilient computing, the semantic web, and social networking. One important thread unifying the three aspects is the evolutionary game theory modeling or its extensions with survival analysis and agreement algorithms [19][20], which offer powerful game models for describing time-, space-, and covariate-dependent frailty (uncertainty and vulnerability) and deception (honesty).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caprini, Chiara, E-mail: chiara.caprini@cea.fr; Hindmarsh, Mark; Huber, Stephan
We investigate the potential for the eLISA space-based interferometer to detect the stochastic gravitational wave background produced by strong first-order cosmological phase transitions. We discuss the resulting contributions from bubble collisions, magnetohydrodynamic turbulence, and sound waves to the stochastic background, and estimate the total corresponding signal predicted in gravitational waves. The projected sensitivity of eLISA to cosmological phase transitions is computed in a model-independent way for various detector designs and configurations. By applying these results to several specific models, we demonstrate that eLISA is able to probe many well-motivated scenarios beyond the Standard Model of particle physics predicting strong first-ordermore » cosmological phase transitions in the early Universe.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Choong-Seock; Greenwald, Martin; Riley, Katherine
The additional computing power offered by the planned exascale facilities could be transformational across the spectrum of plasma and fusion research — provided that the new architectures can be efficiently applied to our problem space. The collaboration that will be required to succeed should be viewed as an opportunity to identify and exploit cross-disciplinary synergies. To assess the opportunities and requirements as part of the development of an overall strategy for computing in the exascale era, the Exascale Requirements Review meeting of the Fusion Energy Sciences (FES) community was convened January 27–29, 2016, with participation from a broad range ofmore » fusion and plasma scientists, specialists in applied mathematics and computer science, and representatives from the U.S. Department of Energy (DOE) and its major computing facilities. This report is a summary of that meeting and the preparatory activities for it and includes a wealth of detail to support the findings. Technical opportunities, requirements, and challenges are detailed in this report (and in the recent report on the Workshop on Integrated Simulation). Science applications are described, along with mathematical and computational enabling technologies. Also see http://exascaleage.org/fes/ for more information.« less
ERIC Educational Resources Information Center
Veley, Victor F.; And Others
This report presents a master plan for the development of computer science and computer-related programs at Los Angeles Trade-Technical College for 1982 through 1985. Introductory material outlines the main elements of the plan: to analyze existing computer courses, to create new courses in Laser Technology, Genetic Engineering, and Robotics; and…
Computational Exposure Science: An Emerging Discipline to Support 21st-Century Risk Assessment
Background: Computational exposure science represents a frontier of environmental science that is emerging and quickly evolving.Objectives: In this commentary, we define this burgeoning discipline, describe a framework for implementation, and review some key ongoing research elem...
Computing Your Way through Science.
ERIC Educational Resources Information Center
Allen, Denise
1994-01-01
Reviews three computer software programs focusing on teaching science to middle school students: (1) Encarta, a multimedia encyclopedia; (2) Gizmos and Gadgets, which allows students to explore physical science principles; and (3) BodyScope, which allows students to examine the systems of the human body. (BB)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sprague, Michael A.; Boldyrev, Stanislav; Fischer, Paul
This report details the impact exascale will bring to turbulent-flow simulations in applied science and technology. The need for accurate simulation of turbulent flows is evident across the DOE applied-science and engineering portfolios, including combustion, plasma physics, nuclear-reactor physics, wind energy, and atmospheric science. The workshop brought together experts in turbulent-flow simulation, computational mathematics, and high-performance computing. Building upon previous ASCR workshops on exascale computing, participants defined a research agenda and path forward that will enable scientists and engineers to continually leverage, engage, and direct advances in computational systems on the path to exascale computing.